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a b s t r a c t

Given a graph together with a partition of its vertex set, the minimum selective coloring
problem consists of selecting one vertex per partition set such that the chromatic number
of the subgraph induced by the selected vertices isminimum. The contribution of this paper
is twofold. First, we investigate the complexity status of the minimum selective coloring
problem in some specific graph classes motivated by some models described in Demange
et al. (2015). Second, we introduce a new problem that corresponds to the worst situation
in the minimum selective coloring; the maximum selective coloring problem aims to select
one vertex per partition set such that the chromatic number of the subgraph induced by
the selected vertices is maximum. We motivate this problem by different models and give
some first results concerning its complexity.

1. Introduction

All graphs that we will consider in this paper are undirected and without loops and multiple edges. Let G = (V , E) be
such a graph. A stable set (resp. clique) is a subset S ⊆ V of pairwise nonadjacent (resp. adjacent) vertices. An induced
path on k vertices is denoted by Pk. The graph obtained by taking k disjoint copies of G (with no edges between any two
copies) is referred to as kG. For V ′ ⊆ V , G[V ′] denotes the subgraph of G induced by V ′. A k-coloring of G is a mapping
c : V → {1, . . . , k} (c(u) is called the color of vertex u) such that c(u) ≠ c(v) for all uv ∈ E. The smallest integer k such
that G is k-colorable is called the chromatic number of G and is denoted by χ(G). Given a graph G = (V , E), the problem of
decidingwhetherG is k-colorable is called k-Colorability and the problemof computingχ(G) togetherwith aχ(G)-coloring
is calledMinimum Coloring. k-Colorability is well known to be NP-complete for any k ≥ 3 [13].

In previous works [8,9], we have motivated and investigated a new kind of coloring problem called minimum selective
coloring, denoted by Sel-Col. Given a graph G = (V , E), consider a partition V = (V1, V2, . . . , Vp) of the vertex set V of G.
The sets V1, . . . , Vp are called clusters and V is called a clustering. A selective k-coloring of G with respect to V is a mapping
c : V ′ → {1, . . . , k}, where V ′ ⊆ V with |V ′ ∩ Vi| = 1 for all i ∈ {1, . . . , p}, such that c(u) ≠ c(v) for all uv ∈ E. A selection
is a subset of vertices V ′ ⊆ V such that |V ′ ∩ Vi| = 1 for all i ∈ {1, . . . , p}. Thus, determining a selective k-coloring with
respect to V consists in finding a selection V ′ such that G[V ′] admits a k-coloring.
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Wemay define the following two problems:
Sel-Col
Input: An undirected graph G = (V , E) and a clustering V = (V1, . . . , Vp) of V .
Output: A selection V ∗ such that χ(G[V ∗]) is minimum.
Let k ≥ 1 be a fixed integer.
k-Dsel-Col
Input: An undirected graph G = (V , E) and a clustering V = (V1, . . . , Vp) of V .
Question: Does there exist a selection V ′ such that χ(G[V ′]) ≤ k? We call such a selection a k-colorable selection.
For any k ≥ 1, k-Dsel-Col is clearly in NP in general graphs and consequently we will not mention NP-membership in

the NP-completeness proofs. In [8], the complexity of the problem has been studied in some graph classes including split
graphs, threshold graphs, complete bipartite graphs, nC4’s and nP3’s. In [9] several applications have been presented that
motivate the problem in other graph classes (indicated in parenthesis in the next sentence). These applications concern
routing and wavelength assignment (edge intersection graphs of paths in different kinds of host graphs), dichotomy-based
constraint encoding (twin graphs), antenna positioning and frequency assignment ((unit) disk graphs), scheduling ((linear)
interval graphs), multiple stacks TSP (permutation graphs) and berth allocation (rectangle intersection graphs). Some of
these applications also motivate the particular case when all clusters are cliques; this case is called compact clustering. One
such application is antenna positioning and frequency assignmentwhere each set of antennas forming a cluster has pairwise
intersecting impact areas because of coverage constraints. Another application comes from timetabling problems where for
each event to be scheduled, the set of available time periods that form a cluster is around a given time because although
some flexibility is provided, the time periods cannot deviate too much from some prescribed time (see [9] for more details).
The compact clustering was already considered in [8] for mainly theoretical results, without being justified by applications.

Note that Sel-Col has previously been studied in the class of edge intersection graphs of paths under the name of partition
coloring or path coloring; the main motivation in these studies was to solve the second phase (namely the wavelength
assignment) of the Routing and Wavelength Assignment problem ([11,12,17–19], see [9] for more details on the content of
these references). To the best of our knowledge, this application, and therefore the class of edge intersection graphs of paths,
is the only one considered in the framework of selective coloring before [9]; as a consequence all graph classes considered
in the present paper are new with respect to the study of the complexity of the selective coloring problem.

In the first part of this paper (Section 2) we study the complexity study of the problem by focusing on graph classes
related to applications described in [9].

In the second part (Section 3) we introduce the opposite problem consisting in determining a selection that maximizes
the chromatic number of the corresponding induced subgraph. This corresponds to the worst possible solution when
considering Sel-Col. We call this new problem maximum selective coloring problem, and denote it by Sel-Col+. It can be
formally defined as follows:

Sel-Col+
Input: An undirected graph G = (V , E); a clustering V = (V1, . . . , Vp) of V .
Output: A selection V ∗ such that χ(G[V ∗]) is maximum.
In the applications described in [9], the selection process was completely controlled by the user trying to minimize some

scarce resource. In contrast, if one has no full control over the selection process, the selection does not necessarily minimize
the use of this resource. In such a case, it becomes important to measure how bad a selection can be with respect to the use
of the resources.When facing such situations, it becomes important to evaluate the impact of theworst possible selection on
the resources. This motivates Sel-Col+. After introducing this new problem, we start investigating its complexity in some
particular cases.

Let us summarize the complexity results on Sel-Col and Sel-Col+ in Table 1 where results with no bibliographic
reference are the ones obtained in this paper and a question mark means that the complexity of the problem in the related
graph class is not known.

2. Complexity of minimum selective coloring

In this section, we investigate the complexity of Sel-Col in several graph classes each motivated by an application in [9].
We provide both NP-hardness and polynomial time solvability results.

2.1. Twin graphs

Let S = {s1, . . . , sn} be a set of n states. An encoding of length k is a mapping from S into {0, 1}k. A dichotomy in S is an
unordered pair {P,Q } of disjoint subsets of S, with P∪Q ≠ ∅. An encoding of S satisfies a dichotomy {P,Q } if there is at least
one component that takes value 0 for all states in P and value 1 for all states in Q , or vice versa. Let C = {D1, . . . ,Dp} be a
set of dichotomies in S with Di = {Pi,Qi}, i = 1, . . . , p, the Constrained Encoding problem consists in finding an encoding
of S of minimum length which satisfies all the dichotomies in C .

With an instance (S, C) of the Constrained Encoding problem, we associate a graph G and a clustering V as follows
(see [6]): with each dichotomy Di ∈ C , we associate two vertices (Pi,Qi) and (Qi, Pi) corresponding to the two possible



Table 1
Summary of the complexity situation for Sel-Col and Sel-Col+.

Graph class Sel-Col Sel-Col+

Twin 2-Dsel-Col NP-c even if all clusters are two adjacent vertices, Proposition 2.1 ?

Planar UDG 1-Dsel-Col NP-c even if ∆ ≤ 3, compact clustering with |Vi| = 2 or 3,
∀i = 1, . . . , p, and the intersection model given, Proposition 2.2 (the same
shown without compact clustering in [8])

?

Linear interval k-Dsel-Col in O(|V | + |E|) with consecutive clustering, Theorem 2.8 (NP-c
with general clustering [8])

Linear, Corollary 3.1

Interval k-Dsel-Col is in P if k is fixed and with compact clustering, Theorem 2.4
(NP-c with compact clustering but k is not fixed, Theorem 2.3 by [10])

Linear, Corollary 3.1

Chordal Already NP-hard in unit/proper/linear interval graphs [8] Linear, Corollary 3.1

Complete k-partite NP-hard [8] Polynomial, Proposition 3.2

Permutation 1-DselCol NP-c even with sparse clustering [8] NP-hard even with compact clustering,
Remark 3.2. χ+SEL(G, V)-approximation
algorithm even in comparability graphs,
Proposition 3.3 and Algorithm 4

Fig. 1. An example of a twin graph for S = {1, 2, 3, 4} and dichotomies C = {{{1, 3}, {2}}; {{1}, {2, 4}}; {{1, 2}, {3, 4}}; {{1, 4}, {3}}}.

oriented pairs. Vertices (S, T ) and (S ′, T ′) are linked by an edge if and only if S ∩ T ′ ≠ ∅ or S ′ ∩ T ≠ ∅; in particular (P,Q )
and (Q , P) are linked by an edge. The clustering V = (V1, . . . , Vp) is defined by Vi = {(Pi,Qi), (Qi, Pi)}, for i = 1, . . . , p. It
is shown in [9] that for an integer k ≥ 1, there exists an encoding of S of length at most k satisfying all dichotomies in C if
and only if (G, V) is selective k-colorable.

A graphG = (V , E) constructed from an instance (S, C) as described above is called a twin graph. See Fig. 1 for an example
of a twin graph for states S = {1, 2, 3, 4} and dichotomies C = {{{1, 3}, {2}}; {{1}, {2, 4}}; {{1, 2}, {3, 4}}; {{1, 4}, {3}}}. The
selection shownwith circled vertices is 3-colorable and corresponds to an encodingϕ of S of length 3: the first color includes
{{1, 3}, {2}} and {{1}, {2, 4}}, the second one includes {{3, 4}, {1, 2}} and the third one includes {{1, 4}, {3}}; the state 1 will
be coded ϕ(1) = (010) since for the first and the third colors it appears in the first part of the dichotomy while in the
second color it appears in the second part of the dichotomy; for state 2, two equivalent choices are possible: ϕ(2) = (110)
or ϕ(2) = (111) (see [9] for more information about this model).

In what follows we suppose that the twin graphs are given with a related list of dichotomies, which avoids to consider
the problem of deciding whether a given graph is a twin graph. As mentioned in [9], a twin graph is 1-selective colorable if
and only if it is bipartite. Consequently 1-Dsel-Col is polynomial in twin graphs. The following result shows that deciding
whether there exists an encoding of length at most 2 satisfying all dichotomies of a given set is NP-complete.

Proposition 2.1. 2-Dsel-Col is NP-complete in twin graphs even if all clusters consist of two adjacent vertices.

Proof. We use a reduction from 4-Colorabilitywhich is NP-complete (see [13]). Consider a graph G = (V , E) on n vertices
v1, . . . , vn. Without loss of generality, we may assume that G has no isolated vertex.

Consider now an arbitrary orientation of the edges of G and associate with every vertex vi ∈ V the oriented pair (Pi,Qi)
where Pi is the set of edges oriented as arcs starting at vi and Qi is the set of edges oriented as arcs ending at vi. Each non-
oriented pair {Pi,Qi}, vi ∈ V , is a dichotomy in E since G has no isolated vertex.

Let us now construct the corresponding twin graph. With each dichotomy {Pi,Qi}, vi ∈ V , we associate two vertices
(Pi,Qi) and (Qi, Pi). By definition of a twin graph, we link two vertices (Pi,Qi), (Pj,Qj), i ≠ j, if and only if Pi ∩ Qj ≠ ∅ or
Pj ∩ Qi ≠ ∅. This holds if and only if vivj ∈ E: in this case {vivj} = Pi ∩ Qj if vivj is oriented from i to j and {vivj} = Pj ∩ Qi
else. Similarly (Qi, Pi), (Qj, Pj), i ≠ j are linked if and only if vivj ∈ E. Finally, two vertices (Pi,Qi), (Qj, Pj) are linked if and
only if i = j. As a consequence, the resulting twin graph G′ = (V ′, E ′) corresponds to two disjoint copies of G linked by a
perfect matching consisting of edges (Pi,Qi)(Qi, Pi), vi ∈ V . We then consider the clustering V = {V0, V1, . . . , Vn} defined



by Vi = {(Pi,Qi), (Qi, Pi)}, i = 0, 1, . . . , n. By construction, (G′, V) is selective 2-colorable if and only if V can be partitioned
into two sets that both induce a bipartite graph in G. This is equivalent to say that G is 4-colorable, which concludes the
proof. �

As mentioned in [9], the structure of Sel-Col allows to distinguish two subproblems: the selection problem which aims
to select one vertex per cluster (formally finding a feasible solution of Sel-Col) and the problem of deciding whether a
given selection induces a k-colorable graph. This second problem, called evaluation problem, corresponds to evaluating the
objective function of a given feasible solution. In [9], some examples are presented which illustrate that the complexity
status of these two problems (the selection problem and the evaluation problem) are independent and that the hardness of
Sel-Col can result either from the selection problem or from the evaluation problem or from both.

To conclude this section, we show that 3-Dsel-Col remains hard even for a subclass of twin graphs for which an optimal
selection is known. This implies that the evaluation problem is hard for twin graphs.

We consider a slight modification of the reduction given in Proposition 2.1. We start from a graph G = (V , E) with
V = {v1, . . . , vn} corresponding to an instance of 3-Colorability which is NP-complete. From any orientation of G, we
define the sets Pi,Qi as previously and add a state s0 to each set Pi to obtain P ′i = {s0} ∪ Pi. The twin graph associated with
the dichotomies {P ′i ,Qi} is composed of two copies G1 = (V 1, E1),G2 = (V 2, E2) of G that are completely linked, denoted
by 2G: V 1 corresponds to all pairs (P ′i ,Qi) and V 2 to all symmetric pairs (Qi, P ′i ). Indeed, ∀i, s0 ∉ Qi and consequently the
introduction of s0 does not change the edges between two vertices (P ′i ,Qi), (P ′j ,Qj) or between two vertices (Qi, P ′i ), (Qj, P ′j ).
However every two vertices (P ′i ,Qi), (Qj, P ′j ), are adjacent since s0 ∈ P ′i ∩ P ′j .

Taking the clustering V = {V0, V1, . . . , Vn} defined by Vi = {(P ′i ,Qi), (Qi, P ′i )}, i = 0, 1, . . . , n, we have χSEL(
2G, V) =

χ(G). Indeed, V1 (or V2) being a selection, we have χSEL(
2G, V) ≤ χ(G) and any coloring of a selection gives a coloring of the

original graph since no two vertices in different copies ofG can receive the same color; so,χSEL(
2G, V) ≥ χ(G). Consequently

both V 1 and V 2 correspond to an optimal selection, making the selection process trivial in this case. In terms of encoding
schemes, this represents a situation where the selection process is easy (select for instance all oriented dichotomies (P,Q )
with s0 ∈ P) but deciding whether a 3-dimensional encoding can represent all dichotomies is still hard since it corresponds
to 3-Colorability in G. Obviously, deciding whether 2 dimensions are enough is polynomial in this case.

2.2. Unit disk graphs

Next we consider the minimum selective coloring problem in unit disk graphs. This is motivated by a frequency
assignment problem [9] which will be reconsidered in Section 3.1. The model also motivates the compact clustering case. A
graph G = (V , E) is a (unit) disk graph, denoted by (U)DG, if one can associate with every vertex v a disk (of radius 1) in the
plane such that two vertices are adjacent if and only if the corresponding disks intersect. Deciding whether a given graph is
a UDG is known to be NP-complete [3]. Hence, we will suppose here that an intersection model is given with the graph.

Note also that k-Dsel-Col is NP-complete in UDGs for any fixed k ≥ 3 even if all clusters contain a single vertex since
under this assumption, the problem is equivalent to k-Colorability which is known to be NP-complete in planar unit disk
graphs for k = 3 [5,20] and in unit disk graphs for k > 3 [16] even if an intersection model is known. In [8], it is shown
that 1-Dsel-Col is NP-complete in graphs isomorphic to nP3, even if clusters are of size either 2 or 3. This class is trivially
included in planar UDGs and consequently, 1-Dsel-Col is NP-complete in planar UDGs with clusters of size 2 or 3, even if
an intersection model is known. Here we go further by investigating the complexity of the compact clustering case.

Proposition 2.2. 1-Dsel-Col is NP-complete in planar UDGs of maximum degree 3 with compact clustering and clusters
containing either 2 or 3 vertices, even if an intersection model is known.

Proof. Our reduction combines ideas from the proof of NP-completeness of 3-Colorability in planar UDGs [5,20] and from
the proof of NP-completeness of 1-Dsel-Col in planar graphs of maximum degree 3 with compact clustering and clusters of
size 2 or 3 given in [8].

Wewill use in particular a reduction from Restricted Planar 3-Satwhichwas shown to beNP-complete in [7] andwhich
is defined as follows: we are given a set X of variables as well as a set C of clauses over X such that each clause contains
either 2 or 3 literals; furthermore each variable occurs exactly 3 times, once as a negative literal and twice as a positive
literal; finally the bipartite graph H = (X ∪ C, E), where xc ∈ E if the variable corresponding to x appears (as positive or
negative literal) in the clause corresponding to c , is planar; we want to decide whether there exists a truth assignment such
that each clause contains at least one true literal.

Let I be an instance of Restricted Planar 3-Sat with variables x1, . . . , xn and clauses c1, . . . , cm. We first revisit the
construction proposed in [8]. Consider the planar bipartite graph H = (X ∪ C, E) associated with I and a vertex xi ∈ X ,
corresponding to variable xi, as well as its neighbors cj, ck, cℓ ∈ C corresponding to the clauses in which xi appears. Suppose
without loss of generality that xi appears as a negative literal in ck (and hence it appears as a positive literal in cj and in cℓ).
We delete xi from H and replace it by the graph Hi with vertex set {x1i , x

′

i, x
′′

i , xi, x
2
i } and edge set {x1i x

′

i, x
′

ix
2
i , x
′

ix
′′

i , x
′′

i xi} (these
edges are called variable edges). Then we make cj adjacent to x1i , ck adjacent to xi and cℓ adjacent to x2i . We do this for every
vertex xi ∈ X and callH ′ the resulting graphwhich is still planar andhasmaximumdegree 3. Let Z = {x1i , x

2
i , xi, i = 1, . . . , n}

be the set of vertices representing the occurrences of the variables in the clauses. For every clause cj ∈ C , we will denote by



Fig. 2. An example of graph H⋆ with an intersection model for the instance (x1 ∨ x3) ∧ (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3).

zhj ∈ Z, j ∈ {1, . . . ,m}, h = 1, 2, 3 the vertices representing the occurrences of the literals appearing in clause cj (if a clause
contains only 2 literals, we simply set h = 1, 2).

We now complete the construction of [8] as follows. Consider a vertex cj ∈ C , associated with clause cj, and its neighbors
in H ′ denoted by z1j , z

2
j and eventually z3j representing the 2 or 3 literals appearing in clause cj. We remove vertex cj from H ′

and replace it by an edgewith vertices c1j , c
2
j if cj contains two literals and by a triangle with vertices c1j , c

2
j , c

3
j if cj contains 3

literals (these edges are called clause edges). We then add edges zhj c
h
j for h = 1, 2 if cj contains 2 literals and for h = 1, 2, 3 if

cj contains 3 literals.Wewill call these edgesH-edges. We do so for every clause cj ∈ C and denote byH ′′ the resulting graph.
Clearly, in H ′′, H-edges are in one-to-one correspondence with the edges of the graph H . The graph H ′′ is clearly still planar
and has maximum degree 3. The edge set of H ′′ is made of variable edges, clause edges and H-edges. We finally replace
every H-edge e = zhj c

h
j , j ∈ {1, . . . ,m}, h ∈ {1, 2, 3} by an even length path zhj , y

h,1
j , . . . , y

h,2kjh+1
j , chj and denote by H⋆ the

resulting graph. As shown in [5] it is possible to choose integers kjh, j ∈ {1, . . . ,m}, h ∈ {1, 2, 3} such that H⋆ is a UDG and
moreover an intersection model can be built in polynomial time. Note that H⋆ is still planar and has maximum degree 3.

The reader is referred to Fig. 2 for an example of the graph H⋆ associated with the instance (x1 ∨ x3) ∧ (x1 ∨ x2) ∧ (x2 ∨
x3)∧ (x1 ∨ x2 ∨ x3) of Restrictive Planar 3-Sat. The graph is represented together with an intersection model. Thick edges
are clause and variable edges while thin edges correspond to the edges of the even length paths.

To complete the reduction we define a clustering V = (V1, . . . , Vp) for H⋆ as follows: for every i ∈ {1, . . . , n}, x′i and x′′i
form a cluster; for every j ∈ {1, . . . ,m}, chj , h = 1, 2 or h = 1, 2, 3 form a cluster of size 2 or 3; for every H-edge we define

clusters {zhj , y
h,1
j }, {y

h,2
j , yh,3j } , . . . , {y

h,2kjh
j , y

h,2kjh+1
j }, all of size 2.

The reduction can be done in polynomial time and the instance (H⋆, V) of 1-Dsel Col satisfies all conditions of the
proposition. To complete the proof we need to show that the instance I of Restricted Planar 3-Sat is a yes-instance if and
only if (H⋆, V) is 1-selective colorable. Suppose first there is a truth assignment satisfying all clauses in I. For every variable
xi, i ∈ {1, . . . , n}, select x′i and xi in the solution if xi is false and x′′i together with x1i and x2i if xi is true. For every clause cj, we
select one vertex chj such that zhj is a true literal and include it in the solution. Then, for every j ∈ {1, . . . ,m} and h ∈ {1, 2}

(resp. h ∈ {1, 2, 3}), we consider the path zhj , y
h,1
j , . . . , y

h,2kjh+1
j , chj and complete the solution with y2ℓj , ℓ = 1, . . . , kjh if

the literal associated with zhj is true and with y2ℓ+1j , ℓ = 0, . . . , kjh if the literal associated with zhj is false. It can be easily
verified that the resulting solution is a stable set intersecting each cluster exactly once, which shows that (H⋆, V) is 1-
selective colorable.

Conversely, suppose that (H⋆, V) is 1-selective colorable and let S be the corresponding stable set. For every variable xi,
i ∈ {1, . . . , n}, if x′i ∈ S then variable xi is set to false and if x′′i ∈ S then variable xi is set to true. This defines a truth assignment
for every variable. For every clause cj, j ∈ {1, . . . ,m}, we consider the vertex in S belonging to the cluster associated with cj.
We need to show that this vertex, say chj , corresponds to a true literal zhj . In the path zhj , y

h,1
j , . . . , y

h,2kjh+1
j , chj , since chj ∈ S

necessarily ∀ℓ ∈ {1, . . . , kjh}, y2ℓj ∈ S and thus zhj ∈ S, meaning that zhj is true in the truth assignment we have computed.
This concludes the proof. �

In Sections 2.3 and 2.4 we will present some polynomial cases of the minimum selective coloring problem in interval
graphs (IG) with compact clustering when k is fixed and unit interval graphs (UIG) with consecutive clustering (definitions



will be given in these sections). These particular cases can also be seen as special cases of the present problem in DGs and
UDGs which contain respectively IGs and UIGs.

2.3. Interval graphs

In [8,9], some scheduling problems are introduced whichmotivate the study of the minimum selective coloring problem
in interval graphs, in particular with compact clustering. A graph G = (V , E) is called an interval graph, if one can associate
an interval on the real line with every vertex such that two intervals intersect if and only if the corresponding vertices are
adjacent. The following was shown in [10].

Theorem 2.3 ([10]). The decision version of Sel-Col is NP-complete in the strong sense in interval graphs with compact
clustering, even if the vertices of the graph can be partitioned into three cliques.

However, for a fixed k the problem to decide whether a k-colorable selection exists becomes polynomial.

Theorem 2.4. For any fixed k, Algorithm 2 solves k-Dsel-Col in polynomial time for interval graphs G with compact clustering
V . Moreover, if χSEL(G, V) ≤ k, then it computes a selective k-coloring.

Proof. Notations
We consider an instance of k-Dsel-Col defined by an interval graph G = (V , E), whose vertices are associated with a

set of n intervals I = {I1, . . . , In}, and a compact clustering V = (V1, . . . , Vp) of V . Since vertices represent intervals, we
will use the terms vertices and intervals indifferently. We suppose that G is given by its interval representation. For every
r ∈ {1, . . . , p}, we denote by Gr the graph Gr = G[V1 ∪ · · · ∪ Vr ]. Every solution of the problem restricted to Gr corresponds
to a selection of r intervals Jr = {J1, . . . , Jr} with Ji ∈ Vi, i = 1, . . . , r and will be called a partial selection on Gr or just
of order r if the related graph is defined without ambiguity; a partial selection of order p is just a solution of the original
problem.
Main idea

Algorithm 2 solves the problem by dynamic programming. It is based on a notion of states defined below. States are
associated with partial solutions (i.e. selections on graphs Gr , 1 ≤ r ≤ p). Many different solutions may be associated with
a given state, however the definition of states ensures that all partial selections with the same state are either all feasible
or all unfeasible; more precisely feasibility of a partial selection can be immediately and easily stated by reading its state.
A state associated with feasible partial selections is called feasible; the total number of feasible states is O(nk). As shown by
the analysis, one only needs to compute one particular feasible solution for any feasible state.

The dynamic programming process consists in filling in a table T line by line. T has one column per feasible state and one
line per cluster, each entry T [r, σ ] being either a k-colorable partial selection of order r and of state σ or ∅ if such partial
selection does not exist. Line r (2 ≤ r ≤ p) is filled in from line r − 1; to this aim, given a state σ of a partial selection of
order r − 1, Algorithm 1 computes the state σ̃ of a partial selection of order r obtained by adding one particular interval
I ∈ Vr to a partial selection of order r − 1. σ̃ only depends on σ and I .
Clusters’ ordering

The hypothesis that the clustering is compact allows us to define a specific order of clusters. For every cluster Vi, i ∈
{1, . . . , p}, we consider Hi = ∩I∈Vi I; since the clustering is compact, Hi ≠ ∅, i = 1, . . . , p. We assume that the clusters are
ordered so that the intervals Hi, i = 1, . . . , p are in non-decreasing order of their left endpoint.
Definition of states

Consider a partial selection of order r , i.e. r intervals Jr = {J1, . . . , Jr} with Ji ∈ Vi, i = 1, . . . , r . We denote Ji = [ai, bi]
and associate with Jr its state σ defined by an array of (k + 1) values σ = [S0, . . . , Sk], where Sℓ = max{x, |{J ∈ Jr , x ∈
J}| ≥ k+ 1− ℓ}with max(∅) = −∞. σ = [S0, . . . , Sk] is a non-decreasing sequence. It is feasible if and only if S0 = −∞,
which means that the interval graph associated with Jr is k-colorable.

Note that for all ℓ ∈ {0, . . . , k}, we have Sℓ ∈ {−∞} ∪ {b1, . . . , br} (so Sℓ can take at most n + 1 different values) and
consequently, the number of different states for any partial solution is at most (n+1)(k+1) and the number of feasible states
is at most (n + 1)k. We denote by Σ the set of all possible feasible states, in one-to-one correspondence with the set of all
non-decreasing sequences of k numbers, each belonging to {−∞} ∪ {b, ∃a, [a, b] ∈ I}.
Analysis

The for-loop from line 2 to line 4 of Algorithm 2 fills in the first line of T by computing all possible states corresponding
to selecting one interval in V1. Suppose that the r−1 first lines are all filled in, with 2 ≤ r ≤ p; then given a solution Jr−1 on
Gr−1 and an interval I = [a, b] ∈ Vr , the stateσ of the solution Jr−1 ∪ {I} on Gr only depends on the state σ associated with
Jr−1 and the interval I . This state is computed in O(k) time by Algorithm 1. Line 3 of Algorithm 1 deals with values ofSℓ’s not
affected by I . To justify the correctness of Line 4 of Algorithm 1, note that the ordering chosen for clusters guarantees that,
for every I ′ = [a′, b′] ∈ V1 ∪ · · · ∪ Vr−1 and I = [a, b] ∈ Vr , we have a′ < b. If ℓ0 = k+ 1, then no interval in Jr−1 ends after
b and we have b =Sk. If ℓ0 ≤ k and Sℓ0−1 < b, then, using the above property, exactly k+ 1− ℓ0 + 1 intervals contain b: I
and the k+1− ℓ0 intervals of Jr−1 containing Sℓ0 . If Sℓ0−1 = b, then the same holds but we haveSℓ0−1 =

Sℓ0−2 = b. Finally,



Algorithm 1 Updating states
Require: A feasible state σ = [S0, . . . , Sk] of a partial selection Jr−1 on Gr−1, 2 ≤ r ≤ p, and an interval I = [a, b] ∈ Vr .
Ensure: The stateσ = [S̃0, . . . , S̃k] of the solution Jr−1 ∪ {I} on Gr .
1: ℓ0 ← min({ℓ, Sℓ > b} ∪ {k+ 1})
2: for ℓ ≥ ℓ0 AND ℓ ≤ k do
3: Sℓ = Sℓ

4: Sℓ0−1 = b
5: ℓ1 ← min({ℓ, Sℓ ≥ a} ∪ {ℓ0 − 1})
6: for ℓ1 ≤ ℓ ≤ ℓ0 − 1 do
7: Sℓ−1 ← Sℓ

8: for ℓ ≤ ℓ1 − 2 do
9: Sℓ ← Sℓ

Algorithm 2 k-Dsel-Col in interval graphs with compact clustering
Require: An interval graph G defined by a set of intervals I and a compact clustering V = (V1, . . . , Vp).
Ensure: Either a selection J ⊂ I inducing a k-colorable graph or the information that it does not exist.
1: Order clusters in non-decreasing order of left endpoint of ∩I∈Vi I
2: for I = [a, b] ∈ V1 do
3: σ ← (−∞, . . . ,−∞, b)
4: T [1, σ ] ← {I}
5: for r = 2 to p do
6: for I = [a, b] ∈ Vr do
7: for σ such that T [r − 1, σ ] ̸= ∅ do
8: Compute the state σ ′ of solution T [r − 1, σ ] ∪ I by using Algorithm 1
9: if σ ′ is feasible then

10: T [r, σ ′] ← T [r − 1, σ ] ∪ {I}
11: if ∀σ ∈ Σ, T [p, σ ] = ∅ then
12: G is not k-selective colorable
13: else
14: Select a state σ such that T [p, σ ] ̸= ∅
15: return T [p, σ ]

Line 7 and Line 9 (of Algorithm 1) allow to compute values ofSℓ for ℓ < ℓ0. Algorithm 2 computes all possible feasible states
of feasible solutions in lines 1 to p of table T . A k-colorable selection corresponds then to a feasible state on the pth line of
T . The complexity of Algorithm 2 is O(n(n+ 1)k) = O(nk+1): Line 2 (of Algorithm 2) takes O(|Σ |), while Line 8 is executed
O(n|Σ |) times and requires Algorithm 1 of complexity O(k). This concludes the proof. �

Given an interval graph G defined by the set I of intervals and a compact clustering V = (V1, . . . , Vp), we denote by GV

the intersection graph of the sets Ci = ∪I∈Vi I . Since V is compact, GV is an interval graph and its clique number ω(GV) can
be computed in polynomial time [15]. It is straightforward to verify that χSEL(G, V) ≤ ω(GV) ≤ ω(G). So, if GV has bounded
clique number, then the previous result applies and Algorithm 2 computes χSEL(G, V).

Corollary 2.5. If G is an interval graph with compact clustering V and if ω(GV) ≤ k for a constant k, then χSEL(G, V) can be
computed in polynomial time.

A circular arc graph G = (A, E) defined by a set A of arcs on a circle has a vertex for each arc in A and two vertices
are adjacent if they correspond to intersecting arcs; of course interval graphs constitute a subclass of circular arc graphs.
Since there is a one-to-one correspondence between vertices and arcs of a circular arc graph, we will use both terms
interchangeably. Let the load λ(G) be the maximum number of arcs a point on the circle may belong to. Of course, in the
particular case of an interval graph, the load is equal to the clique number and to the chromatic number. In a circular arc
graph however, we have λ(G) ≤ ω(G) ≤ χ(G) since circular arc graphs are not perfect (moreover, k-Colorability is NP-
complete in circular arc graphs, but becomes polynomial if k is fixed [14]). Given a clustering V of G we can define the
Minimum Selective Load problem in the same way as the Minimum Selective Clique problem, denoting by λSEL(G, V) its
optimal value.

Consider then a point x on the circle and denote by Ax the set of arcs in A containing x; G[A \ Ax] is an interval graph.
Consider then a set of arcs P ⊂ Ax such that |P ∩ Vi| ≤ 1, i = 1, . . . , p, and for every arc p ∈ P we break it at x so
as to define two disjoint arcs p− and p+ respectively before and after x in a clockwise orientation of the circle. ThenG =
G[(A\(Ax ∪


i,Vi∩P≠∅

Vi))∪{p−, p+, p ∈ P}] is an interval graph and each arc a ∈ (A\(Ax ∪


i,Vi∩P≠∅
Vi))∪{p−, p+, p ∈ P}

can be immediately associated to an interval I(a) such that {I(a), a ∈ (A\(Ax∪


i,Vi∩P≠∅
Vi))}∪{p−, p+, p ∈ P} is an interval



Fig. 3. Transformations between LIG and PIG representations.

representation ofG. Moreover, defining V = (Vi \ (Vi ∩ Ax), i such that Vi ∩ P = ∅, {p−}, {p+}, p ∈ P), ωS(G, V) is exactly
the value of a minimum selective load in G for which P is the related selection among Ax.

If λ(G) ≤ k for a constant k, one can use this for every set P ⊂ Ax satisfying |P ∩ Vi| ≤ 1, i = 1, . . . , p, so we have:

Corollary 2.6. λSEL(G, V) can be computed in polynomial time in circular arc graphs of bounded load and for a clustering V
satisfying ∩a∈Vi a ≠ ∅, i = 1, . . . , p.

2.4. Linear interval graphs

In [9], a quality test scheduling problem was introduced which motivated the study of the minimum selective coloring
problem in linear interval graphs (LIG), introduced in [4] and defined below. Let L be a line and V a finite set of points of L;
given a set of intervals from L (an interval means a proper subset of L homeomorphic to [0, 1]), the related linear interval
graph G = (V , E) has vertex set V and u, v ∈ V are adjacent in G if u, v belong both to a same interval. It follows from this
definition that if vi is adjacent to vj, with vi being to the left of vj in L, then vi, vj and all vertices lying between these two
vertices in L form a clique. We say that vi < vj if vi lies on the left of vj in L. When dealing with selective coloring in this
graph class, a clusteringV = {V1, . . . , Vp} of the vertex set is called consecutive if for every set Vℓ ∈ V we have the following
property: if vi, vj ∈ Vℓ with vi < vj, then vr ∈ Vℓ for all vr such that vi ≤ vr ≤ vj. Linear interval graphs occurred in the
quality test scheduling problem described in [9] and consecutive clustering was naturally appearing in this application. As
illustrated in Theorem 2.8, this restriction allows to get a polynomial result while the problem is hard in LIG under general
clustering (see Table 1).

Before explaining howwe can solve the problem in polynomial time in this graph class with consecutive clustering, let us
mention a few properties concerning linear interval graphs. First we will show that linear interval graphs are equivalent to
proper interval graphs (PIG) (i.e., interval graphs admitting an interval representation in which no interval properly contains
another), which are in turn equivalent to unit interval graphs (UIG) (i.e., interval graphs admitting an interval representation
in which each interval has unit length) as shown in [21].

Proposition 2.7. A graph G = (V , E) is a LIG if and only if it is a PIG. Moreover, given any LIG representation RLIG of Gwith points
v1, . . . , vn, one can construct in linear time (in the size of RLIG) a PIG representation of G such that the order of left endpoints of
the intervals Iv1 , . . . , Ivn is the same as the order of points v1, . . . , vn in RLIG and vice versa.

Proof. The reader is referred to Fig. 3 for the following constructions.
AssumeG is a LIG and consider a LIG representation ofGwithpoints v1, . . . , vn on the real line L and intervals representing

cliques. Now, one can obtain a proper interval representation of G by assigning an interval Ivi to each vertex vi in the
following manner: Ivi starts at the point vi on L and ends at the rightmost right endpoint of all the intervals containing
the point vi. Note that if vj > vi then the right endpoint of Ivj is not smaller than the right endpoint of Ivi . Now, if in the
resulting representation there are more than one interval with the same right endpoint, order them according to their left



endpoints (which are all different since all points vi are distinct). Let Ivi , . . . , Ivi+j be these ordered intervals (they necessarily
correspond to consecutive points) and vr their common right end point in L. Then replace Ivi+t = [vi, vr ]with [vi, vr+ t×ϵ]
for t = 1, . . . , j and ϵ > 0. It is easy to see that, by definition, such intervals never properly contain another. Moreover, by
choosing ϵ sufficiently small (ϵ < min |vj − vi|/n) this does not change the related interval graph. Besides, this is a proper
interval representation of G. Indeed, if two vertices u, v are adjacent in G, then in its LIG representation, there is an interval
I containing their corresponding points. Consequently, in the above described PIG representation, Iu and Iv contain the right
endpoint of I and therefore u and v are adjacent. Now, if two vertices u and v are non-adjacent in G, then it means that none
of the intervals in its LIG representation contains both points representing u and v. Assume without loss of generality that
the point u lies on the left of the point v on the real line L. Then we have in particular that the interval containing u and
having the rightmost right endpoint does not contain v and therefore Iu does not contain the point v which is the starting
point of Iv; hence u and v are non-adjacent and G is a PIG.

Conversely, assumeG = (V , E) is a PIG and consider a PIG representation ofG.We need to show thatwe can define points
on the real line L and a set of intervals of L such that u, v ∈ V are adjacent if and only if they are both contained in some
interval. For each interval I in the proper interval representation, we add a point on the real line L corresponding to the left
endpoint of I and consider the same set of intervals as in the PIG representation. We claim that this is a LIG representation
of G. Consider two adjacent vertices u, v ∈ V and the corresponding intervals Iu, Iv . Without loss of generality, assume
that the left endpoint of Iu comes before the left endpoint of Iv . Then the corresponding points on L belong both to the
interval Iu. Now let u, v ∈ V be two non-adjacent vertices in G. Then their intervals Iu and Iv do not intersect. Without loss
of generality, we may assume that the left endpoint of Iu comes before the left endpoint of Iv . If there was an interval I
containing the corresponding points on L then this interval would necessarily contain Iu, a contradiction since we started
with a PIG representation. Thus G is a LIG.

To conclude, it is enough to observe that the described representations have the desired property. �

In [8], it is shown that 1-Dsel-Col is NP-complete in linear/proper/unit interval graphs. The next theorem shows that
with consecutive clustering it can be solved in linear time.

Algorithm 3 k-Dsel-Col in LIG with consecutive clustering
Require: A LIG G = (V , E) with consecutive clustering V = {V1, . . . , Vp}.
Ensure: Yes, if a selective k-coloring exists, No if it does not exist.
1: Set V ∗ = {v∗1 , . . . , v

∗

k }where v∗i is the first (i.e., leftmost) vertex of Vi for i = 1, . . . , k.
2: for i = 1 to p− k do
3: if V ∗ ∩ Vi is not complete to Vi+k then
4: select the first (i.e., leftmost) non-neighbor of V ∗ ∩ Vi in Vi+k, denoted by v∗i+k, and add it to V ∗;
5: else
6: return No, (G, V) is not selective k-colorable;
7: return Yes, G[V ∗] is k-colorable and hence (G, V) is selective k-colorable.

Theorem 2.8. k-Dsel-Col in LIG with consecutive clustering can be solved in time O(|V | + |E|).

Proof. Let G = (V , E) be a LIG and let V = {V1, V2, . . . , Vp} be a consecutive clustering of V . We apply Algorithm 3 to
the graph G; using the LIG representation of G it first selects the leftmost possible vertex in the k first clusters and then
greedily selects (when it is possible) one vertex in clusters k + 1, . . . , p in such a way it does not create a clique of size
k + 1. As shown in the analysis, if the algorithm fails at some step in selecting one vertex in one cluster, then the graph is
not k-selective colorable and in the opposite case it builds a k-colorable selection.

Clearly, Algorithm 3 runs in time O(|V | + |E|) since each vertex and each edge is considered at most once. Thus we are
left with the proof of correctness of Algorithm 3. Note that for any selection V ′, G[V ′] is k-colorable if and only if G[V ′] does
not contain a clique of size greater than or equal to k+ 1, since LIG are perfect graphs (this follows from Proposition 2.7 and
the fact that interval graphs are perfect).

First assume that Algorithm 3 finds a vertex in each cluster and let V ∗ be the set of chosen vertices. Suppose by
contradiction that G[V ∗] is not k-colorable. It follows from the above that it necessarily contains a clique of size greater
than or equal to k + 1. The definition of LIG and the fact that |V ∗ ∩ Vi| = 1, i = 1 . . . p, imply that in such a case, there
necessarily exists a clique K of size k + 1 in G[V ∗] induced by vertices v∗l , . . . , v

∗

l+k for some l ∈ {1, . . . , p − k}. But this
contradicts the fact that we choose in Vl+k a non-neighbor of V ∗ ∩ Vl = {v

∗

l }. Thus, if Algorithm 3 computes V ∗ such that
|V ∗ ∩ Vi| = 1, i = 1, . . . , p, then G[V ∗] is k-colorable and hence G admits a selective k-coloring.

Now assume that Algorithm 3 does not find such a set V ∗. Hence there exists Vi ∈ V such that V ∗ ∩ Vi = {v
∗

i } is adjacent
to all the vertices in Vi+k. It follows from the definition of LIG, that the vertices in the sets Vi+1, . . . , Vi+k form a clique K
and in addition that v∗i as well as all the vertices vj ∈ Vi such that v∗i < vj are pairwise adjacent and complete to K . Thus,
if a solution exists, then it must necessarily contain a vertex vr ∈ Vi such that vr < v∗i since otherwise we will always get
a clique of size greater than or equal to k + 1. But now, {v∗i−k, v

∗

i−k+1, . . . , v
∗

i−1, vr} form a clique of size k + 1 since v∗i was
the first non-neighbor of v∗i−k. Repeating the same argument, we conclude that we must choose a vertex vs ∈ Vi−k such that



vs < v∗i−k. Continuing in the samemanner, we finally conclude that wemust choose a vertex v ∈ Vj, j ∈ {1, . . . , k} such that
v < v∗j , which is clearly impossible. Thus no solution exists. �

3. Maximum selective graph coloring problem

In this section, we first consider some applications of Sel-Col in order to emphasize the use of Sel-Col+ in each one
of these contexts. Readers may refer to [9] for more details on various models which are briefly described here. Second,
we consider the complexity and the approximability of Sel-Col+ in graph classes encountered in the aforementioned
applications, namely, perfect graphs, chordal graphs and comparability graphs.

3.1. Motivation

Let us consider the Antenna Positioning and Frequency Assignment Problem (AP–FAP) where a GSM operator has to decide
for each base station a position among a predefined set such that the number of frequencies assigned to the base stations
while avoiding all interferences is minimized. If each position is represented by a vertex, two vertices corresponding to
positions that are close enough for possible interference (in case the same frequency is assigned to the antennae) are
adjacent, and the vertex set corresponding to possible positions for a base station forms a cluster, then AP–FAP boils down
to Sel-Col in this clustered (unit) disk graph. Now, assume that a central institution or an external stakeholder decides
where to install the base stations in each region instead of the GSM operator. This may be preferable for instance in order
to ensure that the electromagnetic waves are restricted to a certain level and/or to optimize some other criteria in terms
of the overall GSM network including all operators. In this case, although the operator has a set of predefined locations for
each base station, the selection of the location is not made in a way to minimize the total number of frequencies to be used.
However, it is important for the operator to assess the maximum number of frequencies needed in the worst case. In other
words, the operator is interested in knowing the cost of the worst selection.

In the framework of Scheduling Problems, Sel-Col models the problem of minimizing the use of some resource while
all jobs are scheduled, given that for each job, one can choose a period among a set of available time periods. Indeed, this
problem corresponds to Sel-Col in the graph having a vertex per available time period, edges between vertices whose
corresponding time periods intersect and clusters consisting of vertices corresponding to the set of available time periods
for a same job. In [9], timetabling for speakers in a conference, quality test scheduling and berth allocation problems are the
scheduling problems considered within this framework, illustrating Sel-Col in respectively interval graphs, linear interval
graphs and rectangle intersection graphs. Let us focus on the specific example of the construction of a timetabling and
imagine that we are given the available time periods of each speaker but the speakers are free to choose the period they will
use (or the scheduling of the speakerswill bemade only a fewdays before the conference starts). However, for organizational
reasons, one has to book the seminar rooms in advance. Since each room has a cost, we want to book a minimum number of
rooms, but of course, there should be enough rooms for all speakers whichever period they choose (or they are scheduled
to). Consequently, we have to book asmany rooms as the value of the chromatic number corresponding to theworst possible
selection.Wewill see in Section 3.2 that unlike Sel-Col, one can solve Sel-Col+ in polynomial time in interval graphs (even
in chordal graphs containing interval graphs).

Another application that motivates the study of Sel-Col+ in permutation graphs is the so-called Multiple Stacks TSP [9]
where items should be collected from some pick-up network and distributed in some delivery network. This time, we will
see that Sel-Col+ is also NP-hard in permutation graphs just like Sel-Col and consequently, in Section 3.2 we provide an
approximation algorithm with performance guarantee in this case.

Motivated by the above applications, the maximum selective coloring problem Sel-Col+ is the problem of finding the
worst selection, i.e. the selection which needs a maximum number of colors. More formally, given a graph G = (V , E) and
a clustering V of V , Sel-Col+ is the problem of finding the largest integer k for which G admits a selection V ∗ such that
χ(G[V ∗]) = k. This optimal value is called the worst selective chromatic number, denoted by χ+SEL(G, V) and a selection V ∗

realizing χ+SEL(G, V) is called a worst selection.
Given a graphG = (V , E) and a partitionV of V , we also define theMaximumSelective Clique problem as the problemof

finding a selection V ∗ such thatω(G[V ∗]) is maximized. The size of such a clique, calledmaximum selective clique, is denoted
by ω+SEL(G, V). Clearly, for any (G, V), we have ω+SEL(G, V) ≤ χ+SEL(G, V). Note that ω+SEL(G, V) is equal to the maximum
number of clusters a single clique can intersect. Given such a clique K intersecting ℓ clusters, an optimal selection for
the Maximum Selective Clique of value ℓ can be obtained by selecting one vertex in K for clusters intersecting K and by
completing this set to a selection by arbitrarily choosing a vertex from the remaining clusters. Similarly, to approximateω+SEL
it is enough to compute in polynomial time a clique intersecting a large number of clusters (see Proposition 3.3).

By definition, for any (G, V)wehaveχSEL(G, V) ≤ χ+SEL(G, V). However, it can be noted thatχSEL(G, V) ≤ ω+SEL(G, V)does
not necessarily hold. Indeed, consider a 5-cycleC5 where each vertex forms a cluster by itself. Clearly,wehaveχSEL(G, V) = 3
but ω+SEL(G, V) = 2.

Note that, similarly to ω+SEL(G, V), we can define ωSEL(G, V) as the minimum value of ω(G[V ′]) among all possible
selections V ′ in (G, V).



Remark 3.1. Let G = (V , E) be a perfect graph with partition V of V . Then χ+SEL(G, V) = ω+SEL(G, V) and χSEL(G, V) =
ωSEL(G, V).

Let us note at that point that unlike in perfect graphs, it is not enough to require these equalities for all induced subgraphs
in order to obtain a meaningful definition of selective-perfectness. A formal notion of selective-perfect graphs is introduced
and studied in [2].

3.2. Complexity and approximation results

To the best of our knowledge, Sel-Col+has not been considered yet in the literature. However the abovemodelsmotivate
its systematic study for different graph classes. Here, we do a first step in this direction by investigating first complexity
questions for Sel-Col+. It is straightforward to see that, in the general case, there is no link between the complexity of
Sel-Col and Sel-Col+. In particular, given a graph G = (V , E) with a clustering V = {V1, . . . , Vp}, it suffices to add to G
a stable set (resp. a clique) of size p with no edge between G and the stable set (resp. the clique); then we add exactly one
vertex of the stable set (resp. the clique) to each cluster. Thus we obtain a new graphGwith a clustering V verifying:

χSEL(G, V) = 1 (select the vertices of the stable set) and χ+SEL(
G, V) = χ+SEL(G, V).

(resp. χ+SEL(G, V) = p (select the vertices of the clique) and χSEL(G, V) = χSEL(G, V).

On the other hand, for instances with only one vertex per cluster both problems Sel-Col and Sel-Col+ are equivalent
from a complexity point of view, showing in particular that Sel-Col+ is hard in general.

In the sequel, we present first complexity and approximation results for Sel-Col+; in particular we point out some
cases where χ+SEL(G, V) can be computed in polynomial time while the computation of χSEL(G, V) is NP-hard and give some
theoretical links between both problems. This provides first ideas for amore systematic study of the complexity of Sel-Col+.

We have seen that interval graphs are of special interest for both Sel-Col and Sel-Col+. In [8], it is shown that computing
χSEL(G, V) is NP-hard in unit/proper/linear interval graphs. However, χ+SEL(G, V) can easily be computed in an even larger
class of graphs, namely chordal graphs. A graph is chordal if it does not contain any induced cycle of length at least four.

Proposition 3.1. Let G be a class of perfect graphs for which we can enumerate all maximal cliques in polynomial time. Then,
Sel-Col+ can be solved in polynomial time in G.

Proof. Let G = (V , E) be a graph inG and letV be a partition of V . From Remark 3.1, it follows that it is enough to determine
ω+SEL(G, V). To this end, we enumerate all maximal cliques of G, which can be done in polynomial time. Then we choose the
clique K intersecting a maximum number of clusters. In each cluster intersecting K we select exactly one vertex from K and
complete the selection by choosing one vertex in each remaining cluster arbitrarily. �

Since for chordal graphs we can enumerate all maximal cliques in time O(n) (see [15]), we obtain the following corollary.

Corollary 3.1. Sel-Col+ can be solved in linear time in chordal graphs.

Another graph class for which Sel-Col is NP-hard [8] but Sel-Col+ can be solved in polynomial time is the class of
complete k-partite graphs. A graph G = (V , E) is a complete k-partite graph if its vertex set can be partitioned into k stable
sets U1, . . . ,Uk such that between any two stable sets Ui,Uj, i ≠ j, there are all possible edges.

Proposition 3.2. Sel-Col+ can be solved in polynomial time in complete k-partite graphs.

Proof. Let G = (U1, . . . ,Uk, E) be a complete k-partite graph and let V = (V1, . . . , Vp) be a clustering of V . Since complete
k-partite graphs are perfect, it follows from the above andRemark 3.1 that it is enough to determineω+SEL(G, V). In order to do
so, we will reduce our problem to aMaximum Flow problem which can be solved in polynomial time (see for instance [1]).
Let us denote by vi

1, . . . , v
i
|Vi|

the vertices in cluster Vi, for i = 1, . . . , p. Let us now construct the following network: consider
the vertices vi

1, . . . , v
i
|Vi|

, for i = 1, . . . , p; for every cluster Vi, i = 1, . . . , p, we add a vertex wi and add all arcs (wi, v
i
j) for

j = 1, . . . , |Vi| and i = 1, . . . , p; for every set Uℓ, ℓ = 1, . . . , k, we add a vertex uℓ; then, for every vertex vi
j ∈ Uℓ, we add

an arc (vi
j, uℓ); we add two vertices s, t (the source and the sink of our network) as well as the arcs (s, wi) for i = 1, . . . , p

and (uℓ, t) for ℓ = 1, . . . , k; finally, we set the capacity of each arc to 1. This clearly gives us a network N which can be
constructed in polynomial time given the graph G.

Now we claim that ω+SEL(G, V) = q if and only if the value of a maximum flow in N is q. Indeed, let K be a clique of
size q in G intersecting each cluster at most once. Let Vi1 , . . . , Viq be the clusters in G containing exactly one vertex of K .
Clearly each such vertex belongs to a different partition set among U1, . . . ,Uk. Without loss of generality, we may assume
that {v

ij
1 } = K ∩ Vij ∩ Uij , for j = 1, . . . , q. Then we obtain a flow in N of value q as follows: for j = 1, . . . , q, we set the flow

value to one on each arc (s, wij), (wij , v
ij
1 ), (v

ij
1 , uij), (uij , t).

Conversely, assume that there exists a flow of value q inN . Since all capacities of the arcs are equal to one and each vertex,
except s and t , has exactly one outgoing arc or one incoming arc, it follows that there exist q vertex disjoint paths from s to



t (not considering vertices s and t). For each such path (s, wi), (wi, v
i
j), (v

i
j, uℓ), (uℓ, t), we consider vertex vi

j in cluster Vi.
Then it follows from the construction of N and the fact that the paths are vertex-disjoint (not considering vertices s and t)
that these q vertices induce a clique intersecting q distinct clusters. �

A class of graphs C is called auto-complementary if for all G ∈ C we have Ḡ ∈ C, where Ḡ is the complement of G.

Remark 3.2. Let C be an auto-complementary class of perfect graphs. If 1-Dsel-Col is NP-complete in C, then Sel-Col+ is
NP-hard in C.

Proof. Sel-Col+ in a graphG ∈ C with a clusteringV consists in finding a clique intersecting amaximumnumber of clusters
in G. This is equivalent to finding a stable set intersecting a maximum number of clusters in (Ḡ, V). It is straightforward to
verify that 1-Dsel-Col polynomially reduces to this last problem. �

As a consequence, Sel-Col+ is NP-hard in permutation graphs (i.e., comparability graphs whose complements are also
comparability graphs; see definition below) even with compact clustering since 1-Dsel-Col is NP-complete in permutation
graphs even if each cluster in V is a stable set (sparse clustering) [8]. Note also that, if G is a perfect graph and each cluster
in V is a stable set, then χ+SEL(G, V) = ω(G) and hence it can be computed in polynomial time.

For NP-hard cases, it is natural to askwhether the problem can be approximated in polynomial time. The next proposition
gives a first approximation result for Sel-Col+ in comparability graphs which generalize permutation graphs.

Given an undirected graph G, a transitive orientation of G is the assignment of orientations to the edges of G in such a way
that if xy and yz are respectively oriented from x to y and from y to z, then there is an edge xz oriented from x to z. A graph G
is a comparability graph if its edges are transitively orientable. It is known that a graph G is a permutation graph if and only
if both G and its complement Ḡ are comparability graphs [15].

Algorithm 4 Approximation algorithm for χ+SEL in comparability graphs.
Require: A comparability graph G = (V , E) with a clustering V = {V1, . . . , Vp}.

Ensure: A selection V ′ satisfying χ(G[V ′]) ≥


χ+SEL(G, V); an optimal coloring of G[V ′]
1: Compute a transitive orientation O of G;
2: Construct partial subgraphs G1...p and Gp...1 of G (see proof of Proposition 3.3)
3: Compute a maximum clique in G1...p and in Gp...1 and let K ′ be the largest one;
4: Complete K ′ into a selection V ′ of (G, V) by greedily adding one vertex per cluster not intersecting K ′;
5: return V ′ and a minimum coloring of G[V ′].

Proposition 3.3. Let G = (V , E) be a comparability graph with a clustering V = {V1, . . . , Vp} of V . Algorithm 4 is polynomial

and approximates χ+SEL(G, V) within a ratio of


χ+SEL(G, V).

Proof. Let k = χ+SEL(G, V). Using Remark 3.1 and the fact that comparability graphs are perfect, we have k = ω+SEL(G, V).
We will show how to compute in polynomial time a clique intersecting at least

√
k clusters. Completing it into a selection

by adding one vertex per cluster not intersecting this clique we get a selection V ′ such that ω(G[V ′]) ≥
√
k.

We consider a transitive orientation O of G = (V , E) and then define two comparability graphs, G1...p and Gp...1 with
respect to this orientation. G1...p = (V , E1...p) (resp. Gp...1 = (V , Ep...1)) is a partial subgraph of G obtained by keeping only
edges xy such that x ∈ Vi, y ∈ Vj for 1 ≤ i < j ≤ p and xy is oriented from x to y (resp. from y to x) in O. It is easy to verify
that O induces a transitive orientation of both G1...p and Gp...1. Indeed assume that there are edges xy and yz in G1...p oriented
from x to y and from y to z. By definition of G1...p, x, y and z belong respectively to clusters Vi, Vj and Vℓ such that i < j < ℓ
and since O is a transitive orientation, there is an edge xz (in G) oriented from x to z which also belongs to G1...p. The same
result holds for Gp...1.

Let us consider a clique K ∗ in G of size |K ∗| = k = χ+SEL(G, V) and such that ∀i ∈ {1, . . . , p}, |K ∗∩Vi| ≤ 1. The orientation
O induces a transitive orientation of K ∗ which gives an order on its vertices. So wemay assume that K ∗ = {v1, . . . , vk} such
that vivj is oriented from vi to vj for all i and j such that 1 ≤ i < j ≤ k. We then define a permutation σ = (σ1, . . . , σk) such
that for all i ∈ {1, . . . , k}, vi ∈ Vσi . We denote by Gσ the permutation graph, of order k, associated with σ . A stable set in Gσ ,
corresponding to an increasing sub-sequence of σ , is associated with a clique in G1,...,p of the same size. Similarly, a clique
in Gσ , corresponding to a decreasing sub-sequence of σ , is associated with a clique in Gp,...,1 of the same size. So we have

ω(G1,...,p) ≥ α(Gσ ), (1)

ω(Gp,...,1) ≥ ω(Gσ ). (2)

On the other hand, since Gσ is perfect and of order k we have α(Gσ )ω(Gσ ) ≥ k. Indeed, in a perfect graph G, we have
χ(G) = ω(G) and since every color class is a stable set (hence of size less than or equal to α(G)), the number of vertices in
G is at most α(G)ω(G). Consequently, we have

max(ω(G1,...,p), ω(Gp,...,1)) ≥
√
k. (3)



Note that any clique of G1,...,p or Gp,...,1 defines a clique of G intersecting at most once each cluster since in G1,...,p and
Gp,...,1, there is no edge between vertices of a same cluster. Consequently, by computing a maximum clique of G1,...,p and
Gp,...,1 and taking the largest one, we get a clique of G intersecting at least

√
k clusters, which shows the result. Furthermore,

Algorithm 4 runs in polynomial time since determining a transitive orientation and computing a maximum clique are both
polynomial in comparability graphs [15], which concludes the proof. �

Finally, let us conclude with two remarks on the equivalence of some problems related to Sel-Col and Sel-Col+.

Remark 3.3. Let G = (V , E) be a graph and let V = {V1, . . . , Vp} be a clustering of V . Then 1-Dsel-Col is equivalent to
deciding whether ω+SEL(Ḡ, V) = p.

Remark 3.4. Let G = (V , E) be a graph and let V = {V1, . . . , Vp} be a clustering of V . Then 1-Dsel-Col is equivalent to
deciding whether χ+SEL(Ḡ, V) = p.

4. Conclusion

In this paper, we investigate the complexity of Sel-Col in graph classes motivated by various applications that were
presented in [9]. In particular, we provide NP-hardness results for Sel-Col in twin graphs and unit disk graphs (even with
specific clustering). However, we show that restricting the clustering may change the complexity status: although it is NP-
complete in interval graphs, we show that, for a fixed k, k-Dsel-Col becomes polynomial in interval graphs with compact
clustering. Similarly, Sel-Col is hard in linear interval graphs but becomes polynomial time solvable when restricted to
consecutive clustering.

In addition, we introduce a new problem, Sel-Col+, which corresponds to evaluating the cost of the worst selection and
thus provides an upper bound onχSEL.We emphasize that solving Sel-Col+ can be helpful inmany contexts:we revisit some
models for Sel-Col and show that Sel-Col+ can also be motivated by these models. We start to investigate the complexity
of this new problem in different graph classes. In this paper, we mainly focus on comparing the complexity of Sel-Col
and Sel-Col+. We give an example where Sel-Col is easy while Sel-Col+ is hard. Symmetrically we point out classes of
graphs where Sel-Col is NP-hard but solving Sel-Col+ becomes polynomial time solvable. In this case, it gives an upper
bound for the optimal value of Sel-Col. We also give an example where the hardness of Sel-Col implies the hardness of
Sel-Col+. This is the case in permutation graphs and consequently Sel-Col+ is hard in permutation graphs and thus in
comparability graphs. Finally, we give an approximation algorithm with a square-root factor performance guarantee for
Sel-Col+ in comparability graphs. We leave as an open problem to find whether it can be approximated within a constant
approximation ratio.

As further work, we plan to systematically study the complexity of Sel-Col+ in different graph classes and in particular
in the classes motivated by applications.
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