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Abstract 
Recurrent incidents around the world involving the contamination of water-supply 
systems and the inherent vulnerability of drinking-water networks to chemical, biological 
and radio nucleotide contamination has increased water utilities’ awareness of the need 
for rapid and reliable detection of contamination events. 

Continuous water-quality monitoring is a proactive approach to monitoring water quality 
for potential contamination through the deployment of advanced technologies and 
enhanced surveillance to collect, integrate, analyse and communicate information, and is 
a fundamental element of the water-security plan. 

This guidance document is aimed at professionals of drinking water supply to support the 
implementation of such a continuous water-quality monitoring system in water utilities. It 
provides key definitions and briefly explains each of the components of such a system. 
For each component, the guidance describes the major points to be considered by the 
water utility before and during implementation. 

This document was prepared by the Chemical and Biological Risks to Drinking Water 
Thematic Group of the European Reference Network for Critical Infrastructure Protection 
(ERNCIP) (Gattinesi, 2018). 
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1. Introduction 
Recurrent incidents around the world involving the contamination of water-supply 
systems, and the inherent vulnerability of drinking-water networks to chemical, biological 
and radio nucleotide (CBRN) contamination, have increased water utilities’ awareness of 
the need for rapid and reliable detection of contamination events (Clark, Hakim and 
Ostfeld, 2011). 

The proposal for a water-security plan has been developed by this Thematic Group. 
Complementary to water-safety plans, it addresses the risk of intentional or accidental 
contamination of drinking-water-distribution systems (Weingartner and Raich-Montiu, 
2015; Hohenblum et al., 2016). The main goal is to detect contamination incidents in 
time in order to reduce potential public-health and economic consequences. 

The emergence of the internet of things, cloud computing and big-data analytics enable 
automatic remote collection of data from water-quality sensors located in the distribution 
system and wireless transmission to a central system for efficient and effective 
monitoring and analysis of the water network (Public Utilities Board Singapore, 2016). 

Continuous water-quality monitoring (CWQM) is a proactive approach for monitoring 
water quality for potential contamination through the deployment of advanced 
technologies and enhanced surveillance to collect, integrate, analyse and communicate 
information, and is a fundamental element of the water-security plan (EPA, 2007, 2008). 

The CWQM system is a suite of tools that constitutes a decision-support system (DSS), 
providing event managers with the information necessary to make good decisions, 
assisting in the evaluation of multiple response actions and thereby minimising further 
human exposure to contaminants and maximising the effectiveness of intervention 
strategies. 

The CWQM system typically includes detailed geographic information system (GIS) 
mapping of the water network, a hydraulic model allowing calculations of flow directions 
and intensities in the water-piping system, water-quality sensors optimally located in the 
distribution system, an event-detection system (EDS) and a contamination dissemination 
model. A possible architecture of a CWQM system, which has been developed as part of 
the EU-funded FP7 Safewater project (Bernard, 2016; Safewater, 2016), is shown in 
Figure 1. Some of these modules have been state of the art for many years (e.g. 
hydraulic models), but others are relatively new and are only available as prototypes 
(e.g. advanced EDS systems; online simulators; and look-ahead simulators). It should be 
stressed that the integration of such a ‘complete’ DSS is currently quite a complex task, 
as there are no standards for the interfaces of the software modules. 

The CWQM system is one component of the surveillance system which provides timely 
detection of water-quality incidents in the drinking-water-distribution systems. Additional 
components are physical and cybersecurity monitoring, customer complaints and public-
health monitoring and laboratory analysis. 

Once integrated into daily operations, the CWQM system will respond to deliberate acts 
of contamination such as terror or sabotage actions, as well as natural disasters, 
accidents and mishaps or operational mistakes. It can also be used to further 
understanding of the operation of the water-distribution system. 

Drinking-water-distribution systems are large networks consisting of raw water sources, 
treatment plants, storage tanks, valves, pumps, instrumentation and hundreds to 
thousands of kilometres of pipes that transport treated water to customers over vast 
areas. The nature of the drinking-water-distribution systems and the high velocities and 
volumes of water in the networks can allow contamination to reach large populations in a 
relatively short time. The CWQM provides valuable insight into real-time and near-real-
time conditions throughout the water-supply network, from the water source to the 
customer connection, thus enhancing protection from contamination. 
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The CWQM system is a vital management tool to monitor the water network and a DSS 
to detect anomalies. The CWQM system enables earlier event detection, thus giving time 
for actions to be carried out to minimise contaminant dissemination, limit the health 
impact on residents and restrict damage to the water network, thus enabling faster 
rehabilitation and effective mitigation of the economic impact (EPA, 2008). 

The basis of a CWQM system is a network of water-quality-monitoring stations deployed 
at strategic locations throughout a drinking-water-distribution system. Each station 
contains a suite of sensors that measure water quality and operational parameters. Real-
time and near-real-time water-quality data collected from sensors is continually analysed 
by the event-detection system (EDS) and allows the utility to rapidly detect water-quality 
anomalies (van der Gaag and Volz, 2008; EPA, 2015; ISO, 2018b). 

Figure 1. Possible modules and architecture of a CWQM system 

 
Source: FP7 Safewater project: http://safewater-project.eu 

The design process of the CWQM system is a multi-objective task that requires informed 
decision-making, using optimisation tools and making various assumptions for different 
objectives. Water utilities must weigh the costs and benefits of various designs and 
understand the significant public-health and cost trade-offs. 

Traditional chemical and biological analytical analyses (field sampling and analysis in the 
laboratory) have to be carried out to confirm and identify the nature of the contamination 
by recognised methods. The Thematic Group is preparing a report on such analytical 
methods to be released in 2019. 

The installation, implementation and operation of the CWQM system requires the input of 
the utility’s hydraulic engineers who are familiar with the water network, water-quality 
experts, electronics and communication experts, IT security experts and skilled 
technicians. 
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These guidelines briefly explain each of the CWQM components and include necessary 
definitions, so that users will be familiar with the professional terms that may arise 
during CWQM system implementation in the utility. For each component, we will describe 
the major points to be considered by the utility before and during implementation. 
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2. Hydraulic model and geographic information system 
application 

2.1. General 
The various components of the CWQM system, for example software for the optimal 
location of water-quality sensors in the water-distribution system, EDS, water quality and 
the contamination dissemination look-ahead simulation (CDLAS) model, require detailed 
information regarding the physical aspects of the water system and detailed water-
demand information. 

A hydraulic model is commonly used to analyse water utility networks, and is an 
indispensable tool for creating a master plan for the development of the system and 
capital improvement plans. The model can help utilities evaluate system performance 
under various operational scenarios and identify future improvements necessary for such 
parameters as meeting water-pressure requirements. 

A hydraulic model is a mathematical representation of the water system which can then 
be used to examine the behaviour of the system. It calculates the pressure losses 
throughout the system (for a given water demand) and presents the pressures expected 
at each node (junction) in the pipe system. These calculated pressures can be compared 
to pressure requirements. The model operator can than posit improvements in the 
distribution system (for example increasing the diameter of certain pipes or regulating 
pumping pressure) in order to effect the desired changes in node pressure. Increased 
demand expected in the future can be run on the model, thus predicting which pipes will 
have to be upgraded in terms of diameter, what pumping capacity must be increased in 
order to provide future demand at the desired pressures or what water-storage capacity 
must be built by which year in order to provide 24/7 service. 

In order to calculate pressure losses in the system, the model must first calculate the 
flow speed of the water in each and every pipe as well as the direction of the flow. This 
data is vital to understanding the flow characteristics of the system (which can change 
according to what hour of the day or what day of the week it is, or even according to the 
season, whether summer or winter) and thus the ability of the system to disseminate a 
contaminant introduced at a certain point in the system. 

Flow data is clearly an important tool in modulating the water-demand characteristics of 
the hydraulic model, but use of pressure values measured by field sensors in the CWQM 
stations may further adjust the model. This makes the model’s representation of the 
system even more realistic and provides the CDLAS model user with a true reality-based 
prediction of the contamination-spread zone. 

The hydraulic model can work in two configurations: ‘offline’ and ‘online’. 

• The offline function for simulation using past data means that the water-demand 
data is taken from the stored database. This data represents a historical average 
water-demand profile, not modified to current conditions. 

• The online function uses updated online data of the inflow and the water 
demands, and may include reservoir levels, pump operation, water-flow 
measurements, etc. The online approach provides more accurate and relevant 
results and thus a better prediction of the water flow through the system. 

The location of water-quality sensors is dependent on the flow characteristics of the 
system, as calculated by the hydraulic model. 

Utilities that obtain water from multiple sources can use the hydraulic model and GIS to 
calculate the proportional mix of the various water sources throughout the network. It is 
a good indication of overall customer water quality. 
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2.2. Implementation requirements 
The hydraulic model is both expensive and time-consuming to create. Most medium-sized 
and large utilities may create a hydraulic model as part of their master plan. Several 
platforms for creating a hydraulic model exist and some are even free to download. The 
implementation requires experienced and knowledgeable engineers to apply the 
downloaded platform to a particular utility. 

Creating the model requires detailed physical information on the water system 
(reservoirs, pumps, pipes — diameter, material, age, length, route), detailed data on 
water consumption for every consumer (estimates can be used, but these limit the 
accuracy of the resulting model) and detailed maps including elevations (digital terrain 
model) (Public Utilities Board Singapore, 2016). It is also vital that the model be 
enhanced to receive online operational information. 

The utility should consider a user-friendly interface that includes several layers, such as a 
water-network map, quality simulation, predicted spread, sensor nodes, the node 
numbers, etc. 

The utility should verify that the hydraulic behaviour matches actual system operations 
and validate the hydraulic model by means of pressure studies. 

2.3. Geographic information system 
As mentioned above, the building of hydraulic models of the water system requires 
considerable information regarding the distribution system, such as pipe information — 
diameter, material, length, age, route location; location of valves, water installation, 
consumer meters; characteristics of pumping stations; detailed urban maps (streets, 
buildings, elevations, etc.); and more. 

This information is most efficiently maintained and displayed in a GIS, which integrates, 
stores, edits, shares and displays spatial geographic information (Ginther, 2007). It 
allows users to create interactive user queries, edit data in maps and present the results 
of all of these operations. 

Water utilities have traditionally maintained detailed system maps. Keeping the 
information updated has always been a challenge. GIS computerised tools provide the 
utility with an efficient means to update and disseminate distribution-system information, 
and to map the distribution of consumer water use; this information is in turn easily 
exported to the hydraulic model to serve as a basis for creating the model. 

The GIS tool is extremely powerful in that it allows development of queries such as ‘Show 
all pipes larger than 10’ with age exceeding 40 years’ or ‘Show which valves are to close 
in order to isolate a given segment of pipe, and which consumers will suffer a water 
outage as a result of the closure’, etc. The more information that is included in the GIS, 
the more benefits can be realised. 

A GIS representation of the system allows easy and immediate access to information for 
all authorised users. Selected information can also be made available to the public. 
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3. Sensor-placement optimisation software 

3.1. General description, the need and the benefit 
The locations of CWQM stations must be optimised in order to obtain an early detection 
time, minimise public exposure to contaminants, minimise the spatial extent of 
contamination and reduce economic consequences (Ostfeld et al., 2008). 

The placement and optimisation software is a comprehensive tool based on an updated 
and calibrated hydraulic model that facilitates the proper location of CWQM stations. The 
software uses probabilistic analysis and optimisation to conduct a vulnerability 
assessment and determine the optimal number and location of CWQM sensor stations in 
the distribution system. 

CWQM station-placement strategies can be based on a computational model but should 
also consider expert opinion and/or user-preference information (proximity to critical 
facilities) to rank network locations. 

The operation of the placement-optimisation software should be carried out by an 
appropriate expert, in conjunction with the utility’s hydraulic engineers and water-quality 
persons, and should also include on-site feasibility assessments. 

Several specialised computer tools are available for carrying out sensor-placement 
optimisation. These programs posit the introduction of a contaminant in any number of 
nodes in the distribution system and examine each scenario for selected results (e.g. 
total length of pipe contaminated until contaminant arrives at a sensor location). Too 
many sensors are an unnecessary expense; too few allow too much of the system to be 
‘unprotected’. 

The number of monitoring stations is also calculated by the software. A ‘knee of the 
curve’ analysis is done — this indicates the number of stations above which there is only 
a small increase in the network percentage coverage, making the additional stations not 
cost-effective. 

3.2. Implementation requirements 
For an optimum number and location of CWQM stations in a drinking-water network, the 
utility must first decide on its optimisation policy (Preis, Whittle and Ostfeld, 2011; 
Thompson et al., 2011). For example, is the policy to limit the number of people exposed 
in a contamination event? Or do we want to minimise time to detection? Do we wish to 
minimise the total pipe length contaminated? Do we wish to give precedence to and 
‘protect’ certain vital consumers? The utility must also consider its ‘time of reaction’ in 
the total optimisation picture. Other considerations involve the efficacy of using average 
consumption data as opposed to maximum or minimum levels. 

Objective functions relating to public-health impacts may be the highest priority and 
therefore may be chosen. 

An optimal sensor placement is done with the assumption that all incidents are equally 
likely (uniform event probabilities because, typically, one does not have information 
about terrorist intentions), and is evaluated using a distribution of impact values for the 
entire large set of contamination incidents. However, the utility may decide that certain 
contamination scenarios are more likely than others. The mean value of an objective 
function is a natural statistic, while it can still allow many high-impact contamination 
incidents to occur. 

All of the above considerations affect ‘optimal’ sensor placement. In the end, the 
optimised sensor-placement results increase the chances of early event detection and 
damage reduction. 
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The information that has to be collected and decided upon by the water utility before the 
optimisation process includes the layout of the water-distribution system and the 
operating information as expressed in the hydraulic model, the sensor characteristics, the 
type of event, the objective functions and the utility’s response plan. 

3.2.1.  Hydraulic model data 
The hydraulic model is the backbone of the sensor placement and optimisation software. 
A well-calibrated, extended-period simulation hydraulic model is important for accurate 
representation of system performance under average-day conditions, and for the ability 
to represent the spread of the contaminant throughout the distribution system. See also 
the hydraulic model chapter. 

The following hydraulic model network characteristics are important for CWQM 
placement-optimisation simulations: 

● network details of main and other pipes that are considered critical from a 
security point of view, junctions, treatment plan, reservoirs, pump stations, 
valves; 

● pressure, flow, reservoir-level field data collected from the supervisory control 
and data acquisition (SCADA) system; 

● water age — the travel times from the source to the customer nodes in the 
specific water system; 

● common operating conditions throughout the year (e.g. relatively average 
conditions throughout the year); 

● daily average water consumption during periods with different levels of 
demand, which influence flows and velocities (e.g. average high demand of a 
summer day, average low demand of a winter day, maximum demand in 
extreme cases such as fires); 

● multiple water sources and water-mixing information; 

● water quantity coverage; 

● topography; 

● areas with a higher risk of threat and protection, such as important and 
sensitive institutions (hospitals, military bases, government buildings, etc.); 

● the size of population served; 

● the population density (calculates population using either a demand-based 
approach (an average-per-capita demand, no differentiation for private or 
industrial and commercial usage) or a census-based approach (uses census 
data and a GIS) but does not account for the non-resident population). 

3.2.2.  Sensor characteristics 
The water-quality sensors in CWQM stations have multiple parameters, modelled with 
contaminant-specific detection limits that reflect the ability to detect chemical 
contaminants (Wagner et al., 2006). 

The sensor characteristics are also important for CWQM placement-optimisation 
simulations: 

● monitoring station location selection (all or limiting feasible nodes); 

● sensor type; 

● detection limit according to the disinfection method used in the water system; 
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● sensor accuracy; 

● sampling programme. 

For more details see Section 4. 

3.2.3.  Event types 
If the utility has some information or an assumption regarding event types, as mentioned 
below, they are also important for CWQM placement-optimisation simulations: 

● types of contamination threat such as high-impact incidents, low-impact 
incidents that might be caused by accidental backflow, or cross-connections; 

● the simulation duration (to determine the average water age in the 
distribution system and the oldest water age under average-day demand 
conditions); 

● the start time of the contamination incident (on the peak/average/lower 
demand time of the system); 

● the duration of contamination and the mass released (for a low-impact 
contaminant, a larger mass is required if injected over a short duration and a 
smaller mass is required if injected for longer durations; and for a high-impact 
contaminant, less mass is required for a longer release duration); 

● rate of contaminant injection (pipe-flow rates used to calculate mass-release 
rates for the selected low-impact and high-impact contaminant durations); 

● contamination dissolved rate; 

● dose calculation (depends on the contaminant concentration in the water and 
the amount of water consumed); 

● injection locations of the contaminant may not be known— meaning the 
number of possible sources and the number of nodes to consider as a potential 
source of entry, resulting in the number of contamination incidents to check 
during the optimisation process; 

● temporal pattern of water consumption. 

3.2.4.  Objective functions 
The objective functions are among the most important parameters that can be selected 
by the utility for optimisation. It is important to understand the differences between the 
objectives when designing a CWQM station network. The software should have the ability 
to analyse and visualise the trade-offs between different objective designs, and between 
the number of sensors. The  different objective functions are: 

● time to detection; 

● population exposed prior to detection; 

● population exposed to a specified dose of contaminant; 

● population affected by a contaminant; 

● population killed by a contaminant; 

● volume of contaminated water consumed prior to detection; 

● extent of contamination in the network; 

● damage to the water network; 

● number of failed detections; 
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● the fraction of contamination incidents that are detected by the sensors; 

● maximum spatial coverage of the network; 

● protection of key facilities or populations. 

Other objectives such as the costs of a CWQM or the economic impact on a water system 
could be considered as well. 

Usually, the impact on public health that might result from a contamination incident is 
more important. 

3.3. Utility emergency response plan 
In parallel with installing a CWQM system, it is vital that the utility develop an emergency 
response plan, the aim of which is to eliminate or lessen further public exposure once a 
contaminant has been detected in the system. The plan should include all the immediate 
actions needed to respond quickly and reduce the damage. Response time is the total 
realistic time that it would take for the utility to respond effectively to a positive 
contamination detection, in order to eliminate or lessen further public exposure. The plan 
should aim at minimising response time. 

Immediate actions could include effectively warning customers at risk not to drink the 
water, cutting off the water supply in the area at risk, stopping pumps, closing main 
valves, etc. 

Minimising response time is important in the optimisation process described above 
because, as the response time increases, monitoring becomes less relevant even with a 
larger number of monitoring stations. It is of little use to invest heavily in a CWQM 
system if the utility does not know how to respond effectively to the alert the system has 
provided. 

3.4. Optimisation software design 
Optimisation software may use a single-objective analysis approach or may be capable of 
performing a multi-objective analysis (carrying out correlations between objectives). 

The single-objective software allows the user to explore trade-offs between various 
CWQM station locations and choose the location design that performs well for more than 
one objective (EPA, 2010a). 

The multi-objective approach is a computationally intensive process which analyses 
several objectives in parallel (Preis, Whittle and Ostfeld, 2011). It may optimise a 
weighted sum of different objectives or optimise one objective while constraining the 
remaining objectives. The utility should decide which objective function or functions to 
consider. 

The software used must be capable of carrying out fast, exact and flexible calculations, 
dealing with large and complex water-distribution systems and handling the optimisation 
of large quantities of data. 

The optimisation process may be based on different sensor-placement optimisers, such 
as integer programming solvers, genetic algorithms, local search and others. 

Quality assurance is required in order to verify that all optimisation processes and 
simulations are running correctly and the utility can trust the results. 
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3.5. The optimisation process 

3.5.1. The number of continuous water-quality monitoring stations 
Before optimising CWQM station locations, the number of CWQM stations to be installed 
in the system must be determined. The optimal number of CWQM stations is determined 
using trade-off curves, such as ‘knee-of-the-curve’, in which additional monitoring 
stations beyond an optimal number (cost) provide only a negligible increase in network 
percentage coverage (benefit). 

3.5.2. The location of continuous water-quality monitoring stations 
The optimisation process integrates a great deal of data, including model assumptions 
and constraints, function objectives, sensor characteristics, etc., and presents the 
suggested optimal locations for CWQM stations accordingly (Philadelphia Water 
Department and CH2M HILL, 2013a; EPA, 2014b). 

The monitoring station placement software determines the optimal monitoring station 
network for a specified contamination scenario. An optimal monitoring station set design 
is defined for a specific scenario, and this optimal design is then run within a different 
scenario for performance evaluation. The analysis conducted compares every optimal 
monitoring station set’s performance across all design scenarios. This analysis makes it 
possible to determine the monitoring station set design that performs best in all cases. 

The decision process begins by finding a sensor placement under ideal conditions and 
simplifying the assumptions. The assumptions are then removed one by one in order to 
make the results more realistic. At each iteration, the performance of the given sensor 
network design is compared quantitatively and visually with previous designs in order to 
understand what has been gained or lost with each assumption. 

Based on the hydraulic model and on the objective functions decided upon, the 
optimisation software calculates the consequences of the set of contamination incidents 
that the monitoring stations is designed to detect. The software may consider 
contamination incidents that occur at every node in the network, minimising the mean 
value for a given objective — assuming that each contamination incident is equally likely 
— and therefore all are important to consider when selecting a CWQM network design. 
The software may also allow the user assigning a higher importance weight on locations 
with a higher likelihood of contamination. 

Each solution needs some compromise. For example, using multi-objective analysis of 
the average volume of contaminated water consumed, detection time must be offset with 
detection failure: if the time-to-detection value is allowed to rise, this will result in fewer 
cases of detection failure. However, if minimum failure is demanded, this may result in a 
longer detection time. 

The utility’s estimated response time may also affect the placing of monitoring stations 
further upstream or downstream: if the response time is relatively high, it may be 
necessary to move monitoring stations further upstream in order to save at least part of 
the population from contact with contaminated water. Note that there could be a higher 
number of detection failures too. For an improvement in both reduced detection time and 
reduced detection failure, objective functions imply adding more monitoring stations to 
the solution. However, this has the consequence of increasing the costs, which could be a 
constraint for the implementation of the solution. 

Various assumptions may be made during the analysis with the software expert that may 
influence the results of the analysis. For example, assuming a detection time equal to 48 
hours for a given number of monitoring stations will lead to the location of the stations 
on the edge of the supply area and to the contamination of most of or the entire 
network. Assuming a detection time equal to zero will push locations upstream of the 
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previous location, thus allowing the utility enough response time to isolate and limit the 
dissemination of the contaminant. 

Multi-objective analysis may consider all at the same time and without assigning weights, 
or in a different way. 

3.5.2.1. Final location decision 

Utility personnel must ultimately evaluate and compare optimisation results and decide 
on the final locations of the sensor stations. While CWQM location-selection software 
should be used to identify optimal CWQM locations, these sites may not always be 
practical. The possible influence of the site’s characteristics on the sensor’s operation and 
utility operators’ experience and professional assumptions should also be considered. 
Therefore, several methods for identifying CWQM stations may be used. 

The recommended location of the CWQM stations in various sites (e.g. reservoirs, 
treatment plants, pressure-reduction stations, metering points on network pipelines — 
pressure districts or district metering areas, etc.) should consider the possible influence 
of the site’s characteristics on the sensor’s correct and accurate measurements, and 
ensure appropriate and correct data transfer. 

The site-specific requirements (if necessary) for the monitoring station are: 

● sufficient environmentally protected secure space (appropriate temperature, 
humidity, free of condensation, vibrations); 

● adequate source of pressurised and pressure-controlled water supply (use 
pressure regulator valves to avoid pressure and flow fluctuations that cause 
bubbles, high pressure); 

● power supply and electrical backup; 

● media for transmitting the data (wired or wireless) to a pre-specified data-
collection location (avoid transmission interferences); 

● drainage point for the sampled water; 

● safety; 

● clear access for installation and maintenance (water intake and drain lines 
below sensors, electrical noise suppression and transient impulse protection); 

● influence on the false alarms detected by the EDS, which need a stable water-
quality background with low pressure fluctuations; 

● accessibility to the CWQM equipment at all times; 

● security of the location. 

Implementation of CWQM stations involves knowledge of the hydraulic model 
requirements, design basis, sensor-placement analysis, site selection and field 
verification. 

 

  



ERNCIP Chemical and Biological (CB) Risks to Drinking Water Thematic Group 

 

 
-14- 

European Reference Network for Critical Infrastructure Protection (ERNCIP project) 
https://erncip-project.jrc.ec.europa.eu/ 

4. The sensors 
This section was compiled based on Hall et al., 2007; Panguluri et al., 2009; EPA, 2013a; 
Weingartner and Raich-Montiu, 2015; Geetha and Gouthami, 2016; Bazargan-Lari, 2018. 

4.1. General 
For the purpose of these practical guidelines the sensor term, which reflects practitioners’ 
use, will be used. Nevertheless, other terms and definitions are mentioned in the table. 

Table 1: Definitions of sensor-related terms (ISO, 2003; IEC, 2018; SABE, 2018) 

Organisation Term Definition 

IEC Sensor/ 
measuring 

element 

 

Part of a measuring instrument or measuring chain, 
which is directly affected by the measurand and which 

generates a signal related to the value of the 
measurand (IEC, 2018). 

IEC (Electric) 
sensor 

Device which, when excited by a physical 
phenomenon, produces an electric signal 

characterising the physical phenomenon (IEC, 2018). 

ISO Online 
sensor/ 

analysing 
equipment 

Automatic measurement device which continuously 
(or at a given frequency) gives an output signal 

proportional to the value of one or more determinants 
in a solution which it measures (ISO, 2003). 

CEN/SABE 
ENV 

Sensor Electronic device that senses a physical condition or a 
chemical compound and delivers an electronic signal 
proportional to the observed characteristic (SABE, 

2018). 

CEN/SABE 
ENV 

Measuring 
device 

Device, used in an in-line or online operating position, 
which continuously (or at a given frequency) gives an 
output signal proportional to the value of one or more 
determinants in waters which it measures. The final 
measure is obtained from a sensor (SABE, 2018). 

 

Sensors should be chosen not only to achieve water-security goals but also to accomplish 
other water-utility objectives, such as satisfying regulatory monitoring requirements or 
collecting information to solve water-quality problems. Such an objective would be 
particularly interesting and likely to be highly correlated with security objectives. 

Continuous monitoring sensors can be used to detect anomalous changes in water 
quality, but further action (e.g. grab sample and laboratory analysis) must be undertaken 
to identify and quantify the contaminant. A laboratory support system will be important if 
samples require specialty testing as hazardous substances or a law-enforcement 
response, or overflow analysis. The Thematic Group is preparing a report on such 
analytical methods to be released in 2019. 

4.2. Type and number of sensors 
The type and number of sensors in the monitoring station should be determined 
according to the results of a risk analysis that should be carried out for each of the 
proposed stations. The most appropriate sensors together with an appropriate 
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combination of sensors specific to an individual drinking-water network should be decided 
upon. 

Sensors’ functionality and capabilities should be assessed (singly and in combination) for 
their relevance to the water utility’s drinking-water network in general and their 
proposed installation locations in particular. 

It is not feasible to install an unlimited number and unlimited types of sensors in each 
monitoring station. The utility should undertake careful planning to create the most 
effective, efficient and economically suitable monitoring system. Some water-quality 
parameters respond to a larger number of contaminants than others. 

For CWQM there are different types of sensors. This sensor can be used in different ways 
depending on its operating position: 

Online sensors: in which the sample is taken from the body of water to the sensor by 
means of an appropriate conduit. They are sometimes referred to as extractive sensors. 
In-line sensors: in which the sensor, as a minimum, is situated in the body of water. 

Each type has advantages and disadvantages. 

There are many different monitoring devices based on different types of sensors that 
measure voltage, intensity or absorbance, among other things. In some cases the sensor 
can measure the signal directly but in other cases the use of reagents or pre-treatment 
of the sample is required to allow the measured compound or property to be detected by 
the sensor. 

The utility should consider choosing the different types of sensors according to their 
suitability to the requirements, cost, maintenance and market availability for each water-
quality parameter. 

The state of available sensor technologies and changing contaminant monitoring trends 
and priorities should be followed and evaluated by the utility to assess whether changes 
should be made to their CWQM stations. 

4.2.1. Low-energy online sensors 
Recently available stand-alone low-energy (LE) sensors, which check several water-
quality parameters and are based on batteries, solar cells or hydraulic power, allow for 
first-time water-quality monitoring within the water-distribution network itself, where 
there is usually no electricity supply available. 

LE sensor installation in the water-distribution network requires preparation such as 
excavation and pipe work, including valve installation, to create a platform on which to 
install the LE sensors. 

LE sensors are based on data transfer at determined time intervals (to save energy), but 
must be capable of transferring data in real time when an event occurs. 

Networking of specific sensors in CWQM stations makes it possible to create a spatial 
model in the EDS for better protection. 

4.3. Requirements 
Online water-quality sensor alarms are a reliable indicator of a contamination event. 
Stable or predictable baseline water-quality levels are needed for each location. 
Background-value variations need to be considered when locating online sensors and 
interpreting data. 

The sensors chosen need to satisfy the accuracy and precision requirements of the data-
quality objectives. The utility should consider, among other things: stated range(s), 
response time, limit of detection, limit of quantification, repeatability and reproducibility. 



ERNCIP Chemical and Biological (CB) Risks to Drinking Water Thematic Group 

 

 
-16- 

European Reference Network for Critical Infrastructure Protection (ERNCIP project) 
https://erncip-project.jrc.ec.europa.eu/ 

The utility should consider sensor performance in terms of: 

• type of contaminants considered to be a threat; 
• environmental-condition requirements for proper operation of the sensor; 
• capital and installation costs; 
• operating costs such as consumables, reagents and labour costs (initial 

implementation and shake-down period — complex sensors require a high level of 
technical skills); 

• maintenance requirements (for year-round operation, maintaining a tight 
maintenance schedule is necessary to obtain optimal sensor performance); 

• the frequency of calibration; 
• the ability to generate reproducible data at various contaminant-concentration 

levels; 
• failure rates (both false positive (FP) and false negative (FN) rates need to be 

considered); 
• data acquisition and interpretation specifics; 
• data communication and transfer; 
• verification testing as well as laboratory resources for confirmation of results; 
• safety and waste issues. 

Once the sensors have been selected they should be installed in accordance with the 
instructions provided by the manufacturer to meet flow, pressure and sample 
conditioning requirements. Specific installation requirements such as distance from the 
water being measured, type of connection, waterline installation angle and the need for 
accessories such as pressure regulators and water-bubble valves should be carefully 
fulfilled to ensure proper measurements. 

Pressure fluctuations, flow control and air-bubble formation might negatively influence 
the data quality of many continuous-monitoring sensors. Manufacturers should provide 
robust non-fouling flow controls in their equipment to eliminate the potential for air-
bubble formation in the sensor. Some of the monitoring stations to be found on the 
market do already include this concept in their design. 

The sensors should include alarm outputs to identify instrument-related problems such as 
low reagents, instrument calibration drifts, etc. That is a part of the software of the 
monitoring station that is highly relevant. 

The design and structure of different water-quality parameter sensors are not included in 
this document (EPA, 2013a). 

4.4. Operation, maintenance and calibration 
In order to obtain reliable and accurate information from CWQM stations, it is vital that 
maintenance and calibration be carried out on the system. This includes preventive 
maintenance of the sensors, periodic verification, calibration, troubleshooting and 
thorough record-keeping. Periodic comparison of measuring-device measurements with 
field portable meters and/or laboratory measurements helps to ensure that the data 
values are an accurate representation of the actual water quality. Erroneous results can 
result in false alerts or missed events. 

Before purchasing sensors, the utility should consider the frequency of calibration and 
maintenance, and the possibility and cost of carrying out calibration by remote control. 

To ensure proper operation of the sensor, environmental conditions, as per the 
manufacturer’s instructions, must be met. 

Skilled personnel should supervise sensor operation and respond promptly to alarm 
flagging. 

The water utility should establish a preventive maintenance programme with a frequency 
determined by the manufacturer’s instructions and modified according to the utility’s 
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experience. It is advisable to identify all the elements (pipe cleaning, reagents, biofilms, 
etc.) in the measurement chain that can affect the productive cycle (time between 
maintenance) and reliability of the result, and include them in the preventive 
maintenance programme to be verified. 

Ideally, the utility should provide their personnel with internal training on the operation 
and maintenance of the CWQM stations. 

Where this is not possible, the utility may consider contracting out the maintenance 
work. In any case, maintenance and repairs should be carried out only by skilled 
personnel. 

A stock of spare parts, standards and reagents should be kept as needed for routine 
operation, maintenance and calibration. Care should be taken not to exceed the shelf life 
of items such as short-life reagents. 

The equipment documents, CWQM station design drawings and the maintenance and 
calibration records of each sensor and component of the CWQM station should be 
documented. 

The water utility should ensure that the relevant supply chains have the necessary time-
of-delivery resilience to deal with equipment malfunctions. 

4.4.1.  Calibration 
Calibration of the sensors should be carried out by a qualified utility employee in 
accordance with the manufacturer’s or supplier’s instructions and at the intervals 
required by the manufacturer or the supplier and/or the water utility’s sensor-calibration 
policy. 

The calibration can use portable field-measuring instruments, standards, reagents and 
accessories as reference, or may need a qualified laboratory as reference. 

Standard operating procedures (SOPs) for operation, calibration and maintenance should 
be developed and used. 

4.5. Parameters 
Currently, no single water-quality parameter, or combination of parameters, can respond 
to all contaminants and can accurately identify and quantify the many different types of 
chemical and biological contaminants that could potentially be introduced into the 
drinking-water-supply/distribution system. No single parameter can give an indication of 
the potential toxicity of complex mixtures. Therefore, a combination of specific and 
generic parameters is advised. 

Therefore, the parameters to be measured should be decided upon on a case-by-case 
basis for each water utility and deployment site. Utilities should consider installing more 
than one type of sensor in each of the CWQM stations. 

The parameters monitored online or in line should correspond to the kind of water found 
at the monitored site: raw surface or ground water, water stored in reservoirs, processed 
water in a treatment plant, final treated water in the distribution network — reservoirs 
and pipes. 

Whether the water is chlorinated, chloraminated or unchlorinated should also be taken 
into account when selecting the parameters and sensors. 

The parameters monitored in distribution systems determine both types of water-quality 
incidents (intentional or unintentional contamination event) that can be detected by 
CWQM and the multiple benefits of improved water quality closer to the point of use. 



ERNCIP Chemical and Biological (CB) Risks to Drinking Water Thematic Group 

 

 
-18- 

European Reference Network for Critical Infrastructure Protection (ERNCIP project) 
https://erncip-project.jrc.ec.europa.eu/ 

4.6. Common parameters 
Some water-quality sensors respond to a larger number of contaminants than others. 

Below is a description of some common water-quality parameters to be measured by 
sensors, currently in use, that can be installed in the CWQM station to detect 
contamination. Other measurement parameters and sensors can be used to fit the 
utility’s monitoring needs and capabilities. 

4.6.1.  Chlorine 
Chlorine sensors measure free chlorine, monochloramine and total chlorine. 

Chlorine is a powerful oxidising agent used widely in water-supply systems for 
disinfection. Chlorine responds to a large number of contaminants and reacts with many 
of the organic compounds and some of the inorganic compounds in water. These 
chemical reactions consume active chlorine from the water (‘chlorine demand’), causing a 
drop in the measured value proportionate to the concentration of the chemicals that have 
been oxidised. 

Chlorine decline or a drop below a threshold value may be a reason for an alert, based on 
field and laboratory experience. 

A free chlorine residual parameter is a sensitive indicator for several contaminant classes 
such as pesticides, inorganic compounds, chemical-warfare agents, pathogens and 
bacterial toxins. In chloramine water systems, which were found to be stable in the 
presence of those contaminants, it does not appear to provide a reliable means of 
contaminant detection. 

In those water systems where chlorine is not introduced into the water for disinfection, 
there is no point in using this type of sensor. 

4.6.2.  Turbidity 
Turbidity is a measure of cloudiness of the water and is caused by suspended particles 
(matter or microorganisms). Pathogens are more likely to be present in highly turbid 
waters. 

Turbidity sensors measure suspended solids in water, typically by measuring the amount 
of light transmitted through the water. Turbidity may be useful in understanding 
observed changes in other parameters. 

An increase in the concentration of suspended contaminants in the water will cause an 
increase in water turbidity. The above increase, or the crossing of a maximum threshold 
value, is a reliable indicator that the water quality has changed and an alert should be 
raised. 

4.6.3.  pH 
The pH value is a measure of the activity of hydrogen ions in the water, therefore it is a 
measure of the degree of acidity or alkalinity of the water. Most chemical and 
biochemical processes are pH dependent. A change of more than 0.5 pH units indicates a 
problem. 

The pH is a logarithmic scale, and its change also depends on the water-buffer capacity. 
It therefore requires a large amount of chemical contaminant to cause significant 
changes in the sensor readings. 

pH may be useful in understanding observed changes in other parameters, such as free 
chlorine. 

Changes in pH-level readings of the sensor above or below determined threshold values 
can be used as an input signal for alert determination. 
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4.6.4.  Conductivity 
Dissolved mineral substances in the water are directly related to the total ionic 
concentration and electrical charge of the dissolved matter, and can be measured as 
conductivity. A high volume of contaminants is needed to change the sensor readings 
significantly. 

The conductivity parameter is an indicator for several contaminant classes such as 
inorganic compounds, metals and radionuclides. Many organic materials do not exhibit a 
net electrical charge and hence are not detectable through changes in bulk conductivity. 

Electrical conductivity changes above or below determined threshold values may be used 
to raise an alert signal. 

4.6.5.  Total organic carbon 
Total organic carbon (TOC) reflects the amount of organic carbon-containing compounds. 

TOC sensors are successful in detecting many hazardous organic chemicals and biological 
contaminants such as petroleum products, pesticides, chemical warfare agents, 
pathogens, bacterial toxins, plant toxins and persistent chlorinated organic compounds. 
TOC may be correlated to chemical and biological oxygen demand. 

A rise in the TOC values in the water above a threshold value can be used as an input 
signal for alert determination. 

4.6.6.  Oxidation-reduction potential 
The oxidation-reduction potential (ORP) is the tendency of the water to oxidise or reduce 
another chemical substance. 

ORP sensors measure the ORP of the water. Used in tandem with a pH sensor, the ORP 
measurement provides an insight into the level of oxidation/reduction reactions occurring 
in the water. 

Some chemical contaminants can affect and change the redox-potential readings 
produced by the sensor. 

ORP behaves similarly to residual chlorine and can be used to corroborate an observed 
change in the residual chlorine. ORP may be used in systems that use chloramine 
disinfectant. 

Significant changes in the readings above or below determined threshold values may be 
used to raise an alert signal. 

4.6.7. Particle counter 
These sensors count the number and size distribution of suspended particles in water. 

An increase in the readings of particle-count values in comparison to a specific water-
pattern background may raise an alert. 

The particle size ranges may be related to biological organisms. Particle-count 
measurements may be related to turbidity measurements. 

4.6.8.  Ultraviolet absorption 
The ultraviolet (UV) 254 nanometre wavelength (UV254) absorption sensor can measure 
organic compounds that absorb photons at 254 nm. It is indicative of organic compounds 
with an aromatic chemical structure and conjugation. However, monitoring of the UV 
spectrum provides much more information from organic compounds. Monitoring of the 
UV spectrum, as recommended by EPA, even makes it possible to detect deviations from 
‘typical’ water quality by detecting unusual peaks of absorbance in the UV spectrum. 
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4.6.9.  Ultraviolet-visible spectroscopy 
Ultraviolet-visible spectroscopy optical spectrometer probes allow the monitoring of many 
different parameters such as nitrates, total organic carbon, colour, turbidity, UV254, 
temperature, etc. in one single measuring device. Since it is optical, it does not require 
reagents or consumables. 

4.6.10. Dissolved oxygen 
A concentration of oxygen dissolved in water can serve as an indicator of chemical and 
biochemical activity in water. 

4.6.11. Temperature 
A measurement of how hot or cold the water is. Biological and chemical activities are 
heavily influenced by water temperature. Dissolved oxygen and specific conductance 
change with temperature. 

4.6.12. Microbiological parameters 
The availability of the microbiological online or in-line sensors is limited. 

There are several bacteriological sensors for E. coli, coliforms, and total bacterial count. 
As the required detection time can be longer than for other parameters, the suitability of 
its measure can be indicated more for the control of the processes. 

4.6.13. Refractive index 
The refractive index (RI) is based on the property that describes how light propagates 
through water. A known matrix of dissolved compounds has a specific RI; when different 
compounds are dissolved in this matrix the RI can change. 

4.6.14. Other online sensors 
There are more water-quality parameter sensors for specific and general purposes, for 
example toxicity bioassay sensors based on the behaviour changes of various kinds of 
living water organisms due to chemical contaminants in the water, or for individual 
chemical contaminants, which are not reviewed here and which may be found in the 
literature. 

4.6.15. Operational parameters 
Continuous measurement of operational water parameters such as flow, pressure, 
reservoir tank level, etc. can improve the water utility’s interpretation capabilities with 
regard to water quality and should also be considered for installation, according to the 
hydraulic characteristics of the water network. 

4.7. Data communication and transfer 

4.7.1.  General 
The large amount of data produced by the sensors in all CWQM stations has to be 
collected, stored and analysed in order to detect water anomalies and give an alert. 
Some of the existing CWQM systems already include software running on the local 
terminal in order to validate the data before it is sent to the SCADA system, and even 
local software to detect events due to changes in water quality. 

SCADA systems, central EDS or local single-board computer devices in each CWQM 
station are needed to fully utilise and process, in real time, the large volume of data 
generated by the sensors. 
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Backup of the data in the SCADA and/or the EDS is needed. Ideally, the measuring 
devices should include local data loggers. 

The sensors can be interfaced with a variety of SCADA and EDS systems using various 
kinds of communication methods and protocols. The communication should be universal 
and allow for different communications systems to interface and connect to the central 
servers and be based on protocols that are standardised and secured. 

The data transferred from the sensors to the SCADA or EDS systems should be 
considered critical information, and the transfer and handling of the data should be 
carried out according to cybersecurity recommendations and IT security requirements. 
Wireless data transmission should use secure protocols, data encryption, firewalls and 
other robust technologies that reduce the attack on data transmitted from field-deployed 
monitoring sensors to the central servers. 

The utility should ensure an uninterrupted power supply for the operation of measuring 
devices and for data transfer. The utility should be assisted by professionals regarding 
the requirements for secure communication and data transfer between the sensors and 
SCADA or EDS systems. 

4.7.2.  Communication methods and protocols  
The transmission of the data from the sensors to the SCADA or EDS systems may include 
digital lines, cellular networks and radio wireless networks. 

The type and quantity of the data, the locations of the CWQM and the existing 
communication capabilities will impact the selection of the methods that will be used. 
Each communication method has different kinds of communication protocols for 
transmission and reception. 

Communication of data is a major source of power consumption, especially in LE sensors 
installed along the water network with no power-supply infrastructure. 

The stages of communication are as follows. 

The sensor converts the primary signal measured into an equivalent measurable 
electrical quantity, and after its amplification and processing obtains the value of the 
desired parameter which is given as an input to controllers through wired or wireless 
communication devices. 

The controller gathers the data from the sensors, optionally processes it and sends the 
information to the SCADA/EDS by using an appropriate means of communication 
technology. 

The SCADA/EDS accesses the data-storage base or cloud, manages and analyses the 
data, displays the information and alerts the user. 

The physical layer includes the hardware, communications lines and wireless components 
such as Wi-Fi, Bluetooth, GSM/GPRS, ethernet local area networks (LAN), etc. 

The logical layer includes protocols — which define the message structure, the 
encryption, the decoding, etc. — such as Modbus, Profibus DP, ZigBee, TCP/IP, 
LoRaWAN, etc. The protocols may work with wired or wireless hardware. 

Different communication technologies and protocols are used for information transfer 
between the sensor, the controller and the SCADA/EDS systems. Some protocols are 
applicable between the sensor and the controller, and some between the controller and 
the computer, such as SCADA or EDS. 

4.7.2.1.  The hardware 

• Wi-Fi is a technology for wireless local area networking (WLAN) that transfers 
data between devices within a limited area, based on radio waves. 
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• Bluetooth is a wireless technology standard for exchanging data over short 
distances, based on radio waves. 

• GSM/GPRS (General Packet Radio Service) is a packet-oriented mobile data 
service on the second- and third-generation cellular communication system’s 
Global System for Mobile communications (GSM — standard developed to 
describe the protocols for second-generation digital cellular networks used by 
mobile devices). It requires the addition of a SIM card to the sensor station. 

• Ethernet LAN is a family of computer-networking technologies commonly used 
in LANs. Systems communicating over ethernet divide a stream of data into 
shorter pieces called frames (digital data transmission units). 

4.7.2.2.  The protocols 

• Modbus is a simple free communication protocol, easy to deploy and maintain, 
for connecting electronic devices. It is also used to connect a supervisory 
computer with the remote terminal unit (a microprocessor-controlled 
electronic device that interfaces objects in the physical world with a SCADA 
system by transmitting telemetry data to a master system, and by using 
messages from the master supervisory system to control connected objects). 

• Profibus DP (Process field bus Decentralised Peripherals) is used to operate 
sensors via a centralised controller. 

• ZigBee is a communication protocol used to create a personal area (close 
proximity) network (a digital telecommunications network used for data 
transmission among devices) with small, low-power digital radios. The 
technology is intended to be simpler and less expensive than other wireless 
personal area networks such as Bluetooth or Wi-Fi. ZigBee is typically used in 
low-data-rate applications that require a long battery life and secure 
networking, and is best suited for intermittent data transmissions from a 
sensor. 

• TCP/IP (transmission control protocol and internet protocol) is a set of 
communications protocols used on the internet and similar computer 
networks. It provides end-to-end data communication, specifying how data 
should be packetised, addressed, transmitted, routed and received. 

• LoRaWAN is a low-power wide area network specification intended for long-
range communications among wireless battery-operated sensors. LoRaWAN 
targets the key requirements of the internet of things such as secure bi-
directional communication, mobility and localisation services. The LoRaWAN 
specification provides seamless interoperability among smart things without 
the need for complex local installations. 

• Communication between different controllers and computers is supported by 
open platform communications, a series of standards and specifications for 
industrial telecommunication. It allows continuous real-time data, between 
different controllers of different vendors and the SCADA/EDS systems, to be 
easily and securely integrated, and can also deal with events and alarms 
without costly, time-consuming software development. 

• The data should be stored in databases with open database connectivity and 
routinely backed up. Open database connectivity is a set of clearly defined 
methods of communication between the database and the data-analysis 
tools/applications such as SCADA/EDS to interface with the data in real time. 
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4.8. Quality assurance 
In order to ensure the reliability of the data generated by the sensors, quality-assurance 
and -control systems need to be implemented to test sensor-performance levels prior to 
installation and during the service period. Some of the existing CWQM systems already 
include software running on the local terminal in order to validate the data before it is 
sent to the SCADA system. 

Ensuring data reliability in the long term is a critical issue for CWQM sensors. It is vital to 
guarantee a low level of false events; otherwise the event manager cannot base their 
decision on the water-quality monitoring system. 

Documentation and records of calibrations and maintenance activities of the sensors 
should be maintained and taken into account during the analysis of the data by the EDS. 
Ideally, CWQM systems should provide a notification when sensors need maintenance. 

The utility technicians in charge of sensor maintenance and data transfer need guidance 
and a training programme. 
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5. Event-detection system 
This section was based on Drinking Water Inspectorate, 2009; EPA, 2010b, 2013a, 
2013b, 2014a, 2016; ISO, 2018a . 

5.1. General — the need and the benefits 
Water-distribution networks deliver drinking water to consumers through a system of 
pipes, valves, pumps, reservoirs and tanks. These networks are vulnerable to accidental 
or intentional contamination. 

Detecting contamination in distribution networks is difficult because of the spatial extent 
of the systems, rapid flow rates and natural variability in water quality. In addition, 
distribution systems are looped, resulting in mixing, dilution and the spread of 
contaminants. The water utilities require a system that can rapidly identify the presence 
of contamination in the distribution network and provide support for decisions, in order to 
minimise public-health and economic impacts and to restore service to customers as 
quickly as possible. 

The normal variability of water quality in the distribution system, coupled with the large 
amount of data emanating from the sensors, makes it a challenge to successfully detect 
transient contamination incidents. It is not enough to utilise set points (thresholds) in 
order to raise alarms. The EDS is a DSS software that has the ability to learn the water-
quality characteristics of the system being monitored; to detect water-quality events 
(whether caused by foreign agents, unidentified contamination or operational events); 
and to log information and alert users to water-quality deviations and recurring events. 
The EDS helps the water utility throughout the continuum of a water-contamination 
incident to rapidly detect and interpret changes in water quality. 

The EDS is a smart, analytical software for data analysis based on machine learning that 
contains statistical and mathematical algorithms to rapidly detect anomalous conditions 
in water-quality measurements. In spite of the fact that water-network parameters vary 
considerably over time due to normal changes in the operation of tanks, pumps and 
valves, and daily and seasonal changes in the source and finished water quality, as well 
as fluctuations in demand, the EDS is able to interpret the data and use it to detect 
anomalies (Brill and Brill, 2016). 

The EDS detects an event by performing near-real-time analysis of the data and then 
assesses the probability of a water-quality event occurring at the current time step, 
taking into account the uncertainties as well as the known inputs relating to the quality 
controls. 

The EDS provides early notification of events so that effective response actions can be 
implemented. 

5.2. Advantages of using the event-detection system 
• Minimisation of false alarms due to changes in water-quality parameters 

caused by operational processes or maintenance procedures. 

• Detection of events characterised by something other than a threshold 
violation, such as anomalous leaps that do not violate the low/high user limits; 
auto self-learning of statistical borders; and detection of long-term patterns 
before these become critical. 

• Violation of engineering rules set by the user. 

• Detection of low-quality data (static parameter, unlikely time period, fixed 
noise) caused by communication interference of data transmission. 
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• Detection of un-ordinary behaviour of the input/output cards (electricity fault 
in the card or power supply). 

• Detection of an abnormal event combination (known as ‘similarity’). 

• Detection of event combinations previously defined as dangerous and 
calculation of their approximate time of occurrence. 

• Ability to operate and detect unexplained variance between different 
monitoring stations with a spatial model (if included) based on sensor 
networking. 

• Upgrading of the knowledge of professional workers and deepening of their 
understanding of water quality in the network. 

5.3. The event-detection system software 
When purchasing EDS software users should consider its performance (specificity, 
sensitivity), available support, the user-friendliness of the interface, compatibility with 
existing data-management systems, the ability to modify or add parameters, and cost. 

The EDS can be located on a central server and acquire water-quality data from the 
SCADA system, or it may be installed on a local single-board computer device in the 
CWQM station, or as part of the sensor hardware. 

Available EDS systems vary in complexity and have different logical units and variables. 

Some EDS software, available on the market, is sensor-agnostic, i.e. it can analyse data 
from any sensor manufacturer for any type of water measurement and any number of 
sensors and monitoring stations, while some EDS systems work only with specific 
sensors. 

Some systems are offline, analysing historical data, and some are online, analysing real-
time data, while other systems can do both; some systems are more user-friendly and 
require less support; some systems work with a single parameter, while others work with 
multiple parameters. 

The software includes various user interfaces through which users can view and 
manipulate the information such as different charts (line graph, histogram, 2D/3D 
density maps), specific tables with information regarding the water-quality raw data, the 
smart algorithm values and analysis, a GIS-based map showing all the monitoring 
stations, the list of the sites with current and historical events, the water-quality and 
operational-parameter values and rules, and different analysis reports. Users can 
navigate within the interfaces to get more details. 

An EDS may include a spatial model which enhances the sensitivity of field sensors, thus 
improving their capability to detect water-quality anomalies while producing fewer FP 
alerts and fewer FNs (missed alerts). 

5.4. EDS methods and algorithms 
Different EDS systems are based on different approaches and various statistical 
algorithms. The algorithms in the EDS are designed to continuously learn the 
characteristics of the background water-quality signal. The algorithmic approach allows 
the recognition of changes in water quality due to hydraulic operations.  

There are several EDS methodologies for detecting abnormal events, as follows. 

• Clustering. This is an algorithm which groups vectors into several similar 
groups, where the members of each group are as similar as possible and the 
differences between groups are as large as possible. Clustering may be based 
on distance or density algorithms. 
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Examples of algorithms used in this method are: multivariate nearest 
neighbour (at each time frame the average distance to the nearest group of 
samples is measured). 

Local density (counts the number of historical samples located in a cell, which 
is a logical region of data that compiles with a Boolean rule — OR/AND/NOT 
logical relationships). 

• Prediction. One of the variables in a multidimensional space is considered to 
be a dependent variable, the value or class of which is related to the other 
variables. If the predicted value is too far from the actual value of the 
dependent variable or has a different class value from the actual value of the 
dependent variable, the new incoming record is considered abnormal. 

An example of an algorithm used in this method is: nonlinear or linear 
numerical prediction (the algorithms provide a means to automatically detect 
changes in water-quality sensor measurements by comparing the current 
measurements with their predicted values based on their historical data). 

• Noise pattern 1. This examines the noise-pattern changes generated by 
multidimensional data. It uses the radial basis function to identify abnormal 
patterns in a moving window. The classification is true or false. 

• Noise pattern 2. This is based on detection and classification changes in 
noise patterns. Noise is measured based on the distance travelled by an 
artificial particle located at the normalised coordinates of the multidimensional 
vector. The classification is also true or false but adds the hazard and non-
hazard classification. 

An example of an algorithm used in this method is: dynamic noise (uses the 
imaginary centre of gravity of the water-quality measurements in order to 
measure the noise of the process captured as a travelling distance. The 
resulting curve has a maximum value due to the nature of the process. This 
threshold is violated when abnormal events occur). 

Other examples are similarity (to what extent the specific event combination is 
rare), distance (how far the specific event combination is from a known 
combination), topology (to what extent the specific event combination is a 
good/bad combination). 

5.5. EDS communication 
Monitoring data may be transmitted by means of the SCADA system, a third-party server 
or directly to the EDS. 

Direct connection to the SCADA requires software-connection elements, knowing the 
database storage and its format, the names of the SCADA tags (of the sensors) that are 
to be monitored at each station, timing the data process in the SCADA and in the EDS 
and minimising data-transfer problems. 

The utility may limit or rule out communication by non-SCADA means because of data-
security issues. If interfaces between systems are implemented, they must pass security 
check. 

The connection between the sensors, the central receiving station and the database may 
be through phone or ethernet lines or radio communications. 

Each different EDS may operate the sensor data, SCADA, etc. through different kinds of 
text files (XML, CSV), but it is recommended that the whole system work on the same 
configuration file (see also the chapter on sensors). 
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The utility should seek the assistance of professionals regarding the requirements for 
secure communication and data transfer. Data transfers are considered to be critical 
information and should be carried out according to cybersecurity recommendations and 
IT security requirements. Wireless data transmission should use technologies for secure 
protocols, data encryption, firewalls and other robust technologies. 

5.6. EDS installation and implementation 
The installation, implementation and operation of the EDS may be divided into five 
stages: installation, learning, adoption, operating and running. 

5.6.1.  First stage — installation 
The first stage is the installation of the EDS software and connecting all CWQM stations, 
SCADA and other data-management software to the EDS. 

The utility may consider connecting the EDS to interact with other platforms and 
incorporate operational data, a hydraulic model, operations-data software such as 
enterprise resource planning software (maintenance activities and repairs, additional 
operations data on flow, pressure) and manual laboratory results (addition and 
confirmation data). 

Utilities should ensure that the sensor stations and communication pathways are 
operating properly before installing and running the EDS system. 

The employees responsible for dealing with the EDS should also be involved in the 
installation process, along with hydraulic and electronics engineers and IT experts. 

For installation and operation of the EDS software, the utility should supply basic 
information about the water network, consisting of the following. 

• The correct communication forms and protocols. The data input for the EDS 
during the implementation and operation process is usually generated or collected 
by other software systems. This data needs to fit the EDS so that the predictions 
will be at an acceptable level of uncertainty. 

• GIS data of the distribution system, including CWQM station location, from the 
hydraulic model. 

• The SCADA tags of all the necessary water-quality and operational parameters. 

5.6.2.  Second stage — learning how to use the software 
The second stage is to familiarise utility personnel with the EDS software, including 
screens and tools, learning how to operate the software, input and change parameters, 
produce reports, etc. 

A training programme and a detailed user manual should be provided by the EDS 
supplier. 

The process of EDS software operation, maintenance, interpretation and classification by 
the utility should include skilled trained employees and procedures. 

All authorised EDS users dealing with the EDS should have a training plan. It is important 
that they develop their skills and knowledge and enhance their experience. They should 
also take part in the implementation of the EDS. 

5.6.2.1.  Trained authorised EDS operator rules 

• Input data needed for implementation. 

• Access historical data and analyse it. 

• Contribute to improving the EDS software. 
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• Amend the EDS as needed, taking into account the lessons learned. 

• Run simulations. 

• Write utility-specific reports that can be introduced into the EDS software by the 
expert. 

• Test the security aspects of the EDS. 

• Implement and check new versions of the EDS including the EDS smart indicators. 

• Perform checks and maintenance on the EDS and develop procedures. 

• Act as the intermediary between the different professionals, such as hydraulic 
engineers, electronics engineers, IT and computer experts, and the EDS expert. 

• Be responsible for the utility technicians that maintain the CWQM station sensors. 

• Be responsible, together with the EDS expert, for training the utility’s EDS users. 

• Be responsible for developing procedures on how the classification process should 
be performed and all the documentation needed, including the classification table 
and preparing the classification library. 

• Be responsible for the EDS and act as the contact person for the EDS supplier. 

5.6.2.2.  Certified trained user rules 

• Know how to operate the EDS. 

• Be able to perform their roles during daily working hours as well as in a crisis. 

• Know how to analyse the data, finding the causes of true and false alarms (e.g. 
pump and valve operation or maintenance) and classify events according to the 
procedures. 

• If necessary, be aware of event escalation and response procedures. 

5.6.3.  Third stage — adoption of the software by the utility 
The third stage is to determine the value of all water-quality and operation parameters 
and variables of the EDS. 

For operation of the EDS software, the utility should supply values for the different 
variables and parameters of the EDS, as follows. 

• The values of the quality and operational parameters such as the measurement 
range, limit values, the alert thresholds. 

• The preferred time frame in which events should be detected, triggered and 
classified (can influence the number of FP events). 

• A table showing event classification — how events will be classified in accordance 
with the cause. 

• The severity and order of priority in which events should be handled. 

• The accepted number of FP and FN events, specific to location and type, over a 
defined period of time. 

• Adjust, if possible, the various EDS tables and charts to the utility’s needs. 

• Appoint authorised users, workers to receive alarm notifications, etc. according to 
the utility’s needs. 

The ability of the EDS to detect water-quality abnormalities is dependent on the 
characteristics of the water and on the ‘background noise’ variability of the monitoring 
location. 
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The monitoring location has a significant impact on the detection of contamination 
events, and the configuration of the EDS for the individual monitoring station should rely 
on the water utility’s experience and should be adjusted during the implementation 
process. Unique monitoring stations with specific site profiles should be established by 
the utility, if necessary. The EDS can calculate probability according to the variation of 
the water-quality signals and, as a result, can reduce the false events at a typical noisy 
monitoring station. 

The utility has to decide on the frequency of the data transfer according to the energy 
limitations of the LE sensors. 

5.6.4.  Fourth stage — operation 
The fourth stage, after collecting a certain minimum amount of data from different 
stations, is to carry out offline and online analysis of valid and invalid alerts and learn 
how to classify events with the EDS developer. 

5.6.4.1.  Events 

EDS must be reviewed regularly to support operations and event detection. 

An event may occur when there are changes in the water quality or operational-sensor 
measurements are outside the range of values or in violation of some rule of the EDS. 
Events may occur because values are: 

• outside regulation limits; 

• outside the utility’s limits; 

• outside statistical limits; 

• outside other statistical rules, e.g. rate of change, rare frequency; 

• without normal change;   

• missing. 

The EDS should recognise different events caused by communication problems and 
provide an alert accordingly for: 

• voltage problems with the sensor controller; 
• communication interference; 

• missing data; 

• delays in data transfer; 

• incorrect data transferred. 

The last three may be caused by cyberattack. 

The EDS should be able to provide an alert about a situation involving an unusually high 
frequency of events within a specified period of time. 

The EDS should have an ID number and time stamp for each event. 

An event ends when none of the above conditions exists. 

Events can be presented on a GIS map also showing the CWQM stations, lines and other 
hydraulic accessories. 

At this stage, when an alert is received, qualified utility personnel follow the procedures 
to identify its cause: reviewing information in the EDS/SCADA (the parameters violated 
and how, the event start time, the event profile — the shape of the curve, steep or 
flat/gradual stepwise curve, the length of time and the level) and other connected 
information-management systems; conducting an on-site investigation of the sensors 
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and the communication devices; taking a water sample at the monitoring station; testing 
it using portable meters or in the laboratory; and comparing the results with the online 
monitoring system. 

When the cause is known, classification of the event according to the classified 
possibilities of the EDS should be carried out as near as possible to the time of the 
event’s occurrence. Classification of the event as invalid or valid, with the cause written 
up, will improve the EDS’s machine learning. 

If the alert is determined to be a real incident, it may be necessary to take corrective 
actions according to the utility’s water-safety plan. 

5.6.4.2. Event cause 

The water quality in the distribution system is complex and variable, and invalid alerts 
will persist. The utility’s expertise will be needed to interact with the EDS and to reject 
invalid alarms so they are not shown again. 

Analysis must be performed to determine if the event alarm is real and if it is true 
positive (TP) or false positive (FP). The utility has to investigate the event and identify 
the possible or known causes behind it (sometimes no reason is found and then the 
cause will be unknown) and classify it accordingly. 

There are many possible benign causes for anomalous parameter values that can 
produce invalid alerts. Some such causes are the malfunctioning of a sensor, operational 
changes in the water network, reported/unreported network maintenance jobs or faults, 
communication problems, software malfunction, etc. 

The route of inquiry of an alert includes checking all the data appearing in the EDS, 
information from other sources such as operation works, security alarm system and 
customer complaints, and physically checking the sensors in the CWQM stations. 

The inquiry of the event should include but is not limited to: 

 Event-detection system 

• If the event includes different quality and operational sensor alerts. 

• The characteristic of each parameter change: the value, duration time, the shape 
of the parameter graphs (the typical shape of a contamination water-quality 
parameter curve presents a characteristic rise time, a plateau of stabilisation and 
a drop off). 

• If the shape of each parameter graph is unusual a few days prior to and after the 
event graph change. 

• The long-term, normal shape of each parameter graph in the event site. 

• Which various EDS smart tools react and how they do so. 

• If there is an alert in sequential CWQM stations, upstream and downstream of the 
event station. 

• If the SCADA/EDS servers and cloud server connections are working properly. 

• If the data transfer to the EDS is working properly and there is no indication of no 
data or fix repeated data (the EDS should sound an alert if there are data 
problems and report when data communication is restored and the values return 
to normal). 

• If the EDS algorithms are functioning properly. 

 Continuous water-quality monitoring system 

• The reporting monitoring sensor station is free of fouling. 
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• The water-flow rate and sensor pressure are as recommended. 

• There are no air bubbles in the system. 

• There are enough reagents as required by the sensors, or even better the system 
does not require reagents (optical measuring devices). 

• The sensors in the CWQM are functioning properly and are calibrated using 
portable meters. 

• With sensors based on a grab sample for testing, is the sampling system 
operating properly, with no blockage or leakage? 

• If the communication between sensors and SCADA/EDS is working properly and 
there is no indication of no data or without normal change in the data. 

• No recalibration of sensors. 

 Operational events 

• No changes in treatment plant operations, different chemicals being used, such as 
disinfection material, or the control systems responsible for the addition of 
treatment chemicals. 

• No unusual weather conditions or changes in temperature. 

• No switch in source of water or fault in source water quality. 

• There were no hydraulic changes or sudden jumps in water demand. 

• There was no work being done in the water network on pipes, pumps, valves or 
pressure-reducing devices connected to the event-monitoring station. 

• There was no maintenance work being done in the water network, such as 
hydrant flushing or reservoir cleaning connected to the event-monitoring station. 

• There were no water-pipe breaks or failure of a booster station. 

 Other information sources 

• If there is a security system alert. 

• If there is physical evidence in a water installation of entering and tampering. If 
there are multiple customer complaints, concentration of complaints in a specific 
area. 

In some cases there is no distinguishable cause for the event and/or the alert (no 
significant water-quality parameter changes have occurred). 

5.6.4.3. Event classification 

Events can be classified into four types: TP abnormal events correctly identified as 
abnormal events, FP normal events incorrectly identified as abnormal events, TN (true 
negative) normal events correctly identified as normal events and FN abnormal events 
not identified. TN is not actually an event and it is impossible to classify FN as there is no 
event alert. An artificial known event may be checked by means of a simulation for 
detection. The rate of each type is determined by its percentage. 

The utility should build up a classification table based on local knowledge of the network 
and its operational activities, and similar previously classified event causes. The different 
event causes will be correlated to the type of the event. The utility will decide how to 
classify the events, the severity of each event and if the machine learning algorithms will 
learn this event or not. 

The same event pattern may have different causes. The same cause may show different 
event patterns. 
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Some causes are known in advance, such as sensor maintenance and initiated 
maintenance networks. 

The classification table may be unique to the utility and should cover all possible causes 
throughout the related distribution system. 

Some examples for event investigation and classification, and the response needed, are 
included in the following section. 

  False positive events 

• Event pattern: only turbidity increased in a monitoring station in a pressure-
reducing station. 

Cause found: dirt/air bubbles in the sensor monitoring system. 

Classification: FP event — the system detected an event (positive) but it was 
caused by dirt/air bubbles in the monitoring system (false), which may be typical 
of this site (machine learning — yes). 

Corrective action: cleaning the monitoring system more frequently or trying to 
prevent the creation of dirt/air bubbles in the site, or finding another water-
feeding source for the monitoring system. 

• Event pattern: turbidity increased, pressure increased in a reservoir. 

Cause found: pump operation. 

Classification: FP event — the system detected an event (positive) but it was 
caused by a disturbance when the pump started to operate (false), which may be 
typical of this site (machine learning — yes). 

Corrective action: teaching the EDS software to recognise this pattern and not 
sending an alert regarding this phenomenon, and/or finding a solution to 
neutralise the disturbance. 

• Event pattern: only turbidity increased in a monitoring station on the pipeline 
network. 

Cause found: the definition of the turbidity parameters of the EDS is too sensitive. 

Classification: FP event — the system detected an event (positive) but it was 
caused by an inaccurate variable definition (false), which may be changed to the 
correct one (machine learning — no). 

Corrective action: adjusting the turbidity parameters of the EDS. 

• Event pattern: turbidity increased, free chlorine decreased, pH decreased in a 
reservoir. 

Cause found: sensor maintenance and calibration. 

Classification: ignore event as it is an FP event — the system detected an event 
(positive) but it was caused by known sensor maintenance (false) and known 
maintenance work. Ignore event (machine learning — no). 

Corrective action: ensure the sensors are operating properly. 

• Event pattern: turbidity increased, free chlorine decreased in a monitoring station 
on the pipeline network. 

Cause found: pipe-maintenance works. 

Classification: FP event — the system detected an event (positive) but it was 
caused by known pipe works (false), known operations or another event (machine 
learning — yes). 
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Corrective action: ensure the quality of the water at the end of the work. 

  True positive events 

• Event pattern: turbidity increased, free chlorine decreased, TOC increased in a 
monitoring station on the pipeline network. 

Cause found: unknown in the beginning, contamination found according to 
laboratory results. 

Classification: TP event — the system detected a true event (positive), which was 
caused by contamination in the water network (true). Real contamination event 
(machine learning — yes). 

Corrective action: according to emergency contamination event procedures of the 
water safety plan. 

• Event pattern: free chlorine is low in the treatment plan. 

Cause found: problem in the disinfection process. 

Classification: TP event — the system detected an event (positive), which was 
caused by a known problem in the disinfection process (true). Real known 
operational event (machine learning — yes). 

Corrective action: correction of the part which caused the problem. 

• Event pattern: turbidity increased, free chlorine decreased, pressure decreased in 
a monitoring station on the pipeline network. 

Cause found: pipe break. 

Classification: TP event — the system detected an event (positive), which was 
caused by what was later found to be a pipe break (true). Real unknown 
operational event (machine learning — yes). 

Corrective action: correct disinfection of the pipe. 

• Event pattern: turbidity increased, pressure decreased in a monitoring station on 
the pipeline network, and customer complaints about low flow and turbidity. 

Cause found: pipe break. 

Classification: TP event — the system detected an event (positive), which was 
noticed due to customer complaints and was later found to be a pipe break (true). 
Real unknown operational event (machine learning — yes). 

Corrective action: correct disinfection of the pipe. 

5.6.5.  Fifth stage — final adjustment and running 
The fifth stage is when enough historical data, including water anomalies of valid and 
invalid alerts, is collected and used as a baseline to adjust configurations until acceptable 
performance and correct operation are achieved. 

The adaption and calibration of the EDS rely on sufficient data. The larger the amount of 
historical data the more accurate the EDS will be. 

Judicious selection of various parameter settings within the EDS will impact the number, 
accuracy and precision of the FP and FN alerts. 

The utility needs a policy to decide on the trade-off between the sensitivity and invalid 
alerts and adjust the EDS configuration of the EDS variables (such as alert thresholds, 
time), to balance and reduce the number of such alerts but not reduce the sensitivity of 
the system, causing real events to be missed. 
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The utility should set the values based on experience and common practices, using the 
data, and decide on the acceptable minimum detection percentage. 

The EDS should have the ability to perform contamination simulations. Contaminant 
types and concentration should be checked by simulation in the EDS. They may have an 
impact on the detection and configuration fine tuning may be needed accordingly. 

Classification of events according to the causes should be done daily in the software by 
trained authorised utility operators, in order to facilitate EDS machine learning. Later, 
each TP event should be approved by authorised expert personnel. 

It is recommended that a classification library, which contains examples of all types of 
classified events that occur in the utility network — including graphs and an explanation 
of the logic behind the classification, be established. The library will be a guide for the 
interpretation of events based on the classification process to determine the urgency with 
which an input into the decision-making process should be made, and will be a training 
tool for users. 

The EDS should be able to compare the similarity between the set of parameter 
measurements of a current event and that of past events that have been classified, and 
automatically classify it accordingly. The EDS can be trained in the variations of water-
quality parameters in a monitoring station and will no longer sound an alarm during 
these regular periods of change. 

The utility needs a learning policy for minimising false alerts based on the accumulation 
of classified events. The policy defines the utility’s authorised persons, what changes of 
the different variable values appearing in the EDS (such as thresholds, algorithm 
criterions) should be made (changes can be for one quality parameter or a specific site) 
and when they should be made (a large enough number of classified events or a running 
period). Every change should be made with the EDS expert to ensure that there is no 
influence on the software or by the EDS expert if the changes are in the software. The 
policy can include a periodic review of the classified events, also using specific reports 
produced by the EDS software to examine the reliability and accuracy of the classification 
process, the comparison of event causes and types between monitoring sites, and to 
decide on specific classification rules and other recommendations for changes. 

The water utility should be aware that the existence of the EDS cannot guarantee that 
the event’s causation and/or consequences for service provision will always be quickly 
recognised before a third party is affected. 

5.7. Maintenance 
Sensor hardware and communication problems trigger a large percentage of invalid 
alerts. Proper maintenance of the sensor is crucial to reduce invalid alerts and maximise 
the EDS’s ability to detect water-quality anomalies in the distribution network. To that 
end, existing software to validate data and to classify events would help a lot. 

The utility should develop procedures and tasks and appoint employees to effectively and 
efficiently operate and maintain the EDS system. Alerts should be regularly reviewed, 
configurations updated as necessary (particularly important if standard water-system 
operations have changed) and EDS parameters and procedures updated based on 
lessons learned. Sensor manufacturers may also help with that work if a remote 
connection is allowed by the water utility. 

5.8. The utility’s response 
The utility must develop a well-thought-out procedure for dealing with a water 
contamination event. This SOP must be learned by all relevant personnel and must be 
drilled, modified and periodically reviewed. All of this is in order to minimise the effective 
response time. Once an alert has been received, and after EDS and water-quality 
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personnel have estimated that the alert points to a serious water-quality issue (based 
upon, among other considerations, historical documented information), the alert should 
be passed on to operations personnel designated to deal with a water-contamination 
event. A decision on further monitoring should be made where the event may require a 
crisis-management response. 

When the investigation into the cause of an alert indicates the possibility of 
contamination, rapid field tests and laboratory tests should be carried out. The type of 
laboratory tests ordered may be derived from the information generated by the CWQM 
system, thus shortening the time to achieve meaningful results. The laboratory results 
may also help to determine a root cause of the detected event. 

Post-event evaluation of the EDS should be carried out in order to establish the validity 
of the output and to improve the event-detection process. 

5.9. Quality assurance, verification and documentation 
The purpose of software verification is to ensure that specifications are adequate with 
respect to intended use and are correctly, accurately and completely implemented. 

The software-verification quality-assurance procedures will include the offline and online 
EDS; the implementation and maintenance of the software; and tests to ensure data, 
data-transfer, and performance-acceptance criteria are met as expected along the way 
and according to the requirements. 

To evaluate the performance of an EDS with respect to an FP or FN, it is necessary to 
gather historical data on a significant number of events. However, since there are often 
not enough events available, it is recommended that the offline simulation of events 
(different contamination scenarios) be used on top of the utility’s true historical water-
quality data in order to evaluate the performance of the EDS. 

It is important to verify that the EDS is functioning properly. This verification should 
include the integrity of all data streams: transfer, processing and responding; alert 
analysis; and integrity testing. 

Measured values in the data should be checked and relevant factors, technical problems 
and operational changes should be considered. Verify that: 

• physical limits of the sensors have not been violated; 

• the data received is constantly changing and is not fixed; 

• there is no data missing; 

• rates of change of a variable are credible; 

• the duration of the change of a variable is significant; 

• no fixed repetitive patterns are present; 

• each variable presented is compatible with historical data; 

• raw-data backup is in place. 

Verification should be carried out periodically and also whenever any major change is 
made in the software or to the data streams. 

The purpose of this is to verify that the rules and algorithms of the EDS are functioning 
correctly and can detect events. 

Verification is carried out by analysing artificial or historical data and/or by simulating 
various scenarios of different events, or by the physical introduction of surrogate 
chemicals or contaminants in a separate test site hermetically isolated from the water 
network in order to prevent contamination of the real distribution system. 
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Verify that sensors are maintained and calibrated according to the proper procedures, 
and check (using a small sample of data) that the data generated by the sensors on site 
is indeed fed into the EDS. 

Post-event evaluation of the EDS should be carried out in an attempt to establish the 
validity of the output and for continual improvement of the event-detection process. 

All data transfers and access to the EDS shall be in accordance with appropriate data-
security standards. 

All changes in the EDS should be documented. This includes: 

● events and their classification and any change to event details; 

● changes to the variables and parameter values of the EDS, such as thresholds, 
times, severity, rules, etc. 
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6. The water quality contamination dissemination look-ahead 
simulation model 

6.1. Contamination dissemination look-ahead simulation model — 
the need and the benefit 

The CDLAS model is an adaptation of the hydraulic model which allows the user to see 
graphically the areas and pipes affected by a given contamination at different hours after 
introduction (Bernard, 2016; Bazargan-Lari, 2018). The hydraulic model in turn requires 
detailed and complete physical information on the pipe system, and this information is 
most readily available and maintained in a GIS system. 

The CDLAS model is a DSS. This means that the model displays the possibility of a 
contaminant’s path and time of dissemination, but it requires broad engineering 
knowledge of the water system and its operation in order to apply the model’s 
information to make operational decisions. The model’s power is in its user-friendly 
representation of information, which is vital for proper decision-making; the model itself 
does not provide answers or make decisions. 

There is a possibility for offline and online CDLAS models. 

A reliable CDLAS model should be connected to the online data of the water-distribution 
system — water demand, reservoir levels, etc. This information is available in other 
systems: reservoir levels and other operational data are collected by SCADA systems; 
water consumption is available in the SCADA system and/or from automatic meter-
reading systems. This achieves a more true-to-life analysis of the contaminant’s 
dissemination and makes the simulation much more relevant and real as opposed to an 
offline simulator. 

An advanced, online dissemination model, coupled with CWQM stations located in the 
piping system, can carry out a sort of ‘reverse engineering’ routine in order to indicate in 
which area and in what time span a contaminant was introduced. This ability of the 
model is achieved by comparing the reports of two or more sensors regarding the time 
the contaminant reached that sensor. Since the CDLAS model knows the flow rates and 
directions, it can ‘look upstream’ of the sensors and calculate from which area the 
contaminant must have come and in what time span. Such an advanced feature then 
allows the operator to make an intelligent guess as to the source of the contaminant, 
thus achieving more accurate results from running the CDLAS model. 

The CDLAS model should include: 

• an option to set the start date and time of the scenario according to the water 
flow and demand; 

• a display of flows in pipes for corroborating the online data; 

• a display of pressures at nodes and at CWQM stations, for checking and 
calibrating the model against real pressure measurements from the field; 

• a display of system valves to be closed in order to isolate contaminated areas of 
the network and halt the advance of the contamination; 

• a display of hydrants to remove contaminated water from the distribution system; 

• a display of locations in the network to inject decontamination agents to inactivate 
or remove contaminants; 

• the ability to create and display a dynamic list of locations in the network to take 
a grab sample to confirm contamination or clean-up. 
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6.2. Implementation 
The CDLAS model is fairly expensive and time-consuming to create. The utility may 
however create the CDLAS as an enhancement of a conventional hydraulic model, as part 
of creating the utility’s master plan for the distribution system. The further development 
of a hydraulic model into a predictive tool requires the development of a human–machine 
interface to allow the operator to use the model efficiently. It is also vital that the model 
be enhanced to receive online operational information. This type of interface is still rare 
today and requires particular effort and funding. 

The use of a CDLAS requires capable engineers who are well versed in the water system 
and its operation. 

6.3. Using the contamination dissemination look-ahead simulation 
model in a real emergency situation 

An online CDLAS model allows the user to run simulations of contamination events in the 
water system and to map the expected dissemination of the contaminant in the water 
system. Understanding the dissemination vector is vital for controlling and mitigating a 
contamination event, thus saving lives and limiting damage. 

In a typical emergency situation, the utility will receive some indication of a contaminant 
entering the system. This information may come from security systems, water-quality 
sensors (CWQM), customer complaints, etc. The first step in using the CDLAS model is to 
feed the model with information about where and when the contaminant was introduced 
into the water system. Most of the time this information is not actually known. 
Nonetheless, the event manager must decide or assume where and when the 
contaminant was likely introduced and input this information into the model. There are 
other DSS systems that can aid in this task. 

Secondly, the CDLAS model must be updated with current operational data. This is done 
automatically if the model has been designed ‘online’. 

The operator then runs the model and receives graphical output indicating which pipes 
will have been contaminated by what hour after introduction. 

This information must then be critically applied when deciding on actions to be taken to 
lessen the impact of the dissemination. Typically this would involve stopping or starting 
pumps, closing down reservoir tanks and/or closing line valves in order to contain the 
contaminant at a particular ‘front’. Further development of the CDLAS could include the 
ability to import valve locations from the GIS system. This would enable the operator to 
choose a ‘front’ where they wish to halt dissemination (e.g. 3 hours from now, which is 
the time required to route field crews and close the valves), and the model would then 
present the valves to be closed at points where the contaminant has not reached 3 hours 
from now). 

Once the event manager has taken steps to halt or limit the contaminant’s spread in the 
system, they must assess whether or not the steps taken have succeeded in isolating 
and halting the spread of contamination. 

They must first send out crews to sample the water within the ‘front’. These tests must 
be positive for some indication of contamination; in this way, we will know that the 
particular test used can indeed reveal the contamination. Once we have a field test that 
is able to reveal the contamination, we would sample water beyond the ‘front’ in order to 
ascertain whether the actions taken did indeed halt the spread of the contaminant. If any 
of these tests are positive, we have erred in the task. If time permits (i.e. the area in 
question is so large that many hours will elapse before a contaminant can reach the ends 
of the system) the model can be rerun and a further ‘front’ located, and so on. 
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6.4. CDLAS simulations 
In order to better understand the direction of the water flow in the water network and to 
find the most severe scenarios in which the population is exposed before detection, the 
utility’s personnel can run simulations with various strategic locations for the introduction 
of a contaminant, different contaminants and concentrations and different times of 
contamination, during different water-consumption periods etc. Examining the 
contaminant spread for these scenarios will vastly improve engineers’ knowledge of the 
water system. 

To run the CDLAS model the utility should define the test area and have all the required 
details of the scenario’s simulation parameters (date, hour, length of simulation run, 
points of injection of contaminant). 

The CDLAS model already includes the length of pipes; the location of reservoirs, pump 
stations and other water facilities; CWQM stations; the supply source; flow-rate system 
pressure; and the population size. 

It is important to analyse the results and check if the time of arrival values calculated by 
the model for each sensor were logical: 

• what the time of detection at each sensor location for each scenario was; 

• which pipelines were contaminated; 

• what population was exposed to the contaminant before it was first detected. 

Both offline and online CDLAS simulation results may be represented by showing on the 
network map the spread of the contamination as a series of colours. Each colour may 
represent pipes with: 

• different contamination concentrations, assuming a certain decay factor (in 
practice the contaminant and the decay mechanism are not known); 

• different contamination-spread time steps according to the spread of the 
contaminant hour by hour, over the entire time period chosen. 

6.5. Maintenance and calibration 
In order for the model to maintain its relevance to the water system, the utility must 
constantly update pipe data and water-use data in the model. Network-information 
changes should be fed into the model in order for the model to be accurate and relevant. 
If this is not done, the model soon loses relevance. 

The operating personnel should be trained and should carry out exercises periodically so 
that they are ready to handle an emergency situation immediately and professionally. 

The CDLAS is based on a hydraulic model, which in turn requires detailed information 
regarding the pipe system and the water-use profile. Such information, imported into the 
model, allows the model to calculate flow rates and pressure losses in the system. In 
order to ascertain that the model is a true and accurate representation of the water 
system, it must undergo calibration, that is, the model’s predictions must be compared 
with true-field measurements of flow and pressure. Should the model’s predictions not be 
in line with true measurements, the model (physical data) must be adjusted accordingly. 
Calibration of a CDLAS model is a difficult, time-consuming and expensive process. The 
water engineers’ expertise and experience are therefore doubly valuable. 



ERNCIP Chemical and Biological (CB) Risks to Drinking Water Thematic Group 

 

 
-40- 

European Reference Network for Critical Infrastructure Protection (ERNCIP project) 
https://erncip-project.jrc.ec.europa.eu/ 

7. Event-management system 
The utility should consider installing an event-management system (EMS) (EPA, 2007, 
2008; Philadelphia Water Department and CH2M HILL, 2013b; Bernard, 2016). 

The EMS is a software platform designed to aid the water utility in detecting, providing 
an alert for and mitigating the damage of a contamination event in the water-supply 
network. The EMS continuously receives information from the EDS including 
contamination-event alerts. The EMS prompts the utility’s event manager to deal 
effectively with the event based on pre-embedded task menus mirroring the utilities’ own 
SOP and also runs a DSS in the form of online hydraulic and CDLAS models of the water-
distribution system. As described above, the model can predict the dissemination path of 
a contaminant in the water system, thus allowing the event manager to take steps to 
halt the advance of the contaminant in the water system using a variety of actions, all 
prompted by the EMS. 

No known complete EMS platform that interfaces with all other tools of the monitoring 
system, mentioned above, is available yet. Even if such EMS software were to exist, 
there is no standard solution and it would be the responsibility of the water utility to 
adapt the EMS to their environment and to the vulnerability of their water-distribution 
network, according to their plans (emergency, security plans, e.g. unique health- and 
water-authority rules, utility — reporting chain, SOPs, manpower resources, language). 

7.1. Example of the features of the event-management system 
An example of EMS features to support the execution of the utility’s SOPs in the case of a 
water contamination event is shown below. It was derived from the results of the EU-
funded FP7 Safewater project (Safewater, 2016). 

The utility should bridge the gap between the overall description of the required tasks 
and the necessary details for an actual implementation. 

Part one is event declaration and part two is event management. 

7.1.1. Event declaration 
This section presents the tasks to be carried out between the detection of a possible 
contamination and the declaration of a contamination event by one of the authorised 
members of the utility. 

1. The EDS detects changes in the monitored parameters that may be produced by a 
contamination event. A drop in chlorine accompanied by an increase in turbidity is 
a typical example of suspicious changes. 

2. The EDS sends an alert to the EMS. 

3. The EMS stores the notification provided by the EDS and checks its severity. If the 
severity of the event is low, the event is recorded and waits to be processed as a 
‘normal’ event. If the severity is high, the EMS automatically performs the 
following actions. 

(a) Displays the alarm on the graphical user interface using a combination of 
colour, text size and position to convey the severity of the event. 

(b) Automatically sends emails to the staff responsible. 

(c) Triggers the execution of the simulators. 

4. An authorised staff member of the utility declares a contamination event in the 
EMS. 

5. The EMS initiates the response actions. 
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Currently, the severity evaluation performed under bullet number 3 above is conceived 
as a simple check on the attributes of the received alarm that will return a binary 
answer. Such an evaluation may be replaced by a decision scheme based on a rule set 
that could affect the execution of certain tasks or even give rise to the execution of a 
completely different workflow. Aspects that should be considered for severity evaluation 
include the population of the affected area(s) and the presence of sensitive infrastructure 
such as hospitals or schools, as revealed by running the simulation models. 

6. Simulations 

The simulations started as a response to a high-severity alarm are the following. 

(a) Source identification to estimate the location on the network where the 
contamination originated. 

(b) Forward simulation to estimate the spread of the contamination in the water 
system. 

(c) Third simulation module capable of recommending what valves to close to 
prevent contamination spread. 

The execution of the simulations is based on a small separate workflow. The simulators’ 
results will be displayed in the GIS component of the EMS. 

The simulation workflow may be extended with input forms (or equivalent mechanism) to 
enable workers in the field and the utility’s personnel to communicate changes in the 
network, for example valves that have been closed or pumps that have been stopped. 
Such changes would be forwarded to the simulator modules in order to update the 
models with the current state of the network. 

On the display showing the simulation results a range of colours is used to represent 
graphically the values of a certain parameter across the network over a range of times. 
An alternative view, in which concentric areas are drawn on top of the GIS representation 
of the pipe network to represent the forecast evolution of the contamination spread at 
different points in time, may also be a very useful tool to plan response actions. 

 

7.1.2. Event management — first stage — immediate action 
1. When the event is declared, the EMS automatically performs the following actions. 

(a) Sends messages (email, SMS, etc.) to the emergency-situation-room team 
members to have them convene, including the first information about the 
event. 

(b) Displays ‘Stop Water Flow in Affected Area’ box on top of the active view and 
sends an automated message to operations personnel with the first 
information about the event and a reminder to stop/limit water flow. 

2. An authorised user enters the available information about the problem. 

3. Takes action to notify appropriate authorities (health, regulatory and security). 

4. A public relations (PR) member selects and fills in the appropriate template for 
answering consumer calls to the utility’s call centre and for a press release. 

5. The information generated from the edited template is made available to the call 
centre. 
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7.1.3. Event management — second stage — continuing actions 
To support decision-making, the EMS provides a central location where all information 
regarding the ongoing event can be gathered. This central point of information reflects 
the current situation and documents planned actions. Initially, such information will be 
introduced as free text. Later on, these concepts may be modelled in the system in order 
to provide a more structured and systematic approach. An important aspect of the 
system is the capability to log these updates and enable analysis of the response actions 
once the emergency situation is over. 

Some response actions that may be clear or even obvious under normal circumstances 
may be forgotten under the high stress caused by a contamination emergency. In the 
EMS, it will be possible to create checklists to ensure all required actions are performed. 

A lot of actions take place during this phase and their results should be included as a 
situation update. The aforementioned checklist mechanism could be used to explicitly 
reflect them in the EMS. Specific forms may be set up if necessary. 

In the following paragraphs, the performance of the tasks included in the second stage, 
as listed in the utility’s SOPs, is discussed from the perspective of the EMS. In this case, 
the numeration does not imply a particular order. 

1. Define the area affected, predict the contamination spread, recommend actions 
(valves, pumps, etc.)/update models with new input: to support decision-making, 
simulation results to show the affected area and its evolution will be displayed, as 
explained in Section 7.1 of this document. The ability to provide recommendations 
and update the models will depend on the capabilities provided by the simulators. 

2. Produce a situation report and operational plan: will be supported by allowing the 
users to extend the event information with a new situation update introduced as 
free text (the EMS should provide the template for the above report and plan, with 
a prompt to update the report every N hours). A more structured and systematic 
approach may be attempted. 

3. Verify that the contamination is real: the results of this task will be added to the 
event as a situation update. 

4. Initiate the investigation of a cause of contamination and inform the police if 
necessary. May be represented in the system as an action item in a checklist. 

5. Inform the public and key players: as new information becomes available, the 
personnel in charge of PR, with appropriate technical support to analyse the 
situation, will evaluate communication needs and produce the corresponding 
reports with support from templates stored in and editable through the EMS. The 
EMS will enable their distribution or publication as a web page. The EMS should 
also prompt press releases and press conferences. The EMS should remind the 
event manager of the importance of ongoing updated PR. 

6. Initiate water-quality testing (check if the isolation of the contaminated zone has 
succeeded): the results of this task will be added to the event as a situation 
update. 

7. Present the alternative water supply  system as an action item in a checklist. 
Ideally, a dedicated workflow and organisation to deal with this measure should 
be triggered. 

8. Coordinate with the health authority to gather samples and identify the 
contaminant. May be represented in the system as an action item in a checklist. 
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7.1.4. Event management — third stage — follow-up actions 
A number of measures are included in the third stage which may be supported by the 
EMS. 

1. Organise utility personnel for continued operations. 

2. Organise a continued alternative supply of water to the isolated area. 

3. Continue PR activities. 

4. Start a ‘sanitary field survey’: may be represented in the system as an action item 
in a checklist. Specific forms may be set up if necessary. 

5. Mark valves that must not be opened: an operation may be implemented to 
virtually mark/unmark such elements in the GIS view. 

6. Run a hydraulic model to analyse continued effect of closed valves: included as 
part of the integration with the simulators. 
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8. Conclusions 
This guidance is complementary to the water-security plan, which is developed by this 
ERNCIP Thematic Group in order to address the risk of intentional or accidental 
contamination of drinking-water-distribution systems (Weingartner and Raich-Montiu, 
2015; Hohenblum et al., 2016). 

CWQM is a proactive approach for monitoring water quality for potential contamination, 
both accidental and intentional, through the deployment of advanced technologies and 
enhanced monitoring to collect, integrate, analyse and communicate information, and is 
a fundamental element of the water-security plan. 

This guidance describes the design and implementation process of a CWQM system in a 
water utility. Major points to be considered by the utility before and during the 
implementation are described for each required component of the system, namely the 
hydraulic model and GIS application, sensor-placement optimisation software, the 
sensors, the EDS, the water quality, the CDLAS model and the EMS. 

To implement such a system, water utilities must weigh the costs and benefits of various 
designs and understand the significant public-health and cost trade-offs. This document 
provides the practical basis for such a project to be initiated and highlights the need for 
the water utility’s multiple stakeholders to collaborate with each other. 
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