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Abstract

Using a Multi-agent systems paradigm, the present project develops, validates and exploits a computa-
tional testbed that simulates micro-biological complex systems, namely the aggregation patterns of the
social amoeba Dyctiostelium discoideum. We propose a new design and implementation for managing
discrete simulations with autonomous agents on a microscopic scale, thus focusing on their social be-
havior and mutual interactions. Then, the dependence on the main physical variables is tested, namely
density and number of amoebas; in addition, we analyze the robustness of the dynamics against var-
ious noise sources. Along with these results, we suggest a methodology for further studies that make
use of our validated model.

1 Introduction

The behavior of the social amoeba D. discoideum [1, 2] represents an archetype of swarm intelligence. It
has inspired models of distributed control [3] and a bio-inspired model for problems of decentralized
gathering [4], cell signaling and chemotaxis [5–7]. In fact, if food sources (bacteria or agar) are available,
each cell lives and proliferates individually; once starving, though, a multitude (up to 100,000 cells) of
single amoebas starts sending pulses of 3,’5’-Cyclic Adenosine Monophosphate (cAMP) molecules [8]
to its surroundings [9–12] which, after being received and transduced by membrane receptors [13], let
D. discoideum migrate via chemotaxis [14–16]. The final stage of the gathering process is the formation
of a multicellular slug organism [17, 18].

Figure 1: A gathering of D. discoideum [19]. Cells can be seen migrating (some individually, and some in
streams) toward a central body [20].

To inquire D. discoideum dynamics, the most common modeling approaches tackle such systems via
continuous diffusion equation [21–23], eventually solved with Monte Carlo methods [24,25] or, more re-
cently, with in-lattice discrete simulations [26,27]. Other than that, the last years IT developments made
it possible to analyze the microscopic processes underlying self organization of a colony while relying
on a hybrid continuous-discrete modeling approach (still on a macroscopic scale) [28, 29].

Besides them, the main contribution of the present project is to follow a Multi-Agent Systems computa-
tional approach to a) build an agent architecture that is consistent with biological knowledge; b) define
metrics to quantitatively study the gathering process; c) validate the model by means of comparison
with well-established results and by generation of predictive data.
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2 Methodology

The change of modeling paradigm was justified as the aforementioned methods from literature mainly
describe the dynamics from a macroscopic perspective [30]. However, they are not capable of inquiring
the emergence of complex patterns from microscopic behaviors [23]; at the same time, it is impossible
to gauge the impact of individual stochasticity or failure on the overall evolution of the system, thus
resulting in poor resolution on the system control side [31]. Therefore, rather than following said ap-
proaches, we exploited a bottom-up paradigm, namely that of Multi-Agent Systems (MAS).
An agent is an individual “computer system that is capable of independent action on behalf of its user
or owner [...] A multi-agent system is one that consists of a number of agents, which interact with one
another, typically by exchanging messages through some computer network infrastructure” [32]. As a
special feature, these models allow to account for intracellular decision processes which are triggered
by biochemical cell-cell or cell-matrix interactions [33]. In addition, they provide natural candidates for
modeling the evolution and pattern formation of large multi-cellular systems [34] since they tie cellular
properties to macroscopic behavior on the population level [35–37].
Other than that, the agent-based paradigm allows for a natural management of communication issues
among individuals: specifically, we were able to model the cAMP pulses without using an instanta-
neous point to point messaging [38] nor diffusing waves [39] (as it was done in most of continuous
reaction-diffusion models [22, 26, 28]). On the contrary, modeling the signals as discrete traveling pack-
ages reduces the computational complexity. Given N the number of agents, we obtain O(N) instead
of state-of-the-art O (N log2N) for fractional diffusion equations [40], thus allowing better scaling for
large populations. Validity of such vectorial approach was checked by comparing generated data (qual-
itative and quantitative ones) with those in literature that make use of diffusing waves or geometrical
approaches [22, 24, 28, 41, 42]. Finally, since the dynamics is generated during each simulation run, such
models may be used as testbeds to control hypothesis and to generate predictive data [43].

As a result, we obtain a finite set of (logical) behavioral rules that lead to an emergence of collective
synchronization, and we verify if and under which conditions the global self-aggregation is obtained.
In particular, thanks to the chosen scale, both the microscopic and macroscopic variables that define the
model, namely the number and the density of cells, were studied and their role assessed. To end with,
predictions about the system behavior are made, discussed and used to assess its robustness.

3 Design and Implementation

Our model consists of three main agent species: a rigid, non-toroidal, dynamically evolving 2-D [44]
grid (the environment), amoeba agents (simulating single cells) and vectorial cAMP packages (carrying
signal).
After a thorough literature search (see Sec. 1 as well as [45–48]), Amoeba agents are implemented with
individual behaviors embedded in a complex architecture, as they are not purely reactive, yet keep in-
formation about the environment and their past history (see Fig. 2). Note that all Amoeba agents are
alike (no pace-maker cells were introduced at a first approximation [49]). They are given two specific
states: wandering W (there is food, so the amoeba is eating) and starving S (the amoeba is not finding
food, so it begins the aggregation). As we are only interested in looking for gathering patterns, we didn’t
add “aggregated” or “slug” states [50]. Amoebas are capable of the following: while their inner state is
W, they wander and eat the bacteria; as soon as their state becomes S, they isotropically shoot signals
(with a ±20◦ random smearing δ1) and, if they are reached by a traveling cAMP agent, they orientate
according to the direction of the just-absorbed signal and move on (a smearing δ2 = 10% on the trajec-
tory is also considered) [48]. Since the main focus is on the aggregation patterns, we neglect the complex
inner synchronization mechanisms within each cell [51]; on the contrary, we rely on the demonstrated
robustness of said mechanisms [52]. Inertial effects are also neglected, as cells and micro-organisms typ-
ically exist in low-Reynold’s number environments [53].

After setting the dimension dim, the environment is represented by a square domain Env = 〈xk; yk〉
(where k = 0 . . . dim ∈ N), each cell of it being assigned a scalar value (whose evolution might be
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Figure 2: Schematic representation of the Amoeba agent architecture and its environment. Given the set of con-
figurations {Eg} of the environment Env, the agent is a tuple Am = 〈inspect, internal, action〉 where “Internal” is
a set of features {update, states} that are not directly interfacing with the environment (those that distinguish the
agent from a purely reactive one). In particular, States = {Sj} is the set that defines the internal peculiarities of each
agent and that selects the other methods; Inspect = {Iji : Eg 7→ per} sees Eg and generates an internal perception per;
Update = {Uj

l : per 7→ Sj} may update the states according to the perceptions; Action = {Aj
k: Sj 7→ Eg′} is the set of

feasible actions on Env according to the state the agent is in.

ruled by appropriate parameters) that represents the food sources, the presence of which makes the
in-silico experiment more realistic and better adherent to wet-lab biological observations, where several
factors may affect amoebas behavior. Formally, at a given time t ∈ N, a food source (m-th bacteria) is
b[t] : ({xm, ym} ∈ Env, t) 7→ b ∈ N.
cAMP agents are sent vectorial signals, representing discrete packages of chemicals: they are shot radi-
ally by amoebas and they travel across the environment, with a speed vcAMP whose module is equal
to that of the field mean diffusion speed, and are eventually absorbed by other amoebas or the borders.
Consequently, what varies is not precisely the diffusive gradient, but the probability associated to find-
ing a cAMP agent with defined direction: from Agent A perspective, absorbing an Agent B’s signal is
equal to PA({IstarvingB−cAMP : E 7→ per}) ∝ 1

r2 where r = vcAMP · t̂ is the length of the cAMP trajectory (t̂
corresponds to the elapsed time between emission from A and absorption by B).

To implement the code, we chose the MAS platform GAMA [54], that lets us a) handle the agents con-
sistently with the desired design; b) manage the parameters easily; c) have a user-friendly interface
showing the whole environment that allowed us to inspect what was happening in real time and to
obtain informative animations.

4 Launching an experiment

An experiment is defined by the choice of the agents parameters, the run of repeated simulations and
the measurements of various quantitative variables.

4.1 Parameters and variables

The discussed model contains different free parameters, whose value is to be set. These were chosen
to be biologically consistent [18, 22, 45–47], although scaled (note that a simulation cycle equals 1 min).
Therefore the values of reference are: diameter of amoeba D = 1.8 units (while the real typical dimen-
sion is at order of 18µm); speed of amoeba vA = 0.3 units

cycle [55], which corresponds to the average speed
leading to the “visual” starting of an aggregate after six hours [18]; diffusion speed of cAMP molecules
vc = 0.9 units

cycle ; cAMP shooting time ts = 10 cycle, this latter indicating the mean period between two
cAMP shootings. The reference value for dim (edge of the environment) is 100 units = 55.5 ×D = 1 mm.
Note that, from now on, the measure unit units will be implied.
The model manages “thermal noise” parameters as well: PG represents the growth probability P (b[t +
1] ← b[t] + 1) of bacteria in the environment, namely the probability that a bacteria cell increases its
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scalar value by one at the given time; PA is the “agitation probability” PA = P ({Iji : Eg 9 per}), that
represents a biological source of detection failure, namely an asymmetric binding receptor occupancy
that, during chemotaxis, leads to a noisy input signal or signal detection failure [56]. When interpreting
the whole system from a statistical mechanics perspective, the latest parameters represent the contri-
bution on the thermal β, therefore the term “noise”. During the process of validating the model these
values were set arbitrarily; their impact on the dynamics is studied shortly afterwards.

As stated previously, we are interested in understanding the dependence of the model on the variables
density (ρ) and number (N ) of amoebas (macroscopic and microscopic variables, respectively), which
are mutually related by

ρ =
N ·A
dim2 (1)

withA being the area of a single amoeba. The reference density ranges from 80·A
1002 up to 600·A

1002 and greater,
the same magnitude as the (typically biological) range of ( 10000·A

cm2 ÷ 100000·A
cm2 ) as reported in [18, 22].

Therefore, in order to tune ρ, we need to act over dim alone, holding N fixed, in order to separate the
contribution of the microscopic variable from the macroscopic one. After that, we adequately rescale
the “spatial” parameters, namely vA, vc, PG. On the contrary, as D is already involved in A, we do not
scale it. From now on, “·A” will be implied.

4.2 Simulations

Given an initial random cell configuration and a certain bacteria distribution in the domain, a run is
characterized by the steps depicted in Fig. 3, 4, 5.

Example: evolution of a single simulation

Fig. 3: Initial setting of an aver-
age simulation.

Fig. 4: Evolution and move-
ment.

Fig. 5: Aggregation and simu-
lation end.

Three steps of a simulation with a relatively small number of amoebas (for clarity reasons). Setting: green dots are
scattered amoeba cells, the orange landscape depicts a uniform bacteria distribution (Fig. 3). Run: amoeba agents
move dynamically across the environment, while bacteria growth (brown pixels) is ruled by PG. White areas are
without bacteria, as amoebas ate them in previous cycles. At each cycle, the new position of an agent is calculated
according to its direction and its speed. cAMP agents are not shown, although traveling across the environment
at the same time as amoebas (Fig. 4). Aggregation: amoeba cells form an aggregate. As we didn’t implement an
“aggregated” state, the slug is hold tight solely by mutual movement along signals and not by a potential field
representing cellular adhesion (Fig. 5).

When it comes to qualitative features of a certain system such as pattern formation, the first an ex-
perimentalist does is to look for visual similarities [57]. As a consequence, the behaviors observed in
animations have been confirmed by means of comparison with biological snapshots, videos (Fig. 1, [58])
and results from previous models [22, 24, 26, 28, 29, 41, 59]. Finally, repeated simulations for each set of
parameters and variables are run in order to obtain statistics.
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4.3 Measurements

Being the first step to validate the present model, we focused on the aggregation rate. The order param-
eter is the time t defined by simulation cycles. The chosen quantitative variable to measure the rate is
the marginal posterior variance along the two axis x and y. Being {xn, yn} the coordinates of the n-th
amoeba in Env, for each i-th simulation we measure

vari(t) =
1

dim2

1

N

N∑
n=1

||E(xn, yn)(t)− (xn, yn)(t)|| (2)

were x̄(t) is the mean value at each cycle t. This way we get information about the global behavior
towards aggregation around a specific center as the dispersion of the colony. Note that, thanks to the ro-
tational invariance of Env, 1√

2
vari(t) = varX

i(t), so that we can directly use the latter for further analysis
(it is lighter to be directly calculated and saved by GAMA software). In Fig. 6 is shown the evolution of
the dispersions variX and variY during time, for one simulation, as depicted by GAMA interface.
Having repeated measures, it is natural to evaluate the mean value and the associated statistical er-
ror as the standard deviation of variX(t): (varX(t) ± σvarX (t)). This method will be repeated for each
experiment.

Figure 6: Evolution of the marginal dispersions variX and variY during time, as shown by GAMA graphic
interface.

5 Analysis

After having obtained (varkX(t) ± σk
varX (t)) for each k-th experiment (that is, each choice of physical

variables), they were compared by focusing on the very first stages of the aggregation process. Since
varX vs t follows an exponential rule:

varX(t) = C +A · e−B·t (3)

it was informative to study how the transient behavior towards the aggregate differs quantitatively from
experiment to experiment. Therefore, the interval of interest is that in which |dvarXdt | > 1, namely where
the exponential trend is stronger. As stated previously, when in vitro experiments are concerned, biolo-
gists begin to see a “visual aggregate” after approximately 6h [18], corresponding to circa 400 cycles in
our simulation. Hence, such non-informative lag was ignored; additionally, by doing so, it was possi-
ble to neglect such a transient whose characteristics are mainly due to the initial conditions. Thus we
focused on the interval I = {t : 400 < t < t̃}, where t̃ is such that |dvarXdt

∣∣∣
t=t̃
| ≤ 1. The value t = 1000

was then conventionally chosen as the representative for I; consequently, what is going to be studied to
estimate the quantitative differences between each k-th experiment is varkX (t=1000). An example of the
process of defining varkX (t=1000) is seen in Fig. 7.

6 Results

To begin with, it was assessed the impact of the variables that define the model scale on the dynamics,
namely ρ (macroscopic) and N (microscopic). In all the experiments we chose both the cell food source
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Figure 7: Several experiments at ρ = const, thus varying N . Each colored curve depicts varkX vs t,
whose trend is exponential. The vertical line corresponds to t = 1000 so that, for each experiment k,
varkX (t=1000) is given by the intersection between such line and the k-th curve. Note that, for clarity
reasons, σvarkX is not shown.

and the amoebas to be uniformly distributed over the environment.

6.1 N = const

The first one to be inquired is the macroscopic variable ρ, namely the density of amoebas. In order to do
so, three different N (respectively 250, 600, 1200) were selected and kept constant, thus defining three
experimental sets; then the density for each k-th experiment was varied. As stated before, varkX (t=1000)
was calculated as the quantitative estimator. Global results are shown in 8.
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Figure 8: Three set of experiments, each of them characterized by a different N value, are shown. Note
that they show the same qualitative behavior. The statistical associated errors are evaluated as explained
before.

As it can be seen from the chart, we can heuristically say that there are two distinct dependences of
varX on ρ. For small values of ρ, varX decreases as the density increases, while for bigger values varX
seems to ”saturate” reaching a “plateau”. Considering the chart, it is important to stress that: a) the
critical density at which the functional dependence changes is not independent of N ; b) the value of
the ”plateaus” of varX increases with N . Not only that: what other studies called the “typical density
range” [22] seems to correspond to the “saturation” region only; we believe that our analysis, at least in
the present model, have succeeded in highlighting the presence of a lower region in which the system
shows a different behavior.
Finally, while in continuous models it was generally accepted that the most important variable was ρ
alone, it is evident that the dynamics of our MAS discrete system depends on the number of amoe-
bas as well; hence, it is necessary to study the numerosity, looking for a scale-free range in which the
dependence on it can be neglected.
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6.2 ρ = const

In order to evaluate the impact of N , three different set of experiments were chosen, each of them with
a specific constant density (respectively ρ = 80

1002 ,
120
1002 ,

200
1002 ). After that, N was varied for each k-th

experiment. The results are shown in Fig. 9.
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Fit: y∝Log(N)/N

a = (-22.0±2.2) 
b = (0.0049±0.0007) 
c = (0.942±0.03) 
d = (0.0826±0.001) 
χ2
red = 0.62

Figure 9: The quantitative estimator varX (t=1000), as well as its associated statistical error, was calcu-
lated as described previously. As every experiment set showed the very same dependency, thus the
same trend, only the one identified by the value ρ = 80

1002 is depicted.

As the χ2 guarantees, the fit follows

varX(t = 1000) = a · log(b ·N + c)

N
+ d (4)

therefore resulting in a varX(t = 1000) ∝ Log(N)/N trend. It was verified that all sets of experiments
follow the very same rule, albeit with different values for the fit parameters. As a consequence, hereafter
we focus on one particular experiments set, that is ρ = 80

1002 .
The function (4) tends to an asymptote, so in principle it is possible to identify a scale-free range for the
variable N ; however, the value of N for which varX(t = 1000) differs by 5% from the asymptotic value
25,000, which is a biological magnitude of numerosity. Despite its relevance for evolutionary studies,
said scale was found not to be handleable with ease since it exceeds our own computational limits;
future simulations with greater computation capabilities may exploit this result to set their variables in
a purely scale-free region. Moreover, it may be interesting, for the purpose of scaling the model to lower
values of N , to understand and quantify the error that comes from such scaling choice. Considering
varX(t = 1000) = f(N) a proxy to identify an interval

L = {Ñ s.t. 0 <
∂f

∂N

∣∣∣
t̃
< 1 and Ñ is computationally treatable}

we chose the value Ñ = 2640 to represent L. Starting from that, it was possible to estimate the induced
systematic error associated with MAS models that are placed in L instead of in a scale-free regime.

6.3 Systematics

The aforementioned systematic error was not determined on the estimator varX(t = 1000) but directly
on the order parameter t instead. The reason is the following: in a real biological experiment, one cannot
control the evolution of the amoeba dispersion, which necessitates an extensive control over every single
cell, but can easily measure the time needed to reach an aggregation state. Knowing the dependences
given by eq. 3 and 4, it is straightforward to obtain, in I:

t(N) = − 1

B
· log{

a·Log[b·N+c]
N + d− C

A
} (5)

(recall that it was verified that t = 1000 is a valid proxy for every t ∈ I) .
After that, once the desired aggregation state (defined by a value ˜varX ) is chosen, one can measure tthr,
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namely the time that is needed to reach it (Fig. 10).
After that, the systematic error is given by δt(N,∆N). To evaluate it, we assumed a range of uncertainty
on the number of amoebas ∆N ; then we hypothesized a linear dependence of δt on ∆N as it was an
error propagation. Such hypothesis was verified a posteriori by evaluating the values of δtexp coming
from interpolation of experimental data; to do so, we selected several values of N̂ around N = 2640

to define a ∆N ; for each of them we evaluated the corresponding varN̂X(t = 1000) using equation (4);
finally, we estimated t̂ such that varN̂X(t = t̂) = var2640X (t = 1000) by using equation (3). Thus

δt(N,∆N) =
∂

∂N
(− 1

B
· Log{

a·Log[b·N+c]
N + d− C

A
})∆N (6)

In order to contrast the systematics against the sensitivity of the proposed model (so that one may esti-
mate how much the magnitude of δt impacts on the statistical analysis), three more experiments were
performed, each of them being assigned a different value of density. This way we consider the sen-
sitivity as the capability of discriminating different regimes depending on the macroscopic variable ρ.
With reference to the previous results, the three values were chosen around the critical density which
leads to “saturation”: ρ = { 80

1002 ,
104
1002 ,

120
1002 } (of course, as N of interest is N = 2640, they were scaled

accordingly). Thanks to such decision, it was possible to compare the sensitivity in and out the scale-free
region of ρ. Results are shown in Fig. 10.
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ρ = 2640
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ρ = 2640

5042
 (+30%)

ρ = 2640

5742

Figure 10: tthr vs ∆N/N . Three sets of experiments are shown and compared. The error bars are a
superimposition of statistical and systematic error, so that it is possible to estimate how big the total
error is in comparison with the sensitivity. Calling the critical density ρ̃, note that the two experiments
with ρ > ρ̃ (namely the blue and green one) are already indistinguishable, as the are in a density-scale-
free region, while the third one (ρ < ρ̃) can be statistically separated if and only if ∆N/N is “low”, that
is, if the associated systematics does not exceed a confidential value. Otherwise, a normal test Z cannot
tell between the three sets.

There are three main identified features that emerges from such analysis.
First, it was confirmed that, in a density-scale-free region, the experimental sets defined only by the
choice of ρ are not distinguishable - even without considering the systematics; as a consequence, we can
identify an intrinsic ρ-scale-free region that does not depend on measurement performances.
Second, the experimental mutual choice of N and ∆N has a significant impact on δt, that is, if we work
with a number of amoebas which is lower than the biological ones, we ought to pay particular attention
to its uncertainty. It is also true the opposite: when setting the system to biological numbers, ∆N may
be tuned less accurately, as it doesn’t impact too much on the aggregation trend; this idea may lead to
biological suggestions like “how the evolution tuned the colonies to large numbers that are minimally
dependent on stochastic fluctuation”.
Third, it is clear that, when modeling a computational discrete simulation, one must pay attention not
only to the macroscopic variable ρ, but to the microscopic N as well. If not, in the case that one notices
indistinguishable results, he couldn’t say for sure if they were intrinsically so or, on the contrary, a
systematic error shaded them. Therefore, when setting a computational model, there is not such a thing
like a “ρ-scale-free region” or a “N -scale-free region” alone, but there is a ”ρ-N -scale-free surface” where
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the experimentalists should set their variables, knowing that a certain error is associated to sets that are
outside such surface (but not too far, as we stressed during the whole analysis).

7 System robustness

In biological systems, robustness is defined as the ability to maintain functionality in the presence of
internal and external perturbations [60, 61]; uncovering its mechanisms is a key issue in system biology
[62]. In the present context, it is of great importance to study the “thermal-noise” parameters, namely
PG and PA (Sec. 4.1).
In consistency with the analysis conducted so far, we set N = 2640 ∈ L and ρ = 2640

4692 (in the “density-
scale-free” region). For the reasons stated before, it was estimated (tthr ± σstat) as well as the associated
systematic error δt for different values of ∆N (conventionally, a big a medium and a small one: ∆N =
{100, 300, 600}). Results of (tthr ±

√
σ2
stat + δt2) vs PG and vs PA are shown in Fig. 11.

Figure 11: Experimental results for the dependence of the aggregation time on PG (left) and PA (right). Along with
the mean values, four different error bars are shown: the statistical alone (with ∆N = 0), and three superimposed
systematic, each of them depending on a different ∆N . With regard toPA, the linear fit is guaranteed by χ2

red < 1 for
every associated error. As for PA, despite the clear exponential trend, χ2

red < 1 only with a δt(∆N = 600) associated
error. Once again, we see that the associated systematics is not a formal, a priori accident, but it is a necessary and
informative quantity that must be taken into account when working within the considered parameter surface.

Regarding the role of PG, big values of ∆PG have to be chosen in order to magnify the linear trend
(in fact, if PG = 0.00125 is the reference value, the study interval is P = {−75%; +300%}). Therefore,
large perturbations are necessary to significantly increase the aggregation time. On the other hand, PA

leads to a possible critical slowing down of the system [63] towards the loss of attractor when values are
too high. However, the aggregation rate is nonetheless consistent to biological values up to PA ' 0.5,
meaning that the system as a whole is robust even in adverse cases when individuals can fail half of the
times to correctly process the chemical signal (inner noise). In other words, non-linearity of the problem
balances different sources of noise, leading to controlled mean collective behaviors.

8 Validating model predictions

The model makes two important preliminary predictions about the colony evolution: (i) a finite set
of individual behavioral rules, coupled with social interactions, are sufficient to elicit self-organization
and decentralized gathering; (ii) thanks to mutual interactions, the system is robust against numerous
sources of stochasticity. The first prediction has already been shown during the whole text, as it is the
main verified hypothesis that led to the model design and implementation; however, we believe that,
by expanding the class of candidate models, we may be able to produce an even better model. As for
the second prediction, not only it has already been shown how the system collective behavior is robust
against biological-like smearing of trajectories (δ1, δ2), but “thermal-noise” sources has been studied,
too. As a result, we showed how the system is able to cope with internal and external perturbations,
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evolving in its original basin of attraction until said perturbations became greater than those found in
nature.
To summarize, all the results (comparison with literature results after having set the same initial condi-
tions, comparison with biological knowledge, assessment of a scale-free region for simulation repeata-
bility and system robustness, validation of predictions) concur in the model validation, as per guidelines
followed by other simulations [64, 65].

9 Conclusions

A Multi-agent system approach could represent an innovative methodology to tackle complex biological
systems such as the D. discoideum aggregation process. In the present study we firstly validated our
model. To begin with, it was identified a “scale-free surface” in which setting repeatable and reliable
simulations; likewise previous research, which speaks of a “normal density region”, we highlighted the
presence of a ρ-scale-free-region towards which the system tends when values are biologically compati-
ble. Not only that: by studying the number of individual cells, we demonstrated that, at least in a MAS
approach, the macroscopic variable ρ alone is not sufficient to fully set the model, but that a researcher
needs to care about the microscopic variable N as well. As a consequence, we highlighted a ρ-N -scale-
free surface in which the experimentalist should place his variables during simulations. However, since
such region is identified by values that are computationally hard to manage, we analyzed its neighbor-
hood for N slightly off-scaled (Ñ , see Sec.6.2); after that, we suggested how to consider the induced
systematic error. This analysis states that it is important to handle an eventual uncertainty over N with
care, as it may lead to ambiguity during the comparison of different set of variables and/or hypothesis.
On the contrary, if ∆N is treated adequately, the present analysis shows how to obtain quantitative re-
sults for a rescaled model to smaller, non-biological values of numerosity, easier managed by an in silico
simulation. Finally, the validated model was used to perform predictions about the system robustness
against internal and external perturbations, finding interesting results about the system control.
The present model focuses on the first stages of D. discoideum aggregation patterns; however, an inter-
esting future perspective may be to extend the class of possible models by going beyond the present hy-
pothesis. Other than that, this model can represent a suitable testbed to study dynamical and topological
properties of the system. Moreover, we believe that the present model could have interesting practical
applications in the field of system control and self-synchronization of robotic populations [66–69].
To end with, we suggest that our project could represent a link between an abstract and theoretical math-
ematical modeling and a biological and more qualitative description because, on one hand, the replica
of the physical space (“wet lab-alike simulation”) guarantees an high level of interpretability; on the
other hand, the extensive control of the parameters and the possibility to realize quantitative measures
and repeated tests allows going beyond the experimental limits of the in vivo or in vitro observations.
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