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Abstract—The landscape of High Performance Computing
(HPC) system architectures keeps expanding with new tech-
nologies and increased complexity. With the goal of improving
the efficiency of next-generation large HPC systems, designers
require tools for analyzing and predicting the impact of new
architectural features on the performance of complex scientific
applications at scale. We simulate five hybrid (MPI+OpenMP)
applications over 864 architectural proposals based on state-
of-the-art and emerging HPC technologies, relevant both in
industry and research. This paper significantly extends our
previous work with MUltiscale Simulation Approach (MUSA)
enabling accurate performance and power estimations of large-
scale HPC systems. We reveal that several applications present
critical scalability issues mostly due to the software parallelization
approach. Looking at speedup and energy consumption exploring
the design space (i.e., changing memory bandwidth, number of
cores, and type of cores), we provide evidence-based architectural
recommendations that will serve as hardware and software co-
design guidelines.

Index Terms—HPC, Co-design, Parallelism, OpenMP, MPI,
Next-generation architectures

I. INTRODUCTION

Trends in High Performance Computing (HPC) systems are
changing. The use of commodity server-grade processors as
the common choice to design these systems is moving into a
more specialized landscape. Processor trends are evolving in
different directions, such as, leaner core designs [1], larger
core counts per socket [2], wide vector units [3], or with
integrated memory like high-bandwidth memory (HBM) mod-
ules via silicon interposer technologies [4]. Consequently, the
design space for next-generation HPC machines is expanding.
Understanding how relevant HPC applications perform under
these different design points is crucial to determine the right
path when designing a new HPC system.

Hybrid programming models are commonplace nowadays,
employing MPI for inter-node communication and a shared-
memory programming model for node-level parallelism. Op-
timizing node-level performance and energy is the first step
towards a balanced system; however, as the number of nodes
increases with the deployment of new HPC systems, node-to-

node communication costs become more relevant and need
further consideration. Finding the right ratio between the
number of nodes and the number of processing units per node
is a primary design decision that can greatly impact application
performance. Since some trends are also advocating for larger
core counts, it is also important to consider the interactions
with the system software at the node level (e.g. the runtime
system).

In this paper, we undertake a design space exploration study
that considers the most relevant design trends we are observ-
ing today in HPC systems. To perform this study, we fol-
low a recently introduced multi-level simulation methodology
(MUSA) [5]. MUSA enables fast and accurate performance
estimations and takes into account inter-node communication,
node-level architecture, and system software interactions. We
extend MUSA in multiple ways to perform a detailed evalua-
tion of the impact of a set of identified key design trends on
relevant HPC applications.

The contributions of this paper are: i) We extend an end-
to-end simulation methodology called MUSA. In particular,
we add support for a larger set of OpenMP pragmas, multiple
target architectures, a model for vectorization, performance
and power modeling of emerging memory technologies, and
processor power estimations. The resulting infrastructure can
target a wide range of HPC applications, and provide perfor-
mance and power estimations of the trends that are currently
dominating in HPC. ii) We perform large-scale simulations
comprised of 256 MPI ranks, each representing a compute
node, and up to 64 cores per node adding a total of 16,384
cores. Our design space exploration methodology analyzes
current HPC trends by factoring in the relevant architectural
parameters, for which we derive over 800 different archi-
tectural configurations. We simulate each of the 5 selected
representative HPC applications with these configurations and
provide estimations for performance, power and energy to
solution. iii) Through our extensive design space exploration,
we provide hardware and software co-design recommendations
for next-generation large-scale HPC systems.
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Our results demonstrate that 512-bit wide FP units yield
performance speedups between 20% to 75% and that they
may also bring energy consumption reductions for codes that
properly exploit thread- and SIMD-level parallelism. Also,
cache hierarchies of around 1MB of last level cache capacity
per core and moderate out-of-order capacities are a good
compromise between performance and power consumption.
Finally, our experiments indicate how the parallel efficiency of
parallel codes is of paramount importance to avoid the waste
of leakage power.

The remainder of this paper is organized as follows. In
Section II, we provide background and motivation of our work.
Next, we describe our work extending MUSA methodology in
Section III. We introduce our experimental setup in Section IV.
We perform the design space exploration of next-generation
HPC systems in Section V. Finally, we discuss the related
work in Section VI and share our conclusions in Section VII.

II. CO-DESIGN OF HPC APPLICATIONS AND SYSTEMS

A. Background

Prior work [5] introduced MUSA, a comprehensive multi-
scale methodology to enable fast and accurate performance
estimations of large-scale HPC machines. The methodology
captures inter-node communication as well as intra-node
micro-architectural and system software interactions by lever-
aging multi-level traces. These traces also allow for different
simulation modes and execution replay to quickly extrapolate
results of entire hybrid applications running on large-scale
systems with tens of thousands of cores.

MUSA employs two components: (i) a tracing infrastructure
that captures communication, computation and runtime system
events; and (ii) a simulation infrastructure that leverages these
traces for simulation at multiple levels.

Tracing: The initial step is to trace an application’s execu-
tion at multiple levels. Given our targeted hybrid programming
model, we start tracing each MPI process representing a rank
with a single thread. This trace file contains coarse-grain
information about the MPI communication phases as well
as high-level computation information of the runtime system
events.

In addition, MUSA requires instruction-level instrumenta-
tion for computational phases, such as the operation code,
the program counter and the involved registers and memory
addresses. Such detailed instrumentation is deferred to a
separate native execution due to its higher overhead that might
alter application behavior. Hence, when tracing in detailed
mode, the timestamps taken in the initial coarse-grain trace are
used to correct any deviation in the behavior of the application
introduced in the detailed trace step.

This tracing methodology generates traces that allow sim-
ulations even if the characteristics of the simulated computa-
tional node (e.g., the number of cores, the memory hierarchy)
or the communication network change. As a result, it is
possible to perform architectural analysis of a large design
space using the same set of traces, reducing trace generation
time and storage requirements.

Simulation: The methodology initially identifies the differ-
ent computation phases for each rank using the initial coarse-
grain trace, which are independent and can be simulated
in parallel. Each of these rank level computation phases is
simulated with the specified number of cores, and parameters
of the microarchitecture and the memory hierarchy. MUSA
is able to simulate an arbitrary number of cores per rank; to
accomplish this, MUSA injects runtime system API calls by
using the runtime system events recorded in the trace, effec-
tively simulating the runtime system, including scheduling and
synchronization for the desired number of simulated cores.

After the computation phases have been simulated, MUSA
replays the execution of the communication trace events in
order to simulate the communication network and generate
the final output trace of the simulation. During this process,
the durations of the computation phases are replaced by the
results obtained in the simulations, and the communication
phases are simulated using a network simulator. At the end of
this process the entire simulation is complete and the output
trace is generated for visualization and inspection.

B. Trends and Challenges

The design space for next-generation HPC machines is
expanding. First, the trend to use commodity server proces-
sors as the common choice is changing towards processors
with leaner core designs that feature different microarchitec-
tural characteristics. For example, Cray has already deployed
Isambard [6], a system with 10,000+ Armv8 cores; and
now supports ARM-based processors (including the Cavium
ThunderX2) across their main product line. Second, vector
architectures with larger lengths than the ones employed in
recent years are starting to be considered again. In this regard,
Arm recently introduced the Scalable Vector Extensions (SVE)
that support up to 2,048 bit vectors and per-lane predication.
Third, several memory technologies are starting to appear in
the HPC domain, for example: die-stacked DRAM like the
one employed in Knights Landing [7], or High-Bandwidth
Memory (HBM) already used in a number of GPUs.

The advent of these trends and technologies leads to a
large design space for next-generation HPC machines that
needs to be carefully considered. There is a clear opportunity
to co-design hardware and software by mapping application
requirements to the available hardware ecosystem these trends
are opening. In addition, the ability to predict and fine-tune
application performance for selected hardware designs that
are deemed of interest is of paramount importance to system
architects. Methodologies like MUSA can therefore help un-
derstand current and future scientific application performance
on systems not yet available on the market and identify the
best design points.

In order to be effective, we need to ensure the employed
methodology captures the trends and the characteristics of
the technologies under consideration, as well as main design
constraints such as power consumption. In this paper we
significantly extend MUSA to support modeling of key aspects
to enable accurate performance estimations of large-scale HPC
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systems that will make use of the technologies mentioned
before. The following section describes these extensions that
are later used to perform a comprehensive design-space ex-
ploration analysis of large-scale HPC systems.

III. EXTENDING MUSA FOR PRACTICAL DESIGN-SPACE
EXPLORATION

We extend MUSA in multiple ways that not only allow us
to capture the technological trends described before, but also
enable exploration of a wider range of applications on different
hardware architectures. The following paragraphs describe the
functionalities added to MUSA for producing the results we
present in this paper.

Support for OpenMP parallel for constructs: The
tracing infrastructure had support to trace applications based
on tasks, both based on the OmpSs programming model [8]
and the tasking features introduced in OpenMP 3.0 [9]. This
was a limiting factor that did not allow us to trace applications
of interest that use classic parallel for constructs, restricting
exploration studies to a small set of application choices,
thus narrowing co-design opportunities. For this reason, we
extend the tracing infrastructure to support parallel loops as
well as other common directives like omp critical. Therefore,
MUSA is able to target a wide range of applications, making
design-space exploration studies more robust and with a better
coverage of application characteristics.

Support for multiple architectures: The tracing infras-
tructure was based on the dynamic binary translation tool
PIN [10]. However, PIN is x86-specific and has some pitfalls
that are not easy to overcome. For example, it is closed source
code and comes with its own version of libc, which is not
c++11 compliant. This can lead to stiff restrictions when
compiling applications that need full compliance with this
standard, either directly or through any external library. To
overcome these issues, we port the entire tracing infrastructure
to DynamoRIO [11], which allows MUSA to support both
x86 64 and Armv8 binaries while also removing all the
restrictions that PIN imposes with its embedded libc. As we
did with our PIN traces, we also validate that DynamoRIO
traces are accurate. When compared to PIN traces on an Intel
Xeon E5-2670, the differences in terms of loads, stores, and
micro-instructions remained below 0.14%, 0.27%, and 2.40%
respectively for all tested applications.

Support for vectorization: We consider a simple and practi-
cal model to enable simulations using different vector lengths
while reusing the same application instruction trace. When our
instruction tracing infrastructure finds a vector instruction, our
internal decoder breaks them into scalar instructions with a
special marker, effectively obtaining a trace with only scalar
instructions. During the simulation step, if a vector length of
128 bits or wider has been requested, we fuse the marked
instructions in order to simulate the specified vector length. For
example, if a 128-bit vector length is specified, two arithmetic
instructions are fused into one, while memory operations are
also fused but its size is doubled to account for memory band-
width. This mechanism trivially works for vector lengths of

the same size or narrower than the one used during the tracing
step. However, we also enable simulations with wider vector
lengths by applying this fusion-driven mechanism to dynamic
instructions corresponding to the same static instruction of the
same basic block. We require a basic block to be executed
several times in a row to apply the fusion mechanism. While
this simple model may overestimate the vectorization impact,
it is useful to indicate the potential that current HPC codes
have for performance improvements when exposed to long
SIMD register sizes.

Support for emerging memory technologies: A key compo-
nent that significantly impacts the performance of current and
future HPC machines is the employed memory technology. To
enable MUSA to accurately model a wide range of emerging
memory technologies, we add interfaces into our architectural
simulator to support a fast and extensible external memory
simulator, Ramulator [12]. Ramulator is able to model a
wide range of commercial and academic DRAM standards,
including: DDR, LPDDR, HBM, and Wide-IO. In addition,
for most of these standards, Ramulator is also capable of
reporting power consumption by relying on DRAMPower [13]
as a backend. We integrate these tools into our toolflow,
providing a robust infrastructure to obtain performance and
power estimations for the memory subsystem.

Support for power estimations using McPAT: We also inte-
grate the McPAT [14] modeling framework into our toolflow
to obtain power estimations of the simulated multicore. We
feed McPAT with the different architectural descriptions, as
well as the simulation statistics, to obtain power estimations
of the different cache levels and key core hardware structures.

The sum of these new features makes MUSA a robust tool to
perform exhaustive design-space exploration studies that can
cover a wide range of applications, potentially on different
architectures, as well as hardware trends like vectorization and
emerging memory technologies.

IV. DESIGN SPACE EXPLORATION

This section describes the methodology we employ to carry
out our design space exploration of HPC architectures.

A. Architectural Parameters

After reviewing the HPC systems landscape, we select a set
of important compute node features in current and upcoming
HPC architectures. These features expose relevant energy
and performance trade-offs when considering different HPC
workloads. We focus our exploration on six features: number
of cores in a socket, out-of-order (OoO) capabilities of the
core, memory technology, floating-point unit (FPU) vector
width, CPU frequency and cache size.

Per each feature, we explore a set of possible values that
are based on newly added Top500 systems or near-future an-
nounced systems [1], [4], [15]–[17]. Based on this information,
we use 32 to 64 cores per socket with clock frequencies
ranging from 1.5GHz to 3GHz. We define four types of core
pipelines by modifying their OoO capabilities: a modest but
floating-point capable, close to in-order, low power core, with
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L3:L2-caches Size / associativity / latency

Label L3 L2

32M:256KB 32MB / 16 / 68 256kB / 8 / 9
64M:512KB 64MB / 16 / 70 512kB / 16 / 11
96M:1MB 96MB / 16 / 72 1MB / 16 / 13

Core OoO Issue& Store #ALU/ IRF/
Label ROB commit buffer #FPU FRF

low-end 40 2 20 1 / 3 30/ 50
medium 180 4 100 3 / 3 130 / 70
high 224 6 120 4 / 3 180 / 100
aggressive 300 8 150 5 / 4 210 / 120

Other param. Values

Frequency [GHz] 1.5, 2.0, 2.5, 3.0
Vector width [bits] 128, 256, 512
Memory [DDR4-2333] 4-channel, 8-channel
Number of Cores 1, 32, 64

TABLE I: Simulation architectural parameters and values
used in our design space exploration including: cache size,
associativity and latency; and OoO details like Reorder buffer
(ROB) and Integer/Float Register File (RF).

three floating-point units and small issue width and buffers;
two server-class cores in the medium high range; and an
aggressive high-end configuration with an issue width of eight
instructions, large hardware buffers, and up to four floating
point units. To tweak the memory hierarchy we modify the L2
(private) and L3 (shared) cache sizes as well as the number
of off-chip memory channels using DDR4-2333 technology.
Lastly, we also explore the impact of using 128-bit, 256-bit
and 512-bit wide floating point units. Table I shows a detailed
list of all the parameters and values we explore and the names
(labels) we will use to refer to them. We consider each possible
combination of architectural configurations, running in total
864 simulations per application.

B. HPC Applications
To perform our experiments we use five HPC applica-

tions: HYDRO [18], a simplified version of RAMSES [19]
that solves compressible Euler equations of hydrodynamics
using the Godunov method; SP and BT multizone NAS
benchmarks [20], which implement diagonal matrix solvers;
LULESH [21], which implements a discrete approximation
of the hydrodynamics equations; and Specfem3D, which uses
the continuous Garlerkin spectral-element method to simulate
forward and adjoint seismic wave propagation on arbitrary
unstructured hexahedral meshes. For each application we
adjust the input sets to potentially have enough parallelism
when running on 256 MPI Ranks, one per node, and 64 cores
per node, 16,384 cores in total.

All applications use a hybrid programming model, ei-
ther (MPI+OpenMP) or (MPI+OmpSs). OmpSs [8] and
OpenMP [9] (since ver. 3.0) allow the annotation of parallel
regions as tasks with input and output dependencies. During
execution, OmpSs runtime system is in charge of scheduling
task instances to the compute units. We compile all appli-
cations with GCC 7.1.0 and OpenMPI [22] 1.10.4. In GCC
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Fig. 1: Application runtime statistics: Misses Per Kilo In-
struction (MPKI) of caches and Billions of requests to main
memory per second.

we use the -O3 optimization flag and force -msse4.2 in order
to generate binaries with Intel SSE4.2 (128-bit width) SIMD
instructions.

For the purpose of workload characterization and analysis
discussion, in Figure 1 we show runtime memory access
statistics that we obtain in our detailed hardware simulations.

C. Tracing and Simulation Infrastructure

For our experiments, we use a toolchain that implements
the MUSA methodology. It allows us to obtain traces and to
perform simulations at different levels of abstraction as we
describe in Section II. We obtain application traces using two
lightweight tracing tools: Extrae [23] and DynamoRIO [11].
For each application we obtain two traces: a high-level trace
(burst) using coarse grain instrumentation and a low-level
trace using fine grain instrumented (detailed). The burst trace
captures the events through the execution of the whole ap-
plication. However, we only trace in detail a sample region
of each application: in our applications, tracing one iteration
(usually the second) of one MPI rank, is enough to capture
a representative sample of the computational behavior of the
application [5].

For detailed instruction-level simulations we use
TaskSim [24] and Ramulator. Full application simulations
are driven by Dimemas [25], which implements a high-level
network model and is capable of integrating the accurate
timing values that we obtain doing detailed simulations with
TaskSim.

We obtain node power estimations using McPAT [14] and
DRAMPower [13]. During TaskSim simulation Ramulator
generates DRAM command traces that DRAMPower uses as
input. Although Ramulator splits that trace into a different file
for every channel and rank, DRAMPower does not support
multi-rank DIMM simulation. Instead, we specify power pa-
rameters using single rank DDR4 datasheet from Micron [26].
In simulations with four channels we attach eight DIMMs for
a total of 64 GB while in simulations with eight channels we
attach 16 DIMMs for a total RAM of 128 GB.

Dimemas and TaskSim, have been validated using the
MareNostrum III supercomputer and three MPI+OpenMP
codes obtaining a < 10% relative error [5], [27]. Previous
work [12] describes how Ramulator is validated. We use
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the latest model adjustments in McPAT for state-of-the-art
CMPs in order to improve accuracy to < 20% error [28].
DRAMPower claims to have < 2% error [29].

V. EVALUATION

A. Scaling Analysis of Applications

Programming parallel applications to scale efficiently in
next-generation systems where we expect to have a high
number of distributed compute elements is a challenge. Un-
derstanding code parallelization scaling limits of applications
is very valuable knowledge that helps to explain possible
unexpected hardware interactions: for example, underusage of
shared resources like memory buses and caches in memory
intensive applications due to a low number of concurrent tasks
in a processor. In this section, we show a scaling analysis
of the five applications that are object in this study. We
have been able to identify and quantify the source of parallel
programming-related bottlenecks limiting scalability like MPI
overheads or OpenMP task scheduling bottlenecks. We use the
MUSA burst mode to obtain traces of the compute and MPI
regions. These traces drive the simulation of applications in
nodes with up to 64 cores. In burst mode, no details of the
processor architecture are modeled and task execution time
is not affected by penalties from shared cache contention or
memory bandwidth exhaustion (see Section II); we call this
hardware agnostic simulation.

In Figure 2a we simulate a single representative compute
region of each application; across applications, we observe
an average parallel efficiency of roughly 70% at 32 cores,
dropping rapidly to 50% at 64 cores. HYDRO is the only ap-
plication whose main compute region scales over a reasonable
> 75% parallel efficiency in systems with 64 cores per node.
We analyze with visualization tools [30] traces containing task
execution and task scheduling events generated during the
simulation of applications in burst mode. In them we observe
that the main overall source of performance losses at 32 and 64
cores for all codes is the lack of task level parallelism. Even
using relatively large input sets, the main parallel compute
regions in all applications except HYDRO do not have enough
fine-grain task granularity to fill all cores simultaneously.
In Figure 3 we can appreciate this behavior in Specfem3D,
where most tasks (colored) are scheduled only in few of the
threads while the rest remain idle (middle horizontal gray
area). We also find important serialized execution segments
in all applications except SPMZ. Lastly, thread level load
imbalance is the main issue limiting LULESH scaling potential
on 64 core configurations.

To further study the additional overhead of MPI communi-
cations on top of the code parallelization issues, we integrate
all compute regions together with all MPI regions. Figure 2b
shows the achieved scalability without considering initial data
structure allocation and final I/O operations. Same as before,
we do not consider shared caches or memory bus contention
effects inside the node. We simulate a network with bandwidth
and latency similar to Marenostrum IV [17]. In this case,
average parallel efficiency scales up to 49% and 28% when

using configurations with 32 cores or 64 cores respectively.
By analyzing MPI communication traces we observe that: i)
message passing represents a minimal part of the total MPI
overheads; ii) load imbalance, across different MPI ranks in
the presence of synchronization barriers, causes a significant
loss of performance in all applications except for HYDRO.
In figure 4 we appreciate this behavior: colored in red the
actual time spent point-to-point calls, in pink MPI AllReduce
regions causes all ranks to synchronize.

B. Hardware Exploration

Next, we present our design space exploration based on
detailed hardware simulations for six main architectural com-
ponents. For each component, we discuss the results that we
provide in form of performance, power dissipation and energy-
to-solution figures. To quantify the performance impact of each
individual component, our plots represent the average values
obtained by normalizing each simulation against another sim-
ulation that shares all the other architectural parameters except
the one we are quantifying.

For example, in Figure 5a we measure the impact across
applications of increasing the FPU vector width. Considering
that we have a total of six parameters, a simulation instance
would be {x, y, z, s, t, 128bit}, where x, y, z, and t represent
a specific value for each of the other architectural components
parameters. Then, we normalize the execution time of each
simulation with vector width = 256-bit against its baseline
simulation that shares all the other architectural parameters,
i.e., we would normalize {x, y, z, s, t, 256bit} against our
baseline {x, y, z, s, t, 128bit}. In this case, with a total of 864
simulations per application, we are averaging 96 samples per
bar.

1) FPU vector width: Figure 5 summarizes the
performance-energy trade-off when we increase the vector
Floating Point (FP) registers used for SIMD operations in
each core. Results for 32 and 64 core configurations are very
similar. Excluding LULESH, wider 512-bit FP units yield
20% (HYDRO) to 75% (SP-MZ) application performance
speed-up; 40% on average.

As we describe in Section III, the TaskSim approach to
simulate SIMD instructions targets loops containing vector
instructions that run for a large number of iterations. In codes
with loops with a very short iteration count, like LULESH,
our approach does not detect any potential for performance
improvement by extending the vector size.

Measuring the Core+L1 component in Figure 5b, we see
that using 512-bit vector width translates into an average
power increment across applications of 60% with respect
to 128-bit units in each core. As expected, the core power
consumption is relatively larger in compute-intensive appli-
cations like HYDRO and BTMZ than in memory bound
counterparts. As a consequence, we appreciate a larger impact
in the power consumption of applications that are compute-
intensive, when increasing the vector units width. In terms of
energy to solution, in all applications except LULESH, 256-bit
configurations obtain 3% to 18% energy savings.
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(a) Single compute region of the application.
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(b) Full application parallel region.

Fig. 2: Scaling of applications using hardware agnostic simulations: a) measures a single representative compute region without
MPI communications, b) measures the whole parallel region including MPI overheads.

Fig. 3: Low level task parallelism is the main cause for low
parallel efficiency in Specfem3D. Many CPUs remain idle (in
gray) during the whole execution, while few are populated
with tasks (in color). X axis represents time, the Y axis
represents the thread number.

A careful analysis of the current auto-vectorization ex-
tracted from the applications under study shows that the auto-
vectorization is enough to start obtaining gains from 256-bit
vector units, but we lack manual vectorization or more efficient
compiler auto-vectorization techniques in order to benefit from
larger vectors.

We observe important timing differences when HYDRO is
executed with L2 cache configurations smaller than 512KB.
Configurations bottlenecked in memory reduce throughput and
in consequence, diminish the stress in the individual compute
units inside each core allowing them to scale better in relative
terms; absolute execution time will still be lower due to the
memory bottlenecks (see Fig. 6a). In a similar way, when using
a smaller cache and low-end core configurations in BTMZ, the
widening of FP units results in a higher relative speedup.

2) Cache sizes: Figure 6 shows how only modifying L2-
and L3-cache sizes affects performance in our simulations; at
64 cores, upgrading to a cache configuration with 96MB:1MB
(1.5MB:1MB per core) results in an 11% average speedup
across applications.

Fitting the workload dataset in cache has a huge impact
on performance. In HYDRO we obtain a 4× drop in L2-
cache MPKI when upgrading the L2-cache size from 256 kB
to 512 kB per core, meaning that the main working set of
HYDRO fits in less than 512 kB. This translates into a 21%
average performance improvement for HYDRO. In the case of
BTMZ and LULESH, we also obtain 9% and 12% speedup

respectively. Specfem3D shows no differences across cache
configurations: although it obtains locality benefits using larger
caches those are minimal and it is not enough to compensate
the increased latency per access to larger cache structures.

Figure 6b shows that with 64 cores, in configurations with
32MB, 64MB, and 96MB of L3-cache, the L2+L3Cache com-
ponent represents respectively around 5%, 10% and 20% of
the total power consumption. While the performance benefits
when upgrading caches from 32MB:256KB to 64MB:512KB
are significant in some applications; further upgrading from
64MB:512KB to 96MB:1MB at the cost of doubling the
power budget of L2-/L3-cache is not justified due to smaller
gains in terms of performance. Similar trends can be seen
in the 32 cores configurations. Aside from Specfem3D, final
energy reductions are minimal, around 5% on average for
64MB:512KB and ∼1% for 96MB:1MB.

Careful sizing of the L2 and L3 cache structures is nec-
essary to minimize power consumption while achieving a
good level of performance. Based on our results, we find
that 1MB L3-cache and 512 kB L2-cache per core seem to
offer the best trade-off. Note that we execute our applications
without any manual or auto-tuning optimizations. Also, adding
software optimizations, like cache blocking, to adequately
fit application working sets into cache should be specially
considered in systems with a high number of cores per socket
to improve the energy consumption and reduce last-level cache
miss overheads.

LULESH and HYDRO simulation results have a significant
standard deviations of 5% and 15%, respectively. In LULESH,
eight DDR4 channels compared to four DDR4 channels con-
figurations achieve lower relative speedups when increasing
L2- and L3-cache sizes. Although in absolute terms eight-
channel configurations run faster, the relative improvement is
lower. Also, variations in HYDRO are caused by bottlenecks
in configurations with more than 2.5 GHz CPU frequency (see
figure 9a).

3) Core Out-of-Order capabilities: In Table I, we define
four configurations to model different levels of core Out-of-
Order (OoO) capabilities. The aggressive and low-end config-
urations are extreme cases that differ considerably from the
usual state-of-the-art type cores found in HPC systems. Be-
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Fig. 4: Visual timeline of a trace representing MPI and compute phases. Significant unnecessary time is spent in MPI Barriers
due to load imbalance in LULESH. X axis represents time, the Y axis represents the rank number.
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(c) Energy to solution

Fig. 5: Average simulation results increasing FPU width up to
512-bits. Normalized to 128-bit configurations.

tween those two, we simulate medium and high configurations
to try to model cores with similar features to the ones we find
in current server processors.

In terms of performance (see Figure 7a), for the majority
of applications, low-end architectures are 35% slower than
aggressive OoO configurations; 60% slower in the case of
Specfem3D. Additionally, intermediate configurations suffer
less than 5% slowdown in all applications except Specfem3D.
We can appreciate similar results for 32 and 64 cores except in
HYDRO and LULESH. As we mention in Section V-A appli-
cations with low parallelism leave many idle cores throughout
the whole execution, therefore task distribution in 32 and 64
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Fig. 6: Average simulation results varying L3- and L2-cache
parameters. Normalized to 32MB:256KB cache configs.

core configurations is the same.

The low-end pipeline configurations consume around 50%
less power than its high-end counterparts (see Figure 7b), but
as we discussed, these power savings come at a steep cost in
terms of performance. On the other hand, intermediate high
and medium OoO configurations consume 18% and 20% less
power, respectively, across all applications, while still attaining
performance that is close to the aggressive OoO pipelines.
Therefore, the additional power that the aggressive cores con-
sume is not translated into significant performance improve-
ments, which makes the high and medium OoO configurations
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Fig. 7: Average simulation results varying core OoO structures.
Normalized to aggressive configurations.

better design points for a good trade-off of performance and
energy consumption. (see figure 7c). Additionally, we can
observe that heavy memory constrained applications such as
LULESH are able to obtain great energy savings since the
impact in performance of the core compute capabilities is
minor.

4) Memory channels: We evaluate memory configurations
with four and eight DDR4 memory channels.

Figure 1 compares several memory metrics of our appli-
cations running on 64 core processors. Of all five, we find
that only Specfem3D and LULESH have considerable high
bandwidth requirements. Although Specfem3D requires more
memory bandwidth than LULESH when simulating on a
single core processor, at 64 cores it is the other way around:
LULESH presents much better performance scaling and the
usage of memory bandwidth scales accordingly. In Figure 8a
we observe that despite the high bandwidth requirements of
Specfem3D, increasing the number of memory channels from
four to eight does not yield performance benefits. On the other
hand, LULESH achieves up to 60% average speedup at 64
cores. Due to its very high memory bandwidth utilization, only
LULESH takes advantage of having extra memory channels.

Upgrading from four to eight memory channels and pop-
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Fig. 8: Average simulation results increasing the number of
memory channels. Normalized to four channel configurations.

ulating them with DRAM DIMMs increases total DRAM
power consumption by almost 100%. Nonetheless, in 64 core
configurations, the impact of the memory component of this
extra DIMMs over the overall total node power consumption is
roughly 10%. As we see in Figure 8c LULESH, as a memory
bound application, obtains on average 30% energy savings
with eight channels.

As a side note, memory bandwidth consumption is another
computational characteristic that is expected to change sig-
nificantly on improved versions of applications with better
parallelized codes capable of scaling efficiently up to 64 cores.
For example, if SPMZ was able to scale up to 64 cores
with reasonable efficiency, it would demand more memory
bandwidth than our four channel configurations are able to
provide and we would obtain clear benefits on eight channel
configurations. Another remark to consider is that, with the
same micro-architectural configuration, the power consumed
by memory can vary up to 20% from one application to
another. If we compare HYDRO with applications with similar
core occupancy such as LULESH, we observe that the total
processor power consumption varies up to 5% in 64 cores
configurations. Applications with many idle cores due to not
having enough task level parallelism like SPMZ at 64 cores
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Fig. 9: Average simulation results increasing CPU Clock
Frequency. Normalized to 1.5GHz configurations.

vary up to 20% difference in power consumption compared to
HYDRO.

5) Frequency: We evaluate CPU frequency values from
1.5 to 3.0 GHz. For each step in frequency, we provide
McPAT with adequate voltage parameters to scale up voltage
accordingly to 22nm process technology. It is important to note
that TaskSim uses the same frequency for all the components
of the chip, so the frequency at which L1, L2, and L3 caches
run is the same as the CPU clock.

Figure 9a shows that all applications except HYDRO scale
their performance linearly as frequency increases. HYDRO
encounters a scheduling bottleneck at high frequencies, tasks
are too small and the threads are not able to schedule tasks
fast enough. This is a TaskSim limitation as OpenMP/OmpSs
runtime event timings are taken from the original trace. In real
systems, this issue is not expected to happen.

Regarding power, Figure 9b shows that when comparing
1.5 to 3.0 GHz there is a 2× increase in performance and a
2.5× increase in power consumption. It is almost linear so we
can consider that adding 1% in performance will increase by
1.25% the power consumption. Commonly known, scaling up
frequency is a good way to obtain higher performance but it
has a high power consumption cost. Frequency is a key aspect
to consider and balance the different clock frequencies of the
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Fig. 10: PCA results
PCA results: performance correlation between different archi-
tectural paremeters.

different hardware componentes in a compute node.

C. Principal Component Analysis

In Section V-B, we provide average performance and stan-
dard deviation to measure the individual impact of each
architectural feature. Even if bar plots are a convenient and
straightforward way to visualize our experimental campaign,
they do not provide insight about the performance tradeoffs
between different architectural parameters. To explore those,
we use Principal Component Analysis (PCA).

For each application, we find the principal components
considering five variables: OoO capacity, number of memory
channels, SIMD width, cache size and the number of cycles
of that simulation.

Next, we discuss our results when applying PCA to HYDRO
and LULESH. Other applications show similar trends and
insights. We consider just the 2GHz CPU clock frequency and
64-core simulations.

Figure 10 shows the two most relevant principal components
(PC) labeled as PC0, in the x-axis, and PC1 in the y-axis.
For the case of LULESH, PC0 explains more than 60% of
the variance and it clearly shows that the memory bandwidth
parameters evolve in a similar way as the total number of
cycles. They evolve in an opposite way in the sense that an
increase in memory bandwidth implies a reduction in the total
amount of CPU cycles that LULESH requires. The cache size
parameter has also a non-negative PC0 value, which means
that it also related to the total cycles parameters for the case
of LULESH, although not as much as the memory bandwidth.
The other two considered parameters, OoO capacity and SIMD
width, have no contribution to the PC0 variable for the case
of LULESH, which means that the total cycles evolution is
not related to them whatsoever.

In the case of HYDRO, the PC0 axis stands for 42.64%
of the variance. Both the OoO capacity and the total number
of cycles are major contributors to the PC0, which implies
that they evolve in a tight and opposite way. The larger are
the OoO capacities, the smaller becomes the total number of
cycles for the case of HYDRO.
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SPMZ specific config.

Label Core OoO FP Unit Cache(L3:L2) Memory

DSE Best. Aggressive 512-bit 96MB:1M 8-Ch. DDR4
Vector+ High ↓ 1024-bit ↑ 64MB:512kB ↓ 4-Ch. DDR4 ↓
Vector++ High 2048-bit ↑ 64MB:512kB 4-Ch. DDR4

LULESH specific config.

Label Core OoO FP Unit Cache(L3:L2) Memory

DSE Best. High 512-bit 96MB:1M 8-Ch. DDR4
MEM+ Medium ↓↓ 64-bit ↓↓ 64MB:512kB ↓ 16-Ch. DDR4 ↑
MEM++ Medium 64-bit 64MB:512kB 16-Ch. HBM ↑

TABLE II: Application-specific architectural configurations.
All use 64 core and 2GHz.

D. Unconventional Configurations

We test two additional pairs of unconventional configura-
tions for the SPMZ and the LULESH codes (see Table II).
We select these two applications as the results shown in
Section V-B clearly show that SPMZ and LULESH are very
sensitive to the SIMD register size and the memory bandwidth,
respectively. In particular, results in Section V-B show how
SPMZ benefits significantly from increasing the SIMD widths
while other parameters such as the size of the OoO structures,
cache and memory bandwidth have a minor impact in its
performance.

Taking into account these observations, we simulate parallel
executions of SPMZ considering architectures with increasing
SIMD widths of 1024- (Vector+ configuration) and 2048-
bits (Vector++ configuration) while keeping the rest of the
architectural features settings that give the best possible
performance-power tradeoff. LULESH is a heavily memory-
bound application which does not benefit from floating point
computing capacity. We test both high-bandwidth 16-Channel
DDR4 (MEM+) and HBM (MEM++) configurations. For all
results presented in this section, we compare the unconven-
tional configurations against the best performing configuration
in terms of execution time of Section V-B (BEST-DSE) running
on 64 cores at 2GHz.

As we see in Figure 11, compared to BEST-DSE, the
Vector+ configuration for the case of SPMZ achieves a per-
formance increase of 1.13× with a similar increase in power
while the more aggressive Vector++ configuration obtains a
performance benefit of 1.43× but incurs in additional power
consumption equivalent to 3.14× the baseline. Overall, the
Vector++ suffers a pronounced 2.5× increase in energy-to-
solution.

With respect to LULESH, we achieve a 47% reduction
in energy-to-solution by using narrower FPUs units and a
performance increase of 7% by doubling up the memory
bandwidth. Moreover, if we consider very low latency memory
(MEM++), we can further achieve up to 1.30× speedup over
DSE-BEST. It is not possible to provide energy measurements
regarding the MEM++ due to the lack of data describing
the energy consumption of the HBM technology, although

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Relative Increment

Vector+
+

Vector+
Best-D

SE

SPMZ Performance Power Energy

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Relative Increment

MEM++

MEM+
Best-D

SE

LULESH Performance Power Energy

Fig. 11: Performance, power and energy-to-solution of appli-
cation specific configurations. Normalized to the best result in
Section V-B .

previous studies indicate that it consumes less power than
MEM+ [31].

VI. RELATED WORK

Subsystem simulators are common tools that allow us to
obtain performance prediction and assist computer architects
into designing specific parts of the HPC systems. Mubarak
et al. [32] propose CODES a fast and flexible simulation
framework to model state of the art Torus and Dragonfly
networks at a large-scale. Compared to this, our work focuses
on a multi-level simulation of the whole parallel system.

Early proposals [33]–[35] offer solutions targeting large-
scale systems capable of simulating thousands of nodes, but
their frameworks focus mainly on network events and they
not model CPU components or system software interactions
in detail.

Wang et al. [36], present a multi-level simulation framework
that is capable of modeling in detail many parts of the system
architecture including power estimations but is limited to
single node applications.

SST is a multi-scale simulator often used in combination
with other simulators to model distributed applications. In
BE-SST, authors combine SST with coarse-grained behavioral
emulation models abstracting from microarchitectural details
in favor of simulation speed. Other implementations integrate
SST with a highly accurate simulator but require too costly full
system simulations to produce a wide set of experiments [37],
[38].

With the same objective, application specific analytical
models [39], [40] use a small set of parameters to predict
performance for a single application on large systems. Once
those models are created and validated they are able to predict
performance accurately with negligible compute and time
cost. The main downside of these models is that they have
little flexibility; any significant change in the application or
hardware architecture requires the model to be updated, refined
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and validated again. Our methodology focus on hardware
microarchitectural exploration and iterative fast co-design; new
features can be tested on all applications the moment they are
included in the simulator with enough level of detail to study
in depth hardware-software interactions.

VII. CONCLUSIONS

This paper contains a wide experimental campaign based
on multi-level simulation methodologies. We extract several
conclusions from this campaign which can be used to drive
the design of next generation HPC systems. Our results show
how compute node configurations with 512-bit wide FP units
yield 20% to 75% performance speed-up and an average power
increase of 60% with respect to 128-bit wide configurations.
Consequently, it is appropriate to add 512-bit FP computing
units to hardware devices, since these sizes may provide
energy reductions for parallel codes that properly exploit both
thread level and SIMD level parallelism. We also observe
that in both 32- and 64-core processors, cache configurations
with 1MB shared L3 cache and 512KB private L2 cache per
core seem to offer the best trade-off in terms of power and
performance. Moderate Out-of-Order capabilities (in terms of
ROB size, Issue width, LD/ST buffers, FP Units) are a good
design point in all of our tested applications. Memory bound
codes benefit greatly (up to 60%) from enhanced memory
bandwidth rates. Doubling the number of DDR channels (and
populating them with DIMMs) increases the total node power
consumption by only 10%-20%.

In addition to that, our scaling analysis of applications
reveals that even without taking into account message passing
communication overheads and using an optimistic upper bound
(hardware agnostic simulations) four out of five applications
are not capable of scaling over 75% parallel efficiency on 64
core CPU configurations. Further, we reproduced executions
with up to 16,864 cores integrating all compute regions and
MPI communications. In such case, parallel efficiency drops
below 30%. With the continuous increase of static power
expected in next-generation HPC systems, underutilization of
compute resources is the main way to hurt overall energy
efficiency. In view of the scaling results, we insist in the co-
design point of view of bringing to the spotlight the necessity
of a good parallel design of HPC applications that maximizes
the utilization of the hardware resources available in each
compute node.
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