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Abstract: The atomic disorder and the vibrational properties of Pd nanocubes have been studied 
through a combined use of X-ray diffraction and molecular dynamics simulations. The latter show 
that the trend of the mean square relative displacement as a function of the radius of the 
coordination shells is characteristic of the nanoparticle shape and can be described by a combined 
model: A correlated Debye model for the thermal displacement and a parametric expression for the 
static disorder. This combined model, supplemented by results of line profile analysis of the 
diffraction patterns collected at different temperatures (100, 200, and 300 K) can explain the 
observed increase in the Debye–Waller coefficient, and shed light on the effect of the finite domain 
size and of the atomic disorder on the vibrational properties of metal nanocrystals. 
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1. Introduction 

The mean square displacement (MSD, <u2>) provides a direct connection between experimental 
observations and atomistic models for the study of the vibrational properties of crystalline phases. In 
fact, MSD can be obtained from different spectroscopic techniques, including (X-ray and neutron) 
scattering [1], X-ray absorption spectroscopy (XAS) [2], Raman spectroscopy [3,4], as well as low 
energy electron diffraction (LEED) [5] and Mössbauer spectroscopy [6], which focus more selectively 
on the contribution of the surfaces. In the field of atomistic modelling, on the other hand, the MSD is 
directly obtainable from simulations of molecular dynamics (MD), tracing atomic positions over time 
[7], to represent the vibrational dynamics of the systems studied. 

In monoatomic systems such as metal nanocrystals, the MSD provides a direct estimate of the 
average energy of the vibration modes, E. If the metal atom is approximated as an Einstein oscillator, 
of independent mass m and average vibration frequency 𝜔𝜔, the MSD is [8]: 

< 𝑢𝑢2 >= 3𝐸𝐸
𝑚𝑚𝜔𝜔2 = 3ℏ

𝑚𝑚𝜔𝜔
�1
2

+ 𝑛𝑛(𝜔𝜔,𝑇𝑇)� ≃ 3𝑘𝑘𝐵𝐵𝑇𝑇
𝑚𝑚𝜔𝜔2 , (1) 

where 𝑛𝑛(𝜔𝜔,𝑇𝑇) is the phonon number, given by the Bose–Einstein distribution. From here it is quite 
straightforward to identify the link between MSD and thermal capacity, and other thermodynamic 
quantities characteristic of the nanocrystal. It is of course possible to write expressions more complete 
than Equation (1), taking into account the whole phonon spectrum, summing over the normal modes 
of vibration, considering the dispersion relations, the correlation of the displacements of neighboring 
atoms, as well as anisotropy and anharmonicity of the atomic potentials [1,8]; however, the main 
result expressed by the last equality in Equation (1), proportionality to kBT, remains valid in the limit 
of high temperatures. 
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Concerning metal nanocrystals, it has long been known that the MSD is greater than in the 
corresponding large crystals [9–11]. MSD increase is generally assumed to go with 1/D, where D is 
any characteristic length in the nanocrystal [12], and is attributed to a surface softening, caused by 
the different arrangement and under-coordination of the atoms of the surface. 

A larger MSD means a higher Debye–Waller (DW) coefficient (𝐵𝐵𝐼𝐼𝐼𝐼𝐼𝐼 = 8𝜋𝜋2 < 𝑢𝑢2 >/3 ), which is 
often translated into a lower Debye temperature, Θ𝐷𝐷. Several experimental observations performed 
by LEED [9,12,13] and by Mössbauer spectroscopy [6,14] show a lower Θ𝐷𝐷 for the surface shell than 
within the nanoparticle. Based on this evidence core-shell models have been proposed for the 
interpretation of spectroscopy data (e.g., see [15]), although not always there is direct evidence of a 
clear cut, a well-defined boundary between core and shell. Indeed, MD simulations of metal 
nanoparticles provide a more complex picture, with no clear separation between core and shell. 
Simulations show that properties like the MSD change gradually [16,17], with a gradient from core 
to surface. Moreover, simulations clearly point out the presence of two components, respectively 
static and dynamic (thermal), of the MSD [18]. 

From the experimental point of view, a recent study has shown the difficulty of obtaining 
reliable values of BISO for nanocrystalline powders and agglomerates by means of X-ray diffraction 
(XRD) [19]. Correct values can only be obtained from data of high statistical quality, collected with 
radiation energy sufficiently high to limit the effects of absorption and to encompass many diffraction 
peaks in the reciprocal space. Moreover, it is important to account for the MSD effect both on the 
Bragg peaks and on the thermal diffuse scattering (TDS); data modelling must also consider the finite 
size of the diffraction domains, which gives a broadening of the Bragg peaks, but also affects the TDS. 
In particular, the finite size of the nanocrystals is responsible for a phonon confinement, enforcing an 
upper bound to the vibration wavelengths, contributing to the characteristic shape of the TDS peaks 
of nanocrystals [20]. 

The present work investigates the thermal behavior of Pd nanocubes, about 24 nm edge. The 
synchrotron radiation beamline 11-BM at the advanced photon source (APS) of Argonne National 
Laboratory (ANL, Lemont, IL, USA) supports the measurement of high quality XRPD patterns from 
which BISO values can be obtained by modelling the line profiles collected at three temperatures: 100, 
200, and 300 K. As expected, DW coefficients are larger than those reported for bulk Pd, and the 
difference can be explained by varying contributions from the dynamic and the static disorder. MD 
simulations show the origin of the two contributions, and the role of the correlated displacements of 
neighboring atoms. The trend of the MSRD (Mean square relative displacement) can be obtained as 
a function of the radius of the coordination shells in the nanocrystals, showing the effect of the size 
and shape of the nanocrystals, providing the means to single out static and dynamic contributions. 
A simple model, requiring just a single adjustable parameter for each contribution, is used to fit the 
experimental data. While the first model, concerning static disorder, stems directly from the trend of 
the MSRD obtained from MD simulations, the second one follows a recent extension of the correlated 
Debye model accounting for the effect of the finite size of the nanocrystals [18]. 

2. Experimental 

The experimental case study is a powder of Pd nanocrystals prepared according to the procedure 
indicated by [21,22], based on the reduction of H2PdCl4 with ascorbic acid in the presence of 
cetyltrimethylammonium bromide (CTAB, Aldrich 99%). As shown in Figure 1, the nanocrystals are 
cubes with truncated corners and edges which expose, respectively, {111} and {110} planes in addition 
to the {100} cube faces. While the shape is rather constant in the powder sample (truncation fraction 
0.23, see [23] for full details), transmission electron microscopy (TEM) and XRD have shown that the 
edge lengths are dispersed according to a lognormal distribution with 23.7 nm mean and 5.3 nm 
standard deviation (as can be seen in Figure 1a). A minor fraction (~7%) is mainly made of multiply-
twinned (so called non-crystallographic) nanoparticles (e.g., see the decahedron in Figure 1a).  
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Figure 1. Transmission Electron Microscopy (TEM) images of the Pd nanocubes (see Supporting 
Information in [23]) From (a) to (d) progressive magnification to the nanoparticles. Image (a) and (b) 
show the limited size dispersion and an example in (a) of the non-crystallographic fraction (the 
multiply-twinned particle on the right of the image). In (c) and (d) a magnification of a single 
nanoparticle, showing details of the truncated cube shape. (Images adapted from [23], with 
permission from iucr journals, 2019). 

Diffraction data were obtained from capillaries (Kapton tubes, 0.8 mm diameter) loaded with 
concentrated nanocrystal dispersion, allowed to dry for a few days and then sealed with epoxy. Data 
were collected at 11-BM, the powder diffraction beamline of APS-ANL, using 30 keV radiation (actual 
wavelength from calibration procedures with standard Si powder: λ = 0.0413692 nm) with the 
traditional Debye–Scherrer geometry: full details on 11-BM operating conditions can be found in [24] 
and website of the facility. The capillary, rotated at 4200 rpm, was analyzed at three temperatures: 
100, 200, and 300 K; measurements were made on a spot previously selected for the low absorption 
(I/I0 ≤ 0.02), such that no intensity corrections are necessary in the modelling of the patterns. 

The XRD patterns collected at the three temperatures were analyzed together, using the whole 
powder pattern modelling (WPPM) approach in a modified version of the PM2K software 
(University of Trento, Italy, [25] and references therein). The instrumental profile was acquired by 
modelling the pattern of standard LaB6 powder (NIST SRM-660b), whereas the pattern of the sample 
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holder was obtained from an empty kapton capillary, modelled by pseudoVoigt curves [26] and 
adapted to the Pd-filled capillary by means of an adjustable scale parameter.  

Size and strain broadening models were the same for the three temperatures: Domain shape, as 
suggested by TEM, is a truncated cube (thus exposing 110 and 111 facet in addition to the 100 cube 
faces); the modelling allows the refinement of the truncation level, in addition to the mean and 
variance of a lognormal distribution of edge lengths [27]; for the strain component the Popa–Adler–
Houska (PAH) model has been used [19,25], which adapts well to the case of nanocrystals [28], 
providing also for the anisotropy of atomic displacement in the nanocubes. Besides scale parameters 
and coefficients of the (Chebyshev) polynomial background, Pd unit cell parameter and DW 
coefficients were refined independently, for each of the three patterns, to account for the effect of 
temperature. BISO enters the traditional DW factor decreasing the Bragg scattering intensity, as well 
as the thermal diffuse scattering (TDS). The TDS was modelled according to [20], to take into account 
the effect of finite size of the crystalline domains.  

3. Atomistic Modelling 

3.1. Molecular Dynamics, Mean Square Displacement and Mean Square Relative Displacement 

Nanocrystal models were constructed by replicating the primitive unit cell (with the unit cell 
parameter of bulk Pd, a0 = 0.3890 nm [29]) in ideal atomic arrangements, until the space was filled. A 
condition was enforced to the atomic coordinates, in order to keep only those atoms belonging to the 
desired geometrical shape. This system was the starting step for MD simulations. Calculations have 
been performed with the open source software LAMMPS [30], using the in embedded-atom method 
(EAM) [31,32] interatomic potential. After the minimization process and the thermalization of the 
system, the nanoparticle was left to freely evolve at room temperature as a microcanonical statistical 
ensemble. The atomic coordinates were saved during the last part, for a duration of half a 
nanosecond.  

MD provides the trajectory in time of each atom in the nanoparticle, 𝑟𝑟𝑖𝑖(𝑡𝑡), from which time 
average position, 𝑟𝑟𝑖𝑖, and variance (MSD), 𝜎𝜎𝑖𝑖2, can be easily derived. Likewise, the distance between 
any two atoms, 𝑟𝑟𝑖𝑖𝑖𝑖(𝑡𝑡), can be used to obtain the MSRD, 𝜎𝜎𝑖𝑖𝑖𝑖2 . For monoatomic systems for which 𝜎𝜎𝑖𝑖2 
can be assumed constant throughout the particle (which is clearly an approximation), the two 
squared displacements are related by: 

𝜎𝜎𝑖𝑖𝑖𝑖2 = 2𝜎𝜎𝑖𝑖2 − 2𝜎𝜎𝑖𝑖 ⋅ 𝜎𝜎𝑖𝑖, (2) 

where the second term is the displacement correlation function (DCF). The DCF accounts for the 
correlation of atomic motions and is significantly different from zero for the first (innermost) 
coordination shells. As it is known, the DW coefficient used in traditional XRD models is proportional 
to the MSD, whereas other spectroscopies, like XAS, provide the MSRD, and a richer information on 
the local atomic environment of the innermost coordination shells [2,33]. 

The actual quantities to compare with experimental results must involve a spatial 
(configuration) average (i.e., an average over all atoms or couples of atoms). From the MD trajectory, 
the MSRD can be calculated as a function of the number of unique atom pairs, 𝑁𝑁𝐼𝐼𝑟𝑟, and radius, r, of 
the coordination shells Sr in the nanocrystal 

𝜎𝜎𝑟𝑟2 = 1
𝑁𝑁𝑆𝑆𝑟𝑟

∑ 𝜎𝜎𝑖𝑖𝑖𝑖2𝑖𝑖,𝑖𝑖∈𝐼𝐼𝑟𝑟 =< 𝜎𝜎𝑖𝑖𝑖𝑖2 >𝑟𝑟. (3) 

MD also provides the means to single out the static component of displacement, in a way 
inaccessible to experiments. In fact, given the MD trajectory, made of a series of “snapshots” of the 
nanoparticle in time, the spatial average of Equation (3) can be calculated for the time average of 
distances, 𝑟𝑟𝑖𝑖𝑖𝑖:  

𝜎𝜎0,𝑟𝑟
2 = 1

𝑁𝑁𝑆𝑆𝑟𝑟
∑ �𝑟𝑟𝑖𝑖𝑖𝑖 −

1
𝑁𝑁𝑆𝑆𝑟𝑟

∑ 𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖,𝑖𝑖∈𝐼𝐼𝑅𝑅 �𝑖𝑖,𝑖𝑖∈𝐼𝐼𝑅𝑅

2
=< �𝑟𝑟𝑖𝑖𝑖𝑖−< 𝑟𝑟𝑖𝑖𝑖𝑖 >�2 >𝑟𝑟. (4) 
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While Equation (3) provides the overall MSRD, including all (static and dynamic) components 
of the displacement, Equation (4) gives the static component only. It is; therefore, possible to obtain 
a good estimate of the dynamic (thermal) component alone from the difference between Equations 
(3) and (4), assuming that the two MRSDs can be treated as variances of independent distributions: 

𝜎𝜎𝑇𝑇,𝑟𝑟
2 ≃ 𝜎𝜎𝑟𝑟2 − 𝜎𝜎0,𝑟𝑟

2 =< 𝑟𝑟𝑖𝑖𝑖𝑖2 >𝑟𝑟− 2 < 𝑟𝑟𝑖𝑖𝑖𝑖
2 >𝑟𝑟 +< 𝑟𝑟𝑖𝑖𝑖𝑖 >𝑟𝑟

2. (5) 

Figure 2a shows the trend of the MSRD, according to Equations (3)–(5), as a function of r in a 
spherical Pd nanoparticle of about 5 nm diameter (N = 6986 atoms). Similar calculations can be 
performed for any desired particle shape. Figure 2c,d refer to a Pd cube, about 4 nm edge (N = 4923 
atoms), with truncated corners and edges. This is the shape suggested by TEM images and by the 
modelling of the XRD patterns of this study; indeed, the extent of the truncation is that obtained by 
WPPM (see below), while the size in the simulation is smaller than in the experimental sample to 
limit the computation time. The last is not a limitation because, quite interestingly, the trends are 
characteristic of the nanoparticle shape: By increasing the nanocube size the MSRD trends are the 
same, provided that the abscissa (shell radius) is stretched to match the edge length (or the diameter 
for spherical nanoparticles). The scalability of the MSRD trends is demonstrated in Figure 3 for the 
static MSRD component (Equation (4)) in a selection of spheres and truncated cubes of increasing 
size. 

 
(a) 

 
(b) 

 
(c)  

(d) 
Figure 2. Trends of the Mean Square Relative Displacement (MSRD) for a spherical (a) and truncated 
cube (b) crystal, N = 6986 and N = 4923 Pd atoms, respectively; corresponding number of atom pairs 
(Nr) is shown by histograms in (c) and (d). MSRD is shown for the total (blue), static (orange), and 
thermal (green) components, as of Equation (3), (4), and (5), respectively. Insets in (c) and (d) show 
images of the nanoparticle shapes. 
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(a) (b) 

Figure 3. Static MSRD component from Molecular Dynamics (MD) simulations for three spheres (a) 
and three truncated cubes (b) of increasing size. The dotted line is the trend according to the 
parametric model of Equation (7). 

As already pointed out, different spectroscopies can access different aspects of the disorder and 
the vibrational characteristics of the nanocrystals. XRD generally gives the MSD, which can be related 
to the average of the trends in Figure 2, weighted over 𝑁𝑁𝐼𝐼𝑟𝑟,  

𝐵𝐵𝐼𝐼𝐼𝐼𝐼𝐼 = 8
3
𝜋𝜋2 < 𝑢𝑢2 >≃ 8𝜋𝜋2 1

𝑁𝑁𝑆𝑆
∑ 𝑁𝑁𝐼𝐼𝑟𝑟

𝜎𝜎𝑟𝑟2

2
𝑟𝑟𝑀𝑀𝑀𝑀𝑀𝑀
𝑟𝑟 , (6) 

where 𝑁𝑁𝐼𝐼 = ∑ 𝑁𝑁𝐼𝐼𝑟𝑟
𝑟𝑟𝑀𝑀𝑀𝑀𝑀𝑀
𝑟𝑟 = 𝑁𝑁 (𝑁𝑁−1)

2
 is the total number of unique atom pairs in a crystal with N atoms. 

Equation (6) can also be used to assess the separate contributions of the static or the thermal 
components, as better illustrated in the following.  

3.2. Modelling the MSRD Components 

While MD simulations provide full details of disorder for each coordination shell, experiments 
have a more limited scope, and generally allow the measurements of fewer, global parameters, like 
BISO in Equation (6). However, by introducing some reasonable approximations, the MSRD trends 
can also be related to the experimental evidence from XRD. The thermal component, 𝜎𝜎𝑇𝑇,𝑟𝑟

2 , can be 
described by a correlated Debye (CD) model [34,35], recently adapted to nanocrystals, to account for 
the effect of a small domain size [18] (see also Appendix): given the number of atoms (or equivalently, 
the nanoparticle size and shape) and temperature, the trend of 𝜎𝜎𝑇𝑇,𝑟𝑟

2  can be modelled by adjusting a 
single parameter, the Debye temperature.  

 
(a) 

 
(b) 
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Figure 4. MSRD trends for a spherical Pd nanocrystal with 7 nm diameter (N = 12161 Pd atoms): total 
(blue), static (orange), and thermal (green) components of MSRD, with the best fit of the Correlated 
Debye (CD) model (line) (a). The sum of CD model and static component (dark blue) is compared 
with the total MSRD (blue) (b). 

As an example, Figure 4a shows the data for a spherical Pd nanoparticle of diameter 7 nm, with 
N = 12161 Pd atoms. Besides the two (static and dynamic) components and the total MSRD, the figure 
also shows the trend of the CD model. The best fit of the thermal MSRD component was obtained for 
Θ𝐷𝐷 = 262 K, in agreement with the results of [18] for a system of Pd nanoparticles from 3 to 20 nm. 
The value is not far from the experimental value of 272 K [36]. The difference is justified, by inevitable 
discrepancies between EAM potential and reality, but also by the fact that Pd atoms on the surface 
vibrate with a larger amplitude than in the core, so that the average MSD and MSRD increase slightly, 
and consequently Θ𝐷𝐷 decreases. In Figure 4b we can see that the sum of CD model and static MSRD 
(dark blue symbol) matches quite well the total MSRD from the MD simulation. Discrepancies are 
observed for more distant shells, involving atoms on the surface which, as already pointed out, have 
a larger vibration amplitude. However, given the decaying trend with distance of the weight function 
𝑁𝑁𝐼𝐼𝑟𝑟 (Figure 2b,d), the effect of such deviations on observables like BISO (Equation (6)) is small. 

For the static component we can exploit the scalability property demonstrated in Figure 3: 𝜎𝜎0,𝑟𝑟
2  

values start from zero at r = 0, go through a maximum and then drop to zero again for the longest 
distance in the particle. As already pointed out and shown in Figure 3, changing the size has only the 
effect of stretching the trend to longer distances, whereas the maximum 𝜎𝜎0,𝑟𝑟

2  value is comparable 
among different sizes.  

It is; therefore, tempting to approximate the observed trends for the truncated cubes (Figure 3b) 
by a simple linear model. The maximum value is found for a distance of the order of the cube edge, 
i.e. when most of the pairs of atoms are composed of a surface atom and a second distant atom, but 
in the core region. Static MSRD falls to zero for the maximum distance in the nanocube (i.e., when 
pairs are made of atoms on opposite surfaces, thus displaced in similar way). 

In a practical implementation of this model, if the nanocrystal size and shape are known (from 
simulations or from experiments), the trends in Figure 3 (see the dotted line) can be easily 
parameterized leaving the maximum, 𝜎𝜎0,𝑚𝑚𝑚𝑚𝑚𝑚

2 , as the only adjustable parameter: 

𝜎𝜎0,𝑟𝑟
2����� = �

𝜎𝜎0,𝑚𝑚𝑚𝑚𝑚𝑚
2 (𝑟𝑟/𝐷𝐷) 𝑖𝑖𝑖𝑖 0 ≤ 𝑟𝑟 < 𝐷𝐷

𝜎𝜎0,𝑚𝑚𝑚𝑚𝑚𝑚
2 (𝑟𝑟 − 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚)/(𝐷𝐷 − 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚) 𝑖𝑖𝑖𝑖 𝐷𝐷 ≤ 𝑟𝑟 < 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚

0 𝑖𝑖𝑖𝑖 𝑟𝑟 ≥ 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚
  . (7) 

Cube edge (D) and maximum distance in the truncated cube (Dmax) are obtained from the size 
broadening of the Bragg peaks in the experimental XRD patterns. Indeed, WPPM refines values of 
mean size (D) and truncation level, from which total number of atoms and Dmax are readily 
determined. Examples of fit in practical cases are shown in detail in the Appendix.  

In this way, the experimental values of BISO obtained in the present study at different 
temperatures can be matched by a model with the maximum static MSRD, 𝜎𝜎0,𝑚𝑚𝑚𝑚𝑚𝑚

2 , and the Debye 
temperature for the thermal MSRD, as adjustable parameters:  

𝐵𝐵𝐼𝐼𝐼𝐼𝐼𝐼
𝑒𝑒𝑚𝑚𝑒𝑒 𝑡𝑡(𝑇𝑇) ≃ 4𝜋𝜋2 1

𝑁𝑁𝑆𝑆
∑ 𝑁𝑁𝐼𝐼𝑟𝑟 �𝜎𝜎𝑇𝑇,𝑟𝑟

2 (𝑇𝑇;𝑁𝑁,𝛩𝛩𝐷𝐷) + 𝜎𝜎0,𝑟𝑟
2 (𝑁𝑁,𝜎𝜎0,𝑚𝑚𝑚𝑚𝑚𝑚

2 )�𝑟𝑟𝑀𝑀𝑀𝑀𝑀𝑀
𝑟𝑟 . (8) 

4. Results and Discussion 

WPPM results for the patterns collected at 100, 200, and 300K are shown in Figure 5. The inset 
in (a) shows the refined particle shape, whereas the contribution of the TDS, increasing as expected 
with the temperature, is shown in (b); the inset in (c) shows details of the peak tail region in intensity 
log scale. Size and strain broadening (Figure 6) give the lognormal distribution of nanocube edges, 
D, (a) and the microstrain due to the inhomogeneous atomic displacement caused by the surface 
effect (b). In the microstrain plot of Figure 6b, it is apparent the effect of the elastic anisotropy of Pd: 
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like most fcc metals, Pd is stiffer along [hhh] than [h00], so that microstrain is correspondingly higher 
along [h00] than [hhh], with [hh0] on intermediate level. These results, obtained from the modelling 
of patterns at three temperatures, are not far from those of [23] obtained from room temperature (RT) 
data only and with a different X-ray energy. 
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Figure 5. Whole powder pattern model (WPPM) results. X-Ray Diffraction (XRD) patterns (circle), 
model (line), and difference (residual, line below) at 300 (a), 200 (b), and 100 K (c). Insets: in (a), refined 
shape of the truncated nanocube; in (b), Thermal Diffuse Scattering (TDS) component at 100 (blue), 
200 (red), and 300 K (black); in (c), intensity log scale plot.  
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Figure 6. WPPM results. Lognormal distribution of cube edges, D (a) and microstrain distribution 
along three crystallographic directions: [100] (black), [110] (red), [111] (green) (b). 
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Figure 7. Left axis: Debye-Waller coefficient, BISO, from the XRD patterns collected at 100, 200, and 
300K (♦) for the Pd nanocubes and corresponding room temperature (RT) value for bulk Pd (◊) [36]. 
Red line is the combined model of Equation (8), black line is the extrapolation according to the Debye 
model for the literature bulk value. The arrow highlights the increase in the static component. Right 
axis: Unit cell parameter measured from the XRD patterns (▪). See text for details. 

Figure 7 shows the results for the temperature dependent parameters, DW coefficient and unit 
cell parameter. They both increase with the temperature, but while the trend of the unit cell parameter 
is predictable on the basis of simple thermal expansion, the BISO values are significantly higher than 
those of bulk Pd. This feature, common to many nanocrystalline metals [15,37,38,], can be explained 
both qualitatively and quantitatively with the models discussed above, even though the latter is 
purely indicative with just three data points; collecting more data on a wider temperature range is 
priority for our future work. 

However, it is interesting to show how the approach works. According to the CD model, the 
MSRD increases for smaller nanocrystals, for the effect of the decreasing number of atoms and of a 
reduced Debye temperature for the larger amplitude of the surface atom vibrations [18]; the static 
component of the MSRD also increases because, as shown in Figure 3, the maximum region weights 
more on the average (measured) BISO for decreasing size. Therefore, both static and dynamic 
components of the MSRD (and BISO) increase for decreasing domain size. 

The best fit of the model of Equation (8) is shown as a red line in Figure 7, together with the 
experimental BISO values. As already mentioned, the number of atoms (N in Equation (8)) is given by 
the WPPM, from the mean value of the edge length distribution (Figure 6a), whereas 𝜎𝜎0,𝑚𝑚𝑚𝑚𝑚𝑚

2  = 0.0015 

BISO(static) ≈ 0.04 



Nanomaterials 2019, 9, 609 10 of 15 

 

Å2 and Θ𝐷𝐷 = 271 K are obtained by the best fit of Equation (8), using the CD model and Equation (7). 
Once again, we underline that the results are purely indicative, as a credible fit would require more 
data points over a wider range of temperatures. However, it is quite evident that the refined value of 
𝜎𝜎0,𝑚𝑚𝑚𝑚𝑚𝑚
2  is lower than the maximum static MSRD given by the MD simulations (Figures 2, 3, and 4).  

The present results suggest that EAM potentials may not be entirely appropriate to describe 
details of the surface properties of the crystals, which is not a surprise, and indeed a known limitation 
of EAM [39]. EAM results differ even by changing the potential (e.g., using Sheng potential [40] 
instead of Zhou potential [41]). But it is also likely that the condition of the surface of real crystals, 
with the capping CTAB layer and the environment quite different from the vacuum assumed in the 
MD simulations, also play an important part. More investigations and extensions of the atomistic 
modelling to account for surface effects will be required, but the general principle can be put forward 
that DW coefficients of nanocrystals and their vibrational properties should be evaluated both based 
on dynamic (thermal) and static contributions. 

5. Conclusions 

This work presents an approach to study the vibrational properties of large assemblies of 
nanocrystals, based on the combined use of a MSRD model and information from the XRD patterns 
collected at different temperatures. The XRD data, through the whole powder pattern modelling, 
provide detailed indications on the crystalline domain size and shape, as well as the trend with 
temperature of unit cell parameter and DW coefficient. 

By separating the MSRD of the nanocubes into two contributions, we can highlight the effects of 
the static component and; therefore, gain a better understanding of the purely thermal proprieties of 
the nanocrystals. In fact, if the increase in MSRD is entirely attributed to the vibrational part, the 
Debye temperature tends to be underestimated. The present procedure, instead, returns values for 
ΘD that are closer to the bulk value, since part of the deviation in the finite size case is attributed to 
the static component (i.e., the parameter 𝜎𝜎0,𝑚𝑚𝑚𝑚𝑚𝑚

2  in the parametric model of Equation (7)). 
Interestingly, the static component of the MSRD is peculiar to the nanoparticle shape (in this work, 
sphere or truncated cube), thus giving a different perspective on the increase of BISO. 

Even if not correct in the finer details, like anisotropy and anharmonicity, the proposed model 
is sufficiently simple and informative to be flexibly used for most nanocrystalline systems, to grasp 
the main effects of the static and dynamic disorder on spectroscopic results. For best results, BISO data 
should be collected for different values and over a wide temperature range, a condition that requires 
more experimental efforts in the future. 
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Appendix  

Modified Correlated Debye Model  

The modified CD model [18] gives the thermal component of the MSRD of a nanoparticle:  
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Therefore, 𝜎𝜎2 (𝑇𝑇,𝑚𝑚,𝑁𝑁, 𝑐𝑐𝑙𝑙 , 𝑐𝑐𝑡𝑡 ,𝛩𝛩𝐷𝐷), that is, besides parameters characteristic of the specific metal 
(m, cl and ct) and temperature, the MSRD only depends on N and 𝛩𝛩𝐷𝐷. For large crystals (i.e., for 𝑁𝑁 →
∞), 𝛩𝛩𝐿𝐿  tends to 𝛩𝛩𝐷𝐷 , whereas 𝛩𝛩𝑐𝑐  and 𝐴𝐴2  tend to zero, and the expression for the traditional CD 
model [34] is obtained: 
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(A8) 

In the present work, on Pd, m= 106.42 × 10−3 kg; cl = 4570 m/s and ct = 2060 m/s, respectively, for 
mean longitudinal and transversal sound velocity, with corresponding cm = 2323 m/s. 

Parametric Representation of the Static MSRD Component 

The dependence of the static component of the MSRD, 𝜎𝜎0,𝑟𝑟
2 , on the shell radius can be 

approximated by a simple one-parameter analytical expression. For truncated cubes the expression 
(Equation (7), reported again here for convenience) reads (see the schematic of Figure A1): 
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where D is the cube edge and Dmax is and maximum distance in the truncated cube, whereas 𝜎𝜎0,𝑚𝑚𝑚𝑚𝑚𝑚
2  

is the maximum of the static MSRD. Figure A2 shows examples for truncated cubes of different 
dimensions.  

 

 
Figure A1. Graphical explanation of Equation (A9). The function is a simplification of the static 
component trend calculated from MD simulations. 

 
Figure A2. Static MSRD results from Figure 3 in the main text with static model of Equation A9. Best 
fit of 𝜎𝜎0,𝑚𝑚𝑚𝑚𝑚𝑚

2  are, respectively, 0.00594 (D = 41.84 Å), 0.00640 (D = 62.26 Å), and 0.00703 (D = 87.54 Å). 

The use of the shape shown in figure A1 is justified not only for a cube with 20% truncation, but 
in general for other values of truncation, as seen in figure A3. 
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Figure A3. Static MSRD results for nanoparticle of roughly the same number of atoms of a cube of 
edge 6 nm (15,000 atoms), but with different degrees of truncation (0% is a cube, 100% an octahedron). 
The overall shape is always similar to the expression A9, except for the case of more “spherical” 
shapes (truncation 40% and 60%) that exhibit a trend closer to the sphere (Figure 3 in main text). 
Compared to Figure A3, the data have been presented with larger bins for a better visualization of 
the trends. 

The quantity Dmax is trivial for standard shapes (i.e., it is the diameter for a sphere or √3𝐷𝐷 for a 
cube of edge D). Truncated cubes are geometrical shapes obtained by removing the edges and the 
vertices of a cube. The process of truncation can be formalized by using a truncation parameter 𝑝𝑝 ∈
[0,1] so that 0% truncation (𝑝𝑝 = 0) stands for perfect cube, while 100% truncation (𝑝𝑝 = 1) is for the 
inscripted octahedron. 

To determine the maximum distance inside a generic polyhedron, the common volume function 
(CVF) [42] is used. The CVF is the intersection volume between a body and the same body translated 
by a distance L along a direction [hkl] (see Figure A4) 

 
Figure A4. Graphical depiction of the common volume function along direction [111] for a cube. 

Analytic expressions for the CVF of simpler shapes (like sphere or perfect cube) are available 
from the literature [43,44], and in general the CVF can be determined for any convex solids, also 
considering size dispersion (i.e., a distribution of sizes). In the context of MD simulations, the CVF is 
directly obtained numerically, by counting the atom couples at each distance 𝐿𝐿 along the given [hkl] 
direction in the nanocrystal, so it is in principle known for any possible shape. 

[111]
 

V(L) 
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For any polyhedron of volume 𝑉𝑉𝑐𝑐, the 𝐶𝐶𝑉𝑉𝐹𝐹ℎ𝑘𝑘𝑙𝑙, is described by a cubic equation of L [42,27]. The 
value of Dmax (used in Equation A9) for any shape is; therefore, known from the literature on the CVF 
[27]. 

References 

1. Willis, B.T.M.; Pryor, A.W. Thermal Vibrations in Crystallography; Cambridge University Press, 1975. 
2. Calvin, S. EXAFS for Everyone; CRC Press: Boca Raton, FL, USA, 2013.  
3. Lottici, P.P.; Rehr, J.J. A connection between Raman intensities and EXAFS Debye–Waller factors in 

amorphous solids. Solid State Commun. 1980, 35, 565–567. 
4. Lottici, P.P. Extended x-ray-absorption fine-structure Debye–Waller factors and vibrational density of 

states in amorphous arsenic. Phys. Rev. B 1987, 35, 1236. 
5. MacRae, A.U.; Germer, L.H. Thermal vibrations of surface atoms. Phys. Rev. Lett. 1962, 8, 489. 
6. Von Eynatten, G.; Bömmel, H.E. Size and temperature dependence of the mössbauer debye waller factor 

of iron microcrystals. Appl. Phys. 1977, 14, 415–421. 
7. Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Molec. Graph. 1996, 14, 33–38. 
8. Dove, M.T. Introduction to Lattice Dynamics; Cambridge University Press: New York, NY, USA, 1993. 
9. Clark, B.C.; Herman, R.; Wallis, R.F. Theoretical mean-square displacements for surface atoms in face-

centered cubic lattices with applications to nickel. Phys. Rev. 1965, 139, A860–A867. 
10. Allen, R.E.; De Wette, F.W. Mean-square amplitudes of vibration at a surface. Phys. Rev. 1969, 188, 1320–

1323. 
11. Valiev, R.Z.R.K.; Islamgaliev, I.V.; Alexandrov, I.V. Debye–Waller coefficient of heavily deformed 

nanocrystalline iron. Prog. Mater. Sci. 2000, 45, 103–189. 
12. Inagaki, M.; Sasaki, Y.; Sakai, M. Debye-Waller parameter of palladium metal powders. J. Mater. Sci. 1983, 

18, 1803–1809. 
13. Van Hove, M.A.; Weinberg, W.H.; Chan, C.-M. Low-Energy Electron Diffraction: Experiment, Theory and 

Surface Structure Determination; Springer Series in Surface Sciences; Springer: Berlin/Heidelberg, Germany, 
1986; Volume 6, p. 45.  

14. Kuwano, H.; Ouyang, H.; Fultz, B. A Mössbauer Spectrometry Study of the Magnetic Properties and Debye 
Temperature of Nanocrystalline Cr-Fe. Mater. Sci. Forum 1992, 88–90, 561–568. 

15. Shi, C.; Redmond, E.L.; Mazaheripour, A.; Juhas, P.; Fuller, T.F.; Billinge, S.J.L. Evidence for anomalous 
bond softening and disorder below 2 nm diameter in carbon-supported platinum nanoparticles from the 
temperature-dependent peak width of the atomic pair distribution function. J. Phys. Chem. C 2013, 117, 
7226–7230. 

16. Beyerlein, K.R.; Snyder, R.L.; Li, M.; Scardi, P. Simulation and modeling of nanoparticle surface strain. 
Nanosci. Nanotechnol. 2012, 12, 8554–8560. 

17. Gelisio, L.; Beyerlein, K.R.; Scardi, P. Atomistic modeling of lattice relaxation in metallic nanocrystals. Thin 
Solid Films 2013, 530, 35–39. 

18. Scardi, P.; Flor, A. Correlated Debye model for atomic motions in metal nanocrystals. Philos. Mag. 2018, 98, 
1412–1435. 

19. Scardi, P.; Rebuffi, L.; Abdellatief, M.; Flor, A.; Leonardi, A. Debye–Waller coefficient of heavily deformed 
nanocrystalline iron. J. Appl. Cryst. 2017, 50, 508–518. 

20. Beyerlein, K.R.; Leoni, M.; Scardi, P. Temperature diffuse scattering of nanocrystals. Acta Cryst. 2012, A68, 
382–392. 

21. Niu, W.; Li, Z.-Y.; Shi, L.; Liu, X.; Li, H.; Han, S.; Chen, J.; Xu, G. Seed-mediated growth of nearly 
monodisperse palladium nanocubes with controllable sizes. Cryst. Growth Des. 2008, 8, 4440–4444. 

22. Vidal-Iglesias, F.; Arán-Ais, R.; Solla-Gullón, J.; Garnier, E.; Herrero, E.; Aldaz, A.; Feliu, J. Shape-
dependent electrocatalysis: Formic acid electrooxidation on cubic Pd nanoparticles. Phys. Chem. 2012, 14, 
10258–10265. 

23. Solla-Gullón, J.; Garnier, E.; Feliu, J.M.; Leoni, M.; Leonardi, A.; Scardi, P. Structure and morphology of 
shape-controlled Pd nanocrystals. J. Appl. Cryst. 2015, 48, 1534–1542  

24. Wang, J.; Toby, B.H.; Lee, P.L.; Ribaud, L.; Antao, S.M.; Kurtz, C.; Ramanathan, M.; von Dreele, R.B.; Beno, 
M.A. A dedicated powder diffraction beamline at the advanced photon source: commissioning and early 
operational results. Rev. Sci. Instrum. 2008, 79, 085105–085111. 



Nanomaterials 2019, 9, 609 15 of 15 

 

25. Scardi, P.; Ricardo, C.L.A.; Perez-Demydenko, C.; Coelho, A.A. WPPM macros for TOPAS. J. Appl. Cryst. 
2018, 51, 1752–1765. 

26. Scardi, P.; Gelisio, L. Vibrational properties of nanocrystals from the Debye scattering equation. Sci. Rep. 
2016, 6, 809. 

27. Leonardi, A.; Leoni, M.; Siboni, S.; Scardi, P. Common volume functions and diffraction line profiles of 
polyhedral domains. J. Appl. Cryst. 2012, 45, 1162–1172. 

28. Scardi, P.; Leonardi, A.; Gelisio, L.; Suchomel, M.R.; Sneed, B.T.; Sheenan, M.K.; Tsung, C.-K. Anisotropic 
atom displacement in Pd nanocubes resolved by molecular dynamics simulations supported by X-ray 
diffraction imaging. Phys. Rev. B 2015, 91, 155414. 

29. WebElements. Available online: https://www.webelements.com (accessed on 20 March 2019). 
30. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1–19. 
31. Daw, M.S.; Baskes, M.I. Semiempirical, quantum mechanical calculation of hydrogen embrittlement in 

metals. Phys. Rev. Lett. 1983, 50, 1285–1288. 
32. Daw, M.S.; Baskes, M.I. Embedded-atom method: Derivation and application to impurities, surfaces, and 

other defects in metals. Phys. Rev. B 1984, 29, 6443–6453. 
33. Fornasini, P. Synchrotron Radiation; Mobilio, S., Boscherini, F., Meneghini, C., Eds.; Springer: 

Berlin/Heidelberg, Germany, 2015; pp. 181–211. 
34. Beni, G.; Platzman, P.M. Temperature and polarization dependence of extended X-ray absorption fine-

structure spectra. Phys. Rev. B 1976, 14, 1514–1518. 
35. Vaccari, M.; Fornasini, P. Einstein and Debye models for EXAFS parallel and perpendicular mean-square 

relative displacements. J. Synchrotron Rad. 2006, 13, 321–325. 
36. Butt, N.M.; Bashir, J.; Willis, B.T.; Heger, G. Compilation of temperature factors of cubic elements. Acta 

Cryst. Sect. A 1988, 44, 396–399. 
37. Kuzmin, A.; Chaboy, J. EXAFS and XANES analysis of oxides at the nanoscale. Iucrj 1 2014, 571–589. 
38. Agostini, G.; Grisenti, R.; Lamberti, C.; Piovano, A.; Fornasini, P. Thermal effects on Rhodium nanoparticles 

supported on carbon. J. Phys. Conf. Ser. 2013, 430, 012031. 
39. Zhou, L.G.; Huang, H. A Response Embedded Atom Method of Interatomic Potentials. Phys. Rev. B 

Condens. Matter 2012, 4. 
40. Sheng, H.W.; Kramer, M.J.; Cadien, A.; Fujita, T.; Chen, M.W. Highly-optimized EAM potentials for 14 fcc 

metals. Phys. Rev. B 2011, 83, 134118. 
41. Zhou, X.W.; Johnson, R.A.; Wadley, H.N.G. Misfit-energy-increasing dislocations in vapor-deposited 

CoFe/NiFe multilayers. Phys. Rev. B 2004, 69, 144113. 
42. Wilson, A. X-ray Optics: The Diffraction of X-rays by Finite and Imperfect Crystals; Methuen’s Monographs on 

Physical Subjects; Methuen: London, UK, 1962. 
43. Langford, J.I.; Wilson, A.J.C. Scherrer after sixty years: A survey and some new results in the determination 

of crystallite size. J. Appl. Cryst. 1978, 11, 102–113. 
44. Scardi, P.; Leoni, M. Diffraction line profiles from polydisperse crystalline systems. Acta Cryst. Sect. A 2001, 

57, 604–613. 
 

 

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access 
article distributed under the terms and conditions of the Creative Commons Attribution 
(CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

 


	1. Introduction
	2. Experimental
	3. Atomistic Modelling
	3.1. Molecular Dynamics, Mean Square Displacement and Mean Square Relative Displacement
	3.2. Modelling the MSRD Components

	4. Results and Discussion
	5. Conclusions
	Appendix
	Modified Correlated Debye Model
	Parametric Representation of the Static MSRD Component

	References

