
Detection of Oscillatory Actuator Failures in Passenger Airliners

by

Dylan Els

Thesis presented in partial fulfilment of the requirements for the degree of
Master of Engineering

in the Faculty of Engineering at Stellenbosch University

Supervisors:

Dr J.A.A. Engelbrecht Prof H.A. Engelbrecht
Department of Electrical and Electronic Engineering

April 2019



Declaration

1. I have read and understand the Stellenbosch University Policy on Plagiarism and the defin-
itions of plagiarism and self-plagiarism contained in the Policy [Plagiarism: The use of
the ideas or material of others without acknowledgement, or the re-use of one’s own pre-
viously evaluated or published material without acknowledgement or indication thereof (self-
plagiarism or text-recycling)].

2. I also understand that direct translations are plagiarism.

3. Accordingly all quotations and contributions from any source whatsoever (including the in-
ternet) have been cited fully. I understand that the reproduction of text without quotation
marks (even when the source is cited) is plagiarism.

4. I declare that the work contained in this assignment is my own work and that I have not
previously (in its entirety or in part) submitted it for grading in this module/assignment or
another module/assignment.

D. Els
Initials and Surname

April 2019 

Date

Copyright c© 2019 Stellenbosch University
All rights reserved

Stellenbosch University  https://scholar.sun.ac.za



Abstract

This project investigates and develops techniques to detect oscillatory failure cases (OFCs) in
aircraft control surface actuators. Oscillatory failures induce additional loads on the structure of
the aircraft, requiring additional structural support to withstand these loads, increasing the overall
mass of the aircraft. If oscillatory failures can be detected and pacified quickly, then the additional
structural support would not be required, and the mass of the aircraft can be reduced, resulting
in improved fuel efficiency and aircraft performance.
Oscillatory failure case (OFC) detection is performed by evaluating the difference (residual) between
the measured behaviour of the real actuator and the simulated behaviour of a fault-free analytically
redundant actuator model running in parallel with the real actuator. An OFC detection system
must generate a residual signal using the analytically redundant actuator model, and evaluate
the residual signal to determine whether an oscillatory failure is present. The challenge for the
residual evaluation stage is to distinguish between the components of the residual signal resulting
from modelling uncertainty and sensor noise, and the components resulting from an actual oscil-
latory failure case. The OFC detection system must detect oscillatory failures within a maximum
allowable detection time, but must not produce false alarms.
Five different oscillatory failure detection techniques are investigated and developed, namely oscil-
lation counting, integrated absolute error (IAE), discrete Fourier transform (DFT), multi-window
Fourier transform (MWFT), and phase-locked loop (PLL) detection. Oscillation counting is an
existing OFC detection technique that was developed by Goupil [1] and is currently in service on
the Airbus A380 passenger airliner. The other four techniques are new OFC detection techniques
that are developed in this project.
A simulation framework is created to serve as a testbed for the training and testing of the different
OFC detection techniques. The simulation framework contains models for the physical actuator,
the analytically redundant actuator, the oscillatory failures (both liquid and solid failures), the
flight control system, and the aircraft longitudinal dynamics. The simulation models the aircraft’s
response to an oscillatory failure, since it affects the performance of the OFC detection.
The five OFC detection techniques are trained and rigorously tested using training and testing
data generated with the simulation framework. The detection thresholds for each technique are
“trained” on fault-free data to determine the lowest detection thresholds that do not produce
false alarms. The detection techniques are then tested using testing data to determine the smallest
amplitude oscillatory failure that each technique can detect within the specified maximum allowable
detection time. The number of false alarms for each technique is also determined.
The results show that DFT, MWFT, and the PLL outperform oscillation counting and IAE by
detecting smaller amplitude oscillatory failures and with shorter detection times, with MWFT
providing the most promising results. However, oscillation counting and IAE are the most compu-
tationally efficient techniques, while DFT, MWFT, and PLL are more computationally expensive.
Overall, the multi-window Fourier transform (MWFT) technique is the recommended approach for
OFC detection, offering the best detection performance with only a small increase in computational
complexity.
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Uittreksel

Hierdie projek ondersoek en ontwikkel tegnieke om ossillatoriese faling gevalle (OFGs) in vliegtuig
beheeroppervlak aktueerders te bespeur. Ossillatoriese falings induseer bykomende ladings op die
struktuur van die vliegtuig, en vereis dus bykomende strukturele ondersteuning om hierdie ladings
te weerstaan, wat die algehele massa van die vliegtuig verhoog. Indien ossillatoriese falings bespeur
en vinnig gepassifiseer kan word, dan sou die bykomende strukturele ondersteuning nie benodig
word nie, en die massa van die vliegtuig sou verminder kon word, wat sou lei tot verbeterde
brandstofverbruik en werkverrigting.
Ossillatoriese faling geval (OFG) bespeuring word uitgevoer deur die verskil (residu) te evalueer
tussen die gemete gedrag van die werklike aktueerder en die gesimuleerde gedrag van ’n foutvrye
analities-oortollige aktueerder model wat in parallel met die werklike aktueerder uitvoer. ’n OFG
bespeuringstelsel moet ’n residu sein genereer deur gebruik te maak van die analitiese-oortollige
aktueerder model, en moet die residu evalueer om te bepaal of daar ’n ossillatoriese faling teen-
woordig is. Die uitdaging vir die residu evaluasie stadium is om te onderskei tussen die komponente
van die residu sein wat afkomstig is van model onsekerheid en sensor ruis, en die komponente wat
afkomstig is van ’n werklike ossillatoriese faling geval. Die OFG bespeuringstelsel moet ossillato-
riese falings bespeur binne ’n maksimum toelaatbare bespeuringstyd, en moet nie vals alarms gee
nie.
Vyf verskillende ossillatoriese faling bespeuringstegnieke word ondersoek en ontwikkel, naamlik os-
sillasie telling, geïntegreerde absolute fout (IAE), diskrete Fourier transform (DFT), multi-venster
Fourier transform (MWFT), en fase-sluit lus (PLL) bespeuring. Ossillasie telling is ’n bestaande
OFG bespeuring tegniek wat ontwikkel is deur Goupil [1] en word tans gebruik op die Airbus A380
passassiersvliegtuig. Die ander vier tegnieke is nuwe OFG bespeuringstegnieke wat ontwikkel is in
hierdie projek.
’n Simulasie raamwerk is geskep om te dien as ’n toetsplatform vir die opleiding en toets van
die verskillende OFG bespeuringstegnieke. Die simulasie raamwerk bevat modelle vir die fisiese
aktueerder, die analities-oortollige aktueerder, die ossillatoriese falings (beide vloeibare en soliede
falings), die vlugbeheerstelsel, en die vliegtuig se longitudinale vlugdinamika. Die simulasie mo-
delleer die vliegtuig se reaksie op die ossillatoriese faling, aangesien dit die prestasie van die OFG
bespeuring beïnvloed.
Die vyf OFG bespeuringstegnieke is opgelei en volledig getoets deur gebruik te maak van opleiding
en toets data wat genereer is met die simulasie raamwerk. Die bespeuring drempels vir elke tegniek
is “opgelei” op foutvrye data om te bepaal wat die laagste bespeuringsdrempel is wat nie vals
alarms gee nie. Die bespeuringstegnieke is dan getoets op toets data om te bepaal wat die kleinste
amplitude ossillatoriese faling is wat elke tegniek kan bespeur binne die maksimum toelaatbare
bespeuringstyd. Die aantal vals alarms vir elke tegniek is ook bepaal.
Die resultate wys dat die DFT, MWFT, en PLL tegnieke oortref die ossillasie telling en IAE
tegnieke deur kleiner amplitude ossillatoriese falings te bespeur in korter bespeuringstye, met die
MWFT wat die mees belowende resultate lewer. Die ossillasie telling en IAE tegnieke bly egter
die mees berekeningsdoeltreffende tegnieke, terwyl die DFT, NWFT, en PLL meer berekenings-
koste dra. Algeheel, word die multi-venster Fourier transform (MWFT) tegniek aanbeveel as die
voorkeurtegniek, omdat dit die beste bespeuringsprestasie bied met net ’n klein verhoging in be-
rekeningskoste.
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Chapter 1

Introduction

1.1 Background and Motivation

Aircraft designers and manufacturers have steadily been phasing out mechanical flight control
systems in favour of electrical flight control systems (EFCS), or “fly-by-wire” systems. These
newer control systems allow for more sophisticated aircraft control, where the actuators of the
aircraft control surfaces can be controlled electronically through the use of embedded computers.
However, the use of EFCS introduces new failure points that have to be considered [1], especially
at flight control surfaces.
Control surface failures can lead to substantial additional loads being applied to the structure of the
aircraft, and as a result, structural engineers have to reinforce the aircraft structure to withstand
these increased loads. This “local structural load augmentation” adds to the overall weight of the
aircraft, resulting in decreased fuel efficiency, flight range, and flight control. A list of these control
surfaces is given in Figure 1.1.

2 Rudders

2 Elevators

3 Ailerons
8 Spoilers

FlapsSlats

Figure 1.1: A380 Flight Control Surfaces. Image adapted from [2], [3].

One specific failure case that must be addressed is known as the oscillatory failure case (OFC).
This occurs when a spurious oscillatory signal propagates through the control loop of a control
surface actuator, causing the control surface to oscillate sinusoidally [1]. These failures typically

1

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 1. INTRODUCTION 2

occur as a result of a single electronic component generating a spurious sinusoidal signal, and result
in increased structural loads and overstress, reducing the aircraft’s fatigue life [4]. The aircraft
structure must therefore be designed to accommodate the additional loads caused by these actuator
oscillatory failures.
With the increased economic pressure to improve fuel efficiency, commercial aircraft manufacturers
are looking to improve the fault detection schemes implemented on their aircraft. By designing
oscillatory failure detection methods to detect, isolate and pacify smaller amplitude oscillatory
failures, less structural support could be used on the aircraft, leading to reduced weight and
improved flight performance. The smaller the amplitude of the oscillatory failure that can be
detected, the greater the potential for mass reduction.
For this project, only OFCs emerging from within the actuator control loop are considered. This
limits the potential failure sources to the analogue-to-digital converters (ADC), servo command
current, and sensors. Figure 1.2 provides an overview of the actuator system and potential OFC
sources.

K+
−

pref (t)

p(t)

Monitoring Channel

Control Channel

−δ(t)
i(t)

Flight Control Computer

Fault
Detection

: OFC Sources

Control Surface
Sensor

Rod Position
Sensor

Servo Current

ADC

ADC

Figure 1.2: Failure Points within the Control Surface, adapted from [1]

Commercial aircraft manufacturers rely on hardware redundancy and automatic reconfiguration
for fault-tolerance. Each control surface has two connected actuators, each controlled using inde-
pendent computers and power sources [1], as illustrated in Figure 1.3. One actuator is in active
mode, while the second is in passive, or stand-by mode. When a fault in the active actuator is
detected, the active actuator changes to passive mode while the secondary actuator becomes active.
This process is known as automatic reconfiguration.
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FCC 1

Actuator 1

Actuator 2

Control Surface

FCC 2

(Active)

(Passive)

Figure 1.3: Hardware Redundancy [1]

To achieve further redundancy, the flight control computers are divided into two channels: a com-
mand channel and a monitoring channel. These channels are shown in Figure 1.2. The command
channel controls the actuators and executes pilot commands. The monitoring channel, on the other
hand, continuously monitors all components of the flight control system, checking for faults, and
issuing reconfiguration commands when faults are detected.

Actuator

Model

+

−
Residual
Evaluation

u(t) y(t)

ŷ(t)

r(t)

Figure 1.4: Analytical Redundancy

Fault detection systems implemented on the flight control computers utilise model-based ap-
proaches, also referred to as analytical redundancy. This involves comparing the measured be-
haviour of the actuators with some expected fault-free behaviour, which is obtained by simulating
the motion of a fault-free actuator in parallel with the real actuator, as shown in Figure 1.4. Such a
fault detection scheme can be divided into two stages: residual generation and residual evaluation.
Residual generation is the process of determining the difference between the actuator’s measured
position and its expected position for normal operation, resulting in a signal known as the residual.
In fault-free scenarios, this signal consists primarily of modelling errors and sensor noise. When a
failure occurs, the residual signal experiences a bias with the characteristics of that type of failure
[5]. Residual evaluation is the next stage that involves analysing the residual signal to check if
these failure characteristics are present. Overall, this is known as component-level fault detection.
Each actuator is monitored independently, using only locally available measurements and signal
for fault detection. This also means that fault isolation is not required, since the fault is already
localised to a single actuator.

1.2 Research Goal

The overall aim of this project is to investigate and innovate potential signal processing and residual
evaluation methods that can detect oscillatory failure cases. The research topic was proposed by
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Philippe Goupil of Airbus, who developed the existing oscillation counting technique for oscillatory
failure case detection.
The residual evaluation techniques must detect OFCs with unknown frequencies occurring in a
known frequency range, must detect as small amplitudes as possible, and must detect them within
a maximum allowable detection time, specified as a fixed number of oscillation periods, or cycles.
If an OFC of a given amplitude cannot be detected and pacified, then this amplitude must be
considered and accommodated in the aircraft structural design. Thus, being able to detect smaller
amplitude OFCs can allow for reduced structural support. Furthermore, short-time loads applied
to the aircraft when an OFC is induced should be minimised, and thus it is required that OFCs
be detected within a given number of oscillation periods, or cycles.
The residual evaluation techniques should avoid raising false alarms, since unnecessary reconfigur-
ation of the actuator hardware removes a layer of hardware robustness. A typical requirement is
that any fault detection system should report a false alarm no more than once every 100 000 hours
of flight time. This is difficult to confirm without rigorous testing in actual aircraft, but should be
considered when evaluating fault detection techniques.
Finally, since the flight control computers employed on commercial airliners are simpler and more
robust, the computational resources for fault detection and isolation are limited. The residual
evaluation techniques should therefore be computationally efficient.

1.3 System Requirements and Constraints

The following requirements for the OFC detection system were captured in consultation with
Philippe Goupil from Airbus:

• The OFC detection system must detect OFCs that have an unknown frequency, but are
known to occur in a frequency range from 1 to 10 Hz.

• An OFCmust be detected within a maximum allowable detection time of 3 oscillation periods,
or cycles.

• The OFC detection system must detect oscillatory failures with as small amplitudes as pos-
sible.

• The OFC detection system should not produce false alarms. The false alarm rate for each
technique must be determined and compared.

• The OFC detection system should be computationally efficient. The computational complex-
ity of each technique must be quantified and compared.

The following constraint was identified in consultation with Philippe Goupil of Airbus:

• The residual evaluation techniques must use the existing hardware architecture and available
sensor measurements described in Figure 1.2. No new sensors may be added.

1.4 Primary Contributions

The following is a list of the primary contributions of this project:

• The oscillation counting approach was implemented as described in literature. However,
potential disadvantages as a result of the use of filters were identified and confirmed.

• The integrated absolute error (IAE), an approach used for the detection of oscillating control
loops in production plants, was implemented and adapted for oscillatory failure case detec-
tion. The approach was modified by implementing an adaptive threshold that would provide
better performance given the unique requirements of the OFC detection problem.
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• The discrete Fourier transform (DFT) was investigated as a potential technique for oscillatory
failure detection. The concept of a frequency-dependent threshold was developed, based
on initial poor detection performance when using a fixed threshold value. Following the
implementation of the frequency-dependent threshold, a mathematical relationship between
the detection time, threshold, and OFC characteristics was derived. This relationship predicts
the performance of the DFT approach. The calculation of the DFT was implemented using
the sliding-DFT algorithm, which provided improved computational performance over the
fast Fourier transform.

• The structure of the sliding-DFT was exploited to allow for an implementation of the DFT
that used shorter windows to calculate higher-frequency components. This was termed the
multi-window Fourier transform (MWFT), and resulted in shorter detection times and a
decrease in computational complexity over the single-window DFT implementation.

• A detection approach based on the use of a phase-locked loop (PLL) and quadrature phase
detector was designed. This system was designed to detect oscillatory failures within 0.3
seconds, based on 3 cycles of a 10 Hz failure. However, the PLL struggled to operate at the
low OFC frequencies, and this motivated the design of an upsampling and modulation stage
that modulated the residual signal to a higher frequency band. A theoretical noise analysis
of the PLL was also performed to predict its detection performance.

• A simulation framework was developed in collaboration with Airbus to test and benchmark all
the detection methods through extensive Monte Carlo simulations. This framework contained
a longitudinal model of an A380 aircraft, with the control surface actuators modelled as non-
linear systems. The simulator allowed for the injection of oscillatory failures into the actuator
system, and simulated the aircraft’s response to the failure, further increasing the challenge
of OFC detection.

• The five detection methods, namely oscillation counting, IAE, DFT, MWFT, and the PLL,
were rigorously tested using the simulation framework. These methods were compared based
on the smallest amplitude oscillatory failure that each method could reliably detect within
the specified detection time of 3 cycles. Also compared were the average detection times
to determine which method could report the failure in the shortest amount of time. The
computational complexity of each technique was quantified and compared in terms of the
number of real mathematical operations. Finally the number of false detections reported by
each method was compared.

1.5 Thesis Outline

This thesis is organised as follows:

• Chapter 2 provides a literature review of the existing techniques for oscillatory failure detec-
tion, as well as more theoretical approaches to sinusoidal signal detection and estimation.

• Chapter 3 introduces the mathematical model and assumptions of the structure of the ac-
tuator and of oscillatory failures. Thereafter, the simulation framework that was created to
serve as a testbed for the training and testing of the different OFC detection techniques is
described.

• Chapter 4 reports on a detailed investigation into the current approach to OFC detection,
namely oscillation counting.

• Chapter 5 investigates the integrated absolute error technique, an approach used for oscillat-
ory failure detection in control loops in production plants.

• Chapter 6 presents the design of the OFC detection technique based on the discrete Fourier
transform. This chapter covers both the single-window and the multi-window approaches.

• Chapter 7 presents the design of the OFC detection technique that uses a phase-locked loop
and quadrature phase detector.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 1. INTRODUCTION 6

• Chapter 8 verifies and compares the five OFC detection techniques using the simulation
framework introduced in Chapter 3.

• Chapter 9 offers some concluding remarks, and recommendations for future work.

The residual signal is usually expressed degrees, since it is based on control surface deflection
angle. For simplicity, Chapters 4 to 7 assume the residual signal is expressed in volts. This is to
avoid confusion between signal phase and control surface deflection. The results, however, will be
expressed as degrees.
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Chapter 2

Literature Review

This chapter presents a literature survey of existing techniques for detecting oscillatory failures
in aircraft control surface actuators, as well as related techniques used in other applications. The
problem of oscillation detection is a well-established field in literature, and has been explored for
the application of oscillatory failure case detection in aircraft control surfaces, and oscillations in
control loops of large production plants. First, the existing Oscillation Counting technique that
is employed on the Airbus A380 aircraft for OFC detection is reviewed, along with improvements
that have been proposed for both its residual generation and its residual evaluation stages. Next,
a survey is performed of related techniques for detecting oscillations in the control loops of large
production plants. Finally, a survey is performed of additional techniques for the general detection
of oscillations and sinusoids. Based on the literature survey, energy/integral techniques, frequency
domain techniques, and demodulation techniques are identified as promising techniques to be
investigated and applied to the OFC detection problem.

2.1 Oscillatory Failure Detection in the A380

A solution to the OFC detection problem has already been devised and implemented on the A380
aircraft, as presented in a paper by Goupil [1]. This approach made use of a non-linear analytically
redundant model of an actuator to generate a residual signal. This was done separately for each
of the aircraft’s actuators. The residual was then used to check for oscillations by defining a
positive and negative threshold value, and counting the number of times the residual crossed these
thresholds over a certain time period. This method was termed oscillation counting. The residual
signal was filtered into two frequency sub-bands before oscillation counting was performed to
reduce the effect of noise. Overall, oscillation counting is a very computationally efficient approach
to residual evaluation, and has found considerable success in the detection of OFCs on the A380
aircraft. Chapter 4 offers a more detailed description of the system.

2.1.1 Residual Generation Improvements
Many authors have since attempted to improve the oscillation counting system to detect smaller
amplitude OFCs. Most of the effort has been to improve the estimates of the flight actuator
dynamics to reduce the effects of modelling errors, lowering the noise level of the nominal residual,
and consequently allowing for the detection of smaller amplitude OFCs. These approaches thus
improve the residual generation stage, and revert back to the oscillation counting approach for
residual evaluation.
Alwi and Edwards [6] manipulated the analytical model from Goupil’s paper to estimate the true
actuator rod speed, which was not available from direct measurements. An adaptive sliding mode
Levant differentiator [7] was used to estimate the rod speed. This Levant differentiator allowed
for the estimation of the rod speed using the position measurements, without the amplification
of noise inherent with differentiation. By obtaining this speed estimate, Alwi and Edwards could
reconstruct the oscillatory failure mathematically.
Other residual generation proposals include the use of non-linear Luenberger state observers [8],
where the residual signal is fed back into the observer to improve its position estimates. Lavigne,

7
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Zolghadri, Goupil et al. [9] proposed the use of extended Kalman filters to estimate the actuator’s
position, as well as to estimate certain time-varying parameters in the analytical model that are
usually assumed to be constant.

2.1.2 Residual Evaluation Techniques
Although there is continued research into the improvement of the residual generation stage, pro-
posals for improved residual evaluation techniques for the application of OFC detection have been
relatively sparse.
Varga and Ossmann [10] investigated the detection of many different faults that occurred in flight
actuators, including jamming, runaway, oscillatory failures, and loss of efficiency. The presence of
a fault was detected using the Narendra signal evaluation scheme [11], which is a time-weighted
evaluation of the energy of the residual signal. Once the presence of a fault was confirmed, the type
of fault present was identified using different fault identification algorithms for each failure type.
For the specific case of OFC detection, the identification algorithm estimated the power spectrum
of the residual signal using the discrete Fourier transform (DFT). A recursive implementation
[12] of the DFT was proposed here for efficient calculation of the power spectrum. OFCs were
flagged if any frequency components crossed some threshold. The authors found that OFCs could
be detected within the required detection time, but the method struggled to detect and identify
oscillatory failures with higher frequencies.
Goupil returned to the OFC detection problem with a new residual evaluation technique [13], based
on Wald’s sequential probability ratio test (SPRT) [14]. This test assumes two hypotheses, each
with a corresponding probability density function. The first hypothesis assumes that the residual
contains no faults, while the second hypothesis assumes a failure exists. The likelihood ratio is the
ratio of the probability that the residual matches the failure hypothesis over the probability that
the residual contains no failures. If this ratio is above a certain threshold, a failure is inferred.
This approach was tested using Gaussian distributions and Laplace distributions, and found that
Laplace distributions provided the best results. Computationally, the SPRT was found to be very
efficient, with a decrease of about 50 % in computational workload on the A380’s flight control
computer versus the oscillation counting approach. An additional advantage of this method is
that the false alarm probability rate and missed detection probability rate can be used directly
to determine relevant thresholds and parameters. The SPRT has similarly been applied to fault
detection systems in [15] and [16].

2.2 Detection of Oscillating Control Loops

Oscillatory failures have also been known to affect control loops in large production plants, and
fault detection schemes have been developed to address these issues.

2.2.1 Integrated Absolute Error
Hägglund [17] proposed a method to monitor control-loop performance and to detect oscillations
in control loops that were caused by valve stiction, load disturbances, or badly tuned controllers.
Hägglund made use of the control error signal as the “residual”. The proposed detection algorithm
made use of the integrated absolute error (IAE), which was calculated by integrating the control
error between successive zero crossings. Nominal control-loop operation would typically result in
small values of the IAE, and thus failures could be inferred when the IAE exceeded some threshold.
Furthermore, oscillatory failures would show periodic threshold crossings. Therefore, a oscillatory
failure could be inferred if a certain number of IAE threshold crossings occurred.
Forsman and Stattin [18] attempted to improve the robustness of the IAE oscillation detection
scheme by deriving an index that measured the periodicity of the control error signal. This sug-
gested that the ratio between successive IAE calculations, i.e. IAEi+1/IAEi, should be approxim-
ately 1 during an oscillatory failure. Similarly, the time between consecutive zero crossings (TBZC)
should remain relatively constant. Forsman and Stattin therefore suggested a metric based on the
successive IAE ratios and successive TBZC ratios that measured how “oscillative” the control error
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signal was. Additionally, the proposed metric handled positive control errors and negative control
errors separately, so that asymmetrical oscillations could be detected.

2.2.2 Autocovariance
Thornhill, Huang and Zhang [19] used the autocovariance function (ACF) of the control error signal
to detect oscillations. The ACF was used as a way to filter the control error signal and attenuate
noise that could cause spurious zero crossings. It was calculated by computing the inverse Fourier
Transform of the power density spectrum (PDS), according to the Wiener-Khintchine Theorem
[20]. The required PDS was calculated by simply squaring the discrete Fourier transform (DFT)
of the control error signal. The resultant ACF was a sinusoidal signal with the same frequency as
the failure, but with greatly attenuated noise. Frequency domain filters were also used to separate
different frequency bands before calculating the ACF. These filters were implemented simply by
setting the unwanted DFT frequency bins to zero.
With this new filtered signal, three parameters were used to identify the existence of oscillations:
the period of the oscillation, the regularity of the oscillation, and the power of the oscillation.
The mean and standard deviation of the periods between ACF zero crossings were calculated, and
the ratio of the mean over the standard deviation gave an indication of the “regularity” of the
oscillation. This regularity, along with the power of the oscillation, was used to decide whether a
failure was present.
For this approach, it was recommended to use at least 10 zero crossing intervals to determine
the regularity of the signal. The OFC detection problem unfortunately has strict detection time
requirements, and this approach is not applicable. The use of the ACF may be able to improve
the detectability of small OFCs, but the number of computations required for such a calculation
(which requires a DFT, frequency-domain filtering, and an inverse-DFT) is simply too great.

2.2.3 Empirical Mode Decomposition
Srinivasan, Rengaswamy and Miller [21] also performed oscillation detection using the IAE method.
The effectiveness of the IAE was improved by using Empirical Mode Decomposition (EMD) [22], a
time-domain iterative method of decomposing a signal into several Intrinsic Mode Functions (IMFs)
in descending order of frequency. This EMD process was used to obtain the mean of the signal
and remove it from the signal. With this zero-mean error signal, the zero crossings were identified.
Further filtering was performed by integrating the error signal to remove high frequency noise
and spurious zero crossings. The number of spurious crossings were also minimised by clustering
crossings that were only a few sample instants apart.

2.2.4 Comparison of Oscillation Detection Methods
Odgaard and Trangbaek [23] performed a study of some of the common methods used for oscillation
detection. These methods included:

• Zero crossing regularity (ZCR): The time between zero crossings are compared to the average
time between crossings. Small deviations from the average time imply the existence of regular,
evenly spaced crossings, and thus an oscillatory failure can be inferred.

• Discrete Fourier transform (DFT): Oscillations are detected by comparing the amplitude of
the largest frequency component to the total energy of the low-frequency signal content.

• Autocovariance function (ACF): The ACF of the measured signal is calculated to remove the
effects of white noise. The amplitude of the first two peaks of the ACF is found using the
ACF’s derivative, and these amplitudes are compared.

• Autocovariance zero crossing regularity (ACZR): This approach is very similar to the ZCR,
but checks the zero crossings of the autocovariance function instead of the originally measured
signal.
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These methods were tested by Srinivasan, Rengaswamy and Miller [21] based on whether oscilla-
tions in the measurements could be detected reliably, how sensitive each method is to transients,
and how robust each method is to changes in window length.
The study found that the ACF method could not reliably detect oscillations in the given test data.
The ZCR and AZCR methods could detect oscillations, albeit with significant delays. However,
they were dependent on window length and were too responsive to transients. Finally, the DFT
approach provided good oscillation detection performance, and could reject transients, but was
highly dependent on its window length. The authors, however, did not use any system models for
residual generation, and suggested that using a system model could alleviate the effect of transients
that they found in their data sets.

2.3 Additional Oscillatory Failure Detection Investigations

The previous two sections have focussed heavily on two applications, namely oscillations in flight
actuators and oscillations in control loops. However, there has been a considerable amount of
oscillatory failure detection systems outside these two cases.

2.3.1 Vibration Monitoring using Wavelet Transforms
Kar and Mohanty [24] investigated the use of the discrete Wavelet transform in a fault-monitoring
system that checked for high-frequency vibration transients, and low-frequency signals emanating
from the electric power grid frequency. Due to the high and low frequency nature of the problem,
an implementation of the Wavelet transform known as the multi-resolution Fourier transform was
found to provide the best results.

2.3.2 Fault Detection using Deterministic Learning
Chen, Wang and Hill [25] tackled the issue of modelling uncertainties in analytically redundant
fault detection systems by applying neural networks to learn the unknown system dynamics, as
well as the dynamics of oscillatory failures. These neural networks were used to train a bank of
estimators with assumptions based on nominal behaviour and oscillatory failure behaviour. Faults
were then detected based on the smallest residual principle, where a fault is inferred when the
average residual of a fault estimator is smaller than that of a fault-free estimator.

2.4 Sinusoid Detection and Estimation Algorithms

This final section briefly investigates sinusoid detection and estimation techniques.

2.4.1 MUSIC and ESPRIT Algorithms
A tutorial paper by Guo and Bodson [26] approached the problem of adaptive rejection of oscilla-
tions in control systems by using frequency estimation techniques such as MUSIC and ESPRIT.
Multiple signal classification (MUSIC) [27] was initially proposed for the estimation of signal para-
meters measured with antenna arrays, with the most important parameters being the direction of
arrival and high-resolution frequencies. These signals often consist of multiple sinusoids at different
frequencies, along with white noise. However, the MUSIC algorithm is a computationally expensive
algorithm that requires the use of either eigen-decomposition or singular value decomposition.
A more computationally efficient approach to the MUSIC algorithm is the ESPRIT [28] algorithm,
where ESPRIT is the acronym for “Estimation of Signal Parameters via Rotational Invariance
Techniques”. However, this approach assumes the existence of multiple sensors arranged in matched
pairs, making it potentially unsuitable for the application of OFC detection without additional
sensors.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 2. LITERATURE REVIEW 11

2.4.2 Estimation of Sinusoidal Signals
Finally, many other mathematical techniques for the estimation of signal parameters have been
suggested. This includes least squares estimators [29], adaptive notch filters [30], amplitude estim-
ators and observers [31], and periodograms [32]. Many of these techniques could be applicable to
the OFC detection problem. However, the application of these techniques is left for future work.

2.5 Summary and Conclusions

Oscillation counting and the integrated absolute error (IAE) approaches have been successfully
implemented for the purposes of oscillation detection. However, with regards to OFCs in flight
actuators, most authors have attempted to improve the residual generation stage, and return to
the oscillation counting approach for residual evaluation. Because the residual generation stage
has already been thoroughly researched, the focus of this thesis is placed on the residual evaluation
techniques.
The oscillation counting approach is currently in service on the A380, and is investigated in
Chapter 4 as a baseline against which other evaluation techniques should be compared.
The IAE is another approach that can offer computationally efficient OFC detection, and is further
investigated in Chapter 5. However, surveys have shown that many of the improvements made to
the IAE approach, such as regularity checks and autocovariance calculations, struggle to provide
adequate detection time, and are more applicable to offline processing.
Finally, some potentially interesting gaps have been found in the research into OFC detection. Very
few applications of the discrete Fourier transform for OFC detection have been found, and it is
therefore investigated further in Chapter 6. Furthermore, signal-processing techniques used in tele-
communications, a field built around the idea of signal detection, have not seen many applications
in fault detection systems. Chapter 7 investigates the potential application of the phase-locked
loop for OFC detection.
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Chapter 3

Conceptualisation and Modelling

3.1 Introduction

This chapter provides an overview of the OFC detection testbench. This is a simulation framework
that was created for training and testing of different OFC detection techniques. The simulation
framework contains models for the physical actuator, the analytically redundant actuator, the
oscillatory failures (both liquid and solid failures), the flight control system, and the aircraft lon-
gitudinal dynamics. The simulation framework was designed so that the actuator parameters and
the oscillatory failure parameters (amplitude, frequency, type, and injection point) can be varied
randomly to produce training and testing data that is sufficiently rich.
An overview of the training and testing procedure that will be used to benchmark all the detection
methods is given in Section 3.3. Finally, illustrative examples of flight data sets are shown to
provide insight into the different types of oscillatory failures. These examples show how the OFCs
manifest in the residual, and how this could impact their detectability.

3.2 Simulation Model

A full model of the longitudinal dynamics of an A380 aircraft is used to generate flight data that
serves as various test cases to benchmark residual evaluation techniques. This framework was
developed in collaboration with Airbus, and assumes the aircraft is in cruise flight at 38 000 ft,
flying at a speed of Mach 0.8. The purpose of the model is to describe the aircraft’s reaction to
an OFC, as well as additional unexpected behaviour that may stress or complicate the detection
of oscillatory failures. This provides authentic and representative test cases.

−δ

x

α

Lift

v̄θ

Weight

q

Figure 3.1: Longitudinal Aircraft Parameters. Image adapted from [3] and [33].

Figure 3.1 shows aircraft parameters that are modelled in the simulation. These parameters are
described in Table 3.1 [34].
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Table 3.1: List of Flight Parameters

Parameter Description
x, y, z Aircraft Body Axis
q Pitch Rate
θ Pitch Angle
α Angle of Attack
v̄ Velocity Magnitude
δ Elevator Control Surface Deflection

All these parameters are assumed to be deviations from their trim states. An additional parameter
not shown above is the load factor, Nz. This is defined as the ratio of the aircraft’s lift over its
weight. This serves as the pilot command to the aircraft control system. The trim load factor is
1 g, and the load factor deviation is 0 g for straight and level flight, and rarely exceeds 1 g.
The most important component in the simulation is the control surface actuator, which is assumed
to control the deflection of an elevator for longitudinal control. The actuator is essentially modelled
twice. The first is the “real” actuator that is affected by aerodynamic forces, parameter variation as
a result of manufacturing and environmental differences, and noisy sensors. The second model is the
analytical model that is simulated by the flight control computer’s monitoring process. These model
differences represent modelling inaccuracies that are found in practice, and cause non-zero biases
in the fault-free residual that makes fault detection more challenging. Furthermore, the structure
of the FCC shown in Figure 1.2 is assumed here, where the measured actuator rod position is used
exclusively for control, while the measured control surface deflection is used exclusively for fault
monitoring.
The following sections describe the levels of the simulator, starting with a high-level overview of
the aircraft model, and leading to the low-level actuator models. All flight controllers are assumed
to be continuous-time systems, while the monitoring systems are considered to be discrete-time.

3.2.1 Full Aircraft Model
Figure 3.2 shows the high-level overview of the simulator. It contains a load factor controller, a
model of the control surface actuator, an analytically redundant actuator model, and a plant of
the longitudinal dynamics of the A380.

Control
Surface

Load Factor
Controller

A380
Longitudinal
Dynamics

Nzref
(t) 

v̄
α
q
θ
Nx
Nz



δref (t)
δ(t)

Kaero

Residual
Evaluation

δmeas[n]

Faero(t)

Analytical
Model

+
−

δ̂[n]

r[n]

Figure 3.2: Full A380 Longitudinal Model
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The model accepts a reference load factor command Nzref provided by the pilot. The load factor
controller attempts to track the reference load factor command by manipulating the control sur-
faces. It delivers a control surface deflection command, δref (t), to the control surfaces based on
the load factor command and the current aircraft state. This commanded deflection is accepted
by the hydraulic actuator control system, which outputs two signals, which are the true control
surface deflection δ(t) and the measured control surface deflection δmeas[n]. The true deflection
δ(t) represents the real deflection of the actuator, and is fed to the A380 longitudinal dynamics.
The measured control surface deflection is provided by a sensor that adds sensor noise to the signal,
and is used exclusively for fault monitoring.
The analytical model accepts the same reference control surface angle δref (t) as the real control
surface system, and provides an estimate of the deflection of the control surface, δ̂[n]. The difference
between the measurement, δmeas[n], and the estimate serves as the residual r[n] for fault detection:

r[n] = δmeas[n]− δ̂[n] (3.2.1)

To generate data for training and testing purposes, the model requires load factor commands that
are representative of real pilot commands. Since this model describes the dynamics of straight
and level cruise flight, the total reference load factor is chosen not to exceed 0.15 g. This is chosen
with the assumption that during cruise flight, the load factor of the aircraft is usually within 10 %
to 15 % of the maximum load factor deviation of 1 g. To generate load factor commands that are
representative of pilot actions, white noise filtered with a lowpass filter is used as the load factor
command Nzref . The bandwidth of the filter is chosen such that 99 % of the power of the resulting
control surface command δref (t) exists in the 0 to 0.3 Hz range of the power density spectrum.
These assumptions are based on sample flight data provided by Airbus.
Faero(t) represents the aerodynamic forces experienced by the control surface. For this model,
it is assumed that the magnitude of the aerodynamic force is a linear function of the absolute
control surface deflection. When the control surface maintains 0◦ deflection, Faero applies 0 N of
force. When at a non-zero deflection angle, the magnitude of the aerodynamic force is linearly
proportional to the deflection, and acts in the opposite direction of the deflection. In other words,
Faero always attempts to force the control surface back to 0◦. The aerodynamic force therefore
opposes movement away from the trim deflection state, and assists movements back towards the
trim state. The gain factor Kaero is chosen such that the maximum aerodynamic force does not
exceed one tenth of the maximum force applied to the control surface by the hydraulic actuator.

3.2.2 Control Surface Model
Figure 3.3 shows the control surface system, which contains a non-linear model of the hydraulic
actuator. The system accepts the deflection command δref (t) from the load factor controller, and
converts this deflection command to a rod position command u(t). The actuator responds to the
command by moving its piston to a new position p(t) which rotates the control surface to a new
deflection angle δ(t).

Actuator

Faero(t)

◦ to mm
Lookup Table

Control Surface Angle
Sensor Noise

++

mm to ◦
Lookup Table

u(t)δref (t) p(t)

δ(t)

δmeas[n]

Figure 3.3: Control Surface Model
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Note the non-linear saturation and rate limiter blocks at the system input. These limit the com-
mands so that they do not exceed the physical limitations of the control surfaces. Specifically, the
control surface deflection angle is limited to [−30◦, 15◦], and the control surface angular rate is
limited to ±30 ◦/s. The lookup tables convert the angle command to a rod position command in
mm, and vice versa.
The control surface model has two output signals. The first signal, δ(t), represents the true de-
flection of the control surface, and directly affects the longitudinal dynamics of the aircraft. The
second signal, δmeas(t), is the measurement signal from a control surface angle sensor. This meas-
urement is exclusively used for monitoring purposes, as suggested by Figure 1.2, and is corrupted
by sensor noise.

3.2.3 Actuator Model
Figure 3.4 shows the model of the control surface actuator. Given the desired reference position u(t)
commanded by the flight control computer, the actuator uses a proportional feedback controller to
control the linear position of the piston accurately. This position p(t) affects the deflection angle
of the control surface δ(t).

g(t)

Faero(t)

u(t) ∫
Kc+

− K

Rod Position
Sensor OFC

Current Output
OFC

Rod Position
Sensor Noise

+
+

p(t)vc(t) v(t)e(t) i(t)

+
+

C +
+

OFC

Bias

Switch

No failure

Solid failure

Liquid failure

pmeas(t)

Figure 3.4: Hydraulic Actuator Model
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The actuator makes use of a proportional feedback controller for accurate position control. The
error signal e(t) is the difference between the actuator reference position u(t) and the measured
position pmeas(t). The error is converted to a command current i(t) which ultimately controls the
velocity of the actuator’s piston v(t). The integrator converts this velocity to position. The system
includes a position sensor that provides the measurement pmeas(t). The sensor adds band-limited
white noise to the measurement. The output of the system, p(t), is tapped off before the sensor
noise block, and represents the true position of the actuator.
This actuator system is derived from the following mathematical model that calculates the linear
actuator rod speed v(t) [1]:

v(t) = vc(t) ·
√

∆P (t)− [Faero(t) + Fdamping(t)]/S
∆Pref

(3.2.2)

This equation relates the speed of the actuator rod to the commanded speed vc, the hydraulic
pressure delivered to the actuator ∆P , and the external forces, Faero and Fdamping, which result
from aerodynamic disturbances and the damping of the passive actuator respectively. The following
variables and parameters are therefore used in Equation (3.2.2):

• vc(t) is the commanded rod speed from the actuator controller, measured in mm/s.

• ∆P (t) is the hydraulic pressure delivered to the actuator, measured in bar.

• ∆Pref is the differential pressure corresponding to the maximum rod speed.

• Faero(t) represents the aerodynamic forces applied on the control surface. It is assumed to
have an average value of 0 N.

• Fdamping(t) represents the damping effect of the passive actuator.

• S is the actuator piston surface area in mm2.

Equation (3.2.2) can be interpreted as equating the speed of the actuator rod v(t) to the commanded
speed vc(t), weighted by the effects of the hydraulic pressure and the external forces. These non-
linear effects are represented in Figure 3.4 as g(t). Increased hydraulic pressure ∆P (t) increases
the weighting, while the external forces counteract the desired motion of the actuator.
The commanded speed is provided by the feedback controller, and is mathematically described as:

vc(t) = Kc ·K · (u(t)− pmeas(t)) (3.2.3)
= Kc · i(t) (3.2.4)

Here, K is the servo-control gain which generates a servo current command in mA:

i(t) = K · (u(t)− pmeas(t)) (3.2.5)

This current is delivered to the actuator, and translates to rod speed through the conversion factor
Kc.
The final parameter of note is Fdamping, the external force caused by the damping effect of the
passive actuator. The damping force is a function of the actuator’s current velocity:

Fdamping = Kd · v2(t), (3.2.6)

where Kd is the damping coefficient of the passive actuator.
Typical values for the actuator parameters were provided by Airbus and are summarised in
Table 3.2.
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Table 3.2: List of Flight Actuator Parameter Values

Parameter Value Unit
∆Pref 335 bar
Faero 0 N
S 5800 mm2

K 0.6 mA/mm
∆P 160− 300 bar
Kd 6.8− 10 N/(mm/s)2

The values listed for ∆P and Kd represent the range of possible values that these parameters could
assume, and these parameters change based on environmental conditions. Kc is not listed above,
since it is implemented as a lookup table.
An oscillatory failure case is modelled as a pure sinusoid that is induced within the control loop
of the actuator. An OFC can exist at the command current or at the position sensor. These two
OFC injection points are indicated in Figure 3.4. Distinction is made between liquid and solid
oscillatory failures. Liquid failures are additive faults, where an oscillatory signal is superimposed
on the existing signals in the control loop, and the actuator can still respond to reference commands.
Solid failures completely replace the existing signals in the loop, and the flight control computer
no longer has any control over the actuator. In literature, the location of an oscillatory failure is
generalised by assuming that it affects the position command input. Liquid and solid failures are
then mathematically modelled as [35]:

u(t) =

 u0(t) for nominal behaviour
u0(t) + fliq(t) for liquid failures
u0(t) + fsol(t) for solid failures

(3.2.7)

where u0(t) is the fault-free control signal provided by the flight control computer, and the liquid
and solid failures are defined as

fliq(t) = A cos (ωt) (3.2.8)
fsol(t) = A cos (ωt)− u0(t), (3.2.9)

where A and ω are the amplitude and frequency of the oscillatory failure signal. These OFCs
are considered to be sinusoids with frequency uniformly distributed over the 1 to 10 Hz frequency
range. OFCs with frequencies higher than 10 Hz have little effect on the control surface motion
due to the lowpass characteristics of the actuator.
Therefore, these injection points have three failure states:

1. No failure: The command current and position sensor measurements are unchanged.

2. Liquid failure: A sinusoidal signal is added to either the command current signal or the
position measurement signal.

3. Solid failure: The command current signal or position measurement signal is completely
replaced with a sinusoid at some offset.

The selection of which failure is present is changed by manipulating the switch at some defined
failure time tf . No more than one OFC is enabled at any given time.

3.2.4 Analytically Redundant Model
The analytically redundant model simulated in the FCC’s monitoring channel has a similar struc-
ture to the real actuator model, but is modelled as a discrete system, and assumes fault-free
operation. This is shown in Figures 3.5 and 3.6.
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g[n]u[n] Ts(z + 1)
2(z − 1)Kc+

− K
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Figure 3.5: Hydraulic Actuator Analytical Model
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Figure 3.6: Control Surface Analytical Model

Mathematically, the analytically redundant actuator model in Figure 3.5 is expressed as:

v̂[n] = KcK(u[n]− p̂[n− 1])

√
∆P −Kd · v̂2[n]/S

∆Pref
(3.2.10)

Equation (3.2.10) is a discretisation of Equation (3.2.2), and has been simplified by assuming that
∆P is constant, and Faero is zero. The estimated position p̂[n] is calculated from the estimated
speed v̂[n] using trapezoidal integration.
The above model is implemented in Simulink. However, this model cannot be used in its current
form when implemented on an embedded computer, since v̂[n] appears on both sides of Equa-
tion (3.2.10). The equation has to be manipulated such that the rod speed can be computed.
After rearranging the equation, the analytically redundant model becomes

v̂[n] = KcK(u[n]− p̂[n− 1])
√

∆P
∆Pref +Kd[KcK(u[n]− p̂[n− 1])]2/S . (3.2.11)

3.3 Procedure for Training and Testing

With the A380 simulator in place, various residual evaluation strategies can be tested. Each
evaluation method only receives the residual signal, r[n]. To test all the methods, two large data
sets are required, namely a training data set and a testing data set.
The training data set contains no faults and is used to “train” the thresholds for each residual eval-
uation method. These thresholds represent the envelopes of nominal behaviour in each evaluation
method. Essentially, the training process attempts to train each detection method by finding the
largest or worst case residual that is not associated with failures. This is done by generating an
enormous amount of nominal data, and forcing the various thresholds as low as possible without
flagging false positives in any of the training datasets. By setting the thresholds as low as they can
possibly be, they are given the best possible chances to detect very small OFC, and this ensures
that all detection methods are tested fairly. For additional robustness, the defined thresholds can
be scaled by some safety margin, at the obvious expense of minimum detectable amplitudes.
Two types of load factor command signals are used for training data. The first is the randomised
load factor commands, limited to 0.15 g, that are representative of real load factor commands
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during cruising flight. The second signal type is the chirp signal, which serves to stress the aircraft
dynamics across all frequencies between 0 and 10 Hz. It is highly unlikely that a chirp signal will
occur during actual flight, but this serves to stress the detection methods thoroughly, since the
oscillations of the chirp tend to propagate to the residual signal.
Once the thresholds are trained using the training data, the methods are tested using test data.
The test data exclusively contains the filtered white noise load factor commands, and contain OFCs
of various amplitudes, frequencies, types (liquid or solid) and injection points (command current
or position sensor). All four detection methods are tested with the same test sets, and the results
are consolidated into the following performance metrics:

1. Smallest amplitude OFC detected within 3 cycles.

2. Smallest amplitude OFC detected within 6 cycles.

3. Average detection time.

4. Number of false detections.

The first metric listed above is the most important, and represents the experimentally-determined
smallest amplitude OFC that is guaranteed to be detected within the required detection time
for each detection method. The overall best method is the one with the lowest amplitude. The
second metric is the absolute smallest OFC that was detected by each method. This represents
the potential performance of each method if the detection time requirements were relaxed. Note
that if an OFC is not detected within 6 cycles, it is assumed to have gone undetected. This avoids
the results becoming skewed by small OFCs that happen to get detected after, for example, 50
cycles. The average detection time metric simply compares the detection time performance of each
method. Finally, the number of false alarms detected by each method provides an indication of
the robustness of the method. With sufficiently rigorous training, however, no false alarms should
be present. The entire training-testing process is shown in Figure 3.7.

Simulink
Benchmark

Generate
Training Data

Generate
Test Data

Train Detection
Thresholds

Check for
OFCs

Report
on Results

Figure 3.7: Overview of Training and Testing Procedure

Each data set consists of 30 seconds of simulation time. The seeds for all pseudo-random num-
ber generators used to represent noise sources, including measurement noise and the load factor
command, are changed with each test. Furthermore, the parameters Kd and ∆P of the actual
actuator are randomised uniformly between the bounds given in Table 3.2, as these parameters
are dependent on external conditions such as fluid temperature. For the analytically redundant
model, the parameters Kd and ∆P are set to their nominal values.
It should be noted that the results obtained from the Monte Carlo training-testing procedure are
influenced by the choices for the nominal values and ranges of the actuator parameters, and by the
accuracy of the aircraft model used in the simulation model. The absolute performance of all the
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OFC detection techniques will therefore vary based on the uncertainty in the actuator modelling,
the amount of sensor noise, and the modelled response of the aircraft. The results should therefore
be used to compare the relative performance of the different OFC detection techniques, and not
as an indication of the absolute performance of the techniques.

3.4 Example Data Sets

This section investigates the different failure cases that could occur, how the control surface reacts
to each failure, and how their respective residual signals could potentially look. For illustrative
purposes, 30 seconds of flight data are shown for each case, with the oscillatory failure occurring
at 15 seconds.

3.4.1 Nominal Flight Data Set
In Figure 3.8, the default, nominal flight case is shown where no failure is present, and filtered
white noise is used as the load factor commands.
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Figure 3.8: Nominal Flight Data

Figure 3.8a shows the commanded load factor and the true load factor. Figure 3.8b shows the
commanded control surface deflection, and the true deflection. Figure 3.8c shows the deflection as
measured by the noisy sensor on the control surface, along with the estimated deflection provided by
the analytical model. These two signals are used to generate the residual, pictured in Figure 3.8d.
Here, the residual primarily consists of measurement noise from the control surface sensor, but also
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contains some additional low frequency content due to the simplifications and assumptions made
in the analytical model.

3.4.2 Nominal Training Data Set with Chirp Signal
Figure 3.9 shows a data set where the load factor command is a chirp signal of amplitude 0.15 g that
sweeps the frequency between 0 and 10 Hz. This data set is an example of a no-fault scenario that
stresses the OFC detection methods in terms of their robustness towards false alarms. Standard
practice employed by Airbus is to use such a training case to set the thresholds of the fault
detection methods to ensure robustness, although at the expense of a higher minimum detectable
OFC amplitude.
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Figure 3.9: Nominal Flight Data with Chirp Load Factor Command

Figure 3.9a shows the commanded load factor, which is a chirp signal, and the true load factor
response. The true load factor struggles to follow the given command due to the rejection of high-
frequency signals by the aircraft’s longitudinal model. As can be seen in Figures 3.9b and 3.9c,
the amplitude of the oscillation at the control surface decreases as frequency increases, showing
that the flight control system and actuator dynamics tend to reject high frequencies. The resultant
residual in Figure 3.9d shows significant oscillation over the first 10 seconds, which could quite likely
cause false alarms. Once again, the non-zero residual signal results from the differences between
the true actuator and the simulated actuator due to modelling uncertainty, and the sensor noise.
The modelling uncertainty originates from the fact that the random parameter values for the true
actuator differ from the nominal parameter values used for the simulated actuator.
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3.4.3 Command Current Liquid OFC
Figure 3.10 shows the first example of an oscillatory failure case, located at the current command
i(t) of the actuator. Here, the induced OFC has an amplitude of 1 mA, at a frequency of 1 Hz.
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Figure 3.10: Liquid OFC at the Actuator Command Current

Figure 3.10a compares the desired command current computed by the flight control computer,
before the OFC injection point, to the current delivered to the actuator after the OFC has been
applied. The desired current shows that the actuator control system attempts to reduce the effect
of the OFC by delivering opposing commands. This reduces the amplitude of the OFC from 1 mA
to about 0.75 mA.
The corrupted command current controls the velocity of the actuator’s rod, causing it, and con-
sequently the control surface, to oscillate. Since this is a liquid failure, the oscillations are added
to the current command. The control surface still responds to the load factor command, as seen
in Figure 3.10b. The resulting residual signal consists primarily of a component originating from
the oscillatory failure. It is also noted that the 0.75 mA amplitude translates to an amplitude of
about 0.5◦ at the control surface.
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3.4.4 Rod Sensor Liquid OFC
Figure 3.11 shows an example of a 1 mm liquid OFC with a frequency of 1 Hz at the actuator’s rod
position sensor.
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Figure 3.11: Liquid Failure at the Rod Position Sensor

Similarly to the liquid failure at the command current, the control system attempts to reject this
unwanted oscillation. In this case, however, the OFC at the sensor does not directly affect the
control surface deflection. Instead, the actuator control system receives false measurements, and
attempts to correct this by providing opposing commands to the actuator, causing the rod to
oscillate. This reaction to the faulty measurements causes the control surface to oscillate.
Once again, it can be seen that the control surface still reacts to load factor commands, and the
oscillations are superimposed on the desired deflection.
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3.4.5 Command Current Solid Failure
Shown here is the first example of a solid failure. This is an OFC of 1 mA at the command current,
with a frequency of 1 Hz.
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Figure 3.12: Solid Failure at the Commanded Current

The failure is shown in Figure 3.12a. The OFC has no bias offset, and thus the oscillation occurs
around 0 mA. The failure completely ignores the desired command current, and replaces it with
a pure sinusoid. As a result, the actuator does not react to any commands given to it, and the
control surface begins to oscillate in place, as shown in Figure 3.12b. To compensate for this,
the aircraft commands ever increasing control surface deflections, which are completely ignored.
The result is that the residual shows a large offset as a result of the subtraction of the estimated
deflection from the measured deflection.
However, this solid failure case is the only solid failure case that is considered to be detectable by
any OFC detection methods. Other solid failure cases are shown in the next section.
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3.4.6 Current Command Solid Failure with Non-zero Bias
Shown here is a solid failure at the command current, with a non-zero offset. The results shown
here are also applicable to any solid failure that occurs at the rod position sensor.
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Figure 3.13: Solid Failure at the Commanded Current with Non-zero Offset

The result of this failure is that there is permanently a large offset in the control error, causing
the rod position to move in the direction of the offset, until its position saturates. This causes the
control surface to diverge until it reaches its physical deflection limit at −30◦.
Runaway detection would be more suitable for the detection of such a failure than oscillation
detection.

3.5 Summary and Contributions

A simulation framework was created in collaboration with Airbus for the purpose of training and
testing different OFC detection techniques. The simulation framework contains models for the
physical actuator, the analytically redundant actuator, the oscillatory failures (both liquid and
solid failures), the flight control system, and the aircraft longitudinal dynamics. The simulation
framework was designed so that the actuator parameters and the oscillatory failure parameters
(amplitude, frequency, type, and injection point) can be varied randomly to produce training and
testing data that is sufficiently rich.
Six examples of simulated flight data have been illustrated, providing an overview of the differ-
ences between nominal flight data, training data, and failure case data. Nominal and fault-free
training data sets will be used to determine suitable thresholds for each detection technique, and
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test data sets with liquid and solid OFCs present will be used to test and evaluate the OFC de-
tection techniques in terms of smallest amplitude OFC detected, detection time, and false alarms.
However, from the examples, it was discovered that most solid failure cases would not be classified
as oscillatory failures, as they instead cause actuator runaway.
The following four chapters will present the investigation and theoretical development of the four
OFC detection techniques considered in this thesis, namely oscillation counting, integrated absolute
error (IAE), discrete Fourier transform (DFT), and phase-locked loop (PLL).
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Chapter 4

Time-Domain Residual Thresholding

4.1 Introduction

This chapter provides a detailed overview of the oscillation counting method, along with some
additional observations that have not been thoroughly addressed in literature.
Oscillation counting is an existing OFC detection technique that was developed by Goupil [1]
and is currently in service on the Airbus A380 passenger airliner. Oscillation counting is a time-
domain residual evaluation technique, and is fundamentally a limit-checking approach to fault
detection. This approach has found considerable success in the detection of oscillatory failures on
the A380, and is considered to be the baseline for comparing other residual evaluation techniques.
This oscillation counting technique was implemented in Matlab for this project, using the available
information from literature, so that it could be trained and tested in the simulation framework, and
so that its performance could be compared against the other OFC detection techniques developed
in this project.
Specific concerns and design considerations were highlighted while developing the Matlab imple-
mentation, and the potential effect of these observations are discussed in Section 4.3.

4.2 Background Theory

4.2.1 Overview
The oscillation counting approach attempts to count the number of oscillations that occur in a
sliding window of the residual. This is achieved by applying a positive and negative threshold to the
residual data, and counting the number of successive and alternating crossings of the residual over
some given threshold T . If the number of crossings that occur within the sliding window exceed
some value Tc, then an oscillatory failure is inferred. This is depicted in Figure 4.1. Crossings
are counted when the residual crosses the positive threshold with a rising edge, or the negative
threshold with a falling edge.
The size of the sliding window, N , is expressed in number of samples, and is chosen to span over
at least three cycles of the lowest expected OFC frequency. For example, if the lowest expected
frequency is 1 Hz, and the sampling rate is 40 Hz, the length of the window is selected to be 3
seconds, or 120 samples. The use of this sliding window ensures that old threshold crossings are
discarded. This helps to improve the robustness of the system, since only recent crossings are
considered, while much older threshold crossings have no effect on the detection. Therefore, the
crossing count is accumulated if a crossing is detected on the most recent residual sample, and the
count is decremented when a crossing occurs at the oldest sample of the window.

27
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Figure 4.1: Overview of Oscillation Counting, adapted from [35]

Oscillation counting offers a robust approach to OFC detection, since checking for the existence
of multiple crossings ensures that occasional and unexpected crossings that result from noise or
modelling errors are ignored. The threshold for the number of crossings is directly related to the
detection time requirements. For a 3 cycle detection time, Tc is chosen to be 6. In theory, this
approach guarantees detection time, since for each period of the OFC, the first crossing occurs
between 0◦ and 90◦ of the sinusoid’s phase, and the second crossing occurs between 180◦ and 270◦,
as illustrated in Figure 4.2. Provided the amplitude exceeds the threshold, the first six threshold
crossings will always be counted before the end of the third OFC cycle. In this way, detection time
is independent of frequency and amplitude.
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Figure 4.2: Threshold Crossings over Phase
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A diagram of the entire oscillation counting technique is provided in Figure 4.3. Here, it can
be seen that the residual is first filtered before oscillation counting is performed. Additionally,
the technique handles the checks for liquid failures and solid failures separately, where the solid
failure check offsets the thresholds by the estimated control surface deflection. These elements are
discussed further in the proceeding sections.

Oscillation
Counting

Oscillation
Counting

Energy
Calculation

Liquid
Failure

Solid
Failure

DetectionSub-band
Filtering

r[n]
Residual

Sub-band
Filtering

δ̂[n]
Deflection
Estimate

Figure 4.3: Oscillation Counting OFC Detection System

4.2.2 Residual Filtering
Robustness can be further improved with suitable filtering of the residual signal. Filtering assists
in attenuating noise, allowing the thresholds to be lowered without fear of false alarms. Filtering
can also be used to remove any DC components of the residual, ensuring that the mean of the
signal remains at 0 V, and thereby guaranteeing threshold crossings.
Goupil made use of two 4th order Cauer, or Elliptic bandpass filters to divide the residual into
two spectral sub-bands. Dividing the residual into sub-bands allows the system to have different
detection requirements for different frequencies. For example, the amplitude and detection time
requirements could be more strict for lower frequencies than for higher frequencies.

r[n] 1 – 3 Hz

3 – 10 Hz

Oscillation
Counting

Oscillation
Counting

Detection

Figure 4.4: Oscillation Counting

In this investigation, the filter bandwidths are chosen to be 1 to 3 Hz and 3 to 10 Hz respectively.
These cutoff frequencies are based on the logarithmic scale, where 3 Hz is exactly 3 times 1 Hz,
and 10 Hz is approximately 3 times 3 Hz. Elliptic filters are chosen due to their superior frequency
drop-off compared to other filters, providing maximum noise attenuation with minimal filter order,
and subsequently minimal computational cost. Additionally, two windows with different sizes are
used for the oscillation counting, namely 120 samples for 1 to 3 Hz, and 40 samples for 3 to 10 Hz.
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4.2.3 Distinction between Liquid and Solid Failures
Goupil defines two potential oscillatory failure cases: liquid and solid failures [1]. These are
expressed mathematically in Equations (3.2.7) and (3.2.8) in Chapter 3. Once the estimated
actuator is subtracted from the measured position, the residual is expressed as

r[n] ≈


0 for nominal behaviour
A cos (2πfnTs) for liquid failures
A cos (2πfnTs)− δ̂[n] for solid failures

(4.2.1)

The residual for liquid failures contains the pure sinusoid centred at 0 V, and oscillation counting
can be performed around zero. The solid failure, on the other hand, is offset by the negative
estimated deflection, δ̂[n]. This means that counting oscillations around 0 V may not be viable.
Instead, oscillations have to be counted around the opposite of the estimated deflection, −δ̂[n].
Oscillation counting is performed with the positive and negative thresholds offset by the negative
estimation. Figure 4.5 shows an exaggeration example of the residual during a solid failure case,
along with the negated estimated control surface deflection. Note that because the residual is
filtered into different sub-bands, the estimated deflection must also be filtered before being used
to offset the threshold.
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Figure 4.5: Residual and Estimated Control Surface Deflection During a Solid Failure Case

However, in the process of counting oscillations around the opposite of the deflection estimate, a
new false alarm risk manifests. In a fault-free case where the control surface receives a sinusoidal
command input, the offset thresholds regularly cross the fault-free residual, as seen in Figure 4.6.
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Figure 4.6: Potential Case for False Detections During Solid Counting

With no failure present, the residual is approximately zero, but the oscillation counting threshold
is now offset by the sinusoidal deflection estimate, causing false threshold crossings. To counter
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this, an additional robustness check is added to the system that checks whether the energy of the
residual is above some threshold or not, as shown in Equation (4.2.2).

N−1∑
k=0

r2(k) > TE (4.2.2)

If the energy of the residual within the sliding window is greater than the energy in a fault-free
case, and threshold crossings are present in the solid failure check, then a solid failure is inferred.
An example of the residual energy is shown in Figure 4.7.
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Figure 4.7: Residual Energy during Solid Failure

In summary, the oscillation counting method involves filtering the residual signal into two sub-
bands, and counting the number of threshold crossings occur over a set period. Liquid and solid
failures are handled separately, and for additional robustness, the energy in the residual is calculated
and compared to a nominal energy value.

4.3 Critical Analysis, Insights, and Design Considerations

For benchmarking purposes, the oscillation counting technique described above was implemented in
Matlab, and during the implementation, important observations and insights emerged that are not
covered in existing literature. Concerns arose regarding the effects of the sub-band filters, sampling
rate, and the implications of counting “successive and alternating” crossings. These concerns and
design considerations are discussed in this section.

4.3.1 Counting Alternating Crossings
An important consideration in the detection of OFCs with the oscillation counting approach is
the counting of “alternate” threshold crossings. In other words, if a positive threshold crossing
occurred, the next crossing that would be counted would have to be at the negative threshold,
and vice versa. This could greatly reduce the number of incorrect detections as a result of noisy
threshold crossings, improving the robustness of the system.
This led to the first critical observation of the oscillation counting technique, which was that the
alternating crossing check often caused late detections. If a spurious positive threshold crossing
occurred due to noise, followed by a positive threshold crossing due to a newly induced OFC,
this first OFC threshold crossing would not be counted, as illustrated in Figure 4.8. This adds a
half-cycle delay to the OFC detection.
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Figure 4.8: Potential for Missed Threshold Crossing

In the above figure, a spurious residual spike causes a threshold crossing before an OFC begins.
This crossing falls within one window length of the start of the OFC. When the OFC starts,
the first, positive threshold crossing is not counted. The negative crossing is then the first OFC
crossing detected. Before the total number of detected crossings reaches 6 however, the first
spurious crossing leaves the window, and the crossing counter is decremented. Now, one additional
crossing is required before detection, resulting in a late detection.
Overall, this problem may appear very infrequently, but should be taken into account when a very
low threshold is chosen. If detection time is a strict requirement, the counting of only alternating
threshold crossings may not be recommended, especially if the detection of small amplitude OFCs
is desired. Instead, count all threshold crossings that occur within the sliding window, irrespective
of order of appearance.
To remain consistent with literature, the implementation used in the final results will make use of
the alternating crossing check.

4.3.2 Filtering Effects
Elliptic filters are used to divide the residual into sub-bands. As stated, this reduces the amount
of noise in the residual signal, and allows for different window sizes to be used for the detection
of different frequencies. Unfortunately, the use of bandpass filters introduces delays and transients
that may affect the detectability of OFCs within the maximum detection time. Figure 4.9 shows
the effect of the 1 – 3 Hz filter on a 1 Hz OFC with an amplitude of 1 V, in a case with no noise or
modelling errors.
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Figure 4.9: Effect of Bandpass Filter on 1 Hz OFC

Here, it is shown that the filter causes the OFC’s amplitude to rise gradually to its maximum
value, which is visualised by the envelope plot. As a result, the first two peaks of the filtered OFC,
indicated in the figure above, have magnitudes of 0.3 V and 0.55 V respectively. Because of this
attenuation, these first two peaks may not cross the threshold, resulting in a delay in the detection
time by at least one cycle. This effect is shown in Figure 4.10.
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Figure 4.10: Missed Threshold Crossings due to Bandpass Filter

Similar effects can be seen for higher frequency OFCs, such as the 3 Hz OFC present in Figure 4.11,
which shows the first two peaks having values of 0.36 V and 0.84 V. The potential result of this
is that for an OFC to have guaranteed detection time, the first peak must be higher than the
threshold. Based on the 0.3 V of the first peak in the 1 Hz case, it can be assumed that the
amplitude of the OFC must be larger than the threshold by a factor of 3.3 for guaranteed detection
time.
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Figure 4.11: Effect of Bandpass Filter on 3 Hz OFC

This “rise time” is not the only side-effect of the filters that could be detrimental to OFC detection.
Two more effects of the filters are observed in Figures 4.9 and 4.11. Firstly, the amplitude of the
filtered OFCs is smaller than that of the unfiltered OFCs. This is due to the passband ripple of the
filter frequency response, shown in Figure 4.12. The amount of passband ripple can be adjusted,
with smaller ripple resulting in a flatter cutoff slope. For these tests, the passband ripple was
chosen as 1 dB. This results in a minimum attenuation factor of 0.89 over the passband. This can
further reduce the method’s ability to detect small amplitude OFCs.
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Figure 4.12: Frequency Response of 1 – 3 Hz (Left) and 3 – 10 Hz (Right) Bandpass Filters

Secondly, the filters induce phase delays in the residual, which can further influence detection time.
The 1 Hz OFC in Figure 4.9 shows a phase lead, while the 3 Hz OFC in Figure 4.11 shows a phase
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lag. In the case of the phase lag, the threshold crossings occur later than they would without
filtering. Figure 4.12 shows that at 3 Hz and at 10 Hz, the phase delay reaches a maximum of 90◦
for these 4th filters. However, the potential phase lag tends to increase with higher order filters.
This lag effect, coupled with the rise time of the filter could result in significant delays before
detection. Fortunately, by inspecting Figure 4.2 further, it can be seen that an OFC should be
detected 90◦ before the end of the last period, suggesting that the 90◦ phase lag may be allowable.
In summary, with the combined effects of the effective rise time of the filter and the possible
90◦ phase lag, oscillation counting could have a potential 1.5 cycle delay before detecting a small
amplitude OFC, and the filters can cause slight attenuation in the OFC, degrading the minimum
detectable amplitude performance. As a rule of thumb, only an OFC that is 3.3 times larger than
the threshold should be considered to have guaranteed detection time, ignoring the potential effects
of noise.

4.3.3 Upsampling
One final potential pitfall for the oscillation counting is the use of low sampling frequencies. For
example, at a sampling rate of 40 Hz, a full cycle of a 10 Hz OFC is only described by four samples.
This means that the samples may not show the full amplitude of the OFC. As shown in Figure 4.13,
the amplitude of a sampled 10 Hz sinusoid can potentially reduce to 70 % of its true amplitude.
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Figure 4.13: Effects of Low Sampling Frequency on High Frequency OFCs

For the purposes of oscillation counting, it is recommended to use a sampling rate that is at least
ten times higher than the highest OFC frequency to ensure that there are at least 10 samples
in a single OFC cycle. For example, if the highest expected OFC frequency is 10 Hz, then a
100 Hz sampling rate is recommended. However, if the sampling frequency is lower than desired,
upsampling can be used to increase the sampling frequency of the residual signal. The sampling
frequency of a signal can be increased by a factor of L by inserting L−1 zeros between each sample
of the original signal. This is mathematically expressed as:

rL[n] =
{
L · r[n/L], n = 0,±L,±2L, ...
0, otherwise (4.3.1)

The sub-band filters can then remove the unwanted high-frequency components that are introduced
by the upsampling. For the case of a 40 Hz sampling frequency, an upsampling factor of 3 is used to
increase the sampling frequency to 120 Hz. Figures 4.14 and 4.15 show the potential improvements
of upsampling a 10 Hz sinusoidal signal that was sampled at 40 Hz.
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Figure 4.14: Upsampling Results for 10 Hz Sinusoid
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Figure 4.15: Upsampling Results for 10 Hz Sinusoid with 45◦ Phase Shift

4.4 Threshold Training

Threshold training is performed on training data using a binary search algorithm to find the
smallest threshold that would not result in a false alarm in the training data.
An upper bound and a lower bound for the threshold are assumed. These are chosen as 0 V and
30 V, based on the maximum allowable deflection of the control surface of 30◦. The oscillation
counting threshold is set to the average, or middle of these two bounds. This threshold is then
used to check fault-free training data for OFCs. If an OFC is (incorrectly) detected, the threshold
is considered to be too low, and the initial lower bound is moved up to this middle value. The new
threshold is recalculated as the average between these new bounds. If the OFC check does not
result in a false alarm, the threshold can potentially be lowered. The upper bound is then moved
down to the middle value, and once again the new threshold is the average of the new bounds.
This process is repeated until a desired accuracy is achieved.
The iterative search ensures that the threshold is set to as low a value as possible that still avoids
false alarms. It results in a threshold that is set close to the noise level, which allows for occasional
noisy threshold crossings without fear of false alarms. Similar approaches to threshold selection is
followed for each detection method to ensure fair comparisons in the final results.

4.5 Summary

A detailed investigation and review of the current implementation of OFC detection used on the
A380 aircraft is reported in this chapter. The oscillation counting residual evaluation scheme
accepts a residual signal, filters the signal into frequency sub-bands, and counts successive and
alternating threshold crossings. Once six crossings have been detected, a failure is inferred. This
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method required the use of separate checks for liquid and solid failures, increasing the computa-
tional complexity of the system.
The oscillation counting approach was implemented in Matlab according to literature. During
implementation, potential causes for late detections were identified. The sub-band filters resulted
in transient effects and phase shifting that could cause late detections. The check for alternating
threshold crossings could occasionally result in the first peak of an oscillatory failure being ignored
by the detection algorithm. Finally, the use of an upsampling stage was recommended in cases
where the residual signal is sampled at a low sampling frequency.
A binary search algorithm was implemented to train the oscillation counting threshold. This
allowed the threshold to be set as low as possible without triggering false alarms, while still allowing
occasional threshold crossings during nominal flight operation.

4.6 Contributions

The following contributions were made in this chapter:

• A potential cause for late detections was identified in the oscillation counting technique,
based on the counting of only alternating threshold crossings. The proposed solution for this
is to count all detection crossings rather than specifically alternating crossings.

• The potentially negative effects of filtering on detection time were identified, specifically
the rise time and the phase shift. Based on the behaviour of the filters’ rise time, it was
proposed that the smallest amplitude oscillation that could be detected within 3 cycles could
be approximated by applying a scaling factor of 3.3 to the chosen threshold. Additionally,
it was concluded that the effects of the filters’ phase shift should not cause late detections
provided the bandpass filters are of 4th order.

• The potentially negative effects of low sampling rate were identified, and an upsampling stage
was proposed to increase the sampling rate of the residual signal.

• A binary search algorithm was implemented as a way to determine the lowest threshold that
would not cause false alarms.
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Chapter 5

Energy-Based Techniques

5.1 Introduction

This chapter investigates residual evaluation schemes that rely on calculating the energy of the
residual signal. The primary focus is placed on the integrated absolute error (IAE) approach, which
was initially proposed for online detection of oscillation in control loops of processing plants. This
approach has garnered a lot of attention in literature, and many improvements have been suggested.
However, many of these improvements were suggested for offline fault detection, isolation and
diagnosis, where detection time and computational complexity is not as critical.
Section 5.2 provides background theory to the IAE detection scheme. Section 5.3 then explains
how the approach is implemented and adapted for the OFC detection problem.

5.2 Background Theory

Hägglund [17] formulated the integrated absolute error (IAE) for the online detection of oscillations
in control loops. The IAE was calculated by integrating the control error between successive zero
crossings. This is mathematically described as

IAE =
∫ ti

ti−1

|e(t)|dt, (5.2.1)

where ti−1 and ti are two zero crossing time instances. Nominal control-loop operation typically
results in small IAE values, and failures can be inferred when the IAE exceeds some threshold
IAElim. This is illustrated in Figure 5.1. Furthermore, oscillatory failures would show periodic
threshold crossings. Therefore, a oscillatory failure can be inferred if a certain number of threshold
crossings, defined as nlim, occur over some window of time.

t [s]

t [s]

e(t) IAE(t)

ti−1 ti

IAElim

Figure 5.1: Illustration of the Integrated Absolute Error (IAE)
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Hägglund states that the threshold is chosen based on the desired amplitude that should be de-
tected. For a pure sinusoidal signal with amplitude A and frequency ω, the threshold should
be

IAElim ≤
∫ π/ω

0
|A sin (ωt)|dt = 2A

ω
. (5.2.2)

Here, the value ω in the threshold is chosen to be a constant based on the parameters of the
PI(D) controller used in the control loop. However, Equation (5.2.2) also clearly shows that the
calculated value of the IAE is dependent on frequency, and high frequency failures will not manifest
with the same magnitude as low frequency failures, and may therefore go undetected. Hägglund
illustrates this as a detection domain on an amplitude-frequency axis, as shown in Figure 5.2. The
blue region shows amplitude-frequency combinations that can be detected, while the red regions
show amplitude-frequency combinations that would likely go undetected. Hägglund acknowledges
that the detection method requires a sufficiently high amplitude with a sufficiently low frequency
for successful detections.

A

ω0 πnlim
Tsup

IAElim = 2A
ω

Figure 5.2: Viable Values of Amplitude and Frequency for IAE Detection

In general, the IAE residual evaluation technique has successfully been used for the detection
of oscillations in closed-loop control systems, and offers a computationally efficient approach to
the OFC detection problem. This is a time-domain technique, similar to the oscillation counting
approach proposed by Goupil. It is therefore worth investigating if the IAE has any advantage
over the oscillation counting approach, or vice versa.

5.3 Applying the IAE to OFC Detection

This section describes how the IAE technique is adapted for OFC detection in this project, spe-
cifically highlighting a new approach to IAE thresholding.

5.3.1 Overview of Adapted IAE Method
The IAE is used here as a residual evaluation technique, and is applied to the residual signal rather
than to the control error signal. The IAE is therefore defined as:

IAE =
∫ ti

ti−1

|r(t)|dt, (5.3.1)
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and the detection threshold from Equation (5.2.2) is

IAElim = 2A
ω
, (5.3.2)

where A is the amplitude of the smallest OFC that can be detected, and must be chosen beforehand.
An unfortunate shortcoming of this technique is that its threshold is dependent on frequency. A
10 Hz OFC would have to be 10 times larger than a 1 Hz OFC for them both to cross the same
threshold.
An alternative approach to choosing the threshold is to assume that the time between the two zero
crossings is half the period of an OFC, and thus the frequency of the signal can easily be estimated
using this time. In other words, the threshold IAElim can be calculated using this frequency
estimation:

IAElim = 2A· 2(ti − ti−1)
2π (5.3.3)

This offers a threshold that will adapt to the time between zero crossings, and will set low thresholds
for high frequencies, and higher thresholds for low frequencies.

5.3.2 Implementation
In the discrete domain, the IAE calculation and threshold calculation simplifies to

IAE[ni] =
ni−1∑
n=ni−1

r[n] and IAElim[ni] = 2A(ni − ni−1)
π

. (5.3.4)

where ni−1 and ni represent two successive zero crossing samples. The IAE can be implemented
in a simple fashion, summarised as follows: At each sample time, check for a sign change between
the current and previous residual sample. This indicates a zero crossing occurrence. If no sign
change is present, then increment an integration time variable, and add the absolute value of the
most recent residual sample to a running total. If a zero crossing has occurred, the threshold is
calculated based on the integration time, and this is compared to the running total. If the running
total is greater than the threshold, a “load disturbance” is flagged. Once the check is performed,
the integration time and running total are both reset to zero.
The implementation of the IAE shares similar characteristics to the oscillation counting implement-
ation. The residual is evaluated over a window of samples to forget old threshold crossings, and
a failure is flagged if 6 threshold crossings occur over this window. Sub-band filters are also used
here for noise attenuation, and ultimately to ensure fair comparisons between the two methods.
Figure 5.3 shows an example of an OFC detection using the IAE.
The red stem plots shown above represents the threshold which is recalculated at every zero
crossing. A load disturbance is detected if the IAE is greater than the threshold. The OFC is
detected after 6 threshold crossings. It can be seen in the IAE graph that the magnitude of the
threshold is dependent on the time between zero crossings. The threshold is set very low for short
durations, and higher for long durations between zero crossings.
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Figure 5.3: Detection of an OFC with the IAE Method

There are a few observations in Figure 5.3 that should be noted. Firstly, the integration over the
first half-period does not cross the threshold. This is due to the rise time of the filters, as discussed
in Section 4.3.2, and results in a late detection. Secondly, the threshold crossing occurs at the very
end of a half-cycle, unlike in the oscillation counting approach. This suggests that the IAE is more
prone to late detections than oscillation counting.
Additionally, the IAE may also require a unique solution for solid failure detection. One possible
solution is to check where the residual crosses the filtered estimated position, rather than zero
crossings. This is similar to the oscillation counting approach of offsetting the thresholds with the
filtered estimated position. However, a similar false alarm risk would exist here as well.

5.3.3 Threshold Training
The threshold that must be tuned for the IAE is A, the amplitude of the OFC. This is the value
used in Equation (5.3.4) to calculate the adaptive threshold. The same search algorithm that was
used to determine the threshold for oscillation counting (described in Section 4.4) is used to find
the smallest amplitude that can be detected while still ensuring zero false alarms.

5.4 Summary and Contributions

The integrated absolute error (IAE) offers another time-domain solution to the OFC detection
problem, and can be implemented with a very low computational cost. This method integrates the
residual between zero crossings, and compares the integrated value to a threshold.
The IAE was implemented in Matlab, based on existing literature. However, the IAE calculation
suffered from a scaling factor that was dependent on the frequency of the OFC. A new adaptive
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threshold was implemented to mitigate this effect, where the threshold was scaled by the time
between successive zero crossings.
Unfortunately, the IAE suffers from the same filtering effects as the oscillation counting approach,
and because threshold crossings are only observed at the end of each OFC cycle, the IAE will likely
suffer from late detections.
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Chapter 6

Frequency-Domain Residual Thresholding

6.1 Introduction

A popular method of determining the frequency content of a signal is the Fourier transform.
However, given the real-time requirements and embedded nature of the OFC detection problem,
the use of the discrete Fourier transform (DFT), and even its optimised implementation, the
fast Fourier transform (FFT), have been avoided. These algorithms are considered to be too
computationally expensive. Nevertheless, this chapter investigates the application of the DFT,
its potentially superior detection performance over other proposed methods, and any performance
optimisations that could make its implementation feasible. This may offer an upper bound of
detection performance to which other detection methods should strive, and could even be applicable
in future, more powerful embedded monitoring systems.
This chapter begins with a brief definition of the discrete Fourier transform in Section 6.2, and
follows up with an overview of the proposed detection method in Section 6.3. Section 6.4 provides
a mathematical proof that this approach can guarantee detection time. Sections 6.5 and 6.6
offer solutions to improvements in frequency resolution and computational optimisations. Finally,
Section 6.7 offers a more experimental approach to the use of the Fourier transform that makes
use of varying window sizes.

6.2 Background Theory

The two main concepts that are used throughout this chapter are the discrete-time Fourier trans-
form (DTFT), and the discrete Fourier transform (DFT). Both of these transforms decompose
time signals into frequency-domain representations of their frequency content.
The DTFT, X(ω), of a discrete-time signal x[n] is defined as [36]:

X(ω) ,
N−1∑
n=0

x[n]e−jωn, ω ∈ [0, 2π] rad/sample (6.2.1)

The DFT, X[k], is a discretisation of the DTFT:

X[k] ,
N−1∑
n=0

x[n]e−j2πkn/N , k = 0, 1, ..., N − 1 (6.2.2)

where
x[n] , input signal at time step n
n , sample number
k , frequency sample number
N , total number of samples

43
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6.3 Overview of Detection Algorithm

The frequency-domain residual thresholding technique for OFC detection relies on the use of the
DFT to analyse the residual signal. The DFT provides a breakdown of the frequency content of
the residual, and the magnitude of these frequency components are used to identify OFCs. In the
event of an OFC, the spurious sinusoid would manifest in the frequency domain as a spike at one
particular frequency. By representing the residual data in the frequency domain, it becomes much
easier to extract and verify the existence of any abnormal frequency components from the noise
and modelling errors. This naturally leads to a very simple detection method, which is to check
whether any frequency component exceeds some predefined threshold value.
This detection technique is designed to use the short-time Fourier transform (STFT), where, at
each time step, the most recent N samples of the residual are used to calculate its DFT. This
window of N samples is referred to as a rolling window, and is used to provide an estimate of
the instantaneous frequency content. The process is shown in Figure 6.1. Detection time was
discovered to be highly dependent on window size, with shorter windows offering shorter detection
times.

STFT

N Samples

t

OFC

Threshold T [k]

f0

|R[k]|

(a) Residual r[n] (b) Frequency Components

Figure 6.1: Overview of Frequency Domain Thresholding

Initially, the DFT detection technique was designed to use a single fixed threshold value T for
all frequency components. However, this “fixed” threshold showed poor detection performance,
and exhibited late detections for high-frequency failures. The investigation into thresholding the
DFT soon led to the concept of a “frequency-dependent threshold”, T [k], where the threshold is
varied across frequency. Further investigation into this frequency-dependent threshold led to a
mathematical proof that the use of a fixed threshold to cover all frequencies would be insufficient
for ensuring consistent detection times, as will be shown in Section 6.4. Therefore, the threshold
is instead chosen to be unique for each frequency component based on the expected frequency
content of the residual for nominal flight.
The threshold training process relies on large amounts of training data, similar to that of the
oscillation counting method. Essentially, the detector is provided with large amounts of fault-free
residual data, and the maximum value of each frequency component of the residual is determined
and stored. The result is a range of values over frequency that specify the maximum magnitude of
the frequency components that existed in the fault-free datasets. Any deviation over any of these
values suggests a fault. More detail of this process is given in Section 6.4.

6.4 Detection Time and Thresholding Analysis

As specified in the project requirements, this detection method must be able to confirm the presence
of an OFC within 3 cycles of its onset. This requirement has implications on the size of the
rolling window and the magnitude of the frequency-dependent threshold. A shorter window allows
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the DFT to update the instantaneous frequency estimate more quickly, reducing detection time.
This naturally has the further advantage of requiring fewer computations every time step, since
fewer frequency components are calculated for shorter windows, based on Equation (6.2.2). The
disadvantage of using short windows is that the resolution of the DFT is inversely proportional to
N , the size of the window. Such large quantization errors may result in OFCs not being detected.
This is explained further in Section 6.5. It is also preferable to have at least one full period of
the lowest expected OFC frequency in the window, to improve the chances that the OFC will be
correctly differentiated from noise.
The next section considers the transient behaviour of the frequency components that are calculated
using the short-time Fourier transform applied to a rolling window. The transient behaviour of
the frequency components must be considered, since it affects the detection time.

6.4.1 Transient Behaviour of Frequency Components
The transient behaviour of the frequency components that are calculated using the STFT is affected
by the length of the rolling window that is used. The length of the window is chosen based on the
lowest frequency that needs to be detected, namely 1 Hz. A 3 second window with a sampling rate
Fs of 40 Hz results in a window size of 120 samples, with a frequency resolution of 0.3̇ Hz. This
rolling window would include 3 cycles of the lowest OFC frequency, but 30 cycles of the highest
expected frequency (10 Hz), raising concerns about whether a high-frequency OFC would indeed
be detected in time.
Fortunately, a mathematical expression for the detection time of an OFC can be obtained. To
simplify the derivation process, we assume an ideal monitoring system where modelling errors in
the residual r[n] during nominal, fault-free operation are negligible. An OFC induced into the
system manifests as a pure sinusoid in the residual signal, as follows:

r[n] =


0 for nominal behaviour
A cos (2πfnTs) for liquid failures
A cos (2πfnTs)− δ̂[n] for solid failures

(6.4.1)

where Ts is the sampling period, A is the amplitude of the OFC, f is the frequency of the OFC,
and δ̂[n] is the residual offset in solid failure cases. δ̂[n] is considered to be a low-frequency signal,
and is ignored for this analysis.
The OFC manifests at some time tf . The residual can therefore be expressed as:

r[n] =
{

0 for nTs < tf
A cos (2πfnTs) for nTs ≥ tf (6.4.2)

Since the system measurements occur at discrete time intervals, the failure will begin to manifest
in the residual at sample nf .

nf−1Ts < tf ≤ nfTs (6.4.3)

An example of this residual is shown in Figure 6.2, along with an illustration of the rolling window.
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Figure 6.2: Rolling Window

The DFT, R[k], of the window of residual r[n] is defined as:

R[k] =
no+N−1∑
n=no

r[n]e−j2πk(n−no)/N , k = 0, 1, ..., N − 1 (6.4.4)

In this equation, it is clear that the DFT is calculated over a window of N samples, where no
denotes the first sample of the window, and the current time step is

n = no +N − 1. (6.4.5)

Assume a case where sample nf falls within the window, as in the second plot of Figure 6.2.
Expanding Equation (6.4.4) with the residual expression given in Equation (6.4.2) gives:

R[k] =
nf−1∑
n=no

r[n]e−j2πk(n−no)/N +
no+N−1∑
n=nf

r[n]e−j2πk(n−no)/N . (6.4.6)
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With r[n] equal to zero in the first term, the equation simplifies to

R[k] =
no+N−1∑
n=nf

A cos (ωnTs)e−j2πk(n−no)/N

=
no+N−1∑
n=nf

A

2
(
ej2πfnTs + e−j2πfnTs

)
e−j2πkn/Nej2πkno/N

= A

2 e
j2πkno/N

no+N−1∑
n=nf

e(j2πn)(fTs−k/N) +
no+N−1∑
n=nf

e(−j2πn)(fTs+k/N)

 . (6.4.7)

The two terms above represent the positive and negative frequency components. These two fre-
quency components contain the same information, so it is decided to ignore the effects of the
negative frequency component from this point forth. The positive component coincides with
f/Fs = k/N , where both f/Fs and k/N represent the same discrete frequency on the unit circle,
measured in cycles per sample. Note that k here also represents the integer number of complete
periods of that frequency over N samples. The sample k that coincides with the OFC frequency f
will from here be represented as ko. The above equation becomes

R[ko] = A

2 e
j2πkno/N

no+N−1∑
n=nf

e0. (6.4.8)

Since only the magnitude information of the Fourier transform is useful for the OFC detection, the
absolute value of R[ko] further simplifies to

|R[ko]| =
A

2

no+N−1∑
n=nf

1 = A (no +N − nf )
2 . (6.4.9)

The current time step is the last sample of the window, n = no +N − 1. Substituting this into the
above equation gives the time-domain expression of the kth element of the DFT:

|R[ko, n]| = A (n− nf + 1)
2 (6.4.10)

Finally, the frequency component of the OFC, normalised by the length of the window N , can be
represented as a piece-wise function:

|R[ko, n]| =


0 for n < nf

A (n− nf + 1)
2N for nf ≤ n < nf +N

A

2 for n ≥ nf +N

(6.4.11)

In the above equation, A, nf , and N are all constants. This proves that the magnitude of the
OFC’s frequency component in the DFT linearly increases until it reaches its maximum value of
A/2, exactly N time steps after the failure has manifested. This is clear proof that the size of
N influences the detection time, but also suggests that the OFC amplitude A, and threshold T ,
have some effect as well. Larger amplitudes increase the gradient of Equation (6.4.11), resulting
in earlier threshold crossings. Figure 6.3 illustrates this behaviour for a 2 Hz OFC.
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Figure 6.3: Illustration of OFC Detection with f = 2 Hz, Fs = 40 Hz, and N = 120

Figure 6.3b shows the magnitude of the 2 Hz DFT component over time. If the amplitude of the
OFC is increased, or the threshold is lowered, the threshold crossing would occur more quickly.
Note that the increase over n ∈ [250, 369] is not linear due to spectral leakage, which occurs in
situations where a non-integer number of periods of the OFC exist across the window.

6.4.2 Guaranteeing Detection Time
In order to guarantee the detection time of all OFCs in terms of cycles, the threshold must become
a function of frequency. This is because Equation (6.4.11) is independent of frequency. If a single
value is used as the threshold for all frequency components, higher frequency OFCs will cross the
threshold after more cycles than lower frequency OFCs. In other words, higher frequencies must
have lower detection thresholds. This is a valid strategy, since the dynamics of the actuator and
the aircraft tend to reject high frequency control inputs.
Assume that an OFC causes a frequency component to cross a frequency-dependent threshold T [k]
at sample nd. At this point,

T [k] < R[k, nd] = A(nd − nf + 1)
2N . (6.4.12)
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The detection time of this OFC in cycles is

c = Ts· f · (nd − nf ), (6.4.13)

where c can at most be
c ≤ Ts· f · (N − 1). (6.4.14)

The required threshold to ensure a consistent detection time, c, for all frequencies f , is given as

T (f) < A(cFs + f)
2fN . (6.4.15)

Equation (6.4.15) provides the required threshold for consistent detection time c over all frequencies,
and is illustrated in Figure 6.4. For comparative purposes, an example of a fixed, frequency-
independent threshold is plotted as well.
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Figure 6.4: Frequency Dependent Threshold

The above analysis assumes that no noise or modelling inaccuracies exist in the system. A noisy
residual could assist or hinder the detection by containing in-phase frequency components that
reinforce the OFC, or out-of-phase components that attenuate the OFC.

6.4.3 Thresholding
Of course, the threshold that is set must not be low enough to cause false alarms. Real flight
data must be used to determine the expected frequency content of normal flight operation. A
large quantity of nominal flight data is used to train the threshold by running the OFC detection
algorithm on this training data to find the maximum magnitude of each frequency component.
This provides a frequency-domain bound for nominal flight situations. Any deviation over this
bound can be considered a failure. This threshold may not hold strictly to Equation (6.4.15), but
the equation can be used to determine the lowest amplitude OFC that will be reliably detected
within 3 cycles. The evolution of the threshold during training is illustrated in Figure 6.5.
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(b) Threshold Trained after 15 Minutes of Flight (Training) Data
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(c) Threshold Trained after 2 Hours of Flight (Training) Data

Figure 6.5: Illustration of Threshold Training

With the threshold trained using the rigorous process above, Equation (6.4.15) can then be used
to determine the smallest amplitude OFC that can reliably be detected within 3 cycles. First,
the unwanted frequency components are discarded from the threshold T [k]. These unwanted
frequencies include all frequency components outside of the 1 – 10 Hz range, and all negative
frequencies. Then, the effective threshold is the smallest amplitude for each frequency that can be
reliably detected within c cycles. This can be calculated as

Teff [k] = 2fNT [k]
cFs + f

. (6.4.16)

Figure 6.6 shows an example of the final threshold after training. For illustrative purposes, the
threshold is doubled to show the smallest amplitude that would cross the threshold (since the
magnitude of an OFC would appear in the DFT as A/2). Also shown is the effective threshold
Teff , which shows the smallest amplitudes over frequency required for 3 cycle detection time. This
illustrates that the DFT can detect very small amplitude OFCs, but to guarantee detection time,
the OFC amplitude has to be significantly larger than the threshold.
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Figure 6.6: Frequency Dependent Threshold

The smallest amplitude that can be reliably detected within c cycles, irrespective of frequency, can
be specified as

Amin = max (Teff [k]). (6.4.17)

Amin thus represents a theoretical smallest OFC that can be detected within 3 cycles at any
frequency, and is a representation of the worst case, noise notwithstanding. For all cases where
A ≥ Amin, the OFC will be detected within 3 cycles. Furthermore, much smaller amplitude OFCs
can eventually be detected, although these may be detected later than allowed.

6.5 Achieving Sub-Sample Accuracy

Due to the way the DTFT is discretised, the DFT is defined only for discrete frequencies at
ωk = 2πkFs/N , and has a frequency resolution of Fs/N Hz. However, an OFC can manifest at
any frequency over the continuous frequency range. This means that it is very likely that the
frequency of an OFC will fall between two computed frequencies, ωk−1 and ωk. Unfortunately,
this may result in a missed detection, and is thus a motivation for frequency-domain sub-sample
interpolation. This is most easily achieved using zero padding.
To illustrate the possibility of a missed detection, consider an OFC

r[n] = A cos (ωinTs)

that falls between two frequency samples. Due to the rectangular window of the residual, the OFC
manifests as a sinc function in the DTFT:

R(ω) = 1
2 [A·W (ω − ωi) +A·W (ω + ωi)], (6.5.1)

where W (ω), the DTFT of the rectangular window function, is defined as [36]

W (ω) = sin (ωN/2Fs)
N sin (ω/2Fs)

e−jω(N−1)/2Fs . (6.5.2)

Evaluating the DFT at the discrete frequencies ωk gives

R(ωk) = 1
2 [A·W (ωk − ωi) +A·W (ωk + ωi)]. (6.5.3)

The DFT and DTFT of a pure sinusoid is shown in Figure 6.7, along with the actual component of
the OFC which lies between two frequency samples. It clearly shows that the spectral components
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of the DFT do not reach the actual magnitude of the OFC. An extreme case occurs when ωi falls
exactly halfway between ωk−1 and ωk.
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Figure 6.7: Spectral Resolution

Considering only the positive frequency component:

|A·W (ωk − ωi)| =
∣∣∣∣A sin ((ωk − ωi)N/2Fs)
N sin ((ωk − ωi)/2Fs)

∣∣∣∣ (6.5.4)

Evaluating for ωk − ωi = 2π(Fs/2N), where ωi is exactly halfway between ωk−1 and ωk, gives

|A·W (ωk − ωi)| =
A

N sin (π/2N) ≈
2A
π
. (6.5.5)

This result, which makes use of the small-angle approximation, shows that the effective amplitude
of the OFC as calculated by the DFT could be reduced to 63.7 % of the actual amplitude.
Zero padding can bring out these critical spectral details that are hidden by the low spectral
resolution. Zero padding increases the length of the window by some integer factormz by appending
(mz − 1)N zeros to the end of the residual window. The effect of this is to increase the number of
samples in the window, thereby resulting in an increase in the number of samples in the frequency
domain. These frequency-domain samples become more closely spaced, improving the resolution
of the DFT. This unfortunately also increases the number of calculations that must be performed
to calculate the DFT.
With zero padding, important hidden features emerge. An OFC that manifests at a frequency
exactly halfway between two frequency samples may appear at only 63.7 % of its amplitude in the
DFT, but with a zero-padding factor of 5, for example, this value increases to 98.4 %. In other
words, there is a maximum potential amplitude drop of 1.6 %. A required zero-padding factor can
be determined by specifying an allowable amplitude drop:

% amplitude drop ≈
(

1− sin (π/2mz)
π/2mz

)
× 100 (6.5.6)

Figure 6.8 shows the result of zero padding.
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Figure 6.8: Spectral Resolution with Zero-padding Factor of 5

The above result shows that the effects of frequency-domain resolution can successfully be mitigated
through the use of zero padding.
At this point, the DFT approach to OFC detection can be summarised as follows:

1. At each time step, obtain the most recent N samples of the residual.

2. Append (mz − 1)N zeros to the end of the residual window.

3. Calculate the (mzN)-point DFT of the residual window.

4. For each frequency component between 1 and 10 Hz, compare the magnitude of the DFT to
a frequency-dependent threshold.

However, this approach is clearly more computationally expensive than the simple threshold cross-
ing checks executed by the oscillation counting method. For feasible implementation, it is necessary
to investigate more efficient DFT calculation algorithms and other performance improvements that
can be realised.

6.6 Sliding Discrete Fourier Transform (SDFT)

Sections 6.4 and 6.5 offer a compelling argument for the use of Fourier-domain techniques, but
unfortunately the use of the DFT comes with significant computational complexity. Calculating
the DFT can be efficiently performed using the fast Fourier transform (FFT) algorithm, but this
may still not offer sufficient performance. Fortunately, there exists a more computationally effi-
cient approach to calculating the DFT using a rolling window, namely the sliding discrete Fourier
transform (SDFT). The SDFT, illustrated in Figure 6.9, is defined as [37]:

R[k, n] = ej2πk/N (R[k, n− 1]− r[n−N ] + r[n]) (6.6.1)

The derivation of this equation can be found in Appendix A. With normalisation, the SDFT is

R[k, n] = ej2πk/N
(
R[k, n− 1]− r[n−N ]

N
+ r[n]

N

)
. (6.6.2)
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The SDFT is a recursive approach to computing the kth frequency component, or bin, and uses
the result of the previous time step to update the current time step. This process requires fewer
overall operations than the FFT. Furthermore, since each frequency bin k does not rely on any
other frequency samples, R[k, n] can be calculated for a select few values of k. This means that
only the 1 to 10 Hz frequency components need to be computed, and the calculation of the rest,
including the negative frequency components, can be ignored. The FFT, on the other hand, is
forced to calculate all components, irrespective of which frequencies are of interest and which are
not.

r[n]

z−N z−1

R[k, n]

R[k, n− 1]

ej2πk/N

×
–

+ +
+

|R[k, n]|
abs( )

Figure 6.9: Block Diagram of SDFT

The computational complexity of the DFT, FFT, and SDFT is summarised in Table 6.1 [36] in
terms of the number of complex operations that must be performed. Here, it is shown that the
SDFT requires significantly fewer operations than either the FFT or the DFT.

Table 6.1: Computational Complexity of Discrete Fourier Transform Algorithms

Complex Multiplications Complex Additions
DFT N2 N(N − 1)
Radix-2 FFT (N/2) log2 N N log2 N
SDFT N 2N

Certain performance improvements can further reduce the computational burden of the SDFT. The
complex value exp (j2πk/N) remains constant for a particular k, and can be computed beforehand
and stored as a lookup table. Another optimisation can be found by avoiding the calculation of
frequency bins that are not of interest. With N = 120, Fs = 40 Hz, and f ∈ [1, 10], the total
number of frequency bins that have to be computed are

no. bins = N(fmax − fmin)
Fs

+ 1 = 28. (6.6.3)

This is a substantial improvement over the FFT’s 120 bins.
The SDFT can also be modified to calculate the DFT of zero-padded data. The DFT of a zero-
padded window is

R[k] =
N−1∑
n=0

r[n]e−j2πkn/mzN . (6.6.4)

By following a similar derivation process as given in Appendix A, the algorithm simplifies to

R[k, n] = ej2πk/mzN
(
R[k, n− 1]− r[n−N ] + r[n]e−j2πk/mz

)
. (6.6.5)
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With normalisation,

R[k, n] = ej2πk/mzN

(
R[k, n− 1]− r[n−N ]

N
+ r[n]

N
e−j2πk/mz

)
. (6.6.6)

Once again, zero padding comes with an increased computational cost. With a zero-padding factor
of 5, the number of frequency bins that must be computed increase from 28 to 136, and adds an
additional complex multiplication.
Two final points regarding the use of the SDFT must be acknowledged. Firstly, initialisation of the
SDFT is extremely important. This is due to the recursive nature of the algorithm. One approach
to initialisation is to calculate the FFT of the first N samples, and continue using the SDFT with
this FFT result. Another approach is to initialise R[k, 0] as all zeros, and to prepend the residual
data with N zeros.
The second, more critical point regarding the SDFT is that the SDFT equation contains a pole on
the unit circle, and is therefore marginally stable. This can unfortunately lead to instability if any
computational errors arise. One approach to combating this instability is to add a damping factor
rd:

R[k, n] = rd· ej2πk/N (R[k, n− 1]− r[n−N ] + r[n]), 0 << rd < 1 (6.6.7)

Alternative, more accurate techniques have been suggested by Duda [38] and Douglas and Soh
[39]. However, all these methods come with some form of approximation error, and increased
computational complexity. They may also complicate any attempt to achieve sub-sample accuracy
as described in Section 6.5.

6.7 Fourier Analysis using Multiple Window Lengths

According to Equation (6.4.15), the frequency-domain threshold has to be a function of frequency,
and as seen in Figure 6.4, the threshold can get quite small at higher frequencies. However,
Equation (6.4.15) also suggests that instead of forcing the threshold T to adapt to f , the window
length N can be varied based on f . This means that higher frequency components could rather be
calculated using shorter windows than the low frequency components. Equation (6.4.15) therefore
motivates an investigation into the possibility of varying both the threshold and the window size
over frequency, rather than just the threshold. This idea is based on the fact that for high-frequency
OFCs, more than 3 cycles can fit in the window. Thus using shorter windows could also lead to
faster detection times.
This leads to the concept of the multi-window Fourier transform (MWFT), an implementation
of the SDFT where shorter windows are used to calculate the magnitude of higher frequency
bins. Furthermore, the resolution of the SDFT becomes a function of frequency. By using shorter
windows, the resolution, or gap between bins increases. This approach is made possible by the
SDFT algorithm, where each frequency bin is calculated independently, and different values of N
can be chosen for each bin.
As an example, consider a case where 4 different window sizes are used: 120, 80, 40, and 20 samples.
Figure 6.10 illustrates the MWFT of a signal, along with zero padding.
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Figure 6.10: Frequency Components of MWFT

Figure 6.10 specifies which window sizes are used for which frequency components, and which
values of k to use to calculate the MWFT. The challenge of choosing window sizes is to ensure
smooth transitions between the end of one frequency sub-band and the start of another, especially
when zero padding is involved. Here, it was chosen that the last frequency sample of one sub-band
falls on the same frequency as the first frequency sample of the next sub-band. For example, the
k = 6 sample of the N = 120 window falls on the same frequency as the k = 4 sample of the N = 80
window. One final consideration is that at least 3 cycles should fit in the window. Recalling that
k represents the number of complete cycles in the window, it is clear in Figure 6.10 that there are
always at least 3 cycles in the chosen windows.
To illustrate the effect of the MWFT on oscillatory residual, Figure 6.11 compares 4 separate DFTs
to the MWFT. A 5 Hz OFC exists in the residual, and its translation to the frequency domain
using the 4 different window sizes are shown in the left-hand plot. The MWFT, shown on the
right, attempts to merge the results of these 4 DFTs into a single signal that can be thresholded.
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Figure 6.11: 4 DFTs (Left) and the corresponding MWFT (Right), with 5 Hz OFC

Figure 6.11 illustrates an additional effect, which is that for many frequencies the DFT of the
N = 20 window appears to be higher than that of the N = 120 window. To observe the effect of
the MWFT on detectable amplitudes, the threshold of the MWFT is compared to that of a single
window DFT with N = 120. This is shown in Figure 6.12.
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Figure 6.12: Trained Thresholds for Single and Multi-windowed Fourier Transforms, with mz = 5

The trained threshold of the MWFT appears to be higher overall than the single-window approach,
primarily due to the reduced spectral resolution. This suggests that the overall threshold increase
could cause the MWFT to miss small OFCs that would otherwise be caught by the standard DFT.
However, the effective threshold can be determined with Equation (6.4.15) to find the smallest
OFCs that can be detected within 3 cycles. This is shown in Figure 6.13, and it is clear that
the MWFT shows no loss in minimum detectable amplitude, and sometimes even shows slight
improvement over the single-window Fourier transform.
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Figure 6.13: Effective Threshold for Single and Multi-window Fourier Transforms

The use of the MWFT approach can also improve the computational performance of the SDFT, as
fewer bins have to be computed. With the selected windows, the number of components reduces
to 51 with zero padding, or 11 without. This is in comparison to the 136 with zero padding or 28
bins without for the traditional SDFT, as stated in Section 6.6.
Overall, the MWFT offers an alternate application of the DFT to the OFC detection problem with
major reductions in computational cost and memory requirements without compromising detection
time. Ultimately, this design should be considered as experimental, and further investigation into
its propensity towards false alarms and missed detections should be conducted. However, it is
more thoroughly tested in Chapter 8.

6.8 Summary and Contributions

In summary, the following contributions were made in this chapter:

• The discrete Fourier transform was implemented as an approach to OFC detection. Initial
attempts made use of Matlab’s FFT function, and used a single, fixed threshold value for all
frequency components.

• Nominal residual signals were noted to have less energy in the higher frequencies than in
the lower frequencies. This led to the concept of the frequency-dependent threshold, which
used a unique threshold value for each frequency component. This threshold was trained
by determining the maximum value of each frequency component over a large amount of
fault-free training data.

• Following the advent of the frequency-dependent threshold, a mathematical proof was derived
that linked the detection time of the approach to the amplitude and frequency of the OFC,
and the chosen threshold. This further motivated the use of a frequency-dependent threshold,
and provided a way to gauge the expected performance of the DFT.

• A shortcoming based on the resolution of the DFT was identified, where OFCs with frequen-
cies that fall between the DFT’s frequency samples would not exhibit their full magnitudes.
Zero padding was discussed and proposed as a solution.
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• The sliding-DFT was identified as a computationally efficient approach to the DFT cal-
culation that would be less computationally expensive than the FFT. It was subsequently
implemented, and its result was confirmed to be identical to Matlab’s FFT function. The
SDFT was also confirmed to allow for zero padding.

• The structure of the SDFT was exploited to develop an experimental multi-window approach
for the estimation of the residual’s spectral content. This multi-window Fourier transform
allowed for the use of smaller windows to calculate higher-frequency components, leading
to faster detection times for high-frequency OFCs, and further improved the computational
efficiency.

Frequency-domain techniques offer an attractive means of OFC detection by extracting the fre-
quency content of the residual signal. The sliding discrete Fourier transform is a computationally
inexpensive approach to estimating the short-time frequency content of a signal, and can potentially
be implemented in the embedded monitoring systems on the Airbus A380. However, if the SDFT
cannot be used for stability reasons, the fast Fourier transform algorithm can be implemented
instead, although with an increase in computational cost.
The use of the discrete Fourier transform has significant advantages over time-domain techniques.
Firstly, no filters are required. This means that no phase delays or transient effects exist to
influence the detection time. Detection time can be guaranteed fairly accurately. Furthermore,
OFCs will almost always be detected before 3 cycles have passed. More severe OFCs tend to cross
the threshold sooner, based on Equation (6.4.15). However, this approach is admittedly more
computationally expensive than oscillation counting. The robustness of the detection system is
also highly dependent on the threshold training.
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Chapter 7

Demodulation-Based Detection
Technique

7.1 Introduction

The oscillatory failure case (OFC) detection problem can be viewed simply as the detection of
sinusoids in the presence of noise. This problem has already been thoroughly investigated and its
solution has been applied in the field of telecommunications. These techniques may offer novel
solutions to the OFC detection problem.
This chapter investigates the use of a phase-locked loop (PLL) for OFC detection. A PLL attempts
to track the phase and frequency of a sinusoidal signal, and can provide an indication of the
dominant frequency component of a signal. As such, they are typically used for carrier recovery,
clock synchronisation, and phase and frequency modulation [40]. Overall, the pedigree of the PLL
provides strong evidence that this is an avenue worth investigating.
This chapter will introduce the reader to the basic theory of the PLL, as well as potential pitfalls
presented by certain non-linear effects. Section 7.2 provides essential background theory on phase-
locked loops. Section 7.3 details the design of the PLL-based OFC detection algorithm. Section 7.4
presents an analysis of the theoretical signal-to-noise ratio performance of the PLL design. Sec-
tion 7.5 describes how the detection threshold of the PLL is trained. Finally, Section 7.6 considers
alternate designs that are noteworthy, but ultimately not used.

7.2 Phase-Locked Loop Theory

7.2.1 Overview
A phase-locked loop consists of four basic components [40]:

• A phase detector (PD), which determines the phase difference between two sinusoidal input
signals.

• A voltage-controlled oscillator (VCO), which outputs an oscillating signal whose frequency
is controlled by an input voltage.

• A loop filter, which removes high-frequency components from the phase detector’s output,
and acts as a controller that can be designed to some required specifications using control
theory.

• A feedback loop, which feeds the output of the VCO to the phase detector.

60
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vi(t) = A sin (ωct+ θi(t)) vc(t)
Loop Filter

VCO
vo(t) = B cos (ωct+ θo(t))

vd(t)

Figure 7.1: Overview of Phase-locked Loop Operation

The PLL system is illustrated in Figure 7.1. The phase detector, which in this case is a simple
multiplier, determines the phase error between the input signal and the VCO’s output signal. This
phase error is filtered by the loop filter, and then used to control the VCO to reduce the phase
error (and consequently the frequency error) to some constant value, or to zero. This allows the
PLL to “lock” onto the frequency of the input signal.
The PLL is a non-linear system, in which both the phase detector and the VCO are non-linear
devices. However, for most design purposes a linear model of the system is assumed, with some
non-linear analysis performed to ensure that the system operates as expected.

7.2.2 Linear Modelling
The derivation of the linear PLL model is provided in the works of Gardner [41] and Lathi [20],
and is investigated and summarised here.
Assume the input to the PLL is a sinusoidal signal with frequency ωi and initial phase offset ψ:

vi(t) = A sin (ωit+ ψ) (7.2.1)

The VCO generates a sinusoidal signal described as

vo(t) = B cos (ωct+ θo(t)). (7.2.2)

The frequency ωc is known as the free running, or centre frequency of the VCO, and is associated
with a 0 V input to the VCO. The instantaneous frequency of the VCO’s output is

ωo = ωc + θ̇o(t) (7.2.3)

where θ̇o(t) is the frequency deviation from the centre frequency,

θ̇o(t) = cvc(t) (7.2.4)

where, vc(t) is a reference voltage provided by the loop filter and c is a conversion factor from V
to rad/s.
The phase of the input signal vi(t) can be expressed as a function of the centre frequency of the
VCO:

ωit+ ψ = ωct+ (ωi − ωc)t+ ψ

= ωct+ θi(t) (7.2.5)

It is also useful to define the frequency deviation between the incoming signal and the VCO’s
free-running frequency:

∆ω = ωi − ωc (7.2.6)

This value is ultimately the offset that has to be applied to the VCO to match its output frequency
with the input frequency. To obtain this value and control the VCO, the phase error

θe(t) = θi(t)− θo(t) (7.2.7)
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is desired. This can easily be obtained through simple multiplication:

vd(t) = A sin (ωct+ θi(t))×B cos (ωct+ θo(t))

= 1
2AB [sin (θi(t)− θo(t)) + sin (2ωc + θi(t) + θo(t))] (7.2.8)

This multiplication is known as a sinusoidal phase detector, and its output contains two terms:
the first is the sine of the phase error θe(t), while the second is a frequency component at twice
the VCO centre frequency. This second term is referred to as the double frequency term. Since
only the phase error is desired, a lowpass loop filter F (s) is needed to reject this double frequency
term. If it is assumed that the loop filter completely removes this high-frequency component, the
input voltage to the VCO, vc(t), can be expressed as

vc(t) = f(t) ∗ 1
2AB sin θe(t). (7.2.9)

Common practice at this point is to assume that small angle approximations are applicable, and
to let sin θe(t) ≈ θe(t). This linearisation simplifies the process of designing the loop filter for some
desired transient response. Taking Equation (7.2.9) to the Laplace domain:

Vc(s) = 1
2ABF (s)Θe(s) (7.2.10)

Similarly, Equation (7.2.4) can also be taken to the Laplace domain, and with a little rearranging,
the transfer function of the VCO is obtained.

G(s) = Θo(s)
Vc(s)

= c

s
(7.2.11)

Thus, the linearised VCO is quite simply an integrator and a gain factor. Figure 7.2 illustrates
this linearised model.

F (s)ABc

2
Θi(s)

sΘo(s)1
s

Θo(s)

–

Θe(s)+

Figure 7.2: Linear Phase-locked Loop Model

The linear closed-loop transfer function of the PLL is

Θo(s)
Θi(s)

=
1
2ABcF (s)

s+ 1
2ABcF (s)

(7.2.12)

It is important to note that the closed-loop specifications of the PLL is dependent on the amplitude
of both the input signal, A, and of the VCO, B. While the VCO’s amplitude will be constant,
the amplitude of the residual may vary drastically, changing the dynamics of the system. This
must therefore me taken into account during the design stage. Bandpass limiters are an effective
means to remove a signal’s amplitude information while still maintaining phase information, and
Section 7.5 provides more information about the input limiter used in the final design.
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7.2.3 Steady-state Analysis
As a quick interlude, a brief explanation of system type is given here. A type 1 closed-loop system
contains a single free integrator in the control loop, and can therefore track step inputs with zero
steady-state error, and ramp inputs with finite steady-state error. Similarly, a type 2 system has
two free integrators in the control loop, and can track step and ramp inputs with zero steady-state
error.
Steady-state analysis of the PLL is performed with the final value theorem:

θeq = lim
t→∞

θe(t) = lim
s→0

sΘe(s) (7.2.13)

where θeq represents the steady-state phase error, or equilibrium point of θe. Given the closed-loop
transfer function of the PLL in equation 7.2.12, the Laplace transform of the phase error can be
expressed as

Θe(s) = s

s+ 1
2ABcF (s)

Θi(s) (7.2.14)

Since the VCO is essentially a free integrator, the system is at least of type 1. Thus, for a phase
step ∆θ in the input, the phase error, and therefore the phase detector output, will strive to zero.
A step in frequency, ∆ω, translates to a ramp change in the input phase. Such an input will result
in a constant phase error in a type 1 system. This steady-state error is proportional to the change
in frequency, as shown using the final value theorem:

θeq = lim
s→0

[
s

s

s+ 1
2ABcF (s)

∆ω
s2

]
= ∆ω

1
2ABcF (0)

. (7.2.15)

7.2.4 Lock Detection
It is sometimes necessary to determine whether the PLL has detected and locked onto a signal, or
is just reacting to noise. Indeed, this is the essence of the OFC detection problem. This can be
achieved through the use of a quadrature phase detector (QPD) [41], [42].
The QPD does this by multiplying the PLL’s input signal with a 90◦ phase shifted version of the
VCO’s output. This process is similar to that of the sinusoidal phase detector, and is described as

ϕ(t) = A sin (ωct+ θi(t))×B sin (ωct+ θo(t))

= 1
2AB [cos (θi(t)− θo(t)) + cos (2ωct+ θi(t) + θo(t))] . (7.2.16)

Once the PLL has locked onto the incoming signal, the error θe in the first term approaches a
constant value, while the double frequency term above can be removed with a lowpass filter. Due
to the cosine in the first term, the QPD output approaches a maximum DC value of AB/2 as θe
approaches zero. By selecting the VCO’s output amplitude B, and choosing a minimum amplitude
A that should be detectable, a threshold value can be chosen.

7.2.5 Non-linear Analysis
While the linearised system described above is sufficiently accurate for closed-loop feedback design,
the inherent non-linearities of the system must be evaluated to ensure that the system works as
expected, and that non-linear effects will not interfere with the system’s detection performance.
Two non-linear PLL concepts are introduced here, namely the hold-in range and lock-in range.
These non-linearities stem from the sinusoidal characteristics of the phase detector, and limit the
range of frequencies the PLL is able to track. Leonov, Kuznetsov, Yuldashev et al. proposed
mathematically rigorous definitions for these entities. For this analysis, the double frequency is
assumed to be completely removed. Figure 7.3 illustrates the assumed non-linear model, where the
output of the phase detector is now considered to be the sine of the phase error, and small-angle
approximation is no longer assumed.
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f(t)ABc
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∫ t

0

θo(t)

–

θe(t)+

Figure 7.3: Non-linear Phase-locked Loop Model

Non-linear analysis of PLLs is often performed through simulation and phase-plane plots [40], and
these methods are employed here. Alternative methods that have been used include the Lyapunov
Redesign [44] and the Circle/Popov Criteria [45].

7.2.5.1 Hold-in Range

The hold-in range ∆ωH is the frequency range for which the PLL is able to maintain phase tracking.
More specifically for sinusoidal phase detectors, the frequency range is determined by calculating
the frequency offset ∆ω that causes the phase error to exceed the range of linear analysis [40].
Assume that vi(t), the input to a type 1 PLL, experiences a sudden step in frequency ∆ω. The PLL
reacts by forcing the VCO input voltage vc(t) to some constant value that is directly proportional
to ∆ω.

lim
t→∞

vc(t) = ∆ω
c

(7.2.17)

where ∆ω is the frequency deviation between the PLL’s input and the VCO’s centre frequency,
according to Equation (7.2.6)
From Equation (7.2.10), and taking the sine of the phase error into account, the steady state value
of vc(t) can also be expressed as

lim
t→∞

vc(t) = 1
2ABF (0) sin θeq. (7.2.18)

Thus, the sine of the steady-state phase error is

sin θeq = ∆ω
1
2ABcF (0)

. (7.2.19)

However, since | sin θeq| ≤ 1, the frequency deviation ∆ω the PLL can track is limited to

|∆ω| ≤ 1
2ABcF (0), (7.2.20)

where A is the amplitude of the input signal, B is the amplitude of the VCO output signal, c
is the gain of the VCO, and F (0) is the steady-state gain of the loop filter. This results shows
that the tracking of a large change in frequency in vi(t) may require a vc(t) value that is too large
for the phase detector’s limited output. If the input frequency exceeds this limit, the PLL will
lose lock and begin to show a “ringing” effect in vc(t), and subsequently in the frequency of vo(t).
Fortunately, this limit can be adjusted by changing the gain values in the system, such as the gain
of the loop filter or of the VCO, but it may provide a design challenge for systems requiring large
bandwidths.
Note that this effect is limited to type 1 PLLs. If the loop filter contains an integrator, the DC
gain is infinite, and the PLL can theoretically lock onto any frequency. However, if the frequency
step is too large, the error will slip cycles for a while until lock is achieved.
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7.2.5.2 Lock-In Range and Cycle Slipping

Type 1 loops are limited by their hold-in range, and will lose lock permanently while the frequency
deviation ∆ω exceeds this hold-in range. Type 2 loops with infinite DC gain are not limited by
this hold-in range, but instead can temporarily lose lock due to non-linear transient effects known
as cycle skipping or cycle slipping.
The conditions under which the system will slip cycles is dependent both on the phase error
and frequency error. The effect is best visualised using phase portraits. An example is given in
Figure 7.4.

Figure 7.4: Phase Plane Trajectories of a Type 2 PLL, Adapted from [41]

Figure 7.4 illustrates that the trajectories terminate at equilibrium points θeq that exist at θe = 2πk
for k ∈ Z. This shows that for any initial phase or frequency error, the system responds by reducing
the phase error to zero. Unstable saddle points exist at θe = π + 2πk. The separatrices, marked
in thick black lines above, designate the initial conditions for which the PLL will instantaneously
lock onto the nearest equilibrium point.
If an initial condition on the phase plane lies between the upper and lower separatrices on some 2π
interval, its trajectory will strive towards the equilibrium point at the centre of that interval. If an
initial condition lies outside the separatices, the PLL will slip cycles until the trajectory eventually
crosses a separatrix and reaches an equilibrium point at a different 2π interval [41]. As such, cycle
slipping can be formally defined as: ∣∣∣ lim

t→∞
θe(t)− θe(0)

∣∣∣ ≥ π (7.2.21)

Alternate definitions for cycle slipping and lock-in range have been suggested in literature. Leonov,
Kuznetsov, Yuldashev et al. [43] defines cycle slipping as

sup
t>0
|θe(0)− θe(t)| > 2π, (7.2.22)

while Hsieh and Hung [46] offers an approximation of the lock-in range ∆ωL as

∆ωL ≈ ±
1
2ABcF (∞) (7.2.23)
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where F (∞) represents the frequency response of the loop filter at infinite frequency.
Cycle slipping occurs because the sinusoidal phase detector cannot output a large enough value
for the loop to lock instantly, and consequently the integrator stage in the loop filter has to build
up to match the frequency offset. This causes θe to exceed 2π. As θe increases, the phase detector
output tends to oscillate, or ring, until the loop locks. The result of this is an increase in lock time,
which is considered to be unacceptable for the application of OFC detection.
Figure 7.5 illustrates the effect of cycle slipping on the PLL, and the resultant increase in con-
vergence time. It’s clear in Figure 7.5a that θe quickly settles to 0 rad when the input frequency
is within the lock-in range. Figure 7.5c shows that when a frequency outside of the lock-in range
is introduced, θe has to build up to a large value for the PLL to achieve lock, and eventually θe
settles to 4π rad. The effects on the VCO input vc(t) are shown in Figures 7.5b and 7.5d. When
cycle slipping occurs, vc rings before settling to its steady-state value, resulting in a doubling of
the settling time.
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(d) VCO Input with Cycle Slipping

Figure 7.5: Comparison of PLL Operation without (Top) and with (Bottom) Cycle Slipping

Using simulation and phase plane analysis, the lock-in range ∆ωL can be determined. This process
is more thoroughly explored in Section 7.3.2.

7.3 Phase-Locked Loop OFC Detection Design

With all the PLL theory established, the design of the phase-locked loop detection method can be
described. The initial design of the PLL detection method was based on the concept of frequency
demodulation, and attempted to detect OFCs by monitoring the VCO’s input voltage, vc. In
theory, a large offset in vc would indicate the presence of a dominant frequency component at a

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 7. DEMODULATION-BASED DETECTION TECHNIQUE 67

frequency “far” from the VCO’s centre frequency. OFCs would be detected by checking for large
offsets in vc. If vc remained approximately zero, no failure was present, or a failure was present
with a frequency approximately equal to the centre frequency. Therefore, the approach would use
multiple PLLs with overlapping frequency bands to cover the whole 1 to 10 Hz spectrum.
This approach was ultimately flawed. During fault-free operation, vc would continuously attempt to
track phase and frequency changes in the noisy residual signal, often resulting in large transients
that were guaranteed to cause false alarms. As an alternative, a new approach using the lock
detector was proposed, which eventually led to the final design of the detection system. Figure 7.6
shows the architecture of the proposed PLL detection method.

Loop Filter

VCO

−90◦

> Tqpd?LPF
OFC

Detection

residual Upsampling
QPD

PLL

Figure 7.6: Overview of Phase Locked Loop Detection Algorithm

The proposed approach consists of three main stages. The first stage involves upsampling and
modulating the residual signal to a higher frequency band. The PLL is the second stage, and
attempts to track any OFC signal that may be present. The final stage, the QPD, checks if the
PLL has locked onto some dominant frequency, and provides the confirmation of the existence
of an OFC. These stages are explained in more detail in this section. Alternate approaches and
additional design considerations are summarised in Section 7.6.

7.3.1 Upsampling
The fact that OFC frequencies of interest are in the 1 to 10 Hz range complicates the design of the
PLL. The frequencies to be detected span an entire decade on a logarithmic scale, and the PLL is
required to provide detection confirmation within as little as 0.3 s (for a 10 Hz case), requiring a
fast converging loop filter. As a result, the loop filter must have a low cutoff frequency for accurate
frequency tracking and removal of the double frequency term, but also a fast settling time. These
requirements are in direct conflict with each other.
Furthermore, the effectiveness of the QPD is largely influenced by the amplitude of the residual.
However, with a sampling rate of 40 Hz, a 10 Hz OFC consists of only 4 samples per cycle, and
amplitude information is not fully conveyed through the multiplier.
Noting that PLLs are mostly used in high-frequency applications, where the frequencies of interest
are much higher than the loop filter cutoff frequency [40], many of the issues listed above may be
negated if the frequencies of the residual were simply “moved” to a higher frequency band. This
would place the centre frequency considerably higher than the loop filter’s cutoff frequency, and
would reduce the effect of the logarithmic scaling issues.
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Upsampling, a method of interpolating new samples between the existing samples, offers a solution
to increase both the sampling frequency of the residual, as well as to modulate the frequency
content of the residual to higher frequencies. The proposed upsampling method is illustrated in
Figures 7.7 and 7.8, and transforms a signal, r[n], with a low sampling frequency to a signal r̂[n]
with a higher sampling frequency.

↑ 10

Notch Filter Bandpass FilterUpsampling

r[n] r̂[n]r̂L[n]

Figure 7.7: Upsampling Stage Block Diagram

The residual signal is upsampled by a factor of L = 10, which involves inserting zeros between each
sample of the original signal [36] resulting in r̂L.

r̂L[n] =
{
L · r[n/L], n = 0,±L,±2L, ...
0, otherwise (7.3.1)

In the frequency domain, this upsampling results in a periodic repetition of the original frequency
content of the signal. A bandpass filter with a frequency response of HBP (f) is then used to
extract the desired frequencies. This allows single-sideband (SSB) modulation to be performed.

vi[n] = r̂[n] = r̂L[n] ∗ hBP [n] (7.3.2)

where hBP [n] is the discrete-time impulse response of the bandpass filter.

0 20−20

|R(f)|

OFC Frequencies
f [Hz]

0 40 200−40−200

|R̂L(f)| HBP (f)

Original OFC Frequencies
f [Hz]

0 40 200−40−200

|R̂(f)|
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Modulated
OFC Frequencies

USBLSB

Figure 7.8: Frequency-domain Upsampling and Modulation Illustration
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Thus, after upsampling the 1 Hz to 10 Hz frequency components of the original residual signal, the
bandpass filter can extract the same information from the 41 Hz to 50 Hz band. A single PLL with
a centre frequency of 45.5 Hz can then check for the presence of OFCs.
However, this approach comes with a number of concerns. Firstly, any DC content in the original
residual becomes a 40 Hz frequency component that the PLL may attempt to track. Any significant
DC offset could therefore result in a false detection. To prevent this, a notch filter is placed before
the upsampling stage to remove any DC components. Figure 7.9 shows the output for a step
input. The 40 Hz component is present for about 1 second before the notch filter reaches a steady
state. This transient may still result in false alarms, but decreasing the settling time of the filter
would require a larger notch width, potentially attenuating important frequency components and
resulting in missed detections.
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Figure 7.9: Upsampling Results for Step Input

Secondly, the bandpass filter is not perfect, and cannot completely suppress all unwanted frequen-
cies. This allows frequency content from the lower sideband to leak through, causing low-frequency
oscillation in the amplitude of the upsampled residual. In general however, this only affects low-
frequency OFCs, which have less strict detection time requirements. An example of this effect is
shown in Figures 7.10 and 7.11, where a 2 Hz input results in two frequency components, at 38 Hz
and 42 Hz.
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Figure 7.10: Upsampling Results for 2 Hz Input
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Figure 7.11: Frequency Content of Original and Upsampled Signals

Finally, the number of computations per second increases by a factor of 10, making the system
much more computationally expensive.
Figures 7.12 and 7.13 show the successful application of the upsampling process to a 10 Hz signal,
where a simple 45◦ phase shift can result in a 30% reduction in amplitude, due to the 10 Hz period
being described with only four samples. (This was previously shown in Section 4.3.3 for oscilla-
tion counting.) For both cases, the upsampling and modulation manages to perform successful
interpolation, and consistently provides a 50 Hz signal with the same amplitude. This shows that
the upsampling stage is both viable and necessary for the successful implementation of the PLL
detection method.
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Figure 7.12: Upsampling Results for 10 Hz Input
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Figure 7.13: Upsampling Results for 10 Hz Input with 45◦ Phase Shift

7.3.2 Loop filter
The main aspect of the design of the PLL is its loop filter. The loop filter of a PLL serves to
attenuate the double-frequency term of the phase detector’s output, and acts as a controller to
ensure the following closed-loop specifications:

• 2% settling time of 0.15 s (half the 0.3 s detection time requirement),

• Zero steady-state error for frequency steps,

• PLL hold-in or lock-in range of at least 4.5 Hz.

The settling time requirement is to ensure that the PLL locks onto the incoming frequency quickly,
so that the input frequency and output frequency converge quickly, resulting in the DC component
of the QPD output as shown in Equation (7.2.16). From the same equation, it is clear that the
output amplitude of the QPD will be at a maximum when the phase error is 0◦, and the QPD
output should ideally be consistent for all input frequencies. This therefore requires a type 2
closed-loop system. The effect of loop order and input frequency on the QPD output can be seen
in Figure 7.14. Finally, the hold-in or lock-in range has to ensure that the PLL can lock onto any
frequency between 41 and 50 Hz without losing lock or slipping cycles.
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Figure 7.14: QPD Output versus Input Frequency for Type 1 and Type 2 PLL
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Figure 7.15 illustrates the operation of a PLL with two different loop filter architectures by in-
troducing a frequency sweep ∆ω(t) and showing the resultant the VCO control signal vc[n]. In
both figures, it clear that vc[n] manages to track the frequency sweep ∆ω(t) accurately. The type
1 PLL, with a lag controller of the form K/(τs + 1), has a hold-in frequency of about 7 Hz, and
manages to eliminate most of the double-frequency term. However, its QPD output is a function
of ∆ω. In contrast, the type 2 PLL, which uses a PI controller, offers little attenuation of the high
frequency content, but makes the QPD output independent of ∆ω, as seen in Figure 7.14.
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Figure 7.15: VCO Control Signal given a Frequency Sweep Input, with ABc = 1.

The listed requirements motivates the use of a proportional plus integral (PI) controller. Thus,

F (s) = K

(
τ + 1

s

)
(7.3.3)

where K is the gain of the controller, and τ determines the location of the controller’s zero. The
step response of the system with the final PI controller design is shown in Figure 7.16, which shows
the 2 % settling time of 0.15 s. Figure 7.17 shows the root locus design of the controller.
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Figure 7.16: Closed-Loop Step Response (Left) and Frequency Response (Right) of PI Controller
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Figure 7.17: PLL Root Locus

The desired closed-loop poles (indicated as squares) are initially calculated from the settling time
specifications, assuming an optimal damping ratio. The value τ is chosen to place the zero and to
force the root locus to cross the desired closed-loop poles. Finally, the gain is chosen so that the
closed-loop poles are placed at the desired locations on the root locus plot. These values are then
further tuned and refined to ensure the desired settling time specifications, while also taking into
account the potential for cycle slipping.
While the PI controller can easily be designed for the desired transient response, its values K
and τ in Equation (7.3.3) affect the lock-in range of the PLL, as suggested in Equation (7.2.23).
It is essential that cycle slipping be avoided as far as possible. To determine the lock-in range,
a simplified Simulink model of the system, based on Figure 7.3, was iteratively run for different
initial conditions for ∆θ and ∆ω. Figure 7.18 shows the resulting lock-in ranges as defined by
Equations (7.2.21) and (7.2.22).
Alternatively, a time-domain differential equation can be derived and solved using a solver such
as ODE45. The differential equations for a type 2 PLL with a PI controller was derived by
Groenendaal and Braun [47]. An simplified but intuitive understanding of how K and τ affect
the lock-in range ∆ωL can also be gained from Equation (7.2.23) and Equation (7.3.3), where the
lock-in range is (approximately) proportional to K and τ :

∆ωL ≈ ±
1
2ABcF (∞) = ±1

2ABcKτ (7.3.4)
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Figure 7.18: Lock-in Regions of PLL

Figure 7.18 shows the lock-in phase space regions, for a PLL with K = 2300, τ = 0.05, and
ABc = 1. The blue hatched area (Lock-in Range 1) shows the initial conditions of the input
signal for which the PLL will not slip cycles, according to Equation (7.2.21). Note that this
region is strongly affected by ∆ω, and lowers to 0 rad/s at the saddle points ±π. Thus, for this
definition, the lock-in range is effectively 0 rad/s, with only the centre frequency being within the
range. The yellow shaded area (Lock-in Range 2) in contrast shows the lock-in region defined by
Equation (7.2.22). Additionally, according to the approximation in Equation (7.3.4), the lock-in
range ∆ωL is 115 rad/s, which agrees with Lock-in Range 2.
However, the above definitions do not take the initial conditions of the loop filter into account.
Leonov, Kuznetsov, Yuldashev et al. [43] proposed the following process for determining the lock-in
domain:
“We have to increase the frequency deviation |∆ω| step by step and at each step, after the loop
achieves a locked state, to change ∆ω = ω̃ abruptly to ∆ω = −ω̃ and to check if the loop can
achieve a new locked state without cycle slipping. If so, then the considered value ∆ω belongs to
the lock-in domain.”
Since the VCO frequency will be centred at 45.5 Hz, with a frequency range of interest of 9 Hz, The
lock-in range should be at least 4.5 Hz, or 28.3 rad/s, as the input bandpass filter will remove all
but these frequencies from the upsampled residual. This required range is shown in Figure 7.19,
along with the final effective lock-in range. Since Lock-in Range 2 exceeds the required lock-in
range by a reasonable margin, the PLL should avoid cycle slipping.
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Figure 7.19: Lock-in Regions of PLL

In summary, the PI controller for the PLL was successfully designed for fast settling time, zero
phase error for all input frequencies, and a lock-in range large enough to cover the OFC frequency
band. The designed PI controller is implemented in software as a difference equation, converted
from the continuous domain using the Bilinear Transform.

7.3.3 Lock Detector
The lock detector, or QPD, provides an indication of the presence of an OFC. It outputs a DC
signal that provides an indication of the amplitude of a sinusoidal signal. Thresholding this signal
can provide a simple means of checking for the presence of OFCs. When B, the amplitude of the
VCO output is 1 V, the DC output of the QPD given by Equation (7.2.16) will be A/2, half the
amplitude of the OFC. An overview of the lock detector is provided in Figure 7.20.
The operation of the QPD requires that the output of the VCO be phase shifted by 90◦. This
is implemented using differentiation. However, to maintain the amplitude of the signal, it is
normalised with the VCO’s centre frequency. Assuming the phase of vo(t) is zero, the phase shift
operation is described as

1
ωc

d

dt
vo(t) = 1

ωc

d

dt
cos (ωot) = −ωo

ωc
sin (ωot) ≈ − sin (ωot). (7.3.5)
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Figure 7.20: Quadrature Phase Detector
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Finally, a lowpass filter ensures that the double frequency term in Equation (7.2.16) is removed.
A 4th order Butterworth filter is used, as its frequency response for DC components is 0 dB. The
cutoff frequency is chosen such that the rise time for a frequency step is within the 0.3 s requirement.
To ensure the detection time of the system is within specification, the rise time of the filter output
has to be less than 0.3 s for any input signal. The simplified Simulink model was used to calculate
θe for initial conditions that require the most amount of time to converge to an equilibrium point,
without cycle slipping. These worst cases were used to determine the longest theoretical rise time
of the lowpass filter, and this time had to be less than 0.3 s. The rise time of the lowpass filter
can be increased by increasing its bandwidth, but this results in a noisier output signal, and thus
higher minimum detectable signal-to-noise ratio (SNR). Noise can be further reduced by increasing
the order of the filter, but in the interest of minimising computations, a 4th was determined to be
adequate for reasonable SNR detectability.
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Figure 7.21: Step Response of QPD Output

Figure 7.21 illustrates an extreme example where the closed-loop system does not converge to an
equilibrium point within the specified 0.15 s. However, the output of the QPD still manages to
rise to 0.5 V in less than 0.3 s. This is achieved with a 4th order Butterworth filter with a cutoff
frequency of 5 Hz.
A second lowpass filter with a narrower bandwidth can be appended to the QPD. This could serve
as an additional check that could detect even smaller amplitude OFCs. This detector would not
offer fast detection times, but may offer a secondary check that could alert the monitoring system
of the existence of an OFC, albeit a few seconds late. The structure of the aircraft would have
to be robust against these smaller OFCs anyway, but this may offer additional information for
diagnosis, or for the prevention of structural fatigue.
Figures 7.22 and 7.23 show the response of the PLL detection method for a 1 Hz and 10 Hz OFC
respectively. The red horizontal lines denote the detection thresholds, Tqpd, while the black vertical
lines indicate the OFC start times. The use of a 5 Hz cutoff frequency for the output filter guar-
antees that the detection time of the system falls within specification. Also shown is the output of
a filter with a cutoff frequency of 0.5 Hz, which shows potential for using a much lower threshold
to detect smaller OFCs, but with increased detection time.
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Figure 7.22: Detection of 1 Hz OFC
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Figure 7.23: Detection of 10 Hz OFC

7.4 Noise Analysis and Theoretical SNR Detection Threshold

The performance of the PLL detection method can be analysed by determining a theoretical
minimum signal-to-noise ratio (SNR) for which an OFC can reliably be detected, without the risk
of false alarms. The goal of this analysis is to determine the maximum noise power allowable at
the QPD output that will not result in false alarms, to define a relationship between the noise
power of the residual and the noise power of the QPD output, and subsequently to determine the
minimum SNR.
SNR is defined as

SNR = 10 log Ps
Pη
, (7.4.1)

where Ps is the power of the OFC signal, and Pη is the power of the noise. Assume the noise, η[n],
of the residual is band-limited white noise, and is wide-sense stationary. For zero-mean wide-sense
stationary processes, it can be shown that the average power is equal to the variance of the process
[48]. The average power of the random process is the integral of the power density spectrum (PDS)
over frequency.

Py = σy
2 = 1

2π

∫ π

−π
Sy(ω)dω (7.4.2)

To simplify the analysis, assume the threshold at the QPD output is be 0.5 V. This is the threshold
required for a 1 V OFC to be detected, as suggested by Equation (7.2.16). The permissible false
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alarm rate is 1 false alarm over 100 000 h of flight time. Thus, for each sample of the residual,
the probability of the QPD output crossing the 0.5 V threshold must be less than 1 in 1.44 · 1010.
This requirement implies that the variance of the noise at the QPD output must be less than
6.07 · 10−3 W. This value can be used to determine the maximum variance at the PLL input vi[n],
as illustrated below.
For discrete-time processes, the PDS of a signal is defined by the discrete-time Fourier transform
(DTFT) of its autocorrelation sequence:

Sη(ω) =
∞∑

k=−∞
Rη[k]e−jkω (7.4.3)

for ω ∈ [−π, π) rad/sample. Sη(ω) represents the PDS of white noise, which is a flat spectrum
with a constant magnitude of N W/Hz. The average power of the white noise signal is thus

Pη = 1
2π

∫ π

−π
Sη(ω)dω (7.4.4)

If no OFC is present, r[n] = η[n], and

Sr(ω) = Sη(ω) = N2 . (7.4.5)

During the upsampling stage (η[n] → η̂L[n]), the spectrum of the noise, band-limited to 20 Hz,
becomes spread over 200 Hz. Additionally, as seen in Figure 7.7, a notch filter and bandpass filter
are present at the PLL’s input. The combined effect of these filters, with an effective frequency
response of |HI(ω)|2, results in the PLL’s input:

vi[n] = η̂[n] = η̂L ∗ hI [n] (7.4.6)

The PSD of vi[n] is
Sη̂ = Sη|HI(ω)|2. (7.4.7)

For lock detection, vi[n] is multiplied by vo[n], the VCO’s output. This multiplication is expressed
as

ϕ[n] = η̂[n] cos (ωon+ Θ), (7.4.8)
for which the autocorrelation function is [48]

Rϕ[k] = Rη̂
2 cos (ωok). (7.4.9)

Sϕ(ω) is the DTFT of Rϕ[k]:

Sϕ(ω) = 1
4 [Sη̂(ω + ωo) + Sη̂(ω − ωo)] (7.4.10)

Finally, ϕ[n] is passed through the QPD’s lowpass filter with frequency response of |HO(ω)|2. Thus,
the PSD of the QPD’s output is defined as

Sy(ω) = Sϕ(ω)|HO(ω)|2, (7.4.11)

and the total average output power is

Py[n] = 1
2π

∫ π

−π
Sy(ω)dω (7.4.12)

The complete equation for the variance of y[n] is

σy
2 = N

16π

∫ π

−π
|HO(ω)|2

[
|HI(ω + ωo)|2 + |HI(ω − ωo)|2

]
dω. (7.4.13)
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Since the desired σy2 is already known, N and ση2 can be determined. Following this process with
a desired output noise variance of 6.07 · 10−3 W, an input noise variance of 61.1 · 10−3 W is deemed
permissible.
One final consideration is the total attenuation of an OFC through the system. The combined
frequency responses of the notch and bandpass filters, as well as the effect of the approximation
that ωo/ωc ≈ 1 made in Equation (7.3.5), result in significant attenuation of low frequency signals,
as demonstrated in Figure 7.24. Consequently, an OFC amplitude of 1.4 V is required to cross the
0.5 V lock detection threshold.
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Figure 7.24: Combined Frequency Response of Notch and Bandpass Filters

Finally, given Aofc = 1.4 V and ση2 = 61.1 · 10−3 W, the theoretical minimum SNR that can be
reliably detected is 12 dB.
Of course, this analysis does not explore the effects of modelling errors, the effects of ωo constantly
changing and reacting to the noisy input, or the effects of the double-frequency term in the PLL,
but at least provides an indication of the theoretical performance of the PLL detection method.
More rigorous threshold training and testing is performed in Chapter 8.

7.5 Threshold Training and Input Limiting

As mentioned before, the gain of the PLL control loop is dependent on A, the amplitude of the
PLL input. Additionally, the amplitude of the OFC before the upsampling stage should be 1.4 V to
cross a QPD threshold of 0.5 V, according to Section 7.4. However, the OFC is unlikely to exhibit
a predictable or guaranteed amplitude. The approach here is therefore to scale the residual signal
by a factor Ki so that the smallest expected OFC amplitude is scaled to 1.4 V. A saturation block
is then used to limit this amplified residual. This limiting of the residual ensures that large OFCs
do not influence the gain of the PLL control loop.
The scaling factor Ki is calculated using the permissible noise power ση2 = 61.1 · 10−3 W. Given
all the training data sets, the variance of each data set is measured, and the maximum measured
variance is assumed to be the expected power of the fault-free residual, σmeas2. Ki is therefore
used to scale the residual signal so that its measured variance matches the desired variance:

Ki = ση
σmeas

(7.5.1)
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This gain factor will result in an OFC having an amplitude of at least 1.4 V before the upsampling
stage. If an OFC has a frequency of 1 Hz, the notch and bandpass filters will reduce its amplitude
to 1.11 V. This 1.11 V amplitude ensures that the QPD output reaches at least 0.5 V, based on the
scaling factor ωo/ωc = 41/45.5. However, the OFC amplitude would most likely be much greater
than 1.4 V, changing the designed characteristics of the PLL. The saturation block therefore ensures
that the signal that enters the PLL never exceeds 1.11 V. Figure 7.25 shows the potential change
in amplitude of a 1 Hz OFC through the PLL system.

r[n] UpsamplingKi

PLL

Aofc = 1.4 V A = 1.11 V QPD

QPD = 0.5 V

Figure 7.25: PLL Input Gain and Limiter

Its worth noting that if the induced OFC is extremely large, the signal at the output of the
saturation would approximate a rectangular waveform. This would result in the PLL input having
multiple harmonic frequencies [20]:

vi(t) = 1.11× 4
π

(
sin (ωot)−

1
3 sin (3ωot) + 1

5 sin (5ωot) + ...

)
(7.5.2)

The PLL tends to lock onto ωo, ignoring the higher-frequency harmonics. However, a gain factor
of 4/π is introduced, potentially changing the PLL’s behaviour. In general however, it was found
that this scaling had a negligible effect on the detection performance of the PLL system.
In summary, the threshold of the PLL is trained by adjusting the input gain Ki, and a limiter
prevents the PLL control loop gain from varying too much. After calculating Ki, the PLL is tested
with the training data again to determine the maximum value that the QPD’s output reaches when
given fault-free residual. This is designed to be 0.5 V, but it is often found that the threshold can
be lowered slightly, allowing for the detection of smaller OFCs.
Lastly, the effective threshold is defined as the smallest amplitude that can be detected within 3
cycles by the PLL. The average effective threshold is approximated as

Teff = 2Tqpd
Ki

. (7.5.3)

This is the effective threshold that will be assumed in the results of Chapter 8. However, if the
effects of the input filters are taken into account, the smallest amplitude that is theoretically
guaranteed to be detected is

Teff = 1.42Tqpd
Ki

. (7.5.4)

7.6 Design Considerations

Summarised in this section are additional designs and design considerations investigated throughout
the design process. This includes a PLL detection method that avoids the modulation of the
residual to higher frequencies, and the use of a higher order loop filter for better noise and high-
frequency attenuation. These designs were deemed noteworthy, but ultimately did not provide the
same level of performance as the design in Section 7.3.
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7.6.1 PLL without Upsampling and Modulation
During the design of the PLL in Section 7.3, the possibility of a solution that did not require the
upsampling and modulation stage was investigated. A successful variation was designed, which
made use of two PLLs operating in parallel with different frequency bands. This design, however,
still required a sample rate of at least 100 Hz. Upsampling by a factor of 3 (without modulation)
would be necessary for residuals sampled at 40 Hz.
This implementation made use of two parallel PLLs working in the 1 – 3.2 Hz and 3.2 – 10 Hz
bands, and had advantages over the final design. The use of a lower upsampling factor offered a
less computationally expensive system overall. The effects of imperfect SSB modulation and DC
components were also eliminated.
The phase shifting method used in the QPD had to be revised. Normalising the derivative with the
centre frequency was no longer viable, as the assumption that ωo/ωc ≈ 1 made in Equation (7.3.5)
was no longer valid when working at low frequencies. Instead, the estimate of the frequency
deviation provided by the PLL was used for the scaling, so that ωo/(ωc + cvc) ≈ 1. Additionally,
a check was inserted to ensure that the scaling value ωc + cvc never dropped below 1 rad/s, as
this would introduce large gains that could result in false alarms. This check is represented as a
saturation block in the overview of the system in Figure 7.26.
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Tsz

Saturation

PLL 1

PLL 2

ωc = 2.1 Hz

ωc = 6.6 Hz
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∆ωvo

vi

ωo

Differentiator

↑ 3
A sin (ωit)

A

Figure 7.26: Low-frequency PLL Concept

Overall, this design offers a viable implementation of the PLL detection method with slightly
lower computational requirements, but with slightly worse performance in terms of detection time
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and smallest detectable amplitude. Due to the low-frequency nature of this design, the trade-off
between settling time and double frequency attenuation must be considered very carefully.

7.6.2 Second Order Loop Filter
The use of a second order loop filter was introduced to improve the lowpass characteristics of the
filter by augmenting the PI controller with a lag filter of the form K/(τs + 1). The PI controller
ensured accurate frequency tracking, while the lag filter provided better attenuation of the double
frequency. This architecture was proposed as a way to avoid any potentially unpredictable or
unwanted effects of the double frequency term, and is often recommended in literature [40]. Al-
ternatively, Texas Instruments demonstrates the use of an adaptive notch filter to similar effect
[49].

τpi + 1
s

K
1

τlags+ 1
vc(t)vd(t)

Figure 7.27: Second Order Loop Filter

Provided the PLL’s centre frequency is much higher than the PI controller’s bandwidth, the pole
provided by the lag filter can be placed at a high frequency. This allows the system to approximate
the operation of a PI controller, while also attenuating the double-frequency term.
In general, it was discovered that the addition of the lag filter did not improve performance or
convergence time, and in general, it increased detection time slightly. The addition of the pole
also reduced the lock-in frequency. Finally, it was discovered that the low-frequency ringing effects
caused by imperfect SSB modulation had a more significant effect on the PLLs operation than the
double-frequency term, and thus the use of this filter could not be justified.

7.7 Summary and Contributions

This chapter investigated the use of telecommunications techniques that are not typically applied
to fault detection. A phase-locked loop was designed and its potential application to the oscillatory
failure case detection problem was investigated. The PLL attempted to lock onto any sinusoidal
signals present in the residual signal, and a quadrature phase detector was used to determine the
presence or absence of an OFC.
The following contributions were made in this chapter:

• A detailed literature study on the PLL was performed. This included its operation, design
methodologies, and non-linear effects.

• A PLL and QPD system was designed to detect OFCs. It used a PI controller to ensure
zero steady state error when tracking frequency changes, and had a settling time of 0.15
seconds. Phase plane analysis was used to confirm that the designed controller would avoid
cycle slipping. The bandwidth of the output filter was tuned to ensure 0.3 second detection
time for all failure cases.

• An upsampling and modulation stage was developed to modulate the residual to a higher
frequency band. This ensured that the initial low sampling rate did not affect the amplitude
information of the residual, and the double-frequency term of the phase detector’s output
would be better attenuated by the loop filter.

• An analysis of the signal-to-noise ratio was performed to determine the theoretical detection
performance of the system. This analysis was based on the power density spectrum of the
residual, and the effects of the filter applied to the residual signal. The noise analysis was
further used to determine an adequate gain value at the PLL’s input and to choose an
appropriate threshold.
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• Two additional designs were implemented. The first was an approach that did not require
the modulation stage. It did, however, still require a higher sampling frequency. The second
design was the use of a second order loop filter that would provide better attenuation of the
double frequency. However, its potential improvements were almost negligible.

Overall, the PLL can detect OFCs with a theoretical signal-to-noise ratio of 12 dB within three
cycles. Furthermore, with PLL can be modified to detect much smaller OFCs with longer detection
time. However, due to its high sampling rate requirement, this is a computationally expensive
approach. The PLL detection method is more thoroughly tested and compared to the other
approaches in Chapter 8.
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Chapter 8

Results

8.1 Introduction

To recapitulate, the aim of the project is to investigate and devise methods for the detection of
oscillatory failures, where each detection method should detect small oscillations within 3 cycles.
The preceding chapters have introduced and described five different approaches to OFC detection,
and it is now necessary to compare these detection methods based on their ability to detect small
amplitudes, and to minimise detection time. This is achieved by running each detection method
through a large number of test cases.
The ultimate goal of these tests is to determine the smallest amplitude OFC that each detection
method can reliably detect within 3 cycles, and this therefore serves as the primary performance
metric. Additional performance metrics include smallest amplitude detectable (within 6 cycles),
average detection time, and computational complexity.

8.2 Simulation Setup

The following methods are implemented and tested:

1. Oscillation counting (OC),

2. Integrated absolute error (IAE),

3. Discrete Fourier transform (DFT),

4. Multi-window Fourier transform (MWFT), and

5. Phase-locked loop (PLL).

Each data set is sampled at 40 Hz, with the simulation time set to 30 seconds. The seed of each
random number generator source changes for each simulation run. Additionally, the actuator
parameters ∆P and Kd are randomised, within some defined bounds, to increase the effects of
modelling errors. Both the oscillation counting and the IAE methods upsample the residual signal
by a factor of 3, and the DFT and MWFT methods use a zero-padding factor of 5. However, all
the detection methods are provided with the same residual signal sampled at 40 Hz.

8.2.1 Training the Detection Methods
1000 training data sets are used to determine the thresholds for each detection method. Half of
these sets make use of the chirp load factor command, to stress the aircraft dynamics across all
frequencies. The remaining 500 training data sets use the randomised load factor command signal.
The detection thresholds for each technique are “trained” on fault-free data to determine the lowest
detection thresholds that do not produce false alarms. This provides each method with the best
possible opportunity to detect small OFCs.

84
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8.2.2 Testing Approach
Each OFC detection method is tested using a structured approach to find the smallest amplitude
OFC that is consistently detected within 3 cycles. The detection methods are tested with a range
of OFCs that sweep over an amplitude and a frequency range. Thus, for each discrete frequency
over the frequency sweep, a range of amplitudes are tested to find the smallest amplitude that is
detectable at that specific frequency. This offers a way to determine the effect of both amplitude
and frequency of an OFC for each detection method. The final results are therefore expressed as
a function of frequency.
Furthermore, each discrete amplitude-frequency case is tested 10 times, with randomly varied
model parameters. Additionally, for each of these 10 tests, the initial phase of the OFC is changed,
to test the potential effects of sampling rate, as illustrated earlier in Figure 4.13. Thus, each
test data set contains a unique amplitude-frequency-phase combination. An OFC with a specific
amplitude and frequency is considered to be reliably detectable if all 10 cases are detected within
3 cycles.
The final simulation generated a total of 60 060 test data sets. These data sets were generated
three times for three different cases, which were discussed in Sections 3.4.3 to 3.4.5:

1. Liquid failure at the actuator position sensor,

2. Liquid failure at the command current, and

3. Solid failure at the command current.

The desired metric for OFC detection performance is the smallest amplitude control surface oscil-
lation detectable within 3 cycles. However, the OFCs are induced within the actuator at the rod
position sensor, where the amplitude is expressed in mm, or at the servo current in mA. Math-
ematically translating these OFC amplitudes to control surface deflection in degrees is non-trivial.
Therefore, the amplitude of the oscillation in the true control surface deflection is estimated in
post-processing using Matlab’s FFT function, performed over the entire time span of the OFC.
This is shown in Figure 8.1.

FFT

Time [s]

δ(t)

0.5A

A = OFC Amplitude

f−f

Figure 8.1: Obtaining the True OFC Amplitude at the Control Surface
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Figure 8.2 shows the resulting OFC amplitude at the control surface over frequency for different
OFC amplitudes Ap at the rod position sensor. At 10 Hz, it can be seen that the resulting control
surface oscillation is very small, with amplitude less than 0.8◦. At these frequencies, the actuators
have reached their physical limits in terms of rod speed, limiting the amplitude of the control
surface oscillation.
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Figure 8.2: Control Surface Oscillation Amplitude for Different Rod Sensor OFC Amplitudes

8.3 Thresholding Results

The first set of notable results is the thresholds that were trained using the training data sets.
Figure 8.3 shows the thresholds for each detection method as a function of frequency, and represents
the smallest amplitude OFCs that can theoretically be detected, but not necessarily within 3 cycles.
Note that here the thresholds of the FFT and MWFT are doubled to show the true amplitudes,
since the frequency component of an OFC with an amplitude of A manifests in the frequency
domain with a magnitude of A/2.
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Figure 8.3: Smallest Amplitudes Theoretically Detectable over Frequency

These thresholds are essentially the frequency-dependent thresholds for each method. The oscil-
lation counting and IAE methods divide the residual into two frequency sub-bands, where each
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sub-band is evaluated with a different threshold. This is illustrated in Figure 8.3 with the step at
3 Hz. The thresholds for oscillation counting and the IAE are extremely similar, suggesting that
both methods should offer similar performance. These two thresholds are generally the largest of
the different thresholds, with the exception of the PLL. The PLL has by far the largest threshold,
and uses only one threshold value for all frequencies. The DFT method consistently has the smal-
lest threshold across all frequencies, and should therefore be able to detect the smallest OFCs. The
threshold of the MWFT is slightly higher than the DFT, due to the spectral leakage and smearing
that occurs due to the shorter windows. The DFT and MWFT have the advantage of having a
unique threshold for each frequency component. Essentially, these frequency-domain techniques
have high-resolution frequency-domain thresholds, while the others have low-resolution thresholds.
However, these thresholds do not guarantee 3 cycle detection time, but can be used to infer the
amplitudes that are (theoretically) guaranteed to be detected within 3 cycles. Figure 8.4 shows
these “effective thresholds”, which are the smallest amplitude OFCs that can theoretically be
detected within 3 cycles.
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Figure 8.4: Smallest Amplitudes Theoretically Detectable within 3 Cycles

Here, the oscillation counting and IAE methods have the largest thresholds. These thresholds
are adjusted based on the 3.3 factor rule-of-thumb explained in Section 4.3.2. The PLL shows no
threshold change, due to the fact that it is designed to ensure 0.3 s detection time. Its threshold is
comparable to the DFT threshold, which shows a significant increase over the original threshold.
This increase is due to the fact that the DFT’s detection time, from Equation (6.4.15), is a function
of the OFC’s amplitude and frequency, as well as window size. This window size dependency
provides the MWFT with a significant advantage over all the other methods, where it uses shorter
windows for higher frequencies. The MWFT thus features the smallest effective threshold.
In summary, and in theory, the DFT should be able to detect the smallest OFCs in general, but the
MWFT should be able to detect the smallest OFCs within 3 cycles. The thresholds and effective
thresholds represent the theoretical performance of each OFC detection methods. In the next
sections, the theoretical performance will be verified by testing all five OFC detection techniques
on the testing data provided by the simulation framework.

8.4 Test Case: Liquid failure at the Rod Position Sensor

8.4.1 Smallest OFCs Detected within 3 Cycles
The first case that is investigated is a liquid failure at the position sensor. Figure 8.5 shows the
smallest amplitudes versus frequency that each detection method detected within 3 cycles. Note
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that at if a plot is broken at some frequency, no OFCs at that frequency could be reliably detected
within 3 cycles for that detection method.
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Figure 8.5: Smallest Amplitudes Detected within 3 Cycles (Liquid Failure at Rod Sensor)

It is immediately seen that the IAE shows the worst performance, with timely detections occurring
in a very narrow range of frequencies, and requiring enormous amplitudes at these frequencies.
This is due to the effects of filtering, combined with the fact that thresholds are counted at the
end of a cycle. The IAE does manage to detect OFCs between 1 and 1.2 Hz, and again between
2.3 and 3 Hz. Over the first interval, the filters induce a phase lead effect, allowing the OFC to be
detected earlier, while over the second interval, the smaller window used by the higher-frequency
sub-band begins to detect the OFCs earlier than the larger window. In conclusion, the IAE is the
worst performing method.
To get a closer look at the other results, the IAE result is removed from Figure 8.5, and the
remaining results are shown in Figure 8.6.
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Figure 8.6: Smallest Amplitudes Detected within 3 Cycles (Liquid Failure at Rod Sensor, IAE
Excluded)
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Here, it can be seen that, in general, the oscillation counting approach requires the largest amp-
litudes to guarantee detection time. Moreover, at frequencies higher than 7.5 Hz, oscillation count-
ing struggles to detect any OFCs in time, and can therefore not guarantee detection time for these
higher frequency failures. Once again, this is likely due to the effects of filtering. This could also
be caused by the limited control surface oscillation amplitude at higher frequencies as illustrated in
Figure 8.2, but these amplitudes are still greater than the effective thresholds, making this theory
unlikely.
The DFT, MWFT, and PLL all show reliable detection across all frequencies. The DFT shows in
general higher amplitudes than the MWFT and PLL, as suggested by the effective thresholds in
Figure 8.4. The PLL shows a fairly consistent amplitude of 0.2◦ across all frequencies. Finally,
the MWFT shows considerably better detection amplitudes than the other methods. This is due
to the variable window size that decreases for higher frequencies.
These results can now be compared to the theoretical effective thresholds to confirm that the
experimental results match the theoretical predictions. Figure 8.7 plots the experimental results for
each method together with their theoretically predicted effective thresholds, which are represented
with the red dashed lines. Due to the IAE’s poor performance, it is not shown.
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Figure 8.7: Minimum Amplitudes Detected within 3 Cycles and Corresponding Effective
Thresholds (Liquid Failure at Rod Sensor)

In general, the experimental results agree with the effective thresholds predicted by the theory. The
oscillation counting result shows that the rule-of-thumb established for determining the effective
threshold does provide a reasonably good indication of the expected performance. Between 1 and
2.2 Hz, the experimental data seems to agree with the theoretical data. At frequencies higher than
2.2 Hz, the data follows the threshold for the 3 to 10 Hz sub-band, suggesting that OFCs between
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2.2 and 3 Hz are being detected by the high frequency window sooner than with the low frequency
window. This is likely due to the phase lead effect that low frequencies experience at the 3 to
10 Hz sub-band filter, and these frequencies are not being completely attenuated. Unfortunately,
the detection method begins to diverge from the theory at frequencies above 6 Hz.
The DFT and MWFT experimental results tend to fit with the theoretical effective thresholds
rather well, confirming the theory proposed in Chapter 6.
Finally, the PLL is expected to detect all OFC frequencies equally well, since a single threshold value
is applied to all frequencies, and a detection time of 0.3 s is guaranteed. Indeed, the experimental
data seems to match the theoretical amplitude for frequencies between 4 and 10 Hz. At lower
frequencies, the PLL shows improved performance. This occurs despite the attenuation and ωo/ωc
scaling explored in Sections 7.4 and 7.5. A possible reason for this discrepancy is that at these
low frequencies, the upsampling and modulating stage at the PLL input causes low-frequency
oscillation that allows lower amplitudes to cross the PLL’s threshold.
In summary, the experimental performance of all the methods seem to confirm the theoretical per-
formance provided by the effective thresholds, with the exception of the IAE. The MWFT provides
the best amplitude and detection time performance, followed by the PLL and DFT. Oscillation
counting cannot guarantee detection time for frequencies above 7.5 Hz, due to filtering effects, and
possibly because the dynamics of the system cannot allow for a high frequency oscillation large
enough for timely detection. The IAE performs extremely poorly in terms of detection time.
The box-and-whisker graph in Figure 8.8 visualises the performance of the detection methods in
terms of smallest amplitude OFCs detectable within 3 cycles, based on the experimental results.
The figure shows the distribution of the smallest amplitudes detectable within 3 cycles across
the frequency range. In general, the maximum of these plots would provide an indication of
the largest OFC that an aircraft’s structural support should accommodate. The MWFT has the
lowest maximum, and could therefore allow for the greatest weight-savings in the aircraft structural
design. Note that the red mark represents the median of the data, and the bottom and top edges
of the box indicate the 25th and 75th percentiles, respectively.
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Figure 8.8: Range of Amplitudes Detectable within 3 Cycles (Liquid Failure at Rod Sensor)

8.4.2 Smallest OFCs Detected within 6 Cycles
Figure 8.9 shows the smallest amplitude OFCs that were detected within 6 cycles. This showcases
the potential performance of each method if the detection time requirement was relaxed. Here, a
detection time of longer than 6 cycles is considered to be a missed detection.
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Figure 8.9: Smallest Amplitudes Detected within 6 Cycles (Liquid Failure at Rod Sensor)

Briefly, the MWFT appears to detect the smallest OFCs consistently across all frequencies, while
the PLL shows the worst performance overall. Figure 8.10 compares these results to the thresholds
of each detection method.
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Figure 8.10: Minimum Amplitudes Detected and Corresponding Thresholds (Liquid Failure at Rod
Sensor)
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Figure 8.10: Minimum Amplitudes Detected and Corresponding Thresholds (Liquid Failure at Rod
Sensor) (Continued)

The oscillation counting and the IAE methods show very similar performance. This proves that the
IAE is a competent approach to oscillation detection, and its only drawback is that it struggles to
meet the detection time requirements of the OFC detection problem. Here, the MWFT continues
to outperform the other detection methods.
For the most part, the various methods are capable of detecting OFCs that are slightly smaller
than their thresholds suggest. Here, the noise and modelling errors “assist” the detection methods
by adding energy to the failure. The exception to this is the DFT approach. The DFT uses a large
window, and has to wait for multiple cycles, up to 30, to enter the observation window before the
magnitude of the frequency component reaches its maximum value. The 6 cycle limit used here is
therefore detrimental to the detection performance of the DFT.

8.4.3 Detection Time
Figure 8.11 shows the spread of the detection times for each detection method across all the tests
in this test case. This takes into account all detections that occur within 6 cycles.
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Figure 8.11: Detection Time of OFC Detection Methods in Cycles (Liquid Failure at Rod Sensor)

The MWFT outperforms all other techniques with the smallest median detection time of 0.44
cycles. In other words, 50 % of the failures that were detected achieved a detection time of 0.44

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 8. RESULTS 93

cycles or less. It manages to achieve this performance by using shorter windows to detect higher
frequencies. The PLL attains a close second place with a median detection time of 0.81 cycles. This
fast detection is the result of the PLL design that attempts to detect all OFCs within 0.3 seconds.
The DFT also manages to achieve early detections due to its detection time being dependent on
OFC amplitude, where larger amplitudes result in faster detections. However, it shows the greatest
spread of all the methods. The oscillation counting approach manages a median detection time of
just under 3 cycles, as expected given the fact that the 6th threshold crossing occurs before the
end of the 3rd cycle. Finally, the IAE shows a median detection time of 3.26 cycles, proving that
it offers a competent OFC detection technique, but suffers from the fact that the 6th threshold
crossing occurs at the very end of the 3rd cycle. It is also noted that the oscillation counting and
the IAE methods show the least spread, indicating that they provide the most consistent detection
times.
Each detection method has a maximum detection time of 6 cycles. As mentioned, these longer
detections likely occur in cases where the amplitude of the failure is just below the threshold level,
and the failure is eventually detected due to the added energy of noise and modelling errors. The
6 cycle detection time result for the PLL, which is specifically designed for 0.3 second detection
time, may also be indicative of cycle slipping.
Finally, the DFT and MWFT appear to show cases where the failure is detected almost instantan-
eously. Since the detection time of the DFT and MWFT is inversely proportional to the amplitude
of an oscillatory failure, these extremely short detection times occur in the cases where the amp-
litude of the failure is exceptionally large.

8.5 Test Case: Liquid Failure at the Command Current

The second test case is the liquid failure at the command current. The results here are very
similar to those of the position sensor liquid failure, and the results and discussions in the previous
section are all applicable here. For completeness, some results are shown here. Figure 8.12 shows
the smallest amplitudes detected within 3 cycles for each method, excluding the IAE. Figure 8.13
shows the distribution of the detection times.
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Figure 8.12: Smallest Amplitudes Detected within 3 Cycles (Liquid Failure at Command Current)
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Figure 8.13: Detection Time of OFC Detection Methods in Cycles (Liquid Failure at Command
Current)

It is noted here that the overall detection times for oscillation counting, the IAE, and the PLL are
similar to the previous set of results, but the median detection times of the DFT and MWFT are
considerably lower in this failure case. This is simply because the resultant OFC amplitude at the
control surface tends to be larger when the OFC is injected at the command current than at the
rod position sensor. This effect can be seen when comparing Sections 3.4.3 and 3.4.4. The DFT
and MWFT therefore detect the OFCs more quickly because their detection times decrease with
larger amplitudes.

8.6 Test Case: Solid Failure at the Command Current

8.6.1 Smallest OFCs Detected within 3 Cycles
This section presents the detection results for a solid failure at the command current. Figure 8.14
shows the smallest amplitudes detected in 3 cycles.
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Figure 8.14: Smallest Amplitudes Detected within 3 Cycles (Solid Failure at Command Current)
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For the most part, the results are similar to those in the previous cases. One exception that
is immediately evident is the large spikes between 9 and 10 Hz for the PLL. This unfortunately
occurs due to cycle slipping. The large frequency offset combined with the transient effects of the
solid failure and the effects of the upsampling stage ultimately results in the PLL slipping one
cycle. This trend can also be seen in Figure 8.6 for liquid failures, albeit to a much smaller extent.
However, these late detections typically don’t exceed 4 cycles, and the average detection time for
the PLL in Figure 8.17 doesn’t show any significant deterioration in comparison to the previous
cases.
In terms of the other methods, the IAE (not shown) continues to show poor detection time per-
formance, the oscillation counting cannot guarantee timely detection at frequencies higher than
7.5 Hz, and the MWFT continues to offer the best overall performance. The results of Figure 8.14
are summarised in the box-and-whisker diagram in Figure 8.15, which shows the distribution of
the smallest amplitudes detectable within 3 cycles across the frequency range.
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Figure 8.15: Range of Amplitudes Detected within 3 Cycles (Solid Failure at Command Current)

8.6.2 Smallest OFCs Detected within 6 Cycles
The smallest amplitudes for solid failures detected within 6 cycles are shown in Figure 8.16. This
figure shows a curious result at low frequencies, where most of the methods appear to detect low-
frequency OFCs with 0◦ amplitude. This is a case where the amplitude of the induced OFC is zero,
but due to the nature of the solid failure, the actuator stops responding to reference commands.
This is essentially a jammed actuator. Many of the oscillation detection methods manage to detect
the failure due to filter transients, or in the case of the DFT methods, the frequency content of
the position estimate crossing the thresholds. These jamming detections seem to occur only at
low frequencies simply because of the 6 cycle detection time specified, and 6 cycles of the low
frequencies stretches over more time than at high frequencies, providing the detection methods
with longer opportunities to detect these jamming failures.
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Figure 8.16: Smallest Amplitudes Detected within 6 Cycles (Solid Failure at Command Current)

8.6.3 Detection Time
Finally, the distribution of the detection times for each method is summarised in Figure 8.17 below.
These results are very similar to those shown for the liquid failure in the command current.
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Figure 8.17: Detection Time of OFC Detection Methods in Cycles (Solid Failure at Command
Current)

8.7 False Detections

With all the detection methods exhaustively and robustly trained with 1000 training data sets, it
is expected that no false detections should occur for any detection methods. A false alarm occurs
if a detection method flags a failure before the OFC is injected into the system. Table 8.1 lists the
number of false alarms that occurred for each detection method over all the 180 180 test data sets.
The DFT shows a large number of false alarms, with a false alarm rate of almost 0.04 %, while the
MWFT suffered from just one false alarm. All the other methods experienced no false alarms.
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Table 8.1: Number of False Detections during Testing

Detection Method False Detections False Detection Rate
Oscillation Counting 0 0 %
Integrated Absolute Error 0 0 %
Discrete Fourier Transform 68 37.7 · 10−3 %
Multi-window Fourier Transform 1 0.55 · 10−3 %
Phase-locked Loop 0 0 %

The DFT’s false alarms occurred due to high-frequency components that originate from sensor
noise. This is primarily due to the high-resolution threshold of the DFT that assigns a unique
threshold for each frequency component, and the threshold values at high frequencies are not large
enough to avoid false alarms, since most of the energy of the residual lies at low frequencies.
The training data therefore failed to train the DFT’s high-frequency threshold values sufficiently.
Methods such as oscillation counting, on the other hand, only have two unique threshold values,
and the threshold for high frequencies has to be high enough to avoid lower-frequency threshold
crossings as well. The MWFT has a considerably higher resolution threshold than other methods,
but lower than the DFT, which is likely the reason for its improved robustness.
To prevent false detections from occurring, the thresholds for the DFT and the MWFT could be
scaled by some safety margin, at the cost of the detection of smaller OFCs.

8.8 Computational Complexity

The final performance metric that must be quantified is the computational complexity of each OFC
detection method. Here, in Table 8.2, the computational requirements of each detection method
is given in terms of the number of mathematical operations per 40 Hz time step that must be
performed, specifically the number of real multiplications and real additions. The derivations of
these results can be found in Appendices B to E.

Table 8.2: Mathematical Operations Required for Each Detection Method

Detection Method Real Multiplications Real Additions Other
Oscillation Counting 120 120
Integrated Absolute Error 120 132
Discrete Fourier Transform 1088 2040
Multi-window Fourier Transform 408 765
Phase-locked Loop 285 254 Linear/Binary Search

Oscillation counting manages to be the most computationally efficient approach for OFC detection,
despite the upsampling factor of 3. The IAE is a close second with only 12 more additions over
the oscillation counting.
The PLL requires little more than double the number of operations, assuming a lookup table is
used to calculate the cosine of the VCO. However, the use of a lookup table requires a search
algorithm to obtain the correct lookup value pair. Two popular algorithms that could be applied
here are linear or binary search algorithms. The computational order of a linear search is O(N),
and a binary search has an order of O(logN). The computational cost of both of these approaches
is dependent on the chosen length of the lookup table.
The DFT and MWFT are considerably more expensive than the rest of the methods. The DFT
requires 9 times the number of multiplications versus oscillation counting, and 17 times the number
of additions. The MWFT, however, only requires an increase of 3.4 times the number of multi-
plications and 6.4 times the number of additions over oscillation counting, making it more viable
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for embedded applications than the DFT. It should also be noted that the structure of the sliding
DFT allows it to be parallelised, leading to faster calculations provided the hardware allows for it.
Note that the computational complexity of each method given here may be more useful when
converted to the number of clock cycles in an embedded computer. Typically, it can be assumed
that a real addition may take 1 clock cycle, while multiplication may take 3 or 4 clock cycles.
However, this is dependent on the hardware on which these techniques are implemented.

8.9 Summary

This chapter detailed the results of a rigorous test campaign that tested and compared five different
OFC detection methods. The results were compared based on smallest amplitude reliably detected
within 3 cycles, smallest amplitude detected within 6 cycles, average detection time, and false
alarm rate. Finally, the computational complexity of each method was compared.
Oscillation counting and the integrated absolute error (IAE), the two oscillation detection tech-
niques extracted from literature, provided the worst performance in terms of smallest amplitude
detected within 3 cycles. Neither methods could guarantee 3 cycle detection time for the entire 1 to
10 Hz spectrum of OFC frequencies. They also had the longest average detection times. Oscillation
counting was, in general, better than the IAE by having faster detection times and using slightly
fewer mathematical operations. Additionally, neither of these methods triggered any false alarms,
and both are extremely computationally efficient.
The phase-locked loop (PLL) provided good overall performance, and is approximately twice as
computationally expensive as oscillation counting. It was designed to ensure 0.3 second detection
time for all frequencies, and thus had extremely short detection times. It also offered more con-
sistent performance than the first two methods in terms of smallest amplitude detectable within
3 cycles. However, despite being designed to avoid cycle slipping, the PLL did suffer from cycle
slipping at higher frequencies, especially during solid failures.
The discrete Fourier transform (DFT) and multi-window Fourier transform (MWFT) are by far
the most computationally expensive approaches. The DFT performed worse than the PLL in
terms of detection time and amplitude, but still managed to improve on the oscillation counting
and IAE methods in these regards. Unfortunately, it suffered from many false detections caused
by high-frequency sensor noise. The MWFT in contrast is considerably more efficient than the
DFT. This is achieved by using smaller windows for higher frequencies. These smaller windows
also allowed the MWFT to detect the smallest OFCs within 3 cycles, and within 6 cycles, and
it maintained the smallest average detection time of all the tested methods. The MWFT also
suffered from fewer false alarms than the DFT. Due to its superior performance, the MWFT is the
recommended approach to OFC detection.

8.10 Contributions

The following contributions were made in this chapter:

• A Monte Carlo simulation was set up to test all the different approaches. This was based
on the longitudinal model developed in Chapter 3. 1000 training data sets were generated
to train the thresholds of each detection method. A total of 180 180 unique testing data sets
were generated and used to test each detection method rigorously.

• Each method was evaluated and compared based on their ability to detect small amplitude
OFCs within 3 cycles and within 6 cycles. The detection time statistics of each method were
also compared and discussed.

• An analysis of the computational complexity of each method was performed and detailed in
Appendices B to E.
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Chapter 9

Conclusions and Recommendations

This thesis investigated detection strategies for the oscillatory failure case (OFC), a specific type
of failure that causes aircraft control surfaces to oscillate uncontrollably. These oscillatory failures
cause additional loads to be placed on the structure of the aircraft, and to mitigate this, structural
engineers have to reinforce the body of the aircraft to handle these large loads. The structural
reinforcements increase the overall weight of the aircraft, reducing fuel efficiency, flight time, and
handling quality. Therefore, if a fault detection system could detect and pacify these oscillations
quickly, the structural reinforcement could be reduced.
Fault detection and reconfiguration systems are already integrated into the flight actuator control
systems. These fault detection systems make use of analytical redundancy to detect faults by sim-
ulating an actuator, and subtracting the position of the simulated actuator from the measurements
of the real actuator. This results in a residual signal that represents the difference between the
real actuator and the simulated actuator. Residual evaluation techniques are then used to check
for the presence of failures.
The goal of this project was to investigate residual evaluation techniques that can detect OFCs.
These techniques should be able to detect OFCs with as small amplitudes as possible, and the
OFCs should be detected within 3 cycles to prevent sustained loads. Furthermore, the online and
embedded nature of the fault detection system limits the computational resources available, and
thus residual evaluation techniques need to be computationally efficient.

9.1 Summary of Work Done

Two fault detection methods for oscillation detection found in literature were investigated and
implemented. These methods are oscillation counting [1] and integrated absolute error (IAE) [17].
Three more methods were designed and implemented, based on the discrete Fourier transform
(DFT) and phase-locked loop (PLL) techniques. These five approaches are summarised as follows:

1. Oscillation counting detects oscillatory failures by setting a time-domain threshold, and
counting the number of times the residual signal crosses the threshold. An OFC is de-
tected if six threshold crossings occur over a certain time period. Two bandpass filters are
used to divide the residual into different frequency sub-bands, and to remove noise. However,
these filters add transient effects and phase delays to the residual, creating the potential for
late detections.

2. The IAE technique integrates the residual signal between consecutive zero crossings. If the
IAE is greater than some threshold value, a disturbance is detected. If six disturbances are
detected, an OFC is inferred. Unfortunately, due to the integration, the magnitude of the
IAE is dependent on the frequency of the OFC, with higher frequencies showing smaller
magnitudes. Therefore, a new dynamic threshold selector is implemented that scales the
threshold based on the time between the two zero crossings. Sub-band filters are used here
as well to ensure fair comparison with oscillation counting.

99
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3. The DFT approach calculates the magnitude of the frequency content in the residual signal.
If the magnitude of any frequency components exceed some threshold, then an OFC is in-
ferred. A new approach to threshold selection is proposed here, where a frequency-dependent
threshold is used. This threshold allows for higher thresholds at frequencies where the fault-
free residual typically contains more energy, and lower at frequencies that typically contain
less energy. The detection time of the DFT approach is mathematically proven to be de-
pendent on OFC amplitude, frequency, window size, and the selected threshold. The use of
a computationally efficient approach to calculating the DFT, known as the sliding-DFT, is
investigated and recommended in preference to the fast Fourier transform.

4. The nature of the sliding-DFT is exploited to allow for a multi-window Fourier transform
(MWFT), where shorter window sizes are used to calculate higher frequency components to
improve detection time.

5. The PLL technique detects OFCs by attempting to lock onto any dominant frequencies that
exist in the residual signal. A quadrature phase detector then multiplies the PLL’s output
with the residual signal, and OFCs are detected by checking for a DC offset at the quadrature
phase detector’s output. The PLL is designed using classical control theory and non-linear
phase plane analysis to guarantee 0.3 second detection time. However, the PLL struggled to
guarantee detection time at low frequencies, and thus relied on an upsampling and modulation
stage to increase the perceived frequency of the OFC.

A simulation framework was created to serve as a testbed for the training and testing of the different
OFC detection techniques. The simulation framework contains models for the physical actuator,
the analytically redundant actuator, the oscillatory failures (both liquid and solid failures), the
flight control system, and the aircraft longitudinal dynamics. It is important to model the aircraft
response and the flight control system response to the oscillatory actuator failure, since it affects
the performance of the OFC detection. The simulation framework is designed so that the actuator
parameters and the oscillatory failure parameters (amplitude, frequency, type, and injection point)
can be varied randomly to produce training and testing data that is sufficiently rich.

9.2 Summary of Results

Each detection technique was subjected to a rigorous test campaign to determine the lowest amp-
litude OFC that could be detected within 3 cycles. The results of the tests showed that the os-
cillation counting technique could not guarantee detection time for frequencies higher than 7.5 Hz.
The second approach, the IAE, essentially failed to guarantee detection time for any OFCs, and
was therefore deemed unsuitable for the application of OFC detection. However, if the detection
time requirements were relaxed, both the oscillation counting and IAE methods would be able to
detect small OFCs, with detection performance comparable to the DFT and the PLL. They are
also the most computationally efficient approaches.
Also tested were the PLL and two implementations of the DFT, namely the single-window and
multi-window DFTs. These three methods managed to detect OFCs of all frequencies within
the required detection time, unlike oscillation counting or the IAE. They also managed to detect
smaller OFCs within 3 cycles. Finally, the performance of all three methods in the experimental
tests matched or improved on the performance predicted in theory. The exception was the PLL
that occasionally showed cycle slipping at high frequencies.
Ultimately, the MWFT shows the most promising results of all the methods, with superior detection
time and smallest detectable amplitudes. This, combined with its computational optimisations over
the single-window DFT, makes it the recommended approach to OFC detection.

9.3 Conclusions

The oscillation counting approach and the IAE approach have both been used successfully in
industry, and offer simple and computationally efficient algorithms for oscillation detection. They
work especially well when detection time is not a critical requirement. Unfortunately, their use of
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bandpass filters for improved robustness causes time delays. This combined with their reliance on
multiple threshold crossings places them at a disadvantage when applied to systems where strict
detection time is a necessity. These methods require that 3 cycles pass before the system is alerted
to the failure. This is proven with the average detection times of 2.8 and 3.3 cycles for oscillation
counting and IAE respectively.
The DFT and PLL methods each rely on a single threshold crossing for OFC detection, and they
therefore inherently allow for shorter detection times than the methods that require six threshold
crossings. This does potentially come with an increased susceptibility to false alarms, as seen with
the DFT that suffered from a false alarm rate of 0.04 % in the tests.
The PLL is computationally efficient, and offers an improvement over oscillation counting in terms
of detection time. However, of all the methods, it is by far the most complex to implement as a
system, with multiple interconnected components such as the upsampling and modulation stage,
the control loop, and the quadrature phase detector. Designing the system is also more challenging,
with many aspects that have to be taken into account, such as settling time, cycle slipping, and
gain variation based on the input amplitude.
The MWFT offers a computationally efficient approach to OFC detection, and offers the best per-
formance in terms of amplitude and detection time. It relies on the sliding-DFT, which is a very
simple algorithm to implement, and is more efficient than the fast Fourier transform. Addition-
ally, it does not require a high sampling rate to function correctly. The MWFT is therefore the
recommended approach to OFC detection.

9.4 Recommendations and Future Work

• This study has shown that improvements to the OFC detection problem can be achieved
by reviewing and redesigning the residual evaluation stage. The techniques in this study
has been limited to time-domain thresholding, the DFT, and the PLL, but many other
residual evaluation techniques may prove to be applicable. Further areas of investigation
could include:

– Signal estimation: The literature study briefly mentioned signal estimation techniques
such as MUSIC and adaptive notch filters for frequency and amplitude estimation of
sinusoids.

– Telecommunications techniques: As mentioned, the telecoms field has a strong back-
ground in the detection of signals in noise, and while many of these techniques may
prove to be too computationally expensive, valuable insights and techniques may be
obtained.

– Neural networks: Machine learning and deep learning techniques are steadily becoming
more and more common in many different applications, and may offer unique techniques
for residual generation and/or evaluation.

• Ultimately, residual evaluation techniques will be limited by the quality of the residual gen-
eration stage. More accurate actuator models will reduce the effect of modelling errors in
the residual, allowing for lower thresholds, and will consequently enable the detection of
smaller amplitude failures. Another approach to improve the performance and robustness
of the system is the use of adaptive thresholds. This would involve dynamically changing
the threshold based on the characteristics of the command signal, aircraft states, or actuator
states. This is motivated by the observations in Section 3.4, where the energy in the residual
is often dependent on the command signal.

• The methods investigated in this thesis could also be improved, specifically the DFT-based
methods. The DFT technique suffers from an increase in the OFC detection threshold when
the window size is decreased. This effect is evident in the detection thresholds of the DFT
and the MWFT. On the other hand, smaller windows result in a decrease in computational
cost, and ensures shorter detection times. Future investigations could attempt to optimise
the size of the window for low thresholds, fast detection times, and minimum number of bins
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to be computed. This optimisation would be applicable for both the DFT and the MWFT
techniques. The MWFT could also be optimised by increasing the number of different window
sizes, rather than using just four window sizes as in the proof of concept presented in this
thesis.

• The MWFT relies on the sliding-DFT, which is a marginally stable filter, and its stability
on aircraft embedded computers must be evaluated. The use of a stable implementation, as
mention in Section 6.6, and its effect on accuracy should also be further investigated.

• One final recommendation is that a sampling frequency of at least 100 Hz should be used for
any time-domain detection techniques, as explained in Section 4.3.3. This will ensure that
sufficient amplitude information is available for the detection methods.
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Appendix A

Derivation of the Sliding Discrete Fourier
Transform

The sliding discrete Fourier transform is derived from the discrete Fourier transform formula.
Starting at some time step n, the kth frequency bin is described as

R[k, n] =
no+N−1∑
n=no

r[n]e−j2πk(n−no)/N .

At the next time step,

R[k, n+ 1] =
no+N−1∑
n=no

r[n+ 1]e−j2πk(n−no)/N

=
no+N∑
n=no+1

r[n]e−j2πk(n−no−1)/N

=
no+N−1∑
n=no

r[n]e−j2πk(n−no−1)/N − r[no]e−j2πk(−1)/N + r[no +N ]e−j2πk(N−1)/N

= ej2πk/N

(
no+N−1∑
n=no

r[n]e−j2πk(n−no)/N − r[no] + r[no +N ]
)

= ej2πk/N (R[k, n]− r[no] + r[no +N ])
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Appendix B

Oscillation Counting Computational
Evaluation

This appendix evaluates the number of mathematical operations required per time step to imple-
ment oscillation counting, based on the system overview in Figure B.1.

Oscillation
Counting

Oscillation
Counting

Energy
Calculation

Liquid
Failure

Solid
Failure

DetectionSub-band
Filtering

r[n]

Sub-band
Filtering

δ̂[n]

9 (×)
8 (+)

9 (×)
8 (+)

2 (+)

2 (×)
2 (+)

Figure B.1: Real Additions and Multiplications in Oscillation Counting

• The residual and the estimated control surface deflection are filtered using 4th order infinite
impulse filters. The difference equations of these filters can be expressed as:

y[n] =
4∑
i=0

bir[n− i]−
4∑
j=1

ajy[n− j] (B.0.1)

At each sample time, Equation (B.0.1) executes 9 multiplications and 8 additions. Figure 4.3
includes two such filters, and thus the total number of filtering-related calculations are 18
multiplications and 16 additions.

• Two oscillation counting blocks are present. The liquid failure counting requires no mathem-
atical operations, but the solid counting offsets the positive and negative thresholds by the
deflection estimate. This executes 2 additions.

• The energy calculation can be implemented with the following iterative filter, consisting of
two multiplications and two additions:

E[n] = r2[n] + E[n− 1]− r2[n− 1] (B.0.2)
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Thus the total number of operations are 20 multiplications and 20 additions. However, the entire
process is performed twice for two frequency sub-bands, and an upsampling factor of 3 further
increases the number of computations per 40 Hz sample time. This results in a final result of 120
real multiplications and 120 real additions.
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Appendix C

Integrated Absolute Error Computational
Evaluation

The IAE has a very similar computational requirement to the oscillation counting, as the structure
of the system is nearly identical, if separate checks are in place for liquid and solid failures. The
computational requirements for oscillation counting are detailed in Appendix B

IAE

IAE

Energy
Calculation

Liquid
Failure

Solid
Failure

DetectionSub-band
Filtering

r[n]

Sub-band
Filtering

δ̂[n]

9 (×)
8 (+)

9 (×)
8 (+)

2 (+)

2 (×)
2 (+)

2 (+)

Figure C.1: Real Additions and Multiplications in the IAE Method

The IAE trades the two oscillation counting blocks for two integration stages. Each of these
contain two additions: one to integrate the residual and one to increment the integration time.
Additionally, the solid failure check does not have to offset the threshold, since the zero-crossing
checks will occur around the estimated deflection rather than around zero.
Note that when a zero-crossing is detected, the threshold value must be calculated. Because this
does not happen at every sample instance, it is ignored for this analysis.
The total number of operations for the IAE is therefore 20 multiplications and 22 additions.
Taking upsampling and the two frequency sub-bands into account, the totals rise to 120 and 132
multiplications and additions respectively.
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Appendix D

Sliding DFT Computational Evaluation

To reiterate, the sliding DFT, with zero-padding, can be mathematically expressed as:

R[k, n] = ej2πk/mzN
(
R[k, n− 1]− r[n−N ] + r[n]e−j2πk/mz

)
. (D.0.1)

This shows two complex multiplications and two complex additions per frequency bin at each time
step. Here, the two exponentials are assumed to be pre-calculated and stored as lookup tables.
For fair comparison to the other implementations, the number of real operations is required. Each
complex multiplication consists of the following operations [50]:

<[(a+ jb)(c+ jd)] = ac− bd (D.0.2)
=[(a+ jb)(c+ jd)] = (a+ b)(c+ d)− ac− bd (D.0.3)

This operation contains three multiplies and five additions. Complex addition uses two real addi-
tions. Therefore, the total number of real operations per frequency bin is 6 multiplications and 14
additions.
The result of Equation (D.0.1), R[k, n], is complex, and the absolute value is required for threshold
checking. This typically involves the Euclidean distance equation, which includes the use of a
square-root operator:

|R[k, n]| =
√
<(R[k, n])2 + =(R[k, n])2 (D.0.4)

However, the detection algorithm could make use of the periodogram, which is defined as the square
of the DFT’s magnitude. This would cancel out the square root, simplifying the calculation to just
two multiplications and one addition. Thus, the number of operations increases to 8 multiplications
and 15 additions.
Section 6.6 states that with a zero-padding factor of 5, a total of 136 frequency bins must be
computed. Thus, the total number of computations are 1088 multiplications and 2040 additions.
The multi-window implementation of the DFT requires only 51 frequency bins to be calculated,
reducing the total number of operations to 408 multiplications and 765 additions.
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Appendix E

PLL Computational Evaluation

The phase-locked loop, Figure E.1 consists of the following mathematical operations:

vi(t) = A sin (ωct+ θi(t)) vc(t)
PI Controller

VCO
vo(t) = B cos (ωct+ θo(t))

vd(t)

1 (×)
2 (×)
2 (+)

5 (×)
6 (+)

Figure E.1: Phase-locked Loop

• The phase detector contributes a single real multiplier.

• The PLL’s PI controller is described in the Z-domain as:

D(z) = P + I
1 + z−1

1− z−1 (E.0.1)

This translates to the following difference equation:

y[n] = (I + P )x[n] + (I − P )x[n− 1] + y[n− 1] (E.0.2)

The values (I +P ) and (I −P ) can be hard-coded, thereby requiring two additions and two
multiplications.

• The VCO has to generate a sinusoid based on:

vo(t) = cos
(
ωct+

∫
vc(t)dt

)
(E.0.3)

The phase of the cosine above can be calculated with two multiplications and three additions:

θ[n] = ωcFsn+ θo[n], θo[n] = Ts
2 (vc[n] + vc[n+ 1]) + θo[n− 1] (E.0.4)

The trigonometric calculation is more difficult to quantify. An efficient implementation could
be to save a precomputed cosine as a lookup table, at the cost of accuracy. The accuracy can
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be improved to an extent by interpolating between the saved samples. Linear interpolation
between two points (x1, y1) and (x2, y2) can be expressed as

y = y1(x2 − x)− y2(x1 − x)
x2 − x1

, (E.0.5)

with three multiplications and three additions, if the step size (x2−x1) is known beforehand.
Linear or binary search is also required here to obtain the cosine value, but this is dependent
on the total number of points stored, and is ignored for this analysis.

OFC detection is performed using a quadrature phase detector, shown in Figure E.2.

z − 1
Tsz

− 1
ωc

vi[n]

vo[n] Lowpass Filter

y[n]ϕ[n]
1 (×)

1 (×)
1 (+)

9 (×)
8 (+)

Figure E.2: Quadrature Phase Detector

• The QPD also has a phase detector, which is a single multiplication.

• The differentiator can be implemented as

y[n] = −1
Tsωc

(vo[n]− vo[n− 1]) (E.0.6)

With the fractional constant pre-calculated as a single value, this is one multiplication and
one addition.

• Finally, the output is filtered with a 4th order IIR filter, with nine multiplications and eight
additions, as described in Appendix B.

Finally, the upsampling stage is analysed in Figure E.3.

↑ 10

Notch Filter Bandpass Filter

r[n] r̂[n]

9 (×)
8 (+)

5 (×)
4 (+)

400 Hz40 Hz

Figure E.3: Upsampling Stage Block Diagram

The total number of computations of the preceding elements, and the bandpass filter in Figure E.3
total to 28 multiplications and 25 additions. However, these elements run at an upsampled fre-
quency, resulting in a total of 280 multiplications and 250 additions per 40 Hz time step.
Before the upsampling, there is a 2nd order notch filter that runs at 40 Hz. The notch filter has
five multiplications and four additions. In conclusion, the PLL with an upscaling factor of 10 uses
a total of 285 multiplications and 254 additions.
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