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Abstract 
 

Advances in nonlinear dynamics and information 

theory facilitate a multivariate study of information 

transfer between physiological systems and sub-systems 

aiming to characterize healthy and diseased physiological 

network states. In this study, we investigated the central- 

cardiorespiratory network (CCRN) applying linear and 

nonlinear causal coupling approaches (normalized short 

time partial directed coherence, multivariate transfer 

entropy) in 21 healthy subjects. From all participants, 

continuous heart rate (successive beat-to-beat intervals, 

BBI), synchronized calibrated respiratory inductive 

plethysmography signal (respiratory frequency, RESP), 

and the mean power PEEG from a 64-channel EEG were 

recorded for 15 minutes under resting conditions. We 

found that the central-cardiorespiratory coupling is a 

bidirectional one, with central driving mechanisms 

towards BBI (PEEG→BBI), and respiratory driving 

towards PEEG (RESP→PEEG). The central-cardiac 

(PEEG˗BBI) and central-respiratory coupling (PEEG˗RESP) 

seem to be stronger generated by linear process than 

nonlinear ones. We obtained a different CCRN behavior in 

healthy subjects providing a further step towards a more 

comprehensive understanding of the interplay of neuronal 

and autonomic regulatory processes. 

 

 

1. Introduction 
 

The new interdisciplinary field of Network Physiology 

is getting more and more into the focus of interest in 

medicine. Network Physiology aims to develop theoretical 

framework and a system-wide network approach to 

understand how horizontal integration of physiological 

systems, each with its own complex structure and 

mechanisms of regulation, leads to global behaviour and 

distinct physiologic functions at the organism level [1]. It 

aims to define healthy and diseased states by analysing 

structural, dynamical and regulatory alterations in the 

interaction of physiological systems and sub-systems [2]. 

The central control of autonomic nervous system (ANS) 

and the complex interplay of its components can be 

described by a functional integrated mode - the central- 

autonomic-network (CAN) - and can be assumed as a 

feedback-feedforward network, reacting with flexible and 

adaptive responses to internal and external factors. CAN 

represents the integrated function and interaction between, 

the central nervous system (CNS) and ANS (especially the 

parasympathetic and sympathetic activity). The dynamic 

interplay between the brain and the heart ensure 

fundamental homeostasis and mediate a number of 

physiological functions as well as disease-related 

alterations [3]. It has been assumed that various autonomic 

function processes are generated by a network of 

interaction showing specificity for task and autonomic 

division. For healthy ones, Beissner et al. [4] suggested that 

asymmetric frontal EEG responses to emotional arousal in 

the form of positive and negative emotions may elicit 

different patterns of cardiovascular reactivity. 

Recent advances in nonlinear dynamics and information 

theory facilitate a multivariate study of information 

transfer between time series. For the analyses of the 

cardiovascular-, cardiorespiratory- and central regulatory 

networks as well as the quantification of their interactions, 

a variety of methods have been proposed. For the 

characterization of linear and nonlinear couplings in the 

brain-heart (CNS-ANS) network several concepts are 

available [1, 5-7] based on Granger causality; nonlinear 

prediction; entropies; symbolization and phase 

synchronization [2]. 

The multivariate coupling analysis of heart rate (HR), 

respiration (RESP) and the power derived from the 

electroencephalogram (PEEG) time series, respectively, 

might provide additional information about the complex 

central-autonomic-network in neuropathological diseases 

than uni- and bivariate approaches can do. 
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The aim of this study was to investigate the central- 

cardiorespiratory network (CCRN) by determining the 

strength and direction of the interaction between central- 

and autonomic network activity in healthy subjects under 

resting conditions. 

 

2. Materials and Methods 
 

2.1. Subjects 
 

In this study, 21 healthy subjects (CON; 6 females, 

mean age 36.7±13.4 years) were enrolled. Interviews and 

clinical investigations were performed for CON to exclude 

any potential psychiatric or other diseases, as well as to 

double-check for any interfering medication. The 

structured clinical interview and a personality inventory 

(Freiburger Persönlichkeitsinventar) were also applied to 

the subjects to detect personality traits and any disorders 

which might influence autonomic function. All 

participants provided their written informed consent to a 

protocol approved by the local ethics committee of the Jena 

University Hospital. This study complies with the 

Declaration of Helsinki. 

 

2.2. Data Recordings and Pre-processing 
 

From all subjects, a 3-channel short-term ECG (500Hz), 

synchronized calibrated respiratory inductive 

plethysmography signal (50Hz) (LifeShirt®, Vivometrics, 

Inc., Ventura, CA, USA) and a 64-channel EEG (500Hz) 

were recorded synchronously for 15 minutes. The EEG 

(Brain Products, Germany) was acquired using 64 active 

Ag/AgCl electrodes, and transmitted via the BrainAmp 

Amplifier (AFZ: ground, FCZ: reference). The electrodes 

were positioned according to the extended 10-20-system 

using an electrode cap. The impedance levels (<25 KΩ) for 

all electrodes were checked following the attachment of the 

electrode cap to each participant’s scalp. All  subjects' 

recordings were started after a supine resting period of 10 

minutes. Subjects were asked to close their eyes, relax and 

breathe normally to avoid hyperventilation. 

The following time series with respect to autonomous 

regulation were automatically extracted from the raw data 

records: 

−   Heart rate (lead I) consisting of successive beat-to-beat 

intervals (BBI, [ms]), 

−   Respiratory frequency (RESP, [s]) as the time intervals 

between consecutive breathing cycles, 

−   Mean power PEEG  from the EEG (during each RR- 

interval, [µV2]). 

EEG recordings (without any stimulation) were band- 

pass filtered (0.05Hz-60Hz, Butterworth filter, order=3) in 

order to remove slow drifts resulting  from slow body 

movements or sweating, and to prevent higher frequency 

content from additional noise. For EEG analyses, artefact- 

free time series were used. All extracted time series 

(autonomous, central) were filtered by applying an 

adaptive variance estimation algorithm to remove and 

interpolate seldom occurring ventricular premature beats 

and artefacts (e.g., movement, electrode noise, and 

extraordinary peaks) to obtain normal-to-normal beat time 

series (NN). To obtain synchronized time series, BBI, 

RESP, and PEEG were resampled using a linear 

interpolation method (2Hz). 

 

2.3. Normalized Short-time Partial 

Directed Coherence 
 

To quantify the central-cardiorespiratory network the 

NSTPDC approach was applied [8]. It is based on a 

multivariate autoregressive model with model order p to 

determine linear Granger causality (GC) in the frequency 

domain based on the time-variant partial directed 

coherence approach (tvPDC). For the selection of the 

optimal order p of the AR(p) model the stepwise least 

squares algorithm and the Schwarz’s Bayesian Criterion 

(SBC) were used. 

The normalization factor NF determines the strength 

and the  direction of all causal  links between a  set of 

multivariate time series as a function of frequency f. The 

NF can take the following values: NF = {−2, −1, 0, 1, 2}. 

Strong unidirectional coupling is indicated if NF is equal 

−2 or 2, bidirectional coupling with the determination of 

the driver-responder relationship exists if NF is equal−1 or 

1, and an equal influence in both directions and/or no 

coupling if NF=0. In the case that both area indices reveal 

equal values that are larger than zero an equal influence in 

both directions is present, if both area indices reveal equal 

values but are zero no coupling is present. Here, NSTPDC 

indices were calculated by applying a window (the 

Hamming window) of lengths l, with l=120 samples and a 

shift of 30 samples (90 samples overlap between each 

window). 

In addition to NF, the areas (ABBI→PEEG, APEEG→BBI, 

[a.u.]) were determined to identify the coupling strength. 

ABBI→PEEG and APEEG→BBI can have any values in the range 

of [0,1]. APEEG→BBI=1 indicates that all causal influences 

originating from central part are directed toward BBI, 

APEEG→BBI=0 indicates that the central part does not 

influence BBI. 

 

2.4. Multivariate Transfer Entropy 
 

Schreiber [9] proposed an information theoretic 

approach called transfer entropy (TE) to distinguish 

between driving and responding elements, to detect 

asymmetries in the interaction, and to quantify the extent 

to which the dynamics of one process influences the 

conditioned   transition   probabilities   of   another.   TE 



 

measures GC with the prediction improvement approach 

and extends the concept of Shannon entropy by taking into 

account the probabilities of transitions rather than static 

probabilities. TE is able to  determine the direction of 

coupling and information flow between coupled processes, 

and it is “model-free” approach [7]. Vakorin et al. [10] 

introduced the partial transfer entropy, a multivariate 

version of TE which quantifies causality between two 

nodes of an interacting network. 

The Multivariate Transfer Entropy (MuTE) quantifies 

causality from one time series to another as the amount of 

information flowing directly from the first to the second 

time series, while accounting for the effects of all other 

time series in the multivariate representation. Here, MuTE 

was applied using the nearest neighbour estimator and non- 

uniform embedding (NN NUE) to quantify the nonlinear 

interactions [11]. 

 

3. Results 
 

We found that the central-cardiorespiratory coupling is 

a bidirectional one, with central driving mechanisms 
(PEEG→BBI) towards BBI, and respiratory driving 

(RESP→PEEG) towards PEEG. 
The linear influence (NSTPDC method) from PEEG to 

BBI was much stronger than BBI to PEEG, whereas the 

linear influence from RESP to PEEG was much stronger 

than PEEG to RESP (figure 1, table 1). 
The nonlinear influences (MuTE method) from BBI and 

RESP to PEEG as well as from PEEG to BBI and RESP were 

nearly equally strong pronounced (table 1). 

For the coupling between BBI and PEEG it was shown 

that mean NF was −0.67 pointing to a bidirectional 

coupling from PEEG→BBI, with the driver being PEEG, and 

BBI the target variable. For the coupling between the 

respiration (RESP) and PEEG we revealed a mean NF of 

0.82, indicating bidirectional coupling from RESP→PEEG. 
 

Table 1. Results of CCRN analysis applying NSTPDC and 

MuTE for healthy subjects (CON). 
 

CON 

 

 

Figure 1. Averaged NSTPDC plots for central- 
cardiorespiratory coupling analyses for healthy subjects. 

Arrows indicating the causal coupling direction from one 
time series to another, e.g., RESP←PEEG, indicating the 

causal link from PEEG to RESP. Coupling strength ranges 

from blue (no coupling) to red (maximum coupling), where 
RESP represents respiratory frequency, and PEEG 

represents the mean power in BBI-related EEG intervals. 

 

4. Discussion 
 

We found a different CCRN structure in healthy 

subjects expressed by a strong central influence on the 

cardiac system, and a strong respiratory influence on the 

central nervous system, respectively. The central-cardiac 

(PEEG˗BBI) and central-respiratory coupling (PEEG˗RESP) 

seem to be more clearly indicated by the linear method than 

the nonlinear one. Particularly the central nerve system 

stronger controls the cardiac and less the respiratory 

system. This suggests that the central-cardiorespiratory 

process (closed-loop) is mainly focusing on adapting the 

heart rate rather via the autonomic nerve system than via 

the central influence on the respiratory system. On the 

other side, the feedback-loop from ANS to CNS is strongly 

dominated by the respiratory activity. This behavior may 

be interpreted as a stronger information flow from RESP 

to central regulatory processes acting as a feedback-loop to 

central activity for more inputs (information flow) toward 

ANS. The final respiratory output involves a complex 
coupling strength 

mean ± sd interaction  between  the  brainstem  and  higher  centers, 

BBI→PEEG 0.016 ± 0.011 

PEEG→BBI 0.017 ± 0.011 

RESP→PEEG 0.017 ± 0.010 

PEEG→RESP 0.016 ± 0.009 

BBI→PEEG 0.10 ± 0.05 

PEEG→BBI 0.19 ± 0.10 

RESP→PEEG 0.17 ± 0.07 

PEEG→RESP 0.07 ± 0.06 

including  the  limbic  system  and  cortical  structures. 

Respiration is primarily regulated for metabolic and 

homeostatic purposes in the brainstem and changes in 

response to emotions, such as sadness, happiness, anxiety 

or fear [12]. Since the human organism is an integrated 

network of interconnected and interacting organ systems, 

each system represents a separate regulatory network. The 

behavior of one single physiological system (network) may 

affect the dynamics of all other systems in the entire 

physiologic network. Due to these interactions, failure of 

one system can trigger a cascade of failures throughout the 

entire network [13]. Bartsch et al. [14] could demonstrated 

that the cardiac and respiratory systems exhibit three 

distinct independent forms of cardio-respiratory coupling 
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(RSA, cardio-respiratory phase synchronization (CRPS) 

and time-delay stability (TDS)) responding differently to 

key physiologic parameters, and act on different time 

scales on neuro-autonomic control. The output of the CAN 

is directly linked to heart rate variability (HRV). In 

addition, sensory information from different organs and 

subsystems such as the heart, the immune system and 

vascular system are feedbacks to the CAN. As such, HRV 

is an indicator of central-peripheral neural feedback and 

CNS-ANS integration [15]. 

In conclusion, this study provides a further step towards 

a more comprehensive understanding of the interplay of 

neuronal and autonomic regulatory processes in healthy 

subjects. This might be the basis for an early identification 

of central and/or autonomic impairments. 
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