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Abstract 

Lustre is a decoration consisting of a surface layer of silver and copper metal nanoparticles, a 

few hundreds of nanometres thick and incorporated into the glaze. It shows a colourful 

metallic and iridescent appearance which makes use of the quantum confined optical response 

of the metallic nanoparticles. Three apparently unrelated lustre decorations, yellow-orange 

golden (Tell Minis), a dark brown-reddish with iridescences (Raqqa) and yellow-brown golden 

(Damascus) were produced in the same area in successive periods over tin and lead-free glazes 

which is known to require specific strategies to obtain a metallic shiny lustre. The composition 

and nanostructure of the lustre layers are analysed and the materials and specific firing 

conditions followed in their production determined. The optical properties of the lustre layers 

have been analysed in terms of the nanostructure obtained and correlated to the specific 

processing conditions. 

 

Keywords: Silver nanoparticles; Copper nanoparticles; Optical properties; SPR 

 

Introduction 

Lustre is a glaze decoration with a colourful metallic and iridescent appearance which makes 

use of the quantum confined optical response of metallic nanoparticles (Surface Plasmon 

Resonance, SPR). Lustre is a micrometric layer, from few hundreds of nanometres up to 
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several microns thick, made of metallic silver and/or copper nanoparticles (≈ 2 nm to 100 nm) 

beneath the glaze surface1-5.  

Lustre production starts with ion exchange between metal ions (Ag+ and Cu+) from an initial 

mixture applied on the glaze surface, which is fully removed after firing, and alkali ions (Na+ 

and K+) from the glaze; then diffusion of the metal ions inside the glaze surface, reduction of 

the metal ions to the metallic state (Ag+ to Ag0 and Cu+ to Cu0) and finally, nucleation and 

growth of metallic nanoparticles6,7. The reduction of the metal ions to the metallic state is 

obtained either applying an external reducing gas or adding reducing agents to the glaze (Sn2+, 

Fe2+)6. Lustre must be fired at a temperature above the glass transition temperature to boost 

ionic diffusivity of the alkali ions, and below the softening temperature to avoid the lustre 

mixture sticking to the glaze. Specific materials and firing procedures give rise to differences in 

the lustre nanostructure and consequently to differences in the colour (green, yellow, amber, 

red, brown, white), and metallic (golden, coppery, silvery) or iridescent (bluish, purplish) shine. 

The yellow-greenish and red colours obtained are due to the dominant dipolar contribution to 

the SPR absorbance cross section of silver nanoparticles (≤ 30 nm) and copper nanoparticles (≤ 

50 nm), respectively, but also to the relative amount and oxidation state of silver and copper in 

the layer7-9. For larger nanoparticles, higher SPR multipolar contributions become more 

important and are responsible for the splitting and red shift of the silver absorption peak and 

also for the increase in the scattering contribution10,11, changing the colour of  silver lustres 

from yellow-greenish to orange then brown and creating blue-purplish iridescences7,9,12. 

Nevertheless, the most distinctive characteristic of lustre is the metallic like shine; golden9,12 or 

coppery13 from silver and copper nanoparticles respectively. Similarly to what happens in 

photonic materials14, the optical response of an ensemble of particles cannot be attributed to 

the scattering by individual particles but rather from the collective effect15 which produces 

intense colours and strong reflectance. Generally speaking, a higher concentration of metallic 

nanoparticles and/or of their size increase the scattering effect5-9. This may be obtained by 

reducing the diffusivity of the ions in the glaze, and can be achieved by simply adding large 

divalent cations16,17 into the glaze such as barium or lead7 and introducing a stronger reducing 

atmosphere. 

Although all this may suggest a product of modern nano-technology, the fact is that the first 

lustre was produced at least 1250 years ago. The complexity of lustre technology suggests a 

direct transmission of knowledge between production centres as copying is improbable. 

Consequently, it is commonly accepted that the main mechanism of geographical expansion of 

lustre technology occurred by the migration of artisans to other production centres18,19,20.  

Previous studies demonstrated that each lustre production has distinctive characteristics: 

chemistry (silver/copper content and oxidation state), nanostructure (size and concentration 

of particles) and layer thickness2-9,12-14,20,21. Differences in all cases are related to a combination 

of variations in the production process and materials used. In particular, the addition of PbO to 

the alkaline glaze increases the probability of obtaining a lustrous layer; an increase from 

nearly 0 up to 30 wt% in the PbO content is observed from Abbasid to Fatimid lustres9. The low 

lead content of some of the earliest polychrome Abbasid productions prevented them from 

attaining a metallic lustrous layer7. A high firing temperature, stronger reducing atmosphere 
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and the application of several lustre pigments with successive firings8 helped to increase the 

size and concentration of nanoparticles in the lustre layers, were thus required. Subsequent 

productions used mixed lead-alkali glazes with the exception of some Syrian and Iranian 

productions20,22; in particular, the Syrian lustreware productions which are the subject of this 

work. 

During the 11th century Syria was under the Fatimid rule until the Seljuks took control (c. 1084–

1086. Later Saladin (c. 1175–1185) conquered Syria and established the Ayyubid dynasty until 

defeated by the Mamluks (1260-1400). Three lustreware productions directly related to the 

Seljuk, Ayyubid and Mamluk periods exist: Tell Minis (late 11th- first half of the 12th century 

AD), Raqqa (second half of the 12th-first half of the 13th century AD) and Damascus (second 

half of the 13th century AD)18,19. The names are given after the geographical areas where main 

workshops (Raqqa and Damascus) or some fine objects (Tell Minis) have been found. The 

three productions are characterised by the use of stonepaste bodies (a synthetic ceramic paste 

made of sand, clay and glass frit), tin-free glazes and apparently unconnected lustre 

decorations. Tell Minis ware has distinctive fine compact bodies, a transparent mixed lead-

alkaline glaze and a range of greenish-yellow to orange golden lustre (Figure 1a)23,26; Raqqa 

ware is coarser and more porous, has an alkaline glaze and a dark brown-reddish lustre with 

iridescences (Figure 1b)22,24-26. Finally, Damascus ware often shows more rounded sand grains, 

has a cobalt tinged either alkaline or mixed lead-alkaline glaze and a yellow-brown golden 

lustre (Figure 1c)23,24,26. 

Consequently, the study of Syrian lustreware is of particular interest not only because of the 

variety of apparently unrelated lustre decorations produced in the same area in successive 

periods, but also because of the use of tin-free and, at Raqqa, lead-free glazes which require 

specific strategies to obtain a metallic shiny lustre. Analysis of the composition and 

nanostructure of the lustre layers provides information about the technology of production. 

The differences observed between productions will be discussed in terms of the processes 

followed and of the optical properties obtained. 

The chemistry, oxidation state and nanostructure of the lustre layers are obtained by 

combination of microanalytical techniques. Imaging of the lustre layers is obtained by Scanning 

Electron Microscopy (SEM) of Focused Ion Beam (FIB) cut and polished lustre cross sections; 

the crystalline compounds are identified by micro X-Ray Diffraction (µ-XRD);  analysis of the 

lustre layers is either by an Energy-Dispersive X-ray Spectroscope attached to the SEM (EDS) or 

by Rutherford Backscattering Spectroscopy (RBS); the oxidation state of copper in the lustre 

layers is by X-ray Absorption Near Edge Structure spectroscopy (XANES) and the identification 

of the SPR from metallic nanoparticles by Ultraviolet and Visible spectroscopy (UV-Vis).  

 

Materials and methods 

Two Tell Minis (EA2217r and p8834/p8836)27, five Raqqa (p9404, p620, p9403, p18777 and 

p18779) 28, and one Damascus (p8839)27 shards were obtained from the Ashmolean Museum 

(Oxford), and three Damascus (c1293, c1295 and c1288) shards from the Victoria and Albert 

Museum. Pictures of all the samples analysed are given in the tables S-I, S-II and S-III and S-IV 
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in the supplementary material for the three lustre productions. Pictures of representative 

examples of the three types of decorations are shown in Figure 1.  

A crossbeam workstation (Zeiss Neon 40) equipped with SEM (Shottky FE) and Ga+ FIB 

columns, was used to prepare cross sections of the lustre layers29. First, the sample surface 

was coated with a thin protective Pt layer (1µm) by ion-beam-assisted deposition; then the 

cross section was cut and polished and a thin layer of Pt deposited to enhance conductivity. 

SEM images of the polished cross sections of the lustre layers were obtained at 5 kV (some at 2 

kV). In some cases chemical line maps of cross sections of the lustre layers were also obtained. 

The compositions of ceramic pastes and glazes were obtained from polished cross sections by 

SEM-EDS (INCAPentaFETx3 detector, 30mm2, ATW2 window) operated at 20kV, with 120s 

measuring times, on representative areas of paste (3 mm x 2 mm) and glaze (~200 µm x 200 

µm),  calibrated using mineral and glass standards respectively. The data are an average of at 

least 2 measurements. Optical microscope and SEM-BSE images of ceramic and glaze cross 

sections of some of the sherds are shown elsewhere22. 

RBS measurements were performed using a 5 MV tandem accelerator30. A 3070 keV energy 

He-beam with square-section (1 mm in diagonal) was used, thus taking advantage of the 

elastic resonance 16O(α,α)16O occurring at this energy and increasing the sensitivity to oxygen 

concentration by a factor of 2331. The samples were kept in vacuum. A careful quantification 

was performed by employing the simulation code SIMNRA32. RBS data was fitted starting from 

the average chemical compositions obtained from the microprobe analysis of the layers and 

following a procedure described elsewhere8,9,12,13. To determine the chemical profiles of the 

lustre cross sections, a sequence of layers with varying silver and/or copper content was 

modelled. The thickness of each layer is given in units of areal densities, which can be 

converted into absolute thicknesses provided that the mean density of the layer is known. The 

mean density of the lustre layer was estimated by linear interpolation from the metal 

nanoparticle and glaze fractions taking 10.49 g/cm3 for metallic silver, 8.89 g/cm3 for metallic 

copper and, for the glaze, the density calculated from the RBS fittings after Fluegel33.  

Cu K-α edge EXAFS fluorescence spectra for lustre layers p620f, c1293 and c1295r were 

acquired using a SDD single channel fluorescence detector at beamline CLAESS (BL22) at the 

Alba synchrotron. X-ray absorption Near Edge (XANES) data was collected for the lustre layers 

on EA2217, p620, p8833, p8834/36 and p8839 samples. In all the cases a 100x200 µm2 area 

was measured. Reference Cu foil and pellets of cuprite (Cu2O) and tenorite (CuO) powders 

were measured in transmission mode. Data analysis was conducted using the Demeter 

(Athena for XANES and Artemis for EXAFS) suite of programmes34. 

μ-XRD of cross sections of the ceramic bodies, glazes and lustre decorations were performed in 

transmission geometry at beamline MSPD (BL04)  at the Alba Synchrotron Light Facility using 

0.4243 Å wavelength and a CCD camera detector (Rayonix SX165, Rayonix, L.L.C., Evanston, IL). 

UV-Vis diffuse reflectance (R) measurements were performed directly on the surface of the 

samples using a double beam UV-Vis spectrophotometer (Shimadzu 2700) equipped with ISR 

3100 Ulbricht integrating sphere. The spot size was a slit of 5 mm x 1 mm, and measurements 

were made between 200 nm and 800 nm at 1 nm resolution. A D65 standard illumination 

source was used and barium sulphate provided a white standard. 
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Cu and Ag chemical cross section profiles were determined either from the RBS fitted data or 

from SEM-EDS line imaging. Images and cross section profiles from all the samples studied are 

shown in the complementary material Tables S-I, S-II and S-III and S-IV for the three lustre 

productions. 

Results 

Analysis of the ceramic bodies is shown in Figure 2 and detailed data is given in the 

supplementary material Table S-V. Analysis of the glazes is given in Table I. All the ceramic 

bodies are stonepastes with one exception, sample p8839 of the Damascus wares, which is 

earthenware. The stonepastes are made of sand, clay and a glass frit, and looking at the 

analysis we can find differences in the raw materials used to produce them. 

The chemical composition of the bodies can be compared to those published in the literature 

in Figure 222-24,26,35. Three sets of published data are used: Raqqa lustreware from a collection 

of the Metropolitan Museum (MET)25,36; the ceramics found in the excavations of Qal’at 

Ja’bar21 dated between late 11th or early 12th century AD35 and those found in several Northern 

Syrian sites dated between the 8th and 14th century24. Two main types of stonepastes23,24,35 are 

described in the literature; the first type which includes the Tell Minis wares is characterised by  

high Aluminium with low Calcium and Magnesium content, compared to the second which 

includes the Raqqa type wares.  

Among the Raqqa wares from the MET and the Northern Syrian sites some earthenwares (iron 

rich calcareous clays) were also found24,25,36. The good linear correlation between Al2O3 and 

FeO found25,36 between the stonepastes and the earthenwares (Figure 2a) demonstrated that 

the same clay used to produce the earthenwares was added in variable amounts to the quartz 

sand to produce the stonepastes. Moreover, the Tell Minis and Raqqa stonepastes from this 

study and also from the Qal’at Ja’bar23,35 also show a good linear correlation between Al2O3 

and FeO with the earthenware found in this study, p8839, Figure 2a. Moreover, looking at the 

correlation shown in Figure 2b, the Calcium and Magnesium were partly incorporated in the 

stonepastes with the clay and partly added with the glass frit. Finally, the Sodium content 

(Figure 2c) cannot be related to the clay added in any of the cases, but is attributed to the 

glass frit23-26. This demonstrates that at least two different clays were used to produce the 

Syrian stonepastes. 

Among the Damascus wares, two stonepastes are also identified (Figure 2). Damascus I (p8039 

and c1293) with high Aluminium and low Iron, Calcium and Magnesium. These are similar to 

the Tell Minis lustrewares, while Damascus II (c1288 and c1295) have higher Calcium and 

Magnesium content, in better agreement with the Raqqa wares.  

In summary, two clays were used; one with low Iron, Calcium and Magnesium and high Sodium 

content used in the production of Tell Minis, some Raqqa, Damascus type I and also other 

luxurious wares23,36, and the second with high Iron, Magnesium and Calcium and lower Sodium 

used in the production of some Raqqa25,36 and also Damascus II. This demonstrates that both 

types of stonepastes continued being used later in the second half of the 13th century. 
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μ-XRD of the pastes shows the presence of Quartz (SiO2), Cristobalite (a high temperature 

polymorph of quartz, (SiO2)), Nepheline (NaAlSiO4) and Diopside (CaMgSi2O6). Cristobalite, 

Nepheline and Diopside are formed by reaction of the clay and glass frit with quartz grains at a 

temperature between 950oC-1000oC. Calcite is also present in the Raqqa and Damascus wares. 

Considering that calcium is added to the stonepastes through the glass frit or incorporated 

with the clay, this Calcite can only be either recrystallized from original large Calcite grains 

after firing or the result from contamination during burial. Given the large porosity shown by 

some of the wares, in particular Raqqa wares the latter cannot be withdrawn23. 

The three lustreware productions also show distinct glazes. Their chemical composition is 

shown in Table I23; Tell Minis glazes are mixed soda rich alkaline-lead with about 15-20% PbO 

while Raqqa glazes are soda rich alkaline. Moreover, Damascus I glazes with bodies matching 

those of Tell Minis are also mixed alkaline-lead with about 20% PbO while Damascus II glazes 

with bodies matching those of Raqqa are soda-rich alkaline but contain more Calcium, 

Magnesium and Potassium. The blue colour of the Damascus glazes is due to the addition of 

Co2+ and Fe2+ (an iron rich cobalt sulphide) and also some Cu2+ and Zn2+ (probably added as a 

copper scrap). Cristobalite crystallites are found in the Damascus glazes. 

SEM images of polished cross sections of the lustre layers and the corresponding Cu and Ag 

profiles from characteristic Tell Minis, Raqqa and Damascus I and II lustres are shown in Figure 

3, 4, 5 and 6 respectively. All the samples studied are shown in the complementary material 

Tables S-I, S-II, S-III and S-IV. The Cu and Ag elemental compositions across the lustre layer 

sections are obtained from fitting of the RBS spectra, or from SEM-EDS line scans for those 

lustre layers thicker than the RBS data can probe. The data shows that the lustre layer 

compositions and nanostructures are very characteristic and distinctive for each production. 

The average Cu and Ag content (wt%), the maximum concentration (at%) and depth (μm) at 

which the maximum content of copper and silver is found, as well as the thickness (μm layer) 

of the lustre layer calculated either from the RBS fitted spectra or SEM-EDS line scans are 

shown in Table II. 

The nature of the nanoparticles is determined by μ-XRD and UV-Vis spectroscopy (Figure 7). 

Metal silver and cuprite nanoparticles are found in the Tell Minis and Damascus lustres while 

only copper metal nanoparticles of a very small size (large XRD peaks) are found in the Raqqa 

lustres. 

Silver is always in the metallic state in contrast to copper, thus the oxidation state of copper 

has been determined by X-ray spectroscopy. The XANES data contains features which can be 

compared to those in the model compound spectra (metallic copper, Cuo; cuprite, Cu2O for Cu+ 

and tenorite, CuO for Cu2+). In particular the position of the absorption edge shifts 

characteristically with oxidation state as shown in Figure 8 (8982.3 eV for Cuo, 8983.8 eV for 

Cu+ and 8986.9 eV for Cu2+). We find that for the Tell Minis and Damascus samples a high 

degree of copper oxide with an edge position in the region of 8982.8 – 8983.2 eV, along with a 

strong resonance at 8984.3 eV. Both of which match features seen in cuprite (Cu+). The main 

peak is at 8997 eV, which is a little below the peak seen in cuprite. This small shift down in 

energy is explained by a small contribution of copper metal in the lustre layers with a lower 

energy peak at 8996 eV. This suggests an additional contribution of copper metal of between 
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22% and 30%. The key indicator in the XANES supporting cuprite, and hence Cu+, rather than 

Cu2+ oxide lies in the position of the absorption edge which lies in the region closer to the edge 

position for Cu+ (8983.8 eV) than Cu2+ (8986.9 eV). The Raqqa sample is rather different, with a 

much higher metal contribution of 64%. The metal component is evidenced by the 

characteristic double peaks at 8997 and 9006 eV and a shift of the absorption edge to slightly 

lower energy as expected for Cu0. A summary of the chemical species is also given in Table II 

and the full results of least squares fitting of model compound data to the experimental data 

are given in Table S-VI. 

The full EXAFS data were also taken from two of the Damascus samples (c1293 and c1295) and 

one from Raqqa (p620r), Figure 9 and Table III (full results of fitting of model compound data 

to the experiment are given in Table S-VII) These confirmed that the principle oxide content in 

the Damascus lustre is from a cuprite like structure (Cu-O first shell bond distance closer to the 

1.85 Å of cuprite, rather than the 1.96 Å of tenorite), and also the dominant copper metal 

contribution in the Raqqa lustre. However, the amplitude of the EXAFS oscillations in sample 

c1293 was not very high, making it difficult to fit more than the first (Cu-O) shell, suggesting a 

lack of any longer range order which would be consistent with partially reduced oxide 

dissolved in the glaze. The incident X-rays used in these X-ray absorption spectroscopy 

measurements (XAS) will probe to a depth of at least 100 micron, so will combine data from a 

depth greater than the lustre layer in many cases. This is particularly important in those lustres 

obtained on glazes containing copper, either as a decorative motif like Tell Minis, or in the blue 

glaze itself like Damascus I.  

Tell Minis lustres are copper rich, above 70% Cu/(Ag+Cu) (Table II), with the copper being 

mainly oxidised (78%) as Cu+ (Table II). Metallic silver and cuprite nanoparticles are identified 

with a very low amount of metallic copper nanoparticles (Figure 7 and 9). The lustre layer is 

≈2μm thick and contains a gradient of nanoparticles, smaller near the surface (below 20 nm) 

and larger (above 70 nm) inside the glaze (Figure 3b and 3c). Silver appears mainly 

concentrated near the surface (≈200 nm) while copper appears in a broader layer with the 

maximum concentration at a depth below the surface of about 1 μm (Figure 3D). The uneven 

silver richer surface layer appears partly lost, indicating that the lustre layers are not well 

preserved. 

Raqqa lustres are richer in copper, often close to 100%Cu/(Cu+Ag), and mainly constituted by 

very small metallic copper nanoparticles (Figures 7 and 9, and Table II). The lustre layer is ≈0.5 

μm thick and contains very small nanoparticles (less than 20 nm) (Figure 4b and 4c). The layer 

shows a peaked Cu profile with a maximum copper content at ≈200 nm (Figure 4d). 

The Damascus lustre layers are copper rich (above 56% Cu/(Cu+Ag)) and the copper appears 

mainly oxidised (Figure 8 and 9, Table III). Both metallic silver and cuprite nanoparticles are 

found (Figures 7). Damascus I layers are about ≈4-5 μm thick (Figure 5b) while those of 

Damascus II are thicker (≈5-10 μm) (Figure 6b. This is consistent with the application of a lead 

free glaze in Damascus II. The layers are typically structured with a particle-free top (≈150-250 

nm thick layer) followed by ≈40 nm thick layer where the nanoparticles coalesce into larger 

non-spherical aggregates (Figure 5c) and into a continuous metallic layer (Figure 6c). Then 

there is a layer (≈2 μm and ≈5-9 μm thick for Damascus I and Damascus II respectively) 
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containing nanoparticles of increasing particle size (the largest particles of about 90 nm size) 

(Figure 5c and Figure 6c). Metallic silver and copper are concentrated in the first thin particle 

layer near the surface; some large metallic silver particles are also found at the end of the 

second particle layer while copper shows a maximum concentration between both particle 

layers (Figure 5d and Figure 6d). In some isolated spots the layer is thicker (up to 40 μm) 

formed by several sublayers of nanoparticles (≈10-15 μm) separated by particle free regions 

(≈3-8 μm). The lead-alkali glazes used in Damascus II lustreware is responsible for the 

development of thinner lustre layers and also of the formation of a continuous thin metallic 

layer near the surface.  

In summary, Tell Minis lustre layers are single 2 μm thick and copper rich (≈70% Cu/(Cu+Ag)) 

although only 20% of the copper is reduced to the metallic state. They are formed mainly by 

metallic silver nanoparticles concentrated near the surface (<0.2μm) with cuprite and a small 

amount of metallic copper nanoparticles (concentrated at ≈1μm). Raqqa lustre layers are 

single and very thin (≈0.5 μm), copper rich (≈100% Cu/(Cu+Ag)) and formed only by very small 

metallic copper nanoparticles (<20 nm). Damascus I and II lustre layers are very thick (4-5 and 

5-10 μm respectively), copper rich (≈60 % Cu/(Cu+Ag)). They show a multilayer structure: a 

first particle-free top layer (≈150 and 250 nm thick), a second ≈40 nm thick layer where the 

metallic silver nanoparticles coalesce into larger non-spherical aggregates for Damascus I and 

into a continuous metallic layer for Damascus II lustres. They have a cuprite rich intermediate 

thick layer (several microns thick) which ends with larger nanoparticles.  

 

Discussion 

Dissimilarities among the optical properties (colour, shine, opacity, etc.) of the three lustre 

productions are directly related to the differences in the chemical composition, copper 

speciation, nature and size of the nanoparticles, as well as to the concentration of particles 

and thickness of the lustre layers. In their turn, these differences depend on the composition 

of the lustre mixture used, glaze composition and firing conditions. The lustre precursor is fully 

removed after firing and consequently its composition is usually unknown37.  

Generally speaking lighter reducing conditions are required to reduce silver ions than is the 

case for copper ions. In fact Cu+ ions are able to reduce silver to the metallic state while they 

oxidising themselves to Cu2+, which then dissolves in the glaze. Therefore, the addition of 

copper lustre helps the precipitation of silver nanoparticles. Small silver nanoparticles (below 

20 nm) produce a green-yellowish colour as they have strong SPR absorption at about 420-430 

nm, and the presence of Cu2+ with a broad absorption in the red will enhance this effect7,9,12. 

Applying a reducing atmosphere promotes the growth of the silver nanoparticles, reduces Cu2+ 

back into Cu+ and the crystallisation of cuprite nanoparticles and in the case of a strong 

reducing atmosphere the reduction of copper to the metallic state and precipitation of metallic 

copper nanoparticles. Larger metallic silver nanoparticles and cuprite nanoparticles shift the 

colour of the lustre layer towards yellow-orange7,9,12. The presence of metallic copper 

nanoparticles absorbing at larger wavelengths (~560 nm) shifts the lustre layers colour to 

brown.  
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Consequently, metallic silver nanoparticles may be obtained by firing under light reducing 

conditions, especially using mixed silver/ copper lustres, and the main presence of Cu+ is 

evidence of the use of light reducing conditions. The presence of smaller particles near the 

surface in Tell Minis in comparision to Damascus lustres indicates the use of lighter reducing 

conditions. The relative thin Tell Minis lustre layers (2-3 μm), compared to Damascus (4-10 

μm), also indicates a shorter firing time (typically about 30 minutes

Copper lustres require stronger reducing conditions, and even if this is the case, copper is 

rarely fully reduced to the metallic state; besides, the addition of some silver will re-oxidise 

some of the copper into Cu+. The colour is mainly red due to the SPR absorption of the metallic 

copper nanoparticles, varying to dark brown if metallic silver nanoparticles are also present. 

Raqqa lustre layers are thin and the copper is fully reduced to the metallic state, which 

indicates a very short strong reducing firing (typically about 10 minutes7).  

The firing temperature depends basically on the composition of the glaze. The glass transition 

temperature (Tg) marks the transition from solid to liquid behaviour; in particular, atomic 

diffusivity in the glaze is boosted above Tg
38. Consequently, lustre has to be fired at 

temperatures above Tg to develop, and below the glaze softening temperature to prevent the 

lustre pigment sticking to the glaze surface. The glass transition and softening temperatures 

depends on the composition of the glaze39; they are lower for those glazes richer in Na, K and 

Pb and higher for those richer in Si, Ca and Al. In particular, both Raqqa and Damascus II have 

soda-lime glazes for which Tg ≈ 530oC (Littleton glass softening temperature ≈ 730oC). The 

substitution of calcium by lead reduces the glass transition temperature; for a typical mixed 

lead-soda glass of composition similar to Tell Minis and Damascus I the calculated Tg ≈ 490oC 

(glass softening temperature ≈ 670oC39,40), about 40oC lower than those of Raqqa and 

Damascus II glazes. 

The addition of divalent ions such as Pb in the glaze (about 20% PbO in Tell Minis and 

Damascus I) reduces the diffusivity of the ions16,17 and gives rise to more concentrated lustre 

layers which are responsible for the metallic shine. Consequently, shiny lustre layers are more 

difficult to achieve on alkaline glazes. In fact, Raqqa lustres rarely show metallic shine, and 

metallic shine is not exhibited in any of the samples studied; the copper nanoparticles are very 

small (<20 nm) with a large surface area -  the consequence of a short, strong reducing stage. 

In particular for metallic copper nanoparticles, the size of the particles is important in 

achieving the metallic effect as scattering is very small and absorption dominates the optical 

response for particles smaller than 40 nm. 

Nevertheless, a concentrated shiny lustre layer may still be obtained using a higher 

temperature and stronger or longer reducing firings. A long firing will accumulate more silver 

and copper in the lustre layer and make it thicker. Both higher temperature and stronger 

reducing conditions favour the growth of metallic nanoparticles which may coalesce and form 

large aggregates, or even a continuous nanometric metallic layer (Damascus II), near the 

surface. The absence of metallic copper nanoparticles in the Damascus lustres indicates the 

use of higher temperatures rather than stronger reducing conditions. The use of lead-alkali 

glazes in Damascus II helps a greater accumulation of the metals and the formation of the 

continuous thin metallic layer. 
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The reflection of continuous nanometric silver metallic layers of various thicknesses over a 

glass substrate may be calculated using Fresnel equations and the transfer matrix method41. 

The colour coordinates of the light reflected may also be determined using the protocol 

accepted by the International Commission for Illumination, CIE L*a*b* (International Colour 

Consortium 1976). The hue (ℎ∗ = 𝑡𝑎𝑛−1 (𝑏∗

𝑎∗⁄ ) ), relative saturation (𝑐∗ = √(𝑎∗)2 + (𝑏∗)2) 

and lightness (L*) of the Reflectance are plotted as a function of the silver metallic layer 

thickness in Figure 10. Thin layers below 40 nm have a high saturation, the colour varies from 

yellow-reddish to yellow-greenish, and the lightness increases from 40% up to nearly 100. 

Increasing the thickness of the layer decreases the hue dramatically down to zero and the 

colour shifts again to a yellow-reddish. Layers of about 30 nm show a saturated yellow hue and 

high lightness, together with a golden shine effect. Thicker layers, above 50 nm thick, show 

already low saturation and high lightness, i.e. a silvery shine (Figure 10). Consequently, the 

presence of silver aggregates (some hundreds of nm in size and some tens of nm thick), or of a 

thin silver metallic layer (some tens of nm thick) will increase the shine, resulting in yellow 

(golden shine) for thin layers (30-40 nm) and white (silvery shine) for thicker layers. 

In summary, the various lustre layers are consequence of different products and firing 

conditions. Tell Minis lustre layers were produced over lead-alkali glazes and show the 

characteristic double layer lustre5,6 consisting of a thin surface silver layer (<0.2 μm) and 

copper rich layer (≈1 μm) where copper is mainly oxidised (Cu+ dissolved and cuprite 

nanoparticles). This is characteristic of a light reducing firing, at low temperature (above Tg 

≈500oC) and typical firing time of about 30 minutes. The yellow-orange colour is mainly due to 

the presence of silver and also of cuprite nanoparticles. The golden shine which is common in 

this production is due to the presence of a high concentration of silver nanoparticles in the 

layer, although the samples studied here do not show it due to the deficient preservation of 

the lustre layers. 

Raqqa lustre layers were obtained over alkali glazes and show a single and very thin layer (≈0.5 

μm) close to the glaze surface5 containing very small metallic copper nanoparticles (<20 nm), 

amorphous Cu+, and only very small amount of silver nanoparticles if present. This is obtained 

using a short strong reducing firing, at low temperature (above Tg ≈ 550oC) and typical firing 

time of about 10 minutes. The colour is red due to the SPR absorption of Cu nanoparticles, and 

brown for those also containing silver nanoparticles. The size of the metallic particles is not 

large enough to produce the metallic shine in the samples studied and it is rarely observed in 

the Raqqa lustre production. 

Damascus I and II lustre layers were obtained over lead-alkali and alkali glazes respectively.  

They are extremely thick, show a multi-layered structure5 and contain mainly metallic silver 

and cuprite nanoparticles. The yellow to brown colour is due to the SPR absorption of silver 

nanoparticles and of cuprite nanoparticles. The layers have a first superficial thin layer of 

metallic silver nanoparticles merging into larger aggregates for Damascus I and into a 

continuous metallic layer for Damascus II. This 30 to 40 nm thick, more or less continuous 

silver metallic layer, is responsible for the golden shine. This structure results from a long high 

temperature firing; thicker layers produce a silvery shine in which case a long stronger 

reducing firing must have been used. Nevertheless the control of the process, in particular for 
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those obtained over alkali glazes, must have been difficult and Damascus lustre showing a 

silvery shine is not unusual. 

Conclusions 

The results demonstrate that both finer and coarser stonepaste bodies were being produced in 

Syria during the whole period from 11th century to 13th century. The former group is 

characterised by the use of a low FeO, CaO and MgO clay and finer ground quartz with the 

application of a lead-alkali glaze, and the latter group by the use of a high FeO, CaO and MgO 

clay and coarser ground quartz with the application of an alkaline glaze.  

Associated with these two groups, three different types of lustre with clearly distinctive 

composition, nanostructure and methods of production were observed, the first from Tell 

Minis with fine stonepaste bodies and lead-alkali glazes, the second from Raqqa with coarse 

stonepaste bodies and alkali glazes, and the third from Damascus which includes both fine and 

coarse stonepaste bodies plus their corresponding glazes.  

Tell Minis lustre layers were produced over lead-alkali glazes and show the characteristic 

double layer lustre of metallic silver and cuprite nanoparticles responsible for the yellow-

orange colour. The layers were obtained with a long low-temperature light-reducing firing.  

Raqqa lustre layers were obtained over alkali glazes and show a single very thin layer 

containing very small metallic copper nanoparticles and also a very small amount of silver 

nanoparticles responsible for the red and brown colour; these layers result from a short low-

temperature strong-reducing firing. The size of the copper metallic particles is not large 

enough to produce the metallic shine and it is rarely observed in the Raqqa lustre production.  

Damascus lustre layers were obtained over lead-alkali and alkali glazes respectively and show a 

multi-layered structure containing metallic silver and cuprite nanoparticles. The golden shine is 

due to the presence of a more or less continuous thin metallic silver layer (30 to 40 nm thick) 

characteristic of a long high-temperature firing. 
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Figure captions 

Figure 1. Pictures of characteristic Tell Minis, Raqqa and Damascus lustre decorations.  

 

Figure 2. Chemical plots of the stonepaste bodies showing correlations between (a) FeO, (b) 

CaO+MgO and (c) Na2O versus Al2O3 for Tell Minis (purple dots), Raqqa (dark blue dots) and 

Damascus (green dots). The plot includes also the Raqqa lustreware from the Metropolitan 

Museum, NY25 (black dots) and all the data obtained from the samples excavated in Qal'at 

Ja'bar23; FW1 corresponds to the Tell Minis and other luxury wares (magenta dots) and FW2 to 

Raqqa type lustre and polychrome wares (cyan dots).  
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Figure 3. a) Typical Tell Minis lustre (p8034/36). b) Lustre cross section obtained by FIB cutting 

and polishing and c) magnification of the lustre cross section. d) Cu and Ag cross section 

profiles obtained by RBS. 
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Figure 4. a) Typical Raqqa lustre (p18777r). b) Lustre cross section obtained by FIB cutting and 

polishing and c) magnification of the lustre cross section. d) Cu and Ag cross section profiles 

obtained by RBS. 
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Figure 5. a) Typical Damascus I lustre (c1293). b) Lustre cross section obtained by FIB cutting 

and polishing and c) magnification of the lustre cross section. d) Cu and Ag cross section 

profiles obtained by SEM-EDS line scan. 
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Figure 6. s) Typical Damascus II lustre (c1288). b) Lustre cross section obtained by FIB cutting 

and polishing and c) magnification of the lustre cross section. d) Cu and Ag cross section 

profiles obtained by SEM-EDS line scan. 
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Figure 7. UV-Vis spectra (Left) and μ-XRD patterns, corresponding to (a) Tell Minis (EA2217r), 

(b) Raqqa (p620r) and (c) Damascus II (c1295)  lustre layers. 

 

Figure 8. XANES data from a selection of lustres from Tell Minis, Raqqa and Damascus (solid 

lines) along with the least squares fit (dashed lines) to model compound data. The model 

compound data used from copper metal, Cu2O and CuO are also shown. A selection of 

characteristic features are highlighted and discussed in the text.  
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Figure 9. EXAFS R-space data, showing the distance of neighbouring atomic shells from a 

central copper atom,  from one Raqqa and two Damascus samples (solid lines) along with the 

model fits (dashed lines). Comparisons with model compound data of copper metal, Cu2O and 

CuO are also shown.  

 

Figure 10. Lightness L*, chroma c* and hue h* determined using the protocol accepted by the 

International Commission for Illumination CIE L*a*b*. From the total reflected light calculated 

from a continuous nanometric silver metallic layer over a glass substrate using Fresnel 

equations (transfer matrix method) as a function of the thickness of the layer. 
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Table I. SEM-EDS analyses of the glazes. 

 

    Na2O K2O Al2O3 SiO2 CaO MgO FeO CoO CuO ZnO SnO2 PbO 

Tell Minis 
EA2217r 13.6 (0.4) 1.9 (0.1) 1.7 (0.1) 57.7 (1.0) 4.9 (0.4) 2.7 (0.2) 0.3 (0.3)                 17.2 (0.6) 

p8834/36 10.9 (0.9) 1.6 (0.2) 1.3 (0.3) 64.1 (3.8) 3.7 (0.3) 1.6 (0.1) 0.7 (0.1)     0.3 (0.1)     0.3 (0.2) 15.0 (2.7) 

Raqqa 

p9404f 15.9 (0.2) 2.1 (0.1) 1.6 (0.1) 70.6 (0.4) 5.0 (0.1) 3.3 (0.2) 0.9 (0.1)                     

p9404r 10.6 (2.1) 1.9 (0.2) 1.4 (0.2) 78.9 (3.7) 3.5 (0.8) 1.8 (0.3) 0.8 (0.1)                     

p620r 7.6 (0.7) 1.9 (0.4) 1.3 (0.2) 78.6 (2.0) 6.6 (2.0) 2.2 (0.3) 1.0 (0.2)                   

p620f 11.6   1.7   1.2   73.0   7.2   2.9   0.9                       

p9403f 11.8 (3.7) 1.9 (0.2) 1.6 (0.3) 76.5 (5.9) 4.6 (1.7) 2.0 (0.5) 0.8 (0.1)                     

p18777f 9.0 (0.9) 1.7 (0.2) 1.7 (0.3) 79.1 (2.4) 4.1 (0.6) 1.7 (0.2) 0.9 (0.1)                     

p18779f 11.3 (4.3) 2.2 (0.3) 1.5 (0.2) 76.5 (6.4) 4.1 (1.0) 2.4 (0.3) 0.9 (0.5)                     

p18779r 14.2 (1.0) 2.3 (0.1) 1.4 (0.2) 72.2 (2.0) 4.9 (0.5) 2.5 (0.1) 0.7 (0.1)                     

Damascus I 

p8839 10.0 (0.1) 1.5 (0.01) 2.0 (0.0) 46.5 (0.0) 5.2 (0.1) 2.2 (0.03) 1.3 (0.1) 0.5 (0.1)         4.9 (0.2) 25.6 (0.2) 

c1293r 8.7 (0.2) 1.2 (0.04) 0.8 (0.1) 61.0 (0.6) 2.3 (0.1) 1.3 (0.06) 0.4 (0.1) 0.2 (0.04) 0.3 (0.1)         22.9 (0.3) 

c1293f 8.4 (0.2) 1.3 (0.1) 1.2 (0.3) 59.9 (0.4) 2.6 (0.1) 1.4 (0.2) 3.1 (0.04) 0.7 (0.2) 1.0 (0.1) 1.2 (0.3)     19.4 (0.1) 

Damascus II 
c1295 11.7 (0.2) 4.1 (0.1) 0.9 (0.0) 70.3 (0.5) 6.1 (0.1) 4.4 (0.2) 1.4 (0.1) 0.3 (0.1)                 

c1288 11.2 (0.2) 3.4 (0.05) 1.2 (0.1) 69.6 (0.3) 8.0 (0.5) 4.3 (0.2) 1.3 (0.1) 0.1 (0.1)                 
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Table II. Summary of the lustre layers composition and microstructure. Data obtained from RBS for those layers thinner than 2 μma and FIB analysis for 

thicker layersb. Size of the nanoparticles obtained from SEM-FIB imagesc, spherical particles are observed for the Tell Minis and Raqqa lustre while the 

particles coalescence near the surface into a continuous nano-layer is observed in the Damascus. Copper chemical species determined from Xanes fitted 

datad and from EXAFS fitted datae. 

 

sample 

layer composition Cu peak Ag peak copperc silverc layer Copper species 

 
mean 
Cu 

mean 
Ag 

%Cu 
(Cu+Ag) 

Max. position Max. position particles particles thickness (%) 

 (wt %) (wt %) (wt %) (at %) (μm) (at %) (μm) (nm) (nm) (μm) Cuo Cu2O 

Tell 
Minisa 

EA2217 6.5 3.0 68 4.1 0.8 2.1 <0.2 Cuprite/ 

some Cuo 

~50 

Ago 

<20 

1.5 22d 78d 

p8834/36 5.4 2.4 70 7.0 1.2 6.4 0.1 2.1 22d 78d 

Raqqaa 

p9404r 13.8 2.1 87 8.0 0.1 1.0 0.2 

Cuo 

<20 

Ago 0.5   

P620f 8.3 0.1 99 12.2 0.2 0.2 0.2 

- 

0.4 64d 36d 

P620r 13.8 0.3 98 12.8 0.2 0.2 0.2 0.5 100e  

p9403 11.4 0.2 98 9.5 0.2 0.2 0.2 0.4   

p18777f 6.7 0.1 98 7.5 0.2 0.1 0.1 0.4   

p18777r 10.4 0.2 98 15.0 0.1 0.1 0.1 0.5   

p18779r 3.8 0.1 99 6.5 0.1 0.1 0.2 0.5   

Damascus Ib 

p8839 3.5 1.2 75 4.0 0.2 3.0 0.2 

Cuprite/ 

some Cuo 

<80 

Ago 
40 x 100 

5.2 30d 70d 

c1293 6.2 4.9 56 3.2 1.5 3.5 0.3 
Cuprite 
<80 

Ago 
40 x 400 

4.0  100e 

Damascus IIb 

c1295f 5.5 3.8 59 2.5 2.5 1.5 0.2 
Cuprite 
<80 

Ago 
40 x  1000 

5.7  100e 

c1295r 7.4 3.6 67 3.0 2.8 1.0 0.3 5.6  100e 

c1288 8.3 2.3 78 4.5 2.8 5.5 0.2 8.8   
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