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Abstract 

The risk of cardiovascular disease (CVD) is prevalent and on the increase globally. 

Lipid-lowering drugs, have been found to reduce CVD. They act by either reducing 

LDL or increasing HDL. Thus reducing the serum cholesterol which plays a pivotal role 

in male reproduction as it is a precursor for steroid hormone biosynthesis and forms 

an integral part of the sperm membrane. During spermatogenesis these hormones 

are necessary for normal sperm development and activation of genes in Sertoli cells, 

which promote differentiation of spermatogonia. The widespread prophylactic use of 

statins, especially by men of reproductive age, gives rise to concerns regarding the 

effect thereof on the male reproductive system. 

Aim:  To determine if lipid-modifying drugs (Simvastatin and Fenofibrate) have any 

effects on male reproductive parameters. 

Methods: Male Wistar rats (n=60) were randomly divided into four groups and 

treated for 6 weeks as follows: Control, Simvastatin (0.5 mg/kg), Fenofibrate 

(100mg/kg) and Simvastatin + Fenofibrate (S+F). Sperm morphology was assessed 

using Computer-Aided Sperm Morphology Analysis (CASMA). The plasma 

concentration of Total Cholesterol and Triglycerides (TG) were analyzed by the 

veterinary section of PathCare, a private pathology company. Testosterone and 

Estradiol concentrations were measured by ELISA kits. Testicular and epididymal 

histomorphometrics were measured by staining the testis with H&E and quantified 

using Zeiss imaging software. Testicular oxidative status was assessed by measuring 

the activity of Catalase (CAT), Superoxide Dismutase (SOD) as well as lipid 

peroxidation using a microplate reader. Data was analyzed by GraphPad Prism® V5.00. 
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Results were expressed as Mean ± SEM using One-way ANOVA. p≤0.05 determine 

statistical significance. 

Results: The body weight of animals was not significantly different between the 

groups (p=0.0753). However, the Simvastatin treated group presented with general 

increased body weight and significantly higher peritoneal fat compared to the 

Fenofibrate and S+F groups (p≤0.05). The Fenofibrate treated group had significantly 

higher fasted blood glucose levels compared to the Simvastatin group (p≤0.05). The 

total cholesterol and TG levels were generally reduced in treated animals compared 

to control animals. There were alterations observed in testosterone levels between 

the groups (p=0.0077). The S+F group receiving combination treatment had 

significantly lower testosterone levels compared to the Simvastatin (p<0.05) and 

Fenofibrate (p<0.05) groups, but did not differ from the control. There were no 

differences observed in sperm vitality when comparing the groups. The percentage of 

morphological normal spermatozoa was significantly lower in the Fenofibrate as well 

as S+F groups compared to the control group (p<0.05), while no differences were 

observed when comparing the Simvastatin group to the control group. When assessing 

testicular histomorphometrices, there were no significant differences found in 

seminiferous tubules’ area (p=0.0987), lumen diameter of the seminiferous tubules 

(p=0.914) and epithelial height (p=0.3401). When assessing the epididymal tubules’ 

parameters, luminal diameter did not show any significant differences (p=0.0620) and 

the mean heights of the epithelium also did not differ significantly (p=0.5101) between 

the treatment groups. 
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Conclusion: Short-term exposure to cholesterol-lowering drugs can alter male 

reproductive parameters, however, more studies using longer treatment regimens are 

needed. In the interim, it is advised that physicians treating men with infertility should 

take cognisance of this fact.  
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Opsomming  

Die risiko vir kardiovaskulêre siekte (KVS) is algemeen en wêreldwyd aan die 

toeneem. Lipiedverlagende middels is voorheen bewys om die voorkoms van KVS te 

verminder. Hierdie middels tree op deur óf LDL te verminder of HDL te verhoog en 

gevolglik word serum cholesterol verlaag.  Laasgenoemde speel ook ŉ sentrale rol in 

manlike reproduksie as ŉ voorloper vir steroïd hormoon biosintese en maak ŉ 

integrale deel uit van die sperm selmembraan. Gedurende spermatogenese word 

hierdie hormone ook benodig vir normale sperm ontwikkeling en aktivering van gene 

in Sertoli selle wat die differensiasie van spermatogonia bevorder. Die wydverspreide 

profilaktiese gebruik van statiene, veral deur mans in hul reproduktiewe ouderdom is 

kommerwekkend, veral oor die moontlike uitwerking daarvan op die manlike 

reproduktiewe stelsel. 

Doelstelling: Om te bepaal of lipiedverlagende middels (Simvastatien and 

Fenofibraat) enige uitwerking op manlike reproduktiewe parameters het. 

Metodes: Manlike Wistar rotte (n = 60) is ewekansig verdeel in vier groepe en 

daarna vir ses weke behandel soos volg: kontrole, Simvastatien (0.5 mg/kg), 

Fenofibraat (100mg/kg) en Simvastatien + Fenofibraat (S + F). Rekenaargesteunde 

spermmorfologie-analise (CASMA) is gebruik om sperm morfologie te evalueer. Die 

totale cholesterol en trigliseried (TG) konsenstrasies van die rot plasma was ontleed 

deur die veterinêre afdeling van PathCare, 'n privaat patologie maatskappy. 

Testosteroon en estradiol konsentrasies is met behulp van ELISA kits gemeet. 

Testikulêre en epididimale histomorfometrie is gemeet deur die testis met H&E te 

kleur. Daarna is dit gekwantifiseer met behulp van Zeiss beeldingsagteware. 

Testikulêre oksidatiewe status was geassesseer deur die ensiem aktiwiteit van 
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Katalase (CAT), Superoksied Dismutase (SOD) sowel as lipied peroksidasie te meet 

met behulp van 'n mikroplaat leser. Al die data was ontleed met behulp van 

GraphPad prisma® V5.00. Resultate is as gemiddelde ± SEM uitgedruk. Vir 

statistiese vergelykings is eenrigting ANOVA gebruik en 'n p-waarde <0.05 is gebruik 

om statistiese betekenisvolheid aan te dui.  

Resultate: Daar was nie ‘n beduidende verskil tussen die groepe diere se 

liggaamsgewigte nie (p = 0. 0753), maar die simvastatien behandelde groep het ‘n 

verhoogde algemene liggaamsgewig asook ‘n aansienlik hoër totale peritoneale vet 

gehad in vergelyking met die Fenofibraat en S + F groepe (p<0.05). Die Fenofibraat 

behandelde groep het ‘n hoër vastende bloedglukose vlak gehad in vergelyking met 

die simvastatien groep (p<0.05). Die totale cholesterol en TG vlakke was oor die 

algemeen verminder in die behandelde diere in vergelyking met kontrole diere. ‘n 

Beduidende verskil is gevind in testosteroon vlakke tussen al die groepe (p=0.0077). 

Die S + F groep wat die kombinasie behandeling ontvang het, het ŉ aansienlik laer 

testosteroon vlak gehad invergeleke met die simvastatien (p<0.05) en Fenofibrate 

(p<0.05) groepe, maar het nie verskil van die kontrole groep nie. Geen verskille in 

sperm vitaliteite is tussen die groepe waargeneem nie. Die persentasie morfologies 

normale sperm selle was aansienlik hoër in die kontrole groep in vergelyking met die 

Fenofibraat en S + F behandelde groepe (p<0.05), maar nie in vergelyking met die 

Simvastatien groep nie.  Met die evaluering van die testikulêre histomorfometrie is 

daar geen beduidende verskille gevind in die seminifereuse tubule area, luminale 

deursnit van die seminifereuse tubule en die epiteel hoogte nie. Daar was geen 

beduidende verskil tussen groepe met betrekking tot die luminale deursnee analise 

van epididimale tubule parameters nie. Met betrekking tot die gemiddelde lengtes 
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van die epiteel, was daar ook nie ‘n beduidende verskil tussen die behandelde 

groepe nie.  

Gevolgtrekking: Korttermyn blootstelling aan Cholesterol-verlagende middels kan 

manlike reproduktiewe parameters verander, maar studies met langer 

behandelingsregimens is nodig om hierdie stelling te ondersteun. In tussentyd word 

dit aanbeveel dat dokters wat onvrugbare mans behandeling van hierdie feit kennis 

neem. 
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Chapter 1: Introduction 

1.1. Background 

Infertility is the inability to conceive following at least a year of regular unprotected 

intercourse. The reasons are numerous and it may result from the inability of either 

or both partners to contribute to conception, or the inability of the female to carry a 

pregnancy to full term. Around 15% of the sexually active population, amounting to 

48.5 million couples, are affected by infertility. Male infertility alludes to a male's 

inability to cause pregnancy in a fertile female. Males contribute between 40-60% to 

couple infertility cases and are observed to be solely responsible for 20-30% of these 

infertility cases. Approximately 7% of all men are affected by infertility and constitute 

43% of the burden in Africa (Agarwal et al., 2015). 

There are many causes for male infertility including semen abnormalities (Cooper et 

al., 2009), endocrine disorders (Islam & Trainer, 1998) as well as physical problems 

(Guo et al., 2017). Semen analysis is normally performed to provide an indication of 

a male’s fertility potential (diagnosis). However, this is merely a surrogate measure as 

true fertility potential can only be established once a successful pregnancy has been 

elicited. 

Worldwide, the burden of chronic diseases such as cardiovascular diseases (CVDs), 

stroke, obesity as well as diabetes mellitus is increasing rapidly (WHO, 2002). Most 

deaths due to chronic diseases are attributable to coronary artery disease (CAD), 

which was responsible for 7.2 million deaths in 2003 (Bedi et al., 2006). CAD is the 

hardening of arteries due to atherosclerosis.  Arterial stiffness is a known marker of 

the atherosclerotic burden (Yingchoncharoen et al., 2014). It is caused by damage to 
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the coronary arteries, allowing cholesterol to deposit in the tunica intima (the second 

layer of the blood vessel wall). This causes the recruitment of other fatty substances 

and the possible progression to the formation of a complex plaque, which 

subsequently can initiate an inflammatory response. The walls of coronary arteries 

harden due to plaque development, making arteries less compliant (i.e. more difficult 

for arteries to dilate and constrict in response to pressure changes) (Cecelja & 

Chowienczyk, 2012).  

The damage to coronary arteries may be attributed to several factors. These include 

smoking, high blood pressure, dyslipidemia, diabetes or insulin resistance which may 

be exacerbated by an inactive way of life.  

Cholesterol is an essential fatty substance, responsible for several functions including 

steroid hormone biosynthesis, vitamin D production as well as forming integral part of 

cell membranes. It is synthesized by all the cells, but the liver is the site of the highest 

rate of synthesis with increased mRNAs encoding multiple enzymes of cholesterol 

biosynthesis (Norton et al., 1998). Cholesterol is synthesized through the mevalonate 

pathway, a series of enzyme rated reactions. This pathway starts with the 

condensation of two Acetyl-Coenzyme A (CoA) molecules to form acetoacetyl-CoA, 

with subsequent condensation of Acetyl-CoA and acetoacetyl-CoA to form 3-hydroxy-

5-methyl-glutahylocoenzyme A (HMG-CoA). 3-HMG-CoA is reduced to mevalonate by 

the enzyme HMG-CoA reductase, this is the rate limiting step of cholesterol 

biosynthesis. Mevalonate is further phosphorylated into activated isoprene that is 

polymerized to form squalene. Squalene is subsequently converted into cholesterol by 

cyclization and oxidation of methyl group (Mehta, 2013).  
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Lipoproteins are complex particles composed of multiple proteins which transport all 

hydrophobic lipids. They are composed of a central hydrophobic core of non-polar 

lipids, surrounded by a hydrophilic membrane. There are several classes of 

lipoproteins classified based on size, lipid composition, and apolipoproteins (Apo). 

These classes include chylomicrons, very low density lipoproteins (VLDL), intermediate 

density lipoproteins (IDL) as well as low density lipoproteins (LDL) (Feingold & 

Grunfeld, 2017). 

Cholesterol is transported in the blood as low-density lipoproteins (LDL) and high-

density lipoproteins (HDL). Total cholesterol (TC) is defined as the combination of 

HDL, LDL as well as triglycerides (TG) and in order for proper physiological functioning 

to occur, a specific level of TC is needed in the blood. However, should TC levels 

become excessive (reaching pathological levels) it may become harmful. In humans, 

a TC of less than 200 mg/dl is considered desirable. HDL, LDL and TG levels are 

considered optimal if the concentration in the blood is approximately 60 mg/dl, 100 

mg/dl and 150 mg/dl respectively  (Ma & Shieh, 2006). Triglycerides do not contain 

cholesterol, but are measured because it is the most common type of fat in the body 

and a high triglyceride level combined with high LDL or low HDL is linked with 

atherosclerosis (Welty, 2015). 

CADs are on the increase and showing worrying trends. This is not only because a 

large portion of the population is affected, but also because CADs have started to 

appear earlier in life and can cause sudden death or disability without warning. CADs 

can be addressed and treated with lifestyle changes, drugs and certain medical 

procedures (Willett et al., 2002).  
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Lipid-modifying drugs are widely used to prevent the onset (primary) of CADs and also 

used as treatment after early diagnosis (secondary) of the disease. These drugs act 

by the reduction of the total amount of cholesterol in blood through decreasing the 

primary materials which deposit in the coronary arteries. A wide range of these 

medications are available and used solely or as a combination of 2 classes. Different 

classes of lipid-modifying drugs include niacin, statins, cholesterol absorption inhibitors 

(Ezetimibe), PCSK9 inhibitors, fibrates and bile acid sequestrants. 

1.2. Problem statement  

The risk of coronary artery disease is prevalent and still increasing globally. To mitigate 

against this, lipid-modifying drugs are routinely prescribed for disease prevention and 

have been the best selling prescription drugs globally. These drugs reduce the 

prevalence of CAD, have a favorable safety profile and are described as a proven 

lifesaving medication. However, like all other medications these drugs can also possess 

adverse effects (AEs). In light of the increasing prophylactic use of lipid-modifying 

drugs by men, especially those of reproductive age, it gives rise to concerns about the 

effect of these compounds on the male reproductive system (Elgendy et al., 2018). As 

far as the author is concerned, no study has ever been performed to evaluate the 

effect of Simvastatin and Fenofibrate and the combination thereof on male fertility 

parameters.  

1.3. Aims 

To ascertain whether two lipid-modifying drugs, statins and Fenofibrate, 

individually and in combination have any effects on reproduction parameters in 

male Wistar rats. 
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1.4. Specific objectives  

1. To establish a male Wistar rat model in order to study the effect of lipid 

modifying drugs, that lower cholesterol levels, by feeding the animals jelly 

blocks containing one of the following treatments over a six week period: 

Simvastatin (0.5mg/kg), Fenofibrate (100mg/kg) or in combination. 

2. To ascertain the effect of the drugs on male reproduction by: 

 Quantifying the level of lipids in the blood plasma.  

 Quantifying testosterone and estradiol levels.  

 Assessing sperm morphology.  

 Assessing sperm viability.  

 Assessing histological changes in the testis and epididymis.  

 Assessing testicular anti-oxidant status.  

1.5. Significance of the study  

This study will provide additional information about the possible effects of lipid 

lowering drugs on male reproductive parameters, assessing various reproductive 

parameters as well as trying to establish possible mechanisms of action.  
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Chapter 2: Literature review 

2.1. Introduction 

CAD is the leading cause of morbidity and mortality worldwide (Okrainec et al., 2004). 

It is characterised by atherosclerosis within the coronary arteries, due to deposition of 

cholesterol in the tunica intima. Men are being hospitalized for heart-related diseases 

at almost double the rate of women. Recent studies show a prevalence of 1.2% CAD 

cases in males of ≤45 years (Centers for Disease Control and Prevention,2011 

Medibank, 2015). Combined dyslipidaemia is characterised by increased LDL and TG, 

as well as reduced HDL concentrations in the blood. It is recognised as a prominent 

risk factor for atherosclerosis development in CAD (Yusuf et al., 2004). When TC levels 

become excessive (reaching pathological levels) it becomes harmful to the heart. In 

humans, a TC of less than 200 mg/dl is considered desirable, while HDL, LDL and TG 

levels are considered optimal if the concentration in the blood is around 60 mg/dl, 100 

mg/dl and 150 mg/dl respectively (Ma & Shieh, 2006).  

HDL is regarded as “good cholesterol” because of its composition as it has a great deal 

of protein and reduced proportion of cholesterol. It is also known to possess anti-

inflammatory (Baker et al., 1999; Cockerill et al.,  1995) antioxidant (Garner et al., 

1998), anti-thrombotic (Bu et al., 2011) and anti-apoptotic (Nofer et al., 2001) effects 

that may reduce the risk of CAD in healthy humans. LDL contributes to fat build-up in 

arteries because it has a large amount of cholesterol and minimal proteins, therefore 

earning it the nickname “bad cholesterol” (Ravnskov, 2002). 

Under normal physiological conditions, LDL is known to be a major transporter of 

cholesterol in the blood stream, while HDL clears the excess LDL in the blood stream 
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through binding it after which it is subsequently broken down in the liver and excreted. 

These lipoproteins are important for normal functioning of the body, however elevated 

concentrations of LDL and low levels of HDL increase the risk factor of CAD. 

2.2. Lipid modifying drugs 

Lipid modifying drugs are groups of pharmaceuticals that are utilized for the treatment 

of elevated amounts of lipids, such as cholesterol, in the blood (hyperlipidaemia). 

There are a number of classes of hypolipidemic drugs. These drugs act by targeting 

different sites of lipid metabolism and differ in the effect which they have on 

cholesterol profiles as well as their AEs. Some classes of drugs may be more effective 

in lowering the LDL, while others may preferentially elevate HDL. Clinically, the 

decision on prescribing a specific drug depends on the patient's cholesterol profile, 

cardiovascular risk, as well as the liver and kidney functions, with a goal to balance 

the risks and benefits of the drugs. The most commonly prescribed class of lipid 

modifying drugs is statins (O’Keeffe et al., 2016), however, fibrates may be prescribed 

for patients who cannot manage their cholesterol through statins alone and is 

therefore sometimes used in combination with statins. 

2.2.1. Statins 

2.2.1.1. Introduction 

Statins (3-hydroxy-5-methyl-glutaryl coenzyme A reductase inhibitors) are known to 

play a major role in inhibiting   the accumulation of blood lipids, thereby preventing 

CAD (Liau, 2005). The 3-hydroxy-5-methyl-glutaryl coenzyme A reductase (HMG-

CoAr) inhibitors are widely used for the primary and secondary prevention of 

atherosclerotic cardiovascular disease (Grundy, 2016), thus decreasing the prevalence 

of CAD. They are especially appropriate for lowering LDL, the cholesterol that is 
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associated with vascular diseases. Statins significantly delay the onset of 

atherosclerosis and reduce the risk of a serious vascular lesion, such as a heart attack 

or stroke (Liau, 2005).  Statins also slow down the progression of disease, and 

therefore help to delay symptoms such as angina. They do not reverse the symptoms 

but can prevent them from aggravating (Lim, 2013). It has been noted that statins 

can lower LDL cholesterol (LDL-C) by 18-55% based on the type and dose of statins 

used (Laufs et al., 2016). A lower intensity statin is usually sufficient to reduce 

cholesterol levels adequately in most humans. If not a higher dosage thereof may be 

prescribed or shift to a higher intensity statin may be recommended (Raymond et al., 

2015) 

2.2.1.2. Application of statins 

Statin therapy is frequently recommended for individuals who have familial 

hypercholesterolemia (high cholesterol levels as a result of a faulty inheritence) 

(Rodenburg et al., 2007), patients with pre-existing heart disease (Jackson et al., 

2007), and those who are currently healthy, but are at high risk of developing heart 

disease in the future (Antonio et al., 2017).  

Besides preventing elevated blood cholesterol, experimental and clinical data exist for 

other possible therapeutic uses for statins, including the treatment of immune and 

inflammatory disorders (Gilbert et al., 2017), and the use as anti-cancer drugs (Ciofu, 

2012). Statins have also been explored as potential treatments for parasitic diseases 

such as trypanosomiasis, leishmaniosis, Chagas' disease and malaria (Parihar et al., 

2016). 
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2.2.1.3. Benefits of using statins 

Statins are beneficial to human health though their basic mechanism and pleiotropic 

effects. They improve blood flow by decreasing blood LDL concentration (Kapur & 

Musunuru, 2008; Parker et al., 2011), which subsequently removes fatty substances, 

such as cholesterol, from the bloodstream, thereby avoiding plaque formation. Statins 

are also reported to reduce the risk of narrowing arteries by keeping the smooth 

muscle lining of the arteries healthy and through reducing the fibrin (a protein involved 

in blood clot formation) deposit in the arteries (Haslinger et al., 2002; Mangat et al., 

2007). 

The atherosclerotic process is initiated when LDL accumulates in the intima, thereby 

activating plaque formation within the endothelium. This initiates an inflammatory 

response that promotes recruitment of monocytes and T-lymphocytes to the area of 

lipid accumulation. Previous studies have suggested that statins possess anti-

inflammatory effects (Bu et al., 2011), owing to their ability to reduce the number of 

inflammatory cells within atherosclerotic plaques, thus reducing the chance of arterial 

damage. The mechanism is not yet clear, but it might involve the inhibition of 

monocytes which contribute to inflammatory cell recruitment (Niwa et al., 1996). 

It is believed that statins assist by increasing the production if nitric oxide (NO) 

(Wolfrum et al., 2003), a molecule which stimulates vasodilation and subsequently 

improves blood flow. It is well known that increased blood flow in the pelvic area can 

lead to improved erections. It has thus been shown that statins could be a cheap and 

effective drug to treat erectile dysfunction (Cui et al., 2014). 
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Statins have been found to improve endothelial function in patients with acute 

coronary syndrome (Altun et al., 2014). Statins up-regulate the endothelial nitric oxide 

synthase (eNOs) and NAD(P)H oxidase activity (Wolfrum et al., 2003) through the 

inhibition of isoprenoids synthesis via inhibition of HMG-CoAr which is responsible for 

the conversion of HMG-CoA to mevalonate. 

Independently of statin’s effect on the lipid profile, they are also shown to have anti-

oxidant properties (Olsson et al., 2017). Statins have been reported to reduce 

Malondialdehyde (MDA) levels and increase superoxide dismutase (SOD) (Gong et 

al.,2012) as well as reducing the levels of reactive oxygen species (ROS) (Yoon et al., 

2009). 

2.2.1.4. Adverse effects 

According to a statin survey, more than six in ten respondents (62%) discontinued 

their statin treatment due to AEs (Kapur & Musunuru, 2008). The best recognized and 

most commonly reported AEs of statins are muscle toxicity. One reason for this may 

be statins' interference with selenium-containing proteins. Selenoproteins, such as 

glutathione peroxidase, are crucial for preventing oxidative damage to muscle tissues 

(Di Stasi et al., 2010). 

Statins also deplete the body of coenzyme Q10 (CoQ10), which accounts for many of 

their devastating results. CoQ10 is used for energy production by every cell in the body, 

and is therefore vital for good health, high energy levels, longevity, and general quality 

of life (Saini, 2011). CoQ10's is a critical component of cellular respiration and 

production of adenosine triphosphate (ATP). The presence of CoQ10 can improve the 
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sperm kinetic features  (Balercia et al., 2009). Reduced CoQ10 may result in impaired 

sperm movement. 

2.2.1.5. Statin’s mechanism of action 

Statins act by competitively inhibiting HMG CoA Reductase, an enzyme responsible for 

the first committed step of the mevalonate pathway (Figure 2.1), by blocking the 

conversion of HMG CoA to mevalonic acid. When administered statins are hydrolyzed 

to generate β𝛿-dihydroxy acid, an active metabolite structurally similar to HMG-CoA. 

After they are hydrolyzed, statins act by competing with HMG-CoA for HMG-CoAr. 

Forming a complex with catalytic portions of the enzyme by binding to the active site 

of HMG-CoAr and blocking access to the substrate from binding to the active site 

(Stancu & Sima, 2001). 
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Figure 2.1: Statins and the Mevalonate pathway. Statins act by inhibiting the 
conversion of HMG-CoA into mevalonic acid, thus reducing the production of 
isoprenoids, which results in low levels of cholesterol being produced.  
LDL=Low density lipoproteins 

 

This pathway converts mevalonate into sterol isoprenoids, such as cholesterol which 

is an indispensable precursor of bile acids, lipoproteins, and steroid hormones, as well 

as a number of hydrophobic molecules and non-sterol isoprenoids. The intermediates 

play a pivotal role in physiological processes. By interrupting the synthesis of 

cholesterol, statins activate cell surface LDL receptors in the liver, leading to a 

foreseeable increased clearance of LDL from the bloodstream and a decrease in blood 

LDL levels (Rashid et al., 2005). 
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2.2.2. Fibrates 

2.2.2.1. Introduction 

Fibrates are a group of drugs derived from amphipathic (hydrophobic and 

hydrophilic) carboxylic acids that are mainly used to treat hypercholesterolemia. This 

group of drugs is composed of fibric acid subordinates, which lower the amount of TG 

in the blood by reducing the liver's production of VLDL and accelerating the removal 

of TG from the blood (Shipman et al., 2016). Additionally, fibrates have been shown  

to effectively increase HDL cholesterol levels by up to 15-25% (Moutzouri et al., 2010). 

2.2.2.2. Applications of Fibrates 

Fibrates are used to prevent pancreatitis by lowering blood TG in clinical trials 

(Shipman et al., 2016). They additionally have been utilized alone to avert heart 

attacks, particularly in patients with elevated blood TG and low HDL cholesterol levels.  

2.2.2.3. Adverse effects 

Fibrates are effective in lowering blood cholesterol and is said to be life-saving, but as 

with other drugs their pleiotropic effects, may negatively affect users. The 

administration of a fibrate is believed to induce myopathy (Ghosh et al., 2004), but 

the mechanism thereof is not clear. A previous study, also speculated that some cases 

may be due to metabolic changes, whereas others may be immune mediated (Le 

Quintrec & Le Quintrec, 1991). Fibrates administration has been reported to reduce 

the size of adipocyte (Jeong & Yoon, 2009) a critical regulator of systemic energy 

homeostasis. The reduction in the size of this tissue might negatively affect the energy 

metabolism in the whole body. This could be linked to the findings of Forcheron and 

colleagues who found that, Fenofibrate administration leads to a reduction in free fatty 

acid (FFA) levels, attributable to an increase in FFA clearance, predominantly via an 

increase in FFA oxidation in the muscle (Forcheron et al., 2002). 
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2.2.2.4. Mechanism of action 

Fibrates act by activating peroxisome proliferator-activated receptors (PPARs), 

particularly PPARα. By activating PPARα, fibrates control the hereditary expression of 

various enzymes (McKeage et al., 2011). PPARα increases the levels of HDL by 

inducing the synthesis of ApoA-1 and A-2 (apoA-I and apoA-II). PPARα also induces 

lipoprotein lipolysis mediated by reduced hepatic apoliproprotein C3 (Apo C-III) 

production, resulting in reduced production of LDL particles. It also induces hepatic 

fatty acid (FA) uptake, thereof reducing the hepatic production of TG (Figure 2.2). 

 

Figure 2.2: Fibrates mechanism of action. The mechanism through which 
Fibrates reduce cholesterol and triglycerides within the blood stream by activation of 
PPARα. 
FFA=free fatty acids; LDL= Low density lipoprotein; HDL=High density lipoprotein; 

PPARα=proliferator-activated receptor alpha    

Stellenbosch University  https://scholar.sun.ac.za



 

15 
 

2.2.3. Simvastatin and Fenofibrate 

Simvastatin is a prodrug, which after administration is rapidly converted in the liver 

from inactive lactone to its acid form. It is an artificially derived fermented product of 

Aspergillus terreus (Subhan et al., 2016). The drug was introduced for clinical use in 

1989 and has been the most prescribed drug for primary prevention of CAD owing to 

their ability to reduce elevated lipid levels effectively with few side effects. In literature, 

Simvastatin has been shown to be highly effective in reducing LDL concentrations in 

dialysis patients (Masterson, 2002). This was further propagated by a clinical trial that 

found 16% LDL reduction in diabetic patients treated with 20-40 mg of Simvastatin 

with minimal tolerable AEs (Okeoghene & Alfred, 2013).  

Fenofibrate is similarly a prodrug which is transformed into its active form, Fenofibric 

acid, in the liver. It has been widely used to treat patients with atherogenic 

dyslipidemia. It is a second line treatment used to reduce elevated levels of total 

cholesterol, LDL, TG and Apo B (McKeage et al., 2011). It also increases HDL levels 

(Tsunoda et al., 2016). The mechanism of action is known to be mediated through 

the binding of the fibric acid derivative to PPARα (Staels et al., 1998), a transcriptional 

factor which plays key regulatory roles in fatty acid and cholesterol metabolism. As 

therapeutic effects, Fenofibrate and other PPARα agonists have been shown to cause 

a significant peroxisome proliferation, lipolysis, and increased synthesis of Apo AI and 

AII (Pawlak et al., 2015). These drugs are usually recommended if statins do not 

achieve adequate cholesterol lowering and are to be used with a proper balanced diet 

or in combination with statins. 

A previous study has shown that a combination therapy of Simvastatin and Fenofibrate 

might be more clinical beneficial in patients with combined dyslipidemia (Wang et al., 
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2003). This was substantiated by studies which found that co-administration of 

Fenofibrate and Simvastatin has been shown to exert improvement in both HDL and 

LDL, as well as TG levels. Combination treatment furthermore minimized AEs on 

patients with hyperlipidemia and elevated TGs (Ellen & McPherson, 1998; Grundy et 

al., 2005). The recommended dosage to improve the overall lipid profile is 20 mg of 

Simvastatin with 160 mg of Fenofibrate daily (Grundy et al., 2005; Muhlestein et al., 

2006). 

2.3. Cholesterol and Male Reproductive Parameters 

2.3.1. Introduction  

Cholesterol is a key molecule with an important role in various physiological 

processes. It is of particular importance to the reproductive system as it is the 

common precursor for steroid hormone synthesis (Whitfield et al., 2015). It is also a 

fundamental constituent of the sperm plasma membrane lipid bilayer. Cholesterol is 

furthermore necessary for sperm to be able to undergo capacitation following 

ejaculation into the female tract before fertilizing the oocyte (Ickowicz et al., 2012). 

2.3.2. Cholesterol Role in Sex Hormone Biosynthesis 

Sex hormones are the group of hormones which are cholesterol derivatives which in 

males are primarily synthesized and secreted by the testes (Stephen et al., 2008). Sex 

hormone synthesis is controlled by the release of gonadotropin-releasing hormone 

(GnRH) from the hypothalamus (Harrison et al., 2004) which stimulates GnRH 

receptors in the pituitary gland to release the luteinizing hormone (LH) as well as 

follicle stimulating hormone (FSH) (Marques et al., 2018). LH then binds to Leydig 

cells, which stimulates the expression of steroidogenic acute regulatory protein (StAR). 

StAR promotes the uptake of cholesterol, mainly as LDL, into the inner mitochondria 
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and initiates steroidogenesis (Miller & Bose, 2011). Cholesterol is then converted 

to pregnenolone by the action of P450 side chain cleavage enzyme (P450scc) and 

subsequently converted to dehydroepiandrosterone (DHEA) in a two-step process 

mediated by 17,20-lyase (17α-hydroxylase). Because Leydig cells express high levels 

of 3-beta-Hydroxysteroid dehydrogenase (3β-HSD) and 17-beta-Hydroxysteroid 

dehydrogenase (17β-HSD), DHEA is rapidly converted to testosterone via the 

intermediates androstenediol and androstenedione, see Figure 2.3. Reduced levels of 

LDL achieved by lipid lowering drugs may lead to AEs because there will be reduced 

free cholesterol delivered across the cell membranes. Very low levels of LDL may 

impair the production of steroid hormones that are necessary for sexual and 

reproductive function in males (Olsson et al., 2017). 
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Figure 2.3: Sex hormone biosynthesis pathway in the male gonads. 
Cholesterol taken up by StAR into the inner mitochondria is converted into 
pregneolone which is subsequently converted into progestogens to produce steroid 
hormones. 
P450scc=P450 side chain cleavage; StAR=Steroidogenic acute regulatory protein; 
DHEA=dehydroepiandrosterone; 3β-HSD= 3-beta-Hydroxysteroid dehydrogenase; 
17β-HSD= 17-beta-Hydroxysteroid dehydrogenase 

2.3.3. Cholesterol and Membranes 

Cholesterol is a lipid which can be found within the cell membrane. It is synthesized 

through a complex series of enzymatic steps in the endoplasmic reticulum and is 

eventually transported through the Golgi apparatus to the plasma membrane (Fagone 

& Jackowski, 2009). The role of cholesterol is to help provide the cell membrane with 

extra support owing to its higher rigidity compared to the phospholipids and glycolipids 

in the membrane. This is structural change occurs through immobilizing some of the 

lipid molecules around them, which makes the cell membrane stronger and harder for 

small molecules to pass through the membrane (Corvera et al., 1992). The presence 

of cholesterol allows the cell membrane to be strong enough to contain the cell and 
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serve as an effective barrier to ions. Despite the fact that cholesterol is more rigid than 

some of its neighbouring lipids (phospholipids and glycolipids), which keeps the cell 

membrane fluid. By generating some extra spaces between the lipids, cholesterol 

prevents lipids from gelling together into their crystalline state. This allows lipids to 

move freely through the membrane as needed (Tabas, 2002).  

Lipid rafts are made up of high amounts of cholesterol and sphingolipids. These rafts 

allow some sections of the membrane to be distinct from other areas (Simons & 

Sampaio, 2011). Lipid rafts are important for many cellular actions such as exporting 

proteins out of the cell as well as anchoring specific proteins in the membrane and 

keep protein clusters together. 

2.3.4. Sperm Cell Membrane 

It is known that cholesterol enhances lipid bilayer of the cells. Cholesterol has been 

found to have stabilizing effect on the plasma membrane by imposing conformational 

order on lipids (Leahy & Gadella, 2015). Cholesterol’s ability to control the lipid bilayer 

results in the control of mechanical membrane stiffness without compromising fluidity, 

thickness and permeability to water (Müller et al., 2008) . Due to the stabilizing 

properties of cholesterol, it has been linked to capacitation and the ability to survive 

cryopreservation (Davis, 1980) This was further propagated by a theory stating that 

the presence of cholesterol in the sperm membrane helps a cell to tolerate adverse 

conditions (Mandal et al., 2014). It is often suggested that loss of cholesterol directly 

affects the sperm plasma membrane lipid bilayer and make it fusogenic (permeable 

to foreign molecules). 
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Conclusion 

Most of the morbidity and mortality cases are due to CADs, charecterized by 

artherosclerosis. People use lipid modifying drugs for primary and secondary 

treatment of CADs. There are several classes of lipid modifying drugs, statins and 

fibrates are the mostly prescribed classses to be used solely or in combination. These 

drugs act by either elavating HDL or lowering LDL and TG levels in the blood, thereby 

resulting in low levels of blood TC. Cholesterol plays a pivotal role in male reproduction 

as it is a precursor for steroid hormone biosynthesis. During spermatogenesis these 

hormones are necessary for normal sperm development and activation of genes 

in Sertoli cells, which promote differentiation of spermatogonia. Cholesterol is also of 

importance in forming an integral part of the sperm membrane. Therefore, the use of 

these drugs might have a potential to alter male reproduction. 

It is the purpose of this dissertation to assess the interaction between these two 

entities and analyse whether these drugs will be of benefit or detriment to male 

reproductive potential. 
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Chapter 3: Study design and Methodology 

3.1 Design   

Ethical clearance for this study was obtained from the Stellenbosch University Animal 

Ethics Committee (Ethical Number: SU-ACUD16-00111). The study was conducted 

according to “The Revised South African National Standard for the animal care and 

use for Scientific Purposes” (South African Bureau of Standards, SANS 10386, 2008). 

A total number of 60 male Wistar rats, weighing between 150 and 220g were used for 

this study. They were randomly assigned to 4 groups; control, Simvastatin, 

Fenofibrate, and Fenofibrate & Simvastatin (Figure 3.1), which were given jelly blocks 

with or without the addition of 0.5 mg/kg Simvastatin, 100mg/kg Fenofibrate or a 

combination of the two for 6 weeks respectively. 

 

Figure 3. 1: Study design. A total number of sixty male Wistar rats were randomly 
assigned into four treatment groups and treated for 6 weeks with lipid-modifying 
drugs. After 6 weeks the rats were sacrificed, body and testicular weights were 
recorded, spermatozoa was used for morphology & viability analysis while testis was 
used for histology and oxidative status and the plasma collected was used for lipid 
profiles and hormone analysis. 
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3.2. Sample collection 

After 6 weeks of treatment, animals were sacrificed by euthanasia (intraperitoneal 

injection of 160mg/kg pentobarbital) and exsanguination. Body mass was also 

recorded at this point in time. Blood was collected from the thoracic cavity using EDTA 

blood tubes before centrifuging it at 1000xg for 10 minutes at 4°C within 30 minutes 

of collection. The plasma was removed and stored in liquid nitrogen for subsequent 

hormone analysis. The testis and epididymides were carefully removed, rinsed, 

weighed, and appropriately stored or prepared for further analysis. 

3.3. Sperm retrieval 

The epididymides harvested from each rat were placed in a petri dish containing 5ml 

solution of Hams F-10 nutrient medium (Sigma Chemicals, St Louis, MO, USA) 

supplemented with 3% Bovine serum Albumin (BSA) (Rosche Diagnostics GmbH 

Mannheim, Germany) at 37°C. The caudal portion of each epididymis was isolated by 

using a fine pointed dissection scissor and placed in 2ml of 3% HAMS-BSA solution. It 

was subsequently cut into radial sections and left in the medium for 5 minutes, with 

occasional agitation to facilitate the release of spermatozoa into the media (Figure 

3.2).  
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Figure 3.2: Rat sperm collection from the caudal region of epididymis. Left 
epididymis was placed into a 5ml HAMS-BSA solutioin (B) and the rat sperm was 
retrieved by cutting the caudal portion of the epidyimis into 2ml of HAMS-BSA 
soulution (A).  

3.4. Sperm analysis 

 Sperm quality of all groups was assessed by means of sperm viability and morphology 

analysis. 

3.4.1. Sperm viability 

Sperm viability (percentage of live vs. dead cells) was analyzed by a dye-exclusion 

technique using Eosin-Nigrosin stain (Sigma-Aldrich, St Louis, MO, USA). The sperm 

solution was mixed with Eosin and Nigrosin in a 1:2:3 (A 10μl of sperm solution was 

added and mixed with 20μl Eosin and 30μl Nigrosin) ratio. Smears were made by 

placing 10µl of the mixture on the end of double frosted ends microscope slide 

(25.4X76.2mm, 1.0mm-1.2mm thick). Using a plain slide, the mixture was spread 

across the frosted slide and allowed to dry at room temperature for a minimum of 24 

hours. After 24 hours the slides dried and cover slips (0.13-0.17mm thick) were fixed 
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with DPX mounting medium (Dako CA, USA). Two viability slides were prepared for 

each rat. 

Eosin penetrates the membranes of dead cells, staining them purple and the live cells 

remain white, while Nigrosin provides the background counterstaining. Live and dead 

cells were visualized by light microscopy (Nikon Eclipse E200, Tokyo, Japan) with a 

40x objective at 400x magnification, after which 200 spermatozoa were counted 

manually using a laboratory counter. The number of viable (live) spermatozoa was 

expressed as a percentage of the total number of spermatozoa counted. 

3.4.2. Sperm morphology 

To assess sperm morphology, 10L of sperm solution was extracted from prepared 

sperm suspensions and smeared onto double frosted ends microscope slides 

(25.4X76.2mm, 1.0mm-1.2mm thick). The slides were allowed to air dry at room 

temperature for 24 hours before being stained with SpermBlue dye (Microptic, 

Barcelona, Spain) according to the manufacturer’s guidelines (Vander Horst and 

Maree, 2009). The slides were immersed into a Coplin jar with SpermBlue fixative 

(Microptic, Barcelona, Spain) for 10 minutes. The slides were then removed from the 

jar and excess fixative was allowed to drain. After excess fixative was drained the 

slides were dipped into a Coplin jar with SpermBlue dye for 15 minutes after which 

it was dipped into distilled water for 5 seconds to remove excess stain. The slides were 

then left to dry at room temperature overnight. The stained dry slides were mounted 

with a cover slip using DPX mounting medium (Dako CA, USA). 

Sperm morphology was analyzed by means of Computer-Aided Sperm Morphology 

Analysis (CASMA) using the Sperm Class Analyser V5.0 (SCA) (Microptic, Barcelona, 

Spain), software for visualization and quantification as described by Van der Horst et 
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al. (van der Horst et al., 2018). Bright field optics employing a 60x objective, i.e., 600x 

magnification, and blue filter on a Nikon E200 microscope (IMP, Cape Town, South 

Africa). Software settings were as follows: contrast and brightness were optimized for 

complete thresholding of the sperm head and mid-piece (MP). A minimum of 50 

randomly selected sperm per rat from various systematically obtained microscopic 

fields were analyzed. Sperm images were captured digitally using a Basler 312fc 

firewire camera (Microptic, S.L., Barcelona, Spain) and analyzed automatically using 

the SCA system’s Rat morphology module. 

The SCA software automatically analyzed the head and MP morphometrics. To 

determine if the head was normal, head length (ARC), width, perimeter, surface area 

and roughness were measured. Measurements of the MP included width, area and 

angle of insertion of the flagellum to the head. The distance from the anterior tip of 

acrosome to the posterior part of head (chord length), was measured and the linearity 

was calculated (Figure 3.3). The software automatically used the above mentioned 

morphometric dimensions to detect weather the sperm is morphological normal or 

abnormal (Figure 3.4). 
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Figure 3.3: Morphometric parameters of rat sperm as measured by CASMA. 
Illustration of rat sperm rat sperm head (Blue) and midpiece(green) morphometries 
accurately measured by CASMA to detect if the sperm is morphological normal or abnormal.  
(van der Horst et al., 2018). 

LIN=Linearity; CASMA=Computer-Aided Sperm Morphology Analysis. 

 

Figure 3.4: Morphological normal and abnormal sperm as measured by CASMA. 
An illustration of how CASMA show a normal or abnormal spermatozoa. 

CASMA=Computer-Aided Sperm Morphology Analysis. 

3.5. Lipid profiling 

The plasma concentrations of Total Cholesterol and Triglycerides were analyzed by 

the veterinary section of PathCare, a private pathology company.  
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3.6. Hormone analysis (Testosterone and Estradiol Levels) 

The serum samples collected and stored as described in under section 3.2 were used 

for testosterone and estradiol hormone assays using an enzyme linked immunosorbent 

(ELISA) kit for either Testosterone (T; Elabscience, Cat. E-EL-0072) or Estradiol (E; 

Elabscience, Cat. E-EL-0065). 

Samples were allowed to thaw at room temperature for ±2 hours. All the reagents 

were brought to room temperature 60 minutes before use. After they were completely 

defrosted, samples were mixed thoroughly using a vortex. The standards from the 

ELISA kit were centrifuged at 100xg for 1 minute and mixed thoroughly with a pipette. 

The samples and standards were added into the wells, 50µl each. Immediately 

thereafter 50µl of HPR-labeled Testosterone/Estradiol was added to each well and 

incubated for 1 hour at 37°C. The solution in the plate wells was aspirated and 350µl 

of wash buffer was added to each well and soaked for 60 second using 

ImmunoWashTM microplate washer (BIO-RAD). This wash step was repeated 3 times, 

thereafter microplate was pat dried with a paper towel. Subsequently, 50µl of 

substrate A and substrate B was added to each well and the plate was incubated at 

37°C for 15 minutes in a Thermoshaker (AOSHENG) with shading light. Thereafter, 

50µl of stop solution was added and the optical density (OD) was immediately 

determined at 450nm using the iMarkTM microplate reader (BIO-RAD).  
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Figure 3. 6: Estradiol standard curve 

Figure 3. 5: Testosterone standard curve 
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3.7. Anti-Oxidant status analysis 

3.7.1. Lysate preparation 

Approximately 50mg of testicular tissue, stored in liquid nitrogen, were procured and 

used for lysate preparation. The tissue was placed into a microcentrifuge tube 

containing an equal amount (50mg) of 0.5mm zirconium oxide beads (Biocom Biotech) 

for homogenization and 100µl of ice cold lysis buffer (50mM Sodium Phosphate, 0.5% 

(w/v) Triton X-100, pH 7.5) was added. The samples were homogenized with a Bullet 

blender® 24 (Next Advance, Inc. New York) at speed 9 for 3x1 minute periods with 

1minute rest intervals in-between. The volume of the lysis buffer was immediately 

topped up to 500µl by adding 400µl of lysis buffer. The samples were then allowed to 

incubate on ice for 30 minutes and were centrifuged at 15000 rpm for 20 min at 4°C. 

Supernatants were transferred into clean cryotubes and stored at -80°C until further 

analysis within one month. 

3.7.2. Protein quantity determination 

The protein quantity of the testicular tissue homogenate was determined with the 

Bicinchoninic acid (BCA) protein assay kit. BSA (1mg/ml) was used to prepare the 

standard curve as shown in Table 3.1. The samples were diluted with deionized water 

(deiH2O) to ensure that the protein concentration was within the linear range of the 

standard protein concentration (200-1000 μg/ml). A BCA working reagent was 

prepared from a combination of reagent A (BCA solution, SIGMA Cat. B9643-1L-KC) 

and reagent B (copper (II) sulfate pentahydrate 4 % solution, SIGMA Cat. C2284-

25mL-KC) prepared in a 50:1 ratio. The diluted standard (25µl) as well as samples 

(25µl) were pipetted in triplicate into a 96-well flat bottom Greiner clear plate. A 200 
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μl volume of the BCA working reagent was added to each well. The plate was shaken 

for 10 seconds on a vortex plate (Labnet International, Inc) to allow proper mixing. 

Thereafter, the plate was incubated on a ACCUBLOCKTM digital dry bath (Labnet 

International, Inc) at 37°C for 30 minutes. The absorbance was subsequently read at 

562nm in a FLUOstar® Omega Microplate Reader. All calculations for the different 

antioxidant enzyme assays, catalase (CAT) and SOD, were normalized and 

standardized according to the BCA protein concentration. 

    Table 3.1: BSA standards preparation 

[BSA] 

(mg/ml) 

Volume of deiH2O 

(µl) 

Volume of BSA 

(µl) 

0 100 0 

0.2 80 20 

0.4 60 40 

0.6 40 60 

0.8 20 80 

BSA=Bovine Serum Albumin; deiH2O= deionized water 
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3.7.3. Catalase activity 

CAT assay buffer (50mM Potassium phosphate; pH 7.0) was prepared by adding 

21.1ml of 1M Monopotasium phosphate (monobasic) and 28.9ml of 1M dipotassium 

phosphate (dibasic) into 1L of deiH2O, and the PH was adjusted to 7.0 and stored at 

-4°C. Hydrogen peroxide (H2O2) stock solution was prepared immediately before 

assaying by adding 34µl of H2O2 in 10ml of CAT assay buffer and covered in foil to 

prevent oxidation by light. 

The testis homogenates were diluted to 0.1μg/μl protein in CAT buffer using BCA 

values calculated as mentioned in 3.7.2. The CAT buffer was used as a blank, 5μl from 

the diluted tissue lysates was added in triplicate into the 96 well ultraviolet (UV) plate, 

followed by 170μl of assay buffer. Immediately before reading the plate the reaction 

was initiated by adding 50μl of H2O2 stock solution to all the wells and the absorbance 

was measured over a 5min period in order to determine the linear decrease over time, 

at 240nm in a FLUOstar® Omega Microplate Reader. The molar extinction coefficient 

(43.6 M-1cm-1) adjusted for the well pathlength was used to determine CAT activity 

(H2O2 consumed in μmole /min/μg protein). 

3.7.4. Superoxide dismutase activity 

Diethylenetriaminepentaacetic acid (DETAPAC; SIGMA Cat. D6518-5G) stock was 

prepared by adding 4mg in 10ml of SOD buffer (50mM Na-Pi buffer, pH7.4) and stored 

at -20°C. Tissue lysates were diluted with deiH2O to 0.1μg/μl. 6-Hydroxydopamine (6-

OHD, Sigma Cat. 162957-1G) was freshly prepared by adding 50µl of 70% Perchloric 

acid (HCLO4, Sigma Cat. 77230-10mL) into 10ml of double-distilled water (ddH2O). 6-

OHD (0.4mg) was added to the solution, whereafter it was wrapped in foil to prevent 

light oxidation and used as soon as possible. The diluted tissue lysates (5µl) were 
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aliquoted into a clear 96-well F-bottom microplate. To this 10µl of the SOD buffer was 

added and 170µl of DETAPAC stock solution. Immediately before plate reading, 15µl 

of 6-OHD solution was added and the auto-oxidation was recorded at 490nm for 4 

minutes in 1 minute intervals using the FLUOstar® Omega microplate reader. 

3.7.5. Lipid Peroxidation 

Oxidizing agents can alter lipid structure, thereby creating lipid peroxides that result 

in the formation of MDA, which can be measured as Thiobarbituric Acid Reactive 

Substances (TBARS). In the presence of heat and acid, MDA reacts with Thiobarbituric 

Acid (TBA) to produce a coloured end-product that absorbs light at 530-540 nm. The 

intensity of the colour at 532nm corresponds to the level of lipid peroxidation in the 

sample. Unknown samples are compared to the standard curve. 

3.7.5.1. Lysate preparation 

Potassium phosphatase (kPi) buffer (50mM pH 7.5) was diluted to 0.1M.  The working 

buffer was prepared by adding 1.15% Kcl to 0.1M kPi buffer (230mg Kcl in 20ml KPi 

buffer). Thin sections (±50mg) of testis tissue were cut and transferred into 

microcentrifuge tubes with an equal amount of 0.5mm zirconium oxide beads and 

100µl of KclKPi buffer was added. The samples were homogenized for 3 minutes with 

a bullet blender as described previously in 3.7.1. The volume of KclKPi buffer was 

topped up to 500µl by adding 400µl of KclKPi, buffer and supernatants were 

immediately transferred into clean cryotubes and stored at -80°C for further TBARS 

analysis. 
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3.7.5.2. Protein quantity determination 

Sodium dodecyl sulphate (SDS) of 2% was prepared by adding 2g of SDS to 100ml 

ddH2O. The standards were prepared by diluting BSA with 2% SDS as shown in the 

previous Table 3.1.  Samples were diluted to a concentration of 0.1μg/μl in SDS. The 

diluted samples (25µl) and standards (25µl) were pipetted into a 96-well plate. A BCA 

working reagent was prepared from a combination of reagent A (BCA solution, SIGMA 

Cat. B9643-1L-KC) and reagent B (copper (II) sulfate pentahydrate 4 % solution, 

SIGMA Cat. C2284-25mL-KC) prepared in a 50:1 ratio. The diluted standard (25µl) as 

well as samples (25µl) were pipetted in triplicate into a 96-well flat bottom Greiner 

clear plate. A 200μl volume of the BCA working reagent was added to each well. The 

plate was shaken for 10 seconds on a vortex plate (Labnet International, Inc) to allow 

proper mixing. Thereafter, the plate was incubated on a heating block at 37°C for 30 

minutes. The absorbance was subsequently read at 562 nm in a FLUOstar® Omega 

Microplate Reader. 

3.7.5.3. Thiobarbituric Acid Reactive Substances 

On the day of assay, the previously stored tissue lysates were allowed to thaw over 

ice for approximately 1 hour. Trichloroacetic acid (TCA, SIGMA Cat. T6399-500G) stock 

solution (10%) was prepared by adding 5g TCA in 50ml deiH2O and stored at -4°C. 

TBA stock was prepared by adding 335mg of TBA (TBA, SIGMA Cat. T5500-100G) into 

50ml deiH2O, dissolved by heat at ~45°C for ±15minutes and cooled at room 

temperature. To prepare Butylated hydroxytoluene (BHT) 80mg of BHT (8%BHT, 

SIGMA Cat. W218405-1KG-K) was added into 1ml ethanol. The working solution was 

made by adding 5ml of 10% TCA, 62.5µl BHT solution and 44.94ml of ddH2O and 

stored on ice. MDA stock was prepared by adding 1.23µl of commercial MDA to 10ml 
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ddH2O. The stock solution (500µl) was further diluted to 0.25μg/μl with 1.5ml ddH2O. 

MDA standards were prepared according to Table 3.2. Tissue lysates and standards 

(100µl each) were added in glass tubes followed by 1ml of 2% SDS solution and mixed 

with a vortex. TCA-BHT (2ml) working solution was subsequently added into the tubes, 

mixed with vortexing and incubated for 10 minutes. Thereafter, 2ml of TBA was added 

before covering with marbles and incubated in a water bath at 95°C for 60 minutes. 

The tubes were then removed and cooled on ice for 15 minutes before centrifuging at 

3000rmp for 15minutes at 4°C. The supernatants were removed into clean 

microcentrifuge tubes. The supernatants (250µl) were pipetted into wells of a F-

bottom clear microplate and the output was immediately measured at 532nm using a 

FLUOstar® Omega microplate reader. 
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Table 3.2: MDA standards preparation 

Tube 
MDA 

(µl) 

DeiH2O 

(µl) 

[MDA] 

(µM/mg) 

a)  0 
 

1000 0 

b)  2.5 
 

997.5 0.3125 

c)  5 
 

995 0.625 

d)  10 990 1.25 

e)  20 980 2.5 

f)  40 960 5 

g)  80 920 10 

h)  200 800 25 

i)  400 600 50 

MDA = Malondialdehyde; deiH2O=deionized water 
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3.8. Histology 

The testis and epididymis were fixed in 10% formalin solution (Kehahliet et al., 2016) 

for a minimum of 48 hours to allow complete fixation of the tissue (Figure 3.7). The 

tissue was cut into smaller pieces and placed in labelled embedding cassettes for tissue 

processing. This includes dehydration with a series of alcohols to ensure that water is 

removed, clearing with xylene and infiltration with paraffin wax using an automated 

processor (Duplex processor, Shandon Elliot) (Table 3.3). After processing the tissues, 

they were embedded in paraffin wax by placing the processed tissue piece in a metal 

embedding mould and filling the mould with wax at 60°C using a Leica EG1160 

embedder. The wax was allowed to solidify on an iced surface and tissue blocks were 

obtained and kept at room temperatures until sectioning takes place. The blocks were 

cooled in a freezer ~2 hours prior to sectioning. Sections were cut (4μm thick) with a 

Leica RM 2125RT microtome. The sections were placed floating on warm water in a 

hot water bath (approximately 40°C) to allow stretching out. They were then attached 

to double frosted ends microscope slides (25.4X76.2mm, 1.0mm-1.2mm thick) and 

the slides were incubated in a warm oven to melt the wax off from tissue. These 

sections were stained with hematoxylin and eosin (H&E) and dehydrated with alcohol 

and xylene, as illustrated in Table 3.4, using a Leica Auto Stainer XL. The slides were 

covered with a cover slip (0.13-0.17mm thick) and fixed with DPX mounting medium 

(Dako CA, USA).  

The testis and epididymis histomorphometric parameters were examined with the 

ZEISS imaging system Zen (Blue edition) V2.3Lite (Carl ZEISS microscopy, SA). The 

sections were viewed on a bright field Microscope Axio (Carl ZEISS Microscopy, SA) 

employing 10x objective (100x magnification). A total of 50 testis/epididymis tubule 
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images were analyzed. The images were captured using an Axiconcam 105 colour 

(Carl Zeiss Microscopy, SA), saved as CZI file and various parameters (Figure 3.8) 

were analyzed using Zen (Blue edition) V2.3Lite (Carl ZEISS Microscopy, SA).  

 

 

Figure 3.6: Testis fixed in formalin. Testis tissues stored in formalin for 
histology analysis. 
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    Table 3.3: Automated tissue processing procedure for histology purposes 

Step # Solution 
Incubation time 

(min) 
Temperature 

(°C) 

1 10% Formalin 30 Room temperature 

2 70% Ethanol 30 Room temperature 

3 96% Ethanol 30 Room temperature 

4 96% Ethanol 30 Room temperature 

5 99.9% Ethanol 30 Room temperature 

6 99.9% Ethanol 30 Room temperature 

7 99.9% Ethanol 30 Room temperature 

8 Xylene 30 Room temperature 

9 Xylene 30 Room temperature 

10 Paraffin 60 60 

11 Paraffin 60 60 

12 Paraffin 60 60 
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   Table 3.4: Haematoxylin and eosin automated staining procedure 

Step # Solution Time (min) Repetitions 

1 60°C Oven 2 x1 

2 Xylene 5 x2 

3 99% Ethanol 2 x2 

4 96% Ethanol 2 x1 

5 70% Ethanol 2 x1 

6 Tap water 2 x1 

7 Haematoxylin 8 x1 

8 Running water 5 x1 

9 Eosin 4 x1 

10 Running water 1 x1 

11 70% Ethanol 0.5 x1 

12 96% Ethanol 0.5 x2 

13 99% Ethanol 0.5 x1 

14 Xylene 1 x1 
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Figure 3.7: Cross section of a seminiferous tubule in the testis (left) and 
epididymis tubule (right). Various parameters of seminiferous and epididymal 
tubules measured for quantitative histology analysis. 

 

3.9. Data Analysis. 

Statistical analysis was carried out on GraphPad Prism® v5.00 The results were 

expressed as mean ± standard error of mean (SEM). A Kolmogorov-Smirnov’s test 

was used to test normality and data distribution. Where data was normally distributed 

a One-way Analysis of Variance (ANOVA) was used to test significance followed by a 

Bonferroni's multiple comparison test for comparison between groups. The 

Bonferoroni post hoc test was preferred to Dunnett’s test of multiple comparison, as 

the latter test only compare each of a number of treatments with a single control, 

while the Bonferroni test provided more information on difference between all 

treatment groups. Furthermore, no changes in attaining significance was observed 

when either of the two post hoc tests were applied. Where data was not normally 

distributed, Krukal-Wallis test was employed.  P≤0.05 determined statistical 

significance. 
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Chapter 4: Results 

Normal male Wistar rats were treated with lipid modifying drugs which act to reduce 

total serum cholesterol and triglycerides. The rats were divided into 4 groups: a control 

group, treated groups receiving 0.5mg/kg Simvastatin, 100mg/kg Fenofibrate or a 

combination of the two. Drug dosages were administered orally via jelly blocks, once 

daily, for 6 weeks. The effects of these three treatments on male reproductive 

parameters were assessed by intergroup comparison – a One Way ANOVA followed 

by Benforonni test for multiple comparison. All the results and findings of this study 

were statistically analysed using GraphPad® Prism V5.00 and the data expressed as 

mean ± SEM will be presented in this chapter. 
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4.1. Biometrics 

Biometric data of the animals in the four experimental groups are presented in Table 

4.1. It is evident that total body weight as well as testicular weight did not differ 

between the treatment groups. Animals treated with Simvastatin had a higher 

peritoneal fat content compared to the Fenofibrate group. The fasted blood glucose 

levels of the Fenofibrate treated group was marginally higher than that of other groups 

and significantly higher than that of the Simvastatin treated group. 

Table 4.1: Biometric measurements of different treatment groups (Mean ± 
SEM). 

Variables Control Simvastatin Fenofibrate S+F 
P-

value 

Body 
Weight 

(g) 

327,1±8,326 342,3±9,645 323,5±8,056 308,9±9,204 0.075 

Testicular 
weight 

(g) 

3,047±0,092 3,328±0,081 3,317±0,097 3,158±0,056 0.056 

 

Peritoneal 
fat 

(g) 

11,00±0,900 13,36±0,676ab 10,57±0,547a 9,64±0,634b 0.004 

Glucose 
level 

(mmol/L) 
8,075±0,401 7,183±0,201a 9,083±0,706a 7,567±0,218 0.020 

N=14; S+F is combination of treatment with Simvastatin and Fenofibrate. Values on 

the same row that differ significantly are indicated by the same letter.  
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4.2. Lipid profiling 

The lipid profiles of the animals are shown in Table 4.2. Unfortunately, due to lack of 

sample volume, the pathology laboratory was unable to perform the analysis in all 

animals and furthermore could not generate data for all parameters. Due to the limited 

data size, no statistical analysis could be performed, but there is a general reduction 

in cholesterol and TG that can be observed in all three active treatment groups 

compared to control. 

Table 4.2: Concentration of lipids in four treatment groups. 

N=2; S+F is a combination treatment with Simvastatin and Fenofibrate. 

  

Variables Control Simvastatin Fenofibrate S+F 

[Cholesterol] 

(mmol/L) 

2,5 1,9 
 

1,2 
 

1,1 
 

[Triglyceride] 

(mmol/L) 

1,28 0,70 0,37 

 

0,35 
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4.3. Hormones 

The different concentrations of testosterone (Figure 4.1) and estradiol (Figure 4.2) 

were measured in the blood plasma. 

There were alterations observed in testosterone levels between the groups 

(p=0.0077). The S+F group receiving the combination treatment had significantly low 

testosterone levels compared to the Simvastatin (15,52±0,3550ng/ml vs. 

17,15±0,3199ng/mL, p<0.05) and Fenofibrate (15,52±0,3550ng/ml vs. 

16,24±1,217ng/mL, p<0.05) groups, but did not differ from the control. 
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Figure 4. 1: Plasma testosterone concentrations of different treatment 
groups (Mean ± SEM). 
N=14; *=p≤ 0.05; S+F is a combination treatment with Simvastatin and Fenofibrate. 
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There was a significant difference when comparing the estradiol levels between the 

four treatment groups (p=0.0308). Estradiol levels (Figure 4.2) were also the lowest 

in the F+S group (550,2±38,96) and differed significantly from the Simvastatin group 

(685,2±40,09, p≤0.05). 
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Figure 4. 2: Plasma estradiol concentrations of the different treatment 
groups (Mean ± SEM). 
N=14; *=p≤ 0.05; S+F is a combination treatment with Simvastatin and Fenofibrate. 
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4.4. Sperm parameters 

4.4.1. Sperm Viability 

As seen in Figure 4.3, no significant differences were observed in sperm viability as 

measured using the Eosin-Nigrosin dye exclusion staining technique, despite a 

lowering trend observed in the Simvastatin group. 
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Figure 4. 3: Percentage of viable spermatozoa (Mean ± SEM). 
N=14; *=p≤ 0.05; S+F is combination of treatment with Simvastatin and Fenofibrate. 

4.4.2. Sperm morphology and morphometric measurements 

The percentage of morphologically normal spermatozoa as well as various 

morphometric parameters were determined objectively by means of CASMA. 

4.4.2.1. Sperm morphology 

Significant differences (p=0.0011) were found in the percentage of morphologically 

normal spermatozoa as can be seen in Figure 4.4. Both Fenofibrate (p≤0.001) as well 

as S+F (P≤0.05) treatment significantly decreased the percentage of morphologically 

normal cells compared to control values. The simvastatin treated group also showed 
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a decrease in normal morphology. However, it did not differ significantly from the 

control values. 
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Figure 4. 4: Percentage of morphologically normal spermatozoa (Mean ± 
SEM).  
N=14; *=p≤ 0.05; S+F is combination of treatment with Simvastatin and Fenofibrate. 

 

4.4.2.2. Normal shape 

There were no significant differences (p=0.0621) found between the means of the 

percentage spermatozoa with normal shape as shown in Figure 4.5. However, 

Fenofibrate had significantly decreased morphologically normal shape spermatozoa 

compared to control animals (60.71±4,122% vs. 73.57±2,711%, p≤0.05). No 

differences were found when comparing Simvastatin and S+F groups to control. 
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Figure 4.5: Percentage of normal shape of spermatozoa (Mean ± SEM).  
N=14; *=p≤0.05; S+F is combination of treatment with Simvastatin and Fenofibrate. 
 

4.4.2.3. Normal size 

There were significant differences (p=0,0148) found between the percentage of 

spermatozoa with normal size between the groups, as illustrated in Figure 4.6. 

Fenofibrate had significantly lower percentages of normal sized spermatozoa 

compared to control (47,86±3,573% vs. 68,14±4,910%, p≤0.05) and also the S+F 

group (56,57±4,542% vs. 68,14±4,910%, p≤0.05). Furthermore, the Simvastatin 

group had a significantly higher percentage of normal size spermatozoa compared to 

the Fenofibrate group (62,29±4,515% vs. 47,86±3,573%, p≤0.001). 
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Figure 4.6: Percentage of morphologically normal sized of spermatozoa 
(Mean ± SEM). 
N=14; *=p≤ 0.05, ***= p≤0.001; S+F is combination of treatment with Simvastatin 
and Fenofibrate. 
 

4.4.2.4 Sperm morphometries 

The morphometric parameters of the sperm head and MidPiece automatically 

measured by CASMA are presented in the Table 4.3. The head morphometry 

parameters measured included head length (ARC), width, perimeter, surface area, 

roughness, regularity and number of vacuoles. No significant differences for any of 

these parameters were found between the groups. Measurements of the MP, (width, 

angle of insertion, area) also showed no difference between the groups, except for 

MP area which showed a significant increase in the combination treatment (S+F) when 

compared to control (2,167±0,1272 μm2 vs. 2,744±0,1390 μm2, p=0.0314). 
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Table 4. 3: Sperm morphometric parameters (Mean ± SEM). 

Variables Control Simvastatin 
Fenofibrate 

S+F P value 

H 
Length/ARC 

(μm) 
21,64±0,20 21,33±0,13 

21,31±0,12 

21,48±0,18 0.4362 

Head Width 
(μm) 

1,48±0,027 1,48±0,04 1,54±0,04 1,54±1,54 0.3397 

H Perimeter 
(μm) 

46,16±0,39 45,64±0,29 45,90±0,25 46,15±0,31 0.6132 

H Area 
(μm2) 

18,67±0,3267 18,85±0,3495 19,43±0,3872 19,50±0,31 0.2360 

Chord 
(μm) 

11,53±0,15 11,39±0,15 11,61±0,14 11,28±0,14 0.4145 

H Angle 
(degrees) 

62,39±1,35 59,21±1,38 58,61±1,07 58,94±1,47 0.1595 

H Linearity 
(%) 

53,29±0,67 52,99±0,70 54,32±0,95 52,82±0,90 0.5411 

H Roughness 0,11±0,00 
0,1129±0,001

634 
0,1171±0,00 0,18±0,00 0.1841 

MP Width 
(μm) 

0,68±0,02 0,71±0,01 0,71±0,01 0,72±0,00 0.1450 

MP Angle 
(degrees) 

13,52±0,61 13,35±0,72 13,27±0,62 12,95±0,70 0.9420 

MP Area 
(μm2) 

2,17±0,13 2,58±0,17 2,68±0,14 2,74±0,14* 0.0314 

N=14; H=head; MP=mid-piece; S+F is a combination treatment with Simvastatin and 

Fenofibrate. *=p≤ 0.05 vs. control. 
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4.5. Histology 

The testicular and epididymial quantitative histological parameters will be reported in 

this section. 

4.5.1. Testicular histomorphometrics 

Despite that all three groups treated with the lipid lowering drugs showed a relatively 

lower seminiferous tubule surface area compared to the controls, no significant 

differences (p=0.0987) were observed (Figure 4.7). 

The luminal diameter of the seminiferous tubules in the testes also did not differ 

(p=0.914) between any of the treatment groups, (Figure 4.8). 

The height of the seminiferous tubules epithelium did not show any significant 

differences (p=0.3401) between the treatment groups despite that the Simvastatin 

treated group displayed a much thicker epithelium in general (Figure 4.9). 

C
on

tr
ol

S
im

va
st

at
in

Fen
of

ib
ra

te
S
+F

0

20000

40000

60000

80000

100000

T
u

b
u

le
 a

re
a

 (


m
2
)

 

Figure 4.7: Seminiferous tubules’ area (Mean ± SEM). 
N=2; S+F is a combination treatment with Simvastatin and Fenofibrate. 
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Figure 4.8: Lumen diameter of the seminiferous tubules (Mean ± SEM). 
N=2; S+F is a combination treatment with Simvastatin and Fenofibrate. 
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Figure 4.9: Epithelial height of the seminiferous tubules (Mean ± SEM). 
N=2; S+F is a combination treatment with Simvastatin and Fenofibrate. 

4.5.2. Epididymis histomorphometric parameters 

The luminal diameter of the epididymal tubules did not show any significant 

differences (p=0.0620) between any the treatment groups (Figure 4.10). 
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The mean heights of the epididymal tubules’ epithelium also did not differ significantly 

(p=0.5101) between the treatment groups (Figure 4.11). 
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Figure 4.10: Lumen diameter of the epididymal tubules (Mean ± SEM). 
N=2; S+F is a combination treatment with Simvastatin and Fenofibrate. 
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Figure 4.11: Epithelial height of epididymal tubes (Mean ± SEM). 
N=2; S+F is a combination treatment with Simvastatin and Fenofibrate 
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4.6. Antioxidants status and lipid peroxidation 

In order to acquire an idea of the antioxidant status of the testis in the control and 

treated animals, both CAT and SOD activities were measured. From Table 4.4, it is 

evident that only CAT activity (p=0.048) was significantly affected, but not SOD 

activity (p=0.9688). The combination group (S+F) had a much higher CAT activity 

than the Fenofibrate group (59,94±15,57µmole/min/µg vs. 

20,77±5,809µmole/min/µg; p<0.05). There was no significant difference (p=0.3873) 

in MDA levels between the treatment groups. 

Table 4.4: Testicular anti-oxidant activity and lipid peroxidation levels 
(Mean ± SEM) 

Variables Control Simvastatin Fenofibrate S+F P value 

SOD Activity 

(units/mg 
protein) 

25,88±5,164 28,74±4,643 27,69±4,275 26,16±4,458 0.9688 

CAT Activity 

(µmole/min/µg) 
40,89±6,986 31,08±7,001 20,77±5,809a 59,94±15,57a 0.0408 

MDA 

(µM/mg) 
9,70±1,392 13,22±1,296 15,51±4,158 12,58±1,143 0.3873 

 

N=14; S+F is a combination treatment with Simvastatin and Fenofibrate. Values in 

the same row that differ significantly are indicated by the same letter.  
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Chapter 5: Discussion 

Male infertility may be caused by several factors, which contribute to alterations of 

semen quality. Widely used lipid-modifying drugs such as Simvastatin and Fenofibrate 

are proven to be effective in lowering blood cholesterol. Cholesterol is a precursor of 

steroid hormone synthesis and forms an integral part of the sperm membrane (Sèdes 

et al., 2018). During spermatogenesis these hormones are necessary for 

normal sperm development as well as the activation of genes in Sertoli cells, which 

promote differentiation of spermatogonia. This novel study aimed to determine 

whether Simvastatin and Fenofibrate and the use of combination therapy have any 

effects on male reproductive parameters by treating sixty male Wistar rats with lipid-

modifying drugs for six weeks. 

5.1. Biometric Parameters 

5.1.1.  Body and Testicular Weight 

The baseline biometric values of the four groups were similar in animals of the same 

age and weighing between 150-220g. After 6 weeks of treatment, there were no 

significant differences found in both body and testicular weight between the groups. 

However, there was an increasing trend in body weight of the Simvastatin treated 

group compared to the control group. These results were supported by a study of 

Agguirre and colleagues, which also found that statins increase body fat and weight 

as well as liver fat (Aguirre et al., 2013). This may be due to Simvastatin’s mechanism 

of action, which reduces the efficiency of HMG-CoAr, thereby causing liver cells to trap 

more LDL from the bloodstream. This was supported by a clinical trial studying 

genetics, which found that modifications occurring in the gene encoding for HMG-CoAr 

are associated with a higher body weight and marginally higher type 2 diabetes risk 
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(Swerdlow et al., 2015). A previous study also showed that Fenofibrate is effective in 

weight loss of diabetic rats (Mancini et al., 2001). This can be explained by a study 

that observed reduced food intake in obese rats treated with Fenofibrate (Park et al., 

2012). In this study Fenofibrate treated animals did not show any significant difference 

in body weight when compared to control. The disagreement between this study and 

literature may be due to the short-term treatment. The combination treatment of S+F 

did not have any effect on body weight compared to control. These results were similar 

to the outcome of a previous clinical trial (Koh et al., 2005) where no differences were 

found in the body weight of patients with combined dyslipidaemia when treated with 

Simvastatin and Fenofibrate. 

5.1.2. Periotoneal Fat Weight 

In this study there were no differences observed when comparing the peritoneal fat 

of the lipid-lowering treated rats to the control group. However, the Simvastatin 

treated group had generally higher peritoneal fat weights compared to the control, 

which was significantly higher when compared to the Fenofibrate and S+F treated 

groups. These findings were supported by a study of Aguirre et al., (2013) where 

several statins increased the accumulation of liver and body fat in Zucker rats, but the 

mechanism is not clear. However, it could be speculated that it might be through 

statins’ basic mechanism of clearing LDL from the bloodstream, thereby increasing the 

LDL receptors on the liver. Peritoneal fat is more unsafe in light of the fact that it 

secretes proteins that add to inflammation, atherosclerosis, dyslipidaemia, and 

hypertension. High fat mass has been found to be associated with prediabetes (Jung 

et al., 2016), which can possibly impair spermatogenesis. 
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5.1.3 Blood glucose 

There were no significant differences observed on blood glucose when comparing the 

treated groups to the control groups. The Fenofibrate group showed a significant 

elevation in glucose levels compared to the Simvastatin group. Previous studies found 

that Fenofibrate increases insulin sensitivity (Yong et al., 1999) by reducing insulin 

clearance and insulin secretion (Ramakrishnan et al., 2016), however, the effect was 

not observed in this study. This study has shown that both Simvastatin and S+F do 

not affect fasting glucose levels. Meanwhile, a previous study found that over a period 

of 2 years, Simvastatin intake can increase glucose levels in diabetic as well as 

nondiabetic patients (Sukhija et al., 2009). This inconsistency may be due to the 

different treatment periods since the current study had only six weeks of treatment 

vs. the 2 years of treatment of the previously mentioned study 

5.2. Lipid Profile 

5.2.1. Cholesterol 

Simvastatin and Fenofibrate effectively reduce the risk of CVDs by lowering lipids and 

thereby reducing the cholesterol levels. In this study, reduced cholesterol levels were 

observed in the treated groups compared to the control group. However, the 

difference could not be statistically tested due to the small sample size. These results 

were substantiated by studies which found that lipid-lowering drugs are highly 

effective in reducing LDL levels in dialysis and diabetic patients (Masterson, 2002; 

Okeoghene & Alfred, 2013), TC and TG (McKeage et al., 2011) as well as increasing 

the HDL levels (Tsunoda et al., 2016). The results of this study provides evidence for 

the efficacy of short-term exposure to cholesterol-lowering drugs on prevention of 

CVDs. 
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5.2.2. Triglycerides 

Although, the difference was not statistically tested due to small sample size as a 

result of small volume of the serum collected, the S+F group had reduced TG. These 

findings corresponds to the study of Zhao et al., (2016) which also found that using 

Fenofibrate as an additive to statins can reduce TG by 38.1%. These results are further 

supported by findings of another clinical trial, which responded that statins are 

effective in primary prevention of cardiovascular complications (Conly et al., 2011).  

 

5.3. Hormone Concentration 

5.3.1. Testosterone 

Testosterone is the androgen in men chiefly responsible for sexual and reproductive 

functions. In several studies, testosterone has been shown to play a significant role in 

sperm production (O'Donnell et al., 2017; Sharpe et al., 1990). Testosterone is also 

said  to act as a vasodilator in the penis to promote erection (Chamness et al., 1995).  

In this study there were alterations observed in testosterone concentrations. However, 

from our results there were no significant differences found when comparing the 

control and treated groups’ testosterone levels. In a meta-analysis, statins were found 

to reduce testosterone levels in males (Schooling et al., 2013). The discrepancy 

between the results of the current study and those of early study regarding the 

concentrations of testosterone may be due to the negative feedback of 

steroidogenesis. When cholesterol produces small quantities of testosterone, GnRH is 

stimulated to be released by the hypothalamus, which in turn stimulates the pituitary 

gland to release FSH and LH. LH and FSH then stimulate the testes to produce more 
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testosterone (Figure 5.1). However, in this study the S+F group had significantly 

decreased testosterone levels when compared to the Fenofibrate and Simvastatin 

treated groups. This may be attributed to the efficacy of the combination therapy to 

reduce cholesterol levels more than monotherapy (Tarantino et al., 2017). Very low 

cholesterol levels may down regulate the production of STAR (Sugawara & Fujimoto, 

2004) resulting in reduced synthesis of steroid hormones. It is evident that the 

combination therapy negatively affects testosterone production and should be 

administered carefully, with regular assessment of testosterone levels, so that fertility 

is not affected. 

 

Figure 5.1: The hypothulamas-pituitary-gonadal testosterone feedback 
mechanism. Low testosterone levels stimulates hypothulumus to release GNRH to 
initiate the production of more testosterone. 
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5.3.2. Estradiol 

Estradiol is a sex hormone produced by Leydig cells in the testicular interstitium in 

males or aromatized from testosterone. It acts by regulating testosterone and it has 

been shown that estradiol can prevent sperm destruction (O’Donnell et al., 2001). 

Estradiol is involved in several male sexual functions including spermatogenesis 

(O’Donnell et al., 2001), libido (Ramasamy et al., 2014) and erectile function (Mancini 

et al., 2005). Despite estradiol’s involvement in spermatogenesis, supraphysiological 

levels can interfere at multiple levels (O’Donnell et al., 2001). It may act by increasing 

the synthesis of glycoproteins in Sertoli cells and Leydig cells and increases collagen 

synthesis and fat degeneration in the testicular connective tissue (Leavy et al., 2017). 

In this study, there were alterations in estradiol concentrations when comparing the 

four groups treated with or without Simvastatin/Fenofibrate or the combination of the 

two. There is limited information about the effect of lipid modifying drugs on estradiol 

in the literature. Like all other steroids, in males, estradiol is produced from cholesterol 

carried by LDL, which is taken up by Leydig cells in the testes and used as a substrate 

for steroidogenesis. The lipid modifying drugs were expected to reduce the estradiol 

serum concentration since the lipids were reduced. However, the results from this 

study did not confirm the hypothesis. This can possibly be explained by the fact that 

testosterone, which was unaffected in this study, is converted to estradiol by 

aromatase enzyme. The group that received combination therapy had significantly 

lower estradiol concentrations compared to the Simvastatin treated group. This may 

be due to the fact that the combination therapy of Simvastatin and Fenofibrate lower 

lipids more than statins alone (Tarantino et al., 2017). 
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5.4. Sperm parameters 

Drugs can affect male reproductive parameters through various mechanisms. They 

can directly or indirectly induce an impairment in spermatogenesis. The study by Pons-

rejraji and co-workers found that using statins (Artovastatin) may adversely affect 

sperm parameters in healthy males by reducing the sperm number, vitality, total 

motility as well as increasing head, neck and MP deformities (Pons-rejraji et al., 2014). 

Contrarily a study of Purvis and colleagues found that simvastatin does not affect 

sperm quality in patients with heterozygous familial hypercholesterolaemia (Purvis et 

al., 1992). Sperm parameters are used as a measure of male fertility, thereof impaired 

sperm parameters may increase the risk of male infertility (WHO, 2010). 

5.4.1. Sperm viability 

Sperm viability is the measurement of live spermatozoa in the seminal fluid. The 

seminal plasma of a normal male has about 40 million spermatozoa per ml. However, 

not all spermatozoa in the seminal fluid are viable. For normal fertility about 58% or 

more of spermatozoa need to be viable (WHO, 2010).  

In this study there were no differences found in sperm viability. There is controversy 

in the literature regarding the effect of lipid modifying drugs on sperm viability. A 

previous study showed that the use of Artovastatin by healthy men for five months 

may affect sperm viability (Pons-rejraji et al., 2014). The discrepancy might be due to 

the long-term treatment with a higher dosage of a high intensity drug compared to 

the current study. While another trial found that statins are not detrimental to semen 

parameters (Dobs et al., 2000). However, impaired lipid concentrations has been 

shown to negatively affect semen parameters (Schisterman et al., 2014). This was 
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further supported by the findings of Delashoub and co-workers who found that oral 

administration of different fibrates may reduce sperm viability in male Wistar rats 

(Delashoub et al., 2018). The differences were not observed in the current study, 

however, the fibrates used in the earlier study (Delashoub et al., 2018) were clofibrate 

and silafibrate. The higher daily dosage (20-40 mg/kg daily) could also be contributing 

to the discrepancy.  

5.4.2. Sperm Morphology 

Sperm morphology refers to the shape and size of spermatozoa. It is expressed as 

percentage of cells that appear normal in the semen. The percentage of 

morphologically normal spermatozoa has been found to be correlated with male 

fertility (Love, 2011). Spermatozoa of male Wistar rats is considered morphological 

normal when the average percentage of normal morphology is between 68%  and 

71% (van der Horst et al., 2018). 

In this study there were no differences observed in head parameters between the 

groups. However, when comparing MP parameters, the MP area significantly increased 

in the S+F group compared to the control group. We further speculated that because 

MP contains sperm mitochondria the impaired MP may deplete mitochondrial DNA 

resulting in low ATP delivered to the flagellum for sperm to swim, and therefore could 

possibly reduce the percentage of total sperm motility. The percentage of 

morphological normal spermatozoa was significantly low in the Fenofibrate as well as 

S+F treated groups compared to the control group. No differences were observed 

when comparing the Simvastatin treated group with the control group. Use of statins 

has been proven to increase morphological abnormalities (Pons-rejraji et al., 2014). 

However, this was not observed in this study. The discrepancy regarding the effect of 
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statins on sperm morphology may be due to the fact that drugs used in the current 

study (Simvastatin) and the one used in the literature (Artovastatin) were different. 

The different statins have different pharmacokinetic properties (Chong et al., 2001) 

and belong to different intensity groups. High intensity statins (Artovastatin) are said 

to resemble more AEs compared to moderate intensity statins (Simvastatin) (Golomb 

& Evans, 2008).  

5.5. Histomorphometry 

5.5.1. Testicular Histomorphometry 

In the present study, the histomorphometric evaluation of rat testis, showed that oral 

administration of lipid modifying drugs did not exert AEs on testis morphology.  When 

evaluating seminiferous tubule area there was an increasing trend observed when 

comparing the treated groups to the control group. There were no differences 

observed in lumen diameter across the groups although the Simvastatin treated group 

showed an increased epithelial height, but the difference was not significant. A 

previous study found that statins induce various deleterious changes in the histological 

structure of the testes of adult male albino rat (Mostafa et al., 2015) where 

Artovastatin treated rats had significantly reduced epithelial height. The possible 

reason for the discrepancy may be due to the small sample size used in this study as 

well as the fact that the drug used in the earlier study belongs to a higher intensity 

group and the drug was administered orally via a gastric tube, while in the current 

study the rats were fed jelly blocks. 

5.5.2. Epididymal Parameters 

When spermatozoa leave the testis they are inactive and unable to fertilize ova. The 

spermatozoa need interaction with proteins in the epididymis for maturity, and to 
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acquire progressive motility as well as the ability to fertilize an oocyte (Cornwall, 

2009). To ascertain if the epididymal structure was not altered by impaired cholesterol 

levels, epididymal parameters were measured. There were no differences observed in 

lumen diameter between the treated groups in this study. No significant differences 

were found in epididymal tubule epithelial height between the groups. However, the 

treated groups had generally thinner epithelium compared to the control group. From 

these results, it is evident that cholesterol-lowering drugs do not affect the structure 

of different of the epididymis.   

5.6. Anti-Oxidant Status and Lipid Peroxidation 

There were no differences in testicular SOD activity between the groups. When 

assessing CAT activity, a significant increase in the Fenofibrate treated group 

compared to the S+F was observed. Lipid peroxidation assessed by measuring the 

level of MDA did not have any difference between the groups. A previous study found 

that Fenofibrate enhances SOD and CAT activity and improves the abnormal TBARS 

levels in diabetic male Wistar rats (Eser et al., 2010). However, this was not found in 

the current study, controversy may be due to the fact that this study used healthy 

rats. 

  

Stellenbosch University  https://scholar.sun.ac.za



 

65 
 

Chapter 6: Conclusion 

Widely used lipid-modifying drugs are said to effectively reduce blood cholesterol 

which is essential for male reproductive function. In the present study, Simvastatin 

and Fenofibrate showed signs of the ability to lower cholesterol in a male Wistar rat 

model. This was observed in the reduction of total cholesterol and triglycerides in the 

treatment groups, but this cannot be statistically concluded based on the small number 

of samples that could be examined. The combination treatment tended to decrease 

cholesterol, and triglycerides better than the individual treatments, but it also 

drastically reduced normal sperm morphology and estradiol as well as increased sperm 

MP area. Therefore, whilst the administration of cholesterol-lowering drugs was 

generally positive for cardiovascular disease risk reduction, caution should be 

exercised when being prescribed to reproductive aged males. Reproductive hormones 

must be monitored during the intake of such drugs as cholesterol is necessary for their 

production. Lifestyle changes could also be an effective, and preferred, means of 

treatment as it is less likely to negatively affect hormone concentrations, and is a less 

detrimental method for the primary prevention of CVDs. 

From these results it is evident that short-term exposure to Cholesterol-lowering drugs 

can alter male reproductive parameters, however more studies using longer treatment 

groups are needed. In the interim it is advised that physicians treating men with 

infertility should be cognizant of this fact. 
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Study Limitations 

The study successfully reached the aims. However, there were parameters that could 

not be measured due to financial, time and sample size constraints. The parameters 

stated in future directions below could provide more conclusive evidence for the effect 

of lipid modifying drugs on male reproductive parameters. 

Recommendations 

 Increase sample size, for detailed and conclusive study a high study population 

size may be recommended. 

 Measurement of lipid profile (LDL, HDL and VLDL) can provide more details 

about the mechanism of each drug. 

 Measuring sperm motility can be more descriptive. 

 Assess qualitative testicular and epididymal histology. 

 Assess spermatogenesis stages to ascertain the effect of low cholesterol in 

sperm production. 

 Apply treatment to a group of animals with increased cholesterol. 
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