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Evaluating 3D Local Descriptors for Future LIDAR Missiles with

Automatic Target Recognition Capabilities

Future Light Detection and Ranging seeker missiles incorporating 3D Automatic

Target Recognition (ATR) capabilities can improve the missile’s effectiveness in

complex battlefield environments. Considering the progress of local 3D

descriptors in the computer vision domain, this paper evaluates a number of these

on highly credible simulated air-to-ground missile engagement scenarios. The

latter take into account numerous parameters that have not been investigated yet

by the literature including variable missile – target range, 6-Degrees-of-Freedom

missile motion and atmospheric disturbances. Additionally, the evaluation

process utilizes our suggested 3D ATR architecture that compared to current

pipelines involves more post-processing layers aiming at further enhancing 3D

ATR performance. Our trials reveal that computer vision algorithms are

appealing for missile oriented 3D ATR.

Keywords: 3D Automatic Target Recognition; Light Detection and Ranging;

Missile engagement scenarios

Introduction

Extending ATR from the 2D to the 3D domain offers numerous advantages.

Indicatively, features (data) extracted from the 3D domain are less affected by

illumination variation and target pose changes [1] and describe the underlying structure

of an object. With respect to future LIDAR based missiles, 3D ATR can improve

weapon effectiveness against camouflage, concealment and deception techniques. In

addition, the LIDAR’s short operating wavelength provides high-resolution data and the

capability to acquire details of the target reinforcing recognition applications.

Current computer vision algorithms suggest a number of local feature

description techniques appropriate for 3D ATR. These techniques describe patches

around a point of interest and thus afford object recognition for partially visible targets.

Current local based descriptors include SHOT [2], Spin Images [3], RoPS [4], Tri-Spin
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Images [5], FPFH [6], 3DSC [7], USC [8] and HoD [1]. A common principle of all

these descriptors is encoding a spherical volume V of radius r that is centred on a

keypoint p. The 3D descriptors evaluated in this paper are:

 Histogram of Distances. HoD [1] calculates the probability mass density of the

normalized point-pair L2-norm distance distributions within V. L2-distances are

encoded in a coarse and a fine manner by using different quantizing bin sizes,

which are concatenated in a single descriptor. This strategy enhances ATR

performance for noise and subsampling perturbations. In contrast to current 3D

descriptors, HoD does not require a LRF/A. This is important because the

repeatability of a LRF/A is prone to noise and point cloud subsampling [2].

Additionally, HoD has an adaptive description radius that depends on average

point cloud resolution of each scene rather than the template, which is the norm

for a 3D descriptor.

 Histogram of Distances – Short. HoD-S is a compact version of HoD that relies

only on the coarse part of HoD. Except that, HoD-S and HoD share the same

principles.

 Signatures of Histograms of Orientations. SHOT [2] divides V into a number of

sub-volumes along the azimuth, the elevation and the radius. For every sub-

volume, a 1-dimensional local histogram is computed considering the normal

variation produced by the keypoint p (including its surrounding vertices) and the

vertices within each sub-volume.

 Rotational Projection Statistics. RoPS [4] establishes on V a LRF. Then V is

rotated around each axis of the LRF’s coordinate frame and is then projected on

each of the coordinate planes. Finally, each projection undergoes a statistical



analysis based on low order moments and entropy, which are converted into a

histogram named the RoPS descriptor.

 3D Shape Context. 3DSC [7] establishes on V a LRA that is aligned with the

normal of the vertices enclosed in V. Then V is divided into several bins along

the azimuth, elevation and radial dimension, and the 3DSC descriptor is created

by accumulating a weighted sum of the points within each bin. Weights are

proportional to the bin to centre-of-V distance. 3DSC is LRA based and

compensates for 360° azimuthal rotation by describing V in multiple azimuthal

orientations.

 Unique Shape Context. USC [8] is an extension of the 3DSC where the LRA is

substituted by a LRF. Except that, USC and 3DSC identical.

 Fast Point Feature Histograms. FPFH [6] establishes on V a Darboux LRF. Then

for each point belonging to V, FPFH encodes the angular relationship between

the keypoint p and its neighbours as provided by the LRF. Finally, that angular

relationship is transformed into a histogram.

Driven by the appealing advantages of missile 3D ATR we extend the typical

3D object recognition architecture [9,10] and use it to evaluate the performance of the

aforementioned 3D descriptors on complex simulated air-to-ground missile engagement

scenarios. We extend the object recognition architecture by involving a smooth surface

filtering procedure during the pre-processing phase and a quadruple post-processing

scheme aiming at further enhancing the architecture’s 3D ATR performance. In contrast

to current pipelines that use up to three post-processing layers [4,5,11,12], we use four.

That is, a dual-layered hypothesis generation scheme based on Geometric consistency

checks and RANSAC, and a dual-layered hypothesis verification scheme that relies on

ICP and on a geometrical cue based acceptance criterion.



Compared to current literature that evaluates the recognition performance of 3D

descriptors, ours differ as it exploits military rather than computer vision scenarios

[13,14] and it simulates scale changes and atmospheric disturbances affecting LIDAR.

It is worth noting that literature has not investigated yet how atmospheric disturbances

affect ATR tasks. Additionally, opposing to current 3D descriptor evaluations [13,14] or

to purely military oriented 3D ATR manuscripts [15–18] that consider a constant target

scale, we investigate the descriptor’s performance in various missile-target ranges. It

should be noted that, in contrast to current literature that correlates scale with the

description radius [14,19] we refer to its distance related meaning that affects the spot

size of the laser beam on the scene and forces the scene to have simultaneously a

different size and resolution. An example of how the missile – target range affects the

scene’s size and resolution is presented in Figure 1.

3D ATR Missile Seeker Architecture

We extend the typical 3D object recognition architecture [9,10] by introducing

additional pre and post-processing operations aiming to enhance the architecture’s

recognition performance. The suggested pipeline comprises of an offline and an online

phase. During the former, the ideal 3D point cloud of a template MBT is manipulated

such as to emulate a realistic representation for missile based applications. The online

pre-processing phase aims at filtering the scene’s smooth surfaces and then implements

keypoint description and matching depending on the 3D descriptor evaluated. During

the post-processing phase, the pipeline exploits a dual-layered hypothesis generation

scheme that is based on Geometric consistency checks and RANSAC, and a dual-

layered hypothesis verification scheme that relies on ICP and on an acceptance criterion

that relies on geometrical cues. The 3D ATR architecture is presented in Figure 2 (a). It

should be noted that the online adaptive description radius of HoD and HoD-S imply

adding to their ATR architecture and online-template module as presented in Figure 2

(b). The differences between the two architectures are highlighted in Figure 3.



Offline phase

During the offline stage, the input is a 3D point cloud Pm of a Leopard C2 MBT to be

recognized. Typical anti-tank missiles attack the MBT in its top and side view pose to

defeat the target where armour is thinnest. Thus, we reject the lower part of Pm by

applying the Hidden Point Removal algorithm [20] in order to emulate a synthesized

view of various MBT poses as observed by the LIDAR missile seeker during the final

engagement. The remaining part PHPR is shown in Figure 4. PHPR is then uniformly

subsampled at 0.3-meter resolution to enhance descriptiveness and computational

efficiency. For simplicity, instead of using a keypoint detection strategy, we describe all

vertices of the subsampled PHPR with the 3D descriptors of Table 1. The description

radius used is the standard 15 Re s where Re s is the average point cloud resolution of

the template [2,4,21] (for HoD and HoD-S it is the scene resolution [1]). Due to the

large number of points to be described, all descriptors are assembled into a FLANN

structure [22] that will be used during the matching stage. Finally, Pm is also uniformly

subsampled at 0.3-meter resolution and stored as Pmt.

Online phase

The input to the online phase is a scene point cloud P that is uniformly subsampled at

0.3-meter resolution that comprises of the vertices cPc , .

Smooth surface filtering

We associate to each cP a normal by estimating the best fitting local plane to its six

closest neighbours. Then, for each cP acting as a centroid, we extract a spherical

volume Pd with 10-meter radius which is equal to the MBT length used during

simulations. Then, the following cost function defines whether each Pc is rejected as



being part of a greater smooth area or is preserved:
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where  dcP is the standard deviation of the normals enclosed in Pd which is centred

at Pc. The accepted Pc comprise the filtered point cloud scene Pf:

It is worth noting that simply filtering the scene by comparing dcP with the

average normal of its surrounding vertices has questionable performance because it is

not robust even to minor perturbations. An example highlighting the effectiveness of the

suggested standard deviation based smooth surface filtering compared to the simplistic

average based technique is shown in Figure 5. Despite the effectiveness of a smooth

surface filtering scheme, surprisingly, current military literature either does not exploit

such a procedure at all [15] or discards only planar ground surfaces [18,23].

Keypoint description, matching and consistency checks

The scene vertices Pf are then described by the descriptors of Table 1. For the feature

matching, we extend [24] and de-correlate kNNDR with k=10 by shifting the matching

burden to a number of Geometric consistency checks [25]. These checks repeat until all

correspondences from the kNNDR stage are grouped into one of the clusters aHa ,

with },...,,{ 21 aHHHH . Clusters that have a cardinality greater than 66% of the

largest cluster in H are maintained and comprise abbHb  ,, with HH'bH ,

while the rest are discarded as too small.

Hypothesis generation and verification

Each cluster of H' defines a transformation hypothesis T between the model and the

target. Inconsistent correspondences within the same transformation hypothesis H' are



discarded based on the RANSAC algorithm using 1000 iterations. Finally, a geometrical

cue verification task rejects false transformation hypotheses by applying each T on the

point cloud model Pmt creating Pmf. The latter is fine aligned with the scene point cloud

Pf via the ICP technique using 1000 iterations. Finally, a hypothesis Hb is accepted if

the following constraint is fulfilled:
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The acceptance criteria of 1% is experimentally chosen such as to afford recognizing

the target even if it is heavily occluded.

Experimental Setup

Synthetic engagement scenarios

Real military laser scans are restricted and thus we use OpenFlight [26] to simulate

highly credible air-to-ground missile engagement scenarios. All scenarios consider the

missile flying at several altitudes and headings and under various pitch, roll and yaw

angles. In addition, the missile-target range is variable while occlusion, clutter,

Gaussian noise and atmospheric disturbances interfering the laser propagation are

considered. It is worth noting that compared to [15,17,18,23] our scenarios are more

realistic and challenging since they are affected by a greater number of parameters. The

parameters per scenario are shown in Table 2.

Evaluation criteria

Currently, 3D descriptors are evaluated based on a precision-recall curve [2,4,8,14,21]

that relies on the TP, FP, TN, FN matches. This curve is created by varying the kNNDR

threshold value in the region of [0,1] during the feature matching process [4], which for



this paper this is not possible as we do not exploit a variable kNNDR threshold but

rather reject matches based on Geometric consistency checks.

Similarly to [4] we do not exploit the simplistic case of just comparing the ATR

prediction state with the actual state e.g. claiming a TP match if both states coincide, but

consider as well the Euclidean distance based translational error Terror between the

ground truth and the estimated target position in the scene. Estimating accurately the

position of the target within the scene is mandatory for missile applications so that the

missile can navigate itself towards the target. Therefore, we define as a TP match the

case where the algorithm provides a transformation hypothesis for a scene in which a

target does exist and Terror is less than 2-meters. The 2-meter Terror threshold is linked to

the effective miss-distance range of a missile. Accordingly, for a FP match the

algorithm provides a hypothesis for a scene in which a target does not exist or the scene

does include a target but Terror is more than 2-meters. Finally, for a FN match the

algorithm does not provide a hypothesis for a scene that contains a target and for a TN

rejection, the algorithm does not provide a hypothesis for a scene that does not contain a

target.

It is worth noting that for our scenarios the TN rejection case is not always

applicable because in several runs per scenario the target is always present. Therefore,

we avoid biasing the ATR performance of each descriptor by exploiting the F1-score

that still encapsulates precision and recall information in a single value:

FNFPTP

TP
scoreF

###2

#2
1
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where # denotes the number of the metric that follows i.e. TP, FP and FN.



Experiments

The 3D ATR pipeline is implemented in MATLAB while descriptors are implemented

either in MATLAB or in C++ using a MEX wrapper. The parameters of each descriptor

are fixed either to the ones originally proposed by their authors or to their point cloud

library implementation [1,13,14]. For better readability, besides the scale invariance

trials, noise, subsampling and the detailed performance metrics are investigated only for

the benchmark Scenario 3.

Scenarios 1-3

Scenario 1 considers the 50-meter missile-target range. All descriptors evaluated excel

at 15°-75° obliquity because the target pose provides distinctive details for description.

In contrast, in the 0° obliquity case (side view), the MBT’s features lack of

distinctiveness and clutter objects interfere the missile-target Line-Of-Sight. Despite

that, HoD-S, FPFH, 3DSC and RoPS still manage close to 0.9 F1-score, while the rest

competitors up to 0.72 (Figure 6 (a)).

Scenario 2 doubles the missile-target range to 100-meters. This scenario is

challenging, as the size of all objects in the scene and the resolution are half the one of

scenario 1. For the 15°-75° obliquity, HoD-S, HoD and 3DSC excel with the rest of the

descriptors closely following. In contrast, for the 0° case, the scale and resolution

combined with occlusion and the non-distinctive MBT’s features at that view impose a

vast ATR performance reduction for all descriptors (Figure 6 (b)).

Scenario 3, considers the 200-meter missile-target range at 30° obliquity. This

scenario is even more challenging as the missile-target range has quadrupled, further

affecting the scene’s size and resolution. Despite that, HoD-S and HoD are quite stable

managing a 0.95 F1-score while 3DSC achieves 0.9 (Figure 6 (c)). This confirms [2]

stating that it is very challenging to establish a robust LRF and thus neglecting it can be



beneficial. For example, the 3DSC is LRA based and is not robust to azimuthal rotation,

but if 3DSC describes a keypoint p multiple times to compensate all possible 360°

azimuthal rotations, then 3DSC can afford a high ATR performance. The number that

3DSC has to describe the same local patch depends on the size of the azimuthal bin size.

Processing efficiency

Despite being MATLAB implemented, the fastest 3D descriptor generated is the HoD-S

due to overriding a LRF/A and having a small descriptor size. Next are HoD and FPFH

as the former neglects a LRF/A while the latter has the smallest descriptor size among

all competitors. Least efficient is RoPS due to its complex LRF algorithm and

MATLAB implementation. The processing time per descriptor is shown in Figure 7 (a)

and per scene in Figure 7 (b). The former plot is important as it highlights the

processing burden that is purely implied by each descriptor. The latter plot considers the

processing time of the entire ATR pipeline including the common modules, which

require on average 1268ms. It should be noted that the relative ratios between Figure 7

(a) and (b) differ as each descriptor produces a different number of kNNDR matches

and thus a number of Hypothesis to be tested. The computational breakdown of the

common procedures is presented in Figure 7 (c) showing that Hypothesis Verification

imposes the vast computational burden because of the RANSAC and ICP iterative

processes.

Qualitative Matching performance

Although the 2-meter distance threshold that defines a TP match is sufficient,

descriptors achieving a translational error Terror less than that can offer to the missile

pinpoint targeting. Our trials show that RoPS affords the smallest average Terror closely

followed by FPFH and USC. This is due to their LRF, provided that they have

positively recognized the target. Since USC is LRF based while 3DSC is LRA, the



higher accuracy we demonstrate for USC is reasonable. Largest error, but still less than

0.5-meters is given by HoD-S due to neglecting a LRF (Figure 7 (d)).

Compactness

This metric reveals the descriptive power per element of the descriptor vector.

Computer vision literature calculates compactness as the fraction of the area under the

precision - recall curve divided by the number of elements that each descriptor has [10].

For the suggested 3D ATR architecture calculating the precision - recall curve is not

realistic as we reject matches based on Geometric consistency checks. Therefore, we

define compactness as:

elementsdescriptor

scoreF
scompactnes

#

1
 (4)

Figure 7 (e) clearly shows that HoD-S achieves highest compactness followed by FPFH.

This happens as both descriptors combine an appealing F1-score with a small descriptor

length.

Robustness to Sensor noise

The noise levels of real military scenarios are classified and therefore we investigate the

robustness of each descriptor to the Gaussian noise levels suggested by the computer

vision community. Compared to [2,4,14] that apply Gaussian noise with zero mean and

σ up to sRe5.0 , we consider up to sRe1 of the point cloud resolution of the

benchmark Scenario 3, which is 30 cm. Hence, we evaluate the ATR performance

of the descriptor presented in Table 1 on Gaussian noise with zero mean and

}30,20,10{ cm.

The first experiment concerns 10 cm where HoD, HoD-S, 3DSC, USC,

RoPS and SHOT are almost unaffected. Interestingly, the latter three have a stable poor



performance throughout scenario 3 as they cannot manage the combined scale and

resolution changes. Next trial doubles noise, where both HoD variants, USC and 3DSC

are still minor affected. In contrast, SHOT and RoPS exceed their noise invariance

limits and therefore perform quite poor. Finally, noise triples to 30 where all

descriptors exceed their robustness capabilities. Despite that, HoD still gains a 0.5 F1-

score. An example of a scene affected by Gaussian noise is presented in Figure 8 (b)

while the noise affected recognition performance is shown in Figure 9 (a).

Laser propagation related effects

In this trial we simulate the laser atmospheric interferences of beam wandering and

scintillation [27]. Both these effects reduce irregularly and randomly the number of

reflected laser beams and thus affect the spatial location of the scene vertices.

Therefore, trials involve non-uniform and random subsampling of the scene point

clouds of Scenario 3 to }161,81,21{ the original scene point cloud P. This is novel as

current literature considers only uniform subsampling where the template and the target

are at the same scale [2,14,21].

For the 21 case, most robust are HoD and HoD-S followed by 3DSC due to

neglecting the prone to perturbations LRF [2]. For the 81 case all competitors except

HoD and HoD-S fail to gain an appealing performance because the simultaneous

combination of scale, resolution and subsampling change exceeds the limits of a

repeatable LRF/A. For the 161 case all competitors fail as the combined subsampling

and scale change are quite excessive. Despite that, it is worth noting that both variants

of HoD are the only ones with F1-score close to 0.5. An example of a scene affected by

atmospheric perturbations is presented in Figure 8 (c) while detailed recognition

performance is shown in Figure 9 (b).



Overall assessment

Figure 10 presents the overall performance per descriptor based on all trials along with

the corresponding computational requirement of each descriptor. Highest performance

is gained by HoD closely followed by HoD-S because they neglect a LRF/A and thus

offer a more stable local encoding in such an extended combination of disturbances.

This conclusion is enforced by the fact that the second best preforming descriptor is

3DSC that relies on a LRA. From the computational aspect, both HoD variants along

with FPFH are the most efficient. The performance of each descriptor is explained as:

 FPFH: Its LRF relies on the immediate neighbours of each keypoint and

therefore is prone to disturbances confirming [14].

 RoPS: Current trials combine disturbances that exceeded the invariance limits of

its LRF, confirming that it is very challenging to establish a robust LRF.

 USC, 3DSC: These are robust because their description process relies on a

normalized weighted point-count per description bin.

 SHOT: It involves normal estimation based on small groups of points within the

description radius and therefore SHOT is prone to the large disturbances

investigated this paper.

 HoD, HoD-S: The normalized histogram of the point-pair distances encoded can

withstand large and combined nuisances because it is matched to the

requirements of each scene.

Conclusion

In this paper, we evaluate a number of current computer vision oriented 3D local feature

based descriptors in the context of future LIDAR based missiles with ATR capabilities.

Experiments are conducted on a computer vision 3D ATR architecture that is properly



extended to facilitate the requirements of missile engagement scenarios.

Trials are performed on a number of synthetic but highly realistic and credible

air-to-ground scenarios and consider the case of a single template scheme while the

missile has 6-Degrees-of-Freedom motion capability and is flying at various altitudes,

obliquities and missile – target distances. The realistic nature of the trials is enhanced by

simulating atmospheric perturbations that affect the LIDAR’s laser beam. Under these

conditions, all 3D descriptors are evaluated for their ATR performance processing

efficiency, scale change, qualitative matching accuracy, compactness and their

robustness to atmospheric effects.

Overall performance in terms of ATR capability and of processing efficiency

clearly shows that HoD-S can be a promising option towards future LIDAR based

missiles with ATR capabilities.
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Nomenclature

3DSC 3D Shape Context LIDAR Light Detection and Ranging

ATR Automatic Target Recognition LRF/A Local Reference Frame / Axis

FLANN Fast Library for Approximate

Nearest Neighbours

MBT Main Battle Tank

FN False Negative match RANSAC Random Sample Consensus

FP False Positive match RoPS Rotational Projection Statistics

FPFH Fast Point Feature Histograms SHOT Signatures of Histograms of

Orientations

HoD Histogram of Distances TN True Negative match

HoD-S Histogram of Distances - Short TP True Positive match

ICP Iterative Closest Point TriSI Tri-Spin Images

kNNDR k-Nearest Neighbour Distance

Ratio

USC Unique Shape Context

Table 1. 3D descriptors evaluated

Descriptor
Descriptor

Length
Basic concept LRF/A Implementation platform

SHOT 352 Angular variations LRF C++
USC 1980 Accumulating points LRA C++

HoD-S 40 L2-norm distances --- MATLAB
HoD 240 L2-norm distances --- MATLAB
FPFH 33 Angular variations LRF C++
3DSC 1980 Accumulating points LRA C++
RoPS 135 Low order statistics LRF MATLAB



Table 2. Parameters per Scenario

Scenario 1 2 3

Runs 6 6 1

Obliquity (°) 0°–75° per 15° 0°–75° per 15° 30°

Range (m) 50 100 200

Resolution (cm) 11 18 30

Scenes with target/out of total 334/345 327/364 78/78

(a) (b) (c)

Figure 1. Example showing the distance related scene resolution, top row shows the

scene enclosed in the missile’s seeker Field-of-View and bottom row the corresponding

MBT point cloud patch at a missile-target range of (a) 50-meters (b) 100-meters (c)

200-meters



(a)

(b)

Figure 2. 3D ATR pipeline for the descriptors evaluated (a) SHOT, USC, FPFH, 3DSC

and RoPS (b) HoD and HoD-S



Figure 3. Diagram showing the differences highlighted in colour between the ATR

algorithm used for SHOT, USC, FPFH, 3DSC, RoPS and both HoD variants. HoD and

HoD-S include an online template description scheme rather than an offline, which is

the norm (in blue) and an online scene resolution calculation (in red).

(a) (b)

Figure 4. Colour coded MBT (a) ideal point cloud (b) HPR processed

(a) (b) (c)

Figure 5. (a) LIDAR point cloud with σ=10cm Gaussian noise (b) proposed standard 

deviation filtering (c) average smooth surface filtering (height-related colour coding for

better visualization)



(a)

(b)

(c)

Figure 6. Recognition performance under various obliquities for (a) scenario 1 (b)

scenario 2 and (c) scenario 3



(a) (b)

(c) (d)

(e)

Figure 7. Performance metrics (a) processing efficiency (b) average processing time per

descriptor per scene (c) computational breakdown in milliseconds excluding description

time (d) average translational error (e) compactness



(a) (b) (c)

Figure 8. Example of a point cloud scene at 200-meters missile – target range (a) ideal

(b) with σ=20cm Gaussian noise (c) with 1/16 non-uniform subsampling 

(a)

(b)

Figure 9. Robustness to (a) noise (b) non-uniform subsampling



(a) (b)

Figure 10. Overall performance of the 3D descriptors evaluated (a) recognition

performance (b) processing time




