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Abstract: This study presents a solution for the integrated longitudinal and lateral control problem of urban autonomous
vehicles. It is based on a gain-scheduling linear parameter-varying (LPV) control approach combined with the use of an
Unknown Input Observer (UIO) for estimating the vehicle states and friction force. Two gain-scheduling LPV controllers are used
in cascade configuration that use the kinematic and dynamic vehicle models and the friction and observed states provided by
the Unknown Input Observer (UIO). The LPV–UIO is designed in an optimal manner by solving a set of linear matrix inequalities
(LMIs). On the other hand, the design of the kinematic and dynamic controllers lead to solve separately two LPV–Linear
Quadratic Regulator problems formulated also in LMI form. The UIO allows to improve the control response in disturbance
affected scenarios by estimating and compensating the friction force. The proposed scheme has been integrated with a
trajectory generation module and tested in a simulated scenario. A comparative study is also presented considering the cases
that the friction force estimation is used or not to show its usefulness.

1 Introduction
The European Parliament Research Service considers autonomous
driving as one of the top ten technologies that will change citizen's
life the most [1]. This comes with no surprise given the clear
benefits that one can foresee, in particular: (i) achievement of
almost zero traffic accidents by taking humans out of the driving
task; (ii) inclusion of citizens with low physical mobility by the
introduction of door-to-door transportation services; (iii) reduction
of congestion by route sharing (passengers and goods) and a
centralised mobility intelligence; (iv) decrease of energy
consumption and pollution by relying on electric vehicles with a
smarter vehicle control.

Recently, industrialised countries carry out a technological race
toward autonomous driving. Research institutions and powerful
companies of the automotive, mobility and software sectors are
accelerating their achievements by a great investment in human
and technology resources. In spite of the gigantic difficulties of
reaching full autonomy at all times and in all the places, the recent
advances in hardware (sensors, embedded super-computers etc.),
software (artificial intelligence, planning and control,
telecommunications etc.), laws and potential user acceptance seem
to indicate that reaching autonomous driving is just a matter of
time.

Nowadays, half the world's population live in cities, and the
World Health Organization predicts that by 2050 this proportion
will increase to 66% [2], straining city traffic more and more. City
scenarios, then, are of high relevance and present routes, speeds,
traffic signs, infrastructure elements and surroundings that are
much more difficult to understand than on highways or segregated
lanes, not to mention the need to take care of pedestrians and
cyclists.

Overall, the process will be an incremental approach, with a
long period of coexistence between human and artificial drivers.
For that purpose, the Society of Automotive Engineers (SAE)
defines five progressive levels of automation [3], from driver
assistance (Level 1) to full automation (Level 5), which are not
expected before 2025. From Level 2 to Level 5, the vehicle takes
full control of the accelerating, braking and steering tasks. This
means that an automatic control software will tackle the velocity
and position control while handling a suitable dynamic behaviour.

Automatic control is one of the most important tasks within the
autonomous driving system [4]. The control objective is to follow
the references provided by the trajectory generator This is a
complex task that must guarantee the vehicle stability as well as
ensure certain levels of performance. Moreover, in addition to
implement control algorithm, this automatic control module has to
deal with real data management through sensors and actuators. In
particular, first, it is required to measure vehicle variables and
understand the environment located around the vehicle using
sensors (global positioning system, inertial measurement unit,
encoders, cameras, light detection and ranging etc). Then,
commanding proper signals to actuators (steering motor, electric
engine and brake system) to perform the motion of the vehicle
following the pre-established trajectory. Recently, the energy
management has also begun to be considered as an additional
aspect to address when solving the control problem of autonomous
vehicles. See, as, e.g. [5], where an optimal speed control strategy
is proposed to minimise accelerations taking into account traffic
signals, speed limits and previous vehicle information.

The problem of trajectory tracking control is usually defined by
three general aspects: the type of control (lateral, longitudinal or
both), the type of the model considered (kinematic, linear dynamic,
non-linear simplified dynamic or non-linear dynamic) and the
control strategy to be used. Until now, different tracking control
problems have been treated such as the longitudinal control, the
lateral control and the mixed one that includes both cases. The goal
in the longitudinal control task is to maintain the linear velocity of
the vehicle around a given velocity set point while performing with
smooth accelerations. This is known as cruise control. At this
point, the driver is released of the accelerating and braking tasks,
being the autonomous system responsibility. This case is included
in the Level 1 of automation defined by the SAE [3] and an
example of this control problem is shown in [6]. On the other hand,
the lateral control is in charge of controlling the yaw movement of
the vehicle. To do so, the controller acts over the angle of the front
wheels. This case is the opposite one of the longitudinal control
task. In this case, the driver only controls the acceleration and
brakes, being the automatic controller in charge of turning. In [7], a
good example of this control case is presented. The last control
problem is the mixed one. In this case, the automatic control
module governs the complete two-dimensional vehicle motion, i.e.



full control of the accelerating, braking and steering tasks and rises
to the levels 2–5 of automation, for instance in [8].

To address these control problems, several types of vehicle
models are considered. On one hand, kinematic models are a
function of vehicle geometry. On the other hand, dynamic ones rely
on physical models to describe the interaction between the vehicle
and the road. Section 2 goes in deep in this topic.

The third aspect that defines the autonomous guidance problem
is the choice of the control strategy. This selection is often being
related with the selection of the vehicle model, i.e. a linear model
will require a linear technique, whereas a non-linear one will
involve a non-linear strategy. So far, several control strategies have
been proposed each one with different advantages to the
application to the autonomous guidance problem. Some of the most
relevant strategies in the autonomous driving field according to
Paden et al. [4] are: proportional–integral–derivative (PID), H∞,
fuzzy logic control, sliding mode control (SMC), Lyapunov-based
control, linear parameter varying (LPV), Takagi–Sugeno (T–S),
linear quadratic regulator (LQR) and model predictive control
(MPC), see Table 1. 

The real autonomous guidance situation involves addressing the
mixed control problem that requires solving the longitudinal and
lateral vehicle control problem at the same time, being this the
target of this paper. A classification of the different control
strategies dealing with the mixed control problem according to the
type of model has been presented in Table 1 with the corresponding
references.

Some of the previously enumerated control strategies (such as
PID, fuzzy logic control or LQR) do not appear in the table due to
they mostly have been applied to solve the lateral control problem.

The LPV technique has proven to be an advanced control
strategy in recent years. This allows solving non-linear problems
using a pseudo-linear model by embedding the non-linearities
inside model parameters that depend on some scheduling variables.
Recent books, [15, 24–26], present the study of LPV modelling and
design under the linear matrix inequality (LMI)-based formulation.
Several design approaches can be used as pole placement, H∞, H2

and optimal methods.
The lack of measurement of certain vehicle states as well as the

ignorance of external disturbances can generate a problem when
applying the previously designed control to follow the proposed
path. The measurement of states will depend on the type of sensors
installed on the vehicle and is vital for the application of certain
types of control such as state feedback. Longitudinal velocity and
yaw rate are easily measured using low cost sensors that are
actually installed on many of existing vehicles. However, other
states, which have also a huge impact on vehicle dynamics, are
more difficult to measure using vehicle sensors. For example, this
is the case of the slip angle.

The friction forces are one of the most significant disturbances
that affect a vehicle. This force is dependent on the type of
materials involved in the wheel–road contact. The most common,
rubber-asphalt, generates a magnitude of friction force that can be
drastically altered if the vehicle suddenly crosses a wet or even
frozen area. For this reason, the estimation and subsequent
compensation by the control strategy of this force is of great
interest in the field of autonomous driving.

Several approaches have been recently studied in the state-
disturbance estimation area for autonomous vehicles including
observer-based [27, 28] and statistical [29] methods. One of the
observer-based technique is the UIO. This technique has been
widely used for fault detection and isolation as, e.g. in [30]. These
type of observers allow to estimate the states of a system as well as
disturbances or unmodelled uncertainty in the system. However,
the application of UIOs to the case of vehicle friction force
estimation has not been presented yet.

This paper presents a solution for the integrated longitudinal
and lateral control problem of urban autonomous vehicles. This
solution is based on a gain-scheduling LPV control approach
combined with the use of an UIO for estimating the vehicle states
and friction force. The contribution of this article is three-fold.
First, we present a novel LMI formulation for the LPV–UIO
observer design based on an optimal approach. It follows the
control–observer duality principle and introduces also a constraint
for the decay rate. Second, a friction force compensation
mechanism based on the estimation provided LPV–UIO is
proposed for reducing the control effort and increasing the
response when such a disturbance actuates. Third, we present the
design of an LPV–LQR approach for solving the integrated lateral
and longitudinal control for autonomous vehicles. This approach is
based on a cascade design of the kinematic and dynamic
controllers. Such a cascade scheme is based on the idea that the
dynamic closed-loop behaviour is designed to be faster than the
kinematic closed-loop one.

The proposed scheme is integrated with a trajectory generation
module and tested in a simulated scenario. A comparative study is
also presented considering the cases that the friction force
estimation is used or not to show its usefulness.

This paper is structured as follows: Section 2 presents and
describes the different types of vehicle models used for control and
estimation purposes. In Section 3, the LPV modelling is developed.
Section 4 shows the UIO design using the gain-scheduling LPV
approach. Section 5 presents the feedback control design. Finally,
Section 6 shows the results and Section 7 presents the conclusions
of the work.

2 Kinematic and dynamic vehicle models
This section describes the models which will be used later for
developing the automatic control strategies. A mobile object can be
described by using equations that represent the dynamic and
kinematic behaviours. Unlike common mobile robots, urban
autonomous vehicles are systems with larger mass and operating at
a higher velocity. Hence, the use of dynamic models becomes
indispensable. On one hand, in dynamic models the sum of forces
existing over the vehicle is taken into account for computing the
vehicle acceleration. The motion is generated by applying forces
over the driven wheels and mass, inertial and tyre parameters are
considered. On the other hand, kinematic model is based on the
velocity vector movement in order to compute longitudinal and
lateral velocities referenced to a global inertial frame. External
forces are not considered in this case. Note that, for both models,
the two wheels bicycle model has been considered as the one
depicted in Fig. 1. It is interesting to specify that the two wheels
model employed does not consider roll, pitch and z motion, only
yaw, x and y movements. 

In this work, both models are presented and used in a decoupled
way. It means that both model behaviours will be controlled in a
decoupled way by using a cascade control scheme. Table 2 presents
the characteristic vehicle parameters used in the models. 

2.1 Kinematic model

Kinematic-based model is widely used due to its low parameter
dependency. It assumes null skidding and considers lateral force to
be so small that can be neglected. Basically, it is a geometric
manner to compute vehicle position and orientation considering
linear and angular velocities. The kinematic equations are

Table 1 Classification of control techniques according to
the type of model

Mixed control problem
Control strategy Kinematic model Dynamic model
H∞ [9]
SMC–SMC adaptive [10]
Lyapunov [10–13]
LPV [8] [14, 15]
T–S [12]
MPC [16, 17] [16, 18]
non-linear MPC [19, 20] [21–23]



ẋ = vcos(θ)
ẏ = vsin(θ)
θ̇ = ω

(1)

where x, y and θ represent the current position and orientation of
the vehicle in metres (m) and radians (rad), respectively, with
respect to the inertial frame {W}. v is the linear velocity measured
in (m/s) and ω represents the vehicle angular velocity in (rad /s).

2.2 Dynamic model

The dynamical behaviour of a vehicle is generally complicated to
represent in a detailed manner. In practical applications, normally
simplified models are used. In this case, the obtained model is
based on the second Newton's law. The streamlined dynamical
model of the road vehicle can be written as

v̇ = FxRcos(α) + FyFsin(α − δ) + FyRsin(α) − Fdf
M

α̇ = −FxRsin(α) + FyFcos(α − δ) + FyRcos(α)
Mv − ω

ω̇ = FyFacos(δ) − FyRb
I

(2)

FyF = Cx δ − α − aω
v (3)

FyR = Cx −α + bω
v (4)

Fdf = Fdrag + Ffriction = 1
2CdρArv2 + μoMg (5)

where α represents the vehicle slip angle (rad), δ is the steering
angle and one of the inputs of the system (rad), FxR is the
longitudinal rear force and the other input of the system (N), FyR
represents the lateral rear force that appears when steering (N), FyF
is the lateral front force which appears also with the angular motion
(N), Fdrag represents drag force that opposes to the forward
movement (N) and Ffriction is the friction force that also opposes to
the longitudinal vehicle movement (N). Note that μo represents a
nominal value for the friction coefficient. In addition, note that
instead of employing the states x and y, a new representation has
been adopted by using the polar representation and considers the
variables v and α. These variables can be seen in Fig. 1. Observe
that the dynamic model variables are referred to the vehicle body
frame {B} whereas the kinematic set of variables refers to the
global fixed coordinate system {W} in order to represent the
trajectory from a relative point of view.

3 LPV control-oriented model
The LPV control technique requires a linear-like representation of
the non-linear model to be controlled. Hence, the LPV modelling
task is presented in this section. This method consists on
embedding the non-linearities inside model parameters that depend
on some variables, called scheduling variables, that vary in a
known bounded interval. In the last section, kinematic and dynamic
non-linear models were presented. Here, an LPV representation for
each one is introduced. For the kinematic LPV modelling task, a
reference model has been built previously. Note that two decoupled
LPV models have been obtained in order to control the kinematic
and dynamic parts of the vehicle separately.

3.1 Kinematic LPV modelling

To obtain the kinematic LPV model, a reference model has been
developed. This model is defined as the difference between real
measurements (x, y and θ) and desired values (xd, yd and θd).
However, these set of errors are expressed with respect to the
inertial global frame {W} (see Fig. 1). For control purposes is
suitable to express the errors with respect to the vehicle, such that
the lateral error is always measured in the lateral axis of the
vehicle. Thus, a rotation over the road orthogonal axis is
considered to represent the errors in the body vehicle frame {B}

xe

ye

θe

=
cos(θ) sin(θ) 0

−sin(θ) cos(θ) 0
0 0 1

xd − x
yd − y
θd − θ

(6)

where subindexes d and e represent the desired and error values,
respectively. To obtain the error model it is necessary to take into
account the rear wheels non-holonomic constraint of the form

ẋsin(θ) = ẏcos(θ) . (7)

Hence, computing the time derivative of (6) and using (1), (7) plus
some trigonometric identity, we obtain the following open-loop
error system:

ẋe = ωye + vdcos θe − v
ẏe = − ωxe + vdsin θe

θ̇e = ωd − ω .
(8)

Details about the development of (8) can be found in Chapter 1 of
[13]. At this point, denoting the state, control and output vectors,
respectively, as

Fig. 1  Two wheels bicycle model used for control purposes. {W} frame
represents the global inertial frame and {B} is the body frame located in
the centre of gravity of the vehicle

Table 2 Kinematic and dynamic model parameters
Parameter Description Value
a distance from CoG to front axle 0.758 m
b distance from CoG to rear axle 1.036 m
M vehicle mass 683 kg
I vehicle yaw inertia 560.94  kg m2

Cd drag coefficient 0.36
Ar vehicle frontal area 1.91 m2

ρ air density at 25∘C 1.184 kg
m3

μo nominal friction coefficient 0.5
Cx tyre stiffness coefficient 25,000 N

rad

CoG means Center of Gravity.



xC =
xe

ye

θe

, uC = v
ω

, rC =
vdcos θe

ωd
(9)

we can obtain the LPV representation for the kinematic dynamics
(8). Then, considering ω, vd, θe ∈ ℝ as the kinematic scheduling
variables, the LPV form becomes

ẋC = AC(ω, vd, θe)xC + BCuC − BCrC (10a)

where

AC ω, vd, θe =

0 ω 0

−ω 0 vd
sin θe

θe

0 0 0

(10b)

BC =
−1 0
0 0
0 −1

. (10c)

For the control design purpose, the reference vector rC will not be
taken into account, only AC and BC. This vector will be added
directly to the control law.

3.2 Dynamic LPV modelling

The dynamic model is quite more complex than the presented
kinematic one. Thus, the development of an LPV model is more
involved, and therefore it is presented in progressive steps.

Denoting the state, control and output vectors, respectively, as

x =
v
α
ω

uD =
FxR

δ
(11)

and considering an unknown friction force disturbance as a
variation of the nominal Ffriction denoted as Ffr, the state-space
model for the dynamic representation (2) can be obtained as

ẋ = A(δ, v, α)x + B(δ, v, α)uD + EFfr (12a)

where

A(δ, v, α) =
A11 A12 A13

0 A22 A23

0 A32 A33

(12b)

A11 = − Fdf
Mv (12c)

A12 = Cx(sin(δ)cos(α) − sin(α)cos(δ) − sin(α))
M (12d)

A13 = Cx(a(sin(δ)cos(α) − sin(α)cos(δ)) + bsin(α))
Mv (12e)

A22 = −Cx(cos(α)cos(δ) + sin(α)sin(δ) + cos(α))
Mv (12f)

A23 = −Cxa(cos(δ)cos(α) + sin(α)sin(δ)) + Cxbcos(α)
Mv2 − 1(12g)

A32 = Cx(b − acos(δ))
I A33 = −Cx(b2 + a2cos(δ))

Iv
(12h)

B(δ, v, α) =
B11 B12

B21 B22

0 B32

(12i)

B11 = cos(α)
M B12 = Cx( − sin(δ)cos(α) + sin(α)cos(δ))

M (12j)

B21 = −sin(α)
Mv B22 = Cx(cos(α)cos(δ) + sin(α)sin(δ))

Mv (12k)

B32 = Cxacos(δ)
I (12l)

E =

−1
M
0
0

. (12m)

At this point, A and B are time-varying matrices. However, with
the aim of avoiding the dependency on varying parameters in
matrix B, the system has been augmented by adding a fast dynamic
filter as suggested by Apkarin et al. [31] in the form

ẋf = Afxf + Bfuf (13)

ḞxR

δ̇
= −ψ 0

0 −ψ
FxR

δ
+ ψ 0

0 ψ
uF

uδ

where ψ  represents the filter gain, uF is the new longitudinal
behaviour input and uδ is the new lateral behaviour input. Note that
these new added states have fast dynamics and will not disturb the
dynamic model (12).

Then, the system (12) is transformed into a new fifth-order
system with state and input vectors as

x~ =

v
α
ω

FxR

δ

uf =
uF

uδ
(14a)

and matrices A
~
, B

~
 and E

~
 as

A
~(δ, v, α) =

A11 A12 A13 B11 B12

0 A22 A23 B21 B22

0 A32 A33 0 B32

0 0 0 −ψ 0
0 0 0 0 −ψ

(14b)

B
~ =

0 0
0 0
0 0
ψ 0
0 ψ

E
~ =

1
M
0
0
0
0

. (14c)

However, the model still presents some features that will be
difficult to control design task. One of them is that the input δ = 0
has been identified as a singular point. Hence, to avoid it, a change
of variable has been done by shifting the δ interval

δ ∈ δ, δ → σ ∈ δ + ε, δ + ε (15)

converting σ into the new scheduling variable and being ε a
constant value greater than δ.



In addition to all these arrangements, it was found that the
angular velocity channel lacks integral action, thus leading to a
steady-state error. Hence, the addition of such action through the
controller is considered. Then, a new state (ip) has been added as
the integral of the state ω

i̇ p = − ω . (16)

Therefore, starting from (14), taking into account these
considerations and denoting the scheduling variables as σ, v, α ∈ ℝ,
the vehicle dynamic LPV model can be expressed as follows:

ẋD = AD(σ, v, α)xD + BDuf + EDFfr (17a)

with state and input vectors

xD =

v
α
ω

FxR

σ
ip

uf =
uF

uδ
(17b)

and matrices AD, BD and ED as

AD(σ, v, α) =

A11 A12 A13 B11 B12 0
0 A22 A23 B21 B22 0
0 A32 A33 0 B32 0
0 0 0 −ψ 0 0
0 0 0 0 −ψ 0
0 0 −1 0 0 0

(17c)

BD =

0 0
0 0
0 0
ψ 0
0 ψ
0 0

ED =

−1
M
0
0
0
0
0

. (17d)

The model (17) will be used for designing the dynamic state
feedback control. Hereafter, in order to simplify the notation, the
scheduling variables dependency of state-space matrices is omitted.

4 LPV–UIO design
Owing to the lack of available sensors for measuring all states, i.e.:
there is no one that measures the slip angle, the design of a state
estimator has been considered in this section (see Fig. 2). The
LPV–UIO tackles the problem of estimating both the dynamic
states and the friction force affecting the vehicle. Such an estimator
has been designed following an optimal approach exploiting the
duality between the LQR and Kalman filter approaches. In a recent
work [32], Pletschen and Diepold present a T–S Kalman filter
strategy with a decoupled stability and performance methodology.
Unlike that approach, this paper presents an LPV Kalman filter
with both stability and performance criteria integrated in single
design procedure. 

4.1 System description

The proposed UIO estimation scheme is developed for LPV
systems affected by external disturbances. The measurement model
for the dynamical one presented in (12) considering the available
sensors leads to consider the following output matrix:

C = 1 0 0
0 0 1 (18)

due to the lack of measuring of dynamic states as the slip angle and
the estimated vector state is denoted as

x̂DO =
v^

α^

ω^

. (19)

The proposed disturbance estimation is based on the UIO
approach. Such a procedure is based on computing the difference
between the real system and the model used for observation

CEFfr = ẏ − C Ax̂DO + Bu . (20)

Thus, considering Θ = (CE)+, the force friction disturbance can be
obtained as

Fig. 2  Complete autonomous driving control scheme with two LPV controllers and an LPV–UIO with friction force compensator. Note that both KD and KC

have the negative sign embedded



Ffr = Θ ẏ − C Ax̂DO + Bu . (21)

Moreover consequently, decoupling the considered disturbance, the
system (12) can be rewritten as follows:

ẋ̂DO = Aox̂DO + Bou − EΘẏ (22)

where

Ao = (I − EΘC)A
Bo = (I − EΘC)B .

Then, the state estimation will depend on the observer gain L and
presents the form

ẋ̂DO = Ao − LC x̂DO + Bou − EΘ ẏ + Ly . (23)

4.2 Description of the design method

To design the observer gain L in (23), a polytopic approximation of
(12) is used

A(Φ) = ∑
i = 1

2nΦ

μi(Φ)Ai (24)

where Ai are obtained using the bounding box approach, nΦ is the
number of scheduling variables, Φ is the vector containing the
scheduling variables defined as Φ := ϑ1(t), …, ϑnΦ(t)  and μi(Φ) is
given by

μi(Φ) = ∏
j = 1

nΦ

ξi j(η0
j, η1

j) i = {1, …, 2nΦ} (25)

η0
j = ϑj − ϑj(t)

ϑj − ϑj

η1
j = 1 − η0

j j = {1, …, nΦ}
(26)

where each variable ϑj is known and varies in a defined interval
ϑj(t) ∈ ϑj, ϑj .

Then, the observer gain is given by

L(Φ) = ∑
i = 1

2nΦ

μi(Φ)Li (27)

where Li are obtained using the following proposition that provides
an optimal design based on the Riccati equations of the Kalman
filter.

Proposition 1: Let the observer tuning parameters Q = QT ≥ 0,
R = RT > 0, the optimal performance bound γ > 0, the decay rate
λ > 0, the output matrix C in (18) and the matrices Ai in (24).
Then, the polytopic observer gains in (27) are obtained by finding
Y and Wi satisfying the following LMIs:

YAi + Ai
TY − WiC − CTWi

T + Y2λ Y(Q1/2)T Wi

Q1/2Y −I 0
Wi

T 0 −R−1

< 0

γI I
I Y

> 0 i = 1, …, 2nSv

(28)

considering Y = YT > 0 and applying the transformation
Li = Y−1Wi.

Proof: Considering the Kalman filter Ricatti equation for every
vertex of the polytopic model (24), the following inequality is
obtained:

Ṗ = (Ai − LiC)P + P(Ai − LiC)T + Q + LiRLi
T < 0 .

At this point, we introduce an extra performance term, i.e. the
decay rate (λ), for ensuring a fast dynamic response of the observer

(Ai − LiC)P + P(Ai − LiC)T + 2λP + Q + LiRLi
T < 0 .

Then, by multiplying first each term of the last inequality by
Y = P−1 from the left-hand and the right-hand sides and then by
introducing Wi = YLi, the following inequality is obtained:

YAi − WiC + Ai
T − CTWi

T + Y2λ + YQY + WiRWi
T < 0 .

From here, we reformulate the inequality in order to use the Schur
complement

YAi + Ai
TY − WiC − CTWi

T + Y2λ

− Y(Q1/2)T Wi
−I 0
0 −R

Q1/2Y
Wi

T < 0.

Applying such a complement to this inequality the first LMI of
(28) is obtained.

The second LMI starts by bounding the Lyapunov matrix

P < γI .

Applying first the change of variable Y = P−1 and then the Schur
complement

γI − IY−1I > 0

γI I
I Y

> 0 .

where the condition P > 0 is included. □
Note that the problem has solution if and only if there exist

Y ∈ ℝs and Wi ∈ ℝs × m, being s the number of states and m the
number of measurable states. Matrices Q and R represent the
process noise covariance and the sensor noise covariance,
respectively.

4.3 Dynamic LPV–UIO design

The dynamic LPV–UIO tackles the problem of estimating the
dynamic state vector in (19) as well as estimating the friction force
acting over the vehicle.

At this point, the LPV model developed in (12) is used for
solving the Proposition 1 using the output matrix (18). The chosen
scheduling variables are σ, v and α bounded in the following
intervals:

σ ∈ [5, 55]∘ and v ∈ [1, 18] m
s

α ∈ [ − 0.1, 0.1] rad .

The proposed design matrices and parameters are: R = 0.01I2 × 2,
Q = 0.01I3 × 3, γ = 0.1 and λ = 12. The solution of such a
Proposition 1 returns the polytopic observer gains. Then, at every
time step, the interpolated observer gain is obtained by means of
(27).



5 Control design using LPV approach
The automatic control strategy addresses the problem of generating
an appropriate vehicle behaviour from a desired reference. In this
work, two cascade feedback LPV controllers are proposed for
controlling appropriately the behaviour of the vehicle (see Fig. 2).
Furthermore, a trajectory planner [33] is used which is in charge of
providing the correspondent position and velocities references to
the kinematic controller.

In this approach, a cascade methodology is employed where the
internal and fast loop corresponds to the dynamic control and the
external one to the kinematic control. On one hand, the kinematic
control (KC in Fig. 2) is in charge of computing smooth control
actions (linear and angular velocities) such that the vehicle is
capable of achieving the required speed, position and orientation at
the next local way point. On the other hand, the dynamic control
strategy (KD in Fig. 2) allows the vehicle to follow the angular and
linear velocity references provided by the kinematic control loop.
To this aim, the dynamic control generates forces to the rear wheels
and a steering angle signal for the front wheels.

5.1 Description of the design method

Note that the design overview has been developed for the case of
the dynamic model in (17). However, the same procedure is used
for designing the kinematic controller by just considering the
kinematic model in (10).

To design the controller KD, the polytopic approach of the
system in (17) is used in the same way it was presented in (24).
Then, using (25) and (26), the controller gain is obtained by means
of

KD(Φ) = ∑
i = 1

2nΦ

μi(Φ)KDi
(29)

where KDi are obtained using the following proposition, which
presents an LMI-based formulation for solving the LPV–LQR
problem.

Proposition 2: Given the LQR parameters Q = QT ≥ 0,
R = RT > 0, the optimal performance bound γ > 0, the decay rate
η > 0 and the matrices ADi obtained using (24). Then, the polytopic
control gains in (29) are obtained by finding P and Wi satisfying
the following LMIs:

ADiP + PADi − (BDWi)T − BDWi + 2ηP < 0
Wi

TRWi P(Q1/2)T

P ( − Q
1
2)−1

< 0 i = 1, …, 2nΦ

0 < P < γ

(30)

and applying the transformation KDi = WiP−1.

Proof: Considering the LQR Riccati equation for every vertex
of the polytopic model (17), the following inequality is obtained:

(Ai − BDKDi)
TP + P(Ai − BDKDi) + Q + KDi

T RKDi < 0 .

At this point, we split the last inequality in two new ones. The first
resultant is the pure Lyapunov stability term

(ADi − BDKDi)
TP + P(ADi − BDKDi) < 0

where, to ensure a fast dynamic response of the controller, a decay
rate term (η) has been added obtaining

(ADi − BDKDi)
TP + P(ADi − BDKDi) + 2ηP < 0

and applying KDi = WiP−1 we obtain the following LMI:

ADiP + PADi − (BDWi)T − BDWi + 2ηP < 0 .

The second LMI establishes the LQR performance. Then,
multiplying by the left-hand and right-hand second part of the
Riccati equation we achieve

P(Q1/2)TQ1/2P + PKDi
T RKDiP < 0

and applying the change KDi = WiP−1 it is converted to

P(Q1/2)TQ1/2P + Wi
TRWi < 0.

At this point, by rearranging the elements we obtain

Wi
TRWi − P(Q1/2)T( − Q1/2)P < 0

and using the Schur complement, the resulting LMI is as follows:

Wi
TRWi P(Q1/2)T

P ( − Q1/2)−1
< 0.

□
Note that the problem has solution if and only if there exist

P ∈ ℝs, H ∈ ℝr and Wi ∈ ℝr × s, being r the number of control
actions and s the number of states. Observe also that decreasing the
parameter γ increases the performance of the control loop.

Next sections provide details of the particular control design for
the dynamic and kinematic vehicle controllers.

5.2 Dynamic LPV control design

The dynamic control addresses the tracking of the linear and
angular velocity references of the vehicle by applying force to the
wheels and an angle to the front wheels.

At this point, the LPV model developed in Section 3.2 is used
for solving the Proposition 2. The chosen scheduling variables are
σ, v and α which are bounded in the same intervals than the ones
presented in Section 4.3.

The proposed design matrices Q and R are presented in Table 3.
Parameters γ and η are set as 0.001 and 3, respectively. Looking for
a solution for the Proposition 2, this returns the polytopic control
gains KDi. Then, the controller obtained at each control iteration
follows the rule presented in (29). 

The proposed control scheme for this dynamic loop is a state
feedback plus feedforward control. The function of feedforward

Table 3 RMSE obtained for three different configurations of the LQR controllers
RMSE Kinematic control design Dynamic control design

V ω Y Q R Q R
0.121 0.035 0.0177 [1, 1, 1] [0.004, 0.0001] [0.01, 0.01, 0.01, 0.01, 10, 3000] [0.005, 0.6]
0.124 0.031 0.0196 [3, 5, 15] [0.04, 0.01] [0.01, 0.01, 0.01, 0.01, 100, 30000] [0.005, 0.6]
0.076 0.0127 0.0213 [10, 3, 15] [0.4, 0.001] [0.01, 0.01, 0.01, 0.01, 1000, 90000] [0.005, 0.6]
0.045 0.0077 0.05 [3, 2, 20] [0.5, 0.001] [0.01, 0.01, 0.01, 0.01, 100000, 90000] [0.01, 10]
Values of Q and R represent the diagonal values of each matrix. Bold raw is the configuration chosen for the performed simulation.



matrix is to make the gain of the system unitary. Such a matrix is
computed following the next expression:

Nff = C
~ −B

~
K − A

~ −1
B
~ −1

(31)

where matrices A
~
 and B

~
 are the ones presented in (14), K is a sub-

block of KD, in which the last column has been omitted as it is
proposed in [34]. Matrix C

~
 is of the form

C
~ = 1 0 0 0 0

0 0 1 0 0 . (32)

Therefore, the complete control law is expressed as

uf = KD x^ DO FxR σ ip
T + NffrD (33)

where the state vector is the one presented in (17b) though with the
estimated dynamic states shown in (19), rD represents the reference
vector which corresponds to the kinematic control signal uC and uf
is the control input to the Apkarian filter added (13).

At this point, the dynamic control action uDF (see Fig. 2) is
computed as the sum of the Apkarian filter result (xf) and the
vector generated by the friction force compensator in (21)

uDF =
FxR

δ
+

F f r

0
. (34)

It is interesting to note that, for controlling the vehicle in the
interval vd ∈ 0, 1  a translation has been applied. Thus, this means
that when computing the controller at vd = 0(m/s), we are actually
computing the controller at vd = 1(m/s) and using it as we were in
vd = 0(m/s). In this way, we avoid to develop a hybrid control for
this reduced velocity interval.

5.3 Kinematic LPV control design

Kinematic control is in charge of controlling the position,
orientation and linear velocity by means of actuating over the
linear and angular velocities of the vehicle.

At this moment, the kinematic LPV model (10) is employed for
solving the Proposition 2. Three scheduling variables (vd, ω and θe)
are bounded in the following intervals:

vd ∈ [1, 18] m
s ω ∈ [ − 1.417, 1.417] rad

s

θe ∈ [ − 8, 8]∘ .

The control design matrices Q and R are presented in Table 3 and
parameter γ is set as 0.01. The Proposition 2 returns for this
kinematic case the control matrices KCi for each one of the
polytopic vertexes. Then, the controller obtained at each control
iteration (KC) follows the rule presented in (29).

It is important to remark that, in this kinematic case, the
Proposition 2 has a different configuration with respect to the
dynamic case. The first inequality of (30) is negative and an
additional LMI has been added to the Proposition 2

ADiP + PADi − (BDWi)T − BDWi + 2βP < 0 . (35)

Being β = 0, the LMI establishes a threshold for ensuring only
stability. Thus, in order to increase the kinematic loop performance
β can be increasing while being always positive. Here, it has been
set to 0.1.

The following state feedback control law has been used for
controlling the kinematic behaviour loop:

uC = KCxC + rC (36)

where xC and rC are the kinematic state and position reference
vectors, respectively, presented in (9). Such a reference is provided
by a trajectory planner (see Fig. 2).

6 Simulation results
The simulation scenario (see Fig. 3) chosen for testing the
automatic control strategy tries to cover different driving situations
as acceleration stages and velocity reduction on curves as well as
driving on different road conditions, as, e.g. asphalt or ice. 

To deal with this changing road conditions, the friction force
compensation mechanism is used and compared its result with the
case of unknown friction.

Considering this information (circuit shape and varying
velocity), a trajectory planner is in charge of generating a feasible
trajectory by means of using a polynomial curve generation method
[33]. This consists of computing continuous and differentiable
curves (velocities and accelerations) under an overall constrained
vehicle acceleration. Thus, in an offline mode, this planner
algorithm generates the linear and angular velocity references as
well as desired positions and orientations for the outer control loop
(i.e. the kinematic control).

The adjustment of the LPV–LQR parameters (Q, R and γ) is
made by means of using the root mean square error (RMSE)
approach. This measure allows to find suitable control parameters
by minimising it. Linear velocity, angular velocity and lateral error
are chosen by an exhaustive search. Moreover, η and β have been
selected with the aim of increasing the performance of the closed-
loop system. Table 3 shows some RMSE results for different
control adjustments and the one considered in the simulations.
Note that the observer adjustment was presented in Section 4.3.

In the tuning process, we have observed that the vehicle lateral
behaviour is more difficult to control due to the changing
reference. Hence, for the dynamic control case, the weight in Q
corresponding to the dynamic integral state has been set much
bigger than the rest. The same occurs in matrix R.

The sample times used in both control loops are 0.1 and 0.01 s
for kinematic and dynamic loops, respectively. The control strategy
jointly with the trajectory planner are tested in MATLAB
environment.

Figs. 3–6 show the vehicle results with known and unknown
friction disturbances in the simulated circuit. Fig. 7a depicts the
applied disturbance profile, i.e. friction force profile depending on
the type of road (asphalt and ice). Finally, Fig. 7b represents the
location of the closed-loop poles of kinematic and dynamic
controllers, and the thresholds for the decay rate (η and β) used in
their design. 

Fig. 3 depicts the trajectory proposed and the result of both
known and unknown disturbance scenarios.

Fig. 3  Proposed circuit for simulation and the result of solving the mixed
control problem



Fig. 4a shows the velocity response and that the friction force
compensation mechanism works. In the case of unknown friction
force, the controller is able to reject the disturbance. However, the
estimation of the friction force by means of the UIO allows us to
implement a compensation mechanism that makes the controller to
reject the disturbance faster than in the case such estimation is not
available. Fig. 4b depicts how the angular velocity performance is
higher than the linear velocity one with respect to the reference. In
addition, it can be appreciated how the compensation mechanism
corrects also faster than in the case of unknown disturbance. Even
so, the angular response presents some overshoot behaviour at
some time instants. The controller adjustment may be one of the
reasons, but the main reason is the high abruptness of the angular
velocity reference at the end of the curves producing a rough
behaviour on the vehicle.

Fig. 5 presents position errors for both cases. It can be seen the
better performance when the disturbance is compensated. The
mitigation of these errors is crucial for achieving a good
autonomous guidance. However, a near-zero lateral error is more
important since it ensures the driving of the vehicle through the
centre of the road. In our results, longitudinal error is no longer
than 0.5 m in normal driving (i.e. neither accelerating nor braking).
Lateral error remains in the scale of few decimetres being

increased when both velocities (angular and linear) increase. In
addition to this graphical comparison, a quantitative one in terms of
the RMSE has been performed (see Table 4). Such results verify
the improvement of using the friction force compensation
mechanism. 

Fig. 6 shows the resulting control actions. The compensation
mechanism allows to reduce the control effort being the action also
smoother than in the unknown friction case. Note also that the
steering angle signal in the first part of the simulation is quite
abrupt. This behaviour is due to longitudinal and angular
behaviours are highly coupled and the starting stage deals with
high linear accelerations.

Fig. 7a shows the real friction force considered along the circuit
simulated and the estimated force.

Fig. 7b illustrates the closed poles for the kinematic and
dynamic loops at a given operating point. It can be observed that
the poles of both loops satisfy the constraints imposed by the
corresponding decay rates η and β [see (30) and (35)]. The
satisfaction of this condition allows to design both loops separately,
since the dynamic control presents a faster dynamic behaviour than
the kinematic one.

Fig. 4  Velocities of the vehicle
(a) Linear velocity reference and response, (b) Desired and simulated angular velocities

Fig. 5  Resulting position errors
(a) Vehicle longitudinal error along the circuit, (b) Vehicle lateral error



7 Conclusions
A gain-scheduling LPV–LQR control scheme has been introduced
for solving the mixed control problem. To this aim, two models,
i.e. kinematic and dynamic, have been expressed in the LPV form
and an approach based on cascade design of the kinematic and
dynamic controllers has been adopted with the aim of increasing
the performance of the system. This is achieved by forcing the
inner closed-loop dynamics to behave faster than the outer closed-
loop one. Moreover, an UIO has been presented. It solves the
problem of the lack of measurability in the case of the slip angle by
estimating all the dynamic states as well as the friction force
affecting the vehicle. Then, a friction force compensation
mechanism is presented allowing the vehicle to compensate faster

the disturbances caused by changes in the friction force as well as
reducing the control effort.

Two novel LMI-based optimal designs for LPV observer and
controller have been introduced.

They also present new integrated constraints for ensuring a
certain level of control and observation performance.

The obtained gain-scheduling LPV–LQR control approach,
jointly with the UIO and a trajectory planning module, has
presented suitable results in a simulated scenario. In the same way,
a comparison is shown about the friction force estimation, which
shows the usefulness of this approach.

As a future work, this integrated control approach will be
compared with other control strategies. Also, the proposed

Fig. 6  Resulting control actions:
(a) Force control action; (b) Steering angle

Fig. 7  Disturbance profile and system poles location.
(a) Real and estimated disturbances, (b) Pole locus of the system in a particular operating point (v = 8.33(m/s), ω = 0.05(rad /s) and α = 0.013 rad ). Blue marks are the three slower
poles of the dynamic loop and the red ones are the kinematic poles. Vertical dashed lines represent the hyperplanes η = 3 and β = 0.1

Table 4 Comparison of both approaches using a quadratic measure and the maximum error values in metres
Approach RMSEv RMSEω RMSEy xemax yemax

unknown 0.3834 0.0043 0.0204 1.2815 1.1055
estimated 0.2337 0.0041 0.0201 0.082 0.067



modelling will be extended by adding steering dynamics and tyre
slip situation. Finally, this controller–observer approach will be
tested in a real scenario.
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