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Abstract

With the maturity of the CubeSat industry and advancements in commercial off-the-shelf compon-
ents, CubeSat-based projects have become an attractive option for advanced outer space missions.
This increase in mission complexity has given rise to the necessity of a new generation of accurate
attitude determination subsystems.

The purpose of this work, therefore, entailed the design and development of an augmented
stellar sensor. The focus was not only on the development of a suitable high-performance, low-
power hardware platform, but also on the identification, implementation, and development of
suitable software techniques as well as the simulation, integration and testing of the augmented
platform. This developed sensor delivers accurate attitude and rate estimates, whilst conforming
to the small satellite power and size requirements. The augmented system uses inertial rate sensor
data, with error compensation performed by use of matched vector measurements obtained from
a star sensor. Measurements are combined in an Extended Kalman filter, providing both high
rate attitude propagation and bias drift compensation. The designed system features a robust
tracking mode as well as a stellar gyro algorithm to deliver accurate, low-frequency rate estimates
independent of host dynamics.

To prove overall system functionality, the sensor has undergone verification during simulated
conditions, testing in an in-house developed star emulation environment, as well as testing under
night sky conditions. During these tests, it was exposed to conditions typically experienced by
satellites throughout their mission lifetimes. These conditions range from low-rate tumbling, to
fine pointing.

Initial testing shows that the system offers a robust response regardless of satellite rate and
orientation whilst simultaneously adhering to CubeSat standards. IMU bias compensation worked
successfully, and estimated results show that the average 3σ stellar gyro rate accuracies were in the
order of 0.01 °/s whilst the cross-axis 3σ orientation accuracy was close to 0.01° during low rates.
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Uittreksel

Met die volwassewording van die CubeSat-industrie en vooruitgang van kommersieël beskikbare
elektroniese komponente, het die CubeSat-platform ’n aantreklike keuse geword vir ruimtevaart-
sendings. Hierdie belangstelling in die CubeSat-platform het tot ’n vermeerdering van sendings-
kompleksiteit gelei wat die behoefte vir ’n nuwe generasie akkurate oriëntasiebeheer-substelsels
geskep het.

Gevolglik was die doel van hierdie werk die ontwerp en ontwikkeling van ’n uitgebreide ster-
sensor. Die fokus was egter nie net om ’n gepaste hardewarestelsel te ontwerp nie, maar ook om
geskikte sagtewaretegnieke en algoritmes te identifiseer, te ontwikkel, en toe te pas. Die ontwikkelde
stelsel lewer akkurate oriëntasie- en hoeksnelheidafskattings, terwyl dit geskik vir gebruik in ’n na-
nosatelliet is. Hierdie uitgebreide stelsel gebruik inersiële sensormetings waarop foutkorrigering,
soos afgeskat deur middel van vektorinligting vanaf ’n sterkamera, toegepas is. Die sensormetings
word gekombineer in ’n uitgebreide Kalman filter, wat beide hoë-frekwensie oriëntasie-afskattings
kan verskaf, sowel as om die inersiële sensor foutkorrigering te beheer. Die ontwerpte stelsel be-
vat verder ’n robuuste stervolgmodus om die mikroverwerker se berekeninge te verminder, sowel
as ’n hoeksnelheid-afskattingsalgoritme om baie akkurate lae-frekwensie afskattings te bied. Die
laasgenoemde algoritme kan onafhanklik van ’n dinamiese model funksioneer.

Om die oorhoofse stelsel se werking te bevestig, is die sensor tydens gesimuleerde, geëmuleerde,
en praktiese omstandighede getoets. Gedurende hierdie toetse is die stelsel blootgestel aan tipiese
gebruikstoestande soos lae-snelheid tuimel en fyn oriëntasiebeheer.

Aanvanklike toetse wys dat die stelsel goed werk ongeag die hoeksnelheidstoestande waaraan dit
blootgestel word. Inersiële sensor hoeksnelheidsmetings kon suksesvol gekorrigeer word. Afgeskatte
resultate toon daarop dat ’n stervektor se hoeksnelheid oor die kruisas akkuraat tot 0.01 °/s, op
die 3σ-vlak, afgeskat kon word. Resultate aangaande oriëntasie-akkuraatheid was in die orde van
0.01°, 3σ, oor die kruisas tydens ’n lae hoeksnelheid.
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Chapter 1

Introduction

1.1 Background

In recent years the CubeSat industry has evolved from a small area of research primarily focused on
education, to that of a full-blown commercial industry. With over 850 CubeSat missions launched
since the year 2000, a definite trend can be seen in the increase of mission complexity. Despite its
increased popularity, however, the standard enforced by the CubeSat launching system constrains
the size and available power of these nanosatellite missions and, more importantly, limits the
hardware that can be flown. The necessity of increased innovation and miniaturisation in the field
of satellite Attitude Determination and Control Systems (ADCSs) is therefore evident.

With the advent of embedded electronic miniaturisation, it has for the first time become pos-
sible to develop small, autonomous sensors that can perform functions akin to those of fully fledged
ADCSs. As discrete component power requirements decrease, so to do the limits of sensor integ-
ration.

The ADCS community is by no means new to the integration of multiple sensors, as single-
sensor attitude determination is rarely found during satellite missions. The fusing of sensor data
is prominent, primarily because it allows for the mitigation of inherent sensor flaws. An example
of sensors often used together is the star tracker and gyroscope. Although both technologies have
served as cornerstones in solving the problem of attitude determination and propagation, each
introduces its own complexity in system integration, and can only be used under certain system
conditions.

In the case of star trackers, unique attitude solutions can only be computed when bright objects
are not in the Field of View (FOV), and when host slew rates are low enough that individual stars
can be observed. Although gyros can then help by providing state propagation during these invalid
star tracker conditions, gyro measurements tend to be inaccurate and lead to a random walk process
in the estimated attitude, causing a loss in attitude accuracy.

1.2 Research Aim

To solve this problem, specifically on a nanosatellite scale, the existing CubeStar nano star tracker
platform will be extended so that a preintegrated nanosatellite attitude and rate determination sys-
tem is developed. This project therefore not only entails the physical integration and augmentation
of the current CubeStar platform with a rate-measurement device, but also treats the investigation
of methods of successful low-level system integration, as well as algorithm development for use on
a star tracker-based attitude and rate system.

The aim of this project can therefore be translated into the following technical requirements,
such that a system is designed where:

1. The system delivers both attitude and rate measurements;

2. The rate measurements are free of biases;

1
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CHAPTER 1. INTRODUCTION 2

3. It operates efficiently by use of a reduced-search tracking mode;

4. It exhibits low power usage, preferably under 0.5 W;

5. Stellar gyro functionality is added to provide high-accuracy rate measurements when star
tracker data are available; and

6. It provides a preintegrated state determination system, delivering attitude estimates, bias-
compensated rate data from an Inertial Measurement Unit (IMU), and high-accuracy rate
estimates from a stellar gyro estimation.

These technical requirements will be achieved by completing the following objectives:

1. Designing a suitable hardware platform;

2. Investigating software techniques pertaining to a star tracker as well as attitude, rate, and
bias estimation;

3. Implementing, testing, and verifying the identified software techniques in a simulation envir-
onment;

4. Integrating and verifying the hardware and software interfaces; and

5. Testing and validating the system under true night sky conditions

1.3 Thesis Roadmap

This thesis is organised according to the objectives, as presented in the following chapters:

Literature Study

Theoretical concepts with regards to reference frames, attitude representations and some basic
astronomy concepts are given. Thereafter, a brief review of current state-of-the-art technology is
given in context of stellar, and inertial navigation as well as stellar gyro systems.

Hardware Design

The initial hardware design of the CubeStar–IMU interface is treated, along with design decisions
regarding the replacement of the original CubeStar Microcontroller Unit (MCU) and hardware
system integration.

Software and Algorithms

A brief discussion of a commonly used star model is given, after which some key algorithms
pertaining to image processing, and star matching during Lost-in-Space (LIS) and tracking modes
are identified. Finally, some commonly used attitude and rate estimation algorithms and an initial
system software implementation are discussed.

Simulation

The attitude and bias Extended Kalman Filter (EKF) simulation and initial observations are
given. Thereafter, simulation results of the complete designed system are treated, with some main
software design decisions and a discussion of further system software integration following.

Practical Testing and System Integration

A star emulation environment is developed that is used during initial testing and algorithm verifi-
cation. Sensor calibration and the final system hardware and software integration are then treated.
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Results and Discussion

Practical testing during earth-fixed and dynamic system conditions are conducted, results are given,
and some discussions and observations are considered to serve as functional system validation.

Conclusions and Recommendations

Concluding remarks with regards to the developed system are given. Afterwards, some recom-
mendations related to future work are made.
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Chapter 2

Literature Study

In this chapter, the basic literature pertaining to the theoretical background and state of the art
are given. This section starts with important background concepts in Sections 2.1 to 2.5 after
which state-of-the-art research in the field of stellar gyro systems is treated in Section 2.6

2.1 CubeSats

With the development of high-performance microelectronic systems, the nanosatellite industry
has become a prominent contender in the commercial space market. One of the best known
nanosatellite architectures is the CubeSat. This architecture standard was originally developed
by Professors Bob Twiggs and Jordi Puig-Suari to enable hands-on satellite mission design and
operation experience in universities.

This standard defines a one unit (1U) CubeSat as a 10 cm cube weighing a maximum of 1.33 kg
[1]. Key to this technological standard, is the P-POD, or Poly Picosatellite Orbital Deployer
mechanism, developed at California Polytechnic State University. This deployer system consists of
a square tube, delivering minimal deployment spin, with a linear velocity of around 0.3 m/s, whilst
offering an inexpensive, modular solution [1].

Since the original development of CubeSats, the standard has grown to include various other
sizes of nanosatellites, including, but not limited to 1.5U, 2U, 3U, and 6U [2]. Figure 2.1 shows
two 1U CubeSats: PhoneSat 2.5, which was launched in 2013, and OSCAR CO-57.

(a) PhoneSat 2.5 [3] (b) OSCAR CO-57 [4]

Figure 2.1: CubeSats

Similar to their larger counterparts, CubeSats also consist of similar standard satellite subsys-
tems, such as: ADCSs, propulsion, power, and communications, amongst others. Owing to the
short development cycle, high flexibility and relative inexpensiveness due to the use of commercial

4
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off-the-shelf components, they are often used as a means of new technology demonstration and
testing.

Over the past twenty years of development, the usage of CubeSats for Lower-Earth Orbit
(LEO) missions have shown an exponential increase [5]. Despite the original CubeSat purpose,
functionality and mission complexities planned for future, and even present CubeSat missions now
far extend that of only education and training.

An example of this is seen in the recent deployment of the Mars Cube One (MarCO) satellite
[6]. This nanosatellite mission, launched in May of 2018, is to demonstrate the usage of a small
spacecraft for an interplanetary mission, and will function as a communications relay service for
the InSight Mars lander.

MarCO is not the only planned deep-space CubeSat mission, however, as Exploration Mission-
1, scheduled for launch in June of 2020, also aims to demonstrate the increased reliance on the
CubeSat platform, in this case, towards the exploration of the lunar environment. This mission,
as secondary payload, contains thirteen low-cost CubeSats to be used for various scientific and
exploration purposes [7], [8].

With this increase in mission complexity and reliance on the CubeSat platform, the overall
system requirements have reached a critical point in the design of subsystems. As this satellite
architecture is therefore reaching maturity, and their usage extend that of LEO, so too does the
payload pointing requirement, and in effect the ADCS.

To achieve these pointing requirements, high-accuracy vector measurements are required to re-
late a satellite to some inertial frame of reference. The most accurate of these vector measurements
are obtained from observing stars. Some basic knowledge of astronomy is therefore required.

2.2 Astronomy Concepts

To ensure accurate ADCS pointing capability, knowledge of the celestial sphere, stars, and star
catalogues are required.

2.2.1 Star Catalogues
Star catalogues are lists of stars that have been observed, and contain information about the
position, movement, and observable properties thereof. The positions of some of the brightest
stars are shown in Figure 2.2.

Figure 2.2: Celestial Sphere Showing Stars with Visual Magnitudes Greater than mv = 3.8

Shown here are all the stars brighter than a star with a visual magnitude of 3.8, as points on
the celestial sphere. The star locations shown here come from the Hipparcos catalogue [9]. This
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catalogue was originally generated from observations made during the Hipparcos mission between
1989 and the first quarter of 1993 [10]. The generated catalogue had an epoch of J1991.25 and con-
tained around 118,218 entries to a positional precision of 1 milli-arcsec. The Hipparcos catalogue
was later extended with data obtained from the star mapper hardware on board the Hipparcos
satellite. This extended catalogue was called the Tycho catalogue, and although slightly less accur-
ate than Hipparcos, contained over one million objects. Both the Hipparcos and Tycho catalogues
contain accurate astrometry and calibrated photometry data, as well as star positions, parallaxes,
and proper motions. A common way of classifying the stars contained in these catalogues, is
according to their magnitudes.

2.2.2 Star Magnitude Scale
Star intensity is measured on a stellar magnitude scale. Although various magnitude scales, based
on the photometric band of the observer, exist, the most common classifications are based on the
visual magnitude or the absolute magnitude.

Visual Magnitude Scale

In this scale, the visual magnitude of a star is defined in terms of some reference magnitude, given
as.

mv = −2.5 log10

(
Ip
I0

)
(2.2.1)

In this equation, Ip is the observed light intensity, described in terms of flux density, and I0
the reference or zero point. The apparent magnitude scale is an inverse logarithmic scale, defined
such that a star with visual magnitude of mv = 1 is about five times brighter than stars with
magnitudes of mv = 5. This convention was chosen to correspond with historical data [11].

Absolute Magnitude Scale

The visual brightness scale takes into account only the perceived brightness of a celestial object
and not the brightness intrinsic to the star. Subsequently, as the perceived brightness is linked
to the square of the distance to the source, astronomers developed the absolute magnitude scale.
This scale takes into account not only the visual magnitude, but also the distance to the objects.
The absolute magnitude scale is defined as the apparent magnitude a star would exhibit, if seen
at ten parsecs away, under zero diffraction conditions.

2.3 Coordinate Systems

Also of importance in the interpretation of star catalogues is the definition of a frame of reference in
which the orientation of a star and the observer can be defined. In this work there are two reference
frames that feature regularly, namely the spacecraft-centred inertial reference frame, and sensor-
body reference frame. Although other coordinate systems, such as satellite body or orbit-referenced
frames, are also used in spacecraft navigation, they are not necessary for the understanding of the
following concepts and are treated elsewhere [12].

2.3.1 Spacecraft-Centred Inertial Coordinates
As described in Wertz et al. [12], the spacecraft-centred inertial, or inertial for short, coordinate
system is defined relative to Earth’s rotation axis, with the positive Z-direction towards the north
celestial pole. Here, the X-axis of this reference frame points in the direction to where the ecliptic
crosses the equatorial plane on the first day of spring. This point is also known as the vernal
equinox. The Y -axis is then chosen to complete the right-handed axis system. Figure 2.3 shows
the spacecraft-centred inertial frame.

Owing to the precession of the Earth’s axis around the ecliptic pole, this inertial frame is not
fixed relative to the mean position of the visible stars [12]. Because of this phenomenon, fixed
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Figure 2.3: Spacecraft-Centred Inertial Coordinates

points on the celestial sphere move. To compensate for this precession, an epoch is usually coupled
to the quasi-inertial frame to ensure accuracy during attitude determination [13].

In the spacecraft-centred inertial coordinate system, landmark positions are usually specified
in the form of Cartesian or spherical vectors. To simplify the observation of celestial bodies, all
stars in the region of the sun are assumed to be distributed across a unit sphere, centred around
the spacecraft.

2.3.2 Sensor-Body Coordinates
In the case of an optical sensor, the sensor-body reference frame is chosen to be centred on the
sensing element, with the positive z-axis pointing in the direction the sensor is facing. The x-axis
is then chosen to correspond with that of the sensing element’s x-axis, with the sensor-body y-axis
completing the right-handed axis system. Figure 2.4 shows a star camera mounted to a satellite.
The star camera’s body reference frame is shown to be at the centre of the sensor.

z

y

x

Figure 2.4: 3U CubeSat with Star Tracker Demonstrating Sensor-Body Coordinates

With these coordinate systems, it is possible to define the attitude of an observer, relative to
that of the inertial reference frame.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 2. LITERATURE STUDY 8

2.4 Attitude Representations

The attitude of a rigid body can be represented in numerous ways, of which three are of importance
in this work. The three important parameterisations are: rotation matrices, Euler angles, and
quaternions. Each of these attitude representations has its own preferred applications, advantages
and disadvantages [14].

2.4.1 Rotation Matrices
A rotation, or attitude, matrix is an orthogonal 3 × 3 matrix that defines the relative rotation
between two frames of reference. In this case, a body vector, vB, is related to its inertial counter-
part, vI , by:

vB = ABIvI (2.4.1)

where ABI defines the inertial to body attitude matrix. It should, however, be noted that the vector
norm stays constant such that: ∣∣∣∣vB∣∣∣∣ =

∣∣∣∣vI∣∣∣∣ (2.4.2)

A rigid body can also be subject to multiple rotations:

vI = AIOAOBvB = AIOvO (2.4.3)

Operations regarding multiple rotation matrices are not commutative, however, as rotations
have to be applied in a certain order to achieve the required attitude representation. The matrices
that describe a rotation of α degrees around each axis are given in Equation (2.4.4)

A1(α) =

1 0 0
0 cos(α) − sin(α)
0 sin(α) cos(α)

 , A2(α) =

 cos(α) 0 sin(α)
0 1 0

− sin(α) 0 cos(α)


(2.4.4)

A3(α) =

cos(α) − sin(α) 0
sin(α) cos(α) 0

0 0 1


Here, the enumeration 1, 2, and 3 describes the x- , y-, and z-axes, respectively. An attitude
matrix further also encodes the reverse of the rotation as(

AIB
)−1 =

(
AIB
)T = ABI (2.4.5)

Despite the simple, intuitive parameterisation that attitude matrices offer, they require nine
variables and have an orthogonality constraint which is difficult to obey during estimation as
numerical rounding errors can accumulate.

2.4.2 Euler Angles
A different method in describing the attitude of a rigid body is by use of Euler angles. Euler angles,
classically known as the pitch, roll, and yaw of a vehicle, describe orientation by use of only three
angles, thus leading to a much more efficient parameterisation method. However, this description
contains mathematical singularities, making it undesirable for use in applications where operation
close to singular regions are possible. Although there are twelve different Euler representations,
these can all be subdivided into two main types:

Type 1

These angles are also called Cardan angles and involve a rotation around each of the distinct axes.
An example of this is the 3-2-1, or z-y-x sequence. The singularity for this attitude description
occurs at a pitch angle of θ = nπ for n ∈ Z. This is illustrated in Figure 2.5.
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Type 2

Repeated axis parameterisations involve multiple rotations around a single axis, of which one of
the most common sequences is the 3-1-3 or z′′-y′-z sequence [12]. The singularity for this type of
Euler angle occurs at θ = π

2 + nπ for n ∈ Z [14].
Figure 2.5 shows the three different Euler rotations, namely a rotation around the x-axis (Fig-

ure 2.5a), the y-axis (Figure 2.5b), and the z-axis (Figure 2.5c).

x y

z

y′

z′

ψ

ψ

(a)

x

z′′

y′

z′

θ

θ

x′

(b)

z′′

y′
φ

φ

x′

x′′

y′′

(c)

Figure 2.5: Euler Sequence 3-2-1

An attitude parameterised with pitch, roll and, yaw angles, (φ, θ, and ψ, respectively) can
also be represented as a rotation matrix constructed from the three matrices described in Equa-
tion (2.4.4) such that

A321 (φ, θ, ψ) = A3(φ)A2(θ)A1(ψ) (2.4.6)

Despite its convenience, Euler angles cause a condition known as Gimbal Lock [14]. This occurs
when a system able to rotate with three degrees of freedom enters an orientation where it is forced
into a two-dimensional space. In this locked configuration, changes to two or more of the gimbals
will apply the same rotation to the rotating body causing an indeterminable attitude.

2.4.3 Quaternions
An alternative method of describing attitude was proposed by William Hamilton in 1843. His
solution, the quaternion, involves a four-element attitude parameterisation representing the rela-
tionship between two vectors in three-dimensional space. The Hamilton quaternion, q, defined
as,

q = q4 + q1i+ q2j + q3k ⇔ q = q4 + qv (2.4.7)

is traditionally described as the sum of a pure imaginary vector and scalar weighting factor. For
the sake of convenience, this text uses the Jet Propulsion Laboratory (JPL) vector notation. This
notation allows quaternion operations to be simplified to matrix and vector operations. A JPL
quaternion is defined as

q ,

[
qv
q4

]
=


q1
q2
q3
q4

 (2.4.8)

Figure 2.6 shows a graphical approach to understanding the quaternion convention. Here, the
rotation from vI to vB is parametrised by a quaternion that q4 = cos

(
α
2
)
and qv = sin

(
α
2
)
û. In

this case, the rotation applied to the vector, vI , can be described by

vB = qvIq∗ = ABIvI (2.4.9)

where the corresponding attitude matrix can be calculated from the quaternion as

A(q) = (|q4|2 − |qv|2)I3×3 + 2qvqTv + 2q4[qv]T× (2.4.10)

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 2. LITERATURE STUDY 10

û

vI

α

vB

Figure 2.6: Rotation Described by a Quaternion

and is equal to

A =

−q2
3 − q2

2 + q2
1 + q2

4 2q1q2 − 2q3q4 2q1q3 + 2q2q4
2q3q4 + 2q1q2 −q2

3 + q2
2 − q2

1 + q2
4 2q2q3 − 2q1q4

2q1q3 − 2q2q4 2q2q3 + 2q1q4 q2
3 − q2

2 − q2
1 + q2

4

 (2.4.11)

Furthermore, it should also be noted that, similar to rotation matrices, quaternions also encode
the reverse of the rotations they describe:

qBI =
(
qIB
)∗ =

[
−qv
q4

]
(2.4.12)

Some Useful Quaternion Definitions

In this text, the following definitions derived from quaternion mathematics are used. Sequential
rotations, defined by compound quaternions, are given as:

A(q′)A(q) = A(q′ ⊗ q) (2.4.13)

Also useful, especially for the understanding of the Kalman filter as described in Section 4.7, is the
matrix quantity, Ξ(q), defined as [15]:

Ξ(q) =


q4 −q3 q2
q3 q4 −q1
−q2 q1 q4
−q1 −q2 −q3

 (2.4.14)

Lastly, the four-element pure imaginary rate quaternion is given as:

qω =
[
ω
0

]
(2.4.15)

By using these attitude definitions, it is possible to measure and control the attitude of a
satellite by use of an ADCS.

2.5 Attitude Determination and Control Systems

The goal of an ADCS is twofold: firstly it involves the estimation of a spacecraft’s orientation
relative to an inertial frame or point of interest [13]; and secondly, it involves the control of the
spacecraft’s orientation through means of actuation.

The simplest form of ADCSs is passive. These systems implement attitude control through
spinning, or by use of the earth’s magnetic or gravity fields. Although these methods are sufficient
in low-performance systems, they do not offer the high pointing accuracy required in more complex
applications. In high-performance ADCSs, active orientation control through means of orientation
sensing is required [13].
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By definition, high-performance attitude control is directly linked to the accuracy of attitude
estimation, which is impacted by the reference vectors used in the attitude sensing process. Im-
portant to note is the that direction of these reference vectors is of key importance, lesser so the
vector magnitude [12].

The main reference vectors used in ADCSs, along with their advantages and disadvantages, as
identified by Wertz et al. [12] is shown in Table 2.1.

Table 2.1: Reference Vectors Used in Attitude Determination [12]

Reference Advantages Disadvantages
Sun Bright; unambiguous; low power;

low weight
Not always visible; accuracy limit
of 0.016°

Earth Simple analysis; always available;
largely unambigious

Prone to sun interference; resolu-
tion limit of 0.1° owing to horizon
definition

Magnetic Field Economical; low power; always
available at low attitudes

Accuracy in the order of 0.5°; de-
pendent on spacecraft magnetism;
bias sensitive

Stars Very accurate; available almost
everywhere in sky

Complex and expensive; power in-
tensive; requires sun shading

Typically, in low-power, low-performance satellites, magnetic sensing and magnetic control are
sufficient. However, to ascertain very high-performance attitude estimation, more accurate sensors
are needed. From this table, it is shown that star trackers offer the highest accuracy, at the cost
of power and capital. These star trackers are treated in the next subsection.

2.5.1 Star Trackers
A star tracker is a spacecraft attitude sensor, consisting of an optical assembly coupled with external
electronics, typically used in spacecraft navigation. Traditionally, star trackers can be subdivided
into three types: star scanners, gimballed star trackers, and fixed-head star trackers [12]. With
initial advancements in digital electronics, first-generation fixed-head star trackers have become
much more powerful, showing observed accuracies in the order of arcseconds [16]. The general
system description of a fixed-head star tracker is shown in Figure 2.7.

Baffle

Optical Assemly
Stars

Image Plane

Detector Electronics

Figure 2.7: Basic Star Tracker Components, Adapted from [12]

The first generation of these fixed-head star trackers, developed in the early 1970s at NASA
JPL, were of Charge-Coupled Device (CCD) technology. These star trackers were able to track
only a few stars, and were completely dependent on external processing for star acquisition, dis-
tortion compensation, and data processing [17]. With regards to performance, a maximum of six
stars could be detected in each frame [17], with the instrument only being able to output CCD
coordinates corresponding to the location of the star spots. These data could then be processed on
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board, or later on the ground. Not only did the first fixed-head trackers have limited processing
ability, but they were also heavy and rather power intensive [17].

Star tracker technology has since come a long way, especially with the increase in microprocessor
capability and the development of Active Pixel Sensor (APS) sensing elements. Owing to this cap-
ability increase, second-generation star trackers are able to feature pattern recognition algorithms
as well as large internal catalogues, allowing increased autonomy and On-Board Computer (OBC)
offloading through means of distributed processing. These star trackers have further seen a signi-
ficant decrease in mass and power usage, with some of the early second-generation star trackers
weighing as little as 1 kg whilst using 7 W only [18]. In recent years, star tracker technology has
also been further extended to the CubeSat industry, albeit with limited performance.

2.5.2 Current CubeSat Star Tracker Capabilities
Table 2.2 shows a nonexhaustive list of some of the star tracker sensors prominently available.

Table 2.2: Current Stance of CubeSat Star Tracker Technology

MAI-SS
[19]

NST-4 [20] ST200 [21] CubeStar
[22]

BCTNST
[23], [24]

Company Maryland TY-Space Berlin
Space

CubeSpace BCT

Accuracy (arcsec)
Cross-axis 4 5 30 77.4 9
Roll-axis 27 70 200 219.6 60

Slew (°/s) > 2 2 0.3 — > 2
Physical

Size (cm3) 117.5 107.5 32 96.25 275
Mass (g) 170 107 42 55 350

Electrical
Voltage (V) 5 5 3.7 to 5 3.3 5
Power (W) 1.5 0.6 0.65 0.142 0.75
Interface UART/I2C RS422/CAN I2C/UART I2C RS-422

Sensor
Update (Hz) 4 10 5 1 5
Sensitivity (Mv) 6 5.8 — 3.8 7.5
Acquisition (s) 0.13 2 — 1 4

Environmental
Thermal (◦C) -40 to 80 -40 to 40 -20 to 40 -10 to 60 —
Radiation (kRad) 75 30 9 TBD 11-16
Sun Exclusion (°) 45 > 25 30/45 45

From the five identified star tracker modules, it can be noted that there are some definite
technological trends. Overall, the average star tracker power usage tends to be quite high, with
requirements upwards of 600 mW. In stark contrast to this, stands the CubeStar star tracker
module. Although very low power, it does not hold its own in terms of accuracy or sensitivity. It
is therefore evident that a star tracker module’s power usage is strongly coupled with its attitude
determination accuracy and the update rate of attitude solutions.

One very clear shortcoming shown in all the identified CubeSat star tracker technologies, is
the maximum slew rate at which they can operate. This is not only a problem with low-power
star trackers, however, as most star trackers do not show successful functioning during high slew
rates. Although star trackers can offer excellent attitude accuracy for the nanosatellite industry,
the sensor technology itself is limited by deficiencies such as high power usage and general system
inoperability when within range of high-intensity celestial bodies and at high rates. Because of
this, these sensors can rarely function as a sole attitude determination solution. To compensate
for this, a common method of star tracker functional extension is augmenting a star tracker ADCS
with gyros to enable inertial navigation.
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2.5.3 Inertial Navigation
Inertial navigation is described as the determination of a vehicle’s attitude or position through the
process of dead reckoning. This technique uses the integration of angular rate and velocity data
[25] in the estimation of the current vehicle position and orientation, relative to its last known
position and orientation [26].

The key parts of an inertial navigation system are: the absolute position or orientation sensors,
providing intermittent system state knowledge; and velocity sensors, providing a means of system
state propagation.

Data originating from velocity measurement devices tend to show slight inaccuracies in the
form of measurement noise and sensor biases. The use of these data in state propagation therefore
leads to a runaway effect called drift caused by the accumulation of integrated errors. This process
is illustrated in Figure 2.8, where a spacecraft’s orientation is determined by use of noisy angular
velocity measurements. These data are shown in contrast to the true system orientation, illustrating
the drift as a function of the sensor noise power.
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Figure 2.8: Effect of Noise on Dead-Reckoning Systems

The mitigation of this drift is directly impacted by the velocity sensing accuracy. Although an
increase in accuracy shows better ADCS performance, increasing sensitivity leads to an increase
in system mass and power requirements. In the case of orientation propagation, the sensing field
has not yet delivered commercially available, highly accurate, low-power rate-sensing solutions. As
large inertial sensors can therefore not be justified for a marginal increase in ADCS performance
capabilities, and drift can only be mitigated this way, more expensive sensors are not seen to be a
complete solution. The only way of successfully compensating for this system drift, therefore in-
volves absolute, bias-free orientation measurements to reset intermittently the accumulated errors,
subsequently leading to an overall increase in estimation accuracy.

The compensation for this type of sensor deficiency in heading and orientation systems has
been a subject of frequent research [27], [28], with the Kalman filter regularly applied as a method
of optimal measurement fusion.

Although the fusion of sensor measurements leads to a much higher accuracy, the overall per-
formance is still linked to the deficiencies of the most accurate sensor used in the fusion scheme,
and once again leads to an increase in ADCS complexity.

2.6 Integrated Star Tracker-Based ADCSs

These systems involve either the estimation of rate through star observations, or the integration
of gyros and star trackers into discrete units.
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2.6.1 Gyroless Platforms
One of the proposed solutions to the multisensor ADCS complexity problem has involved the use
of star tracker systems in the performance of multisensor functions. In the case of work done by
Liebe et al. [29], a system was proposed to replace the traditional usage of discrete star trackers
and rate gyro combinations. This proposed system planned to reduce the typical ADCS weight and
power usage, as well as to simplify the required ADCS integration effort. Liebe et al. [29] proposed
a single star tracker for usage during both high and low body rates. Owing to the differences in
the observed features during these two rate conditions, a double algorithm was proposed. This
algorithm is split into cases where the attitude can be determined, and cases where the slew rate
experienced by the spacecraft is high, and attitude cannot be determined. These conditions are
shown in Figure 2.9.

(a) Simulated Image During Low Slew Rates (b) Simulated Image During High Slew Rates

Figure 2.9: Inverted Simulated Star Images During Low and High Slew Rates

During low slew rates, Liebe et al. [29] propose that a high-performance APS sensor be used
at a high update frequency by selectively reading out regions of interest around estimated star
locations. In this mode, as distinct stars are assumed to be visible, enough star information will
be available to determine unique attitude solutions. The system will therefore be able to function
in an attitude determination mode.

During high slew rates, however, Liebe et al. [29] noted that the relative star magnitude will
be low and constellations in the FOV will be indistinguishable due to their streaky nature. In this
case, the FOV will only show one or two bright streaks corresponding to the path of the brightest
of stars across the view cone of the imager. Here, Liebe et al. [29] suggest that the stellar gyro
system be used for spacecraft de-tumbling, and claim that this system will be able to function at
a slew rate up to 420 °/s. During this mode the star sensor integration period will be increased to
ensure star streak visibility. Although this leads to a slower sensor update rate, it also causes an
increase in the signal-to-noise ratio, and allows rate determination through means of a circle fitting
method, to within an accuracy of 5 %. This does, however, cause a discrepancy with regards to
update rate, during system state transition from low to high slew rates. The host ADCS would
then have to be able to transition flawlessly between both modes, subsequently complicating the
overall ADCS integration.

The work of Liebe et al. [29] work does not take into account the performance of a low-cost,
low-power APS imager, however, as a sensor read-out scheme in the order of 198 Hz is assumed.
No proof of functional system design nor testing is given. Although this might be plausible for
implementation on a very high-performance, high-power APS chip, when compared to CubeSat
star tracker trends, Liebe and coworkers’ technology is not yet feasible for implementation on a
nanosatellite platform.
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The work by Liebe et al. [29] by no mean constitutes the full extent of stellar gyro research,
however, as other researchers have also conducted experiments regarding the extension of star
tracker-based systems with stellar gyro technology. Crassidis et al. [30] developed a Least Squares
(LSQ) method of determining angular velocity by use of vector measurements obtained directly
from a star tracker. This research has been the cornerstone of previous work done by Calitz
[31], with practical test data achieved on the CubeStar [32] platform. Although this work did
not undergo functional night sky testing, proof-of-concept results were obtained in an emulated
environment. These results showed 3σ rate estimation accuracy in the order of 0.0379 °/s around
the roll-axis and 0.0258 °/s around the cross-axis, for input angular rates of 1 °/s.

Alternative methods for star tracker-based rate estimation have also been developed, with Singla
et al. [33] demonstrating angular rate estimation by means of star tracker data, for the explicit
case of gyro failure. Singla et al. [33] compared two separate approaches: firstly, spacecraft
attitude and Kalman filtering were used by modelling external disturbance torques as a random
walk process; and secondly, as with work done by Crassidis [30], two finite difference approaches
were used in conjunction with a LSQ formulation. The main conclusions from this research were
that the attitude-independent approach of the LSQ method showed a better response as it was
decoupled from attitude estimation errors. Singla et al. [33] further concluded that a second-order
LSQ approach showed better functioning at higher angular rates, whilst a first-order LSQ approach
showed good results during low angular rates.

Further investigation into the subject has also been done recently by Pal et al. [34] and Fasano
et al. [35] who, by use of optic flow techniques, enabled star sensor rate estimation without star
identification. In the case of the work done by Pal et al. [34], a Kalman filter was used to decrease
the overall estimation noise; however, no physical results were obtained. In contrast, the optical flow
technique employed by Fasano et al. [35] showed proof of concept, despite potentially inaccurate
operation. It was noted that their method for estimating satellite rates of 5 °/s showed increased
errors owing to the lower signal-to-noise ratio of the observed images. Despite this, gyroless rate
estimation functionality was demonstrated.

The largest part of the stellar gyro research has been relevant only towards high-performance
applications, with much less focus on that of the low-power CubeSat star trackers, using lower
dynamic-range APS sensors. Although all of these methods provide some measure of rate out-
put, they are still limited to the update rate, dynamic range, and integration period of the APS
sensor, which in the case of some low-power sensor systems, is a severely limiting factor. There-
fore, although these systems can provide some measure of functional redundancy in terms of rate
measurement, they offer little with regards to increasing sensor output bandwidth or extending
functionality past the 2 °/s rate limitation. Although various well-researched methods for gyroless
rate estimation does therefore exist, the use of these methods has distinct problems with regards to
update rate, power usage and feasibility on a nanosatellite platform. Dedicated gyroless platforms
therefore still require some improvement before they are fully implementable.

2.6.2 Gyro-Based System Integration
In stark contrast to the gyroless implementation of using only a star tracker-based system, more
traditional sensor integration methods have also been seen in the development of a stellar gyro
system. In these cases, gyros do not function as discrete sensing units, however, as they are closely
integrated into a single attitude determination package. One specific system is the Inertial Stellar
Compass (ISC) designed by Brady et al. [36]. The basic system submodules, as developed by
Draper Laboratories, are shown in Figure 2.10.

As shown in this figure, the ISC, consisted of a closely coupled gyro–imager assembly, with
measurements fused by use of a 27-state square root Kalman filter. Not only were proof-of-concept
ground validation results achieved for this sensor, but the system also underwent actual orbital
operation validation.

During the TacSat-2 [38] mission, the ISC demonstrated integrated star tracker and gyro func-
tioning as an individual product. The ISC achieved 1σ accuracy in the order of 0.1°, reaching
specification. As identified by Brady et al. [36] some key features with regards to low-level sensor
measurement integration are:
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Figure 2.10: Inertial Stellar Compass, Adapted from [37]

• Attitude updates are available even when the star camera measurements are inconclusive due
to high rates;

• System functionality is retained, even when the camera FOV is obstructed;

• The system usage is much broader than just fine pointing and attitude determination as the
rate gyro data can be used during initial satellite detumbling; and

• Overall system ADCS integration is much easier as there is no necessity for external gyro
error compensation.

Another more commercial application of a system similar to that designed by Brady et al. [36],
is the ASTROgyro [39], developed by Jena Optronik. This system consists of two star trackers and
two gyroscopes, providing an integrated, redundant system with 1σ random errors quoted in the
arcsecond range. As this technology has only very recently started to become available on larger
satellites, no integrated solution for a small satellite exists yet. The ASTROgyro system is shown
in Figure 2.11. This system has a mass of about 6 kg and power consumption in the order of 21 W
to 54 W.

Figure 2.11: Jena Optronik ASTROgyro [40]

One attempt at a low-power stellar gyro-assisted system for nanosatellites is that of work done
by Rawashdeh et al. [41], [42]. In their work, an inexpensive stellar gyro system measuring
only body rates was developed to reset periodically gyro bias drift. This work showed that drift
compensation every fifteen seconds led to attitude knowledge better than 1° of accuracy. The
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developed system did not consist of a complete integrated solution, but demonstrated the usage of
star sensing optical systems for the compensation of rate gyros deficiencies.

Although most work mentioned so far was only concerned with development of a high update
rate, high-functioning stellar system, other authors have also researched the use of rate gyro data
in the augmentation of star tracker algorithms. An example of this is the development of a hybrid
star tracking algorithm by use of sensor fusion as done by Lu et al. [43]. In their work, they
attempted to address star tracking at high slew rates, as it was identified that tracking accuracy
is dependent on the implementation of the star tracker tracking mode. To solve this problem,
they developed an innovative tracking mode based on gyro measurements. Further research in the
integration of gyros and star trackers was done by Sun et al. [44], who developed a method of
star spot reconstruction during high-exposure conditions, based on gyro measurements. During
their work, Sun et al. [44] also provided an innovative method of determining gyro bias drift,
subsequently compensating for both sensor deficiencies at a very low level.

2.7 Chapter Outcomes

In this chapter, an introduction to the most important background information regarding star
tracker systems was given. Examples of integrated ADCSs are used to highlight the need for
integrated and autonomous sensor solutions with a focus on star tracker systems. Subsequent
chapters in this thesis will utilise concepts of astronomy, reference frames, and attitude repres-
entations treated in this chapter. These concepts were given as background to star tracker-based
attitude determination and will be used in the development of suitable software and algorithms. A
brief overview of star trackers and inertial navigation systems presented in this chapter was given
along with currently available nanosatellite star tracker systems to determine suitable star tracker
specifications. This information is most important when considering the hardware design of an
integrated star tracker platform, as is considered in the next chapter.
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Chapter 3

Hardware Design

The following chapter deals with the design of the star tracker gyro assembly used throughout
this work, in the fulfilment of the first objective. This chapter starts with an in-depth description
of the CubeStar nano star tracker. Thereafter, the proposed hardware changes are described
including notable design decisions made in this work. Finally, this chapter concludes with the
system hardware integration.

3.1 The CubeStar Platform

CubeStar, as designed by Erlank [45], is a nano star tracker developed with a modular design
approach. The first hardware iteration consisted of three Printed Circuit Boards (PCBs) inter-
connected through means of 40-pin headers in a stacked fashion. Since the completion of the first
hardware revision, development has been taken over by CubeSpace, a local small satellite ADCS
manufacturer. Although CubeStar has gone through many developmental phases, the overall sys-
tem structure has stayed roughly the same, with major changes only affecting the optical sensor
and image data flow. For any more information on the original CubeStar project, the reader is
referred to Erlank [32]. CubeStar revision 4.2 as of February 2017 is shown in Figure 3.1.

Figure 3.1: CubeStar Revision 4.2

Despite the hardware consisting of a variety of electronic components, the overall structure can
be divided into two main subsystems: that of i) the optics, and ii) the data-handling and processing
system.

3.1.1 Optical Hardware
In the case of the optical hardware, an image sensor-lens assembly is used to enable star detection.
The assembly was designed to ensure visibility of at least three stars across the entire celestial
sphere, enabling full three-axis attitude determination with 99.9% sky coverage. In this application,

18
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the optical exposure time is limited such that only stars with visible magnitudes up to 3.8 Mv can
be observed allowing for a sensor update rate of at least 1 Hz. The CubeStar sensing and optics
subsystem is shown in Figure 3.2

Figure 3.2: Optical PCB of CubeStar Version 4.2

The specifications of the image sensor and lens follow.

Image Sensor

The image sensor used in CubeStar is the EV76C560 developed by Teledyne e2v [46]. This image
sensor features 1.3 million pixels in a 1280 × 1024 array. The pixels used in this sensor have
dimensions of 5.3× 5.3 µm and feature microlens technology to enable improved optical efficiency.
Pixel data width is selectable between 8 and 10 bits. To decrease overall image size, however,
a data width of 8 bits is used. This sensor further features a selectable shutter type to provide
improved flexibility. In the case of CubeStar, the global shutter mode is used to limit the effect of
slew-induced distortion.

Image download is enabled through a parallel interface, with an added Serial Peripheral Inter-
face (SPI) bus for command and telemetry transfer. Sensor control is further enabled through the
trigger and reset pins. This image sensor provides a relatively high sensitivity at low light, as well
as a power consumption of only 200 mW, making it an ideal candidate for a low-power star tracker.

Lens

Although the image sensor shows above average sensitivity, exposure time is limited to 500 ms to
allow enough time for image processing and attitude determination. A wider FOV is therefore
required to ensure full sky coverage. The FOV is determined by a Lensation BL6012 S-mount
lens. This lens has a horizontal FOV specified as 44.5° with an aperture of F1.2 [47]. With a total
weight of only 20 g, it is ideal for usage in a light, small form factor application.

3.1.2 Data Handling and Control
To enable image processing and housekeeping functionality, the star tracker assembly further con-
sists of a data handling and control subsystem as shown in Figure 3.3. This subsystem consists
of two PCBs containing an MCU, Field Programmable Gate Array (FPGA), and Static Random
Access Memory (SRAM), as well as supporting circuitry.

Microcontroller

Considering the sizeable software requirements of a star tracker, CubeStar was originally de-
signed with a 32-bit ARM Cortex-M3 MCU operating at 48 MHz. The MCU chosen was the
EFM32GG280F1024 in LQFP100 package as developed by Energy Micro. This processor was ori-
ginally used owing to its Electronic Systems Laboratory (ESL) heritage dating back to the design
of CubeComputer, a nanosatellite OBC. It thereby also enabled faster low-level hardware and soft-
ware design decreasing the overall project timeline. The EFM32 processor features 1024 kB of flash

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 3. HARDWARE DESIGN 20

(a) External Memory and Control Board (b) Microcontroller and Interface Board

Figure 3.3: The CubeStar Data Handling and Control Subsystem

and 128 kB of SRAM. This MCU further includes a rich set of communication peripherals such as
Universal Synchronous/Asynchronous Receiver Transmitter (USART), SPI, and Inter-Integrated
Circuit (I2C) as well as a 12-bit Analog-to-Digital Converter (ADC) peripheral for accurate analog
sampling [48].

Field Programmable Gate Array

CubeStar further consists of an FPGA enabling high-speed sensor-to-memory image transfer. The
FPGA used in this application is the Microsemi Igloo Nano AGLN030-VQ100. This component
was initially chosen for the CubeStar application as it has a long heritage in the ESL, thereby
simplifying system design. In this application, the FPGA is used to pipe data efficiently from the
image sensor to external SRAM and act as a memory controller by handling SRAM access.

External Memory

As captured images are too large for internal SRAM, additional external memory is added. This
SRAM chip consists of 2 MB of low-power, asynchronous SRAM in an easy-to-solder TSop package.
The SRAM is specified as having an access time of 55 ns allowing a maximum image transfer rate
of 18 MHz.

3.1.3 Data Flow and Operation
The subsystems as described in Sections 3.1.1 and 3.1.2 are interconnected as shown in Figure 3.4.
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Figure 3.4: CubeStar Hardware Interconnection
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Image sensor operation is controlled by the MCU through the SPI-bus. The process of image
capture works as follows. Firstly, image capture is triggered by a rising edge on the trigger pin.
After image integration is completed, the MCU is notified. SRAM access is then handed over to
the image sensor to allow high-speed image transfer. Once this download is completed, the FPGA
notifies the MCU and memory control is transferred back to the MCU so that processing can
commence.

3.1.4 Additional CubeStar Specifications
Additional CubeStar specifications are given in Table 3.1.

Table 3.1: CubeStar Specifications

Specification CubeStar
Accuracy (3σ) Cross-axis 0.0215°

(3σ) Round-axis 0.061°
Catalogue Size 410
Sensitivity Up to 3.8 Mv

Physical Mass 55 g
Size 50× 35× 55 mm

Power Supply Supply voltage 3.3 V
Average Power Usage 142 mW
Peak Power Usage 264 mW

3.2 Hardware Design Requirements and Initial Design Decisions

Similar to the original design of CubeStar, the decision was made to reuse as much of the previously
generated hardware as possible. The proposed hardware would therefore be expected to consist of:

• An image sensor with peripheral circuitry, lens, and lens mount;

• A FPGA and SRAM with peripheral circuitry;

• A microcontroller, power management, and external interface headers; and

• An angular rate-measurement device.

At the earliest design stage it was decided to keep the stacked, modular interface so that
existing subsystems could be reused. This changed the problem of system design to that of system
augmentation, subsequently decreasing the expected hardware design cycle timeline. If the choice
of rate-measurement device would permit it, a three board design would be opted for, allowing for
a smaller total system volume.

Owing to the augmentative nature of this project, it was decided that the FPGA–imager inter-
face of CubeStar V4.2 would feature as the centre point of the new hardware design.

3.3 Microcontroller Replacement

From the CubeStar Interface Control Document [49], it was noted that the EFM32GG chip offered
a maximum of 20 ms idle processing time during each 1 s cycle. Owing to the necessity of more com-
putationally intensive estimation techniques this was deemed insufficient. An MCU with increased
performance was therefore required.

With current technological trends and the subsequent increase of processing power in low-power
embedded chips, a wide variety of new ARM MCUs has become available for use in low-power
applications. Many different options for replacing the CubeStar Cortex-M3 therefore exist.
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Figure 3.5: CubeStar V4.2 Timing

Three possible candidate architectures of the ARM Cortex-M family were subsequently identi-
fied, namely the M3, M4, and M7 series. In this family, the M3 and M4 series showed very similar
power usage and performance characteristics whilst the M7 series had a much higher computational
ability. Despite the advantages seen in Cortex-M7 processing capability, these MCUs showed high
power usage and were therefore not investigated as a suitable replacement [50]. A brief description
of the M3 and M4 MCUs follows.

3.3.1 ARM Cortex-M Microcontroller Description
Cortex-M3:

The ARM Cortex-M3 has been described as an industry-leading 32-bit processor. This processor
family was specifically developed for high-performance, low-cost platforms. The Cortex-M3 MCUs
use the ARMv7-M Harvard architecture with a three-stage pipeline and complete Thumb / Thumb-
2 instruction set. This microcontroller family further offers hardware divide circuitry using 2-
12 clock cycles as well as single cycle, 32-bit width multiplication operations, with operating
frequencies as high as 120 MHz [51].

Cortex-M4:

In many instances the Cortex-M4 family can be seen as close to identical to the Cortex-M3 family.
One of the key differences is, however, the availability of a Digital Signal Processing (DSP) instruc-
tion set, as well as an optional Floating Point Unit (FPU) for increased computational ability. The
Cortex-M4 chips are further based on the newer ARM7E-M Harvard architecture, supporting the
same Thumb /Thumb-2 instruction sets [52].

Overall, owing to the family similarities, controllers from either series could be good replace-
ments, as long as a chip is chosen with a higher clock frequency than the currently used 48 MHz.
Ideally, however, because of the optional FPU, preference would be given to MCUs from the
Cortex-M4 series.

3.3.2 Design Considerations
Following identification of replacement MCUs, three possible design routes were identified. Firstly,
the current hardware design could have stayed exactly the same, in the hope that enough code
optimization could be implemented to ensure real-time functioning. Although this would have
been the easiest from a platform design and integration point of view, it offered little leeway in
terms of more creative processing techniques. It was decided that this option would only be a last
resort.

Secondly, a different chip from the same Silicon Labs family could have been used. This would
have been the most optimal solution, owing to the documented code migration techniques silicon
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vendors tend to offer. Many vendors also promise pin-to-pin microcontroller compatibility, enabling
drop-in replacement. If a suitable controller from this range could have been found, it would offer
the greatest boost in execution efficiency with the least amount of design effort. In this case,
software redesign could have been assumed minimal as most of the low level firmware interfaces
should be transferable.

Lastly, a chip from the same family, but different silicon vendor could have been used. Owing
to the relatively standard design guidelines given by ARM, it can be assumed that most chips
based on the M3/M4 architecture have strong similarities in functionality. Redesigning the current
CubeStar hardware to fit silicon from a different vendor should have therefore, in theory at least,
not be much more effort than choosing a chip from the same vendor. Following this route does,
however, lead to much more low-level software redesign, as there is no guarantee that hardware
abstraction layers are available cross platform.

3.3.3 Microcontroller Comparison
To help with the MCU design and compare the MCU specifications, the following rubric was con-
structed. It was decided that the MCU should at least be comparable to the original Giant Gecko
MCU, not only in hardware functionality, but also in support documentation and development
tools. The most crucial hardware requirements can therefore be summarised as:

• Availability of design documentation;

• Low power requirements;

• Availability of an External Memory Interface (EMI);

• Internal flash and SRAM of at least 1024 kB and 128 kB, respectively;

• Easy-to-solder packages, preferably LQFP or QFPN; and

• A clock speed of no less than 48 MHz.

At the time of hardware design, three additional chips were identified as possible replacements.
These MCUs are briefly compared in Table 3.2 with the Giant Gecko given as benchmark.

Table 3.2: Microcontroller Comparison

Chip Power EMI Package Freq FLASH SRAM
(µA/MHz) (MHz) (kB) (kB)

EFM32GG [48] 219 EBI LQFP100 48 1024 128
NXP K24 [53] 250 Flexi Bus QFP100 120 1024 256
STM32L476 [54] 100 FMC LQFP100 80 1024 128
ATSAMG54 [55] 102 NONE LQFP100 120 512 96
EFM32PG [56] 64 NONE BGA125 40 1024 256

During the component identification, the EFM32 microcontroller range offered a sparse selec-
tion of Cortex-M4 MCUs, offering only the Pearl Gecko range. Despite the excellent low-power
capabilities of this chip, it offered no external memory peripheral and a maximum clock frequency
of only 40 MHz [56]. This was deemed as insufficient, as external memory was a crucial prerequisite
and the FPU optimisation would not compensate for a reduced clock speed in an already burdened
application.

The ATSAMG54 range by Atmel was also identified as a potential replacement. However,
owing to the relatively small amount of SRAM and flash memory, as well as the lack of an EMI,
it did not fulfil the requirements as stipulated at the beginning of this subsection [55].

The only two viable options were therefore the NXP K24 and STM32L4 chips. Both offered
similar peripheral options, with the NXP K24 going one step further with the higher clock frequency
and larger on-board SRAM. The NXP K24 did, however, offer worse power performance and higher
development tool price [53], [54].
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3.3.4 Microcontroller Design Choice
Owing to the superior power performance, rich peripheral options, and inexpensive development
support it was decided to opt for the STM32L476. With development boards costing as little as
USD 26 and external target programming support, it further offered the best features to price
ratio.

Not only did it offer good hardware development support, but also excellent software support
as well as an active community forum. The STM32 development environments were also numerous,
free, and available for both Linux and Windows.

3.4 Inclusion of Rate-Measurement Device

As this project also relies on measuring sensor rates, a rate-measurement device is also required.
A variety of rate sensing sensor technologies are available, with sensors based on the Sagnac and
Coriolis effect commonly used in the astronautical field [57]–[60].

Some of the key contributions to rate measurement-technology are the mechanical gyro, the
optical gyro, and the MEMS gyro [61], [62]. Although progress has been made in this measurement
field, only certain types of implementations are relevant to the nanosatellite industry owing to the
strenuous constraints on power and size requirements enforced thereon [63]. Subsequently, because
mechanical gyros are expensive, large, and power intensive, they lose relevance.

The alternative angular rate-sensing methods, that is the fibre optic as well as MEMS gyros,
are deemed to be much more suited for small satellite application and are investigated further.

3.4.1 Current State of Technology
Fibre-Optic Gyroscopes

FOGs use the Sagnac effect [64] to sense the rotational rate of a body. Similar to other optical
gyro technologies, the measurement depends on the phase shift observed in counterpropagating
light sources [65]. The basic structure of a FOG is shown in Figure 3.6.

Detector Plane

Fibre Optic

Light Source

Coil

Figure 3.6: Structure of a FOG

Generally a FOG consists of a i) laser source, ii) single mode fibre, and iii) detector, combined to
form a Sagnac interferometer Gialorenzi1982a. The biggest factor in FOG technology accuracy
is the optical fibre length. In some cases a FOG can consist of a few kilometres of optical fibre,
depending on the specific attenuation, laser intensity, and accuracy required [66].

MEMS Gyroscopes

An alternative to FOG technology is that of the MEMS gyros and IMUs. These sensors are
based on a vibrating reference motion enabling conservation of momentum as seen in the Foucault
pendulum problem [67].
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When an external rotation is applied to a MEMS gyro, a Coriolis force with frequency equalling
that of the reference motion is generated [68]. This force can be measured, leading to an output
gyro rate. The current group of MEMS sensors consists of low-performance devices designed as
electronically driven resonators usually made from quartz or silicon. The structure of a MEMS
gyro is shown in Figure 3.7.
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Figure 3.7: Structure of MEMS Gyro

Technology Comparison

A comparison of the rate-measurement technology specifications, as done by KVH Industries [69],
is given in Table 3.3.

Table 3.3: Gyro Technology Comparison [69]

Parameter FOG MEMS
Gyros
Bias Instability (°/h) ≤ 0.05 ≤ 1
Angular Random Walk (°/

√
h) ≤ 0.7 ≤ 9

Dynamic Range (°/s) ±490 ±400
Electrical
Power Consumption (W) ≤ 8 ≤ 2

Physical
Mass (kg) ≤ 0.7 ≤ 0.05
Dimensions ( mm) 88.9 Dia × 73.7 h 45.7× 38.1× 20.32

In comparison, FOG technology is at least an order of magnitude more accurate than that of
MEMS. Despite this, MEMS gyros tend to have a significantly smaller form factor and lower power
usage than standard FOG technology. Therefore using MEMS gyros would lead to much more
efficient use of available satellite resources, making the application thereof much more attractive.
Commercial MEMS sensors are also much easier to procure and offer a more reasonable price.

Taking into account all of these factors, it was decided to use a MEMS gyro.

3.4.2 Design Considerations
All gyros have a variety of specifications that govern the performance metrics. Most important
are Angle Random Walk (ARW) and bias instability. What follows is a description of the most
important sensor metrics to be taken into account in the design process.
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Angle Random Walk

In practical ADCSs, rate sensor data are regularly used to determine relative angular change by
means of numerical integration, specifically when direct attitude measurements are not available.
In most rate-measurement devices, measured data show high-frequency angular rate variations
independent of the true rate experienced by the system. These variations can be attributed to
normally distributed sensor noise.

During the numerical integration of this noisy data, random changes, similar to that shown
in Figure 3.8, will be observed. This phenomenon is called ARW and it is generally measured in
°/
√

h.
Sensors with low noise measurements will therefore exhibit less ARW leading to decreased un-

certainty during attitude propagation. Less frequent correction updates will therefore be necessary
to achieve certain ADCS accuracy margins.

100 200 300 400 500

−2

0

2

4

Time (s)

Si
m

ul
at

ed
R

at
e

(°
/s

)

(a) Simulated Noisy Rate Measurement

100 200 300 400 500

−30

−20

−10

0

Time (s)

In
te

gr
at

ed
A

ng
le

(°
)

(b) Integrated Rate Data

Figure 3.8: Angle Random Walk and the Effect of Sensor Noise

Bias Instability

Sensor bias is defined as a nonzero offset in measured output data. In rate-measurement devices
such as gyros, this bias is not necessarily a constant offset but can change dramatically over the
course of system operations. The magnitude of this bias change at a constant temperature is known
as a gyros bias instability and it is generally measured in °/h for high-performance sensors.

According to Kirkko et al. [70], bias instability is a nonstationary error process with a one over
frequency power density and can be seen as a source of flicker noise. This noise source dominates at
low frequencies due to the slow fluctuations observed. Low bias instability is crucial for application
where autonomous navigation or long term accuracy is required [71].

Power Usage and Volume

The final factor that is of importance during the consideration of an IMU for a nanosatellite
application, is the physical and electrical specifications of the sensor; in this case: size, mass,
required voltage, and power requirement.

Due to the nature of the application, the size and mass of the total system should be as little
as possible, with the maximum corresponding to the size of 1 U. This is the absolute maximum,
however, whereas the total system volume should ideally be as small as possible.

With regards to the electrical specifications, a required IMU bus voltage of 3.3 V would be
preferable as no additional regulation would be required. In terms of total power usage, the
designed system is required to use as little as possible.
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3.4.3 IMU Comparison
In the subsequent search for suitable IMUs, the sensors’ bias instability, ARW, and form factor
were therefore among the top priorities. Subsequently, three possible IMUs were identified as
plausible components for the integrated star sensor: the Epson-G364, Sensonor STIM202, and
Analog Devices ADIS16460. These sensors are shown in Figures 3.9a to 3.9c.

(a) Epson G364 [72] (b) Sensonor STIM202 [73] (c) AD ADIS16460 [74]

Figure 3.9: Potential Inertial Measurement Sensors

Unfortunately no small-package IMU with good specifications could be found that would easily
fit on the floorspace available on a three-board design. A list of the most notable sensor specifica-
tions is given in Table 3.4.

Table 3.4: Comparison of Investigated IMU Specifications

ADIS16460 M-G364PD STIM202
Physical Specifications

Voltage (V) 3.3 3.3 5
Current Requirement (mA) 44 to 55 18 200
Size (mm) 22.4× 22.4× 9 24× 24× 10 44.75× 28.6× 10
Mass (g) 15 10 55
Operating Range (◦C) -25 to 85 -40 to 85 -40 to 85

Sensing Specifications (1σ)
Bias Instability (°/h) 8 2.2 0.3
Angular Random Walk (°/

√
h) 0.12 0.09 0.2

Average Price (USD) 272.96 1043.12 5080.00

Despite the flight heritage of the STIM202 [75], it was found to be very large with a nominal
power requirement of 1 W [76]. In contrast to its superior bias instability and high price, it also
showed the worst ARW of all the sensors and was therefore not deemed feasible for use in this
application.

Of all the investigated sensors, the Epson M-G364PD showed the best ratio of physical size to
sensor capability, with a current usage of only 18 mA and accuracy specifications slightly better
than that of the ADIS16460 [77], [78]. Although the ADIS16460 had worse specifications across
the board, the M-G364PD showed to be much more difficult to procure.

3.4.4 IMU Design Choice
Owing to the local availability, low price, and ease of procurement, it was therefore decided to use
the ADIS16460. The ADIS16460 is a six-Degrees of Freedom (DOF) inertial sensor consisting of
a three-axis gyroscope and accelerometer. The sensor is by far the most inexpensive in its func-
tionality class with a price of only USD 272.96. This sensor also has widespread availability with
a lead time of only three weeks from Mouser Electronics. Specification-wise, the ADIS16460 offers
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a relatively small, low-power rate-measurement solution with a simple communication interface
implemented by use of a full-duplex SPI bus. The physical interface of the sensor offers external
trigger support for direct sample control together with data-ready functionality to allow readout
synchronisation.

A wide variety of software options is also offered with easy-to-use Bartlett window FIR and
decimation filtering to allow for an overall better noise response. A more complete list of sensor
specifications is available in Table 3.5.

Table 3.5: Additional ADIS16460 Specifications

Typical
Gyros
Bias Instability (°/h ) 8
Bias Temperature Coefficient (°/s/◦C) ± 0.007
Effect of Linear Acceleration (°/s/g) ± 0.01
Angular Random Walk (°/

√
h) 0.12

Dynamic Range (°/s) ± 100
Power Supply
Voltage (V ) 3.3
Current Requirement (mA) 44 to 55

As the sensor is only rated as industrial grade, a risk does exist when using it in space application
as there is no proof of the IMUs radiation hardness. The sensor further does not have a wide
temperature operating band although it can be compensated for by stricter thermal control.

3.5 System Integration and Data Flow

Following component selection, a hardware layout was completed which consists of four stacked
PCBs. An artistic representation of this hardware is shown in Figure 3.10.

The overall structure was kept very similar to CubeStar V4.2 with two of the original boards
having been kept identical.

Add

Keep

IMU PCB

Processor PCB

FPGA / SRAM PCB

Image Sensor PCB

Redesign

Figure 3.10: CubeStar Artist Representation
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3.5.1 Designed Data Flow
The designed data flow between the microcontroller, FPGA, and image sensor stayed practically
identical to that of V4.2. This allowed for simple subsystem replacement in the case of catastrophic
failure, as well as decreased debugging effort. The only addition to this hardware was added support
for an IMU, as well as an extension of the main header for Controller Area Network (CAN) support,
along with the already-used I2C and Universal Asynchronous Receiver Transmitter (UART).

In this case, the IMU was connected to the MCU by use of an SPI bus, external trigger, and
data-ready pins. The IMU trigger pin was connected to a timer peripheral to enable automatic
trigger pulse generation. Subsequently, the data-ready pin was then connected to an interrupt line
to allow complete independent functioning of the IMU. The reasoning behind this was due to the
time sensitivity of the IMU data. In conclusion of the data flow, the IMU and image sensor were
connected to different SPI buses to ensure reduced interference and allow parallel communication,
if necessary.

With initial hardware testing, most redesigned interfaces seemed to be working correctly. It
was, however, noted that the MCU–SRAM interface was not functioning as was originally required;
the main reason being the difference in operation of the Flexible Memory Controller (FMC) and the
External Bus Interface (EBI) when applied to multiplexed asynchronous SRAM. A bus redesign
was therefore required.

3.5.2 External Memory Bus Redesign
It was discovered that the current MCU–SRAM interface was not compatible with the new ARMv7
processor owing to fundamental differences in the implementation of the Silicon Labs EBI and
STMicroelectronics FMC. This difference is shown in Figure 3.11

Latch

Control

ALE
D0-15

A0-23AD0-15

SRAMEFM32

(a) EFM32 EBI SRAM Connection

Latch

Control

NL
D0-7

A0-23
AD0-7

A8-23
SRAMSTM32

(b) STM32 FMC SRAM Connection

Figure 3.11: External Memory Controller Implementation Difference

In this case, the EBI supported 8-bit data read/write to a 24-bit address through an interface
of only 16 bits. This process functioned by first putting the most significant sixteen address bits
on the address lines; the ALE pin would then be pulled low to latch these address bits. In the
next clock cycle, the address LSB would be multiplexed with the 8-bit data. Although the FMC
supports multiplexed SRAM access, it does not support the same external latch functionality as
implemented in the EFM chips.

The bus connecting the processor and FPGA therefore had to be modified to support mul-
tiplexed SRAM access with an address bus width of at least 21 bits. The resulting changes led
to a hardware reconfiguration, as shown in Figure 3.11b. As these hardware changes were only
implemented after the initial hardware layout had been completed, the changes had to be imple-
mented in the form of wire-mods, secured by epoxy to ensure longevity. Minor changes were also
brought on to the FPGA firmware to ensure correct functioning with the updated interface. The
final CubeStar connection digram is hence shown in Figure 3.12
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Figure 3.12: Final Hardware Interconnection Diagram

3.6 Chapter Summary

In this chapter, the most prominent design decisions made during the development of the aug-
mented CubeStar hardware are discussed in fulfilment of the platform design objective. Of these
design decisions, the most notable two are that of the MCU and IMU.

With regards to the MCU, the STM32L476 was chosen to function as MCU replacement,
giving a much needed boost in computational efficiency. A rate-measurement device in the form
of a MEMS IMU was then added, to augment further the CubeStar platform functionality.

Although an attempt was made to keep as much of the previous CubeStar design as possible,
it was found that the two MCU families had irreconcilable differences in implementation, showing
the necessity of a bus redesign. Only the CubeStar camera module was therefore used as is, with
minor adjustments made to the FPGA–MCU interface to ensure successful image transfer from
SRAM.

The final engineering model, as used in subsequent tests, is shown in Figure 3.13a. The hardware
is encased in a 3D-printed case, as shown in Figure 3.13b.

(a) Hardware (b) Encased Hardware

Figure 3.13: Designed Hardware
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Chapter 4

Software and Algorithms

As a suitable platform was developed with which measurements can be gathered, the second
objective, that of the identification of suitable software techniques, is addressed in this chapter.

A star tracker system consists not only of a hardware assembly, but also depends on various
algorithms to ensure i) correct functioning, ii) star pattern matching, and iii) accurate attitude
determination. Although the system designed in this work does not function purely as a star
tracker, but rather as an augmented stellar sensor for the accurate and robust detection of satellite
attitude and rates, star tracker algorithms still apply. The overall software interconnect to achieve
these tracking and detection functions is shown in Figure 4.1.

Star Images IMU Rates

Image Processing Identification

Detection Detection
Star Centroid

Correction
Distortion

Geometry
Projective

vB
Lost in

Estimation

space

Tracking Kalman
Filtering

Static
Estimation

vI
q

Figure 4.1: Software Overview

The figure shows the three main functional blocks constituting: i) image processing, ii) star
identification, and iii) attitude estimation. This figure further shows the system dependence on
two different sets of input data; namely star images, and IMU rates. In the case the IMU data,
the interpretation thereof is simple, as raw measurements represent a linear scaling of interpretable
data. Star images, however, require more processing in the conversion of raw sensor data to usable
attitude measurements.

The following chapter gives a brief overview of some of the methods employed to generate an
attitude from star images with attitude propagation enabled by high-speed IMU measurements.
This chapter begins with a simplified star model used during this work, followed by image processing
techniques as required by a second-generation fixed-head star tracker. A brief review is then given
of star identification methods during LIS and tracking modes. Finally, some useful attitude and
rate estimation techniques are presented. The overall chapter layout follows that of Figure 4.1.

31
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4.1 Star Model

Optic defocusing and diffraction make stars, which are point light sources, appear not as discrete
illuminated pixels, but as areas point spread in nature. Contrary to intuition and the Nyquist the-
orem, this enables much higher star detection accuracy than perfectly focused optics. In this case,
the a priori knowledge of the star distribution pattern in an image is used to enable hyperacuity,
or superresolution. Previous work [31], [32] has therefore found it sufficient to model an ideal star
as a symmetric normal distribution that is a function of the radial distance from the star centroid,
rc, such that

I(rc) = I(0)e
−r2
c

2σ (4.1.1)

In this equation, the peak star intensity is represented by I(0), with σ influencing the star spread
width on the image plane. This star model is shown as a sampled two-dimensional distribution
alongside its appearance in an image in Figure 4.2.

0
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(a) Ideal Star Distribution (b) Ideal Star Image

Figure 4.2: Star Model as 3D Distribution and Appearance on Image Plane

Although this figure represents only an ideal star observed whilst stationary relative to the
inertial frame, it has been found to provide sufficient accuracy during star camera operation [32].

4.2 Image Processing Techniques

With insight into the appearance of stars in images, it is therefore possible to investigate appropriate
star detection methods.

As shown in Figure 4.1, the star tracker application uses image processing as a method of
extracting body-referenced vector measurements from star images. This extraction process can
be reduced to four main steps: i) the detection of stars; ii) the determination of star centroids;
iii) compensation for sensor irregularities and distortion, and iv) optic modelling and the use of
projective geometry to determine the position of features relative to the observer.

4.2.1 Star Detection
The first step in the determination of body-referenced measurements involves the detection of stars
in an image. To simplify matters, images are assumed to be planes of low-intensity values with
regions corresponding to stars shown as high-intensity areas. The detection of stars can therefore
be enabled by stepping through each pixel and comparing the value to a noise cut-off threshold.
If the current pixel in question is found to have a sufficiently high intensity, it is used for further
processing.
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A graphical representation of the star identification method employed by previous researchers
[31], [32] is shown in Figure 4.3:

Identified
Star

Search
Window

Searched
Pixel

Noisy
Pixel

Region Growth
Boundary

Figure 4.3: Image Plane Search

Several optimisations of the algorithm exist. One frequently applied during previous work is
that of only searching every other pixel, which subsequently reduces the total computational time.

After the detection of a pixel that is assumed to be part of a star, the pixel is then used as the
seed location for a recursive region growing search as described in Erlank et al. [45]. After the star
detection step has been completed, a list of pixelgroups and locations will be available.

4.2.2 Centroid Detection
Owing to the optical defocusing technique used, the stars are represented as pixel groups. To
convert these groups to single bodyvectors, the best estimate star centroid is required.

Point Spread Function-Fit

A possible method of determining the star centroid is by fitting a normal distribution to the
points and determining the peak, as described by Fosu et al. [79]. This is done by linearising
Equation (4.1.1) such that:

ln I(rc) = ln I(0)− 1
2σ r

2
c (4.2.1)

Then, with the expansion of the radial distance to the star in terms of pixel coordinates, Equa-
tion (4.2.1) can be rewritten as

ln I(rc) = ln I(0)− 1
2σ
[
(ui − uc)2 + (vi − vc)2] (4.2.2)

where the uc and vc coordinates represent the star centroid location in the pixel frame in the
horizontal and vertical directions, respectively. Subscripts denoted by a c represent the centre
location, whilst subscripts denoted by an i represent the ith pixel. This equation can then further
be simplified as

Ei = c0 + c1uc + c2vc + c3u
2
c + c4v

2
c (4.2.3)

In Equation (4.2.3), Ei represents a compound term used in the simplification of the equation and
is described by

Ei = −2σ(ln I(rc)− ln I(0)) (4.2.4)

Parameters c0 to c4 can then be estimated in a LSQ fashion with the final estimated uc and vc
positions calculated by determining the function maxima

uc = − c1
2c3

, vc = − c2
2c4

(4.2.5)

Although the Point-Spread Function (PSF)-fit method promises subpixel centroid determination
accuracy of 0.1 pixels [79], the overall implementation uses a computationally expensive 5 × 5
matrix inversion. As some image frames can contain more than twenty stars, the process will
be time consuming owing to the high computational cost. The PSF-fit method is therefore not
deemed applicable for a low-power embedded platform.
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Centre of Mass

An alternative method is that of Erlank [45] and Calitz [31]. This method relies on the calculation
of the centre of mass and shows only a small decrease in centroiding accuracy over that of the
PSF-fit method. By using the centre of mass method, the star centroid can be related to the pixel
groups with

(uc, vc) =
(∑

ij uijIij∑
ij Iij

,

∑
ij vijIij∑
ij Iij

)
(4.2.6)

In this equation, Iij represents the pixel intensity of the pixel in the ith row and jth column.

4.2.3 Projective Geometry
Once all star centroids have been determined, all centroid locations, referenced relative to the loc-
ation of the first pixel, have to be transformed to a different reference frame as the pixel coordinate
frame origin does not coincide with that of the body reference frame.

This process employs the pinhole camera model [80], as well as projective geometry in the
conversion of the two-dimensional image plane coordinates to three-dimensional sensor relative
body vectors. A brief description of the process follows, with a graphical description of the problem
given in Figure 4.4.

z

y

x

Lens

v

u

f

uc

vc Pinhole

vz

Figure 4.4: Image Plane Coordinates

This figure shows a description of the coordinate transform problem. Centroids are measured
in the pixel frame (uc, vc), but are required in the sensor-body frame. To transform this into
meaningful data, two main steps are required.

Projection

During this step, a coordinate transform, from two-dimensional pixel coordinates, (u, v), to three-
dimensional body coordinates, (x, y, z), is required and can be determined with:xcyc

zc

 =

Sx 0 0
0 Sy 0
0 0 1

uc − uovc − vo
f

 (4.2.7)

In this equation, f represents the calibrated focal length and (uo, vo), the point of intersection of
the image plane and boresight in pixels. (Sx, Sy) describe the image sensor dimensions in mm
per pixel and are obtained from the datasheet. From these equations, it can be noted that the
calculated body coordinates assume that the image plane is situated a distance f away from the
focal point in the z-direction.
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Coordinate Transform

In the case of the star tracker, vector measurements are assumed to have a unit norm. By using
this unit norm constraint, the transform can be determined asvxvy

vz

 =

xcyc
zc

 vz
f

(4.2.8)

where the vz-component is given by

vz =

√
f2

f2 + x2
c + y2

c

(4.2.9)

For a more complete description of the projective geometry process, the reader is referred to Erlank
[32].

4.3 Distortion Correction

If ideal rectilinear optics are used, such that an image describes a perfect mapping of a real world
scene on a tangent plane, the determination of star locations relative to the observing sensor
would only involve the steps described in Section 4.2.3. Because of the nonidealities in practical
observation systems, however, distortion is introduced into measurements. The main cause of the
aforementioned optical distortion is due to irregular magnification of lenses and alignment errors
brought on by the manufacturing process of the optics.

Because of this, the true projection of a star centroid on an image plane is described by its true
position with an added distortion term.

4.3.1 Distortion Types
There are two main types of geometric distortion that impact optical accuracy, namely radial
and tangential distortion. The effect of these distortion types on feature locations is shown in
Figure 4.5.

εr
εt

Observed Position
True Position

εr: Radial Distortion
εt: Tangential Distortion

Figure 4.5: Effect of Distortion on Observed Feature Position

Radial distortion can further be subdivided into two commonly observed types: negative radial
displacement, more commonly known as barrel distortion, and positive radial displacement or
pincushion distortion [81]. These radial distortion types are shown in Figure 4.6.

Although a variety of different models for compensating for optical distortion exists, only two
will be discussed. One of the most common distortion models is that of Brown [82]. As this model
was extensively treated by Calitz [31] and Erlank [32] in previous work as related to CubeStar,
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Figure 4.6: Common Optical Distortion Types

only a brief overview will be given. In these two models, the radial distance to a feature, r, is
defined as the Pythagorean distance from the optical centre.

4.3.2 Brown’s Distortion Model
The reduced-order Brown’s distortion model is given in Equations (4.3.1) and (4.3.2). Important
to note here is that the distorted locations, x′c and y′c, are denoted by primes.

xc ≈ x′c(1 +K1r
2
o +K2r

4
o) + P2(r2

o + 2x′2c ) + 2P1x
′
cy
′
c (4.3.1)

yc ≈ y′c(1 +K1r
2
o +K2r

4
o) + P2(r2

o + 2y′2c ) + 2P1x
′
cy
′
c (4.3.2)

This model attempts to solve for the radial distortion parameters K1,K2, and tangential com-
ponents P1 and P2 by using the film coordinates of features observed on an image plane.

4.3.3 CubeSpace Radial Distortion Model
Recently CubeSpace has opted for a custom distortion model as it is coupled with a simplified,
more accurate calibration process. In this model, the distortion is described as:

εr(uc, vc) = K1 + roK2 + r2
oK3 (4.3.3)

The image distortion correction can then be done with

uc = u′c + u′cεr(u′c, v′c)
vc = v′c + v′cεr(u′c, v′c) (4.3.4)

It is evident from these equations that this distortion model only compensates for the radial
distortion.

4.4 Lost-In-Space Star Matching

For successful attitude determination, observed body vectors should be matched with inertial
counterparts. This matching process can be completed in a variety of ways, depending on whether
prior attitude knowledge is available. When no prior attitude knowledge is available the sensor is
said to be in a LIS mode.

The following section handles the lost-in-space star matching method, as used in the original
development of CubeStar [45]. Any alternative suitable method of star identification can be used
as long as it is robust against false detection, and adheres to the processing requirements of a
low-power embedded architecture.

The lost-in-space method used is that as developed by Kolomenkin [83]. This algorithm depends
on two main parts, mainly: i) offline catalogue generation, and ii) online star matching. A brief
description of the implementation of this method follows.
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4.4.1 Star Catalogue
The offline processing part used in this method depends on the construction of a list of visible stars,
as well as a catalogue, or lookup table. The star list, in this case, represents a list of all visible
stars, with their positions as Earth-Centered Inertial (ECI) vectors. The second component, the
catalogue, relies on a lookup table used during star identification. This table contains star pairs
as well as the distance between them. An example of the structure of the catalogue is shown in
Table 4.1.

Table 4.1: Star Catalogue

Entry Star 1 Star 2 Distance (mrad)
0 54 53 6.75
1 53 50 10.39
...

...
...

...
409 47 106 7.332

Star List

The star list used on-board CubeStar currently consists of a subset of the Hipparcos catalogue
[9] limited to a minimum brightness of 3.8 Mv. This star list contains the positions of 410 of the
brightest stars, with an accuracy better than 0.001 arc seconds. As shown in Table 4.2, the star
list consists of the inertial positions as vectors, coupled with an identification number.

Table 4.2: Star List

Star ID X Y Z
0 0.873 0.320 0.486
1 0.512 0.021 0.858
...

...
...

...
409 0.213 -0.019 0.977

Catalogue Generation Process

This process occurs offline. For every star, the angular distance to every other star is determined.
If this calculated distance is larger than a certain margin, in this case chosen as the sensor FOV,
it is ignored; otherwise both the star pair and interstellar distance in radians are saved.

Once all star pairs have been determined, they are organised according to increasing interstellar
distances. This data structure is then saved for use as a lookup table during star identification.

Catalogue Size Requirements

Entries to both the star list and catalogue are stored in on-board nonvolatile flash memory. At
sensor startup, this catalogue is then read into onboard SRAM to reduce the total memory access
time. The star list is stored as three 32-bit floating point arrays, corresponding with the X-, Y -,
and Z-coordinates, as well as one 16-bit unsigned integer array holding the star ID. Each star list
entry therefore has a byte width of 14 bytes amounting to a total star list memory requirement of
5.6 kB.

A star list of 410 entries and FOV of around 45° corresponds to a catalogue containing 11,740
entries. Each entry in this lookup table consists of two unsigned 16-bit integers, holding the
corresponding star ID and one 32-bit floating point value representing the interstellar distance
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in radians. Each catalogue entry therefore amounts to 8 bytes, subsequently leading to a total
accumulated catalogue memory requirement of 92 kB.

Subsequently, the total accumulated memory requirements of both the star catalogue and star
list is approximately 98 kB.

4.4.2 Description of Matching Technique
During online matching, two voting stages are then used to match body vectors to their corres-
ponding inertial positions. These are known as i) initial voting, and ii) verification voting.

Initial Voting

The initial voting process functions as follows:

1. Compute interstellar angular distance for each star as dij = arccos(vBi ·vBj );

2. Compute the uncertainty region Rij where Rij = [dij − ξij , dij + ξij ], where ξij represents
the maximum permissible distance error between two stars;

3. Locate the catalogue entries that correspond to the uncertainty region Rij . This process is
shown in Figure 4.7, where the light shaded region shows all catalogue entries included in an
uncertainty region of width 2 mrad, for a calculated interstellar distance of 14.31 mrad; and

4. Each star in the star pair then receives a vote for all IDs identified in the previous step.

Star 1:

Star 2:

Distance: 18.01
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17.11

50
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15.93

45
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13.54

72
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308

311

10.39

50

53
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d = 14.31

+ξ−ξ

Figure 4.7: Geometric Voting Uncertainty Region for ξ = 2

This process is then repeated for each star on the image plane. The IDs that received the
most votes are then assigned to the stars as an initial match. A second verification step is then
implemented to ensure robustness against false matches.

Verification Voting

This process comprises two steps:

1. As a validation step, the distance between each star pair in the inertial and body frame is
compared: if these vectors show good agreement, both stars receive a validation vote; and

2. After the validation voting stage, stars with the most votes clustered together are matched:
stars that have too few matches are discarded.
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4.5 Tracking Mode

A star tracker functioning only in lost-in-space mode is undesirable, however, as the overall ex-
ecution speed and computational requirements of lost-in-space matching makes it unfavourable
for continuous use. To solve this problem, most star trackers also implement a tracking mode.
During tracking mode, a predicted location based on a priori system state knowledge can be used
to limit the star search bounds. Star matching can therefore be done by matching detected stars
to predicted locations, leading to increased efficiency, higher update rates, and lower power usage.

One of the key components of a tracking mode is that of limiting the star search locations to
encompass only those pixels surrounding the predicted star locations. In some cases, rather than
predicting a star location, the stars’ previous locations can be used. An example of search region
limiting is shown in Figure 4.8.

Image Boundary

Image Mask

Predicted Centroid
Locations

Search Area

Figure 4.8: Example of Reduced Region of Interest Image Plane Search

Here, the red bounding boxes show the search bounds. As seen, the software takes into account
only the pixels surrounded by these bounding boxes, not processing any of the masked pixels. If
any stars are masked, however, they will not be detected.

The original CubeStar tracking implementation relied on the computation of a reduced star
catalogue depending on the initial estimated sensor Boresight Vector (BSV). This method of track-
ing implementation does not entail a true tracking mode, however, as no search region limiting
was implemented.

During this work, an additional algorithm was therefore developed to ensure efficient usage
of onboard functionality by enabling a gyro-assisted tracking mode dependent on an orientation
EKF.

4.5.1 Gyro-Assisted Tracking
Despite the merits of matching previously detected stars during tracking mode, an obvious problem
arises when stars enter and leave the current FOV.

If no attempt at constantly identifying new stars entering the FOV is made, intermittent state
transitions to LIS will be seen as the number of tracked stars will decrease owing to stars leaving
the FOV. Although stars leaving the FOV prove to show little to no increase in complexity, as
stars not found can simply be discarded, the efficient identification and verification of new stars
prove slightly more difficult.

Three methods were identified and investigated, with which an attitude, predicted by use of a
gyro, could be used to enable fast star identification.
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4.5.2 Identification Methods
Full Catalogue Search and Projection

This method is the simplest and promises the best results. However, the overall computational
requirements are quite high as each star in the catalogue is compared to the current boresight
vector. This method consists of three main steps:

1. Calculate BSV using the current estimated attitude;

2. Compare all the stars in the star list with the inertially referenced BSV; and

3. If the angle between the star and BSV is smaller than that of half of the image sensor FOV,
and has not previously been identified, add it to the list of new stars for which to search.

Despite the simplicity of this method, it becomes less feasible for usage as the star list size
increases. Although the current CubeStar catalogue consists of only 410 stars, a significant com-
putational effort will have to be expended to determine new stars during tracking mode.

Unique Random Neighbour

Another technique of star detection during tracking involves a slight star list augmentation. In
this approach, every star in the star list is linked to the star closest to it, as shown in Figure 4.9.
Each star in the list is only augmented with a single ID and is only referenced once. The output of
this method is a giant linked list structure which can then be traversed from previously identified
entities. All stars in the approximate vicinity of those already identified can therefore be found.

Identified
Catalogue Star Referenced

Catalogue Star

Reference
Link

Implied
Link

Figure 4.9: Graphical Representation of Random Nearest Neighbour Matching

The main concern during this approach subsequently involves the generation of a unique neigh-
bour linked to each star. Numerous methods of generating these reference links were identified,
some involving randomly assigning stars to each other, whilst others involved exhaustively assign-
ing the closest stars. It should, however, be noted that the brightest 410 stars are not distributed
evenly over the celestial sphere, sparse regions therefore exist. Owing to the movement of the
FOV across the celestial sphere, identified stars therefore tend to cluster together, leading to poor
identification.

Lookup Table Approach

This method relies on projecting the celestial sphere onto a cylinder and grouping stars according
to their celestial coordinates. During tracking mode, the estimated sensor boresight can be used
as an index in a lookup table with the intent of finding a subcatalogue of stars possibly visible in
the FOV. As this method shows a compromise between the high computational cost and the low
memory requirements of the previous methods, it was identified as being the most feasible method
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for star identification during tracking mode. This method is therefore discussed in more detail in
the following subsection.

4.5.3 Lookup Table Matching
Although this method promises to be much faster than a complete catalogue search and much more
robust than that of the nearest neighbour approach, additional memory is required in storing the
lookup table. This was, however, an acceptable compromise, given the increase in computational
efficiency. This algorithm relies on the following key processes:

1. Determining a suitable lookup table;

2. Calculating the current predicted boresight location;

3. Searching for relevant new stars;

4. Finding seed locations to use in the reduced Region of Interest (ROI) window; and

5. Verifying identified stellar entities.

A full description of each of these steps follows.

Preprocessing: Lookup Table Construction This step can either be performed as a startup
procedure, or, to save computational effort, during offline processing. Given a vector from the
star catalogue with coordinates (X,Y, Z), the corresponding bin index, starting at (0,0) can be
calculated as follows:

RAind = floor

arctan
(
vy
vz

)
+ 180°

NRA

 (4.5.1)

DECind = floor

arctan vz√
v2
x+v2

y

+ 90°

NDEC

 (4.5.2)

These equations calculate the celestial coordinates of the stellar body. In this case, the first
bin index at position (0,0) corresponds to the celestial coordinates of −180° right ascension and
−90° in declination, and the variables NRA and NDEC correspond to the bin widths in degrees.
The graphical representation of this lookup table is given in Figure 4.10. The table used is divided
into 18 bins in both right ascension and declination such that each bin consists of an area of sky
20°× 10° degrees in size.

The full catalogue is generated by use of the following algorithm:
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Figure 4.10: Stellar Lookup Table

Algorithm 4.5.1 Lookup Table Construction
for i← 0 to length( starIDlist ) - 1 do

Determine RAind
Determine DECind
if DECind > 16 then . Group top pole

NorthPoleList[ 0 ] ← NorthPoleList[ 0 ] + 1
PoleIndex ← NorthPoleList[ 0 ]
NorthPoleList[ PoleIndex ] ← starIDlist[ i ]

else
if DECind < 2 then . Group Bottom Pole

SouthPoleList[ 0 ] ← SouthPoleList[ 0 ] + 1
PoleIndex ← SouthPoleList[ 0 ]
SouthPoleList[ PoleIndex ] ← starIDlist[ i ]

else . Add to main Table
LookupTable[ RAind ][ DECind ][ 0 ] ← LookupTable[ RAind ][ DECind ][ 0 ] + 1
index ← LookupTable[ RAind ][ DECind ][ 0 ]
LookupTable[ RAind ][ DECind ][ index ] ← starIDlist[ i ]

end if
end if

end for

This algorithm further implements two slight optimisations. Firstly, the table size is optim-
ised by grouping stars close to the poles together as these bins are relatively sparse. A further
simplification is to store the number of stars contained in the bin as the first array element.

Step 1: Boresight Location Prediction

Given that this method is only to be used during tracking mode, it is assumed that the predicted
attitude would have stabilised such that attitude transients are at a minimum. Attitude estimates
would therefore be sufficiently accurate for correct star position prediction. Firstly the calculated
quaternion is used to determine the current attitude matrix by use of Equation (2.4.11). As the
sensor boresight vector coincides with the z-axis of the body coordinate frame, the boresight vector
is then calculated with:

v̂Ibsv = AIB

0
0
1

 (4.5.3)
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after which the corresponding bin index can be calculated as described in Equations (4.5.1)
and (4.5.2). In this equation, v̂Ibsv, represents a star in-line with the estimated boresight vec-
tor.

Step 2: Finding Identities of Interest

Once the boresight index is located, the surrounding bins are searched to determine a subset of
identities that can be matched. The angular distance between the boresight and each identity is
then calculated with

dj = arccos
(
v̂Ibsv · vIj

)
(4.5.4)

If the resulting angle is smaller than half the expected sensor FOV and is not actively being tracked,
it is added to the newly identified list comprising of stars to be searched for. This process is shown
in Figure 4.11.
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Estimated BSV
Lookup BinOutside

FOV

FOV
Bounds

New ID

Search
Grid

u

v

Figure 4.11: Graphical Description of Tracking Mode Lookup Process

Step 3: Reduced ROI Image Plane Search

The output of Step 2 is therefore a list of stars that might possibly be in the FOV. By using the
predicted attitude, the reverse of the steps in the image processing section is then performed so
that image plane seed locations can be found. The identified inertially referenced star vectors are
therefore:

1. Transformed to the body reference frame by using the predicted inertial to body attitude
matrix;

2. Distorted, to ensure a more accurate search location;

3. Projected to image plane coordinates by use of the calibrated focal length and image plane
parameters; and

4. Transformed to pixel coordinates.

Once this list of search locations is found, a small ROI is searched around the predicted location.
If no star is found, the identity is thrown away; if a star is found, however, the algorithm proceeds
to Step 4.
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Step 4: Verification

Once all predicted identities have been found and matched, a verification voting algorithm, similar
to that used in the lost-in-space mode, is used to verify the matched identities. During this
verification mode, the measured distance between all identified catalogue and measured body
vectors are compared. If the difference is smaller than the calibrated tracking margin, both stars
receive a verification vote. If an identity has less than 70 percent of the maximum votes, the
identity is assumed to be a false match and is discarded.

Although this algorithm should be relatively robust against false identification, a trade-off
still exists between finding the maximum number of stars in the image field of view, and having
increased certainty about those vectors that are available to use.

After all stars have been identified and matched to their inertial counterparts, the system can
use these measured vectors in attitude determination.

4.6 Attitude Determination

Many methods of attitude determination have been developed over the course of the past cen-
tury, with methods such as the TRIaxial Attitude Determination (TRIAD), QUaternion Estimator
(QUEST), EStimator of the Optimal Quaternion (ESOQ), and the Fast Optimal Attitude Matrix
(FOAM) being prominent.

The following section describes some of the important attitude determination algorithms used
in this work. The section begins with the TRIAD algorithm, after which a brief description of
Whaba’s problem is given. The Whaba problem is then followed by some important optimal
attitude estimation techniques such as the q-method and QUEST.

4.6.1 TRIAD
The TRIAD method is a popular attitude determination method developed by Black in the early
1960s [84]. This method determines the attitude Direction Cosine Matrix (DCM) by using two
vector measurements in the construction of an intermediate reference frame as

ABI = ABTATI (4.6.1)

Over the years, the TRIAD algorithm has been thoroughly investigated with numerous optimal,
and suboptimal solutions to the attitude determination problem. This work is concerned only with
the symmetric and asymetric TRIAD method, as described by Markley [84]. Firstly, one of the
observed vectors is chosen as a basis vector for an intermediate frame. In the asymmetrical case,
this vector is usually the one with the least uncertainty, such that.

w1 ≡ sI , r1 ≡ ŝB (4.6.2)

In both reference frames, a new vector is then found that is orthogonal to the two measurements
such that

w2 ≡
sI × vI
||sI × vI || , r2 ≡

ŝB × v̂B
||ŝB × v̂B|| (4.6.3)

Given that r1 and r2 are then found to be orthogonal, the last basis vector can then be calculated
as

w3 = w1 ×w2 , r3 = r1 × r2 (4.6.4)

From this it follows that the attitude matrices describing the orientation relative to the intermediate
frame can be constructed from these three vector sets such that

ABT =
[
r1 r2 r3

]
, AIT =

[
w1 w2 w3

]
Markley [84], however, further shows that the asymmetric estimator proves much more reliable
for attitude estimation by use of sun vector and magnetometer measurements. In the case of star
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trackers, Markley claims that the symmetrical triad shows much better performance. This form of
the TRIAD algorithm can be constructed by defining the following two unit vectors:

r1 ≡
(sB + vB)
||sB + vB|| , r2 ≡

(sB − vB)
||sB − vB|| (4.6.5)

It then directly follows that the set {r1, r2, (r1 × r2)} forms a basis of orthogonal vectors with
which the attitude DCM can be determined. The classic TRIAD method relies on only two vectors
for full three-axis attitude determination, as long as measurements are not colinear. In the case of
modern attitude determination, single sensors are apt to output multiple vector measurements. To
address this, suboptimal methods were developed with which a vector average can be used instead
of the individual vector measurements [84].

4.6.2 Wahba’s Problem
A better-known problem with regards to attitude determination by use of multiple vector obser-
vations was originally posed by Wahba [85]. This problem is expressed as

J = 1
2

N∑
k=1

ak
∣∣∣∣v̂Bk −ABIvIk

∣∣∣∣2 (4.6.6)

By expanding this loss function, it can be rewritten as

J = λ0 − tr(ABIBT ) (4.6.7)

where

λ0 =
N∑
k=1

ak and B =
N∑
k=1

ak
(
v̂BkvIk

)
(4.6.8)

Over the years, a variety of solutions have been proposed to the Wahba problem [86], [87], among
some of the most frequently referenced are that of Davenport’s q-method and QUEST.

4.6.3 Davenports Q-Method
One of the solutions to this optimal attitude estimation problem involves the parametrisation of
an attitude matrix ABI by use of a quaternion. This paramaterisation is described as

ABI = (q2
4 − |qv|)I + 2qvqTv − 2q4[qv]× (4.6.9)

From the properties of this attitude representation, the trace from Equation (4.6.7) can be expanded
such that

tr(AB
IBT ) = qKq (4.6.10)

with C defined as:
C ≡

[
S− Is z

z s

]
(4.6.11)

and the elements of C is given as

S ≡ B + BT (4.6.12)

z ≡

B23 −B32
B31 −B13
B12 −B21

 =
∑
k

akv̂Bk × vIk (4.6.13)

s = tr (B) (4.6.14)

The quaternion that solves this optimisation problem can then be found by determining the
eigenvector corresponding to the largest eigenvalue, λmax of the matrix C such that

Cq ≡ λmaxq (4.6.15)

Solving the eigenproblem is, however, a computationally expensive process; even more so on an
embedded platform.
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4.6.4 QUEST
To decrease the computational requirements of the q-method, the optimal eigenvalue, λopt, can be
approximated as

λopt ≈ λ0 (4.6.16)
This approximation is known as QUEST, or the QUaternion ESTimator. Solving for the attitude
is then simply solving for a vector of Rodriques parameters [88], p, such that

q̂ = 1√
1 + pTp

[
p
1

]
(4.6.17)

Where the vector p is calculated as
p = [(λ0 + s) I3×3 − S]−1 z (4.6.18)

This process can subsequently reduce the number of floating point operations of the q-method by
a factor of two to five [86]. Although a 3×3 matrix inverse can also be computationally expensive,
the process can further be simplified by using Gaussian elimination.

Although these methods offer a good solution when only estimating the orientation, they do
not necessarily grant the option of fusing numerous data types such as rate measurements and star
vectors. A solution to this is the usage of an EKF.

4.7 State Estimation and Kalman Filtering

All previously mentioned attitude estimation techniques only relied on vector measurements. How-
ever, in the scope of this project, rate data are also available. A method of combining the star
tracker and IMU measurements, is by use of an EKF. An EKF is a recursive algorithm used
in the computation of a system state by use of successive linearisation through means of partial
derivatives.

The general form of the EKF is formulated such that
ẋ(t) = f(x(t), t) + g(x(t), t)w(t) (4.7.1)

where x(t) describes system states, and f and g represent nonlinear functions. The EKF then
attempts to estimate the system states from nonlinear measurements, zk, related to the system
states such that

zk = h(x(tk)) + mk (4.7.2)
In the above equations, w(t) represents zero-mean, normally distributed noise with a spectral
density given as Qk. Similarly, the measurement uncertainty, mk, represents a number sequence
distributed such that mk ∼ N (0,Rk) [89]. The minimum variance state estimate is then found as
the conditional mean of the state vector as a function of both time and the accumulated measure-
ment data.

The following section addresses the orientation EKF as described by Lefferts et al. [15]. This
filter employs an indirect filtering method based on the error state to enable orientation and
gyro bias estimation. This section comprises of the following parts: i) attitude kinematics in the
continuous and discrete time; ii) models of the star and rate sensors; iii) governing state equations;
and iv) measurement model. The section concludes with a summary of the EKF algorithm.

4.7.1 System Model
The attitude kinematics for a system with orientation quaternion q and angular rate ω is given as

q̇ = 1
2Ω(ω)q (4.7.3)

where the matrix, Ω(ω), is given as.

Ω(ω) =


0 ω3 −ω2 ω1
−ω3 0 ω1 ω2
ω2 −ω1 0 ω3
−ω1 −ω2 −ω3 0

 (4.7.4)
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Discretisation

By assuming that the rate sampling frequency is high enough so that the system rate stays constant
over ∆t, it can be proven that Equation (4.7.3) becomes [12]:

q(t+ ∆t) =
[
cos
( ||ω||∆t

2

)
I4×4 + 1

||ω|| sin
( ||ω||∆t

2

)
Ω(ω)

]
q(t) (4.7.5)

4.7.2 Sensor Model
In this work, the gyro model used is the one proposed by Lefferts et al. [15]. This model relates
the true rate vector, ω, to the measured rate vector, u, such that

ω = u− b− η1 (4.7.6)

where the bias, b, is a function of a stationary white noise process such that

ḃ = η2 (4.7.7)

In this model both η1 and η2 are zero-mean white noise processes. For the star tracker model, the
location of the jth body vector, vBj , measured relative to the sensor, is related to its corresponding
catalogue vector, wIj , by use of the true orientation such that

vBj = ABI (q)wIj (4.7.8)

4.7.3 State Equations
From Equations (4.7.3) and (4.7.6) it can then be shown that:

q̇ = 1
2(u− b)⊗ q − 1

2η1 ⊗ q (4.7.9)

which can be expanded to the following nonlinear state equations

q̇ = 1
2Ω(u− b)q − 1

2Ξ(q)η1 (4.7.10)

ḃ = η2 (4.7.11)

As no knowledge of host spacecraft inertia is available, the IMU will function as a replacement
for the system dynamic model, subsequently leading to the necessity of an error-state EKF [90].
The perturbation states are defined as:

δq = q ⊗ q̂−1 (4.7.12)
∆b = b− b̂ (4.7.13)

It then directly follows from Equations (4.7.3) and (4.7.12) that:

δq̇ = 1
2[qω ⊗ δq − δq̂ ⊗ q̂ω] (4.7.14)

from which the linearised system model in state-space form can then be written as[
δq̇
∆ḃ

]
=
[
−[ω̂]× − 1

2I3×3
03×3 03×3

] [
δq
∆b

]
+
[ 1

2η1
η2

]
(4.7.15)

Owing to the singularity of the state covariance matrix brought on by the quaternion unity
constraint, the necessity of truncating the perturbation state vector arises [15]. This reduced
perturbation state vector is then given as

δx =
[
δqv ∆b

]T (4.7.16)

By assuming that the attitude perturbation is small, the four-element perturbation quaternion can
then be reconstructed by use of the unity constraint such that:

δq4 =
√

1− ||δqv|| (4.7.17)
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4.7.4 Measurement Model
The preceding section describes the system equations with no means of inputting observations
from a star tracker. For this, the system innovation, ej equations are required. In this case, the
innovation is defined as the cross product of the observed body vector, with its modelled position
in the body reference frame. This modelled position is defined as the inertial catalogue vector
transformed to the body frame by use of the estimated attitude quaternion, and is calculated as:

ej = vBj ×ABI (q̂)vIj (4.7.18)

By comparing Equations (2.4.3) and (4.7.12), it can be shown that

A(q) = A(δq)A(q̂) (4.7.19)

The innovation can then be written as a function of only the modelled body vector and per-
turbation vector such that:

ej = A(δq)v̂j × v̂j (4.7.20)

By applying Equation (2.4.11) to the perturbation quaternion, it can be shown that:

A(δq) =

 1 2δq3 −2δq2
−2δq3 1 2δq1
2δq2 −2δq1 1

+O(δq) (4.7.21)

If the perturbation is assumed to be small, which in most cases will be true, the high-order terms
can the neglected. The perturbation rotation matrix can then be defined by only the low-order
terms as shown in Equation (4.7.21). Subsequently, the following simplification can be applied

e = [v̂]T×A(δq)v̂ +O(δq)

= 2

v̂2
z + v̂2

y −v̂xv̂y −v̂xv̂z
−v̂y v̂x v̂2

z + v̂2
x −v̂y v̂z

−v̂z v̂x −v̂z v̂y v̂2
x + v̂2

y

δq1
δq2
δq3

+O(δq) (4.7.22)

which can be written in the form
e = H(v̂)δqv + m (4.7.23)

with m the combined measurement and model noise, distributed such that m ∼ N (0,R). For a
complete derivation of the EKF as well as the determination of the covariance of the process noise,
the reader is referred to Lefferts et al. [15], with similar work described in work done by Ahmadi
et al. [91], Markley [92] and Sola [93].

Noise Covariance

To propagate the Kalman filter uncertainty, an estimate of the process noise covariance is further
required. In this case, this was determined as:

Q =
[(

∆t
4 + ∆t2

32

)
σ2
η1

I −∆t
16 σ

2
η1

I
−∆t

4 σ
2
η2

I σ2
η2

I

]
(4.7.24)

Here σ2
η1

represents the gyro noise covariance, and σ2
η2

the covariance of the process responsible
for the bias drift.

4.7.5 EKF Algorithm
The Kalman filter, as implemented, consists of three functional states: i) initialisation, ii) predic-
tion, and iii) correction. A brief overview of each of these states follows. This process is explained
in Figure 4.12.
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Initialisation Propagation

Measurement

Valid
Image

ω

ω

ω

Figure 4.12: EKF State Flow Diagram

Initialisation

During EKF initialisation, an initial attitude estimate is generated by means of an alternate, non-
model-based method, such as QUEST or TRIAD. This ensures a faster filter transient response,
leading to less overshoot.

Prediction

Once a valid attitude has been estimated, rate information can be used to enable attitude propaga-
tion when star tracker vector measurements are not available. The order of operations during the
prediction phase is as follows:

1. Determine the bias corrected gyro measurements with

ω̂k = ABGuk − bk/k (4.7.25)

where the matrix ABG signifies the relative rotation between the gyro and camera axis system.
If the IMU and star tracker axes are on top of each other, this can be replaced by the 3× 3
unit matrix I3×3;

2. Determine the propagated attitude, q̂k+1/k, by use of the discretised kinematic equation from
Equation (4.7.5);

3. Determine the current state transition matrix Φk+1/k by discretisation of Equation (4.7.15)

4. Propagate the state covariance matrix such that

Pk+1/k = Φk+1/kPk/kΦT
k+1/k + Qk+1 (4.7.26)

Measurement

Owing to rate-measurement noise and propagation error, the predicted attitude drifts with time.
Once star tracker measurements become available, these predictions can be corrected and the
current least-variance EKF states can be estimated. As each star tracker frame can contain multiple
matched stars, the following steps can be executed multiple times per image; once for each matched
star vector pair.

1. Determine the current sensitivity matrix, Hk+1/k, by using the estimated vector position as
described in Equation (4.7.22);

2. Determine the feedback gain vector with

Kk+1 = Pk+1/kHT
k+1/k[Hk+1/kPk+1/kHT

k+1/k + R]−1 (4.7.27)

3. Determine the system innovation, ek+1, by using Equation (4.7.18);
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4. Update the current six-element perturbation state with[
δqv,k+1
∆bk+1

]
= Kk+1ek+1 (4.7.28)

5. Calculate the four-element perturbation quaternion, δqk+1 by using Equation (4.7.17);

6. Determine the estimated states such that

q̂k+1/k+1 = δqk+1 ⊗ q̂k+1/k (4.7.29)
b̂k+1/k+1 = ∆bk + ∆bk+1 (4.7.30)

7. Recompute the sensitivity matrix, Hk+1/k+1, by using the newly estimated attitude, q̂k+1/k+1;
and

8. Update the state covariance matrix

Pk+1/k+1 =
[
16×6 −Kk+1Hk+1/k+1

]
Pk+1/k

[
16×6 −Kk+1Hk+1/k+1

]T + Kk+1RKT
k+1

(4.7.31)

4.8 Rate Estimation

Previous research by Calitz [31] investigated the design of a stellar gyro algorithm for the determ-
ination of sensor rates from star tracker vector measurements. The estimation technique employed
by Calitz was developed by Crassidis [30]. Consider a system state description such that

vBi (k) = ABI (k)vIi + ηi(k) (4.8.1)

where vBi (k) describes an observed star in the body frame; ABI , is a proper orthogonal matrix
describing the transformation from an inertial to the current body frame; vIi (k), is the observed
vectors coordinates in the inertial frame; and ηi(k) is the measurement noise. Given this system
state description, the least squares estimate of the sensor rates can be expressed as

ω̂B = 1
∆t

{
n∑
i=1

σ̄−2
i [vBi (k)×]T [vBi (k)×]

}−1 n∑
i=1

σ̄−2
i [vBi (k)×]TvBi (k + 1) (4.8.2)

where [vBi (k)×] signifies the cross product matrix obtained from the ith body vector measurement
during time step k. The full derivation of this method can be found in Crassidis [30].

4.9 Chapter Summary

In this chapter, the most notable software techniques used on a star tracker were investigated and
explained in the fulfilment of the second main research objective. Firstly, a brief overview of the
image processing methods was given, so that a list of body vectors can be calculated form a given
star image. In this work, a similar approach was used as in Erlank [32] and Calitz [31], as is
concluded that their methods have previously been applied with great success.

Work involving the matching of body-referenced star vectors to their inertial counterparts was
then discussed. It was concluded that, although Kolomenkins [83] geometric voting algorithm
proved sufficient during the development of CubeStar, it will only be used as a LIS matching
method in this work. Various tracking modes were then investigated and compared. It was finally
decided to use a lookup table-based method, based on the currently estimated sensor boresight
vector.

Some methods of attitude and rate determination were then investigated, TRIAD, Davenport’s
q-method, and QUEST were treated, with an alternative of an EKF, as given by Markley et al.
[15]. The EKF was chosen to be the centre point of the developed system.
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Finally, the vector-based rate estimation scheme, as explained by Crassidis [30], was given. This
rate scheme was used primarily as it has previously been implemented on the CubeStar platform
with great success [31].

Before these algorithms can be implemented in an embedded application, all software methods
should be verified during simulation.
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Chapter 5

Simulation

Owing to the intricacies of implementation of complex systems in real world applications, as well
as the lack of reliable ground truth data, software and algorithms must first undergo proof-of-
concept performance testing. All algorithms and software, as described in the previous section
were therefore designed and implemented as subsystems in a simulation environment. This not
only served as a proof-of-concept system design, but also functioned as a method of algorithm
performance analysis.

This chapter therefore comprises three main sections in fulfilment of the third project objective:
firstly, a simulation procedure used during functional Kalman filter testing is designed and some
initial results and conclusions are given. Thereafter, a complete system simulation with initial
results for the proof-of-concept system is given. Finally, the software is rewritten for the embedded
environment and stimulated with simulated inputs during hardware-in-loop tests so that algorithm
timing could be determined.

5.1 Kalman Filter Verification

As the Kalman filter is used as the basis for the tracking mode, and is one of the most important
algorithms used in this work, initial simulation and testing are required. This simulation is done
with the Kalman filter isolated under controlled simulation conditions so that filter performance
can be verified.

5.1.1 Simulation Procedure
During this simulation, filter inputs were generated by use of Simulink and implemented as a
MATLAB script. The input data generation procedure is shown in Figure 5.1.

Orientation
Kinematics

ω

q0

Gyro
Model

⊗

qn

Image Sensor
Model

Figure 5.1: Simplified Description of Simulation Procedure

True body rates, ω, were generated along with an initial quaternion, q0, with which the nu-
merical integration process could be initialised. These data were then fed into the quaternion
kinematic equation as given by Equation (4.7.3). To emulate a real-world scenario more closely, a
noise quaternion was added to represent orientation error. This quaternion is described by qn, and
represents a relative rotation with standard deviation of 0.01°. To emulate sensor measurements,
initial sensor models were then constructed as described below.

52
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5.1.2 Gyro Model
The gyro model used during the simulation is similar to that used by suggested by Lefferts et al.
[15]. In this case the IMU measurements consist of four main parts:

1. Initial bias offset, which is the constant offset measured at IMU start up;

2. Random walk, or bias instability component, of IMU measurements that cause low-frequency
random changes in IMU bias;

3. True rate; and

4. A noise component that causes random walk during rate integration.

The gyro model diagram is shown in Figure 5.2.

Σ z−1 Σ

Σ

Bias Instability

Initial Bias Offset ARW

u
IMU Rate Output

ω
True Rate

Figure 5.2: Gyro Model Used in Simulation

In this figure the blocks representing the bias instability and ARW signify stationary normally
distributed processes. To emulate the bias instability, three normally distributed number sequences
are generated and integrated over time, giving rise to a random walk. The output angular rate
measurement is then obtained by summing the offset, instability, true rate, and ARW. An example
of the simulated true bias is shown in Figure 5.3a, with simulated rate measurements shown in
Figure 5.3b.
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(a) Simulated Gyro Bias
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(b) Simulated Gyro Output

Figure 5.3: Simulated IMU Measurements
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5.1.3 Star Tracker Model
The star tracker output consists of matched inertial and body vector pairs. As the actual vec-
tors are not as important as the rotation between them, it was decided to emulate the star tracker
measurements by using randomly generated unit vectors. The generation process for each measure-
ment therefore relied on generating two random numbers used as boresight relative, azimuth, and
elevation angles. By assuming a unit radial distance from the observer, a three-element Cartesian
vector is then generated. As the true attitude is available, the inertial vector corresponding to each
body vector can be obtained.

x

y

z

Random Star Vector

α1

α2

Figure 5.4: Random Star Generation

To emulate vector measurement error, three random angles are generated to represent a roll,
yaw, and pitch error in each measurement. The originally generated body vector is then rotated
by this compound rotation matrix leading to the output body vector. For clarity, this process is
shown in Algorithm 5.1.1.

Algorithm 5.1.1 Star Tracker Measurement Generation
numV ecs ← rand(3,15) . Number stars detected between 3 and 15
for i← 1 to numsV ecs do . Generate random body vectors

[α1, α2]← Generate random relative star angle between -0.5 and 0.5
[α1, α2]← [α1, α2]× fov
vBi ← sph2cart( α1 , α2 , 1 )

end for
for i← 1 to numsV ecs do . Generate corresponding inertial vectors

vIi ← AIB(q)vBi
end for
for i← 1 to numsV ecs do . Add Measurement Error

[α3, α4, α5]← Generate 3 by 1 random noise angles
v̂Bi ← A(α3)A(α4)A(α5)vBi

end for

5.1.4 Verification and Results
By using these sensor models, as described in the previous section, a dataset spanning fifteen
minutes was then generated. This dataset consisted of:

1. True attitude quaternions sampled at 10 Hz;

2. True rate data sampled at 10 Hz;

3. The number of detected stars sampled at 1 Hz; and

4. A list of corresponding inertial and body vectors also sampled at 1 Hz.
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During this simulation, the simulated system experienced a rate corresponding to

ω =
[
0.5 sin

(
tπ
100
)

0.1 −0.2
]

°/s (5.1.1)

After exactly five minutes of simulation time, the Kalman filter was enabled. Initial simulation
results are shown in Figure 5.5. These plots show the estimated attitude quaternion and IMU bias.
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Figure 5.5: Simulated Kalman Filter Output Without QUEST Initialisation

Although the filter shows good attitude and bias estimation, a large bias overshoot is observed,
owing to errors in the initial state. Although this effect is partly due to the filter covariance
initialisation, it is predominantly affected by the initial filter state values. In this case, the lack of
prior state knowledge severely impacts the filter settling time. During this simulation the Kalman
filter covariance matrix, P, was initialised with values such that

P = I6×6 (5.1.2)

and the initial system state vector was chosen as

x =
[
q1 q2 q3 q4 bx by bz

]T =
[
0 0 0 1 0 0 0

]T (5.1.3)

During this simulation, the initial filter covariance matrix was varied in an attempt to decrease
the bias overshoot. Although changing the filter covariance affected the attitude overshoot, very
little changed with regards to the bias overshoot. This is due to the indirect filtering method used
during the estimation process. In the case of this filter, any seemingly unexplained error in the
attitude estimation is manifested as an estimated IMU bias, subsequently leading to a large state
overshoot after filter initialisation.
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5.1.5 Effect of Initial Attitude Error on Filter Overshoot
Subsequently, the effect of the initial attitude error was investigated so that the impact on bias
overshoot could be analysed. During this analysis, a sensitivity analysis was implemented, where
the Kalman filter attitude state was initialised with an attitude of increasing error.

In this simulation, the filter was run numerous times during the same conditions as described
in the previous subsection. For each run, the initial attitude error along either the roll or yaw-axis
was altered by 0.25° until a maximum attitude error of 90° across both axes was incurred. The peak
bias state for each individual dataset was then recorded. Results of this simulation were capped
at a maximum of 8 °/s, and are shown in Figure 5.6. The reason for limiting the bias overshoot
error, was to improve observations of the low-error trends, as, in certain conditions, overshoots in
the order of 20 to 100 °/s could be observed. The representation of low variations in bias overshoot
were more difficult to observe.
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Figure 5.6: Effect of Initial Attitude Error on Bias Overshoot

This figure shows that the bias overshoot was largely dependent on the initial attitude error. In
this case, roll error has a slightly dominant affect at higher input angular errors. This figure further
shows a dark band at the edges close to the 90° error mark. Although these edges appear to be low
bias overshoot, it actually represents an invalid starting position that leads to attitude estimation
failing. At these starting angular errors, the Kalman filter could not estimate a valid attitude
because the estimated δqv, had a norm larger than unity. The determination of scalar part of the
quaternion ,q4, therefore became imaginary, leading to unexpected filter behaviour. Subsequently,
to ensure correct initialisation, Kalman filter initialisation was determined to be imperative.

Although the initial attitude can be determined by use of any of the attitude determination
algorithms given in Section 4.4.1 it was decided to use QUEST. The key reason was because
the QUEST algorithm is much more immune to single measurement errors than TRIAD, therefore
allowing for a small attitude error and subsequently reducing lengthy filter transient times. QUEST
was also successfully used during the original design of CubeStar [32].

5.1.6 Effect of Filter Initialisation
With the implementation of Kalman filter initialisation by use of QUEST, the simulation described
previously was rerun to analyse the improved filter response. The results obtained are shown in
Figure 5.7.

Overall, results relating to bias overshoot showed a significant improvement, as the overshoot
was reduced to the order less than 0.1 °/s. Unlike to the uninitialized case, these results show near
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Figure 5.7: Simulated Kalman Filter with Filter Initialisation

immediate bias tracking. As in the uninitialized case, attitude estimates show good tracking with
little error, albeit slightly improved.

In conclusion to the EKF analyses, it was noted that the algorithm showed successful proof-of-
concept functionality with the given system parameters. The final estimation accuracy results were
not analysed, however, as the system’s accuracy is largely dependent on the simulated measure-
ments which depends on individual sensor characteristics. It was however noted that the Kalman
filter showed a similar error response as that obtained by use of QUEST. It is therefore expected
to operate with a similar accuracy to the current CubeStar model.

5.2 System Simulation

In the context of this work, the EKF represents only a single subsystem in a much greater assembly.
To analyse the algorithm interaction, the complete system software was implemented in simulation.
The complete system relied on image processing as a means of extracting vector measurements from
star data. An augmentation to the current EKF simulation was therefore required, as it relied on
randomly generated matched vectors rather than simulated star images.

5.2.1 Image Generation and Camera Model
Valid images therefore had to be generated from quaternions. During this process, the CubeStar
catalogue of 410 of the brightest stars were used, along with the focal length of an old CubeStar
engineering model, given as 6.213 mm.

Image Generation Procedure

Given a sensor with attitude described by an attitude quaternion, q, the process for generating an
image was as follows:

1. The current sensor BSV in the inertial reference system was calculated;
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2. A list of stars in range of the boresight was determined;

3. The corresponding image plane star location in pixel coordinates was found by first trans-
forming the stars to sensor-body coordinates, then to image plane coordinates, and finally to
pixel coordinates; and

4. Each star PSF was overlayed on a blank image of 1280× 1038 pixels. This size was slightly
larger than that described in the hardware design section, as it also takes into account the
fourteen dark image columns of the image sensor.

Star Model Validity

Figure 5.8 shows a comparison between simulated and real star data. These images show good
similarities, although subtle differences can be observed. In the case of the simulated star, the
overall star variance is slightly smaller than that of the real star, leading to a star with smaller
diameter. The simulated star is also slightly dimmer than the real star. This is mainly because of
the magnitude differences in the true observed stars, as real stars have varying brightnesses. Thus,
some detected stars will be much fainter than the simulated stars, whilst others might be bright
enough to cause sensor saturation.

(a) Real Star (b) Simulated Star

Figure 5.8: Star Comparison

This model represents only ideal images, however, as neither image plane noise nor camera
distortion was considered during the image generation process. Despite this, actual captured
images are still expected to appear quite similar to simulated images during low sensor rotation
rates. During high rates, however, this model will be less valid, as long integration times lead to
stars appearing as streaks. In this case, the star power will be spread across multiple pixels. As
the incident photons become averaged over a larger area, streaks of low intensity will be observed,
potentially causing stars to fall below the noise floor. An inverted, simulated example of such a
streaky image is shown in Figure 5.9.
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Figure 5.9: Inverted Simulated Star Streaks

Although this model would be much closer to a real world situation, it requires an increase
in simulation complexity whilst only contributing a small amount to real world accuracy. It was
therefore omitted from the image generation process.

5.2.2 Simulation Methodology
The EKF system simulation structure was augmented with the emulated star image generation, and
the full system implemented in software. The total simulation procedure could be divided into two
main sections: i) the generation of system inputs and test measurements, and ii) feeding the test
measurements to the simulated system. As in the previous section, the system was implemented
in MATLAB and Simulink. The overall simulation structure is shown in Figure 5.10.

Simulated
System

ω

q0

Gyro
Model

⊗

qn

Image
Generation

Orientation
Kinematics

b̂

ω̂

q̂

Figure 5.10: Simulation Structure

In this case, Simulink was used to simulate both attitude kinematics and the gyro model.
The output of this Simulink model was a list of sensor attitudes sampled at 10 Hz, together with
simulated gyro data, sampled at the same frequency.

Once an array of attitudes and rates was generated, a list of subsequent images could then
be generated. These images, generated at 1 Hz, were then fed into the simulated system at the
corresponding simulation time and results were recorded.

5.2.3 Simulated System Software Flow
The designed system software flow is shown in Figure 5.11. As can be seen here, the implemented
system consists of three main states: lost in space, verification, and tracking.
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Figure 5.11: Implemented System State Flow

During LIS mode, there is no attitude knowledge. A full image plane search is therefore
conducted, and all detected stars are fed to the geometric voting algorithm for identification.
Thereafter, an initial attitude estimate is obtained by using QUEST, and the Kalman filter is
initialised. If no attitude can be estimated, the sensor remains in LIS mode. Once a valid attitude
has been determined, the software enters a verification mode.

When the sensor functions in verification mode, the estimated location is not yet used to
predict star locations as the software first waits for estimation transients to die down. This perio
was chosen as roughly 5 s. During this functional mode, stars are therefore still identified by use
of a full image plane search and geometric voting.

Once the attitude has been verified, the sensor enters tracking mode. During tracking mode, the
attitude predicted by using IMU measurements ais then used to decrease the overall computational
load, as described in Section 4.5.1.

5.2.4 Simulation Results
At each possible sampling instant of the simulation, the following data were requested so that
results could be analysed: i) sensor attitude, ii) stellar gyro rate estimates, iii) estimated bias
and IMU rates, and iv) the number of stars tracked during the tracking mode. These results are
analysed below.

Attitude Estimation

Figure 5.12 shows the estimated attitude quaternion obtained during the simulation. In contrast
to previous simulations, this system was initialised on the first sample.
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Figure 5.12: Attitude Estimation Results

As in the previous cases, attitude estimation was successful and worked as expected, showing
good attitude estimation. As mentioned in previous sections, the Kalman filter start up procedure
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involved initialisation with the QUEST algorithm. The attitude quaternion shows the same trend
as in the previous simulation example, with no discontinuities or loss of attitude lock.

Stellar Gyro Estimation

For the given input rate, as described in Section 5.1.4, the estimated stellar gyro rates are given
in Figure 5.13.
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Figure 5.13: LSQ Rate Estimation Results

As expected, these estimated rates show excellent rate tracking, with almost no visible sensor
noise. To analyse these data further, the residual between the true rate and estimated rates was
also determined and is shown in Figure 5.14.
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Figure 5.14: LSQ Rate Estimation Error

From the Figure 5.14, it can be noted that the residual rates around the z-axis show the largest
random component. This phenomenon is prominent due to the difficulties in estimating changes
around the out-of-plane axis. Larger estimation errors are therefore expected.

In these results, all three of the sensor axes show an initial error spike. This spike exists as the
algorithm relies on at least two images such that sets of matched body vectors, one sample apart
are available. During the first sample, as only a single image has been processed, no stellar gyro
output is available.

A prominent behaviour can be seen in the first plot pf Figure 5.14, around the x-axis. In this
figure it can be seen that a relatively large sinusoidal residual exists. The main reason for this
sinusoidal response is due to the input rate sinusoid and stellar gyro phase lag: as the stellar gyro
algorithm has access to only two star images consisting of a time average of the sensor response over
the integration period, sinusoidal errors are expected in the sensor output. The residual reaches
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a peak when the input rate is close to 0 °/s, as the angular acceleration is at a maximum here.
This effect is further exacerbated by the low sampling rate of the sensor, as high-frequency rate
dynamics is unobservable.

Although this can be a problem during high dynamic rates, this algorithm is only to be used
during periods of slow dynamic spacecraft changes or low sensor rates. Overall, the system shows
promising rate estimation results with a high accuracy, albeit slightly delayed response.

IMU Rate and Bias Estimation

During this simulation, the effects of the bias estimation and IMU rates were also analysed. To
serve as a benchmark, the raw IMU measurements are given in Figure 5.15, along with the true
rate experienced on each axis as dashed lines.
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Figure 5.15: Simulated IMU Measurements

These figures clearly show the bias drift as a function of time, along with the initial bias offset
error. In comparison to these raw measurements, the bias-compensated IMU rates are shown in
Figure 5.16.
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Figure 5.16: Bias-Corrected IMU Measurements

The measurement residual in terms of estimated bias error is given in Figure 5.17. This error
is computed by subtracting the true bias from the estimated bias, and then plotting the residual.

Overall, the bias estimation shows successful operation with transient behaviour dying down
quickly, and peak residual being at least an order of magnitude lower than the actual sensor bias.
Bias estimation therefore shows good performance during both dynamic changing and constant
rates.

In comparison to the stellar gyro rate estimates, however, the corrected IMU rates show far more
coarse measurements, owing to the high ARW of the IMU. This is unfortunately not something
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Figure 5.17: Estimated Bias Error

that can be fixed without decreasing the ARW. Although simple in simulation, changes like these
in real-world applications require the use of expensive, large, and resource-intensive sensors, which
are not necessarily feasible.

Star Identification and Tracking

The final sensor functionality to be tested was that of the improved star tracking mode. As the
tracking mode uses a ROI search, only image snippets are available for search, directly impacting
the number of stars that can be found in the FOV. The following datasets show the effect of varying
the number of bins used during the lookup table search

The tracking mode was tested under two cases. Firstly, only a 3× 3 grid was searched around
the boresight bin index, whereafter the search width was changed to a 5× 5 grid. An illustration
of the search bin width is shown in Figure 5.18. During these simulations, each bin comprised of
an area of 20° in right ascension by 10° declination.

5× 5 Search Grid

3× 3 Search Grid

Boresight Vector Bin

Figure 5.18: Graphical Interpretation of Varying Bin Search Size

The simulation was then used to determine the effect of using different search grids. These
results are shown in Figure 5.19. Once again, the same starting conditions as in the previous
simulations were used. In this case, Figure 5.19a shows the number of stars tracked by using a
3× 3 search grid, whilst Figure 5.19b shows the number of stars tracked by using the larger 5× 5
search grid.

Overall, both simulations showed good results in terms of the number of stars tracked, with
the tracking mode never dropping below seven stars. During both simulations, the number of stars
tracked were less than those in the FOV, with the 3× 3 grid showing worse performance than that
of the 5× 5 grid.

During both simulations, identification performance during the first few seconds showed worse
results than expected, with a large spike in detection at about 57 seconds. This discontinuity is
repeated often throughout the dataset, however, and is part of the algorithm disadvantages. This
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(a) Lookup Table Identification Results for 3 × 3 Grid
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(b) Lookup Table Identification Results for 5 × 5 Grid

Figure 5.19: Number of Stars Tracked During Simulated Conditions

happens at points where the estimated BSV crosses from one bin to another, as new searchable
identities suddenly become available.

As shown in both these figures, the discontinuity is worse at the poles, as the BSV is initialised
at

vIbsv =
[
0 0 1

]
This BSV corresponds with the north celestial pole. The reason for the delay in detection at

the pole is due to the effect of the projective distortion of a circular FOV on a sphere. Close to
the poles, each of the bins consists of a smaller area. The FOV projected thereon will therefore
encroach on more bins. Using only a simple symmetrical search grid throughout the celestial sphere
will therefore decrease detection performance at certain points on the celestial sphere. This effect
is illustrated in Figure 5.20
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(a) Projected FOV Close to Equator (b) Projected FOV close to Pole

Figure 5.20: Effect of FOV Distortion

As can be seen here, when the boresight is located closer to the celestial pole, the stars included
in the FOV are spread over more bins, subsequently leading to worse performance. Although this
might impact overall sensor performance, star identification still shows good results with at least
five stars detected during each of the simulations.

5.2.5 Hardware-In-Loop Testing
Although the simulation results promise good state estimation, there are no real guarantees that a
small, low-power application can effectively implement the estimation algorithms at an update rate
of 1 Hz. All algorithms were therefore implemented in the C programming language and uploaded
to the hardware to serve as a hardware-in-loop simulation.

In this case, however, as software ran on the microcontroller, a UART interface was also de-
veloped to upload input measurements, control system states, and download measurement results.
This interface not only assisted in algorithm verification, but also enabled algorithm execution
timing measurement capabilities.

The developed environment consisted of the three main parts: i) input data generation or pre-
processing, ii) data upload, and iii) data request and storage. This process is shown in the diagram
in Figure 5.21.

As the image upload process took at least 30 seconds, the hardware-in-loop testing was not done
during real time. The results, as obtained during this simulation, are given in the next section.

Algorithm Execution Comparison

During hardware-in-loop tests, the main algorithms that were tested included the LIS versus track-
ing algorithm execution speed, and the execution speed of the EKF versus that of the QUEST
algorithm. Figure 5.22 shows the timing results of the two search and matching algorithms.

As shown here, the reduced region of interest search had a substantial impact on star search
and tracking performance when compared to the LIS algorithm. The total search and matching
performance was at least two orders of magnitude faster than that of the LIS mode, with the
longest search and matching during LIS mode taking 197 ms. On the other hand, the maximum
execution time of search and matching during tracking mode was found to be only 7 ms.

This clearly shows the performance increase a region of interest tracking mode can deliver. Of
the time required to execute the LIS mode, around 25 % was due to the geometric voting algorithm.

The total execution time of the attitude estimation algorithms was also measured and is shown
in Figure 5.23.

Clearly in this case, it can be seen that the EKF requires much more computational effort
than QUEST. The difference in execution time can be attributed to the costly matrix inversions
required by the EKF. Overall, however, owing to the relatively low execution requirement of both
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Figure 5.21: Hardware-In-Loop Testing Procedure

0 50 100 150 200 250 300 350 4000

100

200

Frame Number

Ex
ec

ut
io

n
T

im
e

(m
s) LIS Total Tracking Mode

Figure 5.22: Star Identification Timing Comparison

algorithms, both can be used during nominal sensor operation without causing a reduction in
overall sensor update rate.

5.3 Chapter Summary

During this chapter, the initial algorithm implementation was conducted, thereby proving the
validity of the previously identified algorithms, thereby achieving objective three of this work. This
chapter started with the investigation and verification of the Kalman filter behaviour. Firstly, the
system model was developed. This simulated system consisted of the quaternion kinematics, as
well as sensor models for both the IMU and star tracker. Although the modelled IMU showed a
slightly higher bias drift than expected from initial sensor verification results, it still proved to be
a useful method of verifying the Kalman filter under high bias drift conditions.

During the Kalman filter simulations, it was noted that the initial system bias overshoot and
numerical algorithm stability is strongly dependent on the choice of initial system states. To
compensate for this, it was concluded that it will be necessary to initialise the system states
with an accurate attitude estimate obtained from an algorithm such as QUEST. This showed a
significant improvement in overall filter response, with the filter immediately tracking the estimated
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Figure 5.23: Orientation Estimation Timing Comparison

bias correctly.
A more extensive system model was then developed, based on image generation. Not only did

this model allow for the implementation of the tracking mode developed in Section 4.5.1, but it also
allowed a means of testing the various software interfaces. Although this simulation did not take a
precise sensor noise model or camera distortion into account, it provides good insights into system
performance, and could successfully function during simulated dynamic conditions. During the full
system simulation, the effect of tracking search grid size on the number of identified and tracked
stars were also investigated. For the two grid sizes investigated, the system showed successful
functioning, with the 5 × 5 grid being able to identify and track more stars than the 3 × 3 grid.
Because the overall performance was not hindered by a smaller grid, it was decided that the 3× 3
grid would be sufficient for use during online operation.

As the system was deemed to function correctly, the algorithms were then implemented in the
C language and deployed on the STM32L476 MCU. Hardware-in-loop tests were then conducted to
analyse the timing performance of the LIS and tracking modes. It was concluded that the tracking
mode had a far superior performance when compared to the LIS mode, showing an improvement of
around two orders of magnitude in execution time, clearly illustrating the necessity of implementing
a reduced ROI search during tracking. During the hardware-in-loop simulations, it was further
determined that the EKF measurement update speed is strongly dependent on the number of stars
tracked, and is much more computationally expensive than attitude determination through use of
only QUEST. The overall execution speed did not jeopardise the requirement of a 1 Hz update
rate, however, and should function successfully during actual practical tests, as considered in the
next chapter.
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Chapter 6

Practical Testing and System Integration

Although the simulated system showed initial proof-of-concept system integration results, al-
gorithms have to be tested online, sensors have to be calibrated, and online system integration
has to be completed, as specified in the fourth main objective.

Notwithstanding the inherent functional uncertainties in sensor design, star tracker-based sys-
tems validation is further heavily impacted by atmospheric conditions such as light pollution,
visibility of celestial bodies, and weather. Although work-arounds can be implemented so that
these factors are compensated for, the overall time required so that a favourable window for sys-
tem testing is available may be in the order of weeks to months. Subsequently, to decrease the
dependence of system verification on uncontrollable atmospheric conditions, a form of night sky
emulation was required to verify final system integration is prior to actual night sky testing.

This chapter therefore presents a simple-to-implement, low-cost alternative to night sky testing,
specifically for use during initial star tracker-based dead-reckoning system verification. This chapter
begins with the initial design, implementation, and calibration of the Star Tracker Evaluation
Environment (STEVE), after which some initial results and conclusions are given. Finally, in
preparation for final system testing, subsystem calibration and integration, as required during
actual night-time testing, are discussed.

6.1 Star Tracker Evaluation Environment

In the case of the attitude estimation system described in this work, an attitude relative to some
inertial frame is important. The design of systems similar to that by Calitz [31] would therefore
not be sufficient, as the author’s experiments required only matched body vector pairs, therefore
removing the necessity of inertial knowledge.

Cardboard

Centre Mount
Centre Line

Emulated Star

Frame

Rate Table

SensorSegment

Figure 6.1: Star Tracker Evaluation Environment
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Considering these observations, the following specifications with regards to the STEVE system
were chosen: i) low cost, ii) easy to assemble, iii) simple to map, and iv) functional.

Because it is important that features observed in the emulation environment are static relative
to one another, it is crucial that the depth of field of the environment is uniform. This can be
achieved by either ensuring that features are so far away from the observer that any relative error
becomes negligible, or that the distance to each feature is uniform. As this project was on a strict
size budget of three meters, and an environment was required where a full 360° degree rotation
would be favoured, it was decided to design the emulation environment such that it was in the
shape of a dome. An artistic representation of the initial emulation environment design is shown
in Figure 6.1.

Shown in this figure is the dome, as constructed from a frame structure covered with cardboard
segments. The sensor was mounted to a rate table in the centre of the structure, such that system
could be excited with an input and a response measured. To ensure the low-cost requirement was
met, the frame was constructed from sixteen lengths of polyvinyl chloride (PVC) piping, covered
with eight cardboard segments. On the inside of the dome, the structure was painted matte black
to emulate a pitch-black sky. The dome radius was chosen as 1.5 m as it was constrained by the
containing room.

Once the overall structure was completed, LED assemblies, as shown in Figure 6.2, were de-
veloped to serve as light points representing stars.

Optical Fibre
Microspray

Black Silicon
Tube

LED

Resistor

Cardboard Segment

Dome Inside

Figure 6.2: Emulated STEVE Star

The optical fibre was encased in a black microspray with a hole drilled at the centre. To ensure
the fibre is held in place and that no light leaks through, black silicon was inserted around in the
microspray. These stars were mounted in the dome by punching small holes in the cardboard and
inserting the fibre assembly from the inside. Afterwards, to ensure stability, a small piece of tubing
was placed over the spray backside with the LEDs inserted into the tube from the back. All LEDs
were then wired to a communal power source so that star brightness could be varied uniformly.

6.1.1 Star Comparison
After construction, images were captured from inside the STEVE to compare the emulated stars
with real stars. This comparison is shown in Figure 6.3, along with that of a simulated star as
reference.

From this figure it can be seen that the real and emulated stars show good agreement with
only slight variations between the shown examples. The real star, however shows a slightly larger
spread than that of the emulated star. This is expected, however, as the real star light has to pass
through the atmosphere, causing some diffraction. The emulated stars were, however, sufficient.

6.1.2 STEVE Mapping and Catalogue Generation
As the STEVE star locations were randomly chosen, no knowledge of inertially referenced star
positions, as used in attitude determination, were available. It was therefore imperative to map
the emulation environment, so that a suitable star list and catalogue could be generated.
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(a) Real Star (b) Emulated Star (c) Simulated Star

Figure 6.3: Star Comparison

Although physically measuring the angular distance between the STEVE origin and each star
seemed to be the obvious method, it was deemed as being cumbersome and inaccurate with regards
to true star mapping. An alternative mapping method was therefore identified.

In this method, the designed star tracker hardware would be employed so that relative star
vector positions could be determined at known orientations. The mapping process would therefore
consist of taking measurements and determining the inertial positions by use of the true attitude.
Although near-perfect inertial positioning was an initial prerequisite, it was accepted that the usage
of the dome would be more for functional testing of embedded software algorithms owing to errors
in the dome design process. During testing, star detection accuracy margins could therefore simply
be adjusted to allow matching in the emulated environment.

The identified mapping process was therefore seen to be the most optimal mapping method
and consisted of the following steps:

1. Calibrate the star tracker hardware for the working distance;

2. Capture star images at known orientations;

3. Determine body-referenced star centroid measurements;

4. Transform the body-referenced star vectors back to the inertial frame by using the known
orientation; and

5. Determine a suitable star catalogue that can be used for matching and attitude estimation

The mapping problem therefore became a much simpler attitude measurement problem. Before
the catalogue could be determined, camera calibration was required.

Sensor Calibration

Because the working distance in the STEVE is much shorter than that in the night sky, a different
calibration than that used by CubeSpace had to be employed. Instead of the radial model, the
Brown distortion model was therefore implemented as MATLAB’s camera calibration toolbox
provided a simple calibration interface.

The calibration process involved two main steps: lens focusing, and distortion modelling.
Firstly, the camera was focused at 1.5 m by continuously capturing images of a chequerboard and
manually adjusting the focus until a clear distinction between small features could be observed.
After the lens was focused, a set of 77 images was then taken of a chequerboard with blocks of
100 mm in size. After each subsequent image was saved, the chequerboard was moved slightly so
that the FOV was entirely covered. The results were then postprocessed by use of MATLAB’s
calibration toolbox. During this calibration, 60 of the 77 images showed complete visibility of
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Figure 6.4: Dome Calibration Captures

the chequerboard and were used during final camera parameter identifications. A subset of the
calibration images is shown in Figure 6.4

As the toolbox offered a simple way of investigating the effect of the different distortion types,
as described in Section 4.3.1, the effect of compensating for only radial distortion (two-parameter
calibration) and that of compensating for both radial and tangential distortion (four-parameter
calibration) could further be analysed.

By use of the calibration toolbox, a suitable distortion model was then determined, and the
reprojection errors for each image used were calculated. The reprojection errors for the two- and
four-parameter calibration are shown in Figure 6.5.
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Figure 6.5: Pixel Reprojection Errors

From this figure, it can be noted that the overall peaks in image reprojection error were slightly
lower in the case of the four-parameter calibration than that of the two-parameter calibration. The
overall performance was very similar, however, as it was found that the use of a two-parameter
radial model lead to a reprojection error of 0.1043 pixels, whilst using a four-parameter calib-
ration that included tangential distortion lead to a slightly decreased mean projection error of
0.0975 pixels. Although the two-parameter calibration showed slightly higher errors, it was found
that radial distortion dominated the overall lens performance. As the accuracy increase was close to
negligible, it was concluded that compensating for only radial distortion was sufficient for accurate
attitude estimates.

From the two parameter calibration sessions, the following distortion parameters were estim-
ated:
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K1 = −0.317, K2 = 0.170, P1 = 0, P2 = 0

with the camera intrinsic parameters determined as:

f = 6.242 mm uo = 638.11 pixels vo = 497.32 pixels

After distortion calibration was completed, the actual mapping process involving the determ-
ination of inertial star positions could then be investigated.

Mapping Hardware Setup

Ideally, hardware offering complete three-axis attitude setpoints should have been used, as perfectly
known roll, pitch, and yaw angles could then be induced. Nevertheless, a simplified method by use
of known azimuth and elevation angle was determined to provide enough degrees of freedom for
elementary mapping.

To enable these required two degrees of freedom, a mapping hardware setup based on an Ideal
Aersomith 1270Vs rate table, as well as a single-axis rotary stage was used. In this setup the
rate table allowed for single-axis azimuth measurements up to resolution of 0.001° relative to some
starting position. The elevation angle was manually controlled with an Edmund Optics 60 mm
manual single-axis rotary stage. Unfortunately, this rotary stage only offered an accuracy of up to
1°. The final hardware setup, as used during the mapping process, is shown in Figure 6.6.

Mounting Bracket
CubeStar

Single-Axis Rotary Stage

Slip Ring Connector

Rotation Table
Axis of Azimuth Rotation

Axis of Elevation Rotation

Figure 6.6: STEVE Mapping Hardware Setup

As shown in this figure, the star tracker was mounted such that the image plane centre coincided
with the axes of rotation. To ensure the setup could rotate freely, the main MCU UART connector
was connected to the Aerosmith slip rings.

This CubeStar rotary stage assembly was then mounted within the star emulation dome such
that the image plane centre was approximately at the dome centre. After assembly, the rotation
stage was levelled to ensure rotations around the true azimuth and elevation axes were decoupled.

Data Acquisition

During the data acquisition stage of the mapping process, the elevation angle was fixed, and photos
were taken at roughly 10° azimuth increments. In this case, the table home position was chosen
as the 0° azimuth angle. Once a photo was captured, the rate table was set to rotate for ten
degrees, after which the previous image was downloaded and saved. Figure 6.7 shows an inverted
image captured during the mapping process, at an elevation angle of 90°. Here, identified stars are
highlighted by blue circles.
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Figure 6.7: Capture at 0.000° Azimuth Angle

Offline Image Processing

Once the data acquisition phase was completed, all results could be processed offline. During offline
processing, the sensor attitude at each captured image was reconstructed by use of two Euler angles;
one representing a rotation around the inertial z-axis, as measured by the rate table, and another
signifying a rotation around the inertial y-axis, as manually set up by use of the single-axis rotary
stage. For each image, star centroids were then detected, undistorted, and the measured vectors
were transformed to the body-referenced system. As the attitude was also known, the estimated
inertial position could then be determined.

However, owing to errors in the physical setup and irregularities of dome radius, inertial star
positions for the data sets did not coincide perfectly. This effect was amplified at small elevation
angles, when the sensor boresight was closer to the dome base, where the dome radius became
more irregular. Only the data acquired at the 90° elevation angle could therefore be used.

At this 90° elevation angle, the inertial vectors determined for 36 images, led to small vector
clusters, as shown in Figure 6.8. Owing to measurement resolution in elevation and minor setup
errors, this behaviour was not unexpected.

Figure 6.8: Observed STEVE Star Positions

For each of the clusters shown in this figure, the best estimate inertial position was then
determined by use of singular value decomposition [94]. These inertial positions were then stored
and used as a star list as described in Section 4.4, after which a star catalogue as required by
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the geometric voting algorithm could be generated. The final star list contained 40 stars, with a
catalogue size of 780 entries.

6.2 Initial System Feasibility Testing

Once the STEVE catalogue was generated, enough information was available so that online al-
gorithm testing could be investigated. The initial algorithms could therefore be tested on the new
hardware platform, not only to analyse the overall system feasibility, but also investigated the
algorithm interaction and initial system integration. The first STEVE tests were therefore devised
to test the functioning of each of the separate sensor technologies.

The sensor was once again set up in the star mapping position with the azimuth angle set to
the home position and the elevation angle close to the STEVE north pole. The hardware was then
initialised, and data were requested every second.

The data shown in Figure 6.9 were collected over a 100 s period. During this period, all
processing was completed on the CubeStar hardware, with attitude and rate data requested via
a MATLAB UART link. Figure 6.9a shows the estimated sensor boresight azimuth angle, whilst
Figure 6.9b and elevation angle.
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Figure 6.9: Measured Boresight Position

These figures emphasize the shortcomings of the emulation environment. Here, the attitude
estimation starts off quite stable during the first half of the data set, with small variations in the
order of 0.1° observed. These observations stem from error with regards to the observed depth of
field difference in stars, as well as errors in physical setup and the mapping process.

At around 58 s, a discontinuity of about 1.5 degrees in the azimuth angle can be seen. Although
this can be caused by a variety of factors, owing to the magnitude of the error as well as the length
thereof, it can only be caused by a false match. As absolute inertial vector locations are much
less accurate than those of true stars, the geometric voting algorithm error margin, ξ, had to be
adapted. Although this enabled the validation of detected dome stars so that attitude could be
determined, it also increased the probability of false matches.

The attitude is shown to stabilise to the original attitude trend close to the end of the dataset. A
possible method of decreasing the effect of false matching is by removing some of the stars from the
emulation environment so that false matches are less likely to occur. Despite these factors, it was
proven that the original CubeStar algorithms could function effectively in the dome environment,
with much less attitude accuracy than during previously conducted night sky tests.

During the initial testing, the functioning of the rate estimation algorithm as developed by
Calitz [31], as well as the integration of the IMU was further investigated. Both of these datasets,
are shown in Figure 6.10.
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Figure 6.10: Measured IMU and Stellar Gyro Rate

From these figures it is shown that the rate estimation and gyro measurement worked as ex-
pected. Notable is, however, the effect of IMU bias and noise, standing in stark contrast to the
stable measurements as estimated by the LSQ formulation. This clearly emphasizes the necessity
of gyro augmentation during low angular rates.

Although the evaluation environment was deemed to be success, subsequent tests yielded results
which were much more erroneous. The main reason was because of changes in the physical setup.
Owing to the 1.5 m working distance, the catalogue had to be regenerated every time the emulation
environment changed as small errors in setup were common.

Owing to the errors in inertial positions, it also proved to be much more difficult to test
tracking mode algorithms, as high accuracy attitude knowledge was required to ensure successful
star detection. The STEVE was therefore only used as a method of testing the initial hardware
and software functionality, and enable embedded software debugging.

As proof-of-concept algorithm and functional hardware testing was completed, the final system
integration could be performed.

6.3 Sensor Calibration

Although the STEVE offered good insight into the functioning and shortcomings of the developed
algorithms, the hardware was still to be verified under actual night sky conditions, and tracking
algorithms were still to be tested. Final system integration also involved the identification of
characteristics of the sensor measurement noise and lens irregularities as it was either ignored or
known during simulation procedures. Further, software time integration had to be performed to
ensure processing deadlines are met. Hence, to integrate the software, hardware, and algorithms
completely, the following steps had to be performed:

1. Lens distortion model for use under night sky conditions had to be determined;

2. IMU noise sources had to be characterised for use in the EKF; and

3. Software interfaces had to be integrated for correct system timing.

6.3.1 Camera Calibration
One of the specific issues raised by previous research [32] was that the chequerboard calibration
method was not accurate enough in the determination of an adequate distortion model for calibrat-
ing sensors. This is mainly because the camera had to be focused at close to hyperfocal distance.
It was therefore difficult to find a chequerboard of adequate size so that the lens could be correctly
characterised.

With the development of CubeStar over the past few iterations, a new method of star camera
calibration has been adopted. This calibration process works by capturing a multitude of star
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images of known constellations. Some of these stars are then manually assigned their true inertial
vector to enable initial distortion model determination. Once enough stars have been manually
matched, the initial parameters are estimated. This process is repeated for a number of stars, until
the the software’s auto-match functionality can then be used to detect and identify all other images
automatically. As this method utilizes the actual star positions during the calibration process, it
is preferred above the chequerboard method as it leads to much higher accuracy during night sky
conditions.

Calibration Process

To calibrate the optics, the star camera was manually focused under the night sky such that the
faintest detectable stars were visible. Thereafter, a set of 200 star images of known constellations
was captured and saved.

A subset of the captured images is given in Figure 6.11, with the identified star locations
highlighted with red circles. As shown here, the constellations of Orion and the southern cross
were used extensively during this calibration procedure due to their distinct shapes.

(a) The Constellation of Orion (b) The Southern Cross

Figure 6.11: Night Sky Calibration Captures

These camera calibration images were then fed into the calibration software. During night-
time calibration, the following constants pertaining to the radial distortion model, as described in
Section 4.3.3, were determined

K1 = −0.0110036300, K2 = −0.0000223042, K3 = 0.0000002710, K4 = 0

and the following intrinsic camera parameters where also found

f = 6.182 mm, uo = 635.70 pixels, vo = 522.3 pixels

6.3.2 Redistortion Modelling
Searching for stars at estimated locations on an image plane further involves knowing how to
determine a distorted star position, given the knowledge of the true image plane position. This
process either requires a closed-form solution based on a reverse model or by using expensive error-
reduction calculation methods. In this work, a much simpler approach was taken by use of the
following approximation:

uc ≈ u′c (6.3.1)
vc ≈ v′c (6.3.2)

At small distortions these approximations will be valid, as the effect of the radial distance to
the boresight will be close to negligible. The model mentioned in Equation (4.3.4) will then be
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directly invertible such that

u′c ≈ uc − ucεr(uc, vc) (6.3.3)
v′c ≈ vc − vcεr(uc, vc) (6.3.4)

Although this assumption is valid close to the boresight, it will lead to increased errors when
attempting to search for stars that are closer to the edges of the image plane. It is therefore
imperative to analyse the effect of the redistortion error on the effective tracking FOV. To do this,
a grid of points in the distorted axis system was generated, undistorted by use of the previously
identified model, and then redistorted. A reduced version of these grids is shown in Figure 6.12.
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Figure 6.12: Visual Representation of Distorted Points

In the comparison of the distorted and redistorted versions of the image, it is evident that the
redistortion model seems to provide sufficient accuracy across the largest part of the FOV. The
four corners do, however, show the largest reprojection error. To analyse this, the total radial error
between the true-distorted and estimated-distorted positions, as pixels, were then determined, after
which the total radial distance from the boresight to the farthest detectable star for each case could
be determined. The results of this are shown in Figure 6.13
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Figure 6.13: Maximum Detectable Distance to Star as Function of Search Window Size

The values shown in this figure are based only on the search position error induced by the
redistortion model and does not include attitude prediction error. From this figure it can be
deduced that the expected equivalent circular FOV will be smaller than 45° only if the search
window width is smaller than 5 pixels. To compensate for possible prediction errors, it was decided
to use a search window of around 8 pixels, leading to a subsequent effective tracking FOV in the
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order of 49°. The FOV should therefore not be affected by the tracking mode, but rather limited
by the hardware itself.

6.3.3 Gyro Characterisation
As seen in Section 4.7, the Kalman system covariance matrix, Q, used in the covariance propagation
is dependent on the statistical properties of the gyro rate noise, as well as that of the underlying
process governing the change in bias over time. Although values for some of these parameters
are quoted in the ADIS16460 datasheet [78], sensor variations exist. It is therefore imperative
to characterise these processes to verify that the datasheet reflect the IMU characteristics and
determine the covaraince used in the Kalman filter calculations.

The two suggested methods for use during gyro calibration are that of the spectral density [95],
and that of Allan variance [96]. In this work, the Allan variance method is used as it is both well
documented and regularly applied in the literature.

Overlapped variable τ estimator

The Allan variance is a statistical tool used to determine various noise sources present in data.
This variance can be calculated by subdividing a dataset into varying cluster lengths corresponding
to an emulated sampling period, τ , where τ is an integer multiple of the sampling period at which
the dataset was originally acquired, τ0:

τ = nτ0 (6.3.5)

In this case n represents the data cluster size. For this calculation, the overlapped variable τ
estimator was used as it promised superior performance. A graphical representation of the process
used is shown in Figure 6.14, along with that of the nonoverlapped variable τ estimator.
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Figure 6.14: Visual Interpretation of Allan Variance Calculation

In this calculation, the times series, defined as

θ(t) =
∫ t

0
ω(t)dt (6.3.6)

is used where θ(t) represents the angular displacement. From this time series, the overlapped Allan
variance can then be calculated as [96]

σ2
w(nτ0, N) = 1

2n2τ2
0 (N − 2n)

N−2n−1∑
i=0

(θi+2n − 2θi+n + θi)2 (6.3.7)

In this equation, N , is defined as one more than the number of samples in the dataset.
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The Allan variance signifies a general method of noise characterisation and can be used to
determine quantization noise, ARW, Bias Instability (BI) and Rate Random Walk (RRW), among
others. In MEMS gyro technologies, however, only the following noise sources were found to be
dominant:

• Angle Random Walk – This can be determined by fitting a tangent line with a slope of − 1
2

to the log-log Allan deviation plot on the high-frequency side. The ARW value, Q, can be
read off on this line at τ = 1 s. This constant is then related to the gyro noise deviation by
[96]

ση1(τ) = Q√
τ

(6.3.8)

where ση1(τ) represents the deviation of the noise on the gyro measurements as a function
of the gyro sample period, τ . In this equation ση1(τ) is measured in °/s.

• Bias instability – This value, denoted by B, can be determined from the lowest point on the
Allan deviation plot as:

σ(τ) = 0.664B (6.3.9)

• Rate Random Walk – To determine this value, a tangent line with slope of + 1
2 can be fitted

to the log-log Allan deviation plot at the low-frequency side. The RRW value, K, can be
read off on this line at τ = 3 s [96]. This is then related to noise process governing the bias
drift over time by [96].

ση2(τ) = K
√
τ√

3
(6.3.10)

where ση2(τ) represents the deviation of the process governing the bias drift as a function of
sample period, τ . In this equation ση2(τ) is measured in °/s2.

A graphical example of the ARW, BI, and RRW determination is shown in Figure 6.15.
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Figure 6.15: Graphical Representation of Allan Deviation Interpretation

Experimental Setup and Methodolgy

To determine the gyro calibration factors, the hardware was set up so that the star tracker gyro
assembly was left unperturbed by external vibrations. IMU data were then collected over the span
of five hours.
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Characterisation Results

Figure 6.16a shows the IMU data as obtained during one of the experiments. Significant initial bias
drift can be seen in this figure, with measurements finally settling to a relatively steady position
after about two hours. According to the IEEE [97], this period is described as the gyro warm-up
period, and should be discarded during the calculation of the Allan variance.
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Figure 6.16: Measured IMU Dataset

Five of these datasets were collected, so that the variation between datasets could also be
analysed. A complete set of the calculated Allan variance for each axis is shown in Figure 6.17.

10−4

10−3

10−2

10−1

10−1 101 103

τ (s)

σ
(τ

)
(°
/s

)

x-Gyro y-Gyro z-Gyro

10−1 101 10310−1 101 103

Figure 6.17: Allan Deviation of Three-Axis MEMS Gyro

These figures show the Allan variance for sample sizes ranging between 0.01 s and 327.68 s.
From these data, it can be noted that the high-frequency part stayed consistent across all three
axes, whilst the low-frequency data showed much higher variations with sample period increase.
This can mainly be attributed to temperature fluctuations as well as population size used in the
Allan variance calculation.

As some of the datasets were inconclusive, only those datasets that showed an Allan variance
response consistent with literature were taken into account. Only two of the datasets were therefore
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valid. To analyse the average parameters for these two datasets, the pooled standard deviation
was used. This is described as:

σ̄(τ) =

√∑k
1 σk(τ)2

k
(6.3.11)

Where k represents the number of sample sets, σ, the deviation for each sample set, and σ̄ the
pooled standard deviation. Important to note here is that this equation is valid only if each sample
set contains the same number of observations.

The calculated pooled Allan deviation is shown in Figure 6.18. In these graphs, the yellow lines
represent the BI, red lines ARW, and black lines RRW.
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Figure 6.18: Pooled Allan Deviation of Three-Axis MEMS Gyro

From these plots the values for the ARW, RRW and BI were determined and are given in
Table 6.1.

Table 6.1: IMU Characterisation Results

x-axis y-axis z-axis
Bias Instability (°/s) 0.00075 0.0016 0.0018
Rate Random Walk (°/s2/

√
s) 2.1×10−4 1.0× 10−3 6.8 ×10−4

Angle Random Walk (°/s/
√

s) 0.0016 0.0021 0.0021

In this table, it is shown that the measured values correspond well to those of the datasheet
provided by Analog Devices [78] who quotes the BI as 0.0022 °/s. In this case, although the
values estimated in this work were slightly lower than what the datasheet reports, Analog Devices
mentions that the quoted BI is a compound term also taking into account the RRW. Differences
are therefore expected. In terms of ARW, the estimated values correspond well with that of the
datasheet as these were specified as 0.0020 °/

√
s around the x-axis and 0.0028 °/

√
s around the y-

and z-axes, and component-to-component variation is expected.
Although these values can be used to determine the sensor noise variances used in the Kalman

filter, concerns with regards to the effect of unmodelled processes on the perceived sensor variances
were noted. To ensure therefore that the Kalman filter will be robust against these unmodelled
processes, the calculated gyro variances were only used to determine the minimum variances. From
these minimum variances, an iterative approach was used to determine the final sensor variances
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used in the Kalman filter. Although this method was found to be robust, it is suggested that a
more in-depth characterisation and gyro modelling method be used in future work. Values used in
the Kalman filter were determined as:

σ2
η1

=

0.276
0.377
0.381

m(rad/s)2, σ2
η2

=

3.231
3.531
3.531

µ(rad/s2)2

Given this information, the sensors were characterised sufficiently to enable final system integ-
ration.

6.4 Sensor Fusion

In this work, as the IMU was used to observe higher-frequency dynamics than offered by the star
camera, a more intricate timing scheme had to be developed than what has been used previously.
The main reason for this was because two different update-rate sensor measurements had to be
fused. The IMU was set up to sample the sensor body-rates at a frequency of 10 Hz to allow
for high-frequency orientation propagation, whilst the star camera provided 1 Hz measurements
enabling attitude corrections. The key problem here was, however, that star camera measurements
did not become available when they were required as the integration and image download to SRAM
took around 700 ms. This problem is shown graphically in Figure 6.19.
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Figure 6.19: Processing Delay Problem

In this figure, each vertical line representes 100 ms, and k represents the point where image data
are supposed to be fused into the Kalman filter. The reason why this timestep is of importance, is
because the exposure of the star image is approximated to happen instantaneously at this point in
time, which falls approximately in the middle of the sensor exposure time. This simplification is
necessary as it decreases the complexity of the data integration. Owing to the capture and download
delay, vector data used in the measurement update process only become available at timestep k+6.
As the EKF attitude is still propogated during timesteps k to k+ 6, the Kalman filter would have
advanced during this period. To incorporate these vector measurements successfully, the data
therefore have to be incorporated retrospectively. To handle this situation, it was decided that
when star tracker data become available at timestep k + 6, the EKF state vector and covariance
matrix be reset to that as determined at timestep k. Once the filter has been reset, the image is
processed by use of the tracking mode. All vector measurements are then fused into the Kalman
filter and the sensor attitude is repropogated to the current timestep by using timestamped and
buffered gyro data. This ensures the EKF is always at the most recent attitude.
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6.5 Chapter Summary

The purpose of this chapter was twofold. Firstly, an emulation environment was developed, and ini-
tial subsystem testing was completed, after which sensor calibration and characterisation was done.
Finally, the system could be completely integrated, as required by the fourth project objective.

Although it was found that the low-cost star emulation environment was sufficient for initial
algorithm testing, it proved to be a cumbersome, difficult-to-calibrate method of star emulation.
The main problem with this evaluation environment was found to be the potential errors in star
matching, owing to mapping and setup errors.

This chapter also treated the calibration process of both the star camera and the gyros. With
regards to the star camera, the effect of tangential distortion was evaluated, and found to be close
to negligible, as a reprojection accuracy increase of only 0.007 pixels could be seen in images for
which tangential distortion was calibrated. The star camera was subsequently also calibrated for
use during night sky tests, and the effect of the chosen redistortion model was investigated.

Further calibration pertaining to the gyros was also done. Five five-hour long datasets were
collected and processed by use of the Allan variance method. The Allan variance method showed
that the sensor was within manufacturers’ specifications with regards to BI and ARW. It was
however concluded that the gyro covariance modelling required a much more in-depth analyses as
the values used in the Kalman filter had to be approximated experimentally.

Finally, the complete system integration, as used during subsequent night sky tests were ex-
plained. The final system integration highlights some timing and synchronisation issues noted
during the full system implementation. To solve this, a sensor synchronisation scheme based on a
EKF state reset was implemented. The sensor developement was therefore satisfactory, and final
night sky tests could be completed.
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Results and Discussion

To validate the system capabilities during autonomous operation, two different testing situations
were devised to achieve the final project objective. Firstly, sensor performance during near-
stationary conditions was analysed. During these experiments the sensor was left earth fixed
whilst exposed to night-time conditions. Although this proved sufficient for initial system valida-
tion, a more realistic test case was then implemented to test the system response during variable
rate excitations.

7.1 Earth-Fixed Testing

Due to the nature of the ECI coordinate frame, the boresight position of an earth-fixed star tracker
on the celestial sphere is expected to stay relatively constant in declination whilst showing an almost
linear response in right ascension due to the earth’s rotation rate. Although this nonstationary
nature of the coordinate frame does make it difficult to measure the sensor output stability, it does
allow the testing of bias and rate estimation algorithms at very low rotation rates.

During the earth-fixed tests, the developed sensor was left pointing at a populated patch of sky
for about one hour. A full set of rate, bias, and orientation data was then requested by use of a
serial interface that was connected to a PC. Ground support software was developed in MATLAB
to enable serial communication, with a further custom power supply/serial converter assembly
developed to enable power measurement and communication.

Further, to show experiment repeatability, the testing procedure was repeated on three separate
occasions. Data were requested every second over a period of one hour. Communications were
limited to one request per second as a higher request rate caused more frequent packet errors on
the PC side of the setup.

An illustration of the hardware setup is shown in Figure 7.1

FOVStar

SensorUSB–Serial
Converter

To PC

Figure 7.1: Earth-Fixed Testing Setup
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During these experiments, the functioning of orientation, bias correction, and rate estimation,
as well as the performance of the gyro-assisted tracking mode, was observed. The performance of
the sensing algorithms in each case is treated in the following subsections.

7.1.1 Star Identification and Tracking
Figure 7.2 shows the number of stars tracked, as well as a rough estimate of the number of stars
that should have been in the FOV. This estimated value is based on the postprocessed boresight
vectors, as well the assumed FOV.
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Figure 7.2: Number of Stars Tracked Over One Hour

Overall, the results shown are promising, with the tracking mode showing on average nineteen
stars identified and tracked. In these data the number of stars tracked are shown to be less than
those estimated to be in the FOV. This difference is attributed to the effect of diffraction in the
atmosphere, as stars will appear dimmer than expected, this also causes the variations in the
number of stars tracked. Overall, new stars could successfully be identified, tracked, and discarded
once no longer in the FOV.

7.1.2 Orientation Estimation Results
In the case of the orientation data, only the inertially referenced quaternions were requested. All
attitude quaternions were then postprocessed to determine the corresponding attitude matrices and
therefore, by extent, the sensor boresight vectors. These vectors were then transformed to right
ascension, declination, and roll angles. These orientation angle estimates are shown in Figure 7.3.

As expected, the lines themselves show definite trends, with the right ascension showing an
almost linear increase over time, whilst the declination and roll angles show a slight increase lower
than 0.5° over the course of an hour. These variations over long periods exist as the sensor is
not perfectly alligned with the earth’s rotation axis. Overall, however, this figure shows a good,
consistent response. It can also clearly be seen that the round-boresight data are much coarser
than that of the cross-boresight values, as these estimated data are not in the observable plane
[16].

Although these results give a relatively good indication of relative noise, no intuitive conclusions
can be made with regards to the actual measured accuracy of the designed system. To solve this
problem, a linear regression, as proposed by Liebe et al. [16] is performed. This relative attitude
drift caused by the earth’s rotation is then subtracted. The remaining zero-mean data can then
be analysed statistically to determine some intuitive measure of system accuracy. The determined
distributions for this dataset are shown in Figure 7.4:

These data show unbiased, normally distributed errors for all three datasets. As expected,
and as seen in previous research by Erlank [32], the error in declination shows the least variance,
whilst the round-boresight error shows the greatest variation. For these datasets, a summary of
the statistical properties, related to determined noise variance, is given in Table 7.1.
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Figure 7.3: Estimated Boresight Location
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Figure 7.4: Cross-Axis Error Distribution

In conclusion of the orientation estimation results, the sensor showed good repeatability with
major statistical differences attributed to inconsistency with regards to weather. Overall, the sensor
delivered reliable autonomous operation for at least an hour at a time during constant, low rates.

7.1.3 Rate Estimation and Bias Correction
During earth-fixed testing, rate data, as measured by the gyro, compensated by the EKF, and
estimated by the stellar gyro algorithm were also requested. These data are shown in Figure 7.5.

This figure shows the comparison between the uncompensated IMU, compensated IMU and
estimated body rates. As can be seen from these data, bias rejection with regards to EKF filtering
worked well, as there is considerably less error on the output rate data. In comparison with the
estimated stellar rates, however, the IMU rates show a much coarser response, clearly indicating
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Table 7.1: Static Sensor Measurement Results (3σ)

1σ Error (°) 3σ Error (°)
Right Ascension 0.0039 0.0117
Declination 0.0025 0.0078
Round Boresight 0.0114 0.0342
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Figure 7.5: Measured Sensor Rates During Earth-Fixed Testing

the advantages of augmenting the system with the vector-calculated values at low rates.
For both the compensated and estimated stellar rates, the mean, and variance were then cal-

culated during postprocessing. Owing to the rotation of the earth, it is expected to see the data
distributed not around zero, but around some mean value representing the earth rate. As the axis
of the sensor is not aligned with that of the earth’s rotation, the rate is expected to be divided
across the three sensor axes. The statistical characteristics of these measured rate signals are shown
in the following table

Table 7.2: Earth-Fixed Sensor Rate-Measurement Mean

Mean (°/s) 3σ Deviation (°/s)
x y z x y z

Raw Measurements −0.187 0.770 −0.248 0.050 0.077 0.068
Bias Compensated 0.002 −0.001 −0.004 0.049 0.086 0.067
Stellar Gyro 0.001 −0.001 −0.003 0.005 0.004 0.017

From this table, it is evident that the stellar gyro algorithm has a substantially less noisy
response than that of the IMU. As shown here, the mean of the norms of the estimated rate
vectors, is nonzero. This is expected, however, as the earth itself is not static relative to inertial
space. Instead, it rotates at around 0.004 178 °/s (the equivalent of 360° every sidereal day). By
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taking the norm of the mean of the stellar gyro data sets, the estimated rate of the earth’s rotation
was calculated as 0.004 184 °/s, showing an error of around 22 milli-arcsecond/s.

7.1.4 Experiment Repeatability
To ensure robust and successful functioning of the sensor, datasets were collected on three separate
occasions. During these three tests, weather conditions were relatively similar. Although skies were
clear during each test, differences in environmental conditions such as humidity and ambient light
contributed to slight variations in measured accuracies. A summary of the most notable results is
given in Table 7.3

Table 7.3: Static Sensor Measurement Results (3σ)

Test 1 Test 2 Test 3
Orientation (°)

Right Ascension 0.0092 0.0158 0.0117
Declination 0.0106 0.0109 0.0078
Round Boresight 0.0546 0.0561 0.0342

Stellar Rates (°/s)
x-Axis 0.0047 0.0059 0.0052
y-Axis 0.0035 0.0056 0.0040
z-Axis 0.0144 0.0277 0.0173

IMU Rate (°/s)
x-Axis 0.0491 0.0494 0.0498
y-Axis 0.0849 0.0796 0.0862
z-Axis 0.0663 0.0667 0.0670

From these results, estimated sensor errors show good agreement. It can therefore be concluded
that this sensor functions reliably during static low-rate conditions.

7.1.5 Discussion
During the practical system testing, it was determined that the sensor showed similar responses
to that of the simulated measurements shown in Chapter 5. As expected, the attitude and bias
Kalman filter responds similarly to previous results. During this test, it was, however, determined
that the sensor shows much less gyro drift than the modelled system showed. This is, however,
expected, as the noise profile of the modelled and actual sensors did not correspond perfectly. The
estimated and compensated rates further also responded quite similarly to the simulated data,
although the measurements from the simulated system are slightly less noisy. Overall, however,
the integrated system worked correctly, with all subsystems functioning as expected during online
algorithm execution.

7.2 Dynamic Testing

Satellite orientations are rarely completely stationary but tend to experience some form of dynamic
condition. To ensure correct functioning of the system during these dynamic conditions, proper
testing should be performed. An experimental setup, such shown in Figure 7.6 was therefore
devised.

Similar to tests in the STEVE, an Ideal Aerosmith 1270VS rate table was used. This rate
table was set up under clear night sky conditions. The rate table was then controlled through the
on-board serial interface to induce a sinusoidal slew rate with peak of 1 °/s and period of 400 s.
The input waveform was updated every two seconds and is given by:

ω =
[
0 0 sin

(
kπ∆t
200

)]
°/s (7.2.1)
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Figure 7.6: Slew Test Setup

The sensor was then set up at an angle of about 58° to ensure the excitation of multiple sensor
axes. During these tests, the same sensor data as in the earth-fixed tests were requested. As
before, orientation quaternions were postprocessed to determine the path of the boresight vector.
Owing to the physical setup of the sensor, a maximum slew angle of 60° was allowed as any larger
deviation would lead to the sensor FOV being obstructed. Results obtained during these tests
follow.

7.2.1 Star Identification and Tracking
Firstly, the performance of the gyro-augmented tracking mode was analysed to determine its per-
formance. During these tests, as in the previous case, the more computationally efficient 3 × 3
search grid was used. Figure 7.7 shows the number of stars tracked, along with the estimated
number of stars in the FOV.
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Figure 7.7: Stars Tracked During Dynamic Conditions

Overall, the algorithm performance was satisfactory with more than three stars detected even
during rates as high as 1 °/s. In this plot, it is clearly shown that the number of stars estimated to
be in the FOV are considerably more than those actually tracked. As in the earth-fixed test case,
this is mainly attributed to the effect of the earth’s atmosphere.
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In this case, however, it should also be noted that the number of stars tracked is not necessarily
equivalent to the number of stars detected in the current frame. This is mainly due to stars only
being counted as tracked once they have been identified in more than one image. During these
dynamic tests, star will also appear as low-intensity light streaks. As the total incident photons
are then spread over a strip of pixels, the total star intensity will be much lower, causing stars in
the FOV to fall under the noise threshold. Owing to the decrease in star centroiding accuracy with
regards to star streaks, the tracking validation margin also decreases the total number of stars
tracked.

7.2.2 Orientation Estimation
Figure 7.8 shows the orientation estimation results obtained during the dynamic system testing.
Both the right ascension, declination, and roll angle behaved as expected. Determining the actual
accuracy during dynamic testing proved to be much more difficult, however, as the orientation not
only follows a severely nonlinear trend, but no ground truth measurement of sufficient accuracy was
available. The fact that the sensor could function in tracking mode shows that enough accuracy
was obtained, however, as the estimated star locations were completely dependent on the previous
attitude estimate.
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Figure 7.8: Estimated Orientation During Dynamic Testing

This figure does, however, show relatively smooth transitions with only some slight discontinu-
ities at the rate transition spots. Owing to the nature of the required sinusoidal excitation, the
rate table had to transition between gears, leading to the necessity of enabling the clutch, and
subsequently causing a minor stall during transition periods. This stall is better demonstrated by
looking at the numerical derivative of the right ascension data as shown in Figure 7.9.

From this figure, the periodic spike in right ascension rate data can clearly be seen. Another
interesting phenomenon that can be observed is the correlation between the smoothness of the rate
of right ascension change, number of stars observed and experienced system rate. This illustrates
the dependence of the estimation stability, and therefore accuracy, on the number of stars tracked
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and size of the rate excitation. Although not shown here, this phenomenon also affects both the
declination and round-boresight data.

7.2.3 Rate Estimation and Bias Correction
As in the previous section, measured sensor rates were also obtained during these dynamic test
conditions. These measured rates are shown in Figure 7.10.
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Figure 7.10: Measured Rates During Dynamic Conditions

This figure shows a comparison between the raw measured IMU rates, the IMU rates com-
pensated by means of the estimated bias, and the stellar gyro rates around each axis. Like the test
results obtained during the earth-fixed tests, the round-boresight rate estimation shows to be much
less accurate than across the cross-boresight axes. Although no explicit rate was induced on the
sensor x-axis, some cross coupling can be seen and is expected due to slight sensor misalignments.
Overall, sensor cross coupling was very low, however. As in the orientation estimation results, it
can be noted, however, that the rate estimation algorithm performance degrades at higher body
rates. Similar to the previous dataset shown, this is mainly caused by the expected decrease in
centroiding accuracy owing to the dispersion of the observed star spots.
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7.2.4 Rate Residual Analysis
To determine the accuracy of the system with regards to the bias-compensated and stellar gyro
rates, the ground truth input rate measurements can be used.

For each of the cases, the total experienced system rate was calculated by taking the norm of
each angular rate measurement, the sign was then obtained by taking the measured sign of the
y-gyro measurements. This process was repeated for the whole dataset for both the stellar gyro
and compensated IMU rates. The measured stellar gyro rates along with true rates and residual
are shown in Figure 7.11
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Figure 7.11: Stellar Gyro Rate Performance

This figure shows the relatively consistent measured rate noise determined by the stellar gyro
algorithm. Also shown is the sudden rate discontinuities close to the rate crossing points. Overall,
the stellar gyro estimates show satisfactory results with low noise amplitudes. The noise does
however increase as rates increase, and reaches a maximum of 0.06 °/s. Important to note here,
however, is that the rate residual is calculated without perfect knowledge of phase variations
between the measured stellar gyro rates and the rate table setpoint. This is because subsecond
synchronisation accuracy could not be achieved between inducing a rate excitation and requesting
the estimated sensor rates.
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Figure 7.12: Bias-Corrected Rate Performance

The bias corrected results performed worse than that of the stellar gyro rates, as the bias was
slightly overestimated due to the inaccurate star centroid determination during high slew-rates.
This was further influenced by the number of stars tracked, as fewer visible stars meant that less
corrections were available. Overall, however, the bias corrected performance was good in agreement
with the raw measurements, and seen as functioning successful.
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7.2.5 Discussion
As in the previous tests, results requested from the sensor showed good correspondence to those
obtained during both earth-fixed testing and simulation. Although the number of stars was slightly
lower than previous cases, this is expected as the other tests did not have the star streaking problem
observed during these tests. The estimated attitude and rate, as well as the compensated rates
worked as expected. In this case, no estimate of the system orientation accuracy is given as there
was no ground truth measurement. Both the LSQ rates and the bias-corrected rates showed a
greatly improved response above the raw rate measurements. In this case, the LSQ rate estimation
formulation showed a much higher accuracy than that of the bias corrected values. Overall, the
system showed a robust attitude and rate estimation response up to 1 °/s.

7.3 Estimated Average Power Consumption

In conclusion, to analyse the sensor’s power capability, an estimate of the actual power consumption
of the sensor is required. The current measurement output of the support hardware was connected
to a Tektronix TDS 1012B oscilloscope. The current was measured and finally multiplied by the
estimated supply voltage. Figure 7.13 shows this measured power usage. Like the first CubeStar
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Figure 7.13: Measured Instantaneous Power Usage Over One Period

iteration, the power usage followed some distinct operational phases. In this case, these phases are
i) processing, ii) integration, and iii) image download. A summary of these results is shown in the
Table 7.4.

Table 7.4: Sensor Power Measurement Results

Usage Phase Usage (mW) Duration (ms)
Processing 240 0.3
Integration 270 0.5
Download 400 0.2
Average 277

This measured power usage was, however, found to be significantly higher than that of CubeStar
V4.2. This can mostly be attributed to the power consumption of the IMU. As the specified rate
sensor current requirement was given as 44 to 55 mA, the expected IMU power consumption should
range between 132 and 165 mA.
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7.4 Chapter Summary

In this chapter, the final system validation testing was completed. These tests involved observing
sensor functioning during both earth-fixed and slew conditions. These experiments were seen
as being successful as attitude and rate estimation, as well as IMU bias compensation worked
succesfully, thereby achieving the final project objective.

During both of these test cases, it was found that the sensor performed as expected, with the
tracking mode able to track a sufficient number of stars during operation. Both orientation and
rate estimation, as well as bias correction further showed promising results.

With the analysis of the attitude determination accuracy, it was found that the sensor could
repeatably provide estimates up to an accuracy of 0.01° around the cross-axes, and 0.03° to 0.05°
around the round-boresight axis during earth-fixed tests.

During slewed tests, no orientation accuracy estimates are given owing to the lack of available
ground truth data.

In terms of measured rates, the stellar gyro rate estimates showed good performance. These
measurements were unfortunately affected by the effect of the rate table gear transitions. Overall,
however, the system showed successful functioning and could track the rates well with a good
signal-to-noise ratio.

The system power was also analysed to determine the overall system performance. Although it
was found to be higher than CubeStar V4.2, it was not unexpected as the IMU used is quite a power-
intensive device. Overall, however, the system still functions within the required specifications.

Overall, the system showed successful function, delivering proof-of-concept results, as well as
relatively robust operation.
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Chapter 8

Conclusions and Recommendations

8.1 Summary

The overarching aim of this research project, developing a high-performance attitude and rate sys-
tem, was therefore achieved and the project was deemed as successful. The technical requirements
were met by completing the five objectives as defined in Chapter 1.

Designing a Suitable Hardware Platform

An augmented stellar sensor based on an IMU and star tracker was designed by extending the
CubeStar hardware platform. This augmented platform featured an improved, low-power, 32-
bit MCU from the STM32L4 family showing increased computational capabilities, with a higher
clock frequency than the original EFM32 MCU, as well as an FPU. The CubeStar platform was
further extended by adding an ADIS16460 IMU, allowing high-frequency rate updates. Although
the redesigned platform was not perfectly compliant with the interface of CubeStar V4.2, the
hardware functioned as required and is deemed to be a success.

Investigating Software Techniques

During this work, numerous software techniques as required by the integrated system were identi-
fied. It was decided to reuse most of the image processing algorithms as identified by Erlank [32]
and Calitz [31]. With regards to LIS matching, the geometric voting star matching method scheme
was identified to allow for initial star matching, as it was used successfully during the initial devel-
opment of CubeStar. Numerous tracking methods were also identified for usage; however, it was
decided to develop a gyro-aided tracking mode based on star location propagation as this enabled
the most efficient usage of available resources. With regards to attitude determination, three al-
ternatives were identified: TRIAD, QUEST, and an attitude and bias EKF. The EKF was chosen
as it provided most of the required functionality. Finally, the rate estimation scheme, as developed
by Crassidis et al. [30] was investigated, as it allows high accuracy, gyroless rate estimates.

Implementing the system In Simulation

The EKF was then implemented in a simulated environment for initial proof-of-concept testing
and validations. During these simulations, it was noted that leaving the EKF uninitialised led to
sporadic, unexpected results such as high bias overshoots and algorithm instability. To compensate
for this, it was decided to use the QUEST algorithm to provide the initial EKF state vector.
A simulated system was then implemented to verify the interoperation of all required software
techniques. All algorithms showed successful operation. In this case, the simulated IMU performed
slightly worse than the LSQ rate estimation technique, as expected. Overall, however, the system
worked as expected. Although the overall tracking mode performance was proven to perform better
with a larger search grid size, using only a 3 × 3 grid was found to prove sufficient performance
for initial algorithm validation. During system simulations and hardware-in-loop testing, it was
further noted that the tracking mode showed a great performance increase when compared to that
of the LIS mode. In this case, although the EKF was further found to require more computation
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than QUEST, it was found to be a convenient formulation that allowed both attitude estimation
and bias compensation.

Integrating the Hardware and Software Interface

To ensure hardware and software integration, an emulation environment was developed with which
initial functional testing could be performed. Although the emulation environment allowed for
initial system testing, it was proven to be of insufficient accuracy for complete online algorithm
validation. The emulated environment was therefore only used to enable proof-of-concept res-
ults. The final hardware calibration and characterisation was then performed, along with the last
software integration, to ensure a fully functional attitude and rate estimation system.

Validating Sensor Operation During Night Sky Tests

To analyse system performance, the developed sensor was tested under clear night sky conditions.
This system was exposed to both earth-fixed and dynamic conditions. During both cases, the
sensor showed successful functioning with regards to attitude and rate estimation, as well as IMU
bias correction. The most notable sensor results are shown in Table 8.1.

Table 8.1: Improved CubeStar Specifications

Attitude (3σ) Cross-axis 0.0117°
Round-axis 0.0342°

Rate (3σ) Cross-axis 0.005 °/s
Round-axis 0.017 °/s

IMU (3σ) Cross-axis 0.086 °/s
Round-axis 0.067 °/s
Catalogue Size 410
Sensitivity Up To 3.8 Mv

Physical Mass 87 g
Size 50× 35× 70 mm

Power Supply Supply voltage 3.3 V
Average Power Usage 277 mW
Peak Power Usage 400 mW

In these tests, the gyro-aided tracking mode showed excellent functioning during both high-
and low-dynamic rates. Although the number of stars detected was found to be lower than those
expected to be in the FOV, it is attributed to environmental conditions and diffraction in the
earth’s atmosphere, as well as the low signal to noise ratios observed during high slew conditions.
The system was tested up to a rate of 1 °/s. The system further showed accurate IMU bias
estimation results during low slew rates, although slight overestimations did occur during high
rates, owing to inaccurate star-streak centroiding. Overall, however, the bias estimation was found
to be successful, and was proven to mitigate per-axis gyro drift. In conclusion, the sensor solution
proved to function successfully during the test conditions it was exposed to, showing attainable
attitude accuracy in the order of 0.01° around the cross-boresight, and 0.03° around the round-
boresight axes during earth-fixed testing. The sensor could deliver an update frequency of at least
1 Hz, with attitude propagates available at a higher frequency, if required. The system was found
to use, on average, 277 mW.

The technical requirements were therefore fulfilled by:

• Implementing a star tracker-based system that delivers both rate and attitude data;

• Implementing, testing, and proving the functioning of an orientation and bias EKF in the
estimation of IMU bias.
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• Implementing a high-performance gyro-assisted star tracker tracking mode, based on a re-
duced ROI search and lookup-table, to reduce overall sensor computation and power;

• Developing a system that requires a maximum power consuption of around 400 mW;

• Implementing a high-accuracy rate estimation scheme for usage during low update rates; and

• Providing an integrated star tracker–gyro solution, functioning both accurately and autonom-
ously.

8.2 Recommendations and Future Work

8.2.1 Better Night Sky Testing
Although night sky testing showed good results, no ground truth measurements are available to
aid in the determination of sensor accuracy. It would therefore imperative to test the sensor in
conditions where ground truth data is available to determine the actual accuracy of the developed
system.

8.2.2 High-Dynamic Rate Centroid Reconstruction
One of the key problems identified during this project was the decrease in accuracy obtained from
measurements when the sensor was subject to high body rates. This was caused by the streaking
of stars across the image plane, brought on by high image sensor integration times. To compensate
for this, it is suggested that investigation be done in the viability of a gyro-aided star-streak
reconstruction algorithm. This work should be similar to the work of Sun et al. [44]; however, it
should specifically be applied for online usage on a low-power platform.

Not only will this increase the signal to noise ratio of the star tracker, but it will also allow for
much higher centroid detection performance during high slew conditions, as reconstructed stars
will much closer resemble the desired point-spread star nature, enabling higher accuracy.

8.2.3 On-Orbit Recalibration Techniques
During this project, it was noted that the star tracker accuracy was very dependent on the envir-
onmental conditions. Not only does this severely impact the overall accuracy measurement of the
star tracker, but it also impacted the calibration process. In this case, the calibrated parameters
could fluctuate, dependent on the time of calibration. The accuracy of the star tracker system
would therefore be questionable during actual on-orbit usage.

The estimated calibration parameters are further also quite sensitive to factors such as tem-
perature and barometric pressure, as well as vibrations experienced during launch. It is therefore
likely that lens characteristics might change between calibration and usage. Because of this, it is
suggested that an in-orbit calibration scheme be developed to allow for automatic recalibration.

Not only will this be of use during on-orbit conditions, but it will also streamline the calibra-
tion process, by removing the need of downloading large image datasets. Only coarse calibration
would therefore be necessary such that initial star matching is possible, where after autonomous
calibration would be enabled.

8.2.4 Hardware Refinement
It was further noted that the hardware usage is suboptimal. A few hardware and data-flow optim-
isations can therefore be implemented.

Investigation of Alternate Microcontroller Technologies

With the global increase of the internet-of-things market, miniature, low-power devices have be-
come prominent. Currently, some MCU families offer peripherals that can interface with image
sensor devices. These interfaces are connected to separate Direct Memory Access peripherals and
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Figure 8.1: Image Spectrum

can autonomously, and at high speeds, transfer image data from a camera sensor to external SRAM.
An example of a low-power MCU with such a peripheral, is the STM32L4+ series.

By utilising this MCU family, the FPGA would become redundant, subsequently making for a
much smaller, more efficient star tracker assembly. The overall module production cost and power
usage will also be decreased, leading to a much more elegant solution.

Increasing FPGA Utilisation

Other optimisations depend on increasing the utilisation of the FPGA. An example of this entails
developing an inline centroid detection technique. This will greatly decrease the required com-
putation, as the image plane search procedure is the most computationaly expensive process in
the CubeStar software stack. Although this does require extensive FPGA development, the de-
termination of star centroids, as images are clocked from the image sensor, will therefore improve
hardware utilisation and overall computational requirements.

Another method of decreasing computational cost during LIS mode, would be to use the FPGA
in the calculation of the total value of each image row. If an image row contains a star, it will be
easy to identify, as it will show up as a peak. An example of this is shown in Figure 8.1, where such
an image spectrum was calculated. Here, the peaks of stars are clearly visible in the centre of the
image plane. This process is not only simple to implement but can also lead to a great decrease
in necessary computation during initial attitude acquisition, subsequently decreasing power usage
and computational effort.

Design of a High-Speed Calibration Device

Another problem identified during the development of the sensor, was that the camera calibration
process is a long, tedious process that can span days. Not only is this highly dependent on weather,
but also on the position and visibility of the moon. Optimal usage of clear, unobscured night-time
conditions is therefore necessary. Currently, the download of calibration images over the serial link
is a tedious process, taking up to a few hours to gather enough data for successful calibration.

To optimize this process, the design and implementation of a plug-in USB device that can
attach to the image sensor assembly is suggested. This will allow for fast image transfer, decreasing
required lens focusing and calibration time, as well as enabling real-time, offline algorithm testing
and refinement.
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