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Abstract Standard sample selection models with non-randomly censored outcomes
assume (i) an exclusion restriction (i.e., a variable affecting selection, but not the out-
come) and (ii) additive separability of the errors in the selection process. This paper
proposes tests for the joint satisfaction of these assumptions by applying the approach
of Huber and Mellace (Testing instrument validity for LATE identification based on
inequality moment constraints, 2011) (for testing instrument validity under treatment
endogeneity) to the sample selection framework. We show that the exclusion restric-
tion and additive separability imply two testable inequality constraints that come from
both point identifying and bounding the outcome distribution of the subpopulation that
is always selected/observed. We apply the tests to two variables for which the exclu-
sion restriction is frequently invoked in female wage regressions: non-wife/husband’s
income and the number of (young) children. Considering eight empirical applications,
our results suggest that the identifying assumptions are likely violated for the former
variable, but cannot be refuted for the latter on statistical grounds.
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76 M. Huber, G. Mellace

1 Introduction

The sample selection problem as discussed in Gronau (1974) and Heckman (1974)
arises when the outcome of interest is only observed for a non-randomly selected
subpopulation. This is an ubiquitous phenomenon in empirical economics. For exam-
ple, when estimating the returns to schooling or training it is an issue when only a
selective subgroup is employed, which is a condition for observing earnings. As a
second example, several studies in development and educational economics assess
the impact of school vouchers or other incentives on test scores in high school and
college, see for instance Angrist et al. (2006, 2009). In this context, sample selec-
tion bias is an issue because only a selective subgroup of students usually takes the
test.

In the presence of sample selection, Heckman (1974, 1976, 1979) proposed fully
parametric maximum likelihood and two step estimators, assuming that the errors in the
selection and outcome equations are jointly normally distributed. These assumptions
are theoretically sufficient for identification by exploiting the (known) nonlinearity
of the selection bias correction term, the so-called inverse Mill’s ratio. In practice,
however, this is often tenuous due to multicollinearity problems. Many empirical
applications therefore invoke exclusion restrictions, implying that there exist one or
several observed variables that are related to selection, but have no direct effect on the
outcome. We will refer to these variables as instruments (for selection), even though
they are not be confused with instruments for endogenous regressors in instrumental
variable models.

Exclusion restrictions are even more crucial in generalizations of the original sam-
ple selection model. For example, Cosslett (1991), Gallant and Nychka (1987), Powell
(1987), and Newey (2009) relax the distributional assumptions but maintain the sin-
gle index structure in the selection equation and linearity in the outcome equation.
In contrast, Ahn and Powell (1993) allow for a nonparametric selection equation,
whereas Das et al. (2003) identify a fully nonparametric model with additively sep-
arable errors. Finally, Newey (2007) considers a general model with non-separable
errors in the outcome equation, which comes at the cost that interesting parameters
such as partial effects are only identified in the selected subpopulation. It is worth
noting that all of the mentioned sample selection models, even the most general ones,
invoke additive separability of the unobserved term in the selection equation for rea-
sons of identifiability. As shown by Vytlacil (2002), this is equivalent to assuming
that the potential selection state of each individual increases or decreases (weakly)
monotonically in the value of the instrument. Standard sample selection models, no
matter whether parametric, semi-parametric, or non-parametric, therefore rely on two
crucial restrictions: Firstly, the exclusion restriction and secondly, the monotonicity
of selection in the instrument (or equivalently, the additive separability of the errors
in the selection equation).

Therefore, our first contribution is the proposal of tests for the joint satisfaction
of the exclusion restriction and monotonicity. To this end, we apply the approach of
Huber and Mellace (2011) originally suggested for testing instrument validity under
treatment endogeneity, which can be easily adapted to our sample selection framework.
Assuming that the variable satisfying the exclusion restriction is binary, the intuition
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Testing exclusion restrictions and additive separability in sample selection models 77

of testing is as follows. Under the exclusion restriction and monotonicity, the outcome
distribution of the ‘always selected’ (those selected irrespective of the instrument)
is point identified in the selected subpopulation not receiving the instrument. On the
other hand, the selected subpopulation receiving the instrument contains both always
selected and ‘compliers’ (whose selection state reacts to the instrument). Using the
results of Horowitz and Manski (1995), upper and lower bounds on the distribution of
the always selected can be derived in this mixed population. The exclusion restriction
and monotonicity can only be satisfied if the point identified outcome distribution
of the always selected in the absence of the instrument lies within the bounds in the
presence of the instrument, which yields two testable constraints. While testing is not
asymptotically uniformly powerful in the sense that the assumptions may be violated
even if the point identified parameter is within its bounds, a rejection asymptotically
implies the violation of at least one assumption.

It is worth noting that further tests have been proposed in the context of sample
selection models. Blundell et al. (2007) and Kitagawa (2010) suggest methods to
verify the exclusion restriction when additive separability of the unobserved term in
the selection equation is not assumed. Their framework is therefore more general
than the one considered in this paper which is, however, predominant in the empirical
literature primarily concerned with the identification of marginal effects. The test of
Blundell et al. (2007) is based on (i) bounding the outcome distribution of the total
population conditional on the instrument and (ii) verifying whether bounds crossing
occurs across different values of the instrument.1 They do not show asymptotic validity
of their inferential bootstrap procedure.

Kitagawa (2010) proves that the bounds considered in Blundell et al. (2007) are
not necessarily sharp. He provides a test relying on sharp bounds which is based on
the intuition that under the exclusion restriction, the integral over the envelope of the
conditional densities of the observed outcomes given the instrument must not be larger
than one. As a second contribution, Kitagawa (2010) also derives a testable implication
(without providing a formal test) under additive separability. Not surprisingly, the latter
increases asymptotic testing power compared to assuming the exclusion restriction
alone. We show in Link to Kitagawa (2010) in Appendix that one of our constraints
is equivalent to the implication of Kitagawa (2010). Furthermore, we also provide
a second testable constraint not considered therein that may increase finite sample
testing power. Finally, Crépon (2006) proposes a test for the exclusion restriction
at infinity; i.e., testing relies on observations that are selected with probability one,
which may not be available in a particular empirical application. In contrast, neither
our approach nor the one of Kitagawa (2010) requires some outcomes to be observed
with certainty.

Our second contribution is an empirical application of the tests. We consider two
supposed instruments frequently used in female wage regressions to control for sample
selection, where selection bias comes from the labor supply decision. The first variable
is non-wife income (such as husband’s income or other sources of family income).
Most empirical studies find that non-wife income affects female labor supply nega-

1 It has already been noticed by Manski (2003) that the exclusion restriction is violated if the identification
region defined by the bounds is empty.
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78 M. Huber, G. Mellace

tively, see for instance Mroz (1987) and Zabel (1993). However, the instrument is only
valid if it neither exhibits direct effects on the female wage, nor is related to unobserved
terms affecting wage. The latter would for instance be violated if unobserved social
and economic attributes were related both with the expected wage and the likelihood
to find a partner with a particular income level. In fact, Becker (1981) argues that
individuals of superior productivity tend to marry one another, which is in line with
the empirical finding of Nakosteen et al. (2004) that spouses tend to be economically
similar before marriage, at least in the dimension of earnings. Applying our tests to
four data sets coming from Schafgans (1998), Martins (2001), Chang (2011), and
Jeffrey Wooldridge’s LABSUP data set (available at http://fmwww.bc.edu/ec-p/data/
wooldridge/datasets.list.html), the results suggest that the identifying assumptions are
likely violated when using non-wife income as instrument.

The second supposed instrument is the number of (young) children in the household.
The intuition is that women with young kids are less likely to provide labor due to
time constraints related to child rearing. Indeed, the vast majority of empirical studies
examining the connection between fertility and female labor supply find a negative
correlation. However, the exclusion restriction, implying that the number of children
is not directly related to wages, in not undisputed. Theoretical arguments suggest
that labor supply, wages, and fertility are endogenous, see for instance the multiple
equation family model proposed by Fleisher and Rhodes (1979). For example, if
women with relatively low expected future wages had on average a higher fertility,
the exclusion restriction would fail. Considering four data sets previously analyzed
by Martins (2001), Mulligan and Rubinstein (2008), Lee (2009), and Chang (2011),
test results do, however, not point to a violation of the identifying assumptions when
relying on young children as an instrument.

The remainder of this paper is organized as follows. Section 2 characterizes the
sample selection model and its identifying assumptions. Section 3 derives the testable
implications of the exclusion restriction and monotonicity/separability. Empirical
applications to the estimation of female wage equations are presented in Sect. 4.
Section 5 concludes.

2 The selection model

This section introduces the sample selection model along with the assumptions to be
tested. Denote by Y a (scalar) continuous outcome variable with bounded support,
by X a scalar or a vector of regressor(s), and by U an unobserved term affecting the
outcome. The outcome is modeled as

Y = ϕ(X) + U, (1)

where ϕ(·) denotes some function (with ϕ(X) = Xβ if the outcome is linear in the
regressors). E.g., when assessing the returns to schooling, Y is the wage, X may be
education and labor market experience, and U are unobserved factors such as ability
and motivation. Researchers and policy makers are typically interested in parameters
like the conditional expectation E[Y |X = x] or the marginal or average effect of X .
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Testing exclusion restrictions and additive separability in sample selection models 79

However, in the presence of sample selection, Y is only observed for a non-random
subpopulation, e.g., the employed (while X is assumed to be observed for the entire
population). To address this problem, let S ∈ {1, 0} be an observed binary selection
indicator which is 1 if the outcome of some individual is observed and 0 otherwise.
Furthermore, denote by W and V observed and unobserved terms affecting selec-
tion, respectively. We assume the following standard selection model with additive
separability of the unobserved term:

S = I {ζ(W ) + V ≥ 0}, (2)

where I {·} denotes the indicator function and ζ(·) is some function of W .
The sample selection problem arises when the unobserved terms V and U are not

independent. In a general model set-up (without imposing tight parametric assump-
tions) a first requirement for identification is that at least one variable in W satisfies
an exclusion restriction w.r.t. Y, see for example, the discussion in Newey (2009).
That is, there exists one variable in W that does not belong to X (which affects the
outcome). In this case, we may write W = (X, Z), where Z denotes the instrument(s)
not appearing in the outcome equation. Furthermore, the exclusion restriction requires
that Z is independent of the unobserved term U in the outcome equation and conse-
quently also of the unobservable V in the selection equation, as the latter is related to
U . Therefore, a commonly invoked assumption is joint independence of (X, Z) and
(U, V ), as for instance in Newey (2007). Including X in the assumption is necessary
if we want to give a causal interpretation to the regressors. However, here we are just
concerned with testing so that the following conditional version of the assumption
(given X ) suffices.

Assumption 1 Z is independent of (U, V )|X (exclusion restriction).

It is interesting to note that virtually all selection models concerned with point
identification, including the nonparametric framework of Newey (2007), rely (besides
the exclusion restriction) on the additive separability of the unobserved term in the
selection model as postulated in Eq. (2). The reason is that even in general models,
identification of causal effects of X typically relies on the index restriction E(U |S =
1, X, Z) = E(U |S = 1, Pr(S = 1|X, Z)), see for instance Newey (2009), which
allows using Pr(S = 1|X, Z) as a control function.2 As discussed in Das et al. (2003),
this index restriction is implied by assuming (2) along with joint independence of
(X, Z) and (U, V ) (at least conditional on Pr(S = 1|X, Z)) and a strictly monotonic
cdf of V . Furthermore, Vytlacil (2002) shows that assuming a selection model with
additive separability is equivalent to assuming that the potential selection state of each
individual increases or decreases weakly monotonically in the instrument. To translate
(2) into the monotonicity assumption, we use the potential outcome notation (see for
instance Rubin 1974) and denote by S(z) the potential selection state if the instrument

2 In contrast, Mealli and Pacini (2008) consider identification (for binary treatment variables) when condi-
tioning on a binary instrument directly rather than using Pr(S = 1|X, Z) as a control function. In this case,
point identification is not obtained in general, but requires additional assumptions.
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80 M. Huber, G. Mellace

Table 1 Types
Type (T ) Potential selection states

a (always selected) S(1) = 1, S(0) = 1

c (compliers) S(1) = 1, S(0) = 0

d (defiers) S(1) = 0, S(0) = 1

n (never selected) S(1) = 0, S(0) = 0

Z was exogenously set to z: S(z) = I {ζ(X, z) + V ≥ 0}. For a binary instrument,
monotonicity (given X ) implies the following:

Assumption 2 Pr(S(1) ≥ S(0)|X) = 1 (positive monotonicity) or Pr(S(1) ≤
S(0)|X) = 1 (negative monotonicity).

We will subsequently only consider positive monotonicity of S in Z , as the case
of negative monotonicity is symmetric. Furthermore, we will omit conditioning on X
in our discussion for the sake of ease of notation. In the empirical application, both
unconditional versions of Assumptions 1 and 2 (without controlling for X ) as well
as conditional ones (given X ) will be considered. For the latter case, the reader may
regard the following discussion on testing to take place within cells defined upon X .

3 Testing

In this section, we show how the joint satisfaction of Assumptions 1 and 2 can be
tested by a straightforward application of the approach of Huber and Mellace (2011)
to the sample selection problem. To keep the exposition simple, we derive the testable
implications for a binary instrument Z . However, the results could be easily extended
to multi-valued discrete instruments with bounded support in an analogous way as in
Huber and Mellace (2011). Testing is based on the fact that under Assumptions 1 and
2, the outcome distribution of the subpopulation of always selected can be both point
identified and bounded. The point must lie within its bounds, otherwise the assump-
tions are necessarily violated. To formally discuss this result, we use the principal
stratification framework of Frangakis and Rubin (2002) and a similar notation as in
Angrist et al. (1996) to divide the population into four types according to the reaction
of selection to the instrument. The always selected are those with observed outcomes
irrespective of the value of the instrument, the compliers are selected under Z = 1, but
not under Z = 0, the defiers are selected under Z = 0, but not under Z = 1, and the
outcomes of the never selected are never observed. Table 1 displays the relationship
between the types, denoted by T, and the potential selection states.

The type of a subject is not directly observed, because either S(1) or S(0) but
never both are known for any individual. To see this, note that the observed values
of Z and S define four observed subgroups, which all are mixtures of two types. A
further complication is that outcomes are only observed for those with S = 1.3 Table 2

3 This issue does not arise in the endogenous treatment framework of Huber and Mellace (2011), where
all outcomes are observed.
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Testing exclusion restrictions and additive separability in sample selection models 81

Table 2 Observed subgroups
and types

Observed values Z , S Possible types Y observed

Z = 1, S = 1 Either a or c Yes

Z = 1, S = 0 Either d or n No

Z = 0, S = 1 Either a or d Yes

Z = 0, S = 0 Either c or n No

Table 3 Observed conditional
probabilities and type
proportions

Observed cond. selection prob. Type proportions

P1|1 ≡ Pr(S = 1|Z = 1) πa + πc

P0|1 ≡ Pr(S = 0|Z = 1) πn

P1|0 ≡ Pr(S = 1|Z = 0) πa

P0|0 ≡ Pr(S = 0|Z = 0) πc + πn

summarizes these results. Assumptions 1 and 2 nevertheless allow point identifying the
proportions of the types (T ∈ {a, c, d, n}), denoted by πT . By Assumption 2, defiers
do not exist because selection increases weakly monotonically in the instrument such
that πd = 0. If follows that observations with Z = 1, S = 0 (with Z = 0, S = 1)
are necessarily never selected (always selected).4 By Assumption 1, Z and V are
independent so that the share of any type conditional on the instrument is equal to its
unconditional proportion in the entire population. Therefore, the relationship between
some observed conditional selection probability given the instrument, Pr(S = s|Z =
z), henceforth denoted by Ps|z, and the latent type proportions is as shown in Table 3.

It is easy to see that all type proportions are identified, which will be used to bound
the outcome distribution of the always selected. To this end, we introduce some further
notation. Denote by f (y|Z = z, T = t) the pdf of Y = y for a particular type T = t
given Z .5 Furthermore, let f (y|Z = z, S = s) denote the conditional pdf of Y = y
given Z and S. As outlined in Table 2, only two of possibly four conditional pdfs
are observed: f (y|Z = 1, S = 1) and f (y|Z = 0, S = 1). Equivalent to Imbens
and Rubin (1997) in the context of treatment endogeneity, it follows that the former
is a mixture of the always selected and the compliers, where the mixing proportions
correspond to the relative shares of types in the conditional outcome distribution.

f (y|Z = 1, S = 1) = πa

πa + πc
· f (y|Z = 1, T = a) + πc

πa + πc

· f (y|Z = 1, T = c). (3)

Table 3 implies that the mixing proportions are identified by πa
πa+πc

= P1|0
P1|1 and

πc
πa+πc

= P1|1−P1|0
P1|1 = 1 − P1|0

P1|1 , which allows bounding the outcome distributions of

4 For a similar result in the context of selection models see Lee (2009), who in contrast to this paper
considers monotonicity of selection in a binary treatment.
5 Note that the instrument Z and the type T uniquely determine the value of the selection indicator S such
that conditioning on the latter is redundant.
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82 M. Huber, G. Mellace

either type in (3). To this end, let q correspond to the proportion of always selected
in the mixed population: q = P1|0

P1|1 . Furthermore, denote by yq the qth conditional
quantile in the conditional outcome distribution given Z = 1 and S = 1, i.e., yq =
G−1

Y |Z=1,S=1(q), where G is the cdf. By the results of Horowitz and Manski (1995)
we then obtain the following sharp bounds on the pdf of Y among the always selected
in the mixed population:

[0, 1] ∩
[

f (y|Z = 1, S = 1) − (1 − q)

q
,

f (y|Z = 1, S = 1)

q

]

for all y in the support of Y. (4)

This bounding rule holds for probability measures (also other than the pdf) in general.
To extend the discussion to broader definitions of probabilities, let Pr(Y ∈ A|Z =
z, S = 1) denote the conditional probability that the value of Y belongs to some subset
A given S = 1 and Z = z. For example, for some value y in the support of Y, A may
be defined as (−∞, y] to obtain the cdf. Then, the probability of Y ∈ A among the
always selected in the mixed population is bounded by

[0, 1] ∩
[

Pr(Y ∈ A|Z = 1, S = 1) − (1 − q)

q
,

Pr(Y ∈ A|Z = 1, S = 1)

q

]

for all A in the support of Y. (5)

In addition to the identification of bounds, our model assumptions also point identify
the pdf/probability measures of the outcome of the always selected. As defiers do not
exist, it holds for all y and A in the support of Y, respectively, that

f (y|Z = 0, S = 1) = f (y|Z = 0, T = a) and

Pr(Y ∈ A|Z = 0, S = 1) = Pr(Y ∈ A|Z = 0, T = a). (6)

Finally, by the exclusion restriction, Pr(Y ∈ A|Z = 1, T = a) = Pr(Y ∈ A|Z =
0, T = a) = Pr(Y ∈ A|T = a), otherwise the instrument Z would affect Y via U.

This implies that Pr(Y ∈ A|Z = 0, T = a), the point identified probability measure
of Y among always selected given Z = 0, S = 1, must lie within the bounds of
Pr(Y ∈ A|Z = 1, T = a) in the mixed population with Z = 1, S = 1. If this is
not the case, either the exclusion restriction, or monotonicity, or both assumptions are
necessarily violated. Hence, by Assumptions 1 and 2 it must hold that6

Pr(Y ∈ A|Z = 1, S = 1) − (1 − q)

q
≤ Pr(Y ∈ A|Z = 0, S = 1) ≤

Pr(Y ∈ A|Z = 1, S = 1)

q
for all A in the support of Y, (7)

6 In Link to Kitagawa (2010) in Appendix we show how this result compares to Kitagawa (2010), who
derives a related testable implication based on comparable model assumptions.
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which yields two testable inequality constraints:

H0 :
(

Pr(Y∈A|Z=1,S=1)−(1−q)
q − Pr(Y ∈ A|Z = 0, S = 1)

Pr(Y ∈ A|Z = 0, S = 1) − Pr(Y∈A|Z=1,S=1)
q

)
≡

(
θ

p
1

θ
p
2

)
≤

(
0
0

)
. (8)

(8) refers to any probability measure A of the outcome, including its density function.
One can therefore construct tests with multiple inequality constraints by using several
subsets A. The number of constraints obtained is twice the number of probability
measures considered.

In addition to probability measures, we can analogously to Huber and Mellace
(2011) also bound the mean outcome of the always selected by making use of trimmed
averages in the mixed population, see also the related results in Lee (2009):

[E(Y |Z = 1, S = 1, Y ≤ yq), E(Y |Z = 1, S = 1, Y ≥ y1−q)], (9)

i.e., sharp bounds on the mean outcome of the always selected are obtained by aver-
aging Y over the upper and lower shares of the distribution which correspond to the
proportion of always selected in the mixed population (given Z = 1 and S = 1).
Furthermore and in analogy to (6), the mean outcome among the always selected is
point identified:

E(Y |Z = 0, T = a) = E(Y |Z = 0, S = 1). (10)

Under Assumptions 1 and 2, the point identified mean outcome of the always selected
conditional on Z = 0, S = 1, which is given in (10), must lie within its bounds in the
mixed population with Z = 1, S = 1, as provided in (9). It therefore has to hold that

E(Y |Z = 1, S = 1, Y ≤ yq) ≤ E(Y |Z = 0, S = 1)

≤ E(Y |Z = 1, S = 1, Y ≥ y1−q). (11)

This again implies two inequality constraints:

H0 :
(

E(Y |Z = 1, S = 1, Y ≤ yq) − E(Y |Z = 0, S = 1)

E(Y |Z = 0, S = 1) − E(Y |Z = 1, S = 1, Y ≥ y1−q)

)
≡

(
θm

1
θm

2

)
≤

(
0
0

)
.

(12)

Note that if Assumptions 1 and/or 2 are violated, at most one of the two constraints
in (8) and (12), respectively, is binding, because violations of the respective first and
second constraint are mutually exclusive. Even if no inequality constraint is binding,
the assumptions may not be satisfied if the violations are small enough so that the
point identified parameter of the always selected still lies within the bounds in the
mixed population. Therefore, testing power increases as the proportion of compliers
decreases, implying that the bounds on the probabilities and mean outcomes of the
always selected become tighter.
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84 M. Huber, G. Mellace

To test (8) and (12) in the applications, we use the method of Chen and Szroeter
(2012) for testing multiple inequality constraints, which has several desirable prop-
erties. First, it pre-estimates the constraints that are (close to being) violated to base
the test statistic only on these constraints, which increases power. Second, testing is
(in the spirit of Horowitz 1992) based on indicator smoothing of the functions indi-
cating whether the constraints are violated at the origin of the constraints, where the
distribution of the test statistic is discontinuous. After smoothing, standard asymptotic
theory applies to the test statistic such that bootstrapping is not necessarily required to
approximate its distribution as in other tests. Finally, Chen and Szroeter (2012) show
that their test has correct asymptotic size in the uniform sense under certain regularity
conditions,7 which is desirable given that the test statistic’s asymptotic distribution is
discontinuous w.r.t. the number of binding constraints. In the applications, we use the
standard normal cdf as smoothing function for the indicators, see Chen and Szroeter’s
test algorithm in Appendix for more details on the implementation of the test.

4 Applications

In this section, we present eight applications to test Assumptions 1 and 2 when con-
sidering two variables prominently used as instruments in sample selection models
concerned with the estimation of female wage equations. The first variable is non-
wife or husband’s income in Martins (2001), Schafgans (1998), and Chang (2011),
and the instructional data set “LABSUP” of Wooldrigde (http://fmwww.bc.edu/ec-p/
data/wooldridge/datasets.list.html). The second one is the number of (young) children
in the household available in Martins (2001), Mulligan and Rubinstein (2008), Chang
(2011), and Lee (2009). In our analysis we discretize both instruments. In three out
of four cases, the first instrument is equal to one if non-wife or husband’s income is
larger than the median value in the sample and zero otherwise. The second instrument
indicates whether the number of children is larger than zero. By discretization, we
sacrifice asymptotic testing power. On the other hand, this will help to ensure that the
number of observations is not too small when investigating whether Assumptions 1
and 2 hold conditionally in subsamples defined upon observables X. We test the con-
straints on the mean outcome of the always selected postulated in (12), as well as
on the probability measures, see (8). In the latter case, we use four subsets A which
are defined by an equidistant grid over the support of the observed outcomes. This
provides us with eight testable inequality constraints.8

The results are presented in Tables 4 and 5. Under the satisfaction of Assumptions 1
and 2, the third column provides the complier or defier share (depending on whether the
parameter is positive or negative), which is relevant because testing power decreases in
its absolute value. The fourth column reports the standardized maximum of the mean
constraints in (12); i.e., the maximum of (θm

1 , θm
2 ) is divided by the standard deviation

7 As discussed in Chen and Szroeter (2012), a sufficient condition for correct asymptotic size in the uniform
sense is that the first four moments exist for each of the i.i.d. data points used to estimate the constraints.
8 Which number and definition of the subsets A is optimal for testing is an unsolved issue. We therefore
also considered more or less subsets, but the results did not differ in an important way and are for this reason
not reported here.
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Table 4 Applications—non-wife income

Study n % comp. St. dist p-val(mean) p-val(prob)

Schafgans (1998)—female sample 2,770 0.001 0.658 0.000 0.001

Malay (M) 1,477 0.053 0.532 0.001 0.078

M, 11 or 12 years of schooling 296 0.032 0.571 0.007 0.131

M, 11/12 years of schooling,
age 25–35, pot.exp.10–20 years

56 0.078 0.480 0.202 0.361

Martins (2001)—full sample 2,338 0.033 0.340 0.000 0.000

Years of schooling <12 1,999 −0.013 0.143 0.126 0.002

Years of schooling <12, pot. exp.
20–30 years

732 −0.002 0.306 0.009 0.000

Years of schooling <12, pot. exp.
20/21 years

165 −0.002 0.359 0.099 0.014

Chang (2011)—1985 sample 1,627 −0.049 0.247 0.000 0.000

White (W) 1,282 −0.067 0.185 0.004 0.000

W, 12 years of schooling 609 −0.058 0.278 0.004 0.040

W, 12 years of schooling,
age 30–35, recent job

89 −0.116 0.450 0.037 0.088

Wooldridge—full sample
of mothers

31,857 0.034 0.134 0.000 0.046

Hispanic (H) 18,897 0.021 0.064 0.082 0.476

H, <10 years of schooling 7,085 −0.003 0.192 0.014 0.716

H, 12 years of schooling, age 25 341 −0.067 0.245 0.176 0.981

of the observed outcomes. A negative value or zero implies that no constraint is
violated, while the converse is true for positive differences. This standardized distance
(denoted by st.dist) therefore indicates how severely a constraint is violated (however,
without saying anything about precision). Columns 5 and 6 contain the p values of the
Chen and Szroeter (2012) tests of the mean- and probability-based constraints (12)
and (8), denoted by p-val(mean) and p-val(prob), respectively.

We first consider the data of Schafgans (1998) which come from the Second
Malaysian Family Life Survey (MFLS-2) conducted between August 1988 and Janu-
ary 1989 in Peninsular Malaysia. The author investigates the wage gap between ethnic
Chinese and Malays for both males and females. Here, we only use the female sub-
sample with non-missing information on unearned income, which consists of 2,770
observations. The selection variable S equals 1 if an individual is a wage worker and 0
otherwise. The category of non-wage workers therefore also includes self-employed
and individuals engaged in home production. The outcome variable Y is the log of
the hourly wage rate, which is only observed conditional on S = 1. In contrast, the
regressors X are observed for the entire sample and comprise potential experience,
education, and a dummy for living in an urban area. The instrument Z to be tested
is unearned income, i.e., income not coming from paid work. We dichotomize this
variable such that it is equal to one whenever unearned income is larger than zero,
which is the case for 1,430 observations.

The tests reject Assumptions 1 and/or 2 in the entire sample on the 0.1 % level
of significance. Also the rather large standardized distance of 0.658 indicates that the
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point estimate of the mean outcome of the always selected is well outside its bounds.
When considering the subsample with Malay ethnicity, the mean- and probability-
based tests reject the assumptions at the 0.1 and 10 % levels, respectively. The violation
of the mean constraints remains highly significant when conditioning on both Malay
ethnicity and 11 or 12 years of schooling. Finally, we additionally restrict the sample
to include only individuals in the age bracket of 25–35 years with 10–20 years of
potential experience. Only then both tests are not significant at any conventional level
any more, which, however, may be due to the small sample size of just 56 observations
and the related low finite sample power. As a further worrisome matter in addition to
the test results, note that compliance remains always positive even when conditioning
on observed characteristics, while in the remaining three applications, conditional
‘compliance’ is negative (which is more in line with the empirical literature). This
points to the violation of the monotonicity assumption, because the former is consistent
with the nonexistence of defiers and the latter with the nonexistence of compliers.

Our second application is based on Portuguese female labor market data from Mar-
tins (2001), who compared parametric and semiparametric estimators of sample selec-
tion models. The sample stems from the 1991 wave of the Portuguese Employment
Survey and consists of 2,339 married women aged below 60 years whose husbands
earned labor income. The outcome variable is log hourly wage, which is only observed
for those 1,400 women who participate in the labor market (such that S = 1). The
regressors X include years of education and potential experience. The instrumental
variable Z is the log of husband’s wage, which we use to create a binary variable indi-
cating whether husband’s wage is higher than the median (11.085). Applying our tests
to the full sample (i.e., testing Assumptions 1 and 2 unconditionally) clearly rejects
the identifying assumptions. When restricting the data to individuals with a low level
of education (less than 12 years), the mean-based test is only borderline significant,
while the p value of the probability-based test is again close to zero. Conditioning on
particular brackets of potential education on top of the previous restrictions yields p-
values below 10 % for both tests. This suggests that Assumptions 1 and 2 are violated
given the regressors available in Martins (2001).

Chang (2011) proposes a simulation estimator for two-tiered dynamic panel tobit
models which is applied to a 9-year panel data set from the Panel Study of Income
Dynamics (PSID). The sample contains observations for 1,627 married women
between 1984 and 1992 who are aged between 19 and 60 years in 1985. Here, we
focus on the 1985 wave. The selection indicator S is equal to one if the woman pro-
vided a positive supply of hours worked in that year. Wife’s income in 1985 serves
as outcome variable Y . The instrument Z is husband’s income 1985, the median of
which is 25,228 USD. Furthermore, the data contain information on education, age,
race, and the recent employment history as conditioning set X . The p values of the
tests are close to zero when considering the entire sample or the subsample of whites.
Either test statistic also remains significant at the 10 % or a lower level when control-
ling for (i) white ethnicity and years of schooling and (ii) white ethnicity, years of
schooling, the age bracket 30–35 years, and recent employment. The results therefore
suggest that our assumptions are unlikely to hold.

The fourth application we consider is the instructional “LABSUP” data set on
married mothers in the US provided by J. Wooldridge on his website of textbook data
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Table 5 Applications—young kids

Study n % comp. St. dist p-val(mean) p-val(prob)

Martins (2001)—full sample 2,338 0.058 −0.097 0.994 0.982

Years of schooling <12 1,999 0.037 −0.051 0.959 0.559

Years of schooling <12, pot. exp.
20–30 years

732 −0.113 −0.247 1.000 0.994

Years of schooling <12, pot. exp.
20/21 years

165 −0.199 −0.382 1.000 0.984

MR (2008)—1995–1999
married females

53,966 −0.151 −0.351 1.000 0.735

High school graduate (hsg) 18,383 −0.130 −0.289 1.000 0.999

hsg, pot. exp. 20–30 years 7,889 −0.107 −0.159 0.997 0.910

hsg, pot. exp. 20 years, south 239 −0.017 −0.021 0.895 0.679

Lee (2009)—female sample 4,044 −0.046 −0.024 0.815 0.985

Married, black (B) 2,021 −0.050 0.002 0.722 0.988

Married, B, years of schooling <12 1, 475 −0.058 −0.163 1.000 1.000

Married, B, years of schooling <12,
no recent job

699 −0.030 −0.294 0.996 0.938

Chang (2011)—1985 sample 1,627 −0.110 0.016 0.463 1.000

White (W) 1,282 −0.134 0.043 0.371 1.000

W, 12 years of schooling 609 −0.126 0.040 0.480 1.000

W, 12 years of schooling,
age 30–35, recent job

89 −0.034 0.219 0.462 0.927

sets (http://fmwww.bc.edu/ec-p/data/wooldridge/datasets.list.html). For a sample of
Blacks and Hispanics, it contains similar information as the U.S. Census Public Use
Micro Samples used by Angrist and Evans (1998) to estimate the effect of fertility
on female labor supply. With 31,857 observations, it is substantially larger than the
samples investigated so far. The outcome variable is mother’s labor income per year
in 1,000 USD, which is only observed for the 18,789 individuals providing positive
labor supply (S = 1). The regressors X include ethnicity, years of schooling, and
age. The instrument Z is non-wife income per year in 1,000, the median of which
is 29.399. Applied to the entire data, the tests again suggest that our assumptions do
not hold. When considering the subsamples of (i) Hispanics and (ii) Hispanics with
low education, the probability-based test statistic becomes insignificant, but the mean-
based test still rejects the identifying assumptions at the 10 and 5 % levels, respectively.
Finally, we restrict the sample to 25 years old Hispanics with high school education.
Only then, the p values of both tests exceed the 10 % level, albeit the standardized
distance of 0.245 still points to a violation of Assumptions 1 and/or 2.

We now turn to our second supposed instrument, (young) children in the household.
We first reconsider the data of Martins (2001), who uses kids under three as instrument,
too. This time, however, testing does not point to a violation of the exclusion restriction
and/or monotonicity. When considering the entire sample and the same subsamples as
before, the p values are quite large. Also the standardized distance remains negative
throughout, implying that none of the constraints are binding.
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Mulligan and Rubinstein (2008) investigate two repeated cross sections (1975–
1979) and (1995–1999) of the US Current Population Survey (CPS) to determine
the selection of females into the full-time work force over time using Heckman two-
step estimation. Individuals are classified as working (S = 1) if they work 35+ h
per week and at least 50 weeks during the year. Self-employed and persons in the
military, agriculture, or private household sectors as well as individuals with incon-
sistent reports on earnings or with allocated earnings are excluded from the sam-
ple with observed wages, see Mulligan and Rubinstein (2008) for further details.
The outcome variable is log hourly wage, which is computed based on total annual
earnings deflated by the US Consumer Price Index. Here, we focus on the subsam-
ple of married white females aged between 25 and 54 years in the second repeated
cross section, in total 53,966 observations. The instrument Z is the incidence of chil-
dren aged 0–6 in the household. The regressors X include education, potential work
experience, the marital status, and regional dummies. Assumptions 1 and 2 are nei-
ther rejected in the entire sample, nor in subsamples with (i) high school gradua-
tion, (ii) high school graduation and potential experience of 20–30 years, and (iii)
high school graduation, 20 years of potential experience and living in the Southern
states.

Next, we consider data from a labor market policy experiment which was conducted
in the U.S. in the mid-1990s in order to assess the publicly funded Job Corps program.
This program targeted young individuals (aged 16–24 years) that had a legal resi-
dence in the U.S. and came from a low-income household, see Schochet et al. (2001)
for further details. It provided participants with approximately 1,100 h of vocational
training and education as well as with housing, board, and health services over an
average duration of roughly eight months. Here, we use the female subsample of the
experimental data as also analyzed by Lee (2009), which includes 4,044 observations.
The selection indicator S states if someone is working one year after program start,
which is the case for 1,454 individuals. The outcome Y is the hourly wage. The base-
line survey prior to the program contains (among other factors) information on the
marital status, ethnicity, education, and recent labor market history, which serve as
regressors X. The instrument Z is the incidence of children in the household. We
do not find violations of Assumptions 1 and 2, neither in the entire sample, nor in
subsamples defined upon marital status, ethnicity, low education, and recent unem-
ployment.

In our last application, we return to Chang (2011), who uses the number young chil-
dren as instrument, too. Our binary Z indicates whether at least one child under the age
of six is present in the household. Relying on the same sample restrictions as before,
all p values are considerably larger than 10 %. However, the standardized distances
are positive throughout, indicating that one constraint is binding (albeit insignificantly
so).

We conclude that the tests do not provide evidence against Assumptions 1 and
2 when using young children as instrument. In contrast, our results evoke serious
concerns about non-wife/husband’s income or similar variables. This is bad news
for the literature on female wage equations, because in general, at least one ele-
ment in Z needs to be continuous when using flexible (semi- or non-parametric)
sample selection models. With this respect, non-wife income appeared to be much
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more suitable than the number of children, which typically consists of very few
mass points. However, our tests suggest that non-wife income should not be used
as instrument, at least conditional on the regressors commonly found in applica-
tions.

5 Conclusion

This paper has proposed tests for the joint satisfaction of two identifying assumptions
in sample selection models by applying the approach of Huber and Mellace (2011)
(who consider the conceptually different framework of treatment endogeneity). Sam-
ple selection models commonly invoke two restrictions: (i) at least one variable is
correlated with selection but does not directly affect the outcome (exclusion restric-
tion) and (ii) the unobserved term in the selection equation is additively separable.
We have shown that these assumptions allow us to both bound and point identify the
outcome distribution of the always selected. As the point must lie within the bounds,
this provides us with two testable inequality constraints. Furthermore, we have tested
the identifying assumptions in eight empirical applications of female wage regres-
sions where the exclusion restriction was invoked for two different variables: non-wife
income and the number of young children. Our results suggest that the assumptions are
likely violated for non-wife income, at least conditional on the regressors commonly
available in such studies. In contrast, the tests do not reject the identifying assumptions
for the number of young children.
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Appendix

Link to Kitagawa (2010)

The subsequent discussion links the testable implications of Sect. 3 to Kitagawa (2010),
who derives a testable implication based on comparable model assumptions. Consid-
ering only positive monotonicity, Kitagawa (2010) shows in his Proposition 2.3 that
under Assumptions 1 and 2,

f (y, S = 1|Z = 0) ≤ f (y, S = 1|Z = 1) for all y in the support of Y, (13)

i.e., the joint density of Y and S = 1 given Z = 1 must nest the joint density
of Y and S = 1 given Z = 0 for any value of Y. Rearranging terms such that
f (y, S = 1|Z = 1) − f (y, S = 1|Z = 0) ≥ 0 gives the intuitive interpretation that
the pdf of the compliers’ outcome cannot be smaller than zero, as densities must not
be negative.
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Note that (7) in Sect. 3 is equivalent to

Pr(Y ∈ A, S = 1|Z = 1)

P1|0
− P1|1 − P1|0

P1|0
≤ Pr(Y ∈ A, S = 1|Z = 0)

P1|0

≤ Pr(Y ∈ A, S = 1|Z = 1)

P1|0
(14)

for all A in the support of Y, because

Pr(Y ∈ A|Z = 1, S = 1) − (1 − q)

q
= Pr(Y ∈ A, S = 1|Z = 1)

q · Pr(S = 1|Z = 1)
− (1 − q)

q

= Pr(Y ∈ A, S = 1|Z = 1)

P1|0
− P1|1 − P1|0

P1|0
,

Pr(Y ∈ A|Z = 1, S = 1)

q
= Pr(Y ∈ A, S = 1|Z = 1)

q · Pr(S = 1|Z = 1)

= Pr(Y ∈ V, D = 1|Z = 1)

P1|0
,

Pr(Y ∈ A|Z = 0, S = 1) = Pr(Y ∈ A, S = 1|Z = 0)

P1|0
,

by using basic probability theory. (14) in turn implies that for all A in the support of Y,

Pr(Y ∈ A, S = 1|Z = 1) − (P1|1 − P1|0) ≤ Pr(Y ∈ A, S = 1|Z = 0)

≤ Pr(Y ∈ A, S = 1|Z = 1), (15)

and when applied to the pdf, that for all y in the support of Y

f (y, S = 1|Z = 1) − (P1|1 − P1|0) ≤ f (y, S = 1|Z = 0)

≤ f (y, S = 1|Z = 1), (16)

i.e., (16) yields one additional testable implication compared to (13). If we rearrange
the first part in (15) Pr(Y ∈ A, S = 1|Z = 1) − (P1|1 − P1|0) ≤ Pr(Y ∈ A, S =
1|Z = 0) to be Pr(Y ∈ A, S = 1|Z = 1) − Pr(Y ∈ A, S = 1|Z = 0) ≤ (P1|1 −
P1|0), our additional implication gets an intuitive interpretation: The joint probability
of being a complier and having a particular value of the outcome (and any sum of
joint probabilities defined by non-overlapping subsets A) must not be larger than the
unconditional probability of being a complier, because

∫
[ f (y, S = 1|Z = 1) − f (y, S = 1|Z = 0)]dy = P1|1 − P1|0. (17)

It is worth noting that if testing is based on subsets A that are non-overlapping
and jointly cover the entire support of Y, then our additional testable implication in
(16) is are already taken into account by (13) and thus redundant. The prevalence of
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some Pr(Y ∈ A, S = 1|Z = 1) − Pr(Y ∈ A, S = 1|Z = 0) > (P1|1 − P1|0) then
necessarily implies the existence of at least one distinct A′ for which Pr(Y ∈ A′, S =
1|Z = 1) − Pr(Y ∈ A′, S = 1|Z = 0) < 0 so that (13) is violated, too. Therefore,
power gains from the additional testable implication might possibly only be realized
when using subsets A that overlap (so that violations may be averaged out) and/or do
not cover the entire support of Y, see also the discussion in Huber and Mellace (2011).

Chen and Szroeter’s test algorithm

This section provides the algorithm of the Chen and Szroeter (2012) test when testing
the constraints on the mean outcome given in (12), but testing the probability con-
straints in (8) is analogous. Let θ̂ denote the sample analog of θ = (θm

1 , θm
2 )′. The

algorithm can be sketched as follows:

1. Estimate the vector of parameters θ̂ and the asymptotic variance Ĵ of
√

n · (θ̂ −θ).

2. Let η̂i = 1/

√
Ĵi , i = 1, 2, where Ĵi is the ith element of the main diagonal

of Ĵ , and compute the smoothing function �̂i (δ
−1
n · η̂i · θ̂i ) = 
(δ−1

n · η̂i · θi ),

where 
 is the standard normal cdf and the tuning parameter δn is a sequence
satisfying δn → 0 and

√
n · δn → ∞ as n → ∞. In the applications, we choose

δn =
√

2·ln(ln(n))
n · σ̂θi , where σ̂θi is the estimated standard deviation of the ith

inequality constraint.
3. Compute the approximation term �̂i = φ(δ−1

n · η̂i · θ̂i ) · 1
δn ·√n

, i = 1, 2, with φ

being the standard normal pdf.

4. Define the vectors �̂ =
(
�̂1(δ

−1
n · η̂1 · θ̂1), �̂2(δ

−1
n · η̂2 · θ̂2)

)T
, �̂ =

(
�̂1, �̂2

)T
,

ι2 = (1, 1)T , �̂ = diag( Ĵ1, Ĵ2).

5. Let Q̂1 = √
(n) · �̂T �̂θ̂ − ιT2 �̂ and Q̂2 =

√
�̂T �̂ Ĵ�̂�̂.

6. Compute the p-value as p̂ =
{

1 − 

(

Q̂1

Q̂2

)
if Q̂2 > 0

1 if Q̂2 = 0.
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