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Abstract 

Polypseudorotaxanes are polymer chains threaded by molecular rings that are free to 

unthread; these ‘pearl-necklace’ can self-assemble further, leading to higher order 

supramolecular structures with interesting functionalities. In this work, the complexation 

between α-cyclodextrin (α-CD), a cyclic oligosaccharide of glucopyranose units, and 

polyethylene glycol (PEG) grafted to silica nanoparticles was studied. The threading of 

α-CD onto the polymeric chains leads to their aggregation into bundles, followed by either 

the precipitation of the inclusion complex, or the formation of a gel phase, in which silica 

nanoparticles are incorporated. 

The kinetics of threading, followed by turbidimetry, revealed a dependence of the rate of 

complexation on the following parameters: the concentration of α-CD, temperature, PEG 

length (750, 4,000 and 5,000 g·mol-1), whether the polymer is grafted or free in solution, 
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and the density of grafting. Complexation is slower, and temperature has a higher impact 

on PEG grafted on silica nanoparticles compared to PEG free in solution. 

Thermodynamic parameters extracted from the transition state theory showed that 

inclusion complex formation is favoured with grafted PEG compared to free PEG and 

establish a ratio of complexation of 5-6 EO units per cyclodextrin. The complexation 

yields, determined by gravimetry, revealed that much higher yields are obtained with 

longer chains and higher grafting density. TGA analysis and FTIR spectroscopy on the 

inclusion complex corroborate the number of macrocycles threaded on the chains. A sol-

gel transition was observed with the longer PEG chain (5k) at specific mixing ratios; 

oscillatory shear rheology measurements confirmed a highly solid-like behaviour, with 

an elastic modulus G’ of up to 25 kPa, higher than in the absence of silica. These results 

thus provide the key parameters dictating inclusion complex formation between 

cyclodextrin and PEG covalently attached to colloidal silica, and demonstrate a facile 

route towards soft nanoparticle gels based on host-guest interactions. 
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INTRODUCTION 

Cyclodextrins (CDs), cyclic oligosaccharides consisting of six or more glucopyranose 

units obtained from the enzymatic degradation of starch, 1 form inclusion complexes with 

water-soluble polymer chains through non-covalent interactions, as first reported by 

Akira Harada 2. When poly(ethylene glycol) (PEG) and α-CD aqueous solutions are 

mixed, a complex is spontaneously formed by the threading of α-CD molecules onto the 

polymer chain 3,4. The driving forces include hydrophobic and van der Waals interactions 

between the cavity of α-CD and the -CH2CH2O- units of PEG, in addition to hydrogen 

bonding between the hydroxyl groups of adjacent macrocycles threaded onto the polymer 

chain 4,5. In these pearl necklace structures, referred to as pseudopolyrotaxanes (PPR), a 

maximum of two ethylene glycol (EO) units are included within each α-CD cavity3,6. The 

kinetics of the complexation depends on temperature, solvent composition and the 

molecular weight of the polymer 7. For instance, low temperatures and highly structured 
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solvents (with a strong hydrogen bonding capacity) favour the threading process 7,8. In 

addition, the threaded α-CD rings on adjacent polymer chains aggregate due to 

hydrophobic interactions, causing an increase in solution turbidity, ultimately leading to 

precipitation 3,4,8,9. 

At appropriate compositions, these aggregates can act as physical cross-links and induce 

the formation of self-supported gels 6,7. Host-guest interactions, as a route towards 

hierarchical, functional structures, have received increasing attention in the past decade 
10,11. A myriad of versatile soft materials have been reported based on the chemical 

modification of polymers and nanoparticles with suitable macrocycles and 

complementary guest molecules, for applications in drug delivery and tissue engineering, 
12–14, some undergoing clinical trials 15. Many of these supramolecular constructs however 

require expert chemistry and involved synthetic process; there is therefore a drive for 

simpler routes, using minimal chemistry, in particular by exploiting the spontaneous 

threading of cyclodextrins on polymer chains as the basis for organising matter. This 

approach has already produced many functional biomaterials, either for injectable drug-

delivery matrices or as self-healing scaffolds for tissue engineering 4,6,11,16–19, some 

showing promising results in the clinic, for instance polyrotaxanes of hydroxypropyl-β-

cyclodextrins for the treatment of Niemann-Pick C disease 20. 

In this context, using the pearl-necklace structure as a starting point, our objective was to 

improve functionality by incorporating nanoparticles within the supramolecular 

aggregates or self-supported gels. Soft nanocomposite hydrogels, the combination of 

polymer gel matrices with nanoparticles, have generated intense research in the 

biomedical materials field 21,22. The ‘softness’ and hydrated environment characteristic of 

hydrogels, which resemble natural tissues, can be modulated by the insertion of 

nanoparticles in order to improve elasticity, biocompatibility, mechanical properties, or 

to provide specific functionality such as diagnostic (e.g. detection through spectroscopic 

properties) or therapeutic (e.g. antimicrobial properties of metallic nanoparticles). 23 

Interestingly, previous studies have shown that α-CD can form inclusion complexes with 

PEG chains that are physically adsorbed on the surface of silica nanoparticles 5,7, leading 

to either precipitates, or, at appropriate CD/polymer compositions, self-supported gels.  

The interaction between PEO chains chemically grafted onto polystyrene latex particles 

and cyclodextrins has also been studied: small-angle neutron scattering measurements 

revealed that the threading of α-CD led to an extension of the polymer chains into the 
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bulk 24. The structure of inclusion complexes formed between α-CD and a PEG brush has 

been recently examined using neutron reflectivity and grazing incidence wide-angle X-

ray scattering, examining specifically graft density and α-CD concentration 25. Even more 

recently, the formation of pseudopolyrotaxanes between α-CD and PEG was utilized to 

form hybrid gels of silver nanoparticles stabilised by a random copolymer of PEG ether 

methacrylate and polyacrylic acid; the constructs showed antimicrobial activity and were 

proposed as injectable antibacterial materials 23. The inclusion complex between α-

cyclodextrin and an oxyethylene non-ionic ligand (thiol-functionalised Igepal) has also 

been exploited to mediate the self-assembly of gold nanoparticles into hexagonal close-

packing 26,27. In another study, gold nanoparticles modified with PEG have been 

incorporated in hydrogels formed by inclusion complexes with α-cyclodextrins for the 

release of doxorubicin28. 

Silica nanoparticles have numerous potential applications in drug delivery and diagnosis 

due to their non-toxic nature and biodegradability, ease of synthesis and subsequent 

surface functionalisation with targeting ligands or “stealth” polymers, and the possibility 
29,30 of preparing mesoporous systems with high drug loading30. Previously, a 

methodology for the synthesis of thiolated organosilica nanoparticles have been 

developed by Khutoryanskiy et al, using the self-condensation of 3-

mercaptopropyltrimethoxysilane in dimethylsulfoxide in the presence of air 31,32. Due to 

the presence of thiol groups on their surface, these nanoparticles were demonstrated to be 

an excellent model of mucoadhesive nanomedicines, 31,33 and were also a very good 

substrate for further covalent surface functionalization with water-soluble polymers such 

as PEG, using thiol-maleimide click reactions 31,33–36.   

In this work, we exploit the threading of α-CD on these PEGylated organosilica 

nanoparticles (sub 100 nm), where the PEG chains are covalently grafted on the surface 

of the nanoparticles 34, and therefore cannot be displaced through complexation. The 

kinetics of the aggregation process and the complexation yields with different 

nanoparticles (NPs) are investigated and compared with those obtained for free PEG and 

end-capped PEG, using UV-Vis spectroscopy and gravimetric experiments. 

Thermodynamic parameters are extracted from the transition state theory, which is used 

to describe the complexation process; this leads to an estimation of the number of 

macrocycles threaded on the chains, which is compared to values obtained from 

thermogravimetric methods. At specific compositions, the bundling of the pearl-necklace 
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structures induces the formation of gels, where cyclodextrins act as crosslinks for the 

network. Oscillatory shear measurements reveal a remarkable solid-like behaviour, 

reminiscent of chemically cross-linked gels. These hybrid gels, to our knowledge, are the 

first report of soft nanocomposites resulting from the aggregation of pseudopolyrotaxanes 

covalently attached to silica nanoparticles. 
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MATERIALS AND METHODS 

Materials 

Organosilica nanoparticles were synthesized as reported previously 31,33–36. Briefly, 0.75 

mL (0.2 mol/L) of (3-mercaptopropyl)-trimethoxysilane (MPTS) was mixed with 20 mL 

of DMSO and 0.5 mL of 0.5 mol/L NaOH aqueous solution. The reaction was conducted 

with air bubbling and allowed to proceed for 24 h under continuous stirring at room 

temperature protected from light. Nanoparticles were then purified by dialysis against 

deionized water in the dark (5 L, 8 changes of dialysis solvent) using a 12–14 kDa 

molecular weight cut-off dialysis membrane tube (Medicell Membranes Ltd, UK) and 

were stored in the fridge for further use. 

The PEGylation step was achieved by mixing 5 mL aqueous dispersions of thiolated-

silica nanoparticles (SiThio) with 100 mg of methoxypolyethylene glycol maleimide 

(mPEGMa) of two molecular weights (750 and 5000 Da). The reaction mixture was 

stirred for 16 h at room temperature protected from light. The free thiol groups react with 

the maleimide groups, giving the final nanoparticle covalently modified with low or high 

molecular weight PEG (SiPEG750 and SiPEG5K, respectively). PEGylated 

nanoparticles were purified by dialysis in the dark as above and stored in the fridge for 

further use.  

α-cyclodextrin (≥98%) was purchased from Sigma-Aldrich or WackerChemie AG and 

used without further purification. Additional experiments were performed with different 

free PEG polymers: methoxy(polyethylene glycol) maleimide (mPEGMa5K, ≥90% 

(NMR), 5000 g/mol) and poly(ethylene glycol) methyl ether (mPEG5K, 5000 g/mol) 

were purchased from Sigma-Aldrich, and poly(ethylene glycol) (PEG4K, 4000 g/mol) 

was from Acofarma. Structures are shown in Supporting Information (Figure S1).  

The composition of the different nanoparticles (PEG approximate percentages) and the 

concentrations of the stock solutions used in our experiments are shown in Table 1 (see 

also Supporting information, Figures S2 and S3). Note that SiPEG750 and SiPEG5K#1 

have a significantly lower weight percentage of PEG covalently attached to the 

nanoparticles than SiPEG5K from batches #2 and #3; however, in number density of PEG 

chains per NP weight, the densities of these two batches are comparable to that of 

SiPEG750. 
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Table 1.Concentration of SiPEG NPs initial stock solutions, PEG composition of NPs, number 
densities, surface coverage (no. of chains and mass per surface area of NP)*, sizes, 

polydispersity indices and ζ-potential values 
 

SiPEG750  SiPEG5K SiThio 

Solution batch #1  #1 #2 #3 - 

Stock soln.a (% wt.) 1.33  1.37 1.00 1.10 - 

% PEG/NPb (% wt.) ≈15  ≈22 58 53 - 

PEG/SiThioc (mol/kg) 0.24  0.06 0.28 0.23 - 

PEG Conc. (% wt.) 0.30a  0.33a 0.58b 0.58b - 

Diameterd (nm) 48.0  60.3 - 69.0 47.0 

PDId 0.158  0.234 - 0.167 0.133 

No. of PEG chains/nm2 1.66  0.39 1.95 1.59 - 

mg PEG/m2 2.1  3.3 16.2 13.3 - 

ζ-Potential (mV) -37.4  -38.0 - -45.0 -48.4 
aDetermined by dried mass. 
bCalculated from TGA data. 
* assuming a density of 1.5 g/mL for SiThio cores 
 

cCalculated from %PEG/NP 

dDetermined by DLS. 

 

As shown in Table 1, SiThio and SiPEG750 have similar diameters whereas SiPEG5K 

nanoparticles present a larger diameter, which is consistent with the fact that these 

nanoparticles are modified with longer polymer chains. Polydispersity is low in these 

samples, although SiPEG5K#1 shows a higher value. Regarding the ζ-potential values, 

the nanoparticles present negative values between -37 mV and -49 mV, suggesting a fairly 

good colloidal stability37. 

 

Methods 

Kinetic analysis 

Kinetic experiments were carried out to study the complexation between α-CD and PEG 

by monitoring the evolution of the turbidity. For this purpose, a stock solution of α-CD 

12% w/w was prepared in H2O. Samples (total volume of 2 mL) for UV analysis were: 

6% α-CD with 0.5% SiPEG5K#2, 0.66% SiPEG750 or 0.33% w/w mPEGMa5K. In the 

UV-Vis spectrometer (Lambda 35, Perkin Elmer), a small electronic cell-stirrer was 
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placed under a quartz cuvette (set to medium-high speed, blanked with ultrapure water). 

The measurements were recorded straight after the addition of 1 mL of each solution to 

the cuvette. The UV-Vis spectrometer recorded absorbance over time using a wavelength 

of 400 nm and scan time intervals of 30 s. The inflection points of the sigmoidal curves 

were calculated with Origin 8.5.1 software by fitting the curves with a logistic function 

(Supporting information, Figure S4). Additional experiments were performed with a 

second set of samples using a UV-Vis spectrometer (Agilent 8453) equipped with 

magnetic stirring and temperature-controlled. A wavelength of 400 nm, a stirring speed 

of 1400 rpm, time interval of scans of 30 s and a fixed cell temperature between 10±0.1 

ºC and 40 ± 0.1 ºC were selected. In the case of low and high temperature experiments, 

sample solutions were thermostated separately. Stock solutions of 10% α-CD, 12% α-

CD, 0.6% PEG4K, 0.66% mPEGMa5K, 0.66% w/w mPEG5K were prepared in ultrapure 

water. 

Determination of the complexation yield 

Three sets of samples were prepared by mixing stock solutions of 1.3% SiPEG750, 1.4% 

SiPEG5K#1, 1.4% SiPEG5K#3, 0.33% mPEGMa5K, 0.33% mPEG5K with varying 

concentrations of α-CD. Microtubes were first weighed then increasing amounts of α-CD 

added to the microtubes, followed by 1.5 mL of the NP solutions to obtain the following 

target concentrations: 2%, 3%, 4%, 4.3%, 4.8%, 5.7% and 6.5% α-CD w/w (and 7.4% 

w/w for additional samples using SiPEG750). The samples were vortex-mixed for 1 min 

and placed on a floating rack in an ultrasonic bath for 10 min at a frequency of 37 kHz 

(Fisherbrand FB11203or Ultrasons-P, Selecta). The samples were left to equilibrate for 3 

days and were then centrifuged for 10 min at 13000 rpm, followed by careful removal of 

all the supernatant and then freeze-dried. All the lyophilised microtubes were weighed 

and the weight of the complex formed, Wc, was determined by the mass difference. The 

complexation yield was calculated using the following equations 5,7: 

𝑌𝑌% =  𝑊𝑊𝑐𝑐
𝑊𝑊𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆+𝑊𝑊𝛼𝛼𝛼𝛼𝛼𝛼

     (1) 

𝑌𝑌% =  𝑊𝑊𝑐𝑐
𝑊𝑊𝑃𝑃𝑃𝑃𝑃𝑃+𝑊𝑊𝛼𝛼𝛼𝛼𝛼𝛼

     (2) 

Where Wc, WSiPEG, WPEG and WαCD are the weights of the complex obtained, PEGylated 

organosilica nanoparticles, free PEG and α-CD, respectively. Equation [2] was used to 
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calculate the yields for the samples prepared with free polymers. The products obtained 

were kept for further characterization. 

Characterization of the nanoparticles and complexes 

Dynamic light scattering (DLS) measurements were carried out using a Malvern Zetasizer 

(Table 1 and Figure S3 in Supporting Information). 

Thiolated nanoparticles (SiThio), PEGylated nanoparticles, α-CD and some of the 

SiPEG/α-CD complexes were analysed by thermogravimetry at a heating rate of 10 

ºC/min under nitrogen atmosphere (Mettler TGA/SDTA 851e) between 25 and 1000 ºC, 

using platinum crucibles. 

Infrared spectra of α-CD, mPEGMa5K, SiPEG5K and SiPEG/α-CD complexes were 

recorded on a FTIR spectrometer (IRAffinity-1S,Shimadzu) using a diamond Attenuated 

Total Reflectance (ATR) sampling accessory Golden Gate (Specac). The averaged 

spectra (32 scans) were recorded between 600 cm-1 and 4000 cm-1.  

 

Preparation of the gels and rheological measurements 

Phase behaviour and gel formation was studied for SiPEG5K/α-CD mixtures. Solutions 

of SiPEG5K with concentrations ranging between 0.2% and 1.4% were mixed with α-CD 

solutions of 2% to 7.4% (w/w). First, solid α-CD was weighed in a microtube; this was 

followed by the addition of SiPEG5K solution and of ultrapure water to complete. The 

samples were vortex-mixed for 1 min and placed on a floating rack in an ultrasonic bath 

for 10 min. The samples were left to react for 7 days.  

For the rheological measurements, SiPEG5K solutions (0.5% w/w) or mPEGMa5K 

(0.3% w/w) were mixed with α-CD (added as a solid) from 2% to 12% (w/w). The 

samples were vortex-mixed until α-CD was completely dissolved, and they were left to 

stand for at least 2 days.  

Shear oscillatory rheology measurements were performed on the gels of α-CD and 

SiPEG5K or mPEGMa5K using a strain-controlled rheometer (ARES, TA Instruments) 

fitted with a plate-plate geometry (25 mm diameter). Dynamic strain sweep tests (AS) 

were performed at a fixed frequency of 6.28 rad/s to establish the linear viscoelastic 

region, followed by dynamic frequency sweep measurements (FS) (strain values varying 

between 0.02% to 0.1% carried out at 25 ºC). 

  



10 
 

RESULTS AND DISCUSSION 

Kinetics of threading and thermodynamic parameters 

The kinetics of complexation between SiPEG NPs or free PEG with α-CD was followed 

by UV-vis spectroscopy (Figure 1). The turbidity of the solution increases when the 

complex is formed and supramolecular aggregation takes place, which is detected as an 

increase in absorbance with time due to scattering, producing a sigmoid-shaped curve, as 

reported elsewhere. 8,9 The first phase of the complexation, where no increase in 

absorbance is detected, corresponds to the threading phase, according to the multi-step 

process described by Lo Nostro and co-workers, which involves: (1) the diffusion of the 

polymer and cyclodextrins; (2) the initial threading of cyclodextrins; (3) the release of 

solvating water from the polymer and the cavity of cyclodextrin; (4) the sliding of the 

cyclodextrin along the polymer backbone and the threading of additional molecules; (5) 

partial dethreading (once the CDs have complexed the polymer, this step in inhibited 

because of hydrophobic interactions and neighbouring CDs acting as stoppers; (6) the 

aggregation of the pseudopolyrotaxanes (PPRs) followed by their precipitation (which is 

detected by an increase in turbidity). 

 

Figure 1. UV-Vis absorbance readings at 400 nm over time for (a) 5% and 6% α-CD with 0.55% 

SiPEG5K#3, (b) 6% α-CD with 0.33% mPEGMa5K, 0.5% SiPEG5K#2 (0.3% PEG equivalent), 

0.66% SiPEG750 (0.15% PEG equivalent). 

The first observation is that complexation between α-CD and PEG does take place even 

when PEG is grafted onto the nanoparticles (Figure 1b). The kinetics is very clearly 

dependent on a number of parameters: the concentration of α-CD (Figure 1a), whether 

 

(b) (a) 
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mPEGMa5K (b) 

PEG is grafted or not on the silica NPs (mPEGMa5K vs SiPEG5K#2, Figure 1b), and the 

length of the grafted PEG (SiPEG750 vs SiPEG5K#2, Figure 1b). The rate of 

complexation markedly increases with the concentration of α-CD (Figure 1a): the 

maximum turbidity is reached three times faster when α-CD concentration is increased 

from 5% to 6%. On the other hand, at the highest α-CD concentration of 6%, no complex 

is detected with the shorter PEG chains grafted on silica, SiPEG750 (Figure 1b). In 

addition, a higher rate of complex formation is obtained with free chains of PEG 

(mPEGMa5K), compared to the same chains grafted on silica nanoparticles 

(SiPEG5K#2). 

The effect of temperature on the reaction rate was studied at a fixed concentration of 5% 

α-CD and four different PEG systems, all containing the same equivalent amount of PEG 

(0.3%). Figure 2 shows the kinetics of complexation with PEG either grafted on the 

nanoparticles (SiPEG5K, Figure 2a), or free PEG of three different types: with one 

methoxy end group (mPEG5K, Figure 2d), with one methoxy end and a bulky maleimide 

group (mPEGMa5K, Figure 2b) or a lower molecular weight (PEG4K, Figure 2c). For all 

the systems studied, a rise in temperature leads to a decrease in the rate of complexation. 

Following the model of reaction described by Lo Nostro 8,9, while diffusion (step 1) is 

favoured by higher temperatures, the initial threading and sliding of CD are negatively 

affected by higher temperature, because of the weakening of the interactions responsible 

for the complexation, such as hydrogen bonds. 

 

 

SiPEG5K#3 (a) 
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mPEG5K (d) 

 
Figure 2. UV-Vis absorbance monitoring the complexation process as a function of temperature 

in four PEG systems at a constant concentration of 5% α-CD: (a) 0.55% SiPEG5K#3 (equivalent 

0.3% PEG); (b) 0.33% mPEGMa5K; (c) 0.3%PEG4K; and (d) 0.33% mPEG5K. 

 

Given the sigmoid shape of the curves, the time corresponding to the inflection point 

could be used to compare the kinetics of complexation as a function of temperature 

(Figure S4). These inflection points correspond to the aggregation step, whose onset is 

located after the threading “delay” time. If the aggregation curves were identical (or very 

similar) then the inflection points would be a convenient method to compare the curves. 

The other possibility is to use the onset of the sigmoidal aggregation curves as the 

threading times (Figure 3). Both approaches give very similar results. Within the four 

systems studied, two sets of pairs can be distinguished that share a very similar behaviour: 

(i) on the one hand, SiPEG5K#3 and mPEGMa5K kinetics are similarly affected by 

temperature. When the temperature increases, the rate of complexation is strongly 

modified, and for both systems the inflection point increases, following an exponential 

trend. Complexation is faster with free PEG (mPEGMa5K) compared to grafted PEG 

(SiPEG5K#3). (ii) On the other hand, unmodified free PEG (PEG4K and mPEG5K), 

while displaying faster complexation kinetics with increasing temperature, are less 

affected by temperature within this range. Both the 5k molecular weight PEG and the 4k 

PEG show extremely similar kinetics. Harada and co-workers 2,38 determined that the 

higher the molecular weight of the polymer (above 1000 g/mol), the slower the 

complexation should be between α-CD and PEG at equivalent weight concentration. Our 

experimental results, which show very similar kinetics for both molecular weights, 

suggest that the end group of the polymers (mPEG5K with a methoxy end and PEG4K 

with two hydroxyl groups) may impact the kinetics of threading, the less polar methoxy 

PEG4K (c) 
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end favouring the threading kinetics. This is in agreement with previous studies which 

have shown that increasing the hydrophobicity of the end group speeds up the 

complexation rate 39, which has been proposed as a strategy to separate and purify linear 

polymers with different terminal groups 40. Harada et al. have also reported that a higher 

yield was obtained with methoxy-terminated PEG compared to unmodified PEG 38. 

 

 
 

Figure 3. Reaction times at “threading” for the curves obtained from the UV-vis analysis of the 

complexation between α-CD and the PEG samples studied as a function of temperature (threading 

times tth were considered when absorbances reached a value of 0.01). 

 

Figure 3 clearly shows that the kinetics of complexation with the PEGylated nanoparticles 

are much slower than with the equivalent free polymers. This may be explained both by 

the presence of only one end accessible for threading of the cyclodextrins, combined to 

the slower diffusion of the PEG-grafted silica nanoparticles. As mentioned above, 

maleimide-modified PEG of the same molecular weight (mPEGMa5K) shows similar 

kinetics to the NP-grafted PEG, suggesting that the maleimide  end group presents steric 

hindrance to the threading process of the α-CD, therefore leaving only one end accessible 

for complexation (indeed, no reports have been found on the complexation between 

maleimide  and α-CD, while complexes are formed with the larger cavity β- and γ-CD 
41). Similarly, PEG carrying bulky substituents on both ends, such as 3,5-dinitrobenzoyl 
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or 2,4-dinitrophenyl groups, have been reported to be unable to form a complex with α-

CD 42. 

To determine the thermodynamic parameters of the threading, the transition state theory 
43 can be used as a theoretical basis for the modelling 44: 

PEG + m(αCD) ⇄ σ* → polypseudorotaxane   (3) 

Where σ* is the formed activated complex (rate step). Within this framework, the 

threading time tth depends on the temperature as follows8,9: 

ln(𝑇𝑇 · 𝑡𝑡𝑡𝑡ℎ) = − ln �3𝑘𝑘𝐵𝐵
2ℎ
� − 𝑚𝑚 · ln[𝛼𝛼𝛼𝛼𝛼𝛼] + ∆𝐺𝐺𝑡𝑡ℎ

‡

𝑅𝑅𝑅𝑅
    (4) 

where m is the number of cyclodextrins threaded on each polymer chain,  tth the threading 

time (measured as the threshold when the turbidity starts to increase, marking the 

aggregation of the threaded polymers), [αCD] the concentration of cyclodextrin in mol/L, 

∆𝐺𝐺𝑡𝑡ℎ
‡  the Gibbs free energy at the threading time, T the temperature and kB, h and R, are 

the Boltzmann constant, the Planck constant and the universal gas constant. 

This model was applied to the four systems studied (Figures 2 and 3). For each system, 

the threading time was determined by assigning the aggregation onset to an absorbance 

value of 0.01 and resulting ln(T· tth) values were plotted as a function of 1/T (see Figure 

S5 in Supporting Information). The Gibbs free energy of activation for the threading 

process (∆𝐺𝐺𝑡𝑡ℎ
‡ ) and the number of cyclodextrins threaded on each PEG chain (m) were 

obtained from the slope and the intercept, respectively (Table 2). 

 

Table 2. Values for m, the number of cyclodextrins threaded per polymer chain, 

corresponding molar ratio of EO and α-CD units, and ∆𝐺𝐺𝑡𝑡ℎ
‡ , the Gibbs energy involved in the 

formation of the activated complex σ*. 

PEG system m EO/ α-CD ∆𝑮𝑮𝒕𝒕𝒕𝒕
‡ (𝐤𝐤𝐤𝐤/𝐦𝐦𝐦𝐦𝐦𝐦) 

SiPEG5K#3 23 4.9 -75.8 

mPEGMa5K 23 4.8 -77.5 

mPEG5K 18 6.3 -44.9 

PEG4K 17 5.3 -41.0 
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The values of ∆𝐺𝐺𝑡𝑡ℎ
‡ obtained are within the range reported for polymer/CD complexes 9 

and reflect a spontaneous process. These values suggest that the threading process is 

favoured when PEG is attached to the nanoparticles surface or bears a bulky end group 

rather than being free in solution, despite the slower kinetics. The number of EO units 

involved in a complex varies between 5 and 6, close to the value of 2 EO per CD for a 

fully covered chain 3,6, which may have been reached by using higher concentrations of 

CD.  

In order to check the validity of the energy values obtained, a simpler Arrhenius-like 

approach was also considered, and the activation enthalpies extrapolated to the onset of 

the aggregation process (i.e. when the turbidity is extremely low). In this approach, 

instead of selecting an arbitrary threshold value of the absorbance as the onset of 

aggregation (such as a value of 0.01), a set of absorbances vs. time values are required. 

Considering that the pseudo-first order rate constant of the overall reaction is inversely 

proportional to time, ln(1/ta) was plotted as a function of 1/T for each constant value of 

the absorbance a. From these van’t Hoff-like linear equations, the value of the activation 

enthalpy was calculated. The results corroborate those obtained following Lo Nostro’s 

model: 9 the energies at the onset of the aggregation process are ca. 72-74 kJ/mol  in the 

case of organosilica nanoparticles and bulky end modified PEG, and are much lower for 

the free PEG samples, ca. 43-45 kJ/mol (see Supporting Information, Figures S6 and S7). 

We can also use the turbidity measurements (from Figure 2) to obtain an estimate of the 

aggregation enthalpies by plotting this time ln(1/(ta - tth)) vs. 1/T thereby correcting for 

the threading step. The shift between the turbidity curves as a function of temperature 

beyond the threading point, must be related to the enthalpy of aggregation. Thus, the 

values we obtain from these new van’t Hoff plots correspond to the aggregation step (see 

Supporting Information, Figure S7).  

 

Characterization of the complexes 

Yield of complexation: effect of grafting and polymer length 

The complexes obtained after reaction between α-CD and SiPEG750, SiPEG5K#1 or 

SiPEG5K#3 were analysed and compared. The mixtures of α-CD solutions with 

SiPEG750 or SiPEG5K#1 were turbid at first, and, after three days, a separation into two 

phases was observed and white precipitates produced. In contrast, samples of SiPEG5K#3 
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with 4.5%, 5%, 6% and 7% α-CD formed gels. Figure S8 (Supporting Information) shows 

the appearance of the solid products (after removal of the supernatant) for 1.3% 

SiPEG750, 1.4% SiPEG5K#1, and 1.4% SiPEG5K#3 with increasing concentrations of 

α-CD. For SiPEG5K#3, which has a higher grafting density in weight (Table 1), a set of 

samples at a lower NP concentration (0.62%) was also tested to achieve an equivalent 

PEG concentration, as in the lower PEG-density samples (SiPEG750 and SiPEG5K#1). 

The complexation yields of a range of PEG samples, grafted and free in solution, are 

shown in Figure 4. Higher yields were obtained for the higher molecular weight grafted 

PEG, SiPEG5K#1, compared to SiPEG750 (see also Figure S9 in supporting 

information). Complexation with SiPEG5K#3, which has a higher density of PEG grafted 

on the surface (Table 1), led to even higher complexation yields at both concentrations 

tested (1.4% and 0.62%). The yield was not measurable below 3% α-CD for most samples 

(below 4% for SiPEG750): below these concentrations, the threading of macrocycles is 

insufficient to induce the aggregation and bundling of the PPRs. 

 

 

Figure 4.(a) Complexation yields of 1.3% SiPEG750, 1.4% SiPEG5K#1 and 1.4% SiPEG5K#3    

with varying concentrations of α-CD. (b) Complexation yields of 0.33% mPEG5K, 0.33% 

mPEGMa5K and 1.4% SiPEG5K#1 (equiv. 0.3% PEG) with increasing amounts of α-CD. Values 

shown are averages from two experiments. 

To assess the effect of grafting on the extent of complexation, experiments were also 

performed with free polymer in solution (Figure 4b), namely, mPEG5K and mPEGMa5K, 

the latter bearing a bulky end group not accessible to CD (potentially a similar effect to 

grafting one end onto the silica surface). The complexation yields for free mPEG5K and 
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mPEGMa5K are higher than for SiPEG5K#1 nanoparticles with the same concentration 

of PEG (eq. 0.3%). Focusing on the free PEG samples, the polymer with the maleimide 

moiety gave lower complexation yields at low concentrations of α-CD. However, when 

the concentration of cyclodextrin was increased, both PEGs reached similar yield values. 

This could indicate that at high concentrations of α-CD the free polymers are saturated 

and the presence of the bulky maleimide moiety becomes irrelevant. The lower 

complexation yields for the end-capped PEG obtained at intermediate α-CD 

concentrations should then be attributed to kinetic effects: the gel network structure is 

hindered when the CD concentration is low, and the threading process is only occurring 

through one end. The slight decrease in the yield above a threshold CD concentration 

suggests the existence of a saturation point for the PEG chains; above this threshold 

concentration, the weight of the complex remains the same, but the excess of cyclodextrin 

causes a decrease in the yield value calculated using equations (1) and (2). 

In summary, these results show that the following factors affect the yield of complexation 

negatively: (i) the grafting of PEG on nanoparticles; (ii) shorter chain length; and (iii) 

lower grafting density. The combination of higher PEG coverage and longer chains led 

to yields reaching practically 100%. (While it is not excluded that some CD molecules 

could have remained trapped in the gel without being threaded onto PEG chains, this does 

suggest a high extent of complexation.) 

Figure 5 shows a proposed scheme for the structure of the supramolecular assembly 

formed between SiPEG NPs and α-CD. The aggregation of α-CDs threaded on adjacent 

chains act as physical cross-links, producing a supramolecular network, which is in turn 

responsible for the formation of a white precipitate or a gel (which are studied in the final 

section), depending on the concentrations of both components, polymer length and 

grafting density. When the polymer chains are covalently attached to the surface of 

nanoparticles, those become embedded into the network. Longer polymer chains and 

higher grafting density favour complexation and the formation of a more extended 

network, probably due to the increased local concentration of chain ends through which 

the macrocycles can thread, and the higher connectivity of a network obtained with longer 

chains. In a previous study by Sabadini et al. 5, the PEG chains were physically adsorbed 

on the surface of silica nanoparticles, rather than chemically bonded. In that scenario also, 

higher molecular weight PEG induced higher complexation yields. 
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Figure 5. Schematic structure proposed for the supramolecular assembly of SiPEG NPs and α-

CD, where the threaded α-CDs act as physical cross-links causing the self-aggregation of the 

chains. 

 

Characterization of the complexes by thermogravimetric analysis (TGA): EO/α-CD ratio 

Figure 6 shows the TGA curve corresponding to the complex formed (i.e. the solid 

obtained after the supernatant was removed) between SiPEG5K#3 and α-CD. The curve 

presents two separate steps between 300 and 400 ºC (which correspond to minima in the 

derivative curves dm/dT at 310 ºC and 388 ºC). The first step, which is absent in the TGA 

curves of the thiolated and PEGylated silica, is attributed to the degradation of the 

cyclodextrin moieties, while the second corresponds to PEG decomposition. Upon 

complexation, the temperature of degradation of the PEG shifts from 369 ºC to 388 ºC, 

thus demonstrating a certain extent of protection from the threading of cyclodextrins on 

PEG. From the knowledge of the percentage of PEG in SiPEG5K#3 (Table 1), the amount 

of α-CD in the complex was determined (Table 3), considering that weight loss was due 

to the decomposition of the organic content (mercaptopropyl groups, PEG and α-CD) and 

that only silica (the inorganic component) remained in the crucible at 1000 ºC. 

 

 

α-cyclodextrin

grafted PEG chain
silica nanoparticle
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Figure 6. TGA (a) and DTGA (b) data for thiolated silica nanoparticles (SiThio), the PEGylated 

silica particles SiPEG5K#3 and the complex formed by 1.4% SiPEG5K#3 with 5% of α-CD. 

 

Table 3. Composition of the nanoparticles and their complexes with α-CD obtained from TGA. 
 

 Percentages (% w/w) 
Substance SiO2 R-SH PEG5K α-CD H2O 
SiThio 48 52 - - - 
SiPEG5K#3 23 24 53 - - 
SiPEG5K#3 
+5% α-CD 

6 7 15 69 3 

 
 

The compositions of PEG and α-CD from Table 3 were used to establish the EO:α-CD 

mole ratio in the complex as 5:1 (Supporting Information, section 3), in agreement with 

the value obtained from thermodynamic analysis (Table 2). These calculations were 

performed assuming that all the α-CD was part of the pseudopolyrotaxane; however, 

some unthreaded macrocycles could have been trapped in the supramolecular aggregates. 

The maximum possible ratio in these polyrotaxane structures is 2 EO units per α-CD 3,6, 

suggesting that there is still scope for more extensive threading. It is possible however 

that, with chains grafted on nanoparticles, threading close to the silica surfaces becomes 

hindered at high surface coverages due to steric hindrance. TGA experiments with other 

 

(b) 

(b) 
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PEGylated NPs (batch #1 and #3) and varying α-CD concentrations all show a similar 

behaviour (Supporting Information, Figure S10). 

 

Characterization of the complexes by FTIR spectroscopy 

The surface functionalization of nanoparticles can be efficiently monitored using infrared 

spectroscopy. The absorption from functional groups present on their surface can be 

easily identified using this technique. FTIR-ATR spectra of α-CD, mPEGMa5K, 

SiPEG5K#3 and the complex formed by SiPEG5K#3 with 5% α-CD are shown in Figure 

7 (an expansion of the fingerprint region can be found in Figure S11, Supporting 

Information). As can be seen, the spectra of mPEGMa5K and SiPEG5K#3 are very 

similar, with the exception of the additional band at 1026 cm-1 in SiPEG5K#3, which 

corresponds to the Si-OH or Si-OR stretching vibration 45. 

 

Figure 7. FTIR spectra of α-CD (b), mPEGMa5K (c), SiPEG5K#3 (d) and SiPEG5K#3 with 5% 

α-CD (a). 

 

The α-CD spectrum presents a broad band at 3273 cm-1, corresponding to the O-H 

stretching, which is shifted to higher frequency (3325 cm-1) in the complex, probably due 

to hydrogen bonding between the cyclodextrin O-H groups and the ether oxygen atoms 

in the threaded PEG 46. The bands corresponding to C-H stretching modes appear at 2904 

2862 – 2839 cm-1 

(b) 

(c) 
(d) 

(a) 
1701 cm-1 

3325 cm-1 
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cm-1 for α-CD and at lower frequency (2839-2862 cm-1) for the SiPEG5K#3 

nanoparticles. In the spectrum of the complex, both bands appear overlapped. At 1701 

cm-1, a band corresponding to C=O stretching from the maleimide moiety 47 is present in 

both the SiPEG5K#3 and mPEGMa5K spectra, so the small band in the complex at this 

same wavenumber could be associated to this stretching mode (which is absent in the α-

CD spectrum). The most intense band in SiPEG5K#3 at 1095 cm-1 corresponds to the C-

O stretching from the polymer chain 48. However, this band cannot be detected in the 

complex spectrum. In contrast, the characteristic vibration mode of α-CD at 1020 cm-1 

(C-O stretching) clearly appears in the complex spectrum. Overall, the vibration modes 

of α-CD are predominant in the complex spectrum, which agrees with the high CD/PEG 

ratio found in the TGA experiments. 

 

Phase behaviour and rheological properties of the hybrid gels 

At relatively high CD and PEG concentrations, the complexation of SiPEG5K#3 with α-

CD induces the formation of gels, as has been reported for free PEG in solution, or other 

copolymers 5–7,18,19,49. These gels are formed by the aggregation of the inclusion 

complexes into microcrystalline regions, which act as physical crosslinks for the 

networks. They are receiving increasing attention as biomaterials, mostly because of their 

injectability and self-healing properties 18,19. The gels reported here present the additional 

attractive feature of embedding silica nanoparticles within their network. Nanoparticles 

with lower grafting density (SiPEG5K#1) or lower molecular weight PEG (SiPEG750) 

did not form gels over the range of α-CD concentrations studied, showing the importance 

of both polymer length and surface coverage in producing self-supported gels.  

The samples prepared by combining different concentrations of α-CD and nanoparticles 

were visualised and classified according to their aspect (Figure 8): solutions (transparent, 

no traces of precipitate); biphasic systems (turbid at first and separating in two phases 

when left to stand); weak gels (supporting their own weight when inverted but easily 

broken when shaken); and gels. Weak gels were obtained for concentrations above 0.2% 

SiPEG5K#3 and a minimum of 4.5% α-CD, corresponding to a ratio of 4 EO for 1 CD 

(or 0.25 CD/EO molar ratio).  
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Figure 8. Phase diagram for mixtures of SiPE5K#3 nanoparticles and α-CD in aqueous 

solution: (○) solution, (+) biphasic system, (●) weak gel, (●) gel shown in two representations: 

as a function of α-CD wt.% (top left) and α-CD/EO molar ratio (top right). Bottom: Pictures 

showing the appearance of complexes of SiPEG5K#3 (0.8% w/w) with α-CD up to 7.4% w/w 

after 7 days (left); samples with 4.8% (weak gel) and 5.7% (gel) α-CD after 7 days (right). 

 

In addition, mixtures of mPEGMa5K with α-CD at a fixed PEG concentration (0.3%) 

were produced to compare the results of the end-capped PEG with those of the PEGylated 

nanoparticles. For low cyclodextrin concentrations (2-3%), neither turbidity nor 

precipitation were observed. Samples with 4 - 5% α-CD yielded two phases. Increasing 

cyclodextrin concentration further (between 6% and 10%) led to the formation of thick 

gels.  

Oscillatory rheology was performed on the supramolecular gels resulting from the 

complexation of α-CD with either grafted PEG (SiPEG5K#2) (Figure 9a), or free end-

capped PEG (mPEGMa5K) (Figure 9b), with concentrations ranging between 6% and 

12%. The elastic modulus (G’) of the nanocomposite gels (Figure 9a) is found to be highly 

independent of frequency over the range measured, reflecting a highly structured, 

predominantly solid-like material, reminiscent of chemically crosslinked gels. The 

reproducibility of the measurements was relatively poor, and improved with the amount 

of CD added. The limited reproducibility is not surprising, given the nature of these gels 
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which are formed through the diffusion-controlled threading of CDs on the chains, and 

their subsequent aggregation (akin to a phase separation process). This random process is 

thus expected to lead to quite some variability in gel structure and thus in their rheological 

properties, as previously observed in the diffusion-controlled crosslinking of gels 

obtained by an enzymatic process 50. The precise preparation protocol (e.g. order of 

mixing, concentration of stock solutions used, and stirring) was also seen to impact the 

final rheological behaviour, in agreement with different formation pathways leading to 

slightly different structures. The rheology data show a slight weakening of the gels with 

increasing amount of cyclodextrins; this suggests that, once a threshold concentration of 

cyclodextrins has been reached that provides connectivity to the network (cf phase 

diagrams, Figure 8), additional cyclodextrins do not create additional elastically active 

junctions and may even be detrimental to the rheological properties. 

 

 

Figure 9. (a) Dynamic frequency sweep measurements for 0.5% SiPEG5K#2 and SiPEG5K#3 

(0.3 % eq PEG) with increasing weight % of α-CD. The storage modulus G’ is shown by filled 

symbols and the loss modulus G’’ by empty symbols. (b) Dynamic frequency sweeps for free, 

end-capped PEG (mPEGMa5K, 0.3%) with increasing weight % of α-CD. (Data are averages 

corresponding to two or three measurements. Two set of samples were prepared with batch #2 

and one set with batch #3.) 

 

The gels obtained from the threading of free PEG (Figure 9b) reveal lower values of G’ 

than the gels obtained with silica-grafted PEG, reflecting weaker, more yielding gels. The 

incorporation of inorganic silica within the connected network thus improves the elastic 

(b) (a) (b) 
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properties of the gels by one order of magnitude (Figure S12); this reinforcement with 

nanoparticles has often been observed with nanocomposite gels 21,22. 

CONCLUSIONS 

The complexation and formation of supramolecular assemblies between α-cyclodextrin 

(α-CD) and PEGylated organosilica nanoparticles was studied. Nanoparticles with PEG 

of different molecular weights (750 and 5000 g/mol) and different grafting density were 

used, as well as three different free polymers: PEG4K, mPEG5K, and mPEGMa5K, the 

latter bearing an end modified with a maleimide moiety. 

Nanoparticles with a higher coverage of PEG and longer polymer chains (5k vs. 750) 

showed faster kinetics of complexation and higher complexation yields at equilibrium, 

indicating that both the length of the polymer and the grafting density are key parameters 

that dictate the speed of threading and the final supramolecular structures. For all the 

systems investigated, the complexation rate decreased upon increasing the temperature, 

although the free unmodified PEGs were less affected by temperature, and mPEGMa5K 

(PEG with a bulky maleimide endgroup) showed kinetics of complexation quite similar 

to the nanoparticles, as they present also one chain end through which CDs cannot enter. 

Gravimetric experiments showed that the complexation yields were lower in the presence 

of nanoparticles than with free polymer. Both thermodynamic analysis, using transition 

state theory, and thermogravimetry suggested a complexation ratio of 1 macrocycle for 

5-6 EO units, a comparable but lower coverage to the maximum of 1CD:2EO ratio 

reported by Harada3,38. 

Above a threshold concentration of α-CD and PEG, either grafted to nanoparticles or free 

in solution, self-supporting gels were formed. Nanoparticles bearing a lower grafting 

density of PEG, or with the lower molecular weight PEG, did not form gels. Oscillatory 

rheology measurements performed on the gels showed a highly viscoelastic, 

predominantly solid-like behaviour, with the elastic modulus (G’) broadly independent 

of frequency. The networks with embedded silica nanoparticles presented superior elastic 

properties compared to the equivalent free polymer gel samples, suggesting that the 

presence of the nanoparticles reinforced the gels.  

Overall, our results elucidate the key parameters that direct the kinetics of complexation 

and the final equilibrium structures for a new type of soft hybrid materials based on host-

guest interactions. In the current context of the search for novel hydrogels for biomedical 
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applications, either for delivery applications or tissue engineering, this work provides a 

facile route towards supramolecular gels comprising soft nanoparticle gels, combining 

organic and inorganic materials. 

 

Supporting Information. S1: Structures of molecules. S2: TGA data on the organosilica 

nanoparticles. S3: DLS data on the nanoparticles. S4: a. example of absorbance vs. time 

curve, b. Reaction times at the inflection points ti of the curves obtained from UV-vis 

analysis as a function of temperature (corresponding to Figure 3). S5: ln(T·tth) as a 

function of 1/T for the four systems studied. S6: van’t Hoff-like plots for mPEGMa5K 

and αCD. S7: Enthalpy plots from turbidity experiments as a function of the absorbance. 

S8: pictures showing the appearance of the complexes and gels. S9: expansion of Figure 

4. S10: TGA data on the complexes (and calculations to determine EO:CD ratios from 

the plots). S11: FTIR spectra from the complexes. S12: Values of the elastic moduli at 1 

rad/s for the gels with and without silica. Table S1: threading times from turbidity curves. 
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