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Abstract

The New Zealand kiwifruit industry is currently worth over NZD 2 billion in an-

nual sales revenue, this is forecast to double within the next 5-10 years due to a

significant increase in production volume. The industry is already experiencing a

prevalent shortage of labour which is indicative of a global trend. The objective for

this study was to define important metrics for the robotic harvesting of kiwifruit and

to propose a hardware configuration which could improve on the current kiwifruit

harvesting module (KHM) developed by the Multipurpose Orchard Robotics (MOR)

project. The research scope was focused to establishing whether a prismatic axis

kinematic structure was more effective than a rotational axis kinematic structure for

the multiple-robot harvesting of kiwifruit. KPI’s (key performance indicators) were

defined as evaluation and design measures - these included fruit damage, harvesta-

bility and nominal harvest cycle time. An equation specific to the KHM was derived

for the latter which included measures of fruit per harvesting phase, time between

fruit and a proposed work distribution constant WD. A prismatic axis, linear rail

constrained, kiwifruit harvesting robot (LHR) with two robot-arms was developed,

built and tested. It was found to be exponentially beneficial to locate mass proximal

to the X axis carriage centers which is achieved with a differential-drive of the YZ

axis’. The prismatic axis kinematic structure of the LHR allowed for an 88% greater

work distribution constant WD, a 40% greater harvestable taskspace volume Vh and

2.5 times greater overall workspace efficiency when compared to the KHM. The

nominal harvest cycle time was identical for both of these systems. However, the

LHR and the developed ‘x-rank’ registery algorithm were capable of maintaining WD

value despite a two-fold increase in robot-arm density. Therefore, in non-collision

scenarios the LHR can operate with four robot-arms without compromising perfor-

mance. In this scenario where both systems have four robot-arms, the LHR had

a 44% reduction in harvest cycle time. Further study would need to be done into

manipulability measures, scheduling methods and the effects on work distribution

to establish whether a prismatic axis structure remains favourable if an orientation

structure is implemented for end-effector dexterity.
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Chapter 1

Introduction

1.1 Background

In 2025, the global precision-agriculture market is predicted to be worth in excess

of USD 10 billion, with a compound annual growth of 14.2% [7]. There are several

factors causing this growth; the principal drivers being population increase and

labour shortage. The United Nations is anticipating a global population increase to

9.8 billion people by 2050 [8], however in many developed countries the working-age

demographic is declining. Furthermore, 68% of the worlds population is projected

to be urban-based by 2050 [9]. In short, there will be more mouths to feed and

less people working to feed them [10]. Also consider environmental pressures and

economic returns; there are clear incentives for the development of technologies

capable of automating and optimizing agriculture.

Traditionally, PA (precision-agriculture) has been segmented into hard-

ware, software and services. Despite significant growth forecast in the software com-

ponent of PA, the hardware component was responsible for 72% of the USD 3.06

billion PA market in 2016. Since the industrial revolution, hardware has been used

within agriculture in the form of machinery and mechanized tools; causing a signifi-

cant rise in productivity [11]. That being said, there are limitations to the range of

work that a typical ’non-intelligent’, human-operated machine can complete. Many

agricultural tasks inherit, to some degree, complexity from the natural world and

will often require dexterity, delicacy and accuracy. Going forward, agricultural tasks

will also require autonomy. The emergent field of agricultural robotics - a subset

of PA, aims to address these task requirements with ’intelligent’ machines; taking

sensory information from the robots’ environment and processing this information

to produce informed action [12]. The premise is not new - agricultural robots were

1
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being proposed in the early 1980’s, and in 2018 the field is a still in its relative

infancy. Barriers to progression have been multidisciplinary [13], but with an ever-

growing incentive for development - advancements in supporting technologies are

becoming ever-more frequent.

The kiwifruit industry in New Zealand has been in a state of recovery

in recent years after an invasive pathogen was found present in crops throughout

the country during late 2010 [14]. In 2018, the industry is now well recovered

with annual sales revenue in excess of NZD 2 billion. All kiwifruit produced in New

Zealand are currently marketed under the Zespri label; a grower owned company who

is responsible for selling 30% of the worlds kiwifruit by volume. By amalgamating

the export of kiwifruit from New Zealand, Zespri has been able to centralize supply

chain management and assure a premium standard of exported fruit. This premium

image has been the cornerstone of the Zespri brand strategy. Zespri also allocate

up to 1.5% of its NZ profits back into an integrated innovation program where they

develop new cultivars of kiwifruit, such as their popular gold variety ’SunGold’.

Zespri’s ambitious growth goal is to increase annual sales revenue to NZD 4.5 billion

by 2025 [15]. To achieve this, Zespri are planning to dramatically increase the

production volume of their higher-value golden strains. Their plan is to licence an

additional 750 hectares of SunGold kiwifruit orchards per year over the next 5 years,

albeit maintaining their green kiwifruit production volume. It is forecast that by

2022, those additional SunGold orchards will have been responsible for doubling the

volume of SunGold fruit from 45 million trays to over 88 million trays. Zespri and the

New Zealand Kiwifruit industry will likely experience some challenges throughout

this growth period, though one of those challenges is already prevalent today - a

shortage of labor. As of May 2018, the New Zealand government has declared that

the industry is short by 1200 staff with another 14000 needed by 2030. Kiwifruit

picking and packing are seasonal, physical and repetitive jobs that New Zealanders

are not generally interested in applying for. Going forward, a strategy will likely

need to be developed for incentivizing labor to secure one of New Zealand’s most

lucrative exports.

Some forward-thinking New Zealanders have been devising an alternative

solution to the kiwifruit industry’s labour shortage. The Multipurpose Orchard

Robotics project, led by Prof Bruce Mac Donald, is a collaborative effort between

the University of Waikato, University of Auckland, Plant and Food Research and

commercial partner Robotics Plus. The project goal is to develop autonomous

robotic harvesting and pollination systems - not only for kiwifruit but also for ap-

ples (another industry short of labour in New Zealand). The project aims to expand

2
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Figure 1.1: Industrial 6 axis robots working on a production line

on work done by Massey University and Dr Alistair Scarfe, who presented a pro-

totype kiwifruit harvesting robot as part of his PhD. In the future, outcomes from

this project will likely facilitate growth within the New Zealand horticultural indus-

try, helping businesses such as Zespri to sustain their visionary growth in kiwifruit

exports.

1.2 Research objective

An industrial robot typically consists of a manipulator and an end-effector. The

manipulator and end-effector relationship is analogous to the human arm and hand;

the manipulator provides a means of moving the end-effector through space to pro-

grammable task locations and the end-effector produces a task-specific action i.e.

grabbing, cutting etc. The industry standard manipulator is the six rotational-axis

robotic arm, as shown in Fig. 1.1 using a vacuum ’pick and place’ end-effector. Six

axis’ provide six DOF’s (degrees of freedom) which accommodates positioning in any

3D orientation within the robots work-space. However, a standalone six axis robot-

arm is not necessarily optimum for every task. Without the need for any rotational

manipulation of the end-effector, a three-axis arm provides all DOF’s necessary for

3D positioning. Scarfe et al. [16] used this approach, developing a three-axis planar

articulated (RRR) arm for picking kiwifruit on the Autonomous kiwifruit harvester

(AKH). The AKH design was continued into later development through the MOR

project where an array of these arms were used to pick fruit whilst mounted to

an autonomous platform (AMMP), see figure 1.2. However, there are speculative

avenues for improvement within this configuration, such as:

3
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Figure 1.2: Kiwifruit picking robot, New Zealand

• Distribution of work between robot-arms

• The reachable space of the robot-arms in relation to the kiwifruit orchard

canopy

• The harvesting efficiency of the end-effector

• Scalability of the configuration

The objective of this research was to define important metrics for the robotic har-

vesting of kiwifruit and to propose a hardware configuration which could improve

on the current multiple RRR robot-arm system. An initial hypothesis is that a

prismatic axis robot may demonstrate improvement in multiple robot-arm cooper-

ation by utilizing a shared work space along a common X-axis. It is hoped that

the research in hardware configuration as part of this study will progress the field

of kiwifruit harvesting automation toward a commercially viable system for allievi-

ating current labour shortage. The following chapter will review relevant topics to

formulate a more definitive research goal.

4
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Chapter 2

Review

The strategy for this review is to establish a knowledge base from relevant fields of

research to guide the direction of further research and development. Inline with the

objective - robotic harvesting systems will be reviewed with a focus on hardware, ini-

tially from a generic perspective and then specific to the harvesting of kiwifruit. To

start the chapter, robot manipulation measures will be reviewed to the development.

2.1 Performance of a manipulator

The taskspace is a set of positions in space that the end-effector must reach to

complete a given task. The workspace on the other hand, is the total volume reach-

able by the end-effector as the manipulator excutes all possible motions [17]. In

applications dependent on end-effector orientation, a measure of dexterity is also

of importance within a workspace. The dexetrous workspace is a subset of total

workspace that can be approached from all orientations [18]. Manipulators are typ-

ically comprised of a regional structure and an orientation structure [19]. Whereby

the regional structure provides the spatial component of a workspace and the ori-

entation structure provides some variable orientation of the end-effector. The basic

objective for designing a manipulator should be to ensure that the taskspace is some

subset of the manipulators workspace and that the dexterity of the manipulator al-

lows for the required orientation of the end-effector at those task positions. This

section aims to extend on this by reviewing quantiative evaluation methods of single

and multi-robot systems. There have been several performance indices developed

for measuring the efficacy of serial and parallel chain manipulators [1]. Quantitative

measures such as performance indices provide an explicit, objective basis on which

to design and evaluate. These measures should not replace intuition and experience

in the design and evaluation process, but act as tools to facilitate an analytical nar-

5
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(a) Arbitrary force and manipulabil-

ity ellipsoids for an RR robot arm

(b) Manipulability ellipsoid, task dependent

directional vector (u) and velocity transmis-

sion ratio (α)

Figure 2.1: Ellipsoids for manipulator performance evaluation

ative. The scope for manipulator performance indices can be split into intrinsic and

extrinsic measures [3]. Intrinsic indices provide a measure of performance indepen-

dent of the manipulators task or application - widely adopted metrics within this

definiton include:

• Dexterity index [20]

• Condition number [21]

• Isotropy index [22]

• Manipulability index [23]

The latter, sometimes termed the Yoshikawa manipulability index (after its founder),

is considered to have an advantage over some other measures due to being easily

computable and expressed in terms of the robots joint angles. The index can be

expressed as:

µ(θ) =

√
det(JJT ) (2.1)

Where J is the Jacobian matrix for the manipulator, and JT its transpose. This

µ value essentially describes the end-effectors proximity to a singularity, providing

a scale for the isotropy of end-effector velocity given a set of joint parametres. A

singularity is where the manipulator is entirely unable to carry out motion in the

singular axis of the workspace coordinate system. A singularity will occur when the

determinant of the manipulators Jacobian matrix is equal to zero. This can be visu-

alized by considering the manipulability ellipsoid (Fig. 2.1a), whereby the volume

of the ellipsoid is equal to the manipulability index and the shape of the ellipsoid

6
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can be represented by the eigenvalues of the JJT matrix. There are also variants

on Yoshikawa manipulability, such as relative and order-independent manipulability

[22] which address some of the pecieved limitations of the manipulability measure

such as the dimensional and frame dependency of the Jacobian matrix. The scal-

ability of the manipulability measure can be addressed by normalizing the values

(Fig. 2.2), where:

µN(θ) =
µi(θ)

max(µ1, µ2, µ3, ..., µn)
(2.2)

Analogous to manipulability is the force index which provideds a basis for analyzing

Figure 2.2: Distributed, normalized manipulability index for a SCARA manipulator

[1], reproduced from Dr Tanio Tanev[2]

end-effector forces. The force transmission of an end-effector can be obtained by

mapping the joint torques through the Jacobian transpose [24]:

τ = JTf (2.3)

Thus, the force ellipsoid can be optained by considering the eigenvalues of the

(JJT )
−1

matrix; the inverse of the manipulability case. As shown in Fig. 2.1a,

the force and manipulability ellipsoids are recipricol to each other. As a global mea-

sure, the GMI (global manipulability index) can be derived as the integral over the

whole manipulator workspace:

GMI =
A

B

Where A and B are equal to [1]:

A =

∫
w

(µ) dW and B =

∫
w

dW

7
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This provides a measure of consistent manipulability, where it would be favorable for

a normalized manipulability GMI to stay above a given threshold for a given region.

The intrinsic performance indices mentioned thus far are all common in that they

are driven by the manipulator.

Extrinsic indices provide a measure of performance relative to the ma-

nipulators task or application. Chiu [25] recognized that manipulator tasks often

require exerting a determined amount of force along a specified direction in space.

A task-compatibility index was proposed, which accounts for the velocity and force

transmission ratios (α and β) of a manipulator in the directional vector required

by the task (u), shown in Fig. 2.1b. The Chiu task-compatibility index can be

expressed as:

c =
l∑

i=1

wiα
±2
i +

m∑
j=l+1

wjβ
±2
j

With α and β equal to:

α = [uT (JJT )u]−
1
2

β = [uT (JJT )−1u]−
1
2

Where m describes the number of task coordinates with l force direction vectors

and where wi, wj are weighting factors that indicate the magnitude and accuracy

requirements.

The robot-task conformance index [3], is a dimensionless extrinsic measure

which operates on the basis of four manipulability ellipsoids; the robot ellipsoid

ξr, the task ellipsoid ξr and their affiliated ξ⊆ ξ⊇ ellipsoids which represent the

largest contained and the smallest containing ellipsoid volumes respectively. This

index builds on existing work for analysing ellipsoid intersection for the purpose of

task-oriented manipulability measure [26]. Consider the volumes for these affore-

mentioned conformance ellipsoids (Fig. 2.3), the robot-task conformance index is

defined as a ratio of these volumes:

Cl =
Vt
V⊇

=
V⊆
Vr

This index has the advantage of being independent of rotational and translation

units and is well defined both within and outside the bounds of potential singularity.

However, the measure is computationally intensive, thus Cloutier et. al defined a

method for enhancing the index procedure by diagnolizing the task space. The index

becomes the following:

C
(d)
lt =

√√√√ m∏
j=1

λj

8
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A designer can use this index as an optimization criterion for an optimal interaction

with the task-space.

Figure 2.3: Superimposed robot-task

conformance ellipsoids [3]

The featured manipulator perfor-

mance indices are applicable to a single,

serial-chain robot and a single task space.

A notable amount of research has been done

on the optimization of manipulators work-

ing in parallel, sharing the same end-effector

or tool point [27][28][24][29]. The perfor-

mance indices in the parallel scenario, gen-

erally involve some derivation of the fea-

tured serial-chain indices. There are numer-

ous other performance indices and tools for

quantitvely evaluating robots, most of which

are intrinsic, but those with largest traction

have been mentioned. Generally speaking,

the literature for intrinsic indices seems sub-

stantial in comparison to extrinic indices,

this echos the design premise behind most

robots; to efficiently multi-task. Some robotics researchers have even set to differ-

entiate a 1DOF machine from a robot on the basis that it will be nonsuitable for

performing multiple tasks [30].

A relevant and simple result from this section is the manipulability of a

Cartesian (X-Y-Z prismatic) axis robot. If we consider the task-space as a Cartesian

coordinate system, then the forward kinematics of a Cartesian axis robot is simply

the reflection of the joints. This means that the jacobian matrix for a Cartesian robot

is simply equal to the identity matrix [31], and the eigenvalues for the JJT matrix

are equal to one. Therefore, it can be concluded that a Cartesian manipulator is free

of singularities within its workspace and will have a force and manipulability ellipsoid

with all dimensions equal to one. Consequently, a real-world Cartesian axis robot

with sufficient stiffness will have entirely isotropic force and velocity performance in

a Cartesian task-space, whereas a rotational axis robot will not.
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2.2 Harvesting robots

Many agricultural tasks such as harvesting, pollination, crop-maintenance etc. are

typically repetitive and specific tasks. In order to be economically competitive with

equivalent human labor, its is beneficial for an agricultural machine to complete

tasks quickly, efficiently and reliably within environmentally challenging conditions.

There are two main operational aproaches to the automated harvesting of produce;

the first is to operate blind, the second is to operate selectively. Blind operation

means that produce will be harvested via some method that does not rely on sensory

input regarding specific fruit locations. An example of a harvesting machine that

operates ’blindly’ is an orange harvester [32], which shakes the citrus tree to detatch

fruit from the stem. Blind, mechanical harvesting machines tend to be effective at

quickly detaching fruit but often promote fruit damage - thus they are not suitable

for many fruit types. Selective operation means that produce will be localized by

some sensory input, and then harvested individually. Selective harvesting machines

are generally classed as harvesting robots as they require a multi-disciplinary and

dexterous approach for harvesting damage sensitive produce. A harvesting robot

will typically consist of three main elements [33]:

1. A recognition system which identifies and locates produce

2. A picking system consisting of manipulator and detachment end-effector

3. Some movable platform which allows mobility through a growing system

A comprehensive review on 50 robotic harvesting systems found that the average

harvesting robot would locate 85% of produce, detach 75%, harvest 66% and damage

5% [34]. Another important metric is harvest cycle time - this is generally the

time taken to locate, detatch and harvest. The harvest cycle time is often one

of the critical factors that influence economic viability of a system. The average

harvest cycle time for published harvesting robot systems in 2014 was 33 seconds.

Much of the technical challenges involved with robotic harvesting are well known

[35][36][34][37], and mostly arise from task complexity in a dynamic environment.

One approach to improving harvestability and cycle times is to use an op-

timal hardware configuration. Henten et al. [38] had developed a successful cucum-

ber harvesting robot but it was acknowledged their original manipulator kinematic

structure was far from ideal. In-line with prior manipulator optimization methods

[39], they used path-length and a variant of Yoshikawa manipulability measure as

optimization criterion for the harvesting of cucumbers. Seven different, three-link,
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manipulator configurations were evaluated; all of which were intended to act on a

vertical prismatic link. It was found that the PPRR configuration returned the most

favourable results. One study proposed the design optimization and simulation of

the kinematic structure of an eggplant picking robot [40]. Optimized design parame-

tres were the lengths of two of the four links on a 4R robot; the design objective was

to cover a pre-defined workspace with the most compact mechanical structure. An-

other study [41], covered several topics essential for the design of a modular pepper

harvesting and precision spraying robot. Detail on the kinematic design for this sys-

tem was shown [42] by analyzing various high DOF (degree of freedom) work-space

combinations in relation to the task-space. Normalized manipulability measure (Sec-

tion 2.1) was used as a method for evaluating the relative performance of the robot

at different locations. Despite the contributions mentioned, the majority of robotic

harvesting systems focus their research on indentification and manipulator control

instead of optimal hardware configuration. A related approach to improving har-

vest robot performance is from the grower-systems perspective; whereby developing

a structured, less variable orchard architecture will allow for increased kinematic

and machine vision performance [43].

As of 2018, there are a number of published, robotic harvesting systems

across different crop types such as cucumber [44], sweet pepper[45], radicchio[46],

tomato[47], strawberry[48], apples[49] and many others. However, despite the exten-

sive research and development conducted thus far in the field of harvesting robotics;

manual labour is still the economically favourable method for harvesting damage-

sensitive produce. For this to change, robot harvestability percentages will need

to increase and both damage rates and harvest cycle times will need to decrease.

Unlike controlled manufacturing environments, whose processes lend themselves to

cell-based generic multi-tasking robots, competent harvesting robots require a com-

plex, task-specific approach to system development [50].

2.2.1 Multiple robot systems

Comparitive to many hands making light work of a human task; many robots provide

a productivity advantage over a single robot. A loose definition for a robot is a

mechatronic system with a manipulator and an end-effector. Going forward, and by

that definition, this report will assume that a robot physically comprised of other

robots is a multiple robot system. A multiple robot system can be differentiated

from a group of robots whereby the former is a centralized system which introduces

kinematic constraint between robots. Conversely, a group of robots may only be

11
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constrained by their environment, structure and/or process.

With respect to harvesting robots, multiple robot systems provide an ad-

vantage over single robot systems by reducing the harvesting cycle time. Harvest

cycle time can be reduced by a potential factor of N , where N is equal to the number

of robots within the multiple robot system performing a harvesting task. However,

this would assume parity of work distribution between the robots meaning 100%

cooperative efficiency. In reality, equal work distribution between robots can be

challenging to achieve, especially if there is a kinematic constraint such as all N

robots mounted on a mobile platform. Thus, it becomes important to differentiate

between single robot systems and multiple robot systems as the latter entails an

additional set of challenges, to name a few:

• Task allocation and cooperative workspace management [51]

• Kinematics and localization for multiple workspaces

• Collision prevention

Multiple robot harvesting systems have been proposed for several years as a means

to replace human labour. An economic analysis of robotic citrus fruit harvesting

in Florida (1987), found that a multiple arm harvester capable of 85% harvesting

efficiency and an average harvest cycle time of three seconds would be 50% more

expensive than equivalent manual labour [52]. It was concluded that research and

development was needed to improve harvesting efficiency, harvest cycle time and

harvester cost; ironically these are still development challenges 30 years later. Fol-

lowing on from this (1993), an orange harvesting system was developed which used

two, independent, electrically driven, telescopic robots - both mounted on a tracked

platform vehicle [53]. Both robots used cameras within the end-effectors as opposed

to mounted statically on the platform. 86% of oranges were successfully located and

the harvest cycle time was reported as approximately 7.5 seconds for each arm. The

orange harvesting sequence for the two robot arms was determined with a neural

network based on the DTSP (double travelling salesman problem) where the short-

est possible path between all oranges was obtained. It was concluded that the two

most influencial variables affecting performance were lighting conditions and wind

speed. It is not reported whether the two robot arms cooperated within a shared

workspace or whether they operated simultaneously. Whilst the exact harvestability

percentage was not given, the reported specifications achieved by this early 1990’s

system exceeds what was achieved, on average, as of 2014 [34]. With that being

said, it is understandable that the literature on multiple robot harvesting systems is
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still limited; generally speaking the challenges involved with single robot harvesting

systems still remain very topical.

A more modern multiple robot harvesting system (Fig. 2.4) has been pro-

posed for the harvesting of melons and for potential generic use. This system has

evolved over time since its original conception over 20 years prior [54]. The system

is essentially a rectangular frame that travels along a two-dimensional field at a con-

stant velocity. Cartesian manipulators are mounted on the frame, each with a melon

harvesting end-effector. The system is designed to operate dynamically, that is; the

Cartesian robot-arms pick up melons whilst they are being towed along by a tractor.

The Cartesian configuration of the manipulators allows for them to efficiently oper-

ate in the direction of tractor motion. This is due to the melon task-space geometry

mapping particularly well in Cartesian space, matching the workspace geometry.

However, because the harvesting is dynamic and the manipulators aligned in the

axis of constant motion, the work distribution between robots does not constantly

scale with number of harvesting arms [55]. Edan et al. do not present an explicit

justification for adopting the Cartesian manipulator as opposed to a SCARA or

other robot type. Interestingly, there has been an array of recent research associ-

ated with this system, some of which may be unique in the field of multiple robot

harvesting systems. Most notably; harvest order planning for multiple robot arms

[4], optimal motion planning for 2D crops [56] and performance analysis of multi-

arm cartesian robot for fruit harvesting [57]. This research also has relevance to the

field of kiwifruit harvesting as the crop types share a similar harvesting task-space

geometry.

Figure 2.4: Cartesian axis multiple robot-arm system for the harvesting of melons

[4]
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A state-of-the-art multiple robot harvesting system has been developed by

the company Agrobot [5] (Fig. 2.5). Published research on this system is not widely

available, however, it appears to be one of the first of its kind - a multiple robot

harvesting system which may soon be ready for commercial trial. Agrobot claim that

the system is fully configurable for different strawberry row widths and consists of up

to 24 robot arms. Another system which is advertised as being close to commercial

trial is the Harvest Croo strawberry harvesting robot[58]. This robot appears to use

16 robot arms to pick strawberries in a similar fashion to the Agrobot. Claims from

Harvest Croo are that the system will replace 30+ human pickers by harvesting 8

acres per day. Notably, both these systems adopt a similar Cartesian configuration

for their regional manipulation structure, with some orientation method at the end-

effector. The Harvest Croo robot uses a cartridge-style end-effector system which

decreases the downtime involved with placing processing detached fruit.

Figure 2.5: 2018 Agrobot E-series strawberry harvesting system [5]
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2.2.2 Kiwifruit harvesting robots

There have been two significant kiwifruit harvesting robots, both of which were de-

veloped in New Zealand and act as pre-cursors to this research project [6][59]. Both

systems were designed for autonomous use through pergola-style kiwifruit orchards.

The task-space for kiwifruit harvesting is dictated by the pergola orchards and is

best described as a 3D Cartesian system where X is the length of the orchard row,

Y is the width of the orchard row and Z is the height variance of kiwifruit within

the row.

Autonomous Kiwifruit Harvester (AKH)

Scarfe and his team from Massey University designed and built the AKH to address

labor shortage in the kiwifruit industry. The AKH was a multiple robot system

consisting of four articulated, planar RRR robot arms, each with a kiwifruit specific

end-effector, mounted on an autonomous platform (Fig. 2.6). The project objective

was to develop a commerically viable, autononomous kiwifruit harvester that would

be capable of operating within variable and complex orchard environments. The

four robotic harvesting arms on the AKH were specifically designed to mimic the

harvesting action of a human. Localization and detection of fruit was done with

stereopsis, image segementation and edge detection. The design brief for the system

was to harvest four kiwifruit per second - considerably faster than harvest cycle

times for other published harvesting robots at that time. The key results from the

overall system as reported by Scarfe:

• 83.6% positive fruit identification

• 0.77 seconds per fruit per arm harvested in lab

• 1.43 seconds per fruit per arm harvested in orchard with asynchronous two-arm

operation (0.72 seconds per fruit for the system)

The AKH was a significant achievement towards horticultural automation with an

independant reviewer suggesting that the system was world-leading within its field.

Scarfe claimed that the system configuration that he presented would resolve the

slow harvest rates experienced by other systems. From a hardware perspective, the

four robot arms were unable to syncronously operate in the orchard because of issues

with cooperation. Cooperative, asynchronous results were described with two-arms

- this suggests that the operating arms were those on the outsides of the machine
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whose workspaces were no subset of each other. However, a method for solving

collision was described by defining ’keep out’ geometry in the X-Y plane. Also, the

robot-arms would lose their location in space due to an increased force requirement

of the picking end-effector. The resulting torques on the motor produced step-loss

on the stepper motors. Scarfe suggested key improvements such as the additon

of high intensity lighting, revised bin filling and closed-loop manipulator feedback

would further enhance the AKH performance. The AKH served as an important

development platform for robotic automation in the kiwifruit industry.

Multipurpose Orchard Robotics - Kiwifruit Harvesting Module (KHM)

The Multipurpose Orchard Robotics project is a four-year collaborative effort to

extend upon Scarfes earlier work. An autonomous multi-purpose mobile platform

(AMMP) was developed with the intention of harbouring different robotic modules

dependent on seasonal requirements. Whilst most elements to this system such as

machine vision, end-effector, manipulator etc. were iterative improvements over the

original AKH, the design principles and layout remained similar with four RRR

robot arms (Fig.1.2, 2.7). The 2017 MOR kiwifruit harvesting module achieved the

following after a comprehensive test across three orchards:

• The system could harvest 51% of all kiwifruit

• 76.1% of fruit were localized by the machine vision system (89.6% of all reach-

able fruit)

• 24.6% of fruit were either dropped or knocked off by the end-effector

• Total average harvesting rate of 5.5 seconds per fruit (22 seconds per fruit per

arm)

The 2018 version of the system included improvements to end-effector gripping hand

and machine vision which resulted in 55.8% harvested fruit with only 8.7% knocked

or dropped across two orchards and 12000 fruit. From an operational standpoint,

the KHM harvesting process can be split into phases and sub-phases (the term

‘cycle’ was used in the paper but this has been modified to ‘phase’ to prevent am-

biguity at a later stage in this report). A harvesting phase is the process whereby

the AMMP stops, kiwifruit are detected and localized, the robot-arms attempt to

harvest all reachable fruit, then the AMMP advances to a fresh, unharvested region

of taskspace. The taskspace (orchard canopy) must remain static relative to the
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workspace during harvesting to ensure there is no deviation in coordinate systems.

It is important to define the phase-specific workspace of the KHM as the combined

workspace of all four robot-arms when the AMMP is static. A sub-phase is the

process where a robot-arm will move to a new fruit location and detatch the fruit

from the canopy. Thus, a phase will be comprised of N sub-phases where N is the

number of attempts at fruit detachment. N is not always equal to the reachable

fruit within the static workspace because some fruit will require second attempts at

harvesting, other times canopy occlusion will mean that some fruit reachable within

a workspace cannot be detected and therefore are not harvestable. Harvesting the

reachable fruit within an entire orchard would require approximately k phases where

k is the number of times the entire taskspace volume is divisible by the KHM cycle-

specific workspace when travelling in the direction of AMMP motion. However,

Fig. 2.8 shows the plan view and cross-sectional side view of one KHM robot-arm

workspace relative to the taskspace. Despite the relatively large volume and 650 mm

dimension in the phase-advance direction, the irregular toroidal workspace geometry

means that the actual phase-advance distance (or difference between static harvest

regions) is only 300 mm due to the likelihood of missing fruit at various heights.

Consequently, the short phase-advance distance means that the AMMP has to move

more often and the machine vision system must detect and localize fruit more of-

ten. The detection alone took three seconds per image for the 2017 KHM system

which was reported as a relatively large portion of the cycle time. Thus, opera-

tional down-time will increase with an increased number of phases per region of

fruit. A workspace with a constant dimension in the phase-advance direction would

be advantageous for decreasing down-time.

One important metric was the work distribution between the robotic arms

during harvesting. It was found, across 3 orchards and 39 trial zones, that the av-

erage maximum discrepency in work distribution between the most active and least

active robot-arm was 52.3%. In one of the trial orchards, the average minimum work

of the least busiest robot-arm was 0%, whis suggests the robot-arms were cooper-

atively inefficient at harvesting the reachable fruit. This can be explained by the

individual robot-arms on the KHM having a fixed, non-cooperative workspace of ap-

prox 1
4

the volume of the phase-specific workspace (Fig. 2.7c). Most pergola kiwifruit

orchards display a heterogenous distribution of fruit across the canopy. Therefore,

without cooperative workspace between robot-arms, the distribution of work be-

tween them will scale inversely with heterogeneity of fruit distribution. Scarfe has

previously proposed methods of operating the robot-arms in shared portions of their

workspaces by utlizing collision prevention and cooperative scheduling. The com-
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plexity involved with implementing these methods may not outweigh the potentially

minimal returns which are inherently governed by the robot configuration.

A noteworthy statistic is the harvest cycle time of the KHM being 15 times

slower than the cycle time of its previous iteration, the AKH, from nearly a decade

prior. It is likely that the reported harvest cycle times of the AKH were intermittent,

whereas the reported harvest cycle time of the KHM was indicative of full operation.

2.3 Summary

Firstly, it was found that a wide range of intrinsic and extrinsic performance in-

dices exist for the qualitative performance measure of a robotic manipulator. These

indices can be used in the development phase of a robot such that a near-optimal

manipulator configuration can be achieved. A frequent indice component was the

manipulator’s representative jacobian matrix and the manipulabiltiy ellipsoid which

reflects the relative motion and force capacity of a robot within its workspace. A ba-

sic and consequential conclusion was that a Cartesian (X-Y-Z prismatic axis) robot

will have entirely isotropic force and velocity performance in a Cartesian task-space,

whereas a rotational axis robot will not.

Secondly, after reviewing the current state of harvesting robotics, it was

found that there are many systems in development across a wide range of crops

with well known technical challenges. Key measures of efficacy were harvestability,

fruit damage and harvest cycle time. Some research has been done on the kinematic

optimization of harvesting robot manipulators in order to achieve better results.

However, the majority focus remains on identification and control. A comprehen-

sive review in 2014 found the average, published harvesting robot was capable of

harvesting 66% of produce with 5% fruit damage and a 33 second harvest cycle time.

One method of increasing this harvest cycle time is by employing multiple robot har-

vesting systems, which may reduce the harvest cycle time by N where N is equal

to the number of robots within the system. There are few published multiple robot

harvesting systems as the present challenges within single robot harvesting systems

remain topical. One notable example of a multiple robot harvesting system was a

melon harvester; this system employed a Cartesian axis configuration which allowed

efficient spatial cooperation between manipulators in a Cartesian task-space. Asso-

ciated research conducted with this system may prove relevant for the harvesting

of kiwifruit due to the similar taskspace geometry. The Agrobot and Harvest Croo

robots are likely the first harvesting robots to offer commercially viable specification.
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Both systems adopt a Cartesian orientation structure.

Lastly, the combined AMMP mounted KHM is likely the world-leading

kiwifruit harvesting robot in 2018. The development of this system, dating back

to the original AKH, has focussed on key areas of kiwifruit harvesting such as fruit

detachment, fruit identification and localization as well as the development of a

robot-arm manipulator. A review of this system suggests that current hardware

related limitations are; work distribution between robot-arms and phase-advance

distance. Scaling to an integrated multiple robot system for commerical operation

may benefit and/or require alteration of the kinematic structure to promote change

in these areas.

2.3.1 Research Question

The objective behind this research project was to investigate whether there was

a method of increasing the hardware performance of the KHM kiwifruit harvest-

ing robot. An initial hypothesis was that transitioning to a prismatic axis system

may increase hardware performance where the robot-arms would share a main axis

for increased cooperation. After reviewing relevant topics it was found that Carte-

sian (X-Y-Z prismatic axis) systems have been previously adopted for the regional

manipulation structure of successful multiple robot harvesting systems. However,

methods for theoretical comparison or explicit justification for adopting a certain

kinematic structure were found only on single robotic harvesting systems, not for

multiple robot harvesting systems. This arrives at the following research question:

“Is a prismatic axis kinematic structure more effective than a

rotational axis kinematic structure, for the multiple-robot harvesting of

kiwifruit?”
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(a) (b)

(c)

Figure 2.6: (a) AKH system in orchard, (b) Robot arm configuration, (c) Workspace

schematic of combined robot arms [6]
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(a) (b)

(c)

Figure 2.7: (a) Harvest module in orchard, (b) Kiwifruit picking robot arm, (c)

Cross-section of the KHM cycle-specific workspace at nominal fruit height

Figure 2.8: Centred cross-section of individual robot-arm workspace on the KHM
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Chapter 3

Methodology

The prior chapter expanded on the research objective by reviewing relevant topics,

a research question was proposed:

“Is a prismatic axis kinematic structure more effective than a

rotational axis kinematic structure, for the multiple-robot harvesting of

kiwifruit?”

The following chapter will aim to present a strategy and set measures for

evaluating the research question.

3.1 Research strategy

A two robot-arm, prismatic axis kiwifruit harvesting robot will be designed, built,

evaluated and compared to the original rotational axis system currently used on the

KHM. Two robot-arms are an important consideration; in-line with the research

question, it will become a multiple robot system whereby work distributions and

other metrics specific to multiple robot systems can be evaluated. This prismatic

axis (PPP) system will be Cartesian where each robot-arm has an X, Y and Z

axis. The X axis on each robot will be common such that the robot-arms can move

syncronously throughout a shared workspace. Each axis will be comprised of a linear

rail system for motion constraint; the robot can be abbreviated LHR (linear-axis

harvesting robot).

The preliminary stages of this process will be to create a design brief based

on known limitations of the current system and of certain KPI’s (key performance

indicators) that have been used in other harvesting robotics evaluations and those

relevant to kiwifruit harvesting. The development stage will include all mechanical,

electrical and software design of the robot in approximately that order. When ready
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for operation, the robot will be tested in the laboratory and in a kiwifruit orchard.

Test measures will include quantitative and qualitative KPI’s which will be defined

in the following section.

Limitations of this method are that the evaluation relies on physical design

which presents an array of variance and complexity. For example, will a dispropor-

tionate budget and component quality have influence on results? Are the design

methods behind one system inferior to another, irrespective of the configuration

that we want to test? In light of this, simulation could be a favorable method.

Benefits of this method are that, if done properly, a tangible evaluation can be done

on real-world systems with real world limitations such as manufacturing and physi-

cal component constraints. It is hoped that the prismatic axis kiwifruit harvesting

robot developed as part of this research will allow for a non-bias evaluation but also

act as an initial iteration for an alternative hardware approach.

The next section of this chapter will introduce evaluation and design mea-

sures based on harvesting robot KPI’s. These measures will be topical throughout

the development process. There will be a dedicated chapter for development and

will include hardware design and control strategies (Chapter 4).

3.2 Evaluation and design measures

Figure 3.1: Hardware KPI map (key performance indicators) for a multiple robot

kiwifruit harvesting system

Figure 3.1 shows a map of KPI’s that will be used for evaluating and de-
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signing the LHR. Only hardware measures have been condsidered as machine vision

aspects exist outside the scope of this project. Those inside the blue bounding box

are high-level KPI’s and directly effect the economic viability and general perfor-

mance of the harvesting robot. The lower level KPI’s are constituents of the higher

levels. The next sections will discuss why these high level KPI’s are being used and

how their constituents are relevant.

3.2.1 Harvest cycle time

Harvest cycle time was used as a measure of performance for all reviewed robotic

harvesting systems. Harvest cycle time is important as it describes the rate at which

the robot is able to work relative to manual labour. In the prior chapter, harvest

cycle time was generally defined as the time taken to locate, detach and harvest a

fruit. For the KHM, a phase was defined as the process where the AMMP moves to

new region of task-space, the fruit are localized and the fruit are then harvested. A

sub-phase is the act of the robot-arm selectively detaching and harvesting a fruit,

then moving to the next fruit. By process analysis, the average harvest cycle time

tHCT of the KHM, with units of sec′s
fruit

, across a region of kiwifruit in an orchard can

be expressed as:

tHCT =
ttotal
Nfruit

=
Nphases

Nfruit

(tmove + tlocate + tharvest) (3.1)

Where:

tharvest =
Nfruit

Nphases

tsub−phase

NarmsWD

And where tsub−phase is the sub-phase time i.e. time between fruit. And WD is a

unitless work distribution constant. Thus Eq. 3.1 becomes the following:

tHCT =
Nphases

Nfruit

(tmove + tlocate) +
tsub−phase

NarmsWD

(3.2)

Equation 3.2 states that the harvest cycle time of the KHM across a region of ki-

wifruit is equal to the constant times involved with the harvesting phase throughout

that fruit region, plus the sub-phase time when accounting for multiple arms. A

further break down of this equation can be seen in Fig. 3.2.

In the review chapter, it was found that the KHM would benefit from

hardware improvement in the following two areas: phase-advance distance and work

distribution. Measures for both of these attributes can be found in the derived

equation for KHM harvest cycle time; justifying that these are important elements

for economic performance.
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Figure 3.2: Break-down of harvest cycle time from Eq. 3.2

Work distribution

A constant WD was proposed as a method for accounting for, and evaluating a work

distribution between robotic-arms. WD is essentially introducing a component of

operational down-time to the harvest cycle time equation. This unitless, normalized

constant is equal to the average theoretical work distribution at parity over the

average work done by the busiest robot arm:

WD =
Wparity

Wbusiest

(3.3)

The constant is defined as such because the busiest robotic-arm is what delays the

system from progressing to the next phase. Maximizing WD towards the value of

one will decrease the harvest cycle time. An example - there are four robot-arms

and five kiwifruit to pick, if one robot-arm picks two fruit whereas the other three

robot-arms pick one fruit:

WD =
1.25

2
= 0.625

If there are eight fruit and all the robot-arms each pick two fruit:

WD =
2

2
= 1
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The former example also displays one of the limitations of using WD to evaluate

performance as some tasks will be indivisible into the number of robot-arms and

could unfairly sway averages. However, with an average canopy density of 40 fruit
m2

[60], the granularity of work should be consistent enough between the phase-specific

workspaces of the KHM and LHR to formulate a dependable WD average. Another

approach could be to weight the average with number of fruit per phase; however,

that approach will not be taken in this report. Another measure of work distribution

is the work discrepancy between the busiest and least busiest robot-arms. This

measure had been used to evaluate the 2017 KHM work distribution and will be

continued for comparison in this report.

Fruit per phase

The phases per fruit ratio describes the amount of KHM harvesting phases required

to harvest a region of N fruit and can be seen in Fig 3.2. Consider the average vol-

umetric density of fruit within an orchard, then the inverse - fruit per phase ratio,

can describe the harvestable volume per phase. Hence, this fruit per phase ratio

simply becomes volume per phase and is in direct relation to the phase-advance

distance issue of the KHM. Maximizing this measure will cause the harvest cycle

time to decrease by reducing the relative frequency of AMMP movement and iden-

tification/localization. The exact measure can be defined as simply; the harvestable

taskspace volume per phase and can be denoted Vh. Thus, Eq 3.2 can also be written

as:

tHCT =
tmove + tlocate

ρvVh
+
tsub−phase

NarmsWD

(3.4)

Sub-phase time

The sub-phase time is the time taken for the robot-arm to selectively detach and

harvest a fruit, then move to the next fruit. Minimizing the sub-phase time will

decrease harvest cycle time (Fig. 3.2). There are several aspects that influence

sub-phase time, some of these include:

• Motor/drive performance

• Path planning

• Distance between fruit (scheduling)

• Fruit damage and canopy disturbance
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• End-effector fruit detachment

• The jacobian matrix of the manipulator

• Stiffness of the manipulator

In terms of making a comparison between systems, it in impractical to compare

motor/drive performance as that is irrelevant to this research. Other elements on the

list will all be qualitatively discussed during this report and quantitatively measured

where possible. An initial hypothesis is that the sub-phase time of any kinematic

structure will ultimately be limited by fruit detachment and the risk of causing fruit

damage. Nevertheless, efforts will be taken throughout the development process to

reduce sub-phase time.

Scalability

All other variables remaining constant, increasing the number of robot-arms on

the KHM will decrease the harvesting cycle time. However, increasing the number

of arms is not a fair measure by itself. Of interest is how the system will scale

when increasing the number of robot-arms. For example, is the work distribution a

function of the number of robot-arms? How many robot-arms can used within a fixed

workspace? These are questions that will be qualitatively discussed, mathematical

detail into these areas exists outside the scope of this report.

3.2.2 Harvestability and Damaged fruit

Harvestability is the measure of how many fruit can be harvested out of all available

fruit, and is typically represented by a percentage. A large component of harvesta-

bility is software based, such as the ability to identify and localize the fruit. An

equally important aspect is the hardware component which dictates how many of

the fruit can be physically reached and successfully harvested by the end-effector

with the required dexterity. There are several aspects that influence the hardware

harvestability of kiwifruit, some of these include:

• Workspace and taskspace intersection

• Obstructed fruit (orchard cane, wiring)

• End-effector fruit detachment (especially amongst clustered fruit)
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• Fruit orientation and manipulator dexterity

• Hardware tolerance i.e. the accuracy in which the end-effector can be placed

in space

Harvestability on the LHR will be evaluated without the influence of machine vision

and from a qualitative perspective. The hardware tolerance will be measured as

part of a justification of the robot-arm kinematics.

The damaging of fruit directly affects the orchard owners profit margin

from lost revenue, thus a measure of damaged fruit is another essential metric which

will be considered on the LHR. In an attempt to minimize fruit damage, a novel

end-effector will be developed on the premise of minimal interaction with fruit. No

explicit trials will be done measuring fruit damage of harvested fruit (this exists

outside the scope of this report); it will be assumed that all harvested fruit are non-

damaged as a best case scenario and instead focus will be made toward the knocking

or dropping of fruit as part of the end-effector detachment process. All kiwifruit that

are knocked out of the canopy or dropped as part of end-effector detachment are

considered rejects in industry, thus they are considered damaged fruit as part of

this evaluation. The damaged fruit measures from the the LHR end-effector will be

compared to the end-effectors trialled on the KHM.

3.3 Summary

To evaluate the research question, a two robot-arm, prismatic axis kiwifruit harvest-

ing robot will be designed, built, evaluated and compared to the original rotational

axis system currently used on the KHM. Each X, Y, Z axis on the proposed har-

vesting robot will be comprised of linear rails for motion constraint; thus the robot

will be abbreviated LHR (linear-axis harvesting robot).

KPI’s (key performance indicators) for the system were defined as harvesta-

bility, non-damaged fruit and harvest cycle time. The latter being further comprised

by measures of work distribution, fruit per phase, sub-phase time and scalability.

These KPI’s will drive the design behind the LHR and also be used as qualitative

and quantitative measures of evaluation.

29





Barnett, 2018 Development

Chapter 4

Development

This chapter will outline significant findings and processes arising from the devel-

opment of a linear-axis kiwifruit harvesting robot (LHR).

4.1 Hardware design

Figure 4.1: 3D CAD model of the LHR assembly

Inline with the evaluation and design measures from the prior chapter, the

design brief for the LHR was to reduce harvest cycle time and fruit damage whilst

increasing harvestablility. All mechanical design and modelling was done in the

Solidworks 3D CAD program.
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4.1.1 Manipulator

Figure 4.2: 3D CAD model of a differential drive LHR robot-arm, without timing

belt

There were many details involved with manipulator design and not all of

them will be covered here. However, two critical design considerations were found

that factor into the wider efficacy of the system - those considerations will be covered

in this section along with the proposed design solution and some of its features.

Carriage length

The two robot-arms on the LHR share the same X axis which is constrained by a

linear rail on both sides of the machine. The X axis drive on each robot-arm is

provided by a rack and pinion also on both sides of the machine. The shared X

axis means that a large portion of the workspace for each robot-arm is shared. The

degree to which the workspaces are shared depends on the robot-arm width in the

X direction. As an example: for a shared rail length A, if the robot-arm width

x = A
4

then the workspace for each robot-arm is A − 2x = A
2

and the maximum
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cooperative workspace is A − 3x = A
4
. For maximum workspace and prospective

cooperation, the robot-arm width should be as small as possible. One of the limits to

Figure 4.3: Plan-view loading on LHR robot-arm carriages

the robot-arm width is the space needed for components i.e. end-effector, cameras,

motors etc. Another limit is the carriage length. Each side of the robot-arm has a

carriage which consists of two linear bearings that provide motion constraint along

the linear rails. Going forward, this report will assume the carriage length is the

distance between the linear bearing centers on the carriage. Figure 4.3 shows the

plan-view loading of an LHR robot-arm with the carriage length denoted x. When

accelerating along the X axis, moments are induced at each carriage. The sum

of moments around carriages A and B must equal zero
∑
MA =

∑
MB = 0, thus

reaction forces are present F1−4 between the carriage’s linear bearings and the linear

rail. However, these reaction forces produce a frictional component which can be

deterimental to the X axis motion. The total friction force on carriage A (FfA in

Fig. 4.3) includes the contribution from moment reaction forces FfAreaction
and also

the contribution from gravity FfAgravity
. The contribution from gravity is only a

function of friction coefficient and mass, however the reaction contribution is also a

function of acceleration and carriage length:

FfA = FfAgravity
(µf ,m) + FfAreaction

(a, x, µf ,m)

33



Barnett, 2018 Development

Moments around A can be summed as follows when considering the worst case for

F1 and F2 is when the YZ carriage (point load P1) is positioned at L
2
:∑

MA = 0 = (F1
x

2
+ F2

x

2
) − (

P1L

8
+
P2L

2

12
) (4.1)

Then the definition for the moment reaction friction force:

FfAreaction
= µf (F1 + F2) =

2µf

x
(
P1L

8
+
P2L

2

12
) (4.2)

When considering that the loads P1, P2 are masses (m1, m2) subject to an acceler-

ation a, Eq. 4.2 can be written:

FfAreaction
= aγ (4.3)

Where:

γ =
2µf

x
(
m1L

8
+
m2L

2

12
) (4.4)

Thus, the total friction force on carriage A can be expressed as:

FfA =
µfmg

2
+ aγ (4.5)

The drive force on carriage A, provided by the rack and pinion, is denoted FA in

Fig. 4.3. To accelerate the robot at a:

FA =
ma

2
+ FfA =

µfmg

2
+ a(

m

2
+ γ)

And for the total drive force on the robot Fdrive, where Fdrive = FA + FB:

Fdrive = µfmg + a(m+ 2γ) (4.6)

The gravity friction component µfmg will generally remain constant (although µf

can vary slightly with velocity) and can be offset by a constant force, independent

of acceleration. However, moment reaction friction force must be offset by a drive

component which increases linearly with acceleration. This model is based upon an

ideal rigid body, in reality there can be internal stresses, misalignments and robot-

arm deflections which can increase the γ factor. In the worst case, if the 2γ factor is

not accounted for and exceeds the value of the robot-arm mass, the robots motion

can bind; inhibiting X axis motion entirely. Furthermore, the components of F1−4

can exceed the Y axis loading capacity of the linear bearings if γ gets too large,

independent of µf . This can cause wear and/or bearing failure.

In summary, the LHR robot-arm γ value can be deterimental to the drive

performance by increasing friction. γ can be reduced by reducing masses m1 m2,

robot-arm length L and friction coefficient µf . Reducing the carriage length can

help to reduce the robot-arm width for increased workspace efficiency, but in doing

so the γ value will increase.
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Minimizing deflection

The end-effector is the most distal part of the LHR robot-arm, especially when the

Z axis is extended. The stiffness of the robot-arm will dictate the degree to which

the end-effector will deflect out of position during motion. This is not critical to

end-effector performance as the end-effector will only actuate once the robot-arm is

static, however, is it advantageous for the system to be non-compliant and under

minimal stress during operation. Insufficient stiffness and component strength can

also cause unwanted vibrations which can attribute toward cyclic loading and ulti-

mately failure. Non-compliance under load can also decrease accuracy and introduce

static settling times which slow the sub-phase time. To account for this during LHR

development, an expression was derived for maxmium deflection through the end-

effector load path during peak acceleration (dynamic response is outside the scope

of this report). Figure 4.4 shows a free-body diagram of the side-view loading on

the LHR robot-arm, with the end-effector location indicated by point E. Similar to

Figure 4.4: Side-view loading on vertical axis of LHR robot-arm

the X-axis motion constraint, motion in the Y axis is constrained by a pair of static

linear rails with two pairs of linear bearings on a common, dynamic carriage. Motion

in the Z axis is constrained by two static linear bearings and a dynamic linear rail.

Acceleration of the robot-arm in the X axis induces a moment about the center of
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constraint. Moments about this point must be equal to zero
∑
MC = 0, thus reac-

tion forces are present F1−2 between the static linear bearings and the linear rail.

By using the principle of superposition, the deflection at E for small deflections can

be modelled as contributions from the UDL (uniformly distributed load) P2, from

the end-effector point load P1 and from the torsional deflection about the center of

constraint:

δE = δEP1
+ δEP2

+ δEtwist
(4.7)

In Fig 4.4 the worst case deflection scenario of E is when L2 = 0 and L1 = L − x,

and when torsion acts on the centre of the Y axis LY

2
. Thus max deflection δEmax

can be expressed:

δEmax =
P1L

3
1

3EI
+
P2L

4
1

8EI
+ (L1 +

x

2
)tan(θtwist) (4.8)

Where:

θtwist =
M12LY

2JG

Equation 4.8 assumes a fixed support cantilever deflection over the span L1 by P1

and P2, it also assumes a consistent torsional constant J about the length of the

robot-arm LY . Equation 4.8 can be expanded when considering the definition of

M12 as the moment supported by the force couple F1 and F2, and that the loads P1,

P2 are masses (m1, m2) subject to an acceleration a:

δEmax = a(
m1L

3
1

3EI
+
m2L

4
1

8EI
)+(L1+

x

2
)tan[(

aLY

2JG
)(
m2

2
(L1+

x

2
)2−m2

2
(
x

2
)2+m1(L1+

x

2
))]

(4.9)

If variables such as L1, LY are considered fixed as workspace requirements, and

that m1 is fixed as a required end-effector mass. Then δEmax depends on the mass-

specific stiffness EI
m

of the Z axis element, and on the torsional rigidity JG of the Y

axis element. Reducing the M12 reaction forces by reducing mass along the Z axis

also means that lower capacity linear carriage/rails can be used - further decreasing

mass. Optimizing for these properties will reduce the deflection of the robot-arm

such that greater accelerations can be achieved for a given deflection specification.

Greater permissible accelerations will decrease the sub-phase time on the LHR.

Differential drive solution

A differential drive (Fig. 4.5) was used as a method of increasing workspace efficiency

by reducing robot-width and decreasing sub-phase time by minimizing deflection and

inertia.
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Figure 4.5: Schematic showing differential drive principle on LHR robot-arm

The differential belt drive configuration uses a single timing belt, driven by

two motors located at opposite ends of the Y axis stroke, both of which contribute

to YZ planar motion of the end-effector by changing belt proportions in each axis.

Figure 4.5 shows the working principle of motion; the free ends of the belt are fixed

on the upper Z axis element such that when a single motor rotates there is an even

extension in both the Y and Z axis causing a 45◦ motion vector. These vectors can

be represented by T1 and T2. When both motors rotate at the same speed the end-

effector’s net motion vector will be in the Y or Z axis depending on motor direction.

More complex paths are achieveable when differing the velocity and acceleration

components of each motor; hence differential drive.

The advantage of this system is that the YZ drive motors do not contribute

to the Y or Z axis inertia and can be positioned on/close to the X axis carriages.

When considering the mass of the YZ drive motors is equal to approximately 75% of

the mass of the other Y and Z axis machine elements, acceleration in those axis’ is

improved by over 40% by having the motors estranged from motion. Furthermore, if

the motors were part of the Y axis dynamic mass, they would introduce point loads

which would increase momentary reaction around the X axis carriage - increasing

the γ value. If also part of the Z axis dynamic mass, they would introduce point

loads that would increase deflection; requiring greater stiffness and torsional rigidity

which would likely require the addition of more mass. Therefore, it is exponentially

beneficial to locate mass proximal to the X axis carriage centers.

The inverse kinematics behind the LHR robot-arm can be derived from

two linear transform matrices. The first matrix in Eq. 4.10 shows the relationship
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between the three linear output axis’ of the LHR X
′
, T1, T2 and the Cartesian

taskspace axis’ X, Y , Z. 
X

′

T1

T2

 =


1 0 0

0 −1 1

0 1 1




X

Y

Z

 (4.10)

Equation 4.11 shows the relationship between the LHR drive motor rotations θX′ ,θT1 ,θT2

and the LHR linear output axis’:
θX′

θT1

θT2

 =


α 0 0

0 β 0

0 0 β




X

′

T1

T2

 (4.11)

Where α and β are conversion constants dependent on pinion and pulley geometry

respectively. The matrix in Eq. 4.12 shows the relationship between LHR drive mo-

tor rotations and Cartesian taskspace axis’ as a product of the two prior transforms.
θX′

θT1

θT2

 =


α 0 0

0 −β β

0 β β




X

Y

Z

 (4.12)

This kinematic equation was verified by in-lab testing (Fig. 4.6). The constraint

of linear motion was an important feature of the LHR. Linear bearings are gener-

ally available as plain bearings or as rolling-element bearings. Plain linear bearings,

or linear bushings, rely on sliding contact between the bearing and the rail sur-

faces and are typically made from low friction polymers. Rolling-element linear

bearings use recirculating, or non-recirculating balls or rollers between two bearing

surfaces. Plain bearings are advantageous for a field-based harvesting robot because

of their ability to withstand shock loads, vibrations and harsh environments. The

main advantage is that plain linear bearings can operate without comprise if ma-

terial/particulate enters between the bearing and the rail, a linear ball bearing can

fail catastrophically in this scenario. However, plain polymer-based linear bearings

have a typical friction coefficient of around µf = 0.2, whereas the linear ball bearing

value is approximately µf = 0.005. Therefore, linear plain bearing adoption for the

X axis carriages would increase the γ value (Eq. 4.4) and static friction values by
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Figure 4.6: Initial assembly and kinematics testing of LHR differential drive with

end-effector

a factor of 40 over a ball bearing; decreasing drive efficiency and limiting carriage

length. The resultant design decision was to opt for linear ball bearings with large

seals to help prevent debris ingress.

Recirculating linear ball bearings must retain tight tolerances with the

ground rails in which they travel along, consequently they are very rigid and require

accurate alignment - this was the main focus behind much of the design on the LHR.

The X and YZ axis carriages (Fig. 4.7) were multi-part, jig-fit assemblies made from

6061-T6 Aluminium and machined to ISO 2768-1 tolerance [61] to ensure alignment.

The sheet metal used for the Y axis body was laser-cut 304 Stainless Steel. Despite

the increase in weight over Aluminium, the added strength and rigidity increases

dimensional consistency. Despite the emphasis on mass reduction, it was deemed

more important that the assembly was non-compliant; using ball bearings instead

of plain contributed to this trade-off. To reduce weight, material was removed from

regions of the Y axis body that were sufficiently distant from the fold lines to prevent
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the relief of residual stress which could cause deflection. All connections throughout

the LHR robot-arm load path were bolted, with planar adjustment at the ends of

the Y axis body to account for any misalignment.

Drive on all axis of the LHR was provided by stepper motors. Stepper

motors were chosen as they provide cost-effective accurate positioning. One of the

downsides to using stepper motors is they can lose position during motion when

subject to opposed torque. Stepper motors can also lose position through a mismatch

of load and rotor inertia causing excessive resonance amplitudes [62]. This was

of large concern on the X axis drives as there was an interia ratio of 50:1 and

any imbalance between the opposite carriage drives could increase the likelihood of

binding. To account for this, a 4:1 gearbox was used on the X axis drives which

reduced the influence of load inertia by a factor of 42 = 16. Acetal pinion gears

were also used to introduce elasticity into the drive coupling; reducing resonance.

Furthermore, each motor had positional feedback from an encoder so that if position

loss became problematic the motion controller could account for the change.

Figure 4.7: X and YZ axis jig-fit carriage assemblies on the LHR, designed with an

emphasis on alignment
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4.1.2 End-effector

The end-effector used by Williams et al. [59] grips and rotates the fruit in a similta-

neous motion which is seen as an effective and time-efficient method of detachment.

As the end-effector is unactuated and grip force relieved, the detached kiwifruit

drops into a tube and onto a conveyor; this means that the robot-arm can continue

to the next fruit without needing to place the fruit after detachment. It was found

that the end-effector used by Williams et al. was partially responsible for the drop-

ping of approximately 16% of fruit during the detachment process. The accuracy

of the machine vision system also contributed to the amount of dropped fruit. In

light of this, a novel end-effector concept was developed for the LHR in an effort

to decrease fruit damage and increase fruit harvestability. This section will briefly

cover the end-effector development process.

Trained, human kiwifruit pickers detach the fruit from the canopy by ro-

tating it about the axis perpendicular to the stem, this creates a shear force at the

fruit-stem connection; detaching the fruit. The fruit-stem connection is much bet-

ter at withstanding axial load than shear loading, hence if the kiwifruit are pulled

straight down along the stem-axis, the weakest point along the load path is often the

stem-branch connection. Detachment at the stem-branch connection is unfavorable

as fruit will be harvested with an attached stem. Harvested stems can cause damage

to other fruit by puncturing, but also represent an extra process required to remove

stems prior to export.

To better understand the forces required for detachment, a kiwifruit de-

tachment jig was designed so that average detachment forces could be determined

in relation to rotation angle (Fig. 4.8). The axial force required for detachment was

measured for 60 kiwifruit across three different rotation angles. Table 4.1 shows that

there is a factor of 7 difference between the mean forces from the 0◦ and 90◦ rotation

Rotation angle (◦) Mean force (N) SD force (N) Stems harvested

0 37.4 6.8 25%

45 14.7 5.1 0%

90 4.5 1.5 0%

Table 4.1: Detachment force (mean and standard deviation) and percentage of stems

harvested across 60 kiwifruit at three different rotation angles
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Figure 4.8: Testing out the forces required to detach fruit from canopy at different

angles with force testing jig

trials. As expected, the stem was also detached 25% of the time when detachment

was along the stem-axis (0◦).

Important considerations when designing an optimal end-effector for fruit

harvesting are the variance in fruit size, variance in end-effector location and fruit

clustering. As an example, for a kiwifruit mean diameter Dmean, diameter variance

±δDmean, and locational variance of ±σ in the revelant plane; the end-effector design

must accomodate for a minimum diameter Dmin, where Dmin = Dmean+δDmean+σ.

If harvesting a smaller sized fruit of diameter Dsmall = Dmean − δDmean within a

tightly packed cluster, the end-effector can knock into neighbouring small fruit even

with the most slender profile due to the larger diameter that it must accomodate.

Thus, fruit size and location variance is conducive to an increased drop rate because

of end-effector protrusion into neighbouring clustered fruit. The detachment process

itself also causes clustered fruit to be knocked as the fruit is rotated. Therefore, it

can be expected that neighbouring fruit will be knocked to some degree during

the detachment process; it is beneficial for the end-effector to be as unintrusive as
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possible during this process to minimize fruit damage.

(a) Phase 1 (b) Phase 2 (c) Phase 3

Figure 4.9: Centered cross section of LHR end-effector showing three phases of

detachment with a mean average sized New Zealand kiwifruit

The LHR end-effector design consists of a plastic sheath with a slightly

conical upper edge and a beak-like shutter which acts as a ‘go/no-go’. Once the

kiwifruit is enveloped by the sheath, the beak shutter actuates closed; ensuring that

fruit cannot be dropped once inside the sheath. Once the shutter is closed, the end-

effector assembly rotates with fruit inside and the manipulator can then retract the

end-effector downwards. These three phases are illustrated in Fig. 4.9. If the fruit is

not detached by way of rotation alone, the rotation angle will mean that when pulled

downwards the shear stress at the stem-fruit connection will cause detachment. The

beak-shutter has low durometer silicone on the insides which contact fruit meaning

that fruit will not be damaged as it is detached. Potential benefits to this design:

• A rounded and unintrusive profile which may help to reduce the knocking of

neighbouring fruit from protrusion

• Does not require any physical gripping i.e. no side load on fruit
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• The beak-shutter means that once inside the sheath, the kiwifruit are encap-

sulated and cannot be inadvertently dropped by the retraction of mechanism

• Compact actuation mechanism

Potential downsides/limitations to the design:

• If the vertical (Z axis) locational accuracy is poor, the beak-shutter could close

part way up a fruit - potentially causing fruit damage

• The sheath may be prone to damage if forced against rigid obstructions in the

canopy

• The rotation phase of the fruit may not be as effective as with a gripper due

to less constraint

A push-rod mechanism was used for the beak-shutter, whereby a 10mm

diameter pneumatic micro cylinder produced a symmetric torque for each side of

the beak. A larger 16mm diameter cylinder was used for the rotation phase which

used a small stainless steel cable and spring return, it was important to ensure the

rotational force at the stem-fruit connection was sufficient to cause detachment as

per Tab. 4.1. A challenge was to ensure that the push-rod actuation cylinder could

remain static during rotation. To achieve this, a dynamic pivot was introduced in

the push-rod mechanism such that the pivot aligned with the centre of rotation

during the rotation phase. This meant there was less bulk to be rotated, further

minimizing protrusion into neighbouring fruit, furthermore, because the mechanism

pivot was locked into the centre of rotation the beak remained locked shut despite

zero torque component provided from the 10mm cylinder. However, this could also

be seen as a disadvantage if beak actuation was needed during the rotation phase.

The prototype sheaths and beaks of the LHR end-effector were 3D printed.

It is forecast that due to the complex geometry, the 3D printing costs involved with

manufacturing several hundred units may be reasonable in comparison to expensive

injection mold tooling. A different 3D print material was used for each end-effector

on the LHR with the objective of testing component performance in parallel with

the concept itself. The two materials used were SLA (stereolithography) Somos 9120

resin, and MJF (multi jet fusion) nylon. These materials were chosen because of

their strength, ductility (with high a percentage elongation before yield) and also

accurate ≤ ±0.2mm print tolerances. Figure 4.10 shows the black, MFJ nylon

version LHR end-effector being trialled in lab whilst mounted on the original KHM

robot-arm.
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To summarize, a novel end-effector was developed in an effort to reduce

fruit damage by minimizing protrusion with an uninstrusive sheath design which also

encapsulates fruit to prevent inadvertent dropping. A detachment force experiment

was done to better understand the forces required to detach kiwifruit at different

angles of rotation; this dictated the forces required of the end-effector rotation phase.

Two end-effectors were built - one for each LHR robot-arm, each end-effector was

made from a different material to test component performance in parallel with the

concept itself.

Figure 4.10: In-lab testing of LHR end-effector concept mounted on KHM robot-arm
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4.2 Control strategy

4.2.1 Architecture

From a systems perspective, the LHR is centralized around an 8 axis motion con-

troller (Galil DMC-4183), Fig. 4.11.

Figure 4.11: Simplified system architecture of the LHR robot

This motion controller has an array of features that made it an appropriate

selection:

• Supports 8 axis motion control and multi-thread execution

• Custom application programming, Python and Linux API’s

• Flash EEPROM for program and array storage

• Supports encoder feedback for position error handling

• Opto-isolated digital outputs for variable voltages and 500 mA source capacity

(able to drive solenoids)

• USB connectivity

All interfacing with the controller, such as sending commands/programs

etc. was done from a PC with an ASCII interpreted language specific to Galil
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controllers called “DMC code”. The back-end programs on the PC side were written

with Python in the Linux operating system. Python was used due to its high-level

functionality and large range of supporting modules, packages and libraries which

enabled fast and relatively seamless development. The Python wrapper “gclib.py”,

provided access to the Galil “gclib” library of C functions as a programming interface

with the controller.

4.2.2 Motion optimization and path planning

A key performance indicator of the LHR was the sub-phase time of moving from

fruit to fruit when harvesting - this section will describe efforts taken to reduce and

optimize this time from a software perspective. The point-to-point type move is the

most common type of motion profile and often in high performance linear systems

the velocity is the limiting parameter. Thus, motion will require a trapezoidal

velocity profile with three phases; an acceleration phase, a maximum velocity phase

and a deceleration phase. With other variables known, the time taken to finish a

trapezoidal move can be derived from the velocity and distance relationship:

d =

∫ t

0

v(t)dt

d =
vmaxta

2
+ vmaxtc +

vmaxtd
2

Assuming the profile is symmetric with equal acceleration and deceleration;

ttrap =
d

vmax

+
vmax

a
(4.13)

Equation 4.13 states that the total time to complete the trapezoidal move is equal

to the time taken to cover the distance at maximum velocity plus the time taken to

reach maximum velocity. However, when velocity is not a limiting factor, the opti-

mum point-to-point motion profile is a simple triangular move with an acceleration

phase and a deceleration phase. Again assuming the profile is symmetric with equal

acceleration and deceleration:

ttri = 2

√
d

a
(4.14)

Velocity and acceleration are linear motion variables applicable to the drive in Eq.

4.13 and 4.14, the goal is to optimize these variables given a set of drive character-

istics, inertia’s and axis loading’s. Stepper motors provide the linear motion on the

LHR, consequently the maximum torque available on each axis of the LHR decreases

with increasing motor speed.
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To begin the optimization process, the torque vs angular velocity data

for the X and T axis motors were approximated as third order polynomial curves

Fig. 4.12b. Subsequently, a third order force function (Fmax) with respect to linear

velocity was obtained. The values of Fmax(v) are shown in Tab. 4.2. With the

Axis Fmax(v)

X −244.5v3 + 1124v2 − 1775v + 1083

T −0.082v3 + 2.954v2 − 31.84v + 125.2

Table 4.2: Polynomial approximations of maximum force with respect to velocity

for both X and T axis

inclusion of a safety factor (SF), the forces for each X axis motor can be expressed:

Fmax(v) = SF
[m

2
a(v)x +

µfmg

2
+ a(v)xγ

]
Solving for acceleration with respect to velocity:

a(v)x =
Fmax(v)

SF (m
2

+ γ)
− µfmg

m+ 2γ
= −7.67v3 + 35.3v2 − 55.7v − 33.5 (4.15)

There will exist a point on this 3rd order linear acceleration curve which will provide

an optimum time solution for a given travel distance. Therefore, when substituting

the X-axis acceleration function into the trapezoidal time expression:

ttrap =
d

v
+

v

−7.67v3 + 35.3v2 − 55.7v − 33.5
(4.16)

And for triangular motion:

ttri = 2

√
d

−7.67v3 + 35.3v2 − 55.7v − 33.5
(4.17)

The point at which these two expressions converge is the triangular transition point

and represents the velocity at which the trapezoidal model breaks down with in-

creasing velocity due to the absence of a maximum velocity phase. Similarly, the

triangular model breaks down with decreasing velocity from this point due to the

presence of a maximum velocity phase. This point occurs when half the total dis-

tance is travelled during a single phase of motion:

d

2
=

v2

2a(v)x

Rearranging and substituting for the X-axis acceleration:

v2

−7.67v3 + 35.3v2 − 55.7v − 33.5
− d = 0 (4.18)

48



Barnett, 2018 Development

(a) LHR polynomial fitted torque vs speed data for X (HT34-487) and T (HT34-505) axis

motors

(b) LHR polynomial fitted linear accleration and power outputs

Figure 4.12: LHR drive properties

49



Barnett, 2018 Development

Where the value of velocity (v) in Eq. 4.18 is equal to the triangular tran-

sition velocity and was solved using the Newton–Raphson method [63]. Maximum

velocities reached above this triangular transition velocity are not indicative of the

drive limitations and are defined by the acceleration and time. Thus, any solution

above the triangular transition velocity will be sub-optimal. A minimal solution for

the non-linear time expression for trapezoidal motion in Eq. 4.16 was solved using

the Nelder-Mead simplex algorithm [64].

Figure 4.13: A picking scenario showing the motion path taken by the end effector

A more rigorous approach is required to optimize the T-axis drives. Figure

4.13 shows the approximate path required of the end-effector travel in the YZ plane.

Fruit must be approached and departed in exclusively Z axis motion to reduce the

chance of knocking neighbouring fruit and to ensure the detached fruit enters the

end-effector as intended. Therefore, a path between fruit will consist of three stages;

a Z axis retraction stage (Fruit A to point Ai), a multi-axis motion stage to new

fruit location (Ai to Bi) and a Z axis extension stage (Bi to fruit B). Scarfe and

Williams et al. proposed the merging of these phases into a U-move profile to

decrease time [6][59]. Stages one and three are straight-forward to solve for during

T axis optimization as both motors are contributing in even amounts with obvious

loading in the Z axis. Stage two is more difficult to solve for because each motor

will have different loadings depending on the net change in position:

∆θT1 =
[
− ∆Y β + ∆Zβ

]
∆θT2 =

[
∆Y β + ∆Zβ

]
Another stage two requirement is that, for a given net position change,

the motor with the lesser magnitude T vector has a velocity component equal to
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or less than the larger magnitude T vector. This ensures that the actual motion

trajectory produces displacement within bounds that will not cause collision with

the kiwifruit and/or hard limit stops of the machine. Therefore, a sub-optimal but

less problematic time solution is to assume a maximum loading scenario and that

the accelerations and velocity profiles for each T motor are identical and solved for

the motor with the greater magnitude T vector.

a(v)T1 = a(v)T2 [ aT1 opt, vT1 opt = aT2 opt, vT2 opt ]

With the inclusion of a safety factor, the forces for each linear T axis can be ex-

pressed:

Fmax(v) = SF
[
µfmyg +mzg + a(v)T (my +mz)

]
Solving for acceleration with respect to velocity:

a(v)T =
Fmax(v)

SF (my +mz)
− g(µfmy −mz)

(my +mz)
= −0.013v3 +0.46v2−4.91v−29.9 (4.19)

In summary, this optimization method for trapezoidal and triangular mo-

tion can be used in conjuction with fruit scheduling algorithms, such that an op-

timum time solution can be approached for a specificed distance between points.

Keeping motor characteristics constant, updates to optimum velocity and accelera-

tion values on a per distance basis can be input into a controller with a modest time

complexity.

4.2.3 Fruit scheduling

Cluster management and registery allocation

Instead of being homogeneously spaced, kiwifruit typically grow in clusters. In

some cases these clusters can be relatively dense. Clustered fruit are difficult to pick

robotically as the end-effector will tend to knock neighbouring fruit when picking

due to localization inaccuracy and end-effector protrusion (Section 4.1.2). This

can cause fruit damage and/or cause fruit to detatch from their stem and fall to the

ground. As mentioned prior (Sections 3.2), fruit damaged or dropped are considered

rejects and thus attribute a profit loss to the orchard owner. It may be unrealistic

to expect a system capable of zero interaction with neighbouring fruit, but with an

unobtrusive end-effector and correct picking order - a large portion of ’neighbour

knocking’ can be minimized. Scarfe [6] and Williams et. al [59] proposed methods

of scheduling kiwifruit on a per cluster basis, see Fig. 4.14. Albeit different in
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(a) Scarfe kiwifruit cluster scheduling (b) Williams kiwifruit cluster scheduling

Figure 4.14: Prior kiwifruit cluster scheduling methods

specifics, Scarfe and Williams methods both involve cluster-classification based on

grouping, and then schedule the fruit within those clusters such as to minimize the

chance of fruit damage. Clusters allocated to arms are then picked in a way that

minimizes the chances of arm collision. A similar but slightly different approach was

taken towards scheduling and cluster management on the LHR. Fruit locations were

added to the register of arms from a global workspace with two classifiers. The first

classifier - a cluster management rule wereby clusters were not explicitly identified,

but a fruit could not be added to a register if it was dependent on another fruit

being picked first. A fruit has dependencies if another fruit is lower and within

some pre-defined XY planar distance to avoid end-effector collision. The second

classifier - a scheduling method for prioritizing the next fruit if the first classifier is

not valid. Two types of scheduling method were developed for the LHR, ‘x rank’ and

‘greedy’. Figure 4.15 demonstrates the scheduling process on the LHR with flow-

chart showing the registry allocation process. On the LHR, the end-effector rotation

is from left-to-right and is required for stemless detachment of fruit (section 4.1.2),

but can cause damage to other clustered fruit in the rotation process. To minimize

this, it is preferable to approach fruit in the opposite direction to the rotation - this

was noted by both Scarfe and Williams.

To approach the fruit from the right, the arms on the LHR will need to

have their register initialized on the right-side of their workspace (not always the

case with ‘greedy’). However, initial fruit may have dependencies further to their

right which will cause the arms to enter into the workspace of the right-side arm.

Discrepencies in the distribution of work between arms can be minimized in this case,

if the arm registers are prioritized sequentially along the x-axis. If kept sequential,
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Figure 4.15: A high-level diagram of the LHR scheduler with registry allocation

flow-chart

arm2 could lose fruit to arm1 to its left but could take fruit from arm3 to its right

in the case of dependencies, and so forth up until the N th arm in an N arm system

(which may have some compromised parity in work as it cant take fruit from another

workspace). If the registers are non-sequential along the x-axis, some of the fruit

which could of typically been picked by arm2 has been picked by arm1 to the left

and arm3 to the right. Thus, in the interest of maintaining work parity and reducing

fruit rejects; arm workspaces should be initialized on the right-side and prioritized

sequentially along the x axis from left to right.
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Figure 4.16: A clustered-kiwifruit picking scenario handled with the proposed LHR

’x rank’ algorithm

‘x rank’

‘x rank’ is a simple scheduling method that dictates that the next fruit in the

picking register will be the closest fruit in the X-axis direction, unless the cluster

management routine intervenes. The premise behind ‘x rank’ is that the linear

axis arms will generally only ever travel in one direction during a static harvesting

cycle. The perceieved benefits to this method are that the arms can travel in the

opposite direction to the end-effector ‘snapping’ motion; reducing risk of fruit rejects.

There is a also a reduced risk of the arms colliding with each other as they are all

travelling in the same direction with an equal work distribution. The downside to

this method is that the fruit-to-fruit cycle times may be relatively large due to large

Y-axis distance between sequentially registered fruit. Figure 4.16 displays how the

algorithm works when combined with cluster management. The ’x rank’ algorithm

takes the following process:

• Start at Fruit A. Fruit A has no dependencies; fruit A added to register

• Fruit B is the next ’x-ranked’ fruit from A, however, it is dependent on fruit

E, D and C being picked first

• Fruit E is the lowest in this dependent group and has no dependencies of its

own; fruit E added to register

• Fruit D is next-lowest valid dependency of B. Fruit D is dependent on fruit E,

but fruit E is already in register, thus fruit D has no valid dependencies of its
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Dependencies

A none

B E, D, C

C E, D

D E

E none

F none

(a) Ordered dependencies

1st 2nd 3rd 4th 5th 6th

A E D C B F

(b) Ordered register

Table 4.3: Outcomes from picking scenario with ’x-rank’ as shown in Fig. 4.16

own; fruit D added to register

• Fruit C is next-lowest valid dependency of B; fruit C is dependent on D and

E thus has no valid dependencies of its own; fruit C added to register

• Fruit B has no valid dependencies; fruit B added to register

• Fruit F is the next ’x-ranked’ fruit from B and has no dependencies; fruit F

added to register

• No more fruit available for scheduling; register finished

For each allocation in an arm’s register, ‘x rank’ will start at the same initial fruit

location and loop through until a valid fruit location is found. Therefore, if a sched-

uled fruit has dependencies, all dependencies (and potentially sub-dependencies)

will be scheduled first - followed by the originally scheduled fruit. Thus, the ‘x rank’

solution is bound by dependency-tree’s which it will pick through in order, shown

in Fig. 4.16.

‘greedy’

‘greedy’ is a heuristic solution to the ‘travelling salesmen problem’. It dictates that

the next fruit in the picking register will be the closest fruit in three-dimensional

euclidean distance, unless the cluster management rule intervenes. The premise

behind ‘greedy’ is that the LHR end-effectors will follow a semi-optimal path to

decrease sub-phase time between fruit. Nearest neighbour (NN) and greedy algo-

rithms are typically capable of producing a travelling salesman solution that is, on
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Figure 4.17: A clustered-kiwifruit picking scenario handled with the proposed LHR

’greedy’ algorithm

average, within 25% of the Held-Karp lower bound[65]. Despite the potential time

gains, the direction of x-axis travel is variable and only depends on where the next

closest fruit is. As a result, there is an increased risk for both fruit rejection and

arm collison. Figure 4.17 displays how the algorithm works when combined with

cluster management. The ’greedy’ algorithm takes the following process:

• Start at Fruit A. Fruit A has no dependencies; fruit A added to register

• Fruit B is the next ’greedy’ fruit from A, however, it is dependent on fruit E,

D and C being picked first

• Fruit E is the only non-dependent fruit from fruit B’s dependency group; fruit

E added to register

• Fruit F is the next ’greedy’ fruit from E. Fruit F has no dependencies; fruit F

added to register

• Fruit C is the next ’greedy’ fruit from F. Fruit C is dependent on fruit E

and D. Fruit E is not valid as is already in register. Fruit D is next lowest

in dependent group with no valid dependencies of its own; fruit D added to

register

• Fruit C is the next ’greedy’ fruit from D. Fruit C has no valid dependencies;

fruit C added to register

• Fruit B is the next ’greedy’ fruit to be detached. Fruit B has no valid depen-

dencies; fruit B added to register

• No more fruit available for scheduling; register finished
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Dependencies

A none

B E, D, C

C E, D

D E

E none

F none

(a) Ordered dependencies

1st 2nd 3rd 4th 5th 6th

A E F D C B

(b) Ordered register

Table 4.4: Outcomes from picking scenario with ’greedy’ as shown in Fig. 4.17

Unlike ’x rank’, for each allocation in an arm’s register, ‘greedy’ will start at the

previously scheduled position in the register. Consequently, if a scheduled fruit has

dependencies, the lowest non-dependent fruit will be scheduled first - followed by

the next ‘greedy’ option from the perspective of that non-dependent fruit. Thus,

the ’greedy’ solution is not bound by any dependency-tree, seen in Fig. 4.17.
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Chapter 5

Evaluation and Discussion

Figure 5.1: LHR robot testing in kiwifruit orchard

The research aim was to establish whether a prismatic axis kinematic structure was

more effective than a rotational axis kinematic structure, for the multiple-robot har-

vesting of kiwifruit. A prismatic axis kiwifruit robot (LHR) was developed, built

and tested. LHR kiwifruit harvesting performance was evaluated over 10 phases

of static workspace; five from the Batemans orchard and five from the Newnham

orchard. Both orchards grow Hayward strain kiwifruit with a pergola style located

in Tauranga, New Zealand.
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5.1 Harvest cycle time

5.1.1 Work distribution and scalability

Orchard region

1 2 3 4 5 6 7 8 9 10

WD

LHR ‘xrank’ 1 0.98 0.93 0.88 0.94 0.93 0.97 0.94 0.84 0.97

LHR ‘greedy’ 1 0.98 0.93 0.88 0.94 0.93 0.97 1 * 0.97

KHM (A) 0.93 0.93 0.53 0.50 0.66 0.51 0.60 0.54 0.86 0.48

KHM (B) 0.65 0.63 0.88 0.67 0.79 0.60 0.54 0.62 0.93 0.53

All regions

WD

LHR ‘xrank’ 0.94

LHR ‘greedy’ 0.95

KHM (A) 0.64

KHM (B) 0.71

Table 5.1: Mean average Work distribution constant WD across 10 recorded regions

of kiwifruit orchard canopy. (* = unavoidable collision)

Work distribution was measured using the proposed Work distribution con-

stant WD defined in Eq. 3.3 as the work done by each robot-arm at parity over the

busiest robot arm. Values are shown in Tab. 5.1.

The fruit registery was recorded for each LHR robot-arm within each or-

chard region using the ‘x-rank’ algorithm. This process was then repeated in-lab

with recorded fruit positions for each orchard region using the ‘greedy’ algorithm.

The mean average WD value was 0.95 and 0.94 across all regions for ‘greedy’ and

‘x-rank’ respectively. This meant that the work done by the busiest robot arm was,

on average, within 6% of an ideal parity work distribution. Limitations to achieving

parity (WD = 1) were due to the total number of fruit not perfectly divisible by the
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number of robot arms, but of more significance was the effect of fruit dependencies

due to the cluster management software. During 8 out of 10 of the orchard regions,

WD was identical for both ‘x-rank’ and ‘greedy’. The predominant outlier is or-

chard region 9 where a cluster management dependency tree at the workspace-split

caused the ‘x-rank’ WD value to drop two standard deviations below the mean. The

‘greedy’ algorithm was unable to progress through orchard region 9 without collision

between robot-arms, this was the case despite efforts to adjust the workspace split

location.

An attempt was made to evaluate KHM work distribution on the same

orchard regions and fruit positions recorded by the LHR. A limiting factor to this

evaluation is that the workspaces of the LHR and KHM have workspace regions

which exist as no subset of the other’s workspace. To account for this, it was

assumed that the KHM robot-arms were able to pick all fruit recorded by the LHR

such that the only metric conducive to the WD value was the X axis restriction

on each RRR robot arm. Hence, the LHR recorded fruit positions were centrally

imposed on a virtual KHM workspace and each KHM robot-arm was allocated fruit

positions based on X axis value. The X axis span of LHR recorded fruit positions

entirely covered the two inner robot-arms of the KHM but only partially covered

the workspace of the two outter robot-arms. To adjust for discrepency in the X axis

span, one method used (method A) was to scale the effective work distribution of

the outter arms based on the X axis coverage. Another approach (method B) was to

scale the entire LHR workspace such that all recorded fruit positions were distributed

entirely across the KHM robot-arms. Both of the afforementioned methods are, to

different degrees, analogous to the assumption that the heterogenity of a subset of

the orchard canopy is representative of a larger region which is non-ideal.

Seperate regions

WD

LHR ‘xrank’ 0.94

KHM (C) 0.5

Table 5.2: Work distribution constant WD for KHM (method C) and LHR ‘x-rank’

across seperate regions

In section 2.2.2, it was found that the average maximum discrepancy in

work distribution between the most active and least active robot-arm was 52.3%

across 3 orchards, 39 trial regions and 698 fruit. From this same data, the mean

61



Barnett, 2018 Evaluation and Discussion

Work distribution constant across these regions (method C) was calculated as part

of this study to be WD = 0.5. Despite the use of different orchard regions to

those evaluated on by the LHR, method C is a statistically superior measure of

KHM WD value than the other methods and issues no inference regarding workspace

intersection. A weakness to this evaluation remains despite the adoption of method

C, in that there is an inherent assumption that the heterogenity of fruit is comparable

between orchard regions. It is currently unknown how many trial regions and/or

seperate orchards of testing are required to achieve a conclusive WD value.

A scenario which amplifys fruit heterogenity across a workspace is when

the orchard row width is not perfectly divisible by the workspace width so that some

fraction of the orchard row remains to be harvested. If the canopy taskspace spans

only half of the KHM workspace; two of the robot-arms will do nothing - decreasing

the WD value. The LHR was tested in-lab on a group of 20 artificially created

fruit positions which spanned full workspace, half workspace and the equivalent of

a single KHM robot-arm workspace. The LHR maintained a mean WD value of

0.94 throughout these artificial regions whilst using the ‘x-rank’ algorithm and 0.92

using ‘greedy’. This was possible as the robot-arms on the LHR have an effective

workspace which is some fraction of the overall workspace; dictated by the taskspace

intersection and requirement of work.

Of note is the result that ‘greedy’ performed slightly worse than ‘x-rank’

with the artificially generated positions despite performing slightly better on the

real orchard positions, the reason is partially due to robot-arm collision. Collision

on the LHR occurs due to the physical width of a robot-arm comprising a portion

of another robot-arm’s workspace. This happens less frequently with ‘x-rank’ as all

robot-arms are generally travelling in the same X axis direction and will consistently

finish their task at a certain side of their workspace. Whereas ‘greedy’ is free to find

a solution that can potentially back-track on itself. Figures 5.2 and 5.3 graphically

display the order of fruit within arm0 (blue line) and arm1 (red line) for ‘x-rank’ and

‘greedy’. The lower mean WD value for artificially generated positions is due to the

alteration of the workspace split location (also termed ‘x-break’); effectively moving

the ‘line in the sand’ in an effort to promote a non-colliding path. Altering the

workspace split meant that instead of a ∼50% allocation of fruit, the allocation was

slightly bias towards one of the robot-arms in order to prevent a potential collision.

This method was only partially successful and still resulted in unavoidable crash

scenarios for 9 out of the 20 artificial regions for ‘greedy’ and 2 out of 20 for ‘x-

rank’. The implementation of collision prevention software should be a priority for

any further iterations of the LHR.
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The work distribution measure WD is derived from the harvest cycle time

equation (Eq. 3.2), which intrinsically assumes that the distribution of work is on

average equivalent to the distribution of time. However, the introduction of collision

prevention would likely introduce some degree of operational downtime despite the

equal allocation of work. Scenarios prone to collision with ‘x-rank’ are when there is

an increased density of operational robotic-arms per volume. A robot-arm density

increase is present with the reduction of workspace (such as the afforementioned

partial taskspace span across the workspace) or when there is an increase in robot-

arms such an when scaling the system. Therefore, it can be inferred that LHR work

distribution is a function of the number of robot-arms for a given workspace due to

the operational downtime introduced to prevent collision.

The likelihood for collision can be reduced, and thus work distribution in-

creased, by reducing the robot-arm width relative to the robot-arm effective workspace.

The differential drive, rolling-element constrained design of the LHR robot-arm was

seen as a method of achieving this (section 4.1.1) by reducing the value of γ (Eq. 4.4)

and consequently the X axis carriage length. The resulting 2γ value on the LHR was

less than 1% of the total arm mass, suggesting that there is room to further decrease

carriage length without incurring any signicant reduction in drive efficiency. In justi-

fication of the LHR robot-arm design, for identical geometry but with plain-bearing

motion constraint and 100% additional YZ carriage dynamic mass, the resultant 2γ

value would of caused a 40% loss in X axis drive efficiency.

In summary, it was found that the LHR ‘x-rank’ mean WD value is at

minimum 88% greater than the mean WD value of the KHM and that this per-

cent disparity will increase as the workspace and taskspace intersection decrease.

The LHR could operate both robot-arms within a single KHM robot-arm’s X axis

workspace span whilst achieving a maximum work distribution of WD = 0.95. It

was deduced that work distribution is a function of the number of robot-arms due

to anti-collision downtime and that the LHR design promotes increased work distri-

bution.
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Figure 5.2: Fruit scheduling path by the ‘xrank’ algorithm for both LHR robot-arms

on orchard region 1

Figure 5.3: Fruit scheduling path by the ‘greedy’ algorithm for both LHR robot-arms

on orchard region 1
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5.1.2 Fruit per phase

KHM LHR

Total

W-space

Phase

Advance

Task

Intersect

Total

W-space

Phase

Advance

Task

Intersect

Volume

(m3)

1.12 0.42 0.3 0.44 0.44 0.42

Table 5.3: Workspace volume analysis of KHM and LHR

KHM LHR

Workspace

efficiency (%)

26.9 95.2

Worst-case per arm

efficiency (%)

16.2 95.2

Table 5.4: Workspace efficiency of KHM and LHR

Fruit per phase was deemed an important evaluation metric applicable to harvest

cycle time and was defined as the harvestable taskspace volume per phase (Vh) in

Section 3.2.1.

The orchard canopy taskspace volume was assumed to span 400mm in the

vertical Z dimension; this includes 300mm of distributed kiwifruit and 100mm for

extension and retraction of the end-effector as described in section 4.2.2. The X,Y

task space dimensions were assumed to span the orchard row width and row length

respectively.

The total workspace volume was calculated as the non-overlapping, com-

bined volume of the robot-arms on each system. The upper approximation of this

volume spanned 1.12m3 on the KHM, over 2.5 times greater than the LHR. The

phase advanced volume accounted for the phase advance distance in the Y axis di-

rection for each system. The KHM phase advance distance was limited at 300mm

due to a non-isotropic workspace geometry, this led to a phase advanced volume of

0.42m3. The LHR phase advanced distance is equal to the Y axis stroke due to an

isotropic workspace in the phase advance direction, consequently there is no change
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between the phase advance volume and the workspace volume. The harvestable

taskspace volume per phase (Vh, denoted Task Intersect in Tab. 5.3) accounts for

the portion of phase advanced workspace responsible for performing work harvesting

kiwifruit for any given phase. Vh on both systems was taken as the maximum volume

component spanning 400mm in the vertical Z dimension. The LHR has a Vh value

40% greater than the KHM despite the KHM having a 150% greater total workspace

which is reflected by the workspace efficiency in Tab. 5.4. The KHM worst-case per

arm efficiency of 16.2% is a measure of the individual inner robot-arm Vh over the

maximum individual RRR workspace of 0.402m3.
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5.1.3 Sub phase time

Orchard region

1 2 3 4 5 6 7 8 9 10

tsp(s)
‘xrank’ 1.85 1.84 1.86 1.85 1.85 1.89 1.87 1.85 1.85 1.85

‘greedy’ 1.84 1.84 1.85 1.84 1.84 1.88 1.84 1.86 * 1.85

df (mm)
‘xrank’ 67.1 63.6 78.1 54.0 63.9 78.5 78.0 61.6 68.9 60.7

‘greedy’ 54.9 53.1 50.2 39.9 53.1 61.1 54.2 61.3 * 55.7

All regions

tsp(s)
‘xrank’ 1.85

‘greedy’ 1.85

df (mm)
‘xrank’ 67.5

‘greedy’ 53.7

Table 5.5: Sub-phase time tsp and euclidean distance between sequentially registered

fruit df across 10 recorded regions of kiwifruit orchard canopy. (* = unavoidable

collision)

Sub-phase time was defined in Section 2.2.2 as the time taken between fruit

within a harvesting phase and was an important metric within the harvest cycle time

equation. On the LHR, this was inclusive of a 500ms end-effector actuation time,

stage one time taken to retract the end-effector 100mm, stage two time taken to move

to the next registered fruit location and stage three end-effector extension of 100mm.

This was measured in-lab by the motion controller across all orchard regions and

all fruit positions. A significant result from this section is that the mean sub-phase

time for ‘x-rank’ and ’greedy’ were almost identical within regions and across all

regions depite a 26% greater euclidean distance between the sequentially registered

fruit of ‘x-rank’ compared to ‘greedy’. Figure’s 5.2 and 5.3 show the plotted register

allocation between fruit for both robot-arms using ‘x-rank’ and ‘greedy’ respectively.
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Figure 5.4: Motion time optimization output for X and T axis linear motion

Figure 5.5: Comparison between optimized controller inputted acceleration vs the

measured acceleration as a filtered encoder output for a 200mm X axis move
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The optimization method proposed in Section 4.2.2 resulted in the output

shown in Fig. 5.4 for an average ‘x-rank‘ stage two move. The theoretical optimized

sub-phase time result for a mean ‘x-rank‘ move was 0.81s; more than a full second

less than the real result despite the motion controller receiving the optimized drive

variables for velocity and acceleration. Fig 5.5 shows the difference between the

optimized controller inputted acceleration and the measured encoder output for a

200mm X axis move. Detailed analysis into the sub-phase time optimization exist

outside the scope of this report but the next reasonable step would be to alter the

optimization model to include an ‘S-curve’ 3rd order component such as described

in [66] to account for non-infinite jerk. The electrodynamics of the controller and

drive may also contribute in non-trivial amounts as well as any anti-resonance com-

pensation proportional to the drive inertia.
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5.2 Harvestability and damaged fruit

Orchard region

1 2 3 4 5 6 7 8 9 10

Number of fruit 62 51 28 35 47 26 31 34 52 35

Harvested (%) 81 80 93 57 72 54 87 76 81 86

Dropped (%) 16 0 7 14 15 19 13 18 8 11

All regions

Total fruit

registered

401

Harvested (%) 77

Dropped (%) 12

Table 5.6: LHR kiwifruit harvesting performance across 10 regions

Table 5.6 shows the LHR harvesting performance across the 10 regions of

orchard taskspace. Of the fruit that were attempted, on average 80% were suc-

cessfully harvested which was 77% of all fruit registered. This slight discrepency is

due to a small number of false positive scheduled fruit and occasional failure of the

end-effector rotation. This harvested percentage is not indicative of all fruit within

the taskspace, only of fruit within the LHR workspace. An additional metric would

have been to compare the registered fruit with all fruit within the orchard canopy

for a comprehensive harvestability measure.
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Figure 5.6: LHR robot-arms harvesting kiwifruit in orchard

The LHR end-effector was developed with the premise of reducing the

kiwifruit drop rate with a non-intrusive profile. The LHR dropped and/or knocked

12% of attempted fruit, which is less than half of the drop/knock rate of the KHM

during 2017. However, the 2018 KHM’s revised end-effector and scheduling software

combined to achieve an 8.8% drop rate in 2018; 27% less than the LHR and across a

30 times greater sample size. An attempt was made to compare the drop and harvest

rates with the LHR manual localization and the KHM stereo vision localization. This

was done by mounting the LHR end-effector on one of the four KHM robot arms

whilst harvesting fruit in the orchard. Data collected for this scenario was ultimately

deemed not suitable for comparison as the LHR end-effector was operating with

different actuation characteristics. Also, the kinematic offset on the KHM with

LHR end-effector had also not been validated which would of added more time

constraint to the project. The two 3D printed materials (MJF nylon, Somos 9120

resin) used for the end-effector sheath and ‘beak’ profiles withstood the harvesting

trials without any signs of damage. The MFJ nylon was considerably cheaper and

theoretically more durable. The black MFJ withstood force against the orchard

canopy wire and cane imposed by the KHM torque limits, without any damage.

Observing video footage of LHR harvesting provided insight into the perfor-

mance. When the end-effector enveloped a kiwifruit in a region of ‘stiff’ canopy, fruit

would be successfully harvested without dropped and/or knocked fruit. This was

generally the case regardless of clustering which endorses the cluster management

classifier as part of the ‘x-rank’ algorithm and the non-intrusive design. However,
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even in the ideal case of a non-compliant orchard canopy, fruit would still move

from their original position throughout the harvesting phase due to the removal of

neighorbouring fruit. This can be seen in the results for orchard region 2 where

there were no drops across 50 fruit, but 20% of fruit were missed due to errors in

fruit location as fruit moved. The main contributing factor in dropped fruit was the

force applied to the canopy during the end-effector rotation. The LHR end-effectors

rotation phase subject the canopy to observably more force than the KHM end-

effector which was deterimental to performance. The majority of the canopy was

fairly compliant and would shake to some degree, occasionally causing neighbouring

fruit to drop. Compliant areas of canopy also amplified the effects of fruit knocking

due to fruit being out of original position. In orchard region 5, an entire cluster of

5 fruit was dropped when harvesting an individual fruit due to a non-constrained

branch connection being the weakest element across the load path produced by the

end-effector force.

Other observations include fruit orientation and sub-phase time as a func-

tion of drop rate and harvestability. Kiwifruit tend to hang vertically; perpendicular

to the ground plane. However, many fruit hang at some angle. This angle is not

explicitly accounted for in the design of the LHR or KHM as the assumption is that

the end-effector will approach the fruit from vertically beneath. This is likely re-

sponsible for some increase in drop rate or atleast some reduction in harvestability.

A method of addressing this would be to implement a multiple DOF orientation

kinematic structure such that the end-effector could approach the fruit along the

fruit’s stem axis regardless of hanging angle. Orientational degrees of freedom would

also allow for a higher harvestability in that previously occluded fruit could be ap-

proached and harvested from a feasible direction. The sub-phase time was seen as

a measure to reduce as part of the harvest cycle time, decreasing this time often

results in an increase in velocity and acceleration of the end-effector as described in

the optimization method used on the LHR. However, increasing speed is not neces-

sarily conducive to increasing the amount of picked fruit. It was instead observed

that drop rates were increased with reduced sub-phase time because of the amplified

effect of fruit knocking and force subject to canopy during acceleration with fruit.

This was observed during misc LHR testing and 2018 KHM harvesting. Accordingly,

sub-phase acceleration and velocity may then be limited independent of kinematic

structure due the potential for an increased drop rate. Further testing is needed to

quantify these observations.
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Figure 5.7: LHR towed through orchard with quadbike
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Chapter 6

Conclusions

The objective for this study was to define important metrics for the robotic harvest-

ing of kiwifruit and to propose a hardware configuration which could improve on

the KHM. The initial hypothesis was that a prismatic axis robot may demonstrate

improvement in multiple robot-arm cooperation by utilizing a shared work space

along a common X-axis. After a review of relevant topics and systems, the research

scope was focused on evaluating the following question:

Is a prismatic axis kinematic structure more effective than a ro-

tational axis kinematic structure for the multiple-robot harvesting of ki-

wifruit?

KPI’s were defined as evaluation and design measures. These included fruit

damage, harvestability and nominal harvest cycle time. An equation specific to the

KHM was derived for the latter which included measures of fruit per harvesting

phase, time between fruit and a proposed work distribution constant WD. The

prismatic axis kinematic structure of the LHR allowed for an 88% greater work

distribution constant WD, a 40% greater harvestable taskspace volume Vh and 2.5

times greater overall workspace efficiency when compared to the KHM.

The harvest cycle time was defined by Eq. 3.2 and 3.4. The average volu-

metric density of fruit within the orchard taskspace can be derived from the average

orchard having 10000 trays
hectare

and there being on average 33 fruit
tray

[67]. Thus, with a

fruit-filled taskspace volume of approximately 3000 m3

hectare
(with the assumption of

a 300mm vertical span of fruit for any given phase), the average volumetric density

of fruit is ρv = 110fruit
m3 . Williams et al. estimated the time taken to advance the

phase with the AMMP and the time taken to identify and localizate kiwifruit as 3

seconds each. It was determined in Section 3.2 that direct sub-phase time compar-

isons are unreasonable due to different drive capacities and budgets. Section 5.1.2
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alludes to a kinematically independent, sub-phase time limitation due to increased

speed having a deterimental influence on drop rate. Thus, a reasonable assumption

for a common sub-phase time would be tsub−phase = 2s. Combining these variables

the harvest cycle time is identical for the four-arm KHM and the two-arm LHR at

t = 1.18s. When considering that the LHR and ‘x-rank’ algorithm was capable of

maintaining a WD value of 0.94 when operating both robot-arms in a fraction of

workspace less than half of the LHR’s total workspace. A reasonable assumption

is that the LHR would maintain this 0.94 value with the same robot-arm density

by instead doubling the amount of robot arms instead of halving the workspace. A

four-arm LHR would achieve a harvest cycle time 80% greater than the four-arm

KHM with t = 0.66s.

The LHR end-effector was developed to be non-intrusive to reduce fruit

damage. It damaged 49% less fruit than the 2017 KHM end-effector. However, the

2018 version of the KHM damaged 26% less fruit than the LHR; this was predomi-

nantly down to the increased force subject to the canopy by the LHR. It was found

that the ‘x-rank’ and ‘greedy’ registery algorithms were nearly identical in speed

despite ‘x-rank’ having a 26% greater euclidean distance between sequentially regis-

tered fruit. The differential drive, rolling-element constrained design of the LHR was

responsible for a significant increase in drive efficiency compared to a plain-bearing

constrained design with motors not estranged from YZ motion.

There exists significant scope for improvement and further evaluation within

this area of research. A preemtive driver behind the research is the prospect for

commercialization, hence the broad-scope KPI’s used as evaluation measures in this

study. Arguably the most important KPI is fruit damage from the dropping and

knocking of fruit during harvesting. As mentioned in Section 3.2.1, the damaging of

fruit directly affects the orchard owners profit margin from lost revenue. Therefore,

a robotic system which damages more fruit than a human team of skilled pickers

would need to offset the cost of lost revenue as well as hourly rate and operational

overheads in order to be commercially competitive. In addition, an increase in dam-

aged fruit would require a greater orchard area to achieve the same export volumes.

A potentially feasible business model might be that a future KHM/LHR picks ∼60%

of all kiwifruit in an orchard but maintains a damage rate comparable to that of

human pickers.

Some of the main barriers to reducing the drop/knock rate are in the end-

effector detachment method, the localization error of machine vision, orientation

and size variance of fruit, and the fact that kiwifruit themselves move out of their
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original location. One of the limitations to this study is that the harvest cycle time

equation derived for the KHM/LHR does not factor in any additional downtimes

due to in-phase identification and localization as fruit move out of original position.

Williams et al. makes mention of this as a limiting factor. One potential solution to

address one of these barriers, mentioned in section 5.1.2, is to use some kinematic

orientation structure of the end-effector to adapt to fruit of different orientation.

This would also improve the harvestability of fruit by providing different approach

angles to previously occluded fruit. Another potential solution would be the use

of a visual-servo system [68] such as commonly used in citrus harvesting [69] to

reduce localization error and dynamically follow fruit positions without the need for

additional downtime. A visual-servo system would likely reduce the sub-phase time

but this may also be beneficial to preventing fruit damage. There is likely to a be

a trade-off in feasibility for each of these prospective solutions; further study would

need to be done to quantify this.

In summary, this study has found that a prismatic axis kinematic structure

is more effective than a rotational axis kinematic structure for the multiple-robot

harvesting of kiwifruit with fixed end-effector orientation. Robotic kiwifruit har-

vesting systems of the future may benefit from and/or require an orientation struc-

ture of the end-effector to reduce fruit damage and increase harvestability. Further

study would need to be done into comparitive manipulability measures (Section

2.1), scheduling methods and the effects on work distribution to establish whether

a prismatic axis structure remains favourable.
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6.1 Future Work

The outcome of this study likely warrants the continued development into a succes-

sive iteration of the LHR with a larger budget and a minimum of four robot-arms.

It is predicted that current studies in crop estimation may aid in the development

of a design brief for this system such as providing a more detailed understanding

of the orchard taskspace. This includes a better measure of fruit height variance,

quantifying heterogenity of fruit distribution and fruit orientation.

A successive LHR would benefit from collision prevention software and

would likely have a minimally optimized robot-arm width, servo-driven motion (as

opposed to stepper motors) and potentially an orientation structure for adding

DOF’s to the manipulation. A visual servo approach to machine vision would likely

minimize spatial error whilst allowing dexterous path planning at the cost of speed.

The current approach has been to use a multi-purpose platform to provide

autonomous motion to the KHM. It may be worth revising this approach towards

the development of an optimized kiwifruit harvesting robotic system built for that

single task.
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