
TensorFlow on state-of-the-art HPC clusters:
a machine learning use case

Guillem Ramirez-Gargallo
Computer Science Department

Barcelona Supercomputing Center
Barcelona, Spain

guillem.ramirez@bsc.es

Marta Garcia-Gasulla
Computer Science Department

Barcelona Supercomputing Center
Barcelona, Spain

marta.garcia@bsc.es

Filippo Mantovani
Computer Science Department

Barcelona Supercomputing Center
Barcelona, Spain

filippo.mantovani@bsc.es

Abstract—The recent rapid growth of the data-flow program-
ming paradigm enabled the development of specific architectures,
e.g., for machine learning. The most known example is the
Tensor Processing Unit (TPU) by Google. Standard data-centers,
however, still can not foresee large partitions dedicated to
machine learning specific architectures. Within data-centers, the
High-Performance Computing (HPC) clusters are highly parallel
machines targeting a broad class of compute-intensive workflows,
as such they can be used for tackling machine learning challenges.
On top of this, HPC architectures are rapidly changing, including
accelerators and instruction sets other than the classical x86
CPUs. In this blurry scenario, identifying which are the best
hardware/software configurations to efficiently support machine
learning workloads on HPC clusters is not trivial. In this paper,
we considered the workflow of TensorFlow for image recognition.
We highlight the strong dependency of the performance in the
training phase on the availability of arithmetic libraries optimized
for the underlying architecture. Following the example of Intel
leveraging the MKL libraries for improving the TensorFlow
performance, we plugged the Arm Performance Libraries into
TensorFlow and tested on an HPC cluster based on Marvell
ThunderX2 CPUs. Also, we performed a scalability study on
three state-of-the-art HPC clusters based on different CPU
architectures, x86 Intel Skylake, Arm-v8 Marvell ThunderX2,
and PowerPC IBM Power9.

Index Terms—TensorFlow, High Performance Computing, Par-
allel Computing, Machine Learning, Image Recognition, Train-
ing, Arm, Power9, x86, Clusters

I. INTRODUCTION

The use of Machine Learning (ML) in research and industry
is growing, and with its growth, there is an increasing need for
computational resources able to efficiently handle ML work-
loads. One approach to cope with this request is to develop
domain-specific architectures (the most prominent example
being the Tensor Processing Unit (TPU) by Google [1]).
Another approach is to employ the latest generations of
Graphics Processing Units (GPU) offering ML specialized
cores (see e.g., [2]). Another transversal approach is to link
the back-end of ML frameworks to optimized libraries so
to improve the performance (and the efficiency) of standard

This work is partially supported by the Spanish Government through
Programa Severo Ochoa (SEV-2015-0493), by the Spanish Ministry of
Science and Technology project (TIN2015-65316-P), by the Generalitat de
Catalunya (2017-SGR-1414), and by the European Community’s Seventh
Framework Programme [FP7/2007-2013] and Horizon 2020 under the Mont-
Blanc projects, grant agreements n. (288777, 610402 and 671697).

homogeneous clusters based on high-end CPUs. This last ap-
proach can imply to leverage vendor-specific libraries targeting
ML (see e.g., [3]) or develop kernels optimized for specific
operations/kernels and architectures (see e.g., [4]).

Since most data centers cannot afford to specialized their
hardware deployment for ML, it is essential to have ML
tools making good use of computing resources, especially
very high-end resources like the one in High-Performance
Computing (HPC) data centers. HPC data centers are tradition-
ally populated with x86 architectures, but recently the trend
is changing: the first ranked supercomputer of the Top500
is indeed Summit, an IBM PowerPC architecture (boosted
by NVIDIA GPUs). The Barcelona Supercomputing Center
(BSC) hosts a 1.5 PFlops partition of compute nodes identical
to the ones installed in Summit. Also, for the first time in
the history of Top500, on November 2018 an Arm-based
system, Astra, also entered the Top500 [5]. The BSC is
engaged through the Mont-Blanc project in enabling the Arm
architecture into HPC [6]. For these reasons, we present in
this paper how to leverage the Arm Performance Libraries
within TensorFlow and a complete evaluation of TensorFlow
on modern HPC clusters, including x86, Power9 and Arm.

The main contributions of this paper are: i) the performance
evaluation of hybrid configurations of TensorFlow in three
state-of-the-art HPC based on different architectures; ii) the
measurement of the performance benefits when plugging the
Arm Performance Libraries to TensorFlow; iii) the study of
the scalability of TensorFlow when running up to 1024 cores
of state-of-the-art HPC clusters.

The remaining part of the paper is organized as follows:
in Section II we define our test case and the method used for
performing the following experiments. Section III summarizes
the HPC hardware platforms on which we performed our
tests; in Section IV we present the performance effects of
using vendor-specific linear algebra libraries when running
TensorFlow, while in Section V we present the scalability
results measured on three HPC homogeneous clusters based on
different architecture, x86, PowerPC and Arm. In Section VI
we briefly compare our work with the most recent contribu-
tions related to TensorFlow in the HPC field. We summarize
our final comments in VII.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/196280993?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


II. MACHINE LEARNING ENVIRONMENT

TensorFlow is an open-source library for Machine Learning
(ML) applications e.g., for image classification, recommenda-
tion of applications, and speech recognition [7]. It is designed
and implemented by the Google Brain Team, written in C++
and Python and some of its parts use CUDA for acceleration
on GPUs. It consists of ∼650,000 lines of code. Both the
scientific community and industry (e.g., Intel and NVIDIA)
contribute to its development1. It is employed as a benchmark
of new ML architectures [8] and as ML engine when coupled
with well-trained models [9].

Concerning parallelism, TensorFlow defines intra-ops as the
number of threads used by a kernel and inter-ops the level of
parallelism expressed at the node level of a graph, in other
words, how many different kernels can be performed at the
same time. Horovod [10] is a distributed training framework
for TensorFlow and other machine learning frameworks. We
use Horovod for allocating work among processes.

Fig. 1. Time distribution among operations for the AlexNet model on
Marvell ThunderX2 CPU.

In Figure 1, we can see that ∼70% of the total
execution time is spent in the Conv2DBackpropInput
function, while ∼18% of the time is spent in
Conv2DBackpropFilter. Of course, speeding up
these two operations would improve the overall performance.
We profiled (with perf) the inner calls and matched the most
time-consuming functions and operations. As expected, all of
them are part of the Eigen library. Eigen2 is a C++ library
for linear algebra. In the generic kernels (i.e., the generic
implementation of an operation), Eigen is used for tensor
operations. Since the Eigen library is a collection of linear
algebra functions, we studied how to replace some of the Eigen
calls with the corresponding optimized implementations that
can be found in vendor specific linear algebra libraries. While
for x86 architecture already existed a version of TensorFlow
leveraging MKL, for Arm architectures we decided to test the
Arm Performance Libraries (ArmPL). Due to the dominance in
the execution time, we integrate calls to the Arm Performance
Libraries first into the Conv2DBackpropInput and
Conv2DBackpropFilter operations.

1https://github.com/tensorflow/tensorflow/tree/master/tensorflow
2http://eigen.tuxfamily.org/

We perform our study using TensorFlow for training a
network with images, using the benchmark tool from the
TensorFlow repository3. In order to avoid I/O overhead, we
perform all tests with a synthetic image set, however for the
scalability study we also tested the ImageNet data set [11]. We
apply two different models, ResNet-50 as an example of deep
multi-layer network and AlexNet for legacy reasons. Since we
are applying machine learning techniques for image recogni-
tion, we try to express our results homogeneously, considering
always images per second (img/s) as the performance figure.

III. HIGH PERFORMANCE COMPUTING ENVIRONMENT

For our experiments we used three state-of-the-art produc-
tion HPC clusters: MareNostrum4, Power9 and Dibona, each
one leveraging different architectures:

MareNostrum4 is a supercomputer based on Intel Xeon
Platinum processors, Lenovo SD530 Compute Racks, a Linux
Operating System and an Intel Omni-Path interconnection. Its
general purpose partition has a peak performance of 11.15
Petaflops, 384.75 TB of main memory spread over 3456 nodes.
Each node houses 2× Intel Xeon Platinum 8160 with 24
cores at 2.1 GHz, 216 nodes feature 12× 32 GB DDR4-2667
DIMMS (8 GB/core), while 3240 nodes are equipped with
12× 8 GB DDR4-2667 DIMMS (2 GB/core). MareNostrum4
is the PRACE Tier-0 supercomputer hosted at the Barcelona
Supercomputing Center (BSC) in Spain and ranked 25 in the
Top500 list of November 2018 [12].

Power9 is also hosted at Barcelona Supercomputing Center.
This cluster is based on IBM Power9 8335-GTG processors
with 20 cores each CPU operating at 3 GHz. Each compute
node contains two CPUs, plus four GPUs NVIDIA V100 with
16 GB HBM2. Each compute node is equipped with 512 GB of
main memory distributed in 16 DIMMS of 32 GB operating
at 2666 MHz. Nodes are interconnected with an Infiniband
Mellanox EDR network and the operating system is Red Hat
Enterprise Linux Server 7.4. The Power9 cluster has been
included in our study because its computational elements are
architecturally identical to the ones of the Summit supercom-
puter, ranked first in the Top500 of November 2018 [12]. It
must be clarified that we do not consider in our evaluation the
accelerator part composed by the GP-GPUs.

Dibona is an Arm-based HPC cluster, designed and de-
ployed by ATOS/Bull within the Mont-Blanc 3 project. Its first
evaluation and benchmark is presented in [13]. Each compute
node is powered by two Marvell’s ThunderX2 CPUs with 32
cores each operating at 2.0 GHz. The main memory on each
node is 256 GB of DDR4 running at 2667 MHz. Nodes are
interconnected with Infiniband Mellanox EDR network. The
Dibona cluster has been considered for our study because it
features the same CPU technology that composes the Astra
supercomputer, the first Arm-based system ranked 204 in the
Top500 list of November 2018 [5].

In Table I we show the software environment used in
each cluster and for each version. We tried to keep the

3https://github.com/tensorflow/benchmarks

https://github.com/tensorflow/tensorflow/tree/master/tensorflow
http://eigen.tuxfamily.org/
https://github.com/tensorflow/benchmarks


TABLE I
ENVIRONMENT FOR EACH CLUSTER

Cluster TF version Compiler MPI Back-End / Perf. Libs. Front-End Flags

MN4 r1.11 GCC 7.2.0 OpenMPI 3.1.1 - -mtune=skylake-avx512 -march=skylake-avx512 -O3
MN4 r1.11 GCC 7.2.0 OpenMPI 3.1.1 MKL DNN v0.16 -mtune=skylake-avx512 -march=skylake-avx512 -O3

Dibona r1.11 GCC 8.2.0 OpenMPI 2.0.2.14 - -march=native -mtune=thunderx2t99 -O3
Dibona r1.11* GCC 8.2.0 OpenMPI 2.0.2.14 ArmPL 19.0 -march=native -mtune=thunderx2t99 -O3
Power9 r1.11 GCC 8.2.0 OpenMPI 3.1.1 - -mtune=power9 -mcpu=power9 -O3

environment across clusters as homogeneous as possible based
on available software. We used the TensorFlow code in the
version 1.11, it has been modified only in the version using
the Arm Performance Libraries (ArmPL), marked in the table
as TensorFlow version r1.11*. Also, we did not have access
to vendor specific libraries for Power9, so we evaluated only
the vanilla version of TensorFlow on it.

IV. INTRANODE EVALUATION

In this section, we evaluate the performance of TensorFlow
within a computational node. We divide the study into two
parts; first, we study the effect on the performance (img/s)
of changing the number of threads varying the batch size.
Second, we evaluate the best configurations of MPI processes
and threads when using all the computational resources of one
node.

We perform both studies on the vanilla version of Tensor-
Flow and the version leveraging vendor-specific linear algebra
libraries (MKL for x86 and Arm Performance Libraries for
Arm). The goal is to be able to compare the improvement in
performance that can be achieved when using optimized linear
algebra libraries as back-end.

For this evaluation, we use the three HPC clusters described
in Section III: MareNostrum4, Dibona, and Power9.

We train our network for several epochs until it reaches a
steady regime of img/s and checking the increasing trend of the
accuracy to ensure that the network is being effectively trained.
We measure sustained performance as reported by TensorFlow.
To provide a reasonable statistical accuracy, we average four
executions for each test. Since we notice variability below 10%
in all our measurement campaign, we neglect error bars.

A. Thread Scaling

To evaluate the performance of thread scaling within a node,
we use the AlexNet model, and we increase the number of
threads used by TensorFlow from one to the number of cores
available for each architecture.

In Figure 2 we can see the performance, expressed in
images per second when training the AlexNet model using the
vanilla version of TensorFlow in MareNostrum4. The x-axis
represents the number of threads and in the y-axis is shown
the performance obtained, the different series correspond to
the different batch sizes used for the training.

We can observe that bigger batch sizes have a better
performance than smaller ones. A batch size of 32 loses
performance when using more than 4 threads while a batch
size of 64 can scale up to 16 threads. For bigger batch sizes

Fig. 2. Thread Scaling of AlexNet with Vanilla version on one node of
MareNostrum4

the scalability is reduced when reaching 24 threads, in the
case of MareNostrum4 this is the number of cores per socket.
Therefore, it is not optimal to run a single process using the
two sockets of one node. We can also observe that for batch
sizes of 128, 256 and 512 there is almost no difference in
performance.

Fig. 3. Thread Scaling of AlexNet with MKL version on one node of
MareNostrum4

In Figure 3 is shown the performance of AlexNet in
MareNostrum4 when running the TensorFlow version using
MKL libraries. Comparing Figure 2 and 3 we can observe
that the performance is increased almost by 7× by using
the optimized linear algebra libraries provided by the vendor
(MKL libraries). In this case, we evaluated batch sizes up to
8192, because for a high number of threads the performance
can still be improved by increasing the batch size.

It is also interesting to see that when using de MKL
libraries the size of the batch size have a higher impact on
the performance. Also, the effect of using two sockets (48



threads) is worst when using the MKL libraries, resulting in
worse performance than with 24 threads when using batch
sizes of 512 or less.

Fig. 4. Thread Scaling of AlexNet with Vanilla version on one node of Dibona

In Figure 4 we can see the performance of training the
AlexNet model in Dibona with the vanilla version of Ten-
sorFlow. On the x-axis is represented the number of threads
used while on the y-axis the performance obtained in images
processed per second.

We can observe that the performance when increasing the
number of threads drops at 16 threads, that is, before reaching
the number of threads corresponding to the cores in the socket
in Dibona (32 cores per socket). In this case, we also observe
that the performance increases with the batch size, being the
difference more important for a large number of threads.

Fig. 5. Thread Scaling of AlexNet with ArmPL version on one node of
Dibona

Figure 5 shows the performance obtained in Dibona using
the modified version of TensorFlow leveraging the Arm Perfor-
mance Libraries. We can observe that the performance is more
than 2× better than using the vanilla version of TensorFlow. It
is also important to notice that the Arm Performance Libraries
version delivers a good thread scaling up to 64 threads.

Also in this case, we evaluated higher batch sizes as the
performance for a high number of threads increases for batch
sizes above 512.

In Figure 6 we plot the performance obtained in Power9
when using the vanilla version of TensorFlow. In Power9
we can observe a significant performance degradation when
going from 20 to 40 threads. This effect can be explained,

Fig. 6. Thread Scaling of AlexNet with Vanilla version on one node of Power9

as for MareNostrum4, by the fact that a computational node
is composed of two sockets, and it is not optimal to spawn
threads of the same process across different sockets.

Fig. 7. Efficiency of AlexNet thread scalability in the different platforms

Figure 7 shows the efficiency e of the three clusters when
running with the batch size delivering the best performance.
The efficiency e is computed as e =

pt
(t · p1)

where pt is the

performance expressed in img/s when running with t threads
and p1 is the performance when running with one thread.

We can observe that in MareNostrum4 the efficiency is
almost perfect up to 24 threads, but it drops for 48 threads.
In the case of Power9, the efficiency is quite good up to 20
threads, although it does not reach the efficiency obtained in
MareNostrum4. The efficiency of Power9 drops at 40 cores,
like in MareNostrum4, when using both sockets of the node.
Finally, in Dibona, the efficiency decreases constantly when
increasing the number of threads.

B. Hybrid Configurations Evaluation

We have seen that TensorFlow in different machines and
with a batch size high enough can scale up to the number of
threads of a socket (24 in MareNostrum4, 32 in Dibona and
20 in Power9). In this subsection, we analyze which is the
optimum configuration between the number of MPI processes
and the threads inside a computational node.

For this evaluation, we use two different models: AlexNet
and ResNet-50, and we will vary the distribution of resources
among processes and threads always using all the computa-
tional resources available.



In the previous subsection, we have seen that bigger batch
sizes provide better performance. We have also observed that
higher batch sizes imply a higher memory consumption. For
this reason, we cannot run the same batch size for all different
configurations, because in almost all the cases we run out of
memory.

In Table II we can see the different batch sizes used for
each configuration on each HPC platform.

TABLE II
BATCH SIZE ASSIGNED TO EACH PROCESS, FOR EACH CONFIGURATION OF

PROCESS × THREAD

MareNostrum4 1×48 2×24 4×12 8×6 16×3 24×2 48×1
AlexNet 8192 4096 2048 1024 512 341 170
ResNet-50 512 256 128 64 32 21 10

Dibona 1×64 2×32 4×16 8×8 16×4 32×2 64×1
AlexNet 512 256 256 256 256 256 256
ResNet-50 64 64 64 64 64 64 64

Power9 40×1 20×2 10×4 8×5 20×2 40×1
AlexNet 512 256 256 256 256 256
ResNet-50 64 64 64 64 64 64

Fig. 8. Performance of hybrid configuration of AlexNet model in MareNos-
trum4

In Figure 8 we can see the performance obtained with dif-
ferent configurations when using AlexNet in MareNostrum4.
On the x-axis are represented the different configurations as
MPI processes × threads.

We can observe that when using the vanilla version the best
configuration is 8 × 6, and in general the configurations that
are not extreme (i.e., high number of threads or high number
of processes). But when using TensorFlow with MKL, the best
configurations are with the highest number of threads per node
and only one or two MPI processes.

Figure 9 contains the performance of ResNet-50 model in
MareNostrum4. For this model, the best configurations of MPI
processes and threads when using the vanilla version is very
similar to the one obtained with AlexNet. The version that
uses MKL seems to be slightly different, being the worst
configurations the ones in the middle. But, still, the best option
is to use a high number of threads and one MPI process.

In Figure 10 we can see the performance in Dibona when
training an AlexNet model with images. We can observe
a similar trend in the best configuration when using the
vanilla version and the Arm PL one. In this case, the best

Fig. 9. Performance of hybrid configuration of ResNet-50 model in MareNos-
trum4

Fig. 10. Performance of hybrid configuration of AlexNet model in Dibona

configuration in both cases is using 4 MPI processes and 16
threads per MPI process.

Fig. 11. Performance of hybrid configuration of ResNet-50 model in Dibona

Figure 11 shows the performance obtained by the different
configurations in Dibona when using the ResNet-50 model.
For the ResNet-50 model, the best configuration is to spawn
16 MPI processes and 4 threads each one. The trend is very
similar to the one observed when using the AlexNet model.

Figures 12 and 13 show the performance obtained in Power9
using different configurations for AlexNet and ResNet-50
models. In Power9 the best trend seems to be to use more
processes and fewer threads, being the best configuration for
both models to use 20 MPI processes and 2 threads each one.



Fig. 12. Performance of hybrid configuration of AlexNet model in Power9

Fig. 13. Performance of hybrid configuration of ResNet-50 model in Power9

V. SCALABILITY

Finally, we evaluate the scalability of AlexNet and ResNet-
50 in the three HPC clusters. For this evaluation, we use the
best configurations learned from the previous section. We use
synthetic images and real ones from the ImageNet dataset.

In Table III we report a summary of the different parameters
used to train the two models in the tree platforms.

TABLE III
CONFIGURATIONS USED FOR EACH CLUSTER AND MODEL.

Cluster Model Configuration Inter-ops Batch Size

MareNostrum4 AlexNet 1× 48 1 8192
MareNostrum4 ResNet-50 1× 48 1 512
Dibona AlexNet 4× 16 2 2048
Dibona ResNet-50 8× 8 2 64
Power9 AlexNet 2× 20 20 2048
Power9 ResNet-50 20× 2 2 128

In Figure 14 we can see the scalability up to 16 nodes of the
AlexNet model. On the x-axis are represented the number of
nodes and on the y-axis the performance in images processed
per second. It is interesting to see that the scalability is similar
in all clusters, but also that in MareNostrum4 the difference
in performance between using synthetic images or real ones is
much higher than in the other clusters. This could be explained
because real images need to communicate through the network
more than when using synthetic ones and the three clusters use
different network technologies.

Fig. 14. Scalability of Alexnet model on the different platforms

Fig. 15. Scalability of ResNet-50 model on the different platforms

Figure 15 shows the scalability of the ResNet-50 model.
We can see that the scalability of this model is worse and
more irregular than when using AlexNet in MareNostrum4
and Power9. This can be explained by the fact that this model
is more complex due to its the deep multi-layer network.
We see again that the performance with synthetic images has
a much better performance than the one achieved with real
images in MareNostrum4 compared to the other systems. The
performance of the training phase of TensorFlow strongly
depends on collective communications. Also our three HPC
clusters have different interconnection tecnology, Dibona and
Power9 use Infiniband while MareNostrum4 uses Intel On-
miPath. Collective operations have different performance on
this two network technologies (see [13] for details), this could
explain the results we obtain.

For a deeper understanding of the behaviour at scale,
Figures 14 and 15 can be complemented with the efficiency
heat map shown in Table IV. In the table we plot the relative

efficiency Ei on each machine, computed as Ei =
Pi

(P1 · i)
,

where Pi is the performance in images per seconds obtained



TABLE IV
PARALLEL EFFICIENCY ALEXNET AND RESNET-50 MODELS ON THE

DIFFERENT PLATFORMS

when running on i compute nodes and P1 is the performance in
images per seconds when running with a single node. Looking
at Table IV we see that the overall efficiency reaches 43%
in the worst case, when running with 16 nodes using a real
dataset on MareNostrum4. The most remarkable difference
in the efficiency is visible on MareNostrum4 when running
with 16 nodes with real image set: we can see that AlexNet
achieves 94% efficiency, while with ResNet-50 the efficiency
drops to 43%. We can also notice that Dibona and Power9
have better scalability, ranging between 70% and 99% when
using 16 compute nodes with ResNet-50.

VI. RELATED AND FUTURE WORK

Due to the recent increase of interest for machine learning
techniques the literature provides several contributions that are
sometimes overwhelming. In this section, we try to highlight
the papers that guided our study and, in our opinion, present
a similarity with our work.

Shams et al. in [14] already performed a study of HPC
clusters with machine learning framework. However, they
include accelerators (KNL and GPU), and they do not include
considerations about the effects of optimized linear algebra
routines.

Our paper follows the idea of Cunha et al. in [15]. Improv-
ing the performance using optimized algebra library, in fact,
is an implicit way for improving the strong scalability. Also,
Sarbu et al. in [16] reinforce our approach since they focus
on improving the performance of a sparse matrix kernel, yet
another way of improving the performance of the underlying
arithmetic libraries.

We took as inspirational work the paper of Sakiyama et
al. [17]: we both compare different architectures of HPC
clusters, including a scalability study. We complement the
work in [17] including Armv8 and IBM Power9 architectures
and extending the study to two models, AlexNet and ResNet-
50. Even if we do not focus on auto-tuning, the work of
Hasabnis [18] helped us in the process of plugging the Arm
Performance Libraries into the back-end of TensorFlow.

Finally, for the work on Dibona, our Arm-based plat-
form, we acknowledge the previous work of the Mont-Blanc

project [6] as well es the evaluation of more recent Arm-based
architectures [19], [20].

On the front of linear algebra library, we are in contact with
the developer of the Performance Library in Arm, and we plan
to continue our fruitful collaboration for improving the perfor-
mance of TensorFlow on Arm platforms. As a contribution to
the data centers, following our previous experience described
in [21], we plan to evaluate TensorFlow in combination with
containers technologies for an easier deployment for the users.

VII. CONCLUSIONS

One of the main goals of this paper was to evaluate
TensorFlow coupled with an algebra library optimized for
Arm. As proof of concept, we plugged the Arm Performance
Libraries into some of the most compute-intensive kernels
of TensorFlow. We evaluated our optimized version with a
synthetic workload and two models, AlexNet and ResNet-
50, on a state-of-the-art Arm-based cluster powered by Thun-
derX2, Marvell’s latest Arm CPU, and we measured a speed-
up between 1.5× and 2.3×.

The second main contribution of this paper was to provide
an evaluation of TensorFlow on state-of-the-art HPC clusters
with the goal of understanding which are the most effective
hardware/software configurations that maximize the efficiency
across different architectures.

The first and most relevant observation is that the use of
vendor optimized libraries improves the strong scalability on
both clusters, x86, and Arm. With MKL on x86, we measure
a performance improvement between 1.7× and 6.9×.

Concerning parallelization strategies with processes and
threads, we noticed that with the Eigen back-end of Ten-
sorFlow the best configuration for all architectures and both
models is to balance in the mid-range the number of processes
and the number of threads (configurations with all threads or
all processes are the ones delivering less performance). When
using optimized libraries in the back-end, the configurations
using more threads and fewer processes delivers overall better
performance. This is more evident when using MKL on
x86 probably because our modifications for leveraging Arm
Performance Libraries was not exhaustive for all the back-end
calls.

If we look at the ML tool configuration, we can conclude
that, when using optimized libraries with a high number of
threads, users must increase the batch size to keep the best
performance. So, further optimization is needed for use cases
requiring small batch sizes. Also, we are aware that reducing
the precision can imply a performance improvement. However
we did not explore this corner in our current work: since none
of the CPU architectures offered specific reduced precision
features, we left this for the future.

Concerning a pure architectural comparison, conclusions are
less sharp since our goal was not to find a winner ML CPU
architecture. We can, however, observe that the difference in
performance between x86 and Arm could come from the size
of the SIMD registers: in x86 the AVX512 extension offers
registers 4× bigger than the Arm NEON SIMD units. We



expect that the nature of tensor operations can take better
advantage of larger SIMD units. Also, MareNostrum4 shows a
thread scalability close to ideal up to 24 threads, while Dibona
loses efficiency when increasing the number of threads. As
a general conclusion for all three HPC clusters, spawning
threads across sockets harms the performance. If we analyze
the scalability, the overall result is that scalability is better
with AlexNet than with ResNet-50, but it is generally good
disregarding the cluster architecture/configuration. A way for
refining the scalability study could be to focus on the per-
formance of the collective operations within MPI or the I/O
performance when using real datasets. However, since we did
not want to fine-tune for a given HPC cluster, we preferred to
focus in this paper on the optimized back-ends leaving those
low-level topics for a future study.

REFERENCES

[1] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers et al., “In-datacenter
performance analysis of a tensor processing unit,” in 2017 ACM/IEEE
44th Annual International Symposium on Computer Architecture (ISCA).
IEEE, 2017, pp. 1–12.

[2] S. Markidis, S. W. Der Chien, E. Laure, I. B. Peng, and J. S. Vetter,
“Nvidia tensor core programmability, performance & precision,” in 2018
IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW). IEEE, 2018, pp. 522–531.

[3] E. Ould-Ahmed-Vall, M. Abuzaina, M. F. Amin, J. Bobba, R. S Dubtsov,
E. M. Fomenko, M. Gangadhar, N. Hasabnis, J. Huang, D. Karkada,
Y. Jin Kim, S. Makineni, D. Mishura, K. Raman, A. Ramesh, V. V.
Rane, M. Riera, D. Sergeev, V. Sripathi, B. Subramanian, L. Tokas, and
A. C. Valles, “Accelerating tensorflow on modern intel architectures,”
2017. [Online]. Available: http://aim2017.cse.psu.edu/

[4] M. Vidal, B. Arejita, J. Diaz, C. Alvarez, D. Jiménez-González, X. Mar-
torell, F. Mantovani et al., “Implementation of the k-means algorithm
on heterogeneous devices: a use case based on an industrial dataset,”
in Parallel Computing is Everywhere (serie: Advances in Parallel
Computing), vol. 32. IOS Press, 2018, pp. 642–651.

[5] Sandia National Laboratory, November 2018. [Online]. Available:
https://share-ng.sandia.gov/news/resources/news releases/top 500/

[6] N. Rajovic, A. Rico et al., “The Mont-Blanc prototype: an alternative
approach for HPC systems,” in High Performance Computing, Network-
ing, Storage and Analysis, SC16: International Conference for. IEEE,
2016, pp. 444–455.

[7] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: a system for large-
scale machine learning.” in OSDI, vol. 16, 2016, pp. 265–283.

[8] N. A. Gawande, J. A. Daily, C. Siegel, N. R. Tallent, and A. Vishnu,
“Scaling deep learning workloads: Nvidia dgx-1/pascal and intel knights
landing,” Future Generation Computer Systems, 2018.

[9] M. Alzantot, Y. Wang, Z. Ren, and M. B. Srivastava, “Rstensorflow: Gpu
enabled tensorflow for deep learning on commodity android devices,”
in Proceedings of the 1st International Workshop on Deep Learning for
Mobile Systems and Applications. ACM, 2017, pp. 7–12.

[10] A. Sergeev and M. D. Balso, “Horovod: fast and easy distributed deep
learning in TensorFlow,” arXiv preprint arXiv:1802.05799, 2018.

[11] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein et al., “Imagenet large
scale visual recognition challenge,” International journal of computer
vision, vol. 115, no. 3, pp. 211–252, 2015.

[12] Top500, November 2018. [Online]. Available: https://www.top500.org/
list/2018/11/

[13] F. Banchelli, M. Garcia, M. Josep, F. Mantovani, J. Morillo, K. Peiro,
G. Ramirez, X. Teruel, G. Valenzano, J. W. Weloli, J. Gracia, A. Lumi,
D. Ganellari, and P. Schiffmann, “MB3 D6.9 – Performance analysis of
applications and mini-applications and benchmarking on the project test
platforms,” Tech. Rep., 2019, version 1.0. [Online]. Available: https:
//www.montblanc-project.eu/wp-content/uploads/2019/02/MB3 D6.9
Performance-analysis-of-applications-and-benchmarking-on-the-project-test-platforms.
v1.0.pdf

[14] S. Shams, R. Platania, K. Lee, and S.-J. Park, “Evaluation of deep
learning frameworks over different hpc architectures,” in 2017 IEEE 37th
International Conference on Distributed Computing Systems (ICDCS).
IEEE, 2017, pp. 1389–1396.

[15] R. L. d. F. Cunha, E. R. Rodrigues, M. P. Viana, and D. A. B. Oliveira,
“An argument in favor of strong scaling for deep neural networks with
small datasets,” in Proceedings of High Performance Machine Learning
Workshop, Held in conjunction with IEEE SBAC-PAD 2018 (HPML18),
2018.

[16] P.-C. Sarbu and H.-J. Bungartz, “Optimization of a sparse grid-based
data mining kernel for architectures using avx-512,” in Proceedings of
High Performance Machine Learning Workshop, Held in conjunction
with IEEE SBAC-PAD 2018 (HPML18), 2018.

[17] K. Sakiyama, S. Kato, Y. Ishikawa, A. Hori, and A. Monrroy, “Deep
learning on large-scale multicore clusters,” in Proceedings of High
Performance Machine Learning Workshop, Held in conjunction with
IEEE SBAC-PAD 2018 (HPML18), 2018.

[18] N. Hasabnis, “Auto-tuning tensorflow threading model for cpu backend,”
arXiv preprint arXiv:1812.01665, 2018.

[19] F. Mantovani, E. Calore, F. Mantovani, and E. Calore, “Performance
and Power Analysis of HPC Workloads on Heterogeneous Multi-
Node Clusters,” Journal of Low Power Electronics and Applications,
vol. 8, no. 2, p. 13, May 2018. [Online]. Available: http:
//www.mdpi.com/2079-9268/8/2/13

[20] M. Garcia-Gasulla, M. Josep-Fabrego, B. Eguzkitza, and F. Mantovani,
“Computational Fluid and Particle Dynamics Simulations for Respira-
tory System: Runtime Optimization on an Arm Cluster,” in Proceedings
of the 47th International Conference on Parallel Processing Companion,
ser. ICPP ’18. ACM, 2018, pp. 11:1–11:8.

[21] O. Rudyy, M. Garcia-Gasulla, F. Mantovani, A. Santiago, R. Sirvent,
and M. Vázquez, “Containers in hpc: A scalability and portability study
in production biological simulations,” in 2019 IEEE 33rd International
Parallel and Distributed Processing Symposium, in press. IEEE, 2019.

http://aim2017.cse.psu.edu/
https://share-ng.sandia.gov/news/resources/news_releases/top_500/
https://www.top500.org/list/2018/11/
https://www.top500.org/list/2018/11/
https://www.montblanc-project.eu/wp-content/uploads/2019/02/MB3_D6.9_Performance-analysis-of-applications-and-benchmarking-on-the-project-test-platforms.v1.0.pdf
https://www.montblanc-project.eu/wp-content/uploads/2019/02/MB3_D6.9_Performance-analysis-of-applications-and-benchmarking-on-the-project-test-platforms.v1.0.pdf
https://www.montblanc-project.eu/wp-content/uploads/2019/02/MB3_D6.9_Performance-analysis-of-applications-and-benchmarking-on-the-project-test-platforms.v1.0.pdf
https://www.montblanc-project.eu/wp-content/uploads/2019/02/MB3_D6.9_Performance-analysis-of-applications-and-benchmarking-on-the-project-test-platforms.v1.0.pdf
http://www.mdpi.com/2079-9268/8/2/13
http://www.mdpi.com/2079-9268/8/2/13

	Introduction
	Machine Learning Environment
	High Performance Computing Environment
	Intranode Evaluation
	Thread Scaling
	Hybrid Configurations Evaluation

	Scalability
	Related and Future Work
	Conclusions
	References

