
Electronic Journal of Applied Statistical Analysis
EJASA, Electron. J. App. Stat. Anal.
http://siba-ese.unisalento.it/index.php/ejasa/index

e-ISSN: 2070-5948
DOI: 10.1285/i20705948v12n1p369

Generalized class of variance estimators under
two-phase sampling for partial information case
By Asghar, Sanaullah, Hanif

Published: 26 April 2019

This work is copyrighted by Università del Salento, and is licensed un-
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This paper considers a class of generalized estimators for estimating the
unknown population variance using two auxiliary variables when the mean
of one auxiliary variable may not be available. The expressions for bias
and mean square error of the proposed estimators are obtained up to the
first order of approximation. Conditions for which the proposed generalized
estimator is more efficient than the existing estimators have been derived.
Both empirical and simulation studies have also been carried out to analyze
the efficiency of the proposed estimators with some existing estimators.
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1 Introduction

In sample surveys, the auxiliary information is used to obtain estimators for the un-
known quantities of a finite population. Graunt (1662) was the first who estimated the
population of England using auxiliary information. Under some realistic conditions, the
use of auxiliary information provides an efficient estimator for estimating the popula-
tion variance. We have two situations regarding auxiliary information when auxiliary
information is already available at population level then we use Single-phase sampling.
Otherwise, two-phase sampling is more appropriate to use. In two-phase sampling, we
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used three situations, when auxiliary information is known, partially known and un-
known. Samiuddin and Hanif (2007) have reported these three different situations in
two-phase sampling. Roy (2003), Singh et al. (2011) and Khan et al. (2012) have worked
on regression and ratio-type estimators for estimating the population mean under partial
information case. Further Shabbir and Khan (2013) and Singh et al. (2013) have worked
on modified exponential type ratio and product estimators for estimating the population
mean.
Let U = {U1, U2, · · · , UN} be a finite population consisting of N units. We are taking
two auxiliary variables (x, z) and y is taking as a variable of interest. Now let us assume
that the mean information for auxiliary variable x is not known for both first and second
phase and the mean information for auxiliary variable z is partially known. Let a simple
random sample without replacement (SRSWOR) is drawn in each phase, where the first
phase sample of size n1 is drawn to measure auxiliary variable and the second phase
sample n2 (n2 ⊂ n1 )is drawn from the first phase sample to measure our study variable.
An Unbiased estimator for population variance is defined as:

t0 = s2y, (1)

The variance of t0 is,

V ar(t0) =

(
S4
y

n2

)
[δ400 − 1] . (2)

We modified Isaki (1983) ratio-type estimator for population variance when the variance
of one auxiliary variable is not available is,

tI = s2y2
s2x1

s2x2

S2
z

s2z2
, (3)

The mean square error (MSE) of tI is,

MSE (tI) ≈ S4
y



1

n2
(δ400 − 1) +

(
1

n2
− 1

n1

)
(δ040 − 1) +

1

n2
(δ004 − 1)

− 2

(
1

n2
− 1

n1

)
(δ220 − 1)− 2

1

n2
(δ202 − 1)

+2

(
1

n2
− 1

n1

)
(δ022 − 1)


. (4)

Upadhyaya and Singh (1999) proposed the variance estimator using the mean auxiliary
variable and we modified its estimator using two auxiliary variables when mean of one
auxiliary variable is not available,

tu = s2y2

(
x̄1
x̄2

)(
Z̄

z̄2

)
(5)
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The MSE of tu is,

MSE(tu) = S4
y


1

n2
(δ400 − 1) +

(
1

n2
− 1

n1

)
C2
x +

1

n2
C2
z

−2

(
1

n2
− 1

n1

)
δ210Cx −

2

n2
δ201Cz + 2ρCxCz

 (6)

Singh et al. (2011) proposed the exponential ratio estimator under two-phase sampling
for the population variance. The modified form of its estimator using two auxiliary
variables when the variance of one auxiliary variable is not available,

ts = s2y2 exp

(
s2x1
− s2x2

s2x1
+ s2x2

)
exp

(
S2
z − s2z2
S2
z + s2x2

)
(7)

The MSE of ts is,

MSE (ts) ≈ S4
y2
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n2
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(
1
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− 1

n1

)
(δ040 − 1) +

1

n2
(δ004 − 1)

−
(

1

n2
− 1

n1

)
(δ220 − 1)− 1

n2
(δ202 − 1) +

(
1

n2
− 1

n1

)
(δ022 − 1)


(8)

Furthermore, Ahmed et al. (2002),Singh et al. (2009),Yadav and Kadilar (2013),Solanki
and Singh (2013),Asghar et al. (2014) and Adichwal et al. (2015), Yasmeen et al.
(2018a),Asghar et al. (2018), Al-Jararha and Al-jadeed (2018), Yasmeen et al. (2018b)
and Shahzad et al. (2018) have worked on regression and ratio-type estimators for esti-
mating the population variance. This is well evidenced by the lack of literature; there is
no significant work on variance estimation, especially, on exponential variance estima-
tion for partial information case. Hence, the motivation of this paper is to develop some
exponential ratio-type estimators when the mean of one auxiliary variable is not known.
We have many practical scenarios where we need to use partial information case. We
have organized our paper in the following sequence. In Section 2, we derived the math-
ematical equations for bias and mean square error (MSE) of our proposed estimators.
In Section 3, real-life data is used for numerical purpose then simulate this data up to
2000 times for showing more efficient results. We accumulate our results in Section 4.

2 Proposed Generalized Exponential Ratio-Type
Estimator

Following Singh et al. (2009) and Sanaullah et al. (2016), the exponential ratio-type
estimator for the population variance using two auxiliary variables is proposed,

t1PI = s2y2 exp

[
1− 2x̄2

x̄1 + x̄2

]
exp

[
1− 2z̄2

Z̄ + z̄2

]
, (9)
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This leads to the generalized form as:

tGPI = λs2y2 exp

[
α

(
ax̄1

(a− 1)x̄1 + x̄2
− 1

)]
exp

[
β

(
bZ̄

(b− 1)Z̄ + z̄2
− 1

)]
,

or

tGPI = λs2y2 exp

[
α

(
x̄1 − x̄2

(a− 1)x̄1 + x̄2

)]
exp

[
β

(
Z̄ − z̄2

(b− 1)Z̄ + z̄2

)]
,

(10)

Remarks: By putting the different values of λ, α, β, b and a, we may get various ex-
ponential ratio-cum-ratio and product-cum-product estimators as new family of tGPI .
We may take some examples of exponential ratio-cum-ratio estimators as: For λ = 1,
α = β = 1 and a = 2, b = 2, t1PI in (10) is reduced as:

t1PI = s2y2 exp

[
x̄1 − x̄2
x̄1 + x̄2

]
exp

[
Z̄ − z̄2
Z̄ + z̄2

]
, (11)

For λ = 1, α = β = 1 and a = 1, b = 1, t2PI in (10) is reduced as:

t2PI = s2y2 exp

[
x̄1 − x̄2
x̄2

]
exp

[
Z̄ − z̄2
z̄2

]
, (12)

For λ = 1, α = β = 1 and a = 1, b = 2, t3PI in (10) is reduced as:

t3PI = s2y2 exp

[{
x̄1 − x̄2
x̄2

}]
exp

[{
Z̄ − z̄2
Z̄ + z̄2

}]
, (13)

For λ = 1, α = β = 1 and a = 2, b = 1, t4PI in (10) is reduced as:

t4PI = s2y2 exp

[{
x̄1 − x̄2
x̄1 + x̄2

}]
exp

[{
Z̄ − z̄
z̄2

}]
, (14)

We may generate many more estimators for different values of a and b . To obtain the
bias and mean square error under SRSWOR, let us define the notations,

e0 =
s2y2 − S2

y

S2
y

, e′1 =
x̄1 − X̄

X̄
, e1 =

x̄2 − X̄

X̄
, e′2 =

z̄1 − Z̄

Z̄
, e2 =

z̄2 − Z̄

Z̄
,

s2y2 = S2
y (1 + e0) , x̄1 = X̄

(
1 + e′1

)
, x̄2 = X̄ (1 + e1) , z̄1 = Z̄

(
1 + e′2

)
, z̄2 = Z̄ (1 + e2)

We may adopt that, E (e0) = E (e′1) = E (e′2) = E (e2) = 0, θ∗ = 1
n2
− 1

n1
We are

assuming that the population is large so that the finite population correction is ignored
and we may get the following results,

E
(
e0e
′
1

)
=

δ210Cx

n1
, E (e0e1) =

δ210Cx

n2
, E
(
e0e
′
2

)
=

δ201Cz

n1
,

E (e0e2) =
δ201Cz

n2
, E (e1e2) =

ρxzCxCz

n2
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where,

δpqr =
µpqr

µ
p/2
200µ

q/2
020µ

r/2
002

, µpqr =
1

N

N∑
i

(
Yi − Ȳ

)p(
Xi − X̄

)q(
Zi − Z̄

)r
.

We change (10) into e′s for obtaining Bias and MSE,

tGPI =λ S2
y(1 + e0) exp

[
−α(e′1 − e1)

a

{
1 +

{
e′1 −

(e′1 − e1)
a

}}−1]

exp

[
−βe2

b

{
(1 +

e2
b

)

}−1] (15)

We now assume that
∣∣ e1
a

∣∣ < 1 so that we may expand
(
1 + e1

a

)−1
and

(
1 + e2

b

)−1
as

a series in powers of e1 and e2. We expand the exponentials and neglect higher order
terms in e0 and e1,

tGPI = λ S2
y(1 + e0) exp

−α(e′1 − e1)
a


1−

{
e′1 −

(e′1 − e1)
a

}
+

{
e′1 −

(e′1 − e1)
a

}2

−−−−




exp

[{
1− e2

b
+
e22
b2
−−−

}] (16)

The bias and the MSE of the proposed estimator is,

Bias(tGPI) ≈ S2
y

(λ − 1) + λ
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(17)

and

MSE(tGPI) ≈ S4
y
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The minimum MSE of tGPI at optimum value of λ is,

λGPI =

1 + (
α

a2
+
α2

2a2
)θ∗C2

x + (
β

b2
+
β2

2b2
)

1
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z
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or λGPI = A/B
where,
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and

MSE(tGPI)min ≈ S4
y
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(19)

On substituting the optimal values of λ , we may get the asymptotically optimal esti-
mator,

tasym = A/B s
2
y2 exp

[
α

(
ax̄1

(a− 1)x̄1 + x̄2
− 1

)]
exp

[
β

(
bZ̄

(b− 1)Z̄ + z̄2
− 1

)]
, (20)

In some situations, we replace λ, by its consistent estimates because it is not possible to
presume the values of λ practically, the estimator in (10) may be obtained as:

t̂asym = Â
/
B̂ s

2
y2 exp

[
α

(
ax̄1

(a− 1)x̄1 + x̄2
− 1

)]
exp

[
β

(
bZ̄

(b− 1)Z̄ + z̄2
− 1

)]
, (21)
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Similarly the MSE (tGPI) in (19) may be given as:

MSE(tNG)min ≈ S4
y

[
1− Â2

B̂

]

Thus, the estimator t̂asym given in (21), is to be used in practice. One can obtain many
values of λGPI and minimum MSE’s by choosing the different values of a and b, For
λ = λ1PI , α = β = 1 and a = 2, b = 2, t1PI in (11) is reduced as:

MSE(t1PI)min ≈ S4
y
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8
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8n2
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(22)

For λ = λ2PI , α = β = 1 and a = 1, b = 1, t2PI in (12) is reduced as:

MSE(t2PI)min ≈ S4
y
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2
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C2
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(23)

For λ = λ3PI , α = β = 1 and a = 1, b = 2, t3PI in (13) is reduced as:

MSE(t3PI)min ≈ S4
y
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For λ = λ4PI , α = β = 1 and a = 2, b = 1, t4PI in (14) is reduced as:

MSE(t4PI)min ≈ S4
y
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1 +

3

8
θ∗C2

x +
3

2n2
C2
z −

1

2
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(25)

3 Numerical Illustration

In order to examine the performance of proposed estimators under two-phase sampling
real-life data from Cochran (1977) has been used where we consider measure Y the Food
cost,X for Size and Z for Income. The following information is given by:

N = 33, n1 = 9, n2 = 4, Cy = 0.362887

δ201 = 0.5506, δ040 = 2.380, δ220 = 1.430

δ202 = 2.255, δ004,= 2.143, δ022 = 1.492

Cx = 0.143577, ρyx = 0.42378, ρyz = 0.2521

ρxz = −0.065989, δ400 = 5.72, δ210 = 0.6305

We have computed the percent relative efficiencies (PREs) of tGPI with respect to t0
using the following formula.

PREs (ti, t0) =
V ar(t0)

MSE(ti)
× 100

Following Abu-Dayyeh and Ahmed (2005) we have also computed the simulation study
for showing more efficient results (in terms of less MSE for our proposed estimator). The
procedure for simulation study to find the MSE of the estimators is given below:
i- Total number of units in the population N =33.
ii- Select a simple random sample (SRSWOR) of size n1 = 9 from the real data-set of
size N = 33.
iii- Select a simple random sample (SRSWOR) of size n2 = 4 from n1 = 9 selected in
step one.
iv- Use the samples in step (ii) and (iii) to find the estimator tGPI .
v- Repeat steps (ii)-(iv) for k=2000 times. Then, we obtain k = 2000 values for each
estimator.
vi- The MSE of tGPI is obtained as:

MSE(ti) = 1
k

k∑
j=1

(tij − S2
y)2, where, i = 0, I, u, s, 1PI, 2PI, 3PI, 4PI
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Table 1: Empirical results

Estimator PRE’s

t0 100

tI 112.688

tu 115.4435

ts 87.26018

t1PI 218.0471

t2PI 222.6224

t3PI 225.0929

t4PI 216.4012

Table 2: Simulated results

Estimator PRE’s

t0 100

tI 118.3011

tu 101.6951

ts 107.8068

t1PI 173.2784

t2PI 460.9489

t3PI 411.9863

t4PI 185.2351

4 Conclusion

It is observed that the proposed class of estimators ((t1PI),(t2PI),(t3PI),(t4PI)) are per-
forming better than usual unbiased estimator (t0), modified Isaki (1983) (tI), Upadhyaya
and Singh (1999) (tu) and Singh et al. (2011)(ts) from the empirical study as shown in
Table 1. We also perform the simulation study to check the performance of our class of
estimators and find that our proposed estimators are also more efficient than the exist-
ing estimators as shown in Table 2. Furthermore, it is also observed that the class of
exponential type ratio-cum-ratio estimators t2PI and t3PI are more efficient than the
existing estimators in both studies.
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