POLLUTION IN THE MARINE ENVIRONMENT: PLASTICS, MICROPLASTICS AND ORGANIC POLLUTANTS

Juan A. Conesa

Iñiguez ME, Fullana A, Ortuño N

The problem

The known problem

Deficient treatment of plastic waste → plastics reach the ocean

The known problem

Deficient treatment of plastics → plastics reach the oc e ocean

Marine debris (MDs)

MD = Solid material that has been deposited, dumped or abandoned in the coastal environment

- Directly by human action
- Through rivers, waste waters, rain and winds
- Boats and ships (accidental loss)

Worrying presence

- Harmful to organisms & human health
- Pollutant transport
- Risk to fishing & sea products

- Glass
- Metal
- Paper
- PLASTICS (higher percentage)

Samples

Selection of samples to study

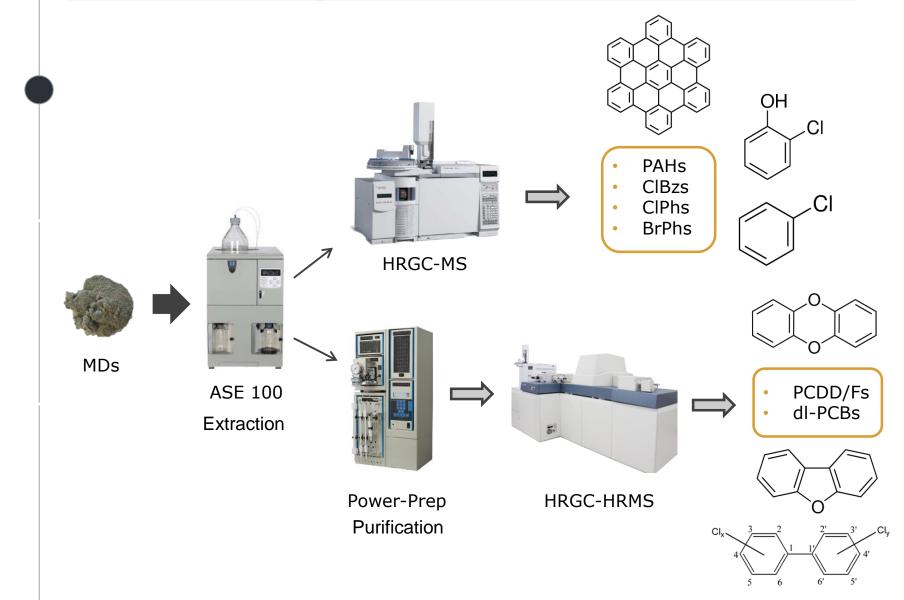
MDs used: mix of wastes collected during 1-Day sampling Boat trip near the coast in Santa Pola (Alicante)

Samples

neous

Selection of samples to study

Cryogenic ball mill


Characterization

- Humidity
- Ash content
- Heating power
- Elemental analysis
 - Carbon
 - Nitrogen
 - Hydrogen
 - Sulphur
 - Oxygen
- Ion chromatography
 - Fluorine
 - Chlorine
 - **Bromine**

Crushed

Analysis

Pollutants in the MDs

Pollutants

Results

- High chlorine content: 1.83 % (taken from saline medium)
- Heating power: 25.6 MJ/kg

Analysis of pollutants

PAHs

Total: $450-500 \text{ ng/g}_{\text{sample}}$ Naphtalene: $100 \text{ ng/g}_{\text{sample}}$

<u>CIBzs</u>

180-215 ng/g_{sample}
1,2-dichlorobenzene

<u>MDs</u>

Not very contaminated

CIPhs

105 ng/g_{sample}

BrPhs

 $58-77 \text{ ng/g}_{\text{sample}}$

High content of CIBzs.

Values similar to:

- Plant soil
- River sediments

Wooden furniture/pine wood:

- PAHs: 645 ng/g

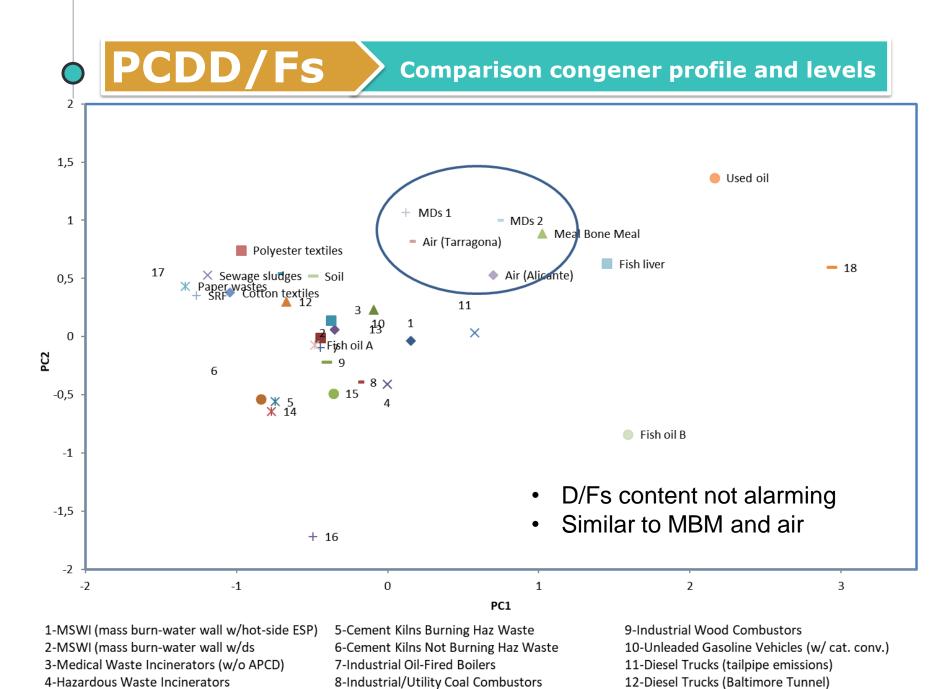
- CIBzs: not detected

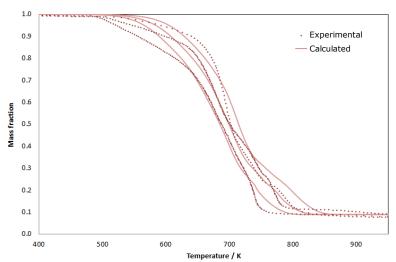
- CIPhs: 100 ng/g

Similar levels of pollutants

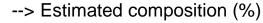
Pollutants Results

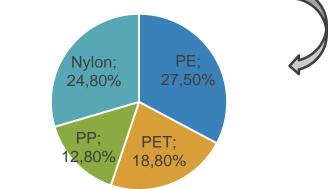
 1.05 ± 0.15 pg WHO-TEQ/g


Vietman sediment (Tri et al., 2016) → 1.8 pg WHO-TEQ/g, similar to that obtained in this study

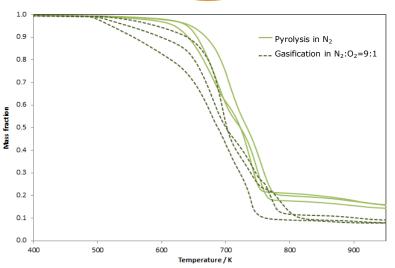

 0.46 ± 0.02 pg WHO-TEQ/g

Total toxicity of PCBs represents ca. 30 % of the dioxin-like compounds toxicity.


dl-PCBs contribution very different depending on the sample: Fish oils → 65 - 80% (Ábalos et al., 2010)
Polyester textiles → 2 % (Moltó et al., 2006)



Thermogravimetry runs


Comparison of thermal decomposition of MD sample with curves obtained for pure components

Comparison N₂ vs. AIR

- $O_2 \rightarrow \text{slight acceleration of the}$ decomposition
- T>700 K \rightarrow increased weight loss in the presence of O_2 .

How these MDs arrive to humans??

 Main form of exposure to marine pollution: food of marine origin.

Microplastics

Materials & methods

MPs

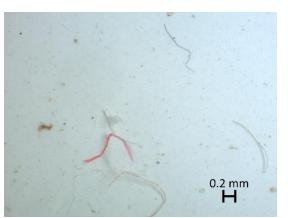
SAMPLES STUDIED

- 21 samples of different types, including:
 - Coastal and interior salts (well salt)
 - 2 particle sizes
 - Before and after packaging

Aim: obtain information about the origin of the MPs

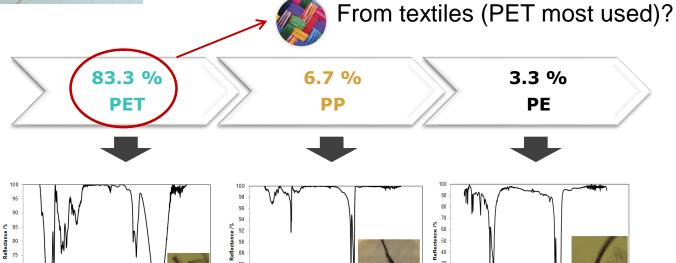
Centrifuge 1 h

Vacuum filtration. FILTERS OF 5 μm pore size


Identification: FTIR

Counting in optical microscope

MPs in salt


Results

2000 2500 3000

Wave numbers /cm⁻¹

- Majority of MPs: microfibers (not microballs)
- Size: 30 μm 3.5 mm
- Common colors: black, red, blue, white, transparent

2500 3000

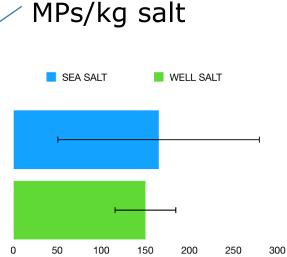
1500 2000

Wave number / cm-1

1500 2000

Most used plastics in the world

MPs in salt

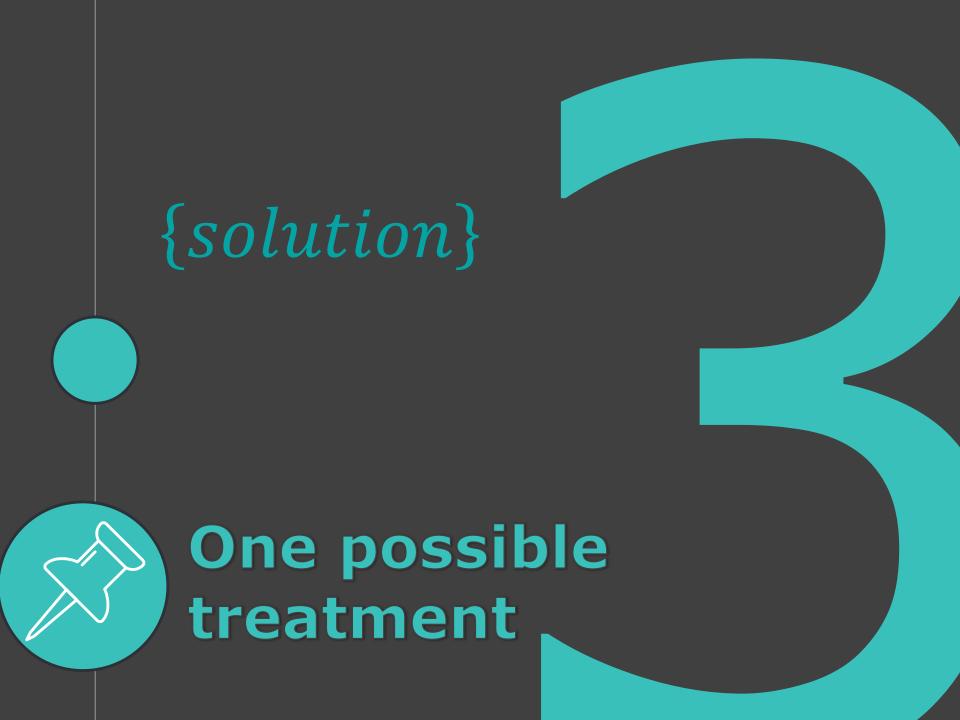

Results

NO SIGNIFICANT DIFFERENCES IN THE AMOUNTS OF MICROPLASTICS FOUND IN THE DIFFERENT SALTS

Sea salt: 50-280

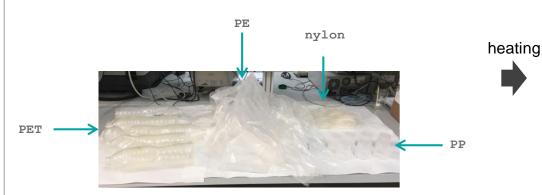
MPs/kg salt

Well salt: 115-185



Packaging and milling do not influence the amount of MPs found

Pollutant content in the microplastics



Treatment

Hydrothermal carbonization HTC

Waste: mix of plastics Liquid phase: sea water

50 g plastic mix + 500 mL sea water

High pressure reactor

Operational parameters:

- Final T: 200, 250, 300 °C
- 3 hours
- 3 °C/min
- Pressure: 1.6, 4.0 & 8.6
 MPa

Objectives:

- Examine characteristics of final products
- Study feasibility of converting this waste into a good fuel

HTC

Solids obtained

No treatment Soli

Solid HTC 200 °C

Solid HTC 250 °C

Solid HTC 300 °C

Characterization of hydrochars:

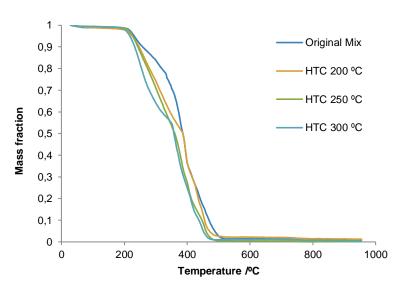
- Elemental analysis (C, H, N, S)
- Humidity
- Heating power
- Ion chromatography

Thermal decomposition:

- In air $(N_2:O_2 = 4:1)$
- Heating rates = 5, 10 and 20 °C/min

Solids HTC Results

Solid after the treatment -> more fragile and easy to grind than plastics


Analysis of the original and HTC solid (wt.%)

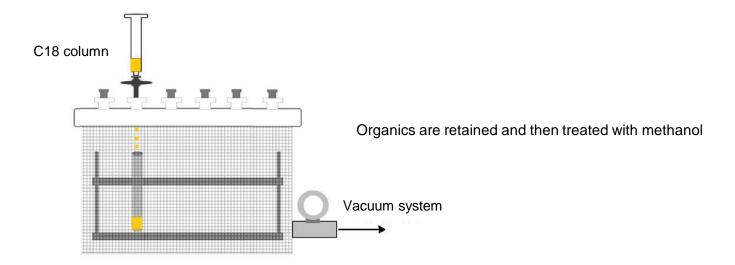
	Original	HTC 200 ºC	HTC 250 ºC	HTC 300 ºC	
Inmediate analysis					
Moisture	2.00	24.5	22.9	28.7	
Ash	5.84	6.95	6.20	5.27	
NCV (MJ/kg)	35.6	38.3	38.9	39.1	
Yield	-	66.7	40.1	37.4	
Energy yield	-	71.8	43.7	41.1	
Elemental analysis					
С	77.4	79.0	80.1	80.9	
н	12.6	11.9	12.6	13.0	
N	2.99	0.60	n.d.	n.d.	
s	n.d.	n.d.	n.d.	n.d.	
0	1.22	1.45	1.14	0.77	
Ionic chromatography					
Fluorine (x 10 ⁻³)	5.34	2.86	1.53	1.07	
Chlorine (x 10 ⁻¹)	4.59	3.17	3.42	4.13	
Bromine (x 10 ⁻⁴)	11.2	0.97	0.81	0.81	

^{*}n.d. = not detected

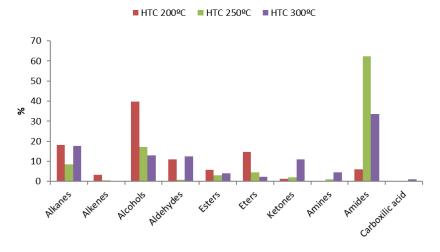
<u>Increasing temperature:</u>

- Hydrochar with more C and less O →
 Increasing heating power
- Decrease in inorganic anion content

Characterization. Pollutants??


Inorganic compounds

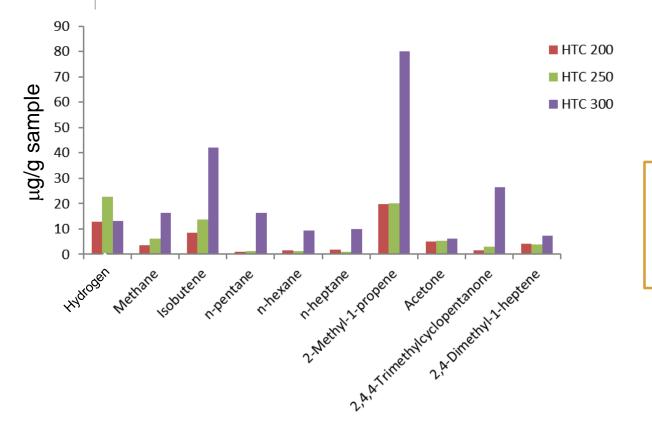
Organic compounds


Isolated by C18 column treatment

Liquids HTC > Results

			mg/	L			
Sample	Fluoride	Chloride	Nitrite	Bromide	Nitrate	Phosphate	Sulfate
HTC 200 °C	0.40	27808	nd	5.72	7.08	7.28	169
HTC 250 °C	0.48	27035	nd	6.16	6.48	5.96	254
HTC 300 °C	0.52	24618	nd	9.16	3.96	3.00	241

n.d = not detected



- ✓ Chlorine was the predominant compound in the liquid fraction (sea water).
- ✓ The fluorine, bromine and sulfate content increased as the temperature of the process increased, indicating that these compounds were transferred from the plastic to the liquid.
- Organic compounds: Amides, alcohols and alkanes are the major compounds.

Gas HTC

Results

- Main light hydrocarbons: isobutene and methane
- Aromatics: Benzene, xylenes
- Others: acetaldehyde and 2-methyl-1-propene

Maximum emission (μg/g):

- @ 200 °C → 116
- @ 250 °C → 152
- @ 300 °C \rightarrow 822

0.08 % wt. Very low amount

CONCLUSIONS

Characterization of a real MD sample	Not very contaminated, comparable to other wastes.				
	Estimated composition from the kinetic model: 27.5 % PE, 24.8% nylon, 18.8% PET, 12.8% PP				
Human exposure: Microplastics in table salt	Amount: 50–280 MPs/kg salt				
	Abundance: 83.3% PET, 6.7% PP, 3.3% PE				
	No significant differences among all the samples (sea salt vs. well salt; before or after packaging or milling).				
	Background presence of microplastics in the environment.				
HTC treatment of MD	Solid: + C, - O> + heating power				
	Inorganic anion content in liquid: + F, +Br, + SO ₄ ²⁻				
	Amides, alcohols and alkanes formation				
	Good viability				

AKNOWLEDGEMENTS

- Support for this work was provided by the CTQ2016-76608-R project from the Ministry of Economy, Industry and Competitiveness (Spain).
- The author M.E. Iñiguez also thanks the Ministry of Economy, Industry and Competitiveness (Spain) for a Ph.D. grant (contract grant number BES-2014-069473).

Thank you.

Juan A. Conesa

Email: ja.conesa@ua.es

