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SUMMARY 

Global climate change characterised by rising temperatures and changes in the magnitude and 

intensity of precipitation is projected to affect the spatial and temporal distribution of land 

surface water (LSW) resources. Accurate and reliable information on the dynamics of LSW is 

valuable in understanding and monitoring the occurrence and impacts of floods and droughts. 

This knowledge is also critical for appropriate planning and impact assessment. Research has 

showed that droughts and floods are the two major hydrological disasters in developing countries 

such as southern Africa. This is mainly due to the lack of accurate and robust methods and 

reliable data sources necessary for monitoring the spatial and temporal dynamics of LSW 

resources. Satellite remote sensing (RS) technology is a promising primary data source and 

provides techniques suitable for repeated mapping water bodies and flood plains. However, 

many flood plains and water bodies are characterised by the presence of submerged vegetation, 

dissolved and suspended substances. These characteristics limit the application of RS in 

monitoring LSW resources. 

This study evaluated the potential of remotely sensed data with different temporal, spatial and 

radiometric properties to map LSW in such challenging environments. Three experiments were 

carried out. The first experiment evaluated a new spectral indices-based unmixing algorithm that 

uses a minimum number of spectral bands. The algorithm was applied to Medium Resolution 

Imaging Spectrometer Full Resolution (MERIS FR) imagery to map open water and partly 

submerged vegetation. MERIS FR imagery has high (three days) temporal, but low (300 m) 

spatial resolution. The quality of the flood map derived from MERIS data was compared to high 

(30 m) spatial, but low (16 day) temporal resolution Landsat Thematic Mapper (TM) images on 

two different flooding dates (17 April 2008 and 22 May 2009). The findings show that, despite 

the low resolution of MERIS, both the spatial and frequency distribution of the water fraction 

extracted from the MERIS data were in good agreement with the high-resolution TM retrievals. 

This suggests that the proposed technique can be used to produce reliable and frequent flood 

maps using low spatial resolution imagery. 

The use of synthetic aperture radar (SAR) has become increasingly relevant for mapping and 

monitoring flooded vegetation (FV). In a second experiment, a procedure was constructed and 

validated based on a time series of Sentinel-1 SAR data for mapping floods in a vegetated 

floodplain. For each newly available image, the probability of temporary flooded conditions is 

tested against the probability of not-flooded conditions. The changes in land cover characteristics 

are considered by the technique. The modelling and testing components were applied 
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independently to the vertical transmit and horizontal receive (VH) polarisation, vertical transmit 

and vertical receive (VV) and VH/VV ratio. The resulting flood maps were compared to those 

obtained from Landsat-8 Operational Land Imager (OLI) and ground truthing. Overall 

classification accuracies showed that the maps produced from the fused Sentinel-1 products (VH 

and VH/VV) were most accurate (84.5%) and significantly better than when only the VH 

polarisation was used (78.7%). These results demonstrate that the fusion of VH/VV and VV 

polarisations can improve flood mapping in vegetated floodplains. 

The third experiment involved using automatic thresholding of near-concurrent normalized 

difference water index (NDWI) (generated from Sentinel-2) and VH backscatter bands 

(generated from Sentinel-1) to map waterbodies with diverse spectral and spatial characteristics. 

The resulting maps were compared to the classification performances of five machine learning 

algorithms (MLAs), namely decision tree (DT), k-nearest neighbour (k-NN), random forest (RF), 

and two implementations of the support vector machine (SVM). The results show that the 

combination of multispectral indices with SAR data is highly beneficial for classifying complex 

waterbodies and that the proposed thresholding approach classified waterbodies with an overall 

classification accuracy of 89.3%. However, the varying concentrations of suspended sediments 

(turbidity), dissolved particles and aquatic plants negatively affected the classification accuracies 

of the proposed method, whereas the MLAs (SVM in particular) were less sensitive to such 

variations. 

The LSW maps and techniques developed in this study are critical for flood status monitoring, 

water resources planning and disaster management, and will as such reduce the impact of floods 

and droughts on vulnerable communities living in southern Africa. Furthermore, the results of 

this study will hopefully inspire the remote sensing community to make use of the new 

generation of freely available multispectral and SAR data (such as those provided by the Sentinel 

constellations) for operational drought and flood monitoring. 

KEYWORDS 

Remote sensing, land surface water mapping, turbid, eutrophic, heterogeneous, thresholding, 

machine learning, spectral unmixing, time series, SAR, multispectral imagery 
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OPSOMMING 

Globale klimaatsverandering gekenmerk deur stygende temperature en veranderinge in die 

grootte en intensiteit van presipitasie word geprojekteer om die ruimtelike en temporale 

verspreiding van hulpbronne vir grondoppervlakwater (GOW) te beïnvloed. Akkurate en 

betroubare inligting oor die dinamika van GOW is nuttig om die voorkoms en impak van vloede 

en droogtes te verstaan en te monitor. Hierdie kennis is ook van kritieke belang vir toepaslike 

beplanning en impakbepaling. Navorsing het getoon dat droogtes en vloede die twee grootste 

hidrologiese rampe in ontwikkelende lande, soos Suider-Afrika, is. Dit is hoofsaaklik te wyte aan 

die gebrek aan akkurate en robuuste metodes, tesame met ‘n tekort aan betroubare databronne 

wat vir die monitering van die ruimtelike en temporale dinamika van GOW-hulpbronne benodig 

word. Satelliet afstandswaarneming (AW)-tegnologie is 'n belowende primêre databron en bied 

tegnieke wat vir herhaalde kartering van waterliggame en vloedvlaktes geskik is. Baie 

vloedvlaktes en waterliggame word egter deur die teenwoordigheid van ondergedompelde 

plantegroei en opgeloste en gesuspendeerde stowwe gekenmerk. Hierdie eienskappe beperk die 

toepassing van AW in die monitering van GOW-hulpbronne. 

Hierdie studie het die potensiaal van afstandswaarnemingdata met verskillende tydelike, 

ruimtelike en radiometriese eienskappe geevalueer om GOW in sodanige uitdagende omgewings 

te karteer. Drie eksperimente is uitgevoer. Die eerste eksperiment het 'n nuwe spektrum indeks-

gebaseerde ontmenging-algoritme geëvalueer wat gebruik maak van 'n minimum aantal spektrale 

bande. Die algoritme is toegepas op Medium-Resolusie Beeldvormende Spektrometer Volle 

Resolusie (MERBS VR) beeldmateriaal om oop water en plante wat gedeeltelik gedompel is te 

karteer. MERBS VR beeldmateriaal het 'n hoë (drie dae) temporale resolusie, maar 'n lae (300 m) 

ruimtelike resolusie. Die kwaliteit van die vloedkaart wat afgelei is van die MERBS-data is teen 

hoë (30 m) ruimtelike resolusie, maar lae (16 dae) temporale Landsat Tematiese Karteerder (TK) 

beelde van twee verskillende datums (17 April 2008 en 22 Mei 2009) waartydens oorstromings 

plaasgevind het, geëvalueer. Die bevindings toon dat, ten spyte van die lae resolusie van 

MERBS, beide die ruimtelike en frekwensieverspreiding van die waterfraksie wat vanuit die 

MERBS-data verkry is goed ooreengestem het met die hoë-resolusie TK-herwinnings. Dit dui 

daarop dat die voorgestelde tegniek gebruik kan word om betroubare en gereelde vloedkaarte te 

produseer deur van lae-ruimtelike-resolusie-beelde gebruik te maak. 

Die gebruik van sintetiese diafragma-radar (SDR) het toenemend relevant vir die kartering en 

monitering van oorstroomde plantegroei (OP) geword. In 'n tweede eksperiment is ’n prosedure, 

gebaseer op 'n tydreeks van Sentinel-1 SDR-data, vir die kartering van oorstromings in 'n 
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vloedvlakte met plante ontwikkel en gevalideer. Vir elke nuwe beskikbare beeld word die 

waarskynlikheid van tydelik-oorstroomde toestande getoets teen die waarskynlikheid van nie-

oorstroomde toestande. Veranderinge in grondbedekkingseienskappe word deur die tegniek 

oorweeg. Die modellering- en toetskomponente is onafhanklik op die vertikale transmissie en 

horisontale ontvangs (VH), vertikale transmissie en vertikale ontvangs (VV) en VH/VV 

verhouding polarisasies toegepas. Die resulterende vloedkaarte is met dié van Landsat-8 

Operasionele-grondbeelder (OGB) en grondslag-getrouheid vergelyk. Algehele klassifikasie-

akkuraatheid het getoon dat die kaarte wat uit die aaneengesmelte Sentinel-1 produkte (VH en 

VH/VV) vervaardig is, die akkuraatste (84,5%) was en aansienlik beter was as wanneer slegs die 

VH polarisasie gebruik is (78,7%). Hierdie resultate toon dat die samesmelting van VH/VV en 

VV-polarisasies die vloedkartering in beplante vloedvlaktes kan verbeter. 

Die derde eksperiment het die gebruik van outomatiese drempelbepaling van naby-gelyktydig 

genormaliseerde verskil-natheid-indeks (GVNI) (gegenereer met Sentinel-2 beelde) en VH-

terugverspreidingbande (gegenereer met Sentinel-1 data) behels om waterliggame met 

uiteenlopende spektrale en ruimtelike eienskappe te karteer. Die resulterende kaarte is vergelyk 

met die klassifikasieprestasies van vyf masjienleer-algoritmes (MLAs), naamlik besluitboom 

(BB), k-naaste buurman (k-NN), ewekansige woud (EW) en twee implementasies van die 

ondersteuningsvektormasjien (OVM). Die resultate toon dat die kombinasie van multispektrale 

indekse met SDR data uiters voordelig vir die klassifikasie van komplekse waterliggame is en 

dat die voorgestelde drempelbepalingbenadering waterliggame met 'n algehele klassifikasie-

akkuraatheid van 89,3% geklassifiseer het. Die wisselende konsentrasies van gesuspendeerde 

sedimente (turbiditeit), opgeloste deeltjies en waterplante het egter die klassifikasie-akkuraatheid 

van die voorgestelde metode negatief beïnvloed, terwyl die MLAs (OVM in die besonder) 

minder sensitief vir sodanige variasies was. 

Die GOW-kaarte en -tegnieke wat in hierdie studie ontwikkel is, is van kritieke belang vir 

vloedstatusmonitering, waterhulpbronbeplanning en rampbestuur en sal sodanig die impak van 

vloede en droogtes op kwesbare gemeenskappe in Suider-Afrika verminder. Daarbenewens sal 

die resultate van hierdie studie hopelik die afstandswaarneminggemeenskap inspireer om van die 

nuwe generasie, vrylik-beskikbare multispektrale en SDR-data gebruik te maak om operasionele 

droogte en vloede te monitor (soos die wat deur die Sentinel-konstellasies verskaf word). 
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CHAPTER 1:  INTRODUCTION 

“Man must rise above the Earth – to the top of the atmosphere and beyond – for only 

thus will he fully understand the world in which he lives” (Socrates, 500 BC). 

Global climate change characterised by rising temperatures and changes in the magnitude and 

intensity of precipitation is projected to have significant positive or negative impacts on land 

surface water (LSW) resources (Kundzewicz et al. 2014; Mueller et al. 2016). LSW refers to 

permanent water bodies such as dams or reservoirs, but it can also include temporarily inundated 

areas (Martinis et al. 2015). Global climate models (GCMs) are projecting that many parts of the 

Earth will become either extremely wet or dry (Dosio & Panitz 2016; Mishra & Singh 2010). 

Mason & Goddard (2001) have argued that, although climate change is resulting in decreased 

precipitation in most parts of the world, it is also triggering extreme rainfall events that often 

lead to flooding and drought. These forecasts, coupled with growing populations, paint a bleak 

picture for future generations, especially for those in the developing world where resilience 

against climate change is relatively low. 

Floods and droughts are among Earth’s most destructive natural hazards (Mishra & Singh 2010; 

Teng et al. 2017). The impacts of these disasters is most devastating in river valleys and 

floodplains where large populations have settled to take advantage of its rich natural resources 

(e.g. freshwater, fertile soils, places of recreation, alluvial mineral resources, fishing 

opportunities). These areas have consequently become the world’s most densely populated areas 

(Huang et al. 2008). Consequently, more than 11% of the global communities are living in flood-

prone regions and about 1% are exposed to floods each year (Kundzewicz et al. 2014). There is a 

need to monitor flood extent and changes in small water bodies to improve resilience to floods 

and droughts respectively. 

A number of recent researches have reported increases in floods and droughts globally (Aimar 

2017; Ali et al. 2013; Borga et al. 2011; Desai et al. 2015), with some regions being affected 

more than others. Recently, the underlying climate oscillations of the El Niño Southern 

Oscillation (ENSO) had affected southern Africa, leading to significant changes in the timing 

and amount of precipitation received in the region (Gaughan et al. 2016). During the 2010 to 

2011 El Niño period, above normal and below normal rainfall events were observed over large 

parts of southern Africa (Hoell et al. 2017a; Malherbe et al. 2016). Floods and droughts can lead 

to the displacement of living organisms, destruction of property and even loss of life (Long, 

Fatoyinbo & Policelli 2014). In January 2011, some stations in Mozambique reported daily 
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rainfall of above 200 mm, leading to more than 100 deaths and loss of shelter for more than 200 

000 people (Manhique et al. 2015). Conversely, droughts have resulted in a depletion of 

managed freshwater. Water stored in small reservoirs are critical for food security in developing 

economies where water storage infrastructure is limited (Botai et al. 2017). The 2011 drought 

resulted in more than 200 deaths and afflicted about 10 million people in southern Africa 

(Winkler, Gessner & Hochschild 2017). Recently, the Western Cape Province of South Africa 

has been affected by the worst water shortage in 113 years (Botai et al. 2017), resulting in a 

dramatic decline in agriculture production, increases in food prices and implementation of water 

rationing. 

Recognising the threat of droughts and floods, heads of states are putting in place international 

agreements that are designed to reduce and mitigate the impacts of extreme climatic events 

(Desai et al. 2015). For instance, the Sendai Framework for Disaster Risk Reduction 2015–2030 

stipulates targets for the post-2015 development agenda. Many of these targets aim to 

substantially reduce the number of people affected by hydrological disasters, economic losses 

and damage to critical infrastructure (Kelman 2015). In this context, operational and cost-

effective methods for mapping surface water dynamics, small water reservoirs and for 

monitoring extreme hydrological events are needed to improve resilience to floods and droughts. 

Prominent work has been done in Europe (Clement, Kilsby & Moore 2018), Asia (Pham-Duc, 

Prigent & Aires 2017) and China (Du et al. 2016; Yesou et al. 2016), but little has been done in 

other parts of the world. Although the Food Aid Organisation (FAO) and the United States 

Agency for International Development (USAID) have established early drought warning systems 

in Africa, such as (AGRHYMET) (Traore et al. 2014), the systems focuses on food security for 

the West African Sahel region. In particular, very little work on the monitoring of flood plains 

and small water bodies has been done in southern Africa despite the immediate need for 

monitoring floods and droughts in the region. 

This chapter provides a critical perspective on using remote sensing to monitor extreme 

hydrological events arising from global climate change to improve flood and drought resilience. 

A short overview of existing work is given, and some research gaps are highlighted. This is 

followed by a formulation of the research problem, an aim statement and an outline of the study 

objectives. The chapter concludes with an overview of the research methodology applied in the 

research. 
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1.1 LAND SURFACE WATER (LSW) MAPPING 

In essence, LSW mapping was defined as the activity of tracking the extent and dynamics of 

water on the Earth’s surface, excluding soil moisture (Li et al. 2013). Note that the word “land” 

is included to separate it from ocean water. LSW mapping plays an important role in drought and 

flood monitoring, wetland observations, flood disaster assessment and inland water resources 

management (Feyisa et al. 2014; Li et al. 2013; Pierdicca et al. 2013). LSW can be mapped using 

conventional in situ techniques such as ground-based surveys, but such activities are laborious, 

time‐consuming, expensive and sometimes difficult or impossible to carry out (Du et al. 2014). 

For instance, during flood events, water bodies are often inaccessible or dangerous to enter. 

Telemetric techniques, such as radio-transmitted gauges, are also often used to monitor water 

levels and flood extents (Fan et al. 2016; Momo et al. 2015). The information provided by these 

gauges is location-specific, and a dense network of stations is required to get a regional overview 

of LSW dynamics. Moreover, in southern Africa, most water bodies are ungauged, and the few 

gauges that are installed are often poorly maintained. 

Remote sensing offers an alternative approach to in situ surveys and telemetry by consistently 

providing near real-time, cost-effective and reliable data at wide spatial coverage (Čotar, Oštir & 

Kokalj 2016; Du et al. 2016; Du et al. 2014). Satellite sensors can observe areas that are remote, 

inaccessible or dangerous to enter (Mueller et al. 2016). These sensors have the potential to 

perform frequent, regular measures and have the capability to characterise LSW in different 

regions of the electromagnetic (EM) spectrum. Although shorter wavelengths (optical and 

thermal) can be obscured by clouds, some sensors, such as radar, can operate in all seasons, any 

time of day and even in poor weather conditions. 

1.2 REMOTE SENSING FOR LAND SURFACE WATER MAPPING: AN OVERVIEW 

Campbell & Wynne (2011) defined remote sensing as the acquisition of information about the 

properties of a target without being in physical contact with it. The value of satellite remote 

sensing technology for LSW mapping was first recognised in the early 1970s when the images 

from NOAA AVHRR (1 km resolution) and Earth Resources Technology Satellite 1 (80 m 

resolution) were used for flood mapping in the Mississippi (Wiesnet, McGinnis & Pritchard 

1974) and in south-western Iowa (Hallberg, Hoyer & Rango 1973) and River basins respectively. 

Early satellite images were of coarse spatial resolution, prohibitively expensive and affordable to 

only a few government and private institutions. Imagery became much more affordable with the 
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establishment of the USA`s Land Remote Sensing Policy Act of 1992 and the subsequent 

dramatic increase in the number of Earth observation (EO) satellites (Goward et al. 2001). 

The concurrent improvements in computer hardware and software, especially in the ability of 

personal computers to handle large amounts of remotely sensed data, have made satellite data 

accessible to many users and applications. Today, satellite remote sensing technology is being 

used in a very wide variety of applications such as crop health analysis, precision agriculture, 

crop yield estimation, urban planning, land use and land cover mapping, and aids 

environmentalists in monitoring natural hazards (Chuvieco 2016). These applications, coupled 

with advances in aerospace and aeronautical technology, have given impetus to space agencies 

such as National Aeronautics and Space Administration (NASA), Canadian Space Agency 

(CSA), European Space Agency (ESA) and Centre National d’Etudes Spatiales (CNES) to 

launch satellites with higher spatial, temporal and spectral resolutions (Berger et al. 2012; 

Donlon et al. 2012). For instance, ESA initiated the Copernicus programme in 2014, which 

consisted of five Sentinel satellite missions, with each consisting of a pair of satellites (Manakos 

& Lavender 2014). The main aim of the Sentinel missions is to provide robust datasets with 

better spatial (10 m) and temporal (six days) resolution to manage and protect the environment 

and natural resources and ensure civil security (Gascon et al. 2014). Sentinel-1 is a polar-orbiting 

radar imaging mission carrying a C-band SAR sensor that is capable of observing the Earth 

under any weather conditions throughout the day (Geudtner et al. 2014). Sentinel-2 carries a 

multispectral, high-resolution optical sensor ideal for land and inland water monitoring (Gascon 

et al. 2014). Sentinel-3 is a multi-sensing platform carrying a Sea and Land Surface Temperature 

Radiometer (SLSTR); an Ocean and Land Colour Instrument (OLCI); a SAR Altimeter (SRAL); 

a Doppler Orbitography Radiopositioning Integrated by Satellite (DORIS) and MicroWave 

Radiometer (MWR) for ocean, atmospheric and land applications (Nieke et al. 2015). The 

Sentinel-4 and Sentinel-5 missions are committed to atmospheric monitoring services (Berger et 

al. 2012). 

From the preceding overview of remote sensing, it should be clear that remotely sensed 

techniques have evolved to an extent that the reasonably quickly changing inundations (floods) 

can be monitored with satellite images. The following subsections provide more detail of 

multispectral and active microwave (SAR) sensors and the techniques used for mapping LSW. 
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1.2.1 Multispectral imagery for LSW mapping 

Multispectral (optical) sensors capture the solar reflectance of the Earth’s surface or atmosphere 

(Martinis et al. 2015). Multispectral images enable the extraction of physical water-related 

aspects such as turbidity, colour (Heege et al. 2014) and in transparent and shallow water areas, 

even water depth (Jay & Guillaume 2014). Examples of multispectral sensors used for LSW 

mapping are carried on, e.g., the Landsat-7, Landsat-8, Sentinel-2, SPOT-6 and SPOT-7 EO 

satellites. 

Multispectral methods discriminate water from non-water features based on the notion that open 

water has a much higher visible reflectance than near infrared (NIR) reflectance. The spectral 

response of LSW is also contrasted with that of vegetation, which has a much higher reflectance 

in the NIR range of the EM spectrum (Huang et al. 2014). Most multispectral remote sensing 

techniques delineate LSW through general feature (land cover) mapping or feature extraction (Li 

et al. 2013). Land cover mapping often involves unsupervised or supervised image classification 

techniques. Unsupervised classification algorithms assign pixels to classes (clusters) based on 

statistics (Canty 2014). These techniques incorporate no prior knowledge of the characteristics of 

the themes (informational classes) being studied. ISODATA and K-means are the most used 

clustering algorithms for LSW mapping (Thomas et al. 2015). In the supervised classification 

approach, an operator uses known information (training samples) to specify pixel/object values 

(spectral signatures) to classify pixels/objects of unknown identity (Canty 2014). The training 

process greatly influences the outcome of supervised classification (Li et al. 2013). To attain a 

comprehensive characterisation of each class in the feature space, a broad training set is usually 

recommended (Foody & Mathur 2004). However, large sets of training samples are not usually 

achievable owing to the high costs in most cases associated with field surveys. Applications of 

popular supervised classification algorithms include: maximum likelihood (ML) (El-Magd & 

Tanton 2003), random forest (RF) (Breiman 2001), decision trees (DTs) (Davranche, Lefebvre & 

Poulin 2010; Giardino et al. 2010), artificial neural networks (ANNs) (Skakun 2012) and support 

vector machine (SVM) (Mountrakis, Im & Ogole 2011). The output of land cover mapping is 

usually a full cover (“wall-to-wall”) thematic classification of all pixels/objects in the image, 

although in special cases pixels may remain unclassified. 

Feature extraction methods produce a binary (two-class) output image that has only two possible 

values for each pixel/object, namely true or false (Canty 2014). These methods can be based on 

thresholding of single bands (Jain et al. 2005) or spectral indices (Du et al. 2016; Xu 2006). Due 

to their simplicity, low cost and performance, water indices are widely used for the identification 

Stellenbosch University  https://scholar.sun.ac.za



  6 

of surface water (Acharya et al. 2016). The most well-known water indices are the normalised 

difference wetness index (NDWI) (McFeeters 1996) and modified NDWI (MNDWI) (Xu 2006). 

NDWI juxtaposes the high reflectance of water in the green band with its low reflectance in the 

near infrared (NIR) band to maximise surface water identification, while the modified 

normalised difference water index (MNDWI) replaces NDWI’s NIR band with a short-wave 

infrared (SWIR) band. Most studies that have adopted spectral indices for LSW mapping applied 

a range of thresholds to differentiate water from other land surface features. Identifying a 

threshold that produces the highest possible accuracy is a demanding and tedious assignment, as 

threshold values are unstable and vary with location and water characteristics (Feyisa et al. 

2014). 

Feature extraction and land cover classification methods can be combined to increase the 

accuracy of water extraction, especially in heterogeneous environments (Jiang et al. 2012; Sun et 

al. 2012). For instance, Sun et al. (2012) combined thresholding of spectral indices with 

maximum likelihood classification. Thresholding alone achieved a producer’s accuracy of 92%, 

whereas the integrated method produced a higher (95%) producer’s accuracy. 

The use of multispectral data for LSW mapping has several limitations. Although LSW has 

lower reflectance in the visible and NIR wavelengths than other land covers, the reflectance 

ranges are relatively small (Marcus & Fonstad 2008). This often leads to confusion between 

water and other low NIR reflectance features, such as areas in shadow or dark man-made 

features. Water is a highly irregular target as its spectral properties differ as a function of depth, 

concentrations of chlorophyll, total suspended solids (TSS) and coloured dissolved organic 

matter (CDOM) (Pekel et al. 2016). According to Marcus & Fonstad (2008), the sun-target-

sensor geometry can also negatively affect the use of multispectral imagery for LSW mapping as 

specular reflection can change the appearance of water, depending on the time of day and year. 

Certain sun-sensor angles can cause sun glint, resulting in the sensor-received radiance to be 

higher than the actual water-leaving radiance. This is particularly problematic for imagery 

acquired off-nadir (at an angle). Water turbidity, water depth, the sediment type and dissolved 

substances also affect how light is reflected by LSW (D’Andrimont, Marlier & Defourny 2017). 

Arguably, the greatest limitation of multispectral data for LSW mapping is its inability to 

provide meaningful information during overcast conditions (i.e. when the Earth’s surface is 

obscured by clouds). This limitation is especially problematic during flood events when cloud 

cover is most prevalent. Moreover, multispectral sensors are unable to observe water under 
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closed vegetation canopies and are restricted to daytime use (when solar illumination is 

provided). 

1.2.2 SAR data for LSW mapping 

Radar sensors, such as the synthetic aperture radars (SAR), are active sensors that transmit 

microwaves with the ability to propagate through the atmosphere regardless of the weather or 

(natural) lighting conditions (Gstaiger et al. 2012). As such, SAR images can be generated 

during overcast periods and at night. Microwaves at certain frequencies and polarisations also 

can penetrate vegetation canopies (Plank et al. 2017). Examples of popular satellites with SAR 

sensors on board that are suitable for LSW mapping are Sentinel-1, ALOS-PALSAR, 

RADARSAT-2 and TerraSAR-X. 

SAR techniques discriminate water features based on the substantial distinction between the 

dielectric properties and surface roughness of water and other land covers (Gao et al. 2017). SAR 

sensors transmit and measure an EM wave with a distinct polarisation, frequency and amplitude 

(Chan & Koo 2008). When the wave traverses with a target, part of the wave energy is scattered 

back and its amplitude and arrival time is registered at a specific polarisation. The backscattered 

wave is sensitive to the dielectric and geometric features of the target, which enables the 

discrimination between surface features. Water surfaces are generally much smoother than the 

surrounding dry land and act as a mirror-like reflector, resulting in lower backscatter than other 

features (Horritt, Mason & Luckman 2001; Teng et al. 2017). 

Different methods have been used to delineate water from SAR data. This includes visual 

interpretation (Di Baldassarre et al. 2010), thresholding (Hong et al. 2015), texture analysis 

(Pradhan et al. 2014), fuzzy classification (Twele et al. 2016), region growing (Mason et al. 

2012), object-based classification of different SAR polarisations (Pradhan, Sameen & Kalantar 

2017) and active contour modelling (Bessinger 2016; Horritt et al. 2003) methods. Most of these 

techniques are semi-automatic, usually configured through visual analysis of the image 

histograms and finally adjusted by the operator based on an instinctive impression of the result 

(Matgen 2011). To date, image thresholding and classification have been the most commonly 

used approaches to delineate surface water with SAR imagery. 

A number of challenges relating to the use of SAR data for LSW mapping exist, particularly in 

complex environments. Martinis et al. (2015) stated that radar backscatter is strongly altered by 

surface conditions and changes in water surface roughness (e.g. due to waves caused by wind), 

which can lead to stronger return pulses. Water surfaces with floating or partially submerged 

Stellenbosch University  https://scholar.sun.ac.za



  8 

vegetation can also appear brighter due to double-bounce reflection between the water surface 

and the emergent vegetation parts (Pulvirenti et al. 2011b). The double-bounce reflection can 

cause LSW to be confused with other land covers and lead to omissions. Conversely, non-water 

areas with low backscatter, such as smooth agricultural cropland, bare ground, pavements, sand 

dunes and radar shadow, can cause overestimations (commissions) of LSW extent (Martinis et 

al. 2015). 

Sensor parameters such as viewing angle, frequency and polarisation play a significant role in 

LSW mapping with SAR systems (Pierdicca, Pulvirenti & Chini 2013). Horritt et al. (2003) 

found that lower incidence angles will shorten the distance between the point at which 

microwaves enter the canopy and reach the water surface, thereby minimising scattering from the 

canopy and making a specular reflection off from the sensor`s view direction more probable. As 

a result, small incidence angles are more suitable for detecting water in vegetated environments 

such as wetlands and floodplains (Töyrä et al. 2002). Frequency and polarisation are also 

principal factors, with L-band wavelengths being more successful at penetrating canopies than 

those in the C-band (Ramsey, Rangoonwala & Bannister 2013). Canopy backscatter is also 

greater in VV polarisations compared to those with HH configurations (Wang et al. 1995). 

1.2.3 Multisensor approaches for LSW mapping 

Multisensor approaches synergistically combine data from several sensors to provide more 

information than can be derived from the individual sensors alone (Kumar & Acharya 2016). 

Since EO satellites provide data at different spatial, temporal and spectral resolutions, the 

combination of different data can increase understanding capabilities and produce stable LWS 

mapping results (Kaplan & Avdan 2018; Töyrä, Pietroniro & Martz 2001). Multisensor 

approaches can also be used to resolve the incompleteness of sensor data (Sandholt et al. 2003; 

Wang, Colby & Mulcahy 2002). For example, Hong et al. (2015) achieved an overall 

classification accuracy of 83.7% when SAR amplitude information was used for delineating 

surface water extent, but when Landsat data was incorporated into the classification, the overall 

classification accuracy increased to 96.4%. However, the combination of data from multiple 

sensors leads to large datasets that often limit its implementation to small areas and number of 

images (Franceschetti & Lanari 2018; Mleczko & Mróz 2018). In addition, the successful 

combination of datasets requires them to be of the same (or at least similar) date and spatial 

resolution, which can raise the cost and practical complexity. 
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There are many aspects to be considered when choosing remote sensing data for LSW mapping, 

among which spatial resolution and revisit time are of great importance. High spatial resolution 

data is often preferred to coarse spatial resolution, but such data often have poor temporal 

resolutions. Coarse spatial resolution data are generally acquired more frequently but often lead 

to a poor delineation of LSW, especially in complex environments (Sun, Yu & Goldberg 2011; 

Zhang, Zhu & Liu 2014). This is attributed to the measured signal being influenced by 

interactions of EM radiation with various components within each pixel. For example, a mixture 

of water, vegetation and soil cover hinders the accurate delineation of water features in 

heterogeneous floodplains (Keshava & Mustard 2002). 

1.3 RESEARCH PROBLEM 

The Caprivi floodplain in the northern part of Namibia experiences annual floods. The area is 

characterised by savannah vegetation, including grass, sporadic shrubs and woodlands (Figure 

1.1a and b). During the 2009 flood, Skakun et al. (2014) estimated that approximately 60 000 to 

90 000 people in the Caprivi were impacted by the flood, at least 38 000 people were displaced, 

and 102 lives were lost. Despite these detrimental impacts, people continue to settle in these 

flood-prone areas due to favourable geographic conditions such as food production (fertile land) 

and fishing activities. During flood events, the Caprivi floodplain cannot be monitored by ground 

surveys since the area is very large (about 2 000 km2) and difficult to access by road. The area is 

also the habitat of wild animals such as elephants, lions, crocodiles and hippos, which inhibits 

travel on foot or by boat. In the age of satellite technology, the integration of information 

extracted through Geographical Information System (GIS) and remote sensing (RS) with other 

datasets provides tremendous potential for monitoring and impact assessment of flood disaster 

for relief agencies. 

Reservoirs are monitored for drought preparedness (before drought occurs), drought response 

(during the drought) and drought mitigation (after drought has occurred). All these phases 

require good estimates of the areal extent and shape of water bodies at a particular time. In the 

time of the writing of this thesis, the Western Cape Province of South Africa is experiencing its 

worst water shortage in 113 years. The Western Cape Province receives most of its rainfall 

during winter and as such relies on irrigation during the summer months for agricultural 

production. Agricultural activities in the Western Cape contribute 23% towards the gross 

domestic product of region (GDPR). More than 10 million hectares (89%) of the province’s land 

surface is presently producing over 55% of South Africa’s total agricultural exports, of which the 

major products are fruit (27%), winter grain (22%), poultry (21%), wine (21%) and green 
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vegetables (18%) (DAFF 2018). The water storage levels of the major reservoirs in the province 

were reportedly at 20.8% of their normal capacity in March 2018, which equates to effectively 

12.3% of the accessible reservoir water volume (Evans 2018). Authorities were confronted with 

difficult decisions about how to best manage the limited available water resources and minimise 

the inevitable socio-economic impacts. Many limitations of existing procedures and gaps in 

available information sources were exposed. One of the biggest needs was to determine how 

resilient the agricultural industry, in particular the perennial crops sector, would be to severe 

water restrictions. This proved to be challenging given that no operational systems are in place to 

quantify and monitor how much water is stored in privately owned and managed reservoirs 

(dams). 

 
Figure 1.1 Examples of complex LSW environments, namely (a & b) vegetated floodplains in Caprivi and (c & d) 

turbid and optically shallow water in the Western Cape 

In South Africa, and specifically in the Western Cape Province, surface water is stored in 

reservoirs (dams) of varying sizes and depths. In many cases, the water is turbid, optically 

shallow or eutrophic (Figure 1.1c and d). In the Caprivi, flooded areas are often obscured by 

woody vegetation (e.g., trees and shrubs) or characterised by partially submerged vegetation. 

EO-based detection, delineation, and monitoring of such LSW will likely pose challenges, but 

the few studies that have been done on EO-based LSW mapping in southern Africa (Crétaux et 

(a) (b) 

(c) (d) 
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al. 2011; Gumindoga et al. 2016) targeted clear, large and open water bodies. Very little is thus 

known about how partial vegetation cover influences classification results. The effect that the 

surrounding landscape (e.g. land cover and terrain) has on classification accuracies is also not 

well understood. This is particularly relevant when using coarse spatial resolution data (due to 

the mixed pixel effect), but it is also relevant when using high spatial resolution imagery for 

mapping small water bodies located in mountainous terrain (Cheruiyot et al. 2014; Plank et al. 

2017). These uncertainties need to be investigated before fully automated EO techniques can be 

established to produce accurate, reliable and timeous LSW maps in heterogeneous environments 

such as those of the Caprivi floodplain and Western Cape Province. 

Previous applications of remote sensing techniques for LSW mapping in complex environments 

have used imagery with high to medium spatial resolution and low temporal resolution (Bangira 

et al. 2017; Zhang, Zhu & Liu 2014). The dynamic changes and heterogeneity of surface water 

were thus not previously considered. Given the complexity of the floodplains and the rapid 

changes (often within 10 days) of LSW extents during flood events, flood mapping using 

imagery acquired at low temporal resolutions will be of little value. Ideally, EO data at both high 

temporal (1-3 days) and spatial (10-30 m) resolutions are required to adequately monitor the 

temporal and spatial dynamics of LSW. However, due to technical constraints, a trade-off 

between spatial and temporal resolutions often needs to be made. One solution is to make use of 

data from multiple sensors, whereby high temporal and coarse spatial resolution data are 

integrated with low temporal, but high spatial resolution data. Multisensory approaches also 

allow for the combination of SAR and optical data to maximise the advantages of each type of 

data. The recent development and launching of satellites carrying multispectral and SAR sensors 

with better spatial, temporal and spectral resolution opened up many new research opportunities. 

In particular, the ESA Sentinel satellite constellation holds much potential for mapping and 

monitoring heterogeneous LSW bodies for flood and drought resilience. Maps show a more 

direct and view of the spatial extent of the floods and depletion of water reservoirs for disaster 

management. This research intends to capitalise on these developments for flood and drought 

monitoring by addressing the following research questions: 

i. What are the limitations of existing EO methods for mapping LSW in heterogeneous 

environments? 

ii. How can flooded areas in heterogeneous environments be mapped using low spatial and 

high temporal resolution optical imagery? 
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iii. How effective are multisensory approaches for automated classification of LSW? 

iv. What role does the Sentinel satellite constellation play in monitoring LSW changes, 

particularly in data-scarce regions? 

1.4 AIMS AND OBJECTIVES 

The primary aim of this research is to evaluate the potential of remotely sensed data with 

different temporal, spatial and radiometric properties to map LSW under flooded vegetation and 

shallow, turbid and eutrophic water. Various techniques will be assessed to understand better the 

capabilities and limitations of using SAR and multispectral data for LSW mapping in complex 

and heterogeneous environments. 

The research will seek to achieve the following objectives: 

1. Review the literature on existing remote sensing data and techniques for LSW mapping 

and highlight the advantages and respective limitations of the methods; 

2. Develop and validate a technique whereby vegetated LSW can be mapped using high 

temporal and low spatial resolution imagery; 

3. Construct and validate a procedure based on time series of Sentinel-1 SAR data for 

mapping floods in a heterogeneous floodplain; 

4. Develop a method based on combining multispectral and SAR data for mapping small 

and spectrally diverse LSW bodies; and 

5. Synthesise the research work in relation to the primary aim. 

The approach taken for achieving these aims and objectives is described in the next section. 

1.5 RESEARCH METHODOLOGY AND DISSERTATION STRUCTURE 

This research uses statistical methods for the analysis and validates the results with field 

observations and satellite data. The intended goal is to develop and evaluate techniques for LSW 

mapping in heterogeneous environments, with flood and drought monitoring being the ultimate 

purpose. The developed techniques were tested on two study areas in southern Africa, namely 

the Caprivi floodplain and the Cape Winelands District of the Western Cape Province. The 

Caprivi floodplain is densely vegetated with shrubs, trees, and grass. The Cape Winelands 
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District has complex water bodies that are turbid and eutrophic. Statistics were used to analyse 

results and to give argumentative answers to the research questions (Rogers & Kearney 2004). 

The research design is shown in Figure 1.2 and involves six steps, each representing a chapter. 

The structure of the dissertation and content of each chapter are summarised in Table 1.1. The 

dissertation consists of six chapters that are arranged in four sections: (i) General overview and 

contextualisation (Chapter 1 and Chapter 2), (ii) Flood mapping in heterogeneous environments 

(Chapter 3 and Chapter 4), (iii) Mapping of complex water bodies (Chapter 5), and (iv) 

Conclusion and synthesis (Chapter 6). Some components of Chapters 2–5 are duplicated as they 

were written as stand-alone articles meant for publication in scientific journals. 

 
Figure 1.2 Research design, consisting of eight steps 

This chapter serves as an introduction and a contextualisation of the research. It highlighted the 

impact of global climate change on the occurrence of extreme hydrological events such as floods 

and drought. The chapter further elaborated on the importance of remote sensing techniques for 

mapping and monitoring the dynamics of LSW for improving flood and drought resilience. A 

brief overview of different remote sensing techniques used for LSW mapping was provided. In 

addition, the chapter described the research problem and stated aims and objectives of the study.  

STEP 2 (CHAPTER 2) 

Review the literature to obtain an 
understanding of remote sensing sensors, 
methods and techniques for LSW mapping. 
Stregths and limitations of the methods and 

techniques are discussed thereof. 

STEP 4 (CHAPTER 4) 

Construct and validate a procedure based 
on time series of Sentinel-1 SAR data for 

mapping floods in a heterogeneous 
floodplain 

STEP 1 (CHAPTER 1) 

Outline the rationale of the research 
Outline the research problem and research 

questions 
Set the primary aim and objectives 

Plan the research 

STEP 5 (CHAPTER 5) 

Develop a method that is easy to implement, 
autonomous and computationally 
inexpensive for mapping complex 

waterbodies using SAR and multispectral 
data 

STEP 6 (CHAPTER 6) 

Revisit research aims and objectives, record 
strengths and constraints of LSW mapping 

and make recommendations for future 
research. 

STEP 3 (CHAPTER 3) 

Map vegetated floodplains using coarse 
resolution sensors with high temporal 

resolution 
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The next chapter, Chapter 2, provides a review of the relevant literature and overviews the 

existing methods used for LSW mapping. The literature review associates specifically to the first 

research objective (Objective 1). It aims to describe the research gaps and motivate the need for 

developing cost-effective methods for accurate and consistent LSW mapping in complex 

environments, with flood and drought monitoring being the focus. 

Flood mapping in heterogeneous environments requires remote sensing data with high temporal 

and high spatial resolution. However, there is a trade-off between spatial and temporal resolution 

in remote sensing data. To address Objective 2, Chapter 3 describes a technique that uses 

spectral unmixing with ensemble estimation of endmembers to improve surface water area 

estimates in vegetated floodplains using low spatial but high temporal resolution satellite 

imagery. 

Table 1.1 Dissertation structure and chapter content 

Chapter no. Chapter title Main points 

1 Introduction 

A rationale for LSW mapping 
Research problem 

Primary aim and objectives 
Research methodology and design 

2 

Reviewing the trade-offs 
between resolution, 

techniques and 
environmental complexity for 
mapping land surface water 
using earth observation data 

(In preparation for submission 
to a journal) 

Remote sensing sensors for LSW 
Remote sensing techniques for LSW mapping 

Potential and limitations of the use of SAR data for LSW mapping in complex 
environments 

Trade-offs between satellite data availability, costs, applicability and techniques for 
LSW mapping 

3 

A spectral unmixing method 
with ensemble estimation of 
endmembers: Application to 
flood mapping in the Caprivi 

floodplain 
(Published journal article) 

Trade-off between spatial and temporal resolution for mapping vegetated 
floodplains 

Linear spectral unmixing 
Indices-based spectral unmixing 

Automatic selection of endmembers 

4 

Flood extent mapping within 
the Caprivi floodplain using 

Sentinel-1 time series 
analysis 

(In review) 

Temporal analysis of VH, VV and VH/VV backscatter over different flooded pixels 
Comparison between Sentinel-1 and Landsat-8 OLI flood maps 

Accuracy assessment using ground truthing 
 

5 

Comparing thresholding with 
machine learning classifiers 
for mapping complex water 
(Waiting for submission to a 

journal) 

Mapping complex water bodies using automatic techniques 
Comparison between thresholding and machine learning classifiers for mapping 

complex water bodies 
Accuracy assessment using ground truth 

6 

Land surface water mapping 
using remote sensing in 

complex and heterogeneous 
environments: A synthesis 

Research aim and objectives revisited 
Research value and contribution 

Limitations, recommendations and recommendations for future studies 
Conclusion 

SAR sensors provide an advantage over optical sensors by being able to collect data under 

overcast conditions, a condition often experienced during flood events. SAR sensors also can 

observe inundated areas obscured by woody vegetation, which is one of the characteristics of the 
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Caprivi floodplain. Thus, Chapter 4 investigates the use of a time series of SAR (Sentinel-1) data 

and Bayesian probability for flood mapping in the heterogeneous Caprivi floodplain. Chapter 4 

consequently addresses Objective 4. 

There is a need for autonomous EO methods to map and monitor water bodies. Chapter 5 

integrates freely available Sentinel-1 (SAR) and Sentinel-2 (multispectral) data and evaluates a 

range of thresholding and machine learning algorithms for mapping the complex water bodies of 

the Cape Winelands District, thereby addressing research Objective 3. 

The final chapter, Chapter 6, critically assesses the extent to which the research objectives were 

met. It provides a synthesis of the findings and conclusions are drawn based on the preceding 

chapters. The chapter makes recommendations for forthcoming research based on the highlighted 

limitations of this study.  
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CHAPTER 2:  REVIEWING THE TRADE-OFFS BETWEEN 

RESOLUTION, TECHNIQUES AND ENVIRONMENTAL 

COMPLEXITY FOR MAPPING LAND SURFACE WATER 

USING EARTH OBSERVATION DATA 

2.1 ABSTRACT 

Increased impacts of climate change are causing changes in land surface water (LSW), which 

have resulted in floods and water shortages. Changes in the extent of LSW can have considerable 

ecological, social and economic consequences. Timely and accurate monitoring of LSW 

dynamics is therefore essential in prioritising relief efforts and planning mitigation measures 

against the impact of floods and droughts. Earth observation (EO) has been recognised as an 

effective alternative to conventional methods of monitoring LSW as it generally reduces costs 

and time associated with obtaining information about the extent of LSW. This chapter assesses, 

based on literature review, the application of EO for LSW mapping, particularly within 

heterogeneous and complex environments such as flooded vegetation (FV) or where waterbodies 

are turbid, eutrophic or optically shallow. The review found that EO is currently being used 

mainly for LSW mapping in clear and open water environments, while being underutilised in 

complex and heterogeneous environments. EO data for LSW mapping is frequently being used 

in Asia, Europe, Australia and America, but comparatively few applications of this technology 

were found in Africa. There seems to be many opportunities for the application of EO for 

monitoring LSW in Africa where in situ data about LSW is particularly scarce. The new 

generation of satellites (e.g. the Sentinel constellation) that has become available in recent years 

have opened up new possibilities for combining coarse and fine spatial resolution data – with 

different revisit times and generated from different types of sensors (e.g. multispectral and 

synthetic aperture radar) – for the operational monitoring of LSW in complex environments. 

Keywords: Earth observation (EO), land surface water (LSW) mapping, water security, flood, 

SAR, multispectral 

2.2 INTRODUCTION 

Climate change will affect the spatial and temporal variability of precipitation causing extreme 

hydrological events such as droughts and floods (Haddeland et al. 2014; Kundzewicz et al. 2018; 

Kusangaya et al. 2014). The increase in greenhouse gases in the atmosphere will continue, 

leading to global warming and an intensification of the hydrological cycle, making extreme 

hydrological events more complex and more challenging (Kelman 2015; Kusangaya et al. 2014). 
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A warmer atmosphere has a larger capacity to hold water vapour, which will increase the 

frequency of heavy rainstorms in many places and contribute to droughts in others. The 

Intergovernmental Panel on Climate Change (IPCC) forecasts that major changes in precipitation 

patterns will be experienced more in Africa than anywhere else (IPCC 2014). Southern Africa 

was identified as a climate change hotspot (De Sherbinin 2014), and recent studies have 

documented a high frequency of droughts and floods, linked to the El Niño effect, in this region 

(Hoell et al. 2017b; Kusangaya et al. 2014). 

The recognition of climate change as a potential cause of increasing extreme rainfall events have 

resulted in the development of many LSW monitoring methods. Changes in LSW can be 

observed with the use of either conventional (e.g. gauges and ground surveys) or EO (e.g. in situ, 

aerial and satellite-based) methods. Conventional techniques involving ground surveys are 

important for LSW monitoring because they offer a local perspective. However, when the case is 

on a large scale, such methods are time-consuming, expensive and even impractical due to 

prohibitive weather conditions. The prevailing economic situation in many countries requires 

cheap, quick and reliable methods for LSW monitoring (Kusangaya et al. 2014). An alternative 

option is provided by satellite remote sensing (RS) technology. 

Satellite RS encompasses a series of techniques that collect, process and disseminate information 

about the Earth’s surface (Campbell & Wynne 2011). The science of RS for monitoring LSW 

has gained popularity owing to its superiority over in situ data gathering techniques (Levin 

1999). Generally RS can reduce the costs and time associated with obtaining information about 

the extent of LSW and can be set up to provide operational (autonomous) monitoring of surface 

water resources (Du et al. 2016). Satellites provide a synoptic view and most are operational for 

many years, enabling consistent measurements over extended periods. EO also allows for 

repeated image acquisitions over the same locations, which are necessary for the detection of 

temporal changes in LSW. In addition, remotely sensed data are stored in a digital format that 

can easily be combined with ancillary data in a geographic information system (GIS) for further 

analysis (Tehrany, Pradhan & Jebur 2014). The coverage of extensive areas enables regional 

surveys on diverse themes and the monitoring of huge features (e.g. floodplains), and a single 

remotely sensed image can be analysed and used to achieve various objectives. RS also plays an 

important role in disaster management. For example, it can be used to map the extent of flooded 

areas, which can aid mitigation planning and rescue operations (McCallum et al. 2016). 

Considering these advantages, researchers have used passive (Thanh Noi & Kappas 2018; Yang 

& Du 2017) and active (Manavalan 2017; Martinis et al. 2015; Martinis, Plank & Ćwik 2018) 
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EO sensors for LSW mapping, with varying levels of accuracy. According to Zhou et al. (2017), 

an effective operational EO sensor for LSW mapping should have the following characteristics: 

a) short revisit time, along with fast product production; b) high spatial, radiometric and spectral 

resolution; and c) wide image coverage. However, owing to technical limitations there is usually 

a trade-off between the pixel size1 of EO imagery and the revisit time (temporal resolution) 

(Huang et al. 2016). Since water flow can be rapid, many flood-mapping studies choose to 

compromise on high spatial resolution (more detailed images) in favour of high temporal 

resolution (more frequent images). However, images with low spatial resolution are problematic 

when small and narrow waterbodies are being considered, or when complex, heterogeneous 

flooded landscapes such as urban areas and vegetated floodplains are being studied (Ferro-Famil 

& Pottier 2016). 

Currently, there is no operational RS sensor dedicated to monitoring LSW dynamics, but several 

sensors – such as those mounted on the constellation of Sentinel satellites – have recently 

become operational and provide images with high spectral, temporal and spatial resolutions. 

Most of the LSW mapping methods whose conception was based on images produced by these 

new sensors were developed outside southern Africa (e.g. in Europe), and it is not clear how 

these datasets and methods will perform in the heterogeneous LSW environments of southern 

Africa. 

The purpose of the following sections is to: give an overview the LSW mapping studies that 

have been carried out; briefly introduce the RS sensors often used for LSW mapping; investigate 

the trade-offs between temporal and spatial resolution for LSW mapping; and critically review 

the literature on LSW mapping using EO data in heterogeneous environments. 

2.3 REMOTE SENSING SENSORS FOR LSW MAPPING 

RS sensors are instruments that acquire images or other measurements of the Earth’s surface 

without direct contact with the target (Sivakumar et al. 2004). These sensors can be carried on 

satellites or mounted on aircrafts or can be ground-based. There are two main types of EO 

satellite sensors that are suitable for LSW mapping: those that actively illuminate the Earth’s 

surface with their own radiation energy (active sensors); and those that passively use the sun’s 

                                                 

1 Pixel size is determined by the instantaneous field of view of the sensor (Cracknell 1998) 
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energy reflected off the Earth’s surface or measure thermal infrared energy emitted from the 

Earth (passive sensors) (Lillesand, Kiefer & Chipman 2014). Figure 2.1 compares passive and 

active sensors and the parts of the electromagnetic spectrum (EMS) most often used in each type 

of data. 

Adapted from Moreira (2013) 

Figure 2.1 Types of remote sensors 

Passive and active sensors are explained in more detail in the following subsections. 

2.3.1 Passive sensors 

Passive sensors detect and record electromagnetic energy occurring in the target’s environment 

(Tempfli et al. 2009). These sensors measure reflectance in specific wavelength bands such as 

visible (390–700 nm), infrared (750 nm–1 mm), ultraviolet (100–400 nm) and microwave (15 

mm–30 cm). The energy can be either reflected – as in the case of visible, infrared and 

ultraviolet wavelengths – or absorbed and then re-emitted – as in the case of thermal infrared and 

microwave wavelengths. Sensors with several (i.e. 3–20) wide bands are known as 

“multispectral” sensors; whereas those with many narrow bands (generally 20 or more) are 

known as “hyperspectral” sensors. 

Technically, a sensor requires a minimum quantity of electromagnetic energy to acquire an 

image (Lillesand, Kiefer & Chipman 2014). A detector sensitive to wavelengths in a narrow 

band (fine spectral resolution) thus has to observe a larger area (coarse spatial resolution) 

compared to a detector sensitive to a wider dimension of wavelengths (total energy of the entire 

wavelength range). The spatial, temporal and spectral resolutions of a sensor are thus closely 

linked; a fine spatial, temporal and spectral resolution automatically leads to an image with a 

coarser spectral, spatial and temporal resolution or vice versa. Given the current limited 
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availability of space-borne hyperspectral sensors, the rest of the section focusses on multispectral 

imagery. 

Multispectral imagery can be grouped into two categories. The first group is characterised by 

images with high to medium spatial resolutions and longer revisit times. These include, for 

example, images from Landsat and Sentinel-2 (S2), which provide images with 10–100 m pixel 

sizes, but at relatively longer revisit cycles (5–16 days). The second group includes imagery 

from MODIS, MERIS and Sentinel-3 (S3), which provide relatively coarse spatial resolutions 

(250–1000 m) but shorter revisit times (one or more observation per day). 

The use of passive sensors is dependent on weather and time of day as cloud cover and the 

absence of natural light can hamper image acquisition. Given that flood events are often 

associated with cloud cover and the dynamic nature of floods – especially in small to medium-

sized basins (catchments) – reliable and continuous monitoring of flooded areas with passive 

sensors is often problematic and this has paved the way for active sensors (Matgen 2011). 

2.3.2 Active sensors 

Active sensors provide their own source of energy for illuminating the Earth’s surface (Finkl & 

Makowski 2017) and image acquisition is consequently independent of atmospheric conditions 

and time of day (Kuenzer et al. 2013). Active sensor technologies include radar (radio detection 

and ranging), lidar (light detection and ranging) or sonar (sound navigation and ranging) 

(Woodhouse 2017). However, most of the active satellite sensors used for LSW mapping carry 

radar antennas that transmit microwave signals at a fixed frequency, directed towards a specific 

target from which the reflected energy is detected (Campbell & Wynne 2011). The radar antenna 

is designed to transmit and receive EM waves of a specific polarisation. The most common 

polarisations for LSW mapping are horizontal linear (H) and vertical linear (V). Thus a radar 

system can have different levels of polarisation complexity, namely single polarised — VV or 

HH or HV or VH; dual polarisation — HH and HV or VV and VH or HH and VV; and quad 

polarisations — HH, VV, HV and VH. Due to the interaction with the target, polarisations have 

a significant impact on LSW mapping, as discussed in 2.5.4. 

Radar systems work in the microwave section of the EMS (100 nm to 1m), which is delimited 

into different frequency bands Table 2.1). The characteristics of the radar system are directly 

proportional to the transmitted frequency. The greater the frequency of a radar system, the more 

it is sensitive to atmospheric conditions such as haze, rain and clouds. These specific 
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characteristics of the frequency bands influence their applications in different environments. The 

L, C and X bands are the most suitable for LSW mapping. 

Table 2.1 Microwave bands, frequency, wavelength and examples of mission satellites  

Band Frequency (GHz) Wavelength (cm) Examples of satellites 

P-band 0.3 – 1 30 – 100 BIOMASS* 

L-band 0.75 – 1.1 15 – 30 ALOS-PALSAR 

S-band 2 – 4 7.5 – 15 NovaSAR-S* 

C-band 4 – 8 3.8 – 7.5 Sentinel-1 and RADARSAT-2 

X-band 8 – 12.5 2.4 – 3.8 TerraSAR-X 

Ku-band 12.5 – 18 1.7 – 2.4 Telstar 5,6 and 7 

K-band 18 – 26.5 1.1 – 1.7 GRACE 

Ka-band 26.5 – 40 0.75 – 1.1 GRACE 

NOTE: * Not yet launched 

Radar systems are often categorised into non-imaging (e.g. altimeter and scatterometer), imaging 

(e.g. SAR, or interferometric synthetic aperture radar (InSAR)) systems. Non-imaging systems 

take measurements in a single dimension, as opposed to the bi-dimensional representation of 

imaging systems (Levin 1999). SAR is most widely used for LSW mapping (Manavalan 2017) 

and is the focus of the rest of this section. 

A SAR is a side-looking radar system that utilises the flight path of the platform to electronically 

imitate a very large antenna or aperture (Ferro-Famil & Pottier 2016). The relative motion 

between the antenna and ground-based target is processed such that it produces a fine spatial 

resolution image (Ouchi 2013). SAR sensors have some drawbacks. Relatively high energy 

supply is required, which can limit the feasibility of SAR time series data and even the collection 

of individual images in some regions (Tsyganskaya et al. 2018b). Due to its side-looking nature, 

some areas of the Earth’s surface may not be detectable to the sensor due to radar shadowing and 

layover generated by topography, taller buildings or vegetation (Tsyganskaya et al. 2018b). 

These effects increase with small viewing angles and steep terrain. Corrections of these effects 

have to be applied to lower their influence (O'Grady, Leblanc & Bass 2014). Furthermore, SAR 

images are generated by the coherent interaction of the transmitted microwave with the objects; 

they suffer from the consequence of speckle noise and have no spectral characteristics, making 

their interpretation difficult for inexperienced users (Argenti et al. 2013). Speckle may lead to 

uncertainties in measurements and may result in decreases in classification accuracies 

(Tsyganskaya et al. 2018b). Speckle reduction can be realised in two ways, namely multi-look 

processing and spatial filtering. 
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Multi-look processing involves the summing and averaging of narrow sub-beams to form a 

single output image (Dasari et al. 2015). Spatial filtering is implemented after data acquisition 

and involves the application of a moving window consisting of a few pixels in dimension (e.g. 3 

× 3 or 5 × 5) over each pixel in the image. A numerical computation (e.g. averaging) is applied 

to the pixel values in the window and the central pixel’s value is replaced by the calculated value 

(Argenti et al. 2013; Dasari et al. 2015). The window is moved one pixel at a time in both the 

row and column dimensions until the entire image has been filtered. A smoothing effect is 

realised and the visual appearance of the speckle is minimised by calculating the (weighted) 

average of a small window around every pixel (Argenti et al. 2013). The choice of the window 

size and filter type affects the result (Giustarini et al. 2015). Generally, the larger the window 

size, the more the resolution is reduced and the more blurred (generalised) the image appears. As 

a result, the edges are smoothed and the textural information is diminished (Dong, Milne & 

Forster 2000). Similar filtering can be done along the time axis too, i.e., using a set of 

consecutive images. This method is used for surface objects, which do not change in time. 

Multi-looking and spatial filtering processes reduce speckle at the cost of pixel size (Argenti et 

al. 2013), while temporal filtering reduces the temporal resolution. Thus, the proportion of 

speckle reduction must be selected according to the specific application and the amount of detail 

required. Levin (1999) suggested little or no speckle filtering should be done if fine detail and 

high resolution are required. In this study, all the speckle filter methods available in Sentinel 

Application Platform (SNAP) software package were evaluated. 

2.4 REMOTE SENSING TECHNIQUES FOR LSW MAPPING 

The techniques used for LSW mapping with RS data are strongly influenced by whether 

multispectral or SAR datasets are being used. The different spectral features of water and non-

water features form the foundation for the development and implementation of algorithms and 

techniques for retrieving LSW from multispectral data (Martin 2014). Water is differentiated 

from non-water features on the basis that it has very different reflectance and absorption inertia 

properties compared to other Earth surface materials such as vegetation and soil (Figure 2.2). 

Specifically, clear and deep water has a low spectral response (<10%) in the visible region but at 

longer wavelengths (NIR and SWIR) has an even greater absorption of all the incoming radiation 

(Feyisa et al. 2014; Mueller et al. 2016). However, the presence of vegetation and dissolved and 

suspended substances in water result in complex spectral characteristics (Martin 2014). 

Specifically, turbid water has higher visible and infrared reflectance compared to clear water 

(Figure 2.2). 
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 Source: Smith (2012) 

Figure 2.2 Typical spectral reflectance curves of popular physical Earth surface objects in the visible and near to the 

mid-infrared range of the electromagnetic spectrum 

LSW mapping using SAR imagery is possible because LSW pixels are in most cases associated 

with low backscatter values, thanks to the principle that smooth and calm water surfaces act as 

‘specular’ reflectors (Figure 2.3a), resulting in a large proportion of the SAR signal being 

reflected away from side-looking SAR sensors (Giustarini et al. 2015; Greifeneder et al. 2014). 

Therefore, LSW areas appear darker due to the low backscattering response, whereas non-water 

surfaces appear bright cause of diffused reflection (Figure 2.3b). 

  
Figure 2.3 Types of reflection: (a) specular reflection from a smooth water surface and (b) diffuse reflection from a 

non-water surface 

Although differences in backscatter are useful to delineate open water, the presence of emergent 

vegetation and waves caused by wind may cause diffused reflection (and an associated increase 

in backscatter) to such an extent that water features have similar backscatter responses to non-

water features (Giustarini et al. 2015).  

(a) (b) 
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The techniques employed for LSW mapping with remote sensing data can be grouped into two 

main approaches, namely LSW extraction and land cover mapping. In LSW extraction methods, 

only ‘water’ features are targeted and other land covers are disregarded. In contrast, land cover 

mapping approaches group all pixels or objects in an image into one of many thematic (land 

cover) classes, of which some classes (often only one) relate to water. Land cover mapping and 

LSW extraction methods can be realised by manual delineation through visual interpretation, or 

by computer-assisted rule-based, supervised and unsupervised classification approaches. 

2.4.1 Visual interpretation 

Visual interpretation (VI) involves manually digitising LSW boundaries by visually interpreting 

SAR and/or multispectral images (Brivio et al. 2002). Much of the pioneering work on the 

application of RS for LSW mapping was accomplished by the visualisation of the Landsat-1 

infrared band (0.8–1.1 µm) using tone, colour, texture, size, shape and context on the floodplains 

of the Iowa (Hallberg, Hoyer & Rango 1973), Arizona (Morrison & Cooley 1973) and 

Mississippi (Moore & North 1974; Schwertz, Spicer & Svehlak 1977) rivers. These studies 

achieved good LSW delineations, but some of the authors noted that suspended sediments 

increased NIR reflectance from water surfaces. Under such conditions, vegetation and water had 

identical spectral signatures in the infrared channels, which made accurate delineations difficult. 

Blasco, Bellan & Chaudhury (1992) used visual interpretation of SPOT XS scenes acquired 

before and after flooding to evaluate the extent of floods in mangrove forests of the Ganges Delta 

in Bangladesh. The results from the study underestimated flooded forests by about 20%. Chopra, 

Verma & Sharma (2001) investigated water turbidity and seasonal water changes of the Harike 

wetland in India by visually analysing the false colour composites of IRS LISS-II bands 2, 3 and 

4. The authors concluded that computer-assisted classification methods (see next section) are 

best for mapping wetlands due to the presence of mixed pixels. Similarly, Wang, Colby & 

Mulcahy (2002) argued that the visualisation of NIR images for delineating floods in vegetated 

floodplains can underestimate the flooded area, unless supplementary data such as a digital 

elevation model (DEM), along with expert rules, are incorporated. The authors also noticed that 

the presence of shadows cast by tall vegetation and topography resulted in an overestimation of 

LSW when VI of NIR imagery was used. 

The visualisation of thermal bands can also be used for mapping LSW (Zhang et al. 2012a). This 

practice is based on the principle that all materials at temperatures above absolute zero (-273°C) 

continuously emit electromagnetic radiation (Lillesand, Kiefer & Chipman 2014). Emissivity 
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depends on wavelength, land surface temperature (LST) and some physical properties of the 

surface, e.g. water content. Materials such as water with low thermal inertia (emissivity) show a 

much accentuated diurnal cycle compared to land temperatures (Burke, Pricope & Blum 2016). 

During daytime, open waterbodies have lower temperatures (appear dark on thermal imagery), 

inundated forests are warmer (lighter tones) and dry land emits the most thermal radiation 

(appear bright). In contrast, dry land is colder than open water at night and the relationships 

between dry land, vegetated LSW and open water are inverted. 

Few studies have applied VI of thermal imagery for LSW mapping (Burke, Pricope & Blum 

2016; Moore & North 1974; Sandholt et al. 2003). Moore & North (1974) did much of the 

pioneering work and made use of thermal infrared bands of the ERTS satellite to map inundated 

forests. The authors found that the thermal infrared imagery represents the top of the tree canopy 

temperatures and that the underlying water was poorly represented. Fifteen years later, Barton & 

Bathols (1989) and Ali, Quadir & Huh (1989) applied the segmentation of temperature 

histograms derived from thermal bands 4 and 5 (10.30–11.30 µm) of AVHRR imagery to 

monitor floods along the Darling River in Australia and major rivers in Bangladesh, respectively. 

However, the authors in both studies reported an underestimation of flooded areas due to mixed 

pixels. Sandholt et al. (2003) encountered the same challenge of the augmentation of mixed 

pixels in the presence of vegetation when they tried to visually determine inundated areas of the 

Senegal River valley using AVHRR thermal imagery. 

The thermal bands and high temporal resolution of the MODIS sensor motivated Zhang et al. 

(2012a) to visually map floods at night. The experimental results indicated that the visualisation 

of the MODIS thermal bands is quick at observing floods over large areas, but was ineffective at 

delineating FV due to the coarse (1000 m) pixel size of MODIS. More recently, D’Andrimont & 

Defourny (2018) used the visual interpretation of the MODIS LST product derived from thermal 

infrared bands 31 (10.78–11.28 µm) and 32 (11.77–12.27 µm) with a spatial resolution of 

1000 m to monitor seasonal changes in waterbodies on the African continent with commission 

error of less than 6%. 

From the literature, it seems that the visualisation of thermal images is only suitable for 

delineating LSW when high detail is not required, as the spatial resolution of the available 

imagery is generally coarse. For example, the Landsat-8 thermal infrared (TIR) bands have a 

spatial resolution of 100 m, while the MODIS LST and Sentinel-3 Sea and Land Surface 

Temperature Radiometer (SLSTR) products have a resolution of 1 km. 
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LSW mapping using SAR data was initially carried out using VI (Brivio et al. 2002; Di 

Baldassarre et al. 2011; Oberstadler, Honsch & Huth 1997). Oberstadler, Honsch & Huth (1997) 

and Brivio et al. (2002) used a false colour composite of two ERS-1 images and on-screen-

digitising to delineate flood boundaries. Horritt, Mason & Luckman (2001) commented on the 

subjectivity of VI of SAR imagery and the underestimation of flood extents in areas where FV 

increase backscatter. To overcome this limitation, they suggested that ancillary information 

should be integrated with expert rules. 

Generally, visual interpretation of satellite imagery is intuitive, allowing for rapid delineation of 

open LSW. However, in heterogeneous environments, the interpretation needs to be carried out 

by an experienced analyst (Di Baldassarre et al. 2011). The mapping of large LSW areas can also 

be very time-consuming, and the results are often inconsistent among image interpreters. These 

shortcomings have led to the development of computer-assisted classification techniques. 

2.4.2 Computer-assisted classification 

Traditionally, computer-assisted classifications of remotely sensed imagery have been grouped 

into two categories, namely supervised and unsupervised techniques. More recently, approaches 

that fall outside these approaches have been adopted, of which expert systems (ESs) is one of the 

most popular (Blaschke 2010; Mather & Tso 2016). The following subsections provide an 

overview of supervised and unsupervised classification methods, followed by an outline of 

expert system classification approaches. 

2.4.2.1 Unsupervised classification 

Unsupervised classification, also known as image clustering, groups the input data into similar 

classes, based on their spectral properties (Campbell & Wynne 2011). The analyst then manually 

relabels and joins the spectral classes’ (clusters) into informational classes. Iterative self-

organising data analysis (ISODATA) (Jung et al. 2014; Parmuchi, Karszenbaum & Kandus 

2002) and k-means (Li et al. 2018; Papaioannou, Vasiliades & Loukas 2015) are examples of 

unsupervised classifiers. The advantages of unsupervised classification are that no a priori 

knowledge (e.g. training data) is required (Schowengerdt 2012). These techniques are also fairly 

quick and easy to run. Furthermore, clustering and segmentation based techniques are able to 

adapt to the characteristics of the input dataset at both local and regional scales (Lässig, Kersting 

& Morik 2016). One of the limitations of unsupervised classification is that the spectral classes 

do not always concur to informational classes. The user has to spend time defining and 

relabelling the classes after the classification. Unsupervised classifications furthermore are 

Stellenbosch University  https://scholar.sun.ac.za



  27 

restricted to frameworks where underlying assumptions are contravened. For example, Amitrano 

et al. (2018) proposed an unsupervised k-means clustering method for flood mapping using S1 

images. The authors assumed a bi-modal allocation of the data in feature space, where each 

mode resembles either the non-water or the water class. However, in scenarios where the 

distribution of non-water and water classes are multi-modal (due to high spectral variance within 

land covers), the major assumptions of such a clustering-based approach is contravened, causing 

low classification accuracies (Karpatne et al. 2016; Lässig, Kersting & Morik 2016). 

Very little attention has been given in literature to the use of unsupervised classification for LSW 

mapping. One notable exception is Thomas et al. (2011), who used ISODATA on a masked 

Landsat TM image to map inundation in a large heterogeneous vegetated floodplain, the 

Macquarie Marshes. The authors observed that the presence of vegetation in flooded areas 

caused confusion between water and other land covers. Ozesmi & Bauer (2002) argued that 

unsupervised classification is most successful when a large number of clusters are specified. To 

assess this hypothesis, Martin, Brabyn & Beard (2014) applied unsupervised classification for 

LSW mapping using aerial imagery, specifying various numbers of target classes. Their results 

revealed that the unsupervised classification accuracy can be boosted by increasing the number 

of spectral classes to be clustered. 

Martinis, Twele & Voigt (2011) argued that unsupervised classification algorithms are effective 

for automated mapping of LSW features using small datasets. For example, Martinis, Kersten & 

Twele (2015) and Twele et al. (2016) presented fully automated services for flood mapping 

using TerraSAR-X and S1 data respectively in which pre-processing, unsupervised 

classification, as well as post classification improvement was automatically produced after 

satellite data delivery. However, the proposed processing chains currently employ global 

ancillary data sets such as global DEMs and topographic slope information, which are 

characterised by a spatial resolution remarkably coarser than the pixel spacing of TerraSAR-X 

data and S1. 

2.4.2.2 Supervised classification 

Supervised classification involves the use of samples of known identity (training data) to classify 

pixels or objects of unknown identity (Mather & Tso 2016). The underlying assumption in the 

use of training samples (a priori knowledge) is that the spectral response of a certain target (e.g. 

water class) will be almost consistent throughout the image (Campbell & Wynne 2011). In 

contrast to unsupervised classification that produces spectral classes that must later be assigned 
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to informational classes (e.g. land cover classes), supervised classification generates 

informational classes directly. It has, however, several shortcomings. The collection of 

representative training samples is expensive and time-consuming as it often requires field visits, 

which are difficult to carry out in inaccessible areas (Campbell & Wynne 2011). Training 

samples are often only usable for a limited period, because the spectral and spatial properties of 

classes vary over time, especially in highly dynamic target classes such as LSW (Hasmadi, 

Pakhriazad & Shahrin 2009; Lässig, Kersting & Morik 2016). 

Supervised classifiers are generally grouped into (traditional) parametric (parallelepiped, 

minimum distance, and maximum likelihood (ML)) and (modern) non-parametric (support 

vector machine (SVM), decision tree (DT), random forest (RF) and k-nearest neighbour (k-NN)) 

algorithms. Parametric classifiers assume a particular (usually normal) statistical distribution in 

the input data (Rodriguez-Galiano et al. 2012) as they rely on statistical measures such as mean, 

standard deviation and probability (Aggarwal (Compiler and ed) 2014). Parametric algorithms 

have difficulty dealing with multi-modal input datasets (i.e. noisy and skewed training data) 

(Mather & Tso 2016; Petropoulos, Kalaitzidis & Vadrevu 2012). On the other hand, non-

parametric classifiers build no assumptions about the statistical distribution of the input data 

(Campbell & Wynne 2011) and are considered to be more robust than traditional classifiers 

(Gilbertson, Kemp & Van Niekerk 2017). 

A number of studies have evaluated supervised classification algorithms for LSW mapping 

(Rebelo 2010; Sisodia, Tiwari & Kumar 2014a; Sun, Yu & Goldberg 2011). The choice of the 

classifier is mainly determined by the level of accuracy required and the input data properties. A 

supervised ML classifier was applied by Sandholt et al. (2003) on Landsat-5 and AVHRR 

imagery to map five spectrally different water surfaces in the Senegal River valley. They 

concluded that mapping of LSW in turbid, eutrophic and spectrally shallow waterbodies is not an 

easy task. This is in agreement with Sisodia, Tiwari & Kumar (2014a) and Feyisa et al. (2014) 

who argued that ML is useful for mapping open waterbodies in arid regions where the water line 

boundary is contrasted by drier terrestrial areas, but they claim that ML does not perform well 

when water surfaces and surrounding areas are vegetated. MacAlister & Mahaxay (2009) 

achieved high accuracies when ML was applied for wetland mapping. However, they avoided 

confusion between wet and dry classes by first masking wetland areas that were smaller than 

60x60m and occurred on slopes of more than 5% by using the ‘eliminate’ command in ArcGIS 

and classifying them separately. Song, Sohn & Park (2007) used ML on RADARSAT-1 data for 

water classification by assuming an approximate normal distribution of the water and non-water 
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classes. However, ML performed poorly due to its inability to distinguish water from 

topographic shadow. Relatively few studies have applied the parallelepiped classification and 

minimum distance algorithms for LSW mapping. One of them is Martinez & Le Toan (2007) 

who applied the parallelepiped classifier on a time series of JERS images for flood mapping in 

the Óbidos floodplain. Their accuracy assessment showed good results, with a kappa coefficient 

of about 0.8. However, significant confusion occurred with land covers (e.g. pastures and 

shadows) that showed very similar backscatter characteristics to those of water. This type of 

confusion was also encountered by Sisodia, Tiwari & Kumar (2014b) using the same classifier, 

but with Landsat multispectral scanner (MSS), thematic mapper (TM) and enhanced thematic 

mapper (ETM+) images of Rajasthan, India. In contrast, Khan et al. (2015) used the 

parallelepiped algorithm and a SPOT-5 image in Pakistan to classify waterbodies and achieved 

producer’s and user’s accuracies of 95% of 99% respectively. 

Powerful non-parametric and parametric machine learning algorithms (MLAs) are increasingly 

replacing parametric classification methods. A number of examples of the use of MLAs such as 

DTs (Acharya et al. 2016; Mueller et al. 2016), SVM (Feng et al. 2015), RF (Corcoran et al. 

2012) and k-NN (Pauw 2012; Tehrany, Pradhan & Jebuv 2014) for LSW mapping are available 

in the literature. Tulbure & Broich (2013) showed that the DTs deliver a high classification 

accuracy of 96% across different LSW environments while allowing fast processing, which 

makes them suitable for application to very large datasets. Tehrany, Pradhan & Jebuv (2014) 

used k-NN for classifying waterbodies with an accuracy of 91%. Liu et al. (2018) found that 

SVM, RF, DTs and k-NN consistently outperformed ML for waterbody mapping in wetland 

environments using unmanned aircraft vehicle (UAV) images, irrespective of the training sample 

size. This observation is in agreement with Petropoulos, Kalaitzidis & Vadrevu (2012), Jia et al. 

(2014) and Feng, Liu & Gong (2015) who used Hyperion hyperspectral, Landsat-8 and UAV 

imagery for waterbody mapping. 

2.4.2.3 Expert system (rule-based) classification 

Expert systems, also known as knowledge-based or rule-based classification, are computer 

programs that use symbolic logic (artificial intelligence) to imitate human experts and are 

expected to arrive at the same conclusion as human experts in image classification (Skidmore et 

al. 1996). These programmes are governed by a set of decision rules, which can incorporate 

ancillary data from diverse sources directly into the classification process. The overall premise is 

that experts will have a better grasp of the problem to be solved if they interact with the data and 
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view it through different representations; they will thus be able to design, test and fine-tune 

scenarios to extract the desired information (Pekel et al. 2016). 

Rule-based techniques have many advantages. They are intuitive and logical and the 

classification rules for certain classes can be refined without affecting the rules for others or 

compromising the overall classification. Such refinements and the addition of more rules and 

datasets can be done iteratively. Additional data layers can easily be added at later stages of the 

classification process without affecting existing rules (Pauw 2012). The flexibility of expert 

systems regarding input data is advantageous as ancillary data from diverse sources can be 

integrated with remotely sensed data. Also, prior knowledge of distributions of target classes can 

be captured in knowledge rules (Masocha & Skidmore 2011). Lastly, once a pixel (or object) has 

been assigned to a certain class, it can be disregarded by further processing if necessary. 

A major disadvantage of expert systems is the time needed to develop a successful rule-based 

classification system (Parent, Volin & Civco 2015). In addition, expert systems are negatively 

affected by increasing dimensionality of data. As the number of input layers increases, it 

becomes more difficult for the interpreter to comprehend their relation to the desired product 

classes (Pauw 2012). Regardless of these limitations, there are numerous reports in the literature 

of the usefulness of rule-based methods for LSW mapping. 

Thresholding is a simplified rule-set that is most often applied to spectral indices. Thresholding 

is by far the most popular method for LSW mapping using multispectral data. Thresholding of 

spectral indices that emphasise water features are widely used to delineate LSW thanks to their 

simplicity, low computational cost and good performance. Examples of popular spectral indices 

are listed in Table 2.2. These indices involve the use of at least two bands and take advantage of 

spectral differences of water and other surfaces to extract LSW information. Most of the spectral 

indices used for LSW mapping are designed to exploit the relatively high reflectance of water in 

the visible region of the EMS and low reflectance of water in the infrared wavelengths, while 

also taking advantage of the high NIR reflectance of vegetation and soil features (McFeeters 

1996; Xu 2006). This results in the enhancement of water features and masking of background 

(non-water) features. 

The tasselled cap wetness (TCW) index is a by-product of tasselled cap (TC) transformation 

(Kauth & Thomas 1976), which provides information on the moisture content of soils and 

vegetation (Ouma & Tateishi 2006). TCW is based on coefficient values that are strongly 

influenced by the reflectance values of the SWIR bands of Landsat TM/ETM + (Huang et al. 
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2002). Although TCW has been shown to delineate LSW with reliable accuracy (Bhagat & 

Sonawane 2011; Huang et al. 2002), its application is limited when it comes to the derivation of 

coefficients, which are different in each sensor. 

McFeeters (1996) proposed the use of the normalized difference water index (NDWI1) for 

detecting LSW in wetland environments. The index was formulated based on the assumption that 

LSW will be enhanced given its relatively high green light reflectance and high NIR reflectance, 

while for terrestrial vegetation and soil, reflectance is relatively lower in the green range of the 

EMS compared to the NIR range, and will thus be suppressed (McFeeters 1996). Xu (2006) 

modified the NDWI1 by replacing NIR with mid-NIR/SWIR to form the MNDWI (Table 2.2). 

MNDWI has been shown to overcome NDWI1’s shortcomings by suppressing built-up and 

vegetated areas, while highlighting water features (Hui et al. 2008; Ji, Zhang & Wylie 2009; Lu 

et al. 2011). 

Xiao et al. (2005) defined a land surface water index (LSWI) based on NIR and SWIR MODIS 

bands with a pixel size of 500 m for mapping flooded rice fields. LSWI has been used to 

delineate LSW in several studies with comparable accuracy (Islam, Bala & Haque 2010; Lu et al. 

2011). Ouma & Tateishi (2006) developed a water index (WI) that combines TCW and MNDW3 

to map the saline and non‐saline lakes in Kenya using Landsat TM and ETM+ data. The WI 

detected the shorelines with an accuracy of 98.4%, which was 22.3% higher than the TCW, and 

43.2% more accurate than the NDWI. Feyisa et al. (2014) developed an automated water 

extraction index (AWEI) with an objective to overcome the limitations of MNDWI and NDWI 

in underestimating the detection of LSW in areas with shadows. However, the results showed 

that the AWEI underestimated the mapping of LSW in areas where water was green-brown in 

colour, and/or where waterbodies were small or had long perimeters causing a large proportion 

of mixed pixels. 

LSW mapping using thresholding of spectral indices is a three-step procedure that involves: 1) 

derivation of the index using appropriate bands; 2) defining a threshold that adequately separates 

water and non-water features; and 3) applying the threshold to produce a thematic layer/map. 

Table 2.2 shows that positive values in water indices are in most cases associated with LSW 

features. However, waterbodies in urban areas are frequently small and surrounded by complex 

built-up areas, vegetation and shadows. The fragmented surfaces in urban areas result in a 

considerable amount of mixed pixels, causing confusion between water and non-water features 

(especially at lower resolutions). Areas with mixed water, vegetation and soils often have 

negative NDWI and MNDWI values (Ji, Zhang & Wylie 2009; Singh et al. 2015). In such 
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environments, Liu, Yao & Wang (2016) proposed manual adjustments of thresholds and the use 

of spectral indices in combination with other image classification algorithms and/or ancillary 

data. 

Table 2.2 Spectral indices frequently used for land surface water feature extraction 

Index Equation Remarks Reference 

Tasselled cap 
wetness 

TCW = 0.1509(𝜌1 ) + 0.1973((𝜌2 ) +
0.3279((𝜌3 ) + 0.3406((𝜌4 ) −

0.7112(𝜌5 ) − 0.4572(𝜌7 ) 
Water has a positive value Kauth & Thomas (1976) 

Normalized 
difference water 

index 

NDWI1 = 
𝐺𝑟𝑒𝑒𝑛−𝑁𝐼𝑅

𝐺𝑟𝑒𝑒𝑛+𝑁𝐼𝑅
 Water has a positive value McFeeters (1996) 

Normalized 
difference 

moisture index 
NDMI = 

𝑁𝐼𝑅−𝑀𝐼𝑅

𝑁𝐼𝑅+𝑀𝐼𝑅
 Water has a positive value Wilson & Sader (2002) 

Normalized 
difference water 

index 

NDWI2 = 
𝑅𝑒𝑑−𝑆𝑊𝐼𝑅

𝑅𝑒𝑑+𝑆𝑊𝐼𝑅
 Water has a positive value Rogers & Kearney (2004) 

Land surface 
water index 

LSWI = 
𝑁𝐼𝑅−𝑆𝑊𝐼𝑅

𝑁𝐼𝑅+𝑆𝑊𝐼𝑅
 Water has a positive value Xiao et al. (2005) 

Normalized 
difference water 

index 
NDWI3 = 

𝑀𝐼𝑅−𝑁𝐼𝑅

𝑀𝐼𝑅+𝑁𝐼𝑅
 Water has a positive value Ouma & Tateishi (2006) 

Water index 
WI = 𝑓(𝑇𝐶𝑊 ± 𝑘𝑁𝐷𝑊𝐼3) 

f denotes a function and k is a constant 
Water has a positive value Ouma & Tateishi (2006) 

Modified 
normalized 

difference water 
index 

MNDWI = 
𝐺𝑟𝑒𝑒𝑛−𝑆𝑊𝐼𝑅

𝐺𝑟𝑒𝑒𝑛+𝑆𝑊𝐼𝑅
 Water has a positive value Xu (2006) 

Water ratio index WRI = 
𝐺𝑟𝑒𝑒𝑛+𝑅𝑒𝑑

𝑁𝐼𝑅+𝑀𝐼𝑅
 Water has a positive value Shen & Li (2010) 

Automated water 
extraction index 

AWEI = 4(𝐺𝑟𝑒𝑒𝑛 − 𝑀𝐼𝑅) − (0.25𝑁𝐼𝑅 +
2.75𝑆𝑊𝐼𝑅) 

Water has a positive value Feyisa et al. (2014) 

Enhanced water 
index 

EWI = 
𝐺𝑟𝑒𝑒𝑛−𝑆𝑊𝐼𝑅+0.1

𝐺𝑟𝑒𝑒𝑛+𝑆𝑊𝐼𝑅(𝑁𝐷𝑉𝐼×0.5)
 Water has a positive value Wang et al. (2015) 

Note: 𝜌𝑖 = corresponds to the respective reflectance bands 

Thomas et al. (2015), Menarguez (2015) and Zhou et al. (2017) generated expert rules to 

integrate MNDWI and vegetation indices (normalized difference vegetation index (NDVI) and 

NDI) to classify FV. The results revealed that such an integration was sensitive to mixed water 

and vegetation pixels. Pekel et al. (2016) implemented an expert system in Google Earth Engine 

(GEE) and incorporated ancillary data (including a DEM, the global human settlement data layer 

(GHSDL), spectral wetness indices and the Randolph glacier inventory) to classify each pixel in 

1 823 terabytes of Landsat data as water or as land. Classification performance, measured using 

more than 40 000 reference points, confirmed that the classifier produced less than 1% of false 

water detections and missed less than 5% of water. In another example, Pradhan et al. (2014) 

applied a semi-automated expert system based on spectral, spatial, textural and contextual factors 
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for flood mapping on TerraSAR-X imagery. The system suitably extracts the spectral signatures 

of water with an overall accuracy of 86.18%. 

The choice of band combinations has been cited as a drawback of spectral LSW indices (Lu et al. 

2011) as different band combinations produce different results. For example, Xu (2006) in 

Fuzhou City (China) observed that MNDWI can enhance waterbodies and suppress built-up 

features more efficiently than NDWI1. This was confirmed by a study in Italy (Venice coastland) 

by Du et al. (2016) in which it was observed that MNDWI can delineate LSW features with a 

higher accuracy (96.57%) compared to NDWI1 (95.71%). A number of studies (Hui et al. 2008; 

Ji, Zhang & Wylie 2009; Sarp & Ozcelik 2017) have demonstrated the superiority of MNDWI 

over other indices. Conversely, a number of studies (Jain et al. 2005; Rokni et al. 2014; Zhou et 

al. 2017) have also found that NDWI1 performed better than other water indices – including 

MNDWI – for delineating the LSW features. 

When it comes to SAR data, histogram thresholding (Martinis, Twele & Voigt 2009; White et al. 

2015), radiometric thresholding (Matgen et al. 2011; White et al. 2014), active contour models 

(Horritt et al. 2003) and segmentation (Martinis, Twele & Voigt 2009; Martinis, Twele & Voigt 

2011) techniques have been successfully applied for LSW mapping. Statistical active contour 

models that incorporate both local tones, texture measures, land cover and Bayesian probability 

rules were developed by Horritt, Mason & Luckman (2001) and Horritt et al. (2003) to delineate 

flood boundaries using ERS-1 SAR data. Although this method was found to delineate LSW 

with accuracies of 70% or higher, its construction is complex and will likely be difficult to 

replicate. More recently, Pulvirenti et al. (2011a) and Twele et al. (2016) carried out flood 

mapping using fuzzy rules that mainly contextualises local conditions by considering 

backscatter, as well as topographical and land cover information. However, such information at 

suitable scale may not be available in many areas. In addition, Pricope (2013) argued that 

topography based methods for delineating LSW areas are not effective in semi-arid regions with 

porous sandy soils and low topographic gradients. 

Thresholding is the most popular approach for mapping LSW using SAR data (Chini et al. 2017; 

Manjusree et al. 2012; Twele et al. 2016). In this approach, all pixels with a backscatter 

coefficient lower than a specified threshold in an intensity image are classified as water. 

However, the definition of an accurate threshold to separate water from other land cover 

components is challenging, because the physical and chemical properties of water are highly 

variable in space and time. Optimal thresholds vary from one image to another and cannot be 

restricted to one standard value (Du et al. 2016). Schlaffer et al. (2015) proposed that a suitable 
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threshold value can be found either by visual inspection (manual adjustment) of the grey scale 

histogram or by using an automatic algorithm. Martinis, Twele & Voigt (2009) argued that the 

manual adjustment of thresholds is time-consuming and not feasible for near real-time flood 

monitoring. Several studies (Du et al. 2016; Singh et al. 2015; Yang et al. 2017) have adopted 

automatic threshold defining methods. These methods are reported to rapidly produce 

reproducible (reliable) thresholds, thereby reducing delays between the delivery of satellite data 

(after crisis events) and the provision of satellite-derived crisis information (e.g. flood extent 

information) to aid emergency management authorities and decision-makers. 

Sezgin & Sankur (2004) categorised automatic thresholding methods into six classes. 

1. Histogram-shape-based methods involve the analysis of the peaks and valleys of the 

smoothed histogram (Olivo 1994). 

2. Entropy-based methods determine the threshold by minimising the cross-entropy between 

the input image and the output binary image as a way of preserving information (Kapur, 

Sahoo & Wong 1985). 

3. Attribute-based methods define the threshold-based on the similarity of shape, 

connectivity, texture and stability between the newly obtained image and the original 

grey scale image (Liu & Srihari 1997; O’Gorman 1997). 

4. Spatial methods define the threshold-based on higher-order probability distribution or the 

correlation between pixels (Lie 1993). 

5. Locally adaptive methods compute a threshold value based on local statistics like range 

(White & Rohrer 1983), variance (Sauvola & Pietikäinen 2000) or surface fitting 

parameters (Yanowitz & Bruckstein 1989) of the neighbouring pixels. 

6. Clustering-based methods group the grey level data into two clusters, background or 

foreground, based on iterations (Leung & Lam 1996), minimum error (Kittler & 

Illingworth 1986), clustering (Otsu 1975) and fuzzy (Jawahar, Biswas & Ray 1997) 

thresholding. 

Each of the above automatic thresholding methods is associated with challenges, particularly in 

situations where the target pixels constitute a smaller proportion compared to the background 

pixels or when the background and foreground classes possess unimodal distributions (Sezgin & 

Sankur 2004). For example, histogram based methods (Glasbey 1993) have high chances of 
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selecting a good threshold if the histogram peaks are tall, narrow, symmetric and separated by 

deep valleys. In situations where histograms are fuzzy, Long, Fatoyinbo & Policelli (2014) have 

proposed a method that iteratively smoothed the histogram using a majority filter. Conversely, 

algorithms that depend on iterations such as those proposed by Otsu (1975) and Leung & Lam 

(1996) have been reported to have difficulties in converging, producing multiple convergence 

points and converging to an illogical thresholding value. However, Otsu algorithm is one of the 

most widely used automatic threshold methods in delineating LSW features and was adopted in 

this study. This algorithm determines the optimal threshold by maximising inter-class (water and 

non-water) variance (Du et al. 2016; Otsu 1975). 

Thresholding is useful for producing results quickly and inexpensively. When used on SAR data 

it is most effective for calm open water with a specular backscatter response, but not for wind-

induced rough water surfaces or flooded vegetation with rough surfaces (White et al. 2015). 

White et al. (2015) and Long, Fatoyinbo & Policelli (2014) argued that the method can delineate 

flooded vegetation and turbid water with greater accuracy if the threshold is manually adjusted 

and the approach is used in combination with other techniques such as supervised and 

unsupervised classifiers. Martinis, Twele & Voigt (2009) stated that the manual adjustment of 

thresholds has a major drawback, namely that the reliability of the final result strongly depends 

on the skill of the operator. As a result, they proposed a completely unsupervised technique 

based on the automatic selection of thresholds. Due to the above mentioned limitations of 

thresholding, supervised classification was found to outperform thresholding of popular spectral 

wetness indices in Sarp & Ozcelik (2017) and Nandi, Srivastava & Shah (2017). Furthermore, 

Amitrano et al. (2018) reported that k-means (83.8%) outperformed SVM (82.8%), thresholding 

(66.8%) and k-NN (57.2%) for rapid flood mapping using S1 data. The following section 

expands on the potential and challenges of using SAR data for LSW mapping in complex 

environments. 

2.5 POTENTIAL AND LIMITATIONS OF THE USE OF SAR DATA FOR LSW 

MAPPING IN COMPLEX ENVIRONMENTS 

The potential of using SAR data for LSW mapping has been demonstrated by several previous 

investigations (Hess & Melack 2003; Hess et al. 1995; Horritt et al. 2003; Pulvirenti et al. 2011a; 

Townsend 2001). In particular, the application of SAR for mapping FV is well established, 

mainly because SAR technology has the capability to penetrate vegetation canopies (Klemas 

2015; White et al. 2015). However, the presence of water underneath vegetated areas can cause 

SAR backscatter values to increase significantly due to the double- or multi-bounce interaction 
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between the specular reflecting water surface and vertical structures of the vegetation, such as 

trunks and stems (Pierdicca, Pulvirenti & Chini 2018; Pulvirenti et al. 2013). The success of 

SAR-based LSW mapping techniques is thus dependent on the system parameters (e.g. 

microwave frequency, polarisation and incident angle) and environmental parameters (canopy 

type, structure and density). The effects of these characteristics are not independent from each 

other. They are explained in detail in the following subsections. 

2.5.1 Surface roughness dependency 

SAR backscatter is directly proportional to surface roughness (Skakun et al. 2016). Smooth and 

calm waterbodies act as specular reflectors resulting in a large proportion of the SAR signals 

being reflected in the sensor-look direction instead of being returned to the sensor (as mentioned 

in previous sections). As a result, LSW features have low backscatter values and appear dark in 

the image. Conversely, microwaves incident on a rough surface (e.g. urban areas and vegetation 

canopy) are scattered in many directions (diffuse reflection) and result in brighter tones in the 

radar imagery (Martinis, Twele & Voigt 2009). Microwaves that have the ability to penetrate the 

tree canopy and interact with solid surfaces (e.g. tree trunks) and inundated land surface 

underneath the trees are susceptible to double-bounce or volumetric scattering. The volume 

scattering mechanism represents multiple scatterings, which are prevalent over forested and 

agricultural areas, where tree crowns, or vegetation canopy reflect the SAR signal diffusely 

(Costa 2004; Hess et al. 1995). 

Several studies have reported that double-bounce scattering between the flooded surface and tall 

vegetation can result in underestimation of the flooded areas in vegetated floodplains (Horritt et 

al. 2003; Martinis et al. 2015; Tsyganskaya et al. 2018b). Inundated areas under forest canopy 

have higher backscatter values when compared to forested areas in dry conditions. The double-

bounce mechanism cause a backscatter enhancement of about 3 to 10 dB based on the VH 

polarisation at 5.405 GHz (White et al. 2015), resulting in LSW to appear different to what is 

expected (Pulvirenti et al. 2016b). 

Polarimetric SAR can be used to characterise and decompose double-bounce scattering (Plank et 

al. 2017). The output of decomposition can be used as an input to hierarchical classification to 

segregate forest from water. Costa (2004) used region-based segmentation of polarimetric SAR 

interferometry (Pol-InSAR) to reduce the effect of double-bounce on LSW mapping. The authors 

produced seasonally inundated maps with accuracies exceeding 95% for inundated vegetated 

areas. However, the interpretation and decomposition of scattering processes based on Pol-
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InSAR require substantial ground truth measurements such as tree heights, diameters, density, 

leaf size and angular distribution, ground roughness and dielectric constant of water (Costa 

2004). 

The roughness of a surface influences the way in which the signal wavelength captures the 

surface in the image (Ozesmi & Bauer 2002). Longer wavelengths are generally less sensitive to 

surface roughness. A rough surface can appear smooth in the P-band (with a specular reflection) 

and very rough in X-band (with diffuse scattering characteristics). Costa et al. (2002) found that 

the difference between flooded and non-flooded areas was clearly distinguishable on JERS-1 

(23.5 cm wavelengths) images, whereas on RADARSAT-1 (5.6 cm wavelengths) images were 

more difficult to differentiate. 

2.5.2 Incident angle dependency 

SAR systems are side looking, therefore the SAR backscatter of LSW features behaves 

differently depending on the radar incidence angle. Generally, backscatter decreases with an 

increase in incidence angle (Hess, Melack & Simonett 1990; Manjusree et al. 2012). An increase 

in incidence angle increases the route that the radar signal has to travel through the canopy layer, 

which means that the canopy attenuation on the radar signal also increases (Töyrä, Pietroniro & 

Martz 2001). Manjusree et al. (2012) found that inundated forests appeared relatively bright at 

incidence angles ranging from 20–49°. Some studies found that the effect of incidence angle was 

insignificant (Imhoff et al. 1986; Long, Fatoyinbo & Policelli 2014; Ormsby, Blanchard & 

Blanchard 1985), whereas in others (Hess et al. 1995; Lang, Townsend & Kasischke 2008; 

O'Grady, Leblanc & Bass 2014; O’Grady, Leblanc & Gillieson 2013; Wang et al. 1995) definite 

angular dependencies were noted, with smaller incidence angles being preferred for 

distinguishing flooded from non-flooded forests. 

Töyrä, Pietroniro & Martz (2001) compared the response of C-band radar to water at both low 

(27.5o) and high (47.5o) incidence angles. The study came to two conclusions: 1) at high 

incidence angles, wind-induced effects are suppressed, while at low angles the return signal from 

water has similar values to those for dry land; and 2) at angles greater than 45°, the path length 

through the canopy cover increases and the canopy attenuation prevents the signal from 

penetrating the vegetation. Santoro et al. (2015) demonstrated that the dependence of the ASAR 

backscatter on the incidence angle was land cover specific in the São Francisco River, Brazil. 

LSW features showed the strongest sensitivity to incidence angle among all land cover classes 

(O’Grady, Leblanc & Gillieson 2013). 
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2.5.3 Frequency dependency 

Canopy penetration is less at higher frequencies, therefore longer wavelengths are better at 

penetrating vegetation canopy (Töyrä, Pietroniro & Martz 2001). Microwaves at higher 

frequencies (e.g., C-band 3.8–7.5GHz) tend to interact primarily with the upper portion of the 

canopy and have less potential for discriminating between water and non-water features in 

inundated tall forests (Figure 2.4). White et al. (2015) stated that P-band (30−100 cm 

wavelengths) radar signals penetrate nearly all canopies; L-band signals (15−30 cm) penetrate 

many canopies; and C-band (3.75–7.5 cm) and X-band (2.4–3.75 cm) signals only penetrate 

open canopies or dense canopies during leaf-off conditions or if the cover story is dead. 

 Adapted from Brisco (2015) 

Figure 2.4 Response of a forest stand to X-, C- and L-band microwave energy 

L-band (15.0–30.0 cm wavelengths) is recommended for LSW mapping beneath forest canopies 

(Hess et al. 1995; Manavalan, Rao & Krishna Mohan 2017; Pope et al. 1997; Townsend & 

Walsh 1998; Töyrä, Pietroniro & Martz 2001), but such data are not readily available for some 

areas. The high spatial resolution X-band on TerraSAR-X (Martinis, Kersten & Twele 2015) and 

COSMO-SkyMed (Refice et al. 2014) has also been used for mapping vegetated floodplains with 

encouraging accuracy. Martinis, Kersten & Twele (2015) proposed a fully automated processing 

chain for near real-time flood detection using high-resolution TerraSAR-X data over Germany 

with an accuracy of approximately 85%. Unfortunately, both TerraSAR-X and COSMO-

SkyMed have poor coverage, especially in Africa (Gstaiger et al. 2012; Martinis, Kersten & 

Twele 2015). This limitation of L and X bands motivated the development of research in 

investigating the suitability of C-band SAR to map FV (Martinis, Plank & Ćwik 2018; Twele et 

al. 2016). 
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2.5.4 `Polarisation dependency 

The polarisation of the SAR signal has an effect on the nature and quantity of backscatter. The 

radar antenna can transmit and receive signals in either horizontal (H) or vertical (V) mode and 

sensors can be either co- (HH and VV) or cross- (VH and HV) polarised (Henderson et al. 1998). 

Different SAR polarisations react differently over the same land cover and several studies have 

evaluated the effect of polarisation for LSW mapping (Clement, Kilsby & Moore 2018; 

Pulvirenti et al. 2016a; Tsyganskaya et al. 2018b). Polarimetric SAR (PolSAR) sensors 

coherently transmit and receive both vertical and horizontal polarisations (Brisco et al. 2011). 

They show the backscatter of any polarisation including nonlinear polarisations. PolSAR images 

have both the phase and amplitude information, thus providing a wealth of information about 

physical properties of a surface (Franklin et al. 2018; Pulvirenti et al. 2016b). Compared to co-

polarised images, high frequency and multi-polarised radar systems provide more information 

for differentiating complex LSW features (Hess & Melack 2003; Martinis & Rieke 2015). 

Studies on the use of low-frequency (L-band) data observed several advantages of co-

polarisation (HH or VV) for the separation of flooded and non-flooded forests (Hess, Melack & 

Simonett 1990; Manavalan, Rao & Krishna Mohan 2017). Wang et al. (1995) observed that, 

when the wavelength and incidence angle are identical, canopy volume scattering in flooded 

forests contributes more to the total backscatter at C-VV than at C-HH polarisations. Conversely, 

when interacting with vertically oriented vegetation, the response of the C-VV-polarised wave is 

greater and the penetration into the vegetation is thus reduced. Lang et al. (2015) observed that 

polarisation ratios, for example the ratio of L-HV and L-HH bands, are useful for distinguishing 

flooded versus non-FV. 

Although many studies have concluded that HH polarisations provide better accuracies for LSW 

mapping in vegetated environments, the availability of such data is limited in Africa. In addition, 

Manavalan, Rao & Krishna Mohan (2017) observed that C-band VH polarised images are able to 

map and quantify partially submerged areas with greater accuracy than the L-band HH polarised 

images, and as such they may provide an alternative solution. 
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2.6 DATA FUSION TECHNIQUES FOR MAPPING LSW 

Information provided by an individual sensor may be incomplete (e.g. due to cloud cover in 

multispectral images) or inconsistent and inexplicit (e.g. blurred, hazy). One solution is to make 

use of data acquired by multiple sensors. Data fusion is, within the context of EO, the process of 

combining data from multiple sources (or periods) to obtain more information about a particular 

area or at a particular time, while attempting to minimise loss or distortion of the original data 

(Amarsaikhan et al. 2012; Whyte, Ferentinos & Petropoulos 2018). Data fusion approaches are 

mostly applied to solve temporal and spatial resolution issues, or to enhance image details (Irwin 

et al. 2017). Data fusion techniques are important for LSW mapping, particularly in 

heterogeneous environments, because of the complex variability in spectral responses of 

vegetation, sediments and dissolved substances in the water. Using multiple sources of data 

allows for the consideration of different interactions with the ground surface and the exploitation 

of feature extraction capabilities of the different sensors. For example, radar sensors record 

backscatter attributes in various polarisations, whereas optical sensors record the sum of radiance 

reflected at different wavelengths (Tiner, Lang & Klemas 2015). As a result, optical images are 

far more directly interpretable (due to them being comparable to what humans observe) and are 

rich in information content, while radar images are not easy to directly interpret, but have high 

confidence/certainty with respect to presence of moisture content, surface roughness and 

dielectric properties. The fusion of radar and optical data thus has the potential to decrease 

classification error and increase interpretation robustness. 

According to Pohl & Van Genderen (2017), data fusion can be performed at three different 

processing levels, namely pixel, feature and decision processing levels (Figure 2.5). Image 

fusion at pixel level involves the merging of multiple datasets at the lowest processing level 

using techniques such as the augmented vector approach in which the image bands from the 

different sensors are combined into one common database and classified as if they were obtained 

by one single sensor (Töyrä et al. 2002). The datasets are simply resampled and co-registered to 

the same pixel size and map projection respectively. Fusion at feature level requires the 

extraction of segmented LSW features recognised in the various data sources. These segmented 

water features (objects) from multiple sources are then fused for further assessment using 

statistical approaches such as the artificial neural network (ANN) (Pohl & Van Genderen 2017). 

Lastly, decision level fusion is a method that combines outputs from multiple algorithms to 

produce a final fused information-rich product. The obtained information is finally combined 

(based on decision rules) to reinforce common interpretation, resolve differences and furnish a 
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better understanding of the observed LSW objects. As an example, Shah-Hosseini, Safari & 

Homayouni (2018) used a decision based fusion method to fuse optical and radar LSW maps. 

These maps were derived from object-based SVM classification in which a voting strategy 

method was used. 

 
Adapted from Pohl & Van Genderen (1998). 

Figure 2.5 Processing levels of image fusion 

Recent developments in data fusion for LSW mapping are mainly driven by the: 1) increased 

availability of data from different, often complementary, sensors and sources; 2) a shift from 

statistical approaches to more powerful and flexible machine learning algorithms for data 

classification; 3) the introduction of operational image segmentation algorithms that allow for 

the processing of datasets at multiple scales; and 4) increased computer processing power. 

Based on the above-explained processing levels (Figure 2.5), data fusion can either be done by 

combining images acquired by different sensors (a multisensor approach) or by the same sensor 

(e.g., pan-sharpening). 

2.6.1 Multisensor or multisource approaches for LSW mapping 

Multisensor or multisource image fusion approaches for LSW mapping involve the combination 

of two or more geometrically registered images (Ghassemian 2016) and can be performed by 

considering the temporal and spatial resolution parameters of the datasets. In this review, the 
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focus is on multisensor image fusion that involves: 1) radar and multispectral data from different 

sensors (Bwangoy et al. 2010; Torbick & Salas 2015); 2) multispectral images from different 

sensors (Chen et al. 2017; Dao & Liou 2015; Zhang et al. 2018); and 3) radar images from 

different sensors (Mahdianpari et al. 2017). 

Although many LSW mapping studies obtained satisfactory results using multispectral and radar 

RS images separately, the combination of optical and radar imagery has been reported to 

increase accuracy (Blaes, Vanhalle & Defourny 2005; Joshi et al. 2016). Skidmore, Woodgate & 

Richards (1986) were pioneers of multisensor work for LSW mapping as they combined single-

date images of LANDSAT MSS and SIR-B data to classify water in the Riverine Forest, 

Australia. The highest classification accuracy was achieved when the two data sources were used 

in combination, as opposed to individually. Li et al. (1995) and Wang, Koopmans & Pohl (1996) 

combined ERS-1 and Landsat TM data for wetland identification and FV mapping respectively. 

The latter study found that the accuracy increased by 7.3% when the two data sources were used 

in combination, whereas Wang, Koopmans & Pohl (1996) concluded that the multisensor 

approach improved interpretation capability of RS data in flood mapping. Töyrä et al. (2002) 

used the Mahalanobis distance classifier (Mahalanobis, Vijaya Kumar & Sims 1996) for wetland 

mapping on a RADARSAT and SPOT scene, resulting in accuracies of 76% and 80% 

respectively, whereas a combination of the single-date scenes resulted in an accuracy of 92%. 

Maillard, Alencar-Silva & Clausi (2008) used RADARSAT-1 and the combination of 

RADARSAT-1 and ASTER data to delineate palm swamps. They found that the combination of 

SAR and multispectral-based classification did not yield better results to those that were obtained 

by only using the visible and NIR bands of the ASTER image. Recently, Whyte, Ferentinos & 

Petropoulos (2018) developed a synergistic approach for monitoring wetlands based on the 

multiple-date fusion of S1 and S2 data. They found that the combination of the datasets 

significantly increased the wetland classification by up to 2.4% in areas with overlapping 

wetland and non-wetland classes compared to the independent classification of either S1 or S2 

images. 

Few studies have fused lidar and SAR data for LSW mapping. The application of lidar data is 

limited by its application to small areas only, complex data processing and high acquisition costs 

(Joshi et al. 2016; Li & Guo 2015). One exception is Millard & Richardson (2013), who applied 

RF for wetland mapping using RADARSAT-2 and Reigl LMS Q680 data. Their results showed 

that the classification accuracy when fusing SAR imagery with lidar derivatives did not exceed 

the accuracy obtained when only using SAR. Conversely, Irwin et al. (2017) fused three LSW 
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classification maps derived from SAR, optical and airborne lidar datasets. Results showed a 

water classification uncertainty of 4–9% when using the fused data compared to 17–23% 

uncertainty when using a single SAR polarisation. Based on these examples, it seems that 

combining a variety of data sources will increase reliability of LSW mapping in complex 

landscapes. 

2.6.2 Pan-sharpening 

Pan-sharpening (PS) or ‘refining’ is an example of the sharpening techniques whereby a fine-

resolution multispectral image is produced by combining a lower resolution multispectral image 

with a finer resolution panchromatic image (Vivone et al. 2015; Zhang 2010). PS is premised on 

the availability of a high spatial resolution panchromatic (PAN) band of the same scene and aims 

to downscale the coarse multispectral imagery to the spatial resolution of the PAN band (Du et 

al. 2016). It is feasible to use PS with RS images that have coarse multispectral bands and a fine 

spatial resolution PAN band (approximately the same spectral range as the coarse-resolution 

bands), such as Landsat TM/ETM+/OLI, SPOT, IKONOS and Quick Bird imagery. 

Many pan-sharpening methods have been proposed in literature to produce spatially enhanced 

multispectral images for LSW mapping (Du et al. 2016; Kaplan 2018; Yang et al. 2017). These 

methods are divided into two groups, namely the component substitution (CS) and multi-

resolution analysis (MRA) group (Li, Jing & Tang 2017). The CS approaches are based on the 

replacement of a component that is attained by a spectral transformation of the multispectral 

bands with the PAN image (Li, Jing & Tang 2017). Examples of CS methods are the intensity-

hue-saturation (IHS) (Tu et al. 2001), Gram-Schmidt (GS) (Laben & Brower 2000) and principal 

component analysis (Welch 1987). The CS methods are easy and quick to implement and the 

generated images yield higher spatial quality with sharper edges. However, the CS methods 

suffer from spectral distortions since these techniques do not observe different spectral response 

ranges between the PAN and multispectral channels (Li, Jing & Tang 2017). 

The MRA techniques are based on the introduction of the spatial details that are obtained 

through a multi-resolution decomposition of the PAN image into the up-sampled multispectral 

bands (Vivone et al. 2015). Examples of MRA methods popularly used for LSW mapping are 

high-pass filtering (HPF) (Chavez, Sides & Anderson 1991), a trous wavelet transform (ATWT) 

(Ranchin & Wald 2000) and undecimated or decimated wavelet transform (Nason & Silverman 

1995). MRA-based methods are better at preserving spectral information of the original 

multispectral images than the CS methods. However, MRA methods may cause spatial 

Stellenbosch University  https://scholar.sun.ac.za



  44 

distortions, such as ringing or aliasing effects, originating shifts or obscured profiles and textures 

(Li, Jing & Tang 2017). There is no specific PS technique for the mapping of LSW bands as 

each of them is associated with strengths and weaknesses. For example, Rokni et al. (2015) 

found that the Gram-Schmidt PAN band provided surface water change detection maps of higher 

accuracy when compared with IHS and HPF derived from Landsat TM. 

Although S2 does not have a PAN band, the principle of pan-sharpening can be used to 

downscale the lower resolution (20 and 60 m) bands to the high-resolution (10 m) bands. 

Generally, three approaches exist (Du et al. 2016; Wang et al. 2016). The first approach produces 

an artificial PAN band by averaging all the 10 m multispectral bands (Kaplan 2018). The second 

method uses the NIR band, which is close to the SWIR band on the EMS as a PAN-like band 

(Du et al. 2016). The third approach is to use the 10 m resolution channel with the highest 

correlation with the band being sharpened (Kaplan 2018). The selection of a PS technique has a 

direct influence on the derived LSW maps (Du et al. 2016; Wang et al. 2016; Yang et al. 2017). 

Du et al. (2016) used the HIS, ATWT, HPF and GS PS methods to produce a 10 m MNDWI 

from which waterbody maps were generated. ATWT was found to produce LSW maps with the 

highest accuracy. Yang et al. (2017) found that the LSW maps derived from images pan-

sharpened with the GS technique were the most accurate as it maintained the consistency of 

image spectral characteristics. In contrast, Kaplan (2018) found that pan-sharpening using a 

wavelet principal component resulted in a MNDWI that was the most appropriate for LSW 

mapping. The authors concluded that more research is needed on deriving accurate high-

resolution SWIR bands from S2 data for LSW mapping in vegetated and optically complex LSW 

environments. 

2.7 TRADE-OFFS BETWEEN SATELLITE DATA AVAILABILITY, COSTS, 

APPLICABILITY AND TECHNIQUES FOR LSW MAPPING 

The previous decade has witnessed much improvement in the application of RS in LSW 

mapping (Čotar, Oštir & Kokalj 2016; Du et al. 2016; Liu, Yao & Wang 2016). Still, LSW 

mapping using RS imagery is impaired by technical and non-technical constraints. The non-

technical limitations include the lack of trained analysts, as well as socio-political and economic 

constraints (Rahman & Di 2017). Many local governments have mentioned monetary constraints 

for personnel training and acquisition of hardware and software as a hindrance to the adoption of 

RS technology for monitoring LSW during flood and drought events (Rahman & Di 2017; 

Revilla-Romero et al. 2015). Political and organisational factors, as well as resistance by 

authorities to adopt new science and technology, exacerbate this. It has been observed that it 
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often takes time to convince stringent political structures, particularly in local government, to 

support the use of RS. Furthermore, licensing of software for manipulating RS imagery 

complicates the use of satellite imagery. When government agencies or practitioners purchase 

commercial software it comes with various licensing restrictions which may create distractions. 

However, the introduction of open access GIS and RS software such as QGIS (Quantum 

Geographic Information Systems) and SNAP enable the free processing and analysis of satellite 

data. 

Technical limitations include trade-offs between the temporal, spatial and spectral resolution of 

sensors, and dealing with contextual complexities of heterogeneous LSW environments (Teng et 

al. 2017; Yan et al. 2015). The major challenge facing researchers who deal with low and 

medium spatial resolution multispectral sensors is the issue of mixed pixels. Pierdicca, Pulvirenti 

& Chini (2018) showed that both high temporal and spatial resolution data are needed for LSW 

mapping in heterogeneous environments. Due to the fragmentation of land cover features in 

vegetated floodplains, as well as in landscapes where LSW features are often turbid and 

eutrophic, RS data with resolutions of higher than 10 m are required (Pierdicca, Pulvirenti & 

Chini 2018; Thomas et al. 2015). The unavailability of ground observations for the validation of 

RS data has also been cited as a limiting factor of EO approaches to LSW monitoring (Bello & 

Aina 2014). 

Despite the above mentioned impediments, the future of LSW mapping using RS seems 

promising for a variety of reasons. The advent of freely available RS data acquired by relatively 

high spatial and temporal resolution, such as the constellation of Sentinel satellites, has opened 

up new possibilities for LSW mapping. For example, the S2 constellation increases the chances 

of obtaining cloud free images during flood events. Cloud-based platforms open up RS datasets 

and technologies to a much wider audience as users need no technical or financial capacity to 

establish the large computing resources and data storage devices needed for processing such data 

(Amitrano et al. 2018). Cloud-based techniques allow for consistent low-key updating of 

information which can be used for a wide variety of applications (Gorelick et al. 2017). 

Consequently, the continuous launching of EO satellites provides continuous, up-to-date, low 

cost data collection for large regions of the globe and is particularly beneficial for LSW 

mapping. 

This literature review has shown that most studies have evaluated the utility of multispectral data 

for LSW mapping, whereas the use of SAR data is less prominent. The limited number of studies 

using SAR data can be largely attributed to the cost, availability, interpretation and processing 
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issues associated with this data (Plank et al. 2017). However, based on recent research, the use of 

SAR data for LSW mapping in FV is increasing. This is attributed to the recent launch of new 

sensors such as the S1, which can provide data frequently and no cost for long-term. 

Furthermore, the realisation of the capacity of SAR sensors to penetrate cloud cover and observe 

FV (unlike multispectral sensors) has resulted in an increase in the application of SAR data for 

LSW mapping (Plank et al. 2017; Twele et al. 2016). 

Other LSW mapping studies using RS data have demonstrated that in situ observations using 

smartphones with high-resolution cameras and UAVs provide useful information for the 

validation of maps derived from satellite data (McCallum et al. 2016; Wang et al. 2018). Local 

communities can share photos of the onset of flooding on social media such as Facebook and 

Twitter. For example, the PetaJakarta twitter account in Jakarta, Indonesia, received more than 

160 000 tweets and images within 24 hours of the inception of flooding on 5 February 2014 

(Holderness & Turpin 2015). Feng, Liu & Gong (2015) used UAVs to collect high-resolution 

data and demonstrated that they have great potential for rapid and accurate detection of 

inundated areas in complex urban landscapes. Data from UAVs and mobile phones can enrich 

the hydrologist’s knowledge of LSW dynamics, especially when integrated with satellite data. 

A new group of studies focusing on the use of RS in LSW mapping in heterogeneous and 

optically complex environments has demonstrated an increased potential of employing 

multisource data for near real-time LSW mapping (D'Addabbo et al. 2016; Franklin et al. 2018) 

and solving the problem of mixed pixels (Ouled et al. 2018), observing water under FV 

(Martinis, Kersten & Twele 2015), and trading off between temporal and spatial resolution 

(Huang et al. 2016). Monitoring the changes of LSW using remotely sensed data generally 

requires both fine spatial resolution and short revisit time. Data fusion is the most viable solution 

for providing such data. Huang et al. (2016) fused coarse spatial (375 m) and high temporal 

(daily) resolution Visible Infrared Imaging Radiometer Suite (VIIRS) data with medium spatial 

(30 m) and low temporal resolution (16 days) Landsat-8 data to generate real-time LSW maps 

with fine spatial resolution. Rebelo (2010) combined images derived from ALOS/PALSAR and 

Landsat TM to map wetland sites with an accuracy of 89%. Franklin et al. (2018) combined data 

from RADARSAT-2 and Landsat-8 for wetland classification, with an OA of greater than 90%. 

Although both studies managed to classify wetlands successfully, RADARSAT-2 and 

ALOS/PALSAR data are not freely available and these studies were carried out in small areas. 

There is thus a need to evaluate freely available SAR and multispectral data with global 

coverage, such as the data provided by S1 and S2, for operational LSW mapping and monitoring. 
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2.8 CONCLUSION AND THE WAY FORWARD 

The application of RS for LSW mapping is promising given the development of powerful 

techniques such as machine learning, data fusion and multisensor approaches, and present day 

technologies such as smartphone applications, cloud-based storage and processing systems (e.g. 

Google Earth Engine), social media and UAVs. However, there is a cut off between academic 

research on RS for LSW mapping in heterogeneous environments and the operationalisation of 

remotely sensed data for hydrological applications. A transformation from science-driven 

approaches to well-defined, user-oriented applications of RS is needed for monitoring floods and 

the dynamics of waterbodies. Furthermore, given the poor economic situations of most 

developing countries, LSW mapping techniques should be robust, cheap and autonomous. 

Although much progress has been made in sensor development and LSW mapping techniques, 

three key issues for improving LSW mapping – particularly in complex environments (e.g. 

vegetated floodplains and landscapes with turbid, eutrophic or optically shallow waterbodies) 

such as in many places of southern Africa – require more research. First, despite extensive 

research on land use and land cover classification; there is little research on solving the issue of 

mixed pixels, which is of particularly relevance to the mapping of LSW using coarse spatial, 

high temporal resolution imagery. Second, more research is needed to evaluate the potential of 

the new generation of sensors, specifically those mounted on the S1 and S2 satellites. These data 

sources hold much potential for LSW mapping in heterogeneous and complex environments as 

they are freely available, have relatively high spatial resolutions and frequent revisit periods. 

Finally, the emergence of datasets with high temporal resolution has created an opportunity for 

autonomous LSW mapping and near real-time LSW monitoring. There is thus a need to compare 

popular rule-based techniques (e.g. thresholding) with machine learning classification algorithms 

(such as SVM, k-NN, DT and RF) to determine which of these approaches will be most 

appropriate for LSW mapping over large and complex areas.   
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CHAPTER 3:  A SPECTRAL UNMIXING METHOD WITH ENSEMBLE 

ESTIMATION OF ENDMEMBERS: APPLICATION TO 

FLOOD MAPPING IN THE CAPRIVI FLOODPLAIN2 

3.1 ABSTRACT 

The Caprivi basin in Namibia has been affected by severe flooding in recent years resulting in 

deaths, displacements and destruction of infrastructure. The negative consequences of these 

floods have emphasised the need for timely, accurate and objective information about the extent 

and location of affected areas. Due to the high temporal variability of flood events, Earth 

observation (EO) data at high revisit frequency is preferred for accurate flood monitoring. 

Currently, EO data has either high temporal or coarse spatial resolution. Accurate methodologies 

for the estimation and monitoring of flooding extent using coarse spatial resolution optical image 

data are needed in order to capture spatial details in heterogeneous areas such as Caprivi. The 

objective of this work was the retrieval of the fractional abundance of water (𝛾𝑤) by applying a 

new spectral indices-based unmixing algorithm to Medium Resolution Imaging Spectrometer 

Full Resolution (MERIS FR) data using a minimum number of spectral bands. These images are 

technically similar to the OLCI image data acquired by the S3 satellite, which are to be 

systematically provided in the near future. The normalized difference wetness index (NDWI) 

was applied to delineate the water surface and combined with normalized difference vegetation 

index (NDVI) to account for emergent vegetation within the water bodies. The challenge to map 

flooded areas by applying spectral unmixing is the estimation of spectral endmembers, i.e., pure 

spectra of land cover features. In our study, we developed and applied a new unmixing method 

based on the use of an ensemble of spectral endmembers to capture and take into account 

spectral variability within each endmember. In our case study, forty realisations of the spectral 

endmembers gave a stable frequency distribution of 𝛾𝑤. Quality of the flood map derived from 

the Envisat MERIS (MERIS) data was assessed against high (30 m) spatial resolution Landsat 

Thematic Mapper (TM) images on two different dates (17 April 2008 and 22 May 2009) during 

which floods occurred. The findings show that both the spatial and the frequency distribution of 

the 𝛾𝑤 extracted from the MERIS data were in good agreement with the high-resolution TM 

retrievals. The use of conventional linear unmixing, instead, applied using the entire available 

                                                 

2 Bangira T, Alfieri S, Menenti M, van Niekerk A & Vekerdy Z 2017. A Spectral Unmixing Method with Ensemble Estimation 

of Endmembers: Application to Flood Mapping in the Caprivi Floodplain. Remote Sensing 9: 1013-1021. 
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spectra for each image, resulted in relatively large differences between TM and MERIS 

retrievals. 

Keywords: Remote sensing; spectral unmixing; flood mapping; NDWI; coarse-resolution; 

mixed pixel; fractional vegetation 

3.2 INTRODUCTION 

Flooding is a natural hazard that causes more damage than any other natural hazard (Dimitriadis 

et al. 2016; Ganaie, Hashaia & Kalota 2013; Klemas 2015). Flood plains are often densely 

populated and most vulnerable to flood events. Flood monitoring in such areas is consequently 

required to mitigate the effects of flood disasters and to assess inundation damages. Floodplain 

mapping and flood risk assessment are frequently assessed using one-dimensional (1-D) and 

two-dimensional (2-D) hydraulic models (Costabile & Macchione 2015; Dimitriadis et al. 2016; 

Teng et al. 2017). A key element for the reliability of such model-based analyses is the accurate 

setup of the river model, which is primarily related to the representation of the topography and of 

the land surface hydraulic properties (Costabile et al. 2015; Jafarzadegan & Merwade 2017; 

Papaioannou et al. 2017). Earth observation by satellites has been shown to be helpful in this 

respect. The estimation and mapping of hydraulic roughness by (Mtamba et al. 2015), who used 

Radarsat-2 and Landsat TM images for spatial parameterisation of Manning’s roughness 

coefficient, is a good example. These authors emphasised the challenges of constructing an 

accurate estimator of hydraulic roughness. Accordingly, the opportunity of calibrating directly 

the model—estimated flooded area versus time against satellite retrievals of fractional water 

abundance, as proposed in this study, is a very promising approach to improve model accuracy 

and reliability. To reduce uncertainties in the parameters used, hydraulic models also require 

flow data or inundated areas for calibration purposes. Obtaining flow data is often challenging 

because many of the river systems that are prone to flooding are ungauged, inadequately gauged, 

or have gauges that are unreliable due to poor maintenance (Costabile & Macchione 2015; 

Jafarzadegan & Merwade 2017). For hydrological data-scarce and spatially extensive floodplains 

in remote regions, earth observation is the only viable and cost-effective alternative for mapping 

inundated areas (Ganaie, Hashaia & Kalota 2013; Klemas 2015). The lack of available flow data, 

augmented by restricted access, leads to data gaps that make effective and timely monitoring of 

river basins difficult. 

Frequent and accurate quantitative mapping of inundated area using EO data is receiving much 

interest within the field of flood damage assessment and management (Jain et al. 2005; Long, 
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Fatoyinbo & Policelli 2014; Skakun et al. 2014). Recent literature documents noticeable efforts 

of investigating the potential of flood inundation maps, derived from optical and radar image 

data, to calibrate and validate hydrological models in sparsely gauged or ungauged areas (Khan 

et al. 2011). In particular, in Khan et al. (2011) used flood maps derived from multispectral 

images and a distributed hydrologic model to characterise the spatial extent of flooding and 

associated hazards over sparsely gauged or ungauged basins. These studies demonstrated the 

utility of flood spatial extent obtained from satellite data to calibrate and evaluate hydrologic 

models. 

Several methods have been proposed to delineate inundated areas using remotely sensed data. 

These methods make use of: (a) reflected solar radiation (Ganaie, Hashaia & Kalota 2013; 

McFeeters 1996); (b) emitted thermal radiation (Brakenridge et al. 2007); and (c) microwave 

backscatter and/or emission (Long, Fatoyinbo & Policelli 2014; Tanguy et al. 2017). Reflected 

solar radiation methods are effective for assessing seasonal patterns of inundation in areas that 

have minimum vegetation and cloud cover (Teng et al. 2017; White et al. 2015). These methods 

are based on the principle that water strongly absorbs NIR radiation. Inundated areas can be 

mapped by thresholding NIR reflectance or by classifying normalized ratios of NIR, red, green, 

short-wave infrared, or middle infrared bands. Thermal radiation methods delineate water on the 

principle that land and water have different thermal inertia and emission properties. Passive 

microwave methods rely on the large difference in the emissivity of water and land area. For 

example, in Brakenridge et al. (2007) differentiated land and water using AMSR-E brightness 

temperature (𝑇𝑏 ) values, which are normally much lower for water than for land (𝑇𝑏 𝑙𝑎𝑛𝑑 >

𝑇𝑏 , 𝑤𝑎𝑡𝑒𝑟). Conversely, Shang, Jia & Menenti (2015) used a simplified radiative transfer model 

and linear model to retrieve the fractional area of water saturated soil (WSS) and standing water 

from the polarisation difference brightness temperature (PDBT) at 37 GHz measured by the 

Special Sensor Microwave Imager (SSM/I). 

Active microwave methods are based on the assumption that calm water acts as a specular 

reflector, returning low backscatter to the sensor. The water features will appear darker in the 

image as compared to non-water features. For instance, authors in Tanguy et al. (2017) 

successfully (accuracy > 85%) delineated floods by combining very high-resolution Radarsat-2 

(C-band, HH polarisation) data with flood return period data estimated for each point of the 

floodplain from a digital elevation model (DEM). SAR has become an important source of data 

to map flooded areas as the land surface can be observed regardless of the cloud cover, and 

during day or night. However, SAR data has been shown to be less effective in inundated areas 
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with emergent vegetation or when waves are present (e.g., in windy conditions) (White et al. 

2015). Woody vegetation is particularly problematic as its relatively rough surface leads to the 

radar signal being scattered diffusely, with flooded vegetated areas appearing bright on the image 

(White et al. 2015). The effect of rough surfaces is reduced when very high spatial resolution 

SAR data is used, but such data—acquired frequently and over large areas—remains costly. 

Spectral band ratioing has been the basis for formulating indices such as the NDWI for mapping 

water bodies (McFeeters 1996). NDWI has been used in many studies for mapping seasonal or 

long-term changes in water surfaces (Jain et al. 2005; McFeeters 1996). Authors in Jain et al. 

(2005) found that NDWI produced the best results compared to single-band (NIR) density slicing 

and Tasselled Cap wetness for mapping flood-affected areas in India using Landsat TM and IRS 

LISS III data. In Qiao et al. (2011), NDWI was first used to enhance water features, then a 

histogram segmentation method was applied on a re-defined NDWI based on a pixel-wise 

distance from the highest value of the NDWI. 

Given the temporal variability of flooding, very high temporal resolution data is required for 

flood monitoring. However, the spatial resolution of current multispectral data products acquired 

at high (e.g., daily) temporal resolution is low (250 m or lower) which negatively affects the 

performance of algorithms for accurately delineating inundated areas. In addition, although 

NDWI thresholding has been shown to be successful in mapping flood extent, it is not suitable in 

highly heterogeneous areas, especially when emergent or partly submerged vegetation is present 

(Ji, Zhang & Wylie 2009). This is attributed to the sensitivity of NDWI to vegetation water 

content (Gao 1996) and to the strong reflectance of vegetation in the NIR band (which is a 

component of the NDWI). The presence of mixed pixels, mostly at the edges of inundated areas, 

but in some situations also within flooded areas increases the sensitivity of NDWI to vegetation. 

Pixels in satellite images usually contain mixed spectral information due to the high variability in 

the distribution of land cover components. In its simplest representation, many areas include 

three land cover types, namely water, soil and vegetation. These types are likely to be mixed 

within observed targets, even at the relatively high spatial resolution (30 m) of the TM sensor. 

The spectral signal of a mixed pixel can be represented as a combination of the component 

spectral signals. The reflectance of a pixel in a particular spectral band may be represented as the 

sum of the reflectance values of all subpixel components (endmembers) in that band, weighted 

by the fractional abundance of each component (Gebbinck & Schouten 1995; Keshava & 

Mustard 2002; Settle & Drake 1993). To deal with the mixed pixel challenge, several approaches 

such as spectral unmixing (Sarker et al. 2015), fuzzy c-means (FCM) and possibilistic c-means 
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(PCM) (Foody 2000), and Bayesian unmixing models (Halimi et al. 2015) have been developed 

to attribute the fractions of each pixel to classes. 

Spectral unmixing (SU) is one of the most popular techniques used for analysing mixed pixels 

and has been used in studies to derive flood maps in areas where water was partly covered by 

vegetation (Ji, Zhang & Wylie 2009; Sarker et al. 2015; Settle & Drake 1993). SU is the 

procedure by which the measured spectrum of a pixel is decomposed into a collection of spectral 

endmembers and a set of corresponding fractional abundances within the pixel (Gebbinck & 

Schouten 1995; Keshava 2003; Keshava & Mustard 2002). Generally, SU results are highly 

dependent on the quality of spectral endmembers. As a rule, the endmembers must be fewer than 

the number of spectral bands, and all of the endmembers in the image must be specified. A 

method to improve the selection of endmembers by an adaptive procedure was presented by 

Sarker et al. (2015). This method improved flood mapping on three different sets of Landsat TM 

images of three different flood events in Australia. SU can be classified into linear and nonlinear 

unmixing approaches. In linear SU (LSU) it is assumed that the combination of spectral 

signatures (endmembers) is linear, meaning that incident radiation only interacts with each 

component independently, unlike nonlinear unmixing that considers the multiple scattering 

between different components (Keshava & Mustard 2002). More importantly, in linear unmixing 

it is also assumed that each endmember has a unique reflectance spectrum, equal for all pixels of 

the endmember. Linear approaches are preferred because they are simple and flexible. Although 

only a few studies have applied SU for flood mapping, it has provided successful outcomes. For 

instance, LSU provided a relatively successful (R2 = 0.79) overall estimate of the water area in 

the Senegal River Valley when it was applied to unmix just two endmembers, land and water, 

using NOAA AVHRR bands 4 and 5 and Landsat TM data (Sandholt et al. 2003). With the 

exception of Zurita-Milla et al. (2011), relatively little research has been done on unmixing 

MERIS data to map land cover and none specifically to delineate flooded areas. In one example, 

authors in Zurita-Milla et al. (2011) applied linear unmixing on MERIS data in order to extract 

subpixel land cover composition in the fragmented landscape of the Netherlands. This study 

addressed a rather different problem than ours, since it relied on fractional abundances of land—

cover classes determined from land cover data at high spatial resolution.  

When LSU is infeasible (Bioucas-Dias et al. 2012), nonlinear SU (NLSU) can be implemented. 

For instance NLSU was applied for surface water mapping by Xie et al. (2016a) using Landsat-8 

OLI to detect wet pixels in a highly heterogeneous urban environment. A quantitative accuracy 

assessment showed that the applied method gave the best performance in water mapping with a 

Stellenbosch University  https://scholar.sun.ac.za



  53 

mean user’s accuracy of 92% for test regions. A comparison of linear and nonlinear unmixing 

was done by Yu et al. (2017) and the study concluded that nonlinear approaches deal better with 

complex and mixed vegetation surfaces. For the sake of brevity, the reader is referred to Keshava 

(2003),Jain et al. (2005), Mazvimavi & Wolski (2006), Sarker et al. (2015) and Yu et al. (2017) 

for an overview, examples and comparison of SU methods. Although both linear and nonlinear 

approaches have achieved significant progress in decomposing mixed spectral signals, a robust 

technique does not yet exist, leaving end users with the difficult task of selecting the most 

appropriate approach (Keshava & Mustard 2002). 

In this study, we propose and evaluate nonlinear SU of NDWI observed with MERIS data to 

map flood extent in the highly heterogeneous Caprivi region. The proposed method relies on the 

estimation of fractional abundance of water (𝛾𝑤 by incorporating the fractional abundance of 

vegetation (𝛾𝑣) and three endmembers (soil, vegetation and water) in the NDWI equation. NDVI 

is used to estimate 𝛾𝑣 which gives the fraction of emergent vegetation within water bodies. The 

main objective of this work is to assess the methodology for mapping complex vegetated flooded 

areas using MERIS FR data at 300 m spatial resolution and to evaluate its performance by 

comparing the results against high (30 m) spatial resolution reference data obtained from Landsat 

TM imagery. The results are interpreted in the context of extending the method to data supplied 

by the recently launched S3/OLCI imaging spectrometer, which has a similar spatial resolution 

and spectral configuration to MERIS FR. The proposed application to Ocean and Land Colour 

Instrument (OLCI) on board S3 data will permit the monitoring of flood events at daily temporal 

resolution over large areas. The opportunity of calibrating directly the model-estimated flooded 

area versus time against satellite retrievals of fractional water abundance, as ours, is a very 

promising approach to improve model accuracy and reliability. The study also addressed a 

secondary objective by comparing the proposed method with the conventional LSU. 

3.3 MATERIALS AND METHODS 

3.3.1 Study area 

The study area (Figure 3.1) comprises the Caprivi floodplain, which is about 3200 km2 in size 

and is located between 17°30′ S and 18°05′ S and 24°15′ E and 25°15′ E. The Caprivi flood plain 

receives an annual rainfall of about 900 mm, of which most occurs during the summer months 

(November to April) (Long, Fatoyinbo & Policelli 2014). Summer is characterised by high 

temperatures, averaging 30 °C during the day and 15 °C during the night. During the dry winter 
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season (June to September) the mean temperature during the day is 25 °C and 2 °C at night (Hui 

et al. 2008). 

 

Figure 3.1 Location of the study area 

The Caprivi Basin is flanked by four rivers, namely the Zambezi, Linyanti, Chobe and Kwando. 

The Zambezi River, which is one of the largest rivers in Africa, flows along the border between 

Namibia’s Caprivi region and Zambia. The region is densely populated because it receives more 

rain than the other more arid regions of Namibia. Flooding is mainly caused by high rainfall in 

the upper Zambezi River Catchment area in Southern Congo, Angola’s Lunda Plateau and 

North-Eastern Zambia. Flooding is a regular occurrence in the Caprivi, with the most devastating 

floods experienced in March 2004, April 2008 and 2009. During the April 2008 flood event, the 

Zambezi River spilled over its banks, leaving a large area inundated. Authors in Miah (1988) 

reported that in April 2009, the Caprivi region of Namibia experienced the worst flooding in 

decades after heavy torrential rains across Angola, Namibia, and Zambia increased water levels 

in the Chobe, Kwando and Zambezi rivers. The impact was substantial since the Caprivi region 

is home to approximately 60 percent of the Namibian population. Infrastructure, agricultural 

land, conservancies, livestock and homes were washed away during April 2009. About 2500 to 

3000 people living in the area were evacuated to higher ground (UNICEF 2012).  
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Storm hydrographs and daily water levels at the Katimo Mlilo gauge (Figure 3.1) for the period 

from 2008 to 2011 are shown in Figure 3.2. The dotted lines show the flood threshold for the 

water level and discharge as provided by the Namibian Meteorological Department.  

  
Figure 3.2 Yearly cycle of Zambezi River: (a) discharge hydrograph; and (b) water level for the period from 2008 to 

2011. The dotted line shows the flood threshold whereas the black circles point out the flooding events 

considered in this study 

3.3.2 Remote sensing data 

There were 16 TM and 88 MERIS cloud free/low cloud cover images for the study area during 

the flood season March to May and from 2008 to 2011. Among these, only two matching pairs of 

high (TM) and low (MERIS) spatial resolution data products were available for testing the 

proposed method. Landsat 5 is a sun-synchronous, near-polar orbit satellite operating at an 

altitude of 705 km, with a revisit time of 16 days. The TM sensor is a whiskbroom scanner with 

three visible, three infrared and one thermal bands with 185 km imaging swath. The bands have 

central wavelengths of approximately 0.49, 0.56, 0.66, 0.83, 1.67, 11.5 and 2.24 μm, 

respectively. MERIS is a push broom imaging spectrometer operating in the visible and near 

infrared (VNIR) spectral range from 400 to 900 nm with a spatial resolution of 300 m. MERIS 

has a three-day revisit time and fifteen spectral bands, programmable in position and bandwidths 

by ground command, which were set by default to nominal centre wavelengths of 0.413, 0.443, 

0.490, 0.510, 0.560, 0.620, 0.665, 0.681, 0.708, 0.753, 0.762, 0.779, 0.865, 0.885 and 0.9 μm 

with typical bandwidths of 10 nm. 

The image dates (Table 3.1) were selected to coincide with the flood events. The choice of the 

image pairs was primarily based on the shortest interval between acquisition dates, and 

secondarily on their coverage of the study area. Given that the image pairs were acquired at more 

or less the same time (apart from the second TM image, which was acquired a day before the 

(a) (b) 
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MERIS image), we assumed similar cloud, haze and water surface roughness (due to wind) 

conditions. The MERIS data were considered to be the primary source of observations, while the 

higher resolution TM data were used as reference. According to Congalton & Green (2008), 

high-resolution imagery can be used as reference for land cover mapping, as long it has a ten 

times higher spatial resolution compared to the imagery being assessed. The 30 m TM images 

consequently met this requirement for the 300 m MERIS images. 

Table 3.1 A summary of EO data used in this study 

Image Pair  Sensor 
Acquisition Date and 

GMT 
Spatial Resolution Temporal Resolution 

Pair 1 MERIS 17 April 2008 08:09 300 m 3 days 

TM 17 April 2008 08:13 30 m 16 days 

Pair 2 MERIS 23 May 2009 08:07 300 m 3 days 

TM 22 May 2009 08:12 30 m 16 days 

3.3.3 Pre-processing 

Surface spectral reflectance was estimated by performing atmospheric correction of the satellite 

Top of Atmosphere (TOA) radiance measurements. MERIS data were atmospherically corrected 

using the SMAC (Simplified Method for Atmospheric Corrections of satellite measurements) 

algorithm (Rahman & Dedieu 1994) (Processor 1.5.203) as implemented in the open source 

software package BEAM 5.0 Brockmann Consult, Geesthacht, Germany (Basic ERS and Envisat 

(A)ATSR and MERIS) (Rahman & Dedieu 1994). The algorithm is a semi-empirical 

approximation of atmospheric radiative transfer and takes into account the attenuation due to 

atmospheric absorption and scattering. 

FLAASH (Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes) (Matthew et al. 

2000), as incorporated in the Environment for Visualising Images (ENVI) software, was used for 

converting the TM at-sensor radiance to at-surface reflectance. FLAASH is an atmospheric 

correction code based on the MODTRAN (MODerate resolution atmospheric TRANsmission) 

radiative transfer model and can be applied to spectral analysis and atmospheric retrieval 

methods, such as per-pixel retrievals of precipitable water vapour and aerosol optical depth. 

Other applications include estimation of scattering for compensation of adjacency effects, cloud 

detection and smoothing of spectral structure resulting from an imperfect atmospheric correction. 

FLAASH improves the accuracy of the atmospheric correction by detecting and compensating 

for sensor-introduced artefacts such as optical smile and inaccurate spectral calibration. MERIS 

and TM image pairs were co-registered using an image-to-image first order polynomial 

transformation.  
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3.3.4 Linear spectral unmixing 

The performance of the proposed method, described in Section 3.5, was compared to the 

conventional LSU method for mapping inundated areas. LSU is a spectral mixture analysis 

procedure that decomposes a mixed pixel into various distinct components. Pure components are 

assumed to have a unique reflectance spectrum and be uniformly distributed in separate portions 

within the field of view. It has been successfully applied for estimating snow-cover fraction of 

Andes using TM images (Vikhamar & Solberg 2003), forest species abundance in North Pindos 

National Park, Greece, based on CHRIS/PROBA images (Stagakis, Vanikiotis & Sykioti 2016), 

crop yield estimation for a grain sorghum field in south Texas using a QuickBird imagery (Yang 

et al. 2013), and mapping of water turbidity using a HyMap imaging spectrometer (Alcântara et 

al. 2009). For a given number of endmembers (n), LSU can be expressed as: 


𝑘

=  ∑ 
𝑖
 ·  

𝑖,𝑘
+ 𝑘

𝑛

𝑖=1

 

Equation 3.1 

where 𝜌𝑘 is the observed reflectance of a pixel at wavelength (k); 

 𝜌𝑖,𝑘 is the reflectance of endmember i at wavelength (𝑘);  

 𝛾𝑖 is the abundance of endmember i; and 

 휀𝑘 is the residual error. 

The unknown fractional abundances 𝛾𝑖 can be estimated with least square fitting of the observed 

spectra to Equation 3.1, if the number of endmembers is smaller than the number of spectral 

bands. An over-determined LSU problem was solved using Equation 3.1 based on fifteen 

MERIS bands and six TM bands (excluding the thermal band) to estimate the fractional 

abundances of water (𝛾𝑤), vegetation (𝛾𝑣) and (𝛾𝑠). The result of LSU is a grey scale image for 

each endmember, with pixel values representing the abundances (𝛾𝑖) in the range 0–1. The 

𝛾𝑤 image was selected for further analysis. 

3.3.5 Indices-based spectral unmixing 

In this study, endmembers were defined as pure components of water, soil, or vegetation and 

weighted by their fractional abundance when applying SU. Our new approach relies on the 

functional relationship between the 𝛾𝑤 and spectral indices (NDWI and NDVI). This is done by 

assuming that the observed pixel-wise spectral reflectance is a linear combination of the spectral 

reflectance of soil, water and vegetation endmembers, then using the pixel-wise spectral 

reflectance to determine NDWI and NDVI. The assumption is that the different components in a 
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pixel contribute independently to its reflectance (Cheruiyot et al. 2014). The NDWI SU equation 

for the estimation of 𝛾𝑤 is rewritten by substituting the (pixel) spectral reflectance values as 

linear combinations of the ones of the three endmembers, together with their abundances, where 

only 𝛾𝑤 is unknown and can be determined from observed NDWI. Because of the use of NDVI 

to estimate 𝛾𝑣 the pixel spectral reflectance appears twice in this equation, thus introducing the 

nonlinear SU (Barati et al. 2011). The use of NDVI modulates the reflectance spectrum of water 

in response to emergent vegetation. The potential advantage of this method, over conventional 

LSU, is the reduction of the number of spectral bands for which the endmembers have to be 

defined and the estimation of 𝛾𝑣 from NDVI. This is done by exploiting two main concepts: (1) 

the evidence of the strong water absorption in the near infrared and the higher green water 

reflectance; and (2) the reliability of using NDVI to estimate 𝛾𝑣 (Carlson & Ripley 1997). 

Although many spectral indices have been developed for separating water from other land cover 

classes in remotely sensed multispectral data, NDWI is the most commonly used (McFeeters 

1996; Qiao et al. 2011; Xu 2006). It has been used for flood mapping in various studies (Ganaie, 

Hashaia & Kalota 2013; Memon et al. 2015). NDWI is a dimensionless quantity used as an 

indicator of the surface wetness. The NDWI makes use of the green band because of the higher 

green water reflectance. The green band may be substituted by the SWIR or mid-NIR spectral 

bands to minimise sensitivity to the spectral reflectance of vegetation and maximise the 

sensitivity to the reflectance of water. In this study, the original formulation of NDWI 

(McFeeters 1996) was adopted, namely: 

NDWI =
𝜌𝐺 − 𝜌𝑁𝐼𝑅

𝜌𝐺 + 𝜌𝑁𝐼𝑅

 
Equation 3.2 

where 𝜌𝑔 is the spectral reflectance in the green region of the spectrum (band 2) and 

 𝜌𝑁𝐼𝑅  is the spectral reflectance in the near infrared region of the spectrum (band 4).  

NDWI (Equation 3.2) was computed using the TM green and near infrared bands (i.e., band 2 

and 4) centred at 560 nm and 830 nm; while with MERIS it was calculated using bands 5 and 13 

centred at 559.7 nm and 864.9 nm, respectively. 

NDWI values range from −1 to 1, with soil and terrestrial vegetation features having zero or 

negative values owing to their typically higher NIR reflectance compared to the green spectral 

reflectance. It has been demonstrated that NDWI thresholds are effective for eliminating exposed 

soil and terrestrial vegetation and retain open water features (McFeeters 1996; Qiao et al. 2011; 

Xu 2006). Suitable thresholds are influenced by the proportions of subpixel water/non-water 
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components. Nevertheless, many authors have applied NDWI > 0 as a threshold to detect 

presence of water (Gao 1996; Jain et al. 2005; McFeeters 1996). 

We give a special relevance to the use of NDWI in Equation 3.6 to estimate the abundance of 

water in a pixel. While this index clearly provides an excellent separation of water from land as 

seen in (McFeeters 1996) and Jain et al. (2005), in this study we unmix pixels based on our 

assumption that a mixed pixel is composed of vegetation, soil and water components. Therefore 

reflectance in green and (𝜌𝐺) and near infrared (𝜌𝑁𝐼𝑅) can be expressed as: 

𝜌𝐺 = 𝛾𝑤𝜌𝐺𝑤 + 𝛾𝑣𝜌𝐺𝑣 + 𝛾𝑠𝜌𝐺𝑠 Equation 3.3 

where 𝜌𝐺𝑤 is the reflectance in the green band of pure water (endmember) pixels; 

 𝜌𝐺𝑣 is the reflectance in the green band of pure vegetation (endmember) pixels; 

 𝜌𝐺𝑠 is the reflectance in the green band of pure soil (endmember) pixels; 

 𝛾𝑤  is the fractional abundance of water; 

 𝛾𝑣 is the fractional abundance of vegetation and 

 𝛾𝑠 is the fractional abundance of soil. 

and 

𝜌𝑁𝐼𝑅 = 𝛾𝑤𝜌𝑁𝐼𝑅𝑤 + 𝛾𝑣𝜌𝑁𝐼𝑅𝑣 + 𝛾𝑠𝜌𝑁𝐼𝑅𝑠 Equation 3.4 

where 𝜌𝑁𝐼𝑅𝑤 is the reflectance values in the NIR band of pure water (endmember) pixels; 

 𝜌𝑁𝐼𝑅𝑣 is the reflectance values in the NIR band of pure vegetation (endmember) 

pixels and  

 𝜌𝑁𝐼𝑅𝑠 is the reflectance values in the NIR band of pure soil (endmember) pixels. 

The fractional abundance of soil 𝛾𝑠 can be obtained as: 

𝛾𝑠 = 1 − 𝛾𝑣 − 𝛾𝑤 
Equation 3.5 

Incorporating Equation 3.3, Equation 3.4 and Equation 3.5 into Equation 3.2 the 𝛾𝑤 within a 

pixel can be expressed as: 

𝛾𝑤 =
𝛾𝑣 × (𝐷 − 𝐹) − 𝛾𝑣𝑁𝐷𝑊𝐼 × (𝐸 − 𝐶) + 𝐹 − 𝑁𝐷𝑊𝐼 × 𝐸

𝑁𝐷𝑊𝐼 × (𝐴 − 𝐸) + (𝐹 − 𝐵)
 Equation 3.6 

With coefficients A, B, C, D, E, and F being the sums and differences of the endmembers 

reflectance: 
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𝐴 = 𝜌𝐺𝑤 + 𝜌𝑁𝐼𝑅𝑤  
Equation 3.7 

𝐵 = 𝜌𝐺𝑤 − 𝜌𝑁𝐼𝑅𝑤 
Equation 3.8 

𝐶 = 𝜌𝐺𝑣 + 𝜌𝑁𝐼𝑅𝑣 
Equation 3.9 

𝐷 = 𝜌𝐺𝑣 − 𝜌𝑁𝐼𝑅𝑣 
Equation 3.10 

𝐸 = 𝜌𝐺𝑠 + 𝜌𝑁𝐼𝑅𝑠 
Equation 3.11 

𝐹 = 𝜌𝐺𝑠 − 𝜌𝑁𝐼𝑅𝑠 
Equation 3.12 

𝛾𝑣 can be estimated as a function of NDVI as described in Gutman & Ignatov (1998): 

𝛾𝑣 =
NDVI − 𝑁𝐷𝑉𝐼0

𝑁𝐷𝑉𝐼𝑖𝑛𝑓 − 𝑁𝐷𝑉𝐼0

 Equation 3.13 

where 𝑁𝐷𝑉𝐼0 is the NDVI value of a reference pure water pixel and 

 𝑁𝐷𝑉𝐼𝑖𝑛𝑓 NDVI value respectively of a reference pure vegetation pixel.  

We adopted a modification of Equation 3.13 applied by Gutman & Ignatov (1998) to estimate 

the fractional abundance of aquatic vegetation by setting 𝑁𝐷𝑉𝐼𝑖𝑛𝑓 to be equal to the maximum 

NDVI value of a pure vegetation pixel, while𝑁𝐷𝑉𝐼0 was set to the lowest NDVI value of an 

open (pure) water pixel within the study area. Selecting the maximum and minimum NDVI 

values ensures that the derived fractional vegetation cover values in the range from zero to one, 

given the characteristics of a spatially heterogeneous flooded area. Accuracy was evaluated by 

comparing the fractional abundance estimated with MERIS FR data with the reference map 

produced using the TM images. Using  𝛾𝑣 estimated with Equation 3.13 in Equation 3.6 

modulates the pixel reflectance at constant  𝛾𝑤, leading to indices-based spectral unmixing 

(IBSU). 

3.3.6 Automatic selection of endmembers 

As explained above, we identified three endmembers, namely pure water, pure vegetation and 

pure soil. The analyses described above, however, documented a significant variability of the 

reflectance values within each member, with the consequence that the estimated fractional 

abundances varied with the choice of the pixels to determine the reflectance spectrum of each 

endmember. To obtain robust estimates of the reflectance spectra of endmembers we devised a 
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two-stage procedure. In Stage 1 a number of samples for each endmember are selected, applying 

thresholds on 𝜌𝐺  and 𝜌𝑁𝐼𝑅. The threshold values define typical ranges of the spectral reflectance 

of water, vegetation and soil. The two thresholds will vary within each endmember. Stage 2 

gives an ensemble estimate of the abundances by random extraction of spectral samples from the 

Stage 1 sets, determining N realisations of the fractional abundances by applying Equation 3.6 

and using the median of the N realisations as final estimate of 𝛾𝑤. 

At Stage 1 pure water pixels have been defined as the pixels where  𝜌𝐺  is greater than 

𝜌𝑁𝐼𝑅 (McFeeters 1996). Pure vegetation pixels have been identified on the basis of NDVI values. 

At first a maximum NDVI value has been evaluated as the 90th percentile of the NDVI values in 

the image. Then a sample of pixels within a spectral neighbourhood of this maximum value, i.e., 

within a range of ±0.1 NDVI, was extracted. Pure soil pixels were at first identified by the 

following conditions: 𝜌𝑁𝐼𝑅 > 𝜌𝑅𝐸𝐷 > 𝜌𝐺𝑅𝐸𝐸𝑁, 𝜌𝑁𝐼𝑅 < 0.32, 𝜌𝑁𝐼𝑅 > 0.16 and NDVI < 0.14.The 

thresholds for soil endmembers were adapted by using as reference the spectral signature of wet 

and dry soil as found in Agapiou et al. (2016). This procedure yields a number of spectral 

samples for each endmember. A robust estimate of 𝛾𝑤 is obtained by extracting 40 realisations of 

the spectral endmembers, applying the unmixing method described above, (Equation 3.6 and 

Equation 3.13) to each realisation and determining the median 𝛾𝑤for each pixel, which yields the 

final map of 𝛾𝑤. 

The selection of spectral samples was evaluated with the support of a visual inspection of a true 

colour composite (R = red G = green and B = blue) of the high-resolution (TM) images. 

Vegetation, water and bare soil are clearly visible in this image and we evaluated whether the 

location of the spectral samples selected with the criteria described above was correct. Finally, 

the MERIS and TM reflectance spectra of a number of samples for each endmember were 

inspected to evaluate whether the selection of samples had been correct. Particularly, the SWIR 

reflectance in the TM bands 5 and 7 was used to verify the selection based on the reflectance at 

shorter wavelengths. 

In order to evaluate the impact of the choice of endmembers on the results, a sensitivity analysis 

was performed. The set of endmember pixels was selected by the automatic procedure. The 

retrieval of the water fractional abundance was repeated 40 times, with each iteration using 20 

pixels from the full set of the automatically selected pixels for each endmember. This procedure 

was repeated three times, each time changing randomly one of the endmember, i.e., soil, 

vegetation or water, and keeping fixed the remaining endmembers. 
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NDVI values for full vegetation cover and water were required to solve Equation 3.13. These 

values are estimates of the maximum and the minimum values of NDVI. To mitigate the impact 

of outliers, the percentiles 0.5% and 99.5% of the NDVI frequency distribution were used to 

estimate 𝑁𝐷𝑉𝐼0 and 𝑁𝐷𝑉𝐼𝑖𝑛𝑓 respectively. 

3.3.7 Accuracy assessment 

Accuracy assessment performed in this work mainly relied on the comparison of 𝛾𝑤 estimated 

with MERIS versus TM, which was used as reference since it was the highest spatial resolution 

product available on the selected dates. LSU is a widely used method used to map fractional 

abundance of land features and we also used it as a reference to evaluate our method. It has to be 

noted that LSU was applied using all the fifteen MERIS and 7 TM spectral bands, while our 

method used only three spectral bands, which are green, red and near infrared. 

Two comparative analyses were performed: 

1. Comparison between MERIS versus TM based 𝛾𝑤 obtained with the IBSU (Equation 3.5 

and Equation 3.6) to evaluate the impact of image spatial resolution on the 𝛾𝑤 estimated 

with our method. To compare the 𝛾𝑤 estimated with the MERIS data with the one 

estimated with TM a grid was constructed with each cell being 1200 m × 1200 m. The 

mean 𝛾𝑤 of each cell was calculated for both data sets and the cell averages compared. 

The arbitrary 1200 m × 1200 m grid was selected to sample the same area with both TM 

and MERIS. Cells of this size included a sufficient number (sixteen) of MERIS pixels. 

2. Comparison between MERIS versus TM 𝛾𝑤 estimated with Equation 3.6 and Equation 

3.13 with the 𝛾𝑤 obtained with Equation 3.1. 

To summarise, inundation maps were produced for each selected image by following these four 

steps: (1) Perform image pre-processing; (2) Calculate NDWI, NDVI and fractional vegetation 

cover; (3) Select (automatically) endmembers; and (4) Calculate 𝛾𝑤 with Equation 3.6 and 

Equation 3.13 using 40 different combinations of endmembers. Accuracy was assessed by 

comparing the MERIS 𝛾𝑤 map with the TM 𝛾𝑤 map and with the map obtained by applying LSU 

to the MERIS image data. 
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3.4 RESULTS 

3.4.1 Detection of water and vegetation features with MERIS and TM spectral indices 

To evaluate whether the NDVI and NDWI correctly captured water and vegetation features, 

samples of both indices were taken along four arbitrary transects plotted in Figure 3.3 and Figure 

3.4, respectively. In both cases MERIS data was resampled to the TM spatial resolution (30 m) 

using a nearest neighbour method. Apart from one sample in Transect 1 where the higher spatial 

resolution of TM image allowed the detection of a narrow water feature (Figure 3.3c), the 

MERIS and TM data detected the same water features and abundant vegetation. Moreover, the 

NDWI and NDVI values obtained with MERIS and TM were generally very similar. At a few 

samples in Transects 3 and 4, taken over prominent water features Figure 3.3e and Figure 3.3f, 

the MERIS NDWI values were higher than TM (close to 1). Conversely, the MERIS NDVI 

values at the same location (Figure 3.4e and Figure 3.4f) were much lower than in the TM 

image. This seems to suggest that, in spite of an increase in mixed pixels due to the lower 

resolution of MERIS, open water features were well represented by high NDWI and low NDVI 

values.  

To evaluate the consistency of NDVI and NDWI derived from MERIS versus TM, we extracted 

a larger sample of water features and vegetation cover, using as reference a true colour TM 

composite image (R: Band 4; G: Band 3; and B Band 2). Compared to TM the image, generally 

water and vegetation features were better separated by MERIS-based NDWI and NDVI values 

(Figure 3.5), due to the outliers in the distribution of TM NDVI and NDWI of water and 

vegetation. The latter implies a smaller class diameter and larger inter-class distance with 

MERIS data. In general, there seems to be a strong agreement, as shown by the large overlap in 

the scatter plot (Figure 3.5), between the NDWI and NDVI values of vegetation features as 

measured by the two sensors.  

Finally, we compared the TM and MERIS NDWI and NDVI over the entire study area. The 

frequency distributions of NDWI and NDVI, as determined with the MERIS and TM images on 

17 April 2008, are shown in Figure 3.6. The motivation of this analysis was to evaluate whether 

MERIS could act as a majority filter when sampling very heterogeneous pixels, assigning to the 

full pixel the spectral features of the land cover more abundant within the pixel. Figure 3.6 

clearly shows that the frequency distributions are comparable, confirming the evidence provided 

by the smaller samples analysed in Figure 3.3, Figure 3.3 and Figure 3.5. Only relative 
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frequencies can be compared given the very different numbers of MERIS and TM pixels for a 

given area of interest. 

 
Figure 3.3 NDWI calculated from (a) TM and (b) MERIS images acquired on 17 April 2008 as sampled along four 

transects (c–f) 
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Figure 3.4 NDVI calculated from (a) TM and (b) MERIS images acquired on 17 April 2008 as sampled along four 

transects (c–f) 
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Figure 3.5 Scatter plot of TM versus MERIS NDVI and NDWI over water and vegetation features 

The NDWI histograms, particularly the median values, are similar, i.e., mixed water features are 

captured in a comparable way by the two sensors, which suggest that the coarser spatial 

resolution of MERIS is not a major constraint on the retrieval of inundated areas. In contrast, the 

tails of the frequency distributions clearly show the spatial filtering effect of the MERIS lower 

spatial resolution. The TM observations capture both very high and very low values of NDWI 

and NDVI due to the higher spatial resolution. This gives a TM frequency distribution with 

extended tails not present in the MERIS frequency distribution.  

  
Figure 3.6 Histograms of (a) NDWI and (b) NDVI as generated from MERIS and TM images acquired on 17 April 

2008 

The small difference in the distributions of NDVI can be accommodated by using different 

values for 𝑁𝐷𝑉𝐼𝑖𝑛𝑓 and 𝑁𝐷𝑉𝐼0 (Table 3.3) when estimating vegetation fractional cover with 

(b) (a) 
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either MERIS or TM data. Evidence of some small water and vegetation features captured by 

TM but not by MERIS (due to its coarser spatial resolution) is noticeable at around NDWI 0–0.2 

and NDVI 0–0.1 respectively (see Figure 3.6). This can also be due to mixed pixels of two or 

more land cover classes in a portion smaller than the pixel resolution.  

3.4.2 Endmember selection 

The accuracy of the novel IBSU approach and of LSU depends on whether suitable spectral 

endmembers under dry and wet conditions can be accurately selected. This is particularly 

challenging for the soil endmember. It is, however, known that the spectral reflectance of soil 

varies as a function of physical, chemical and biological soil characteristics such as soil moisture 

content, soil texture (proportion of sand, silt and clay), surface roughness, iron oxide and organic 

matter content. Spectral reflectance of the water, vegetation and soil endmembers in the green 

and NIR bands (Table 3.2) were extracted from the MERIS and TM image data using the 

automatic selection procedure. 

Table 3.2 Mean NIR and green spectral reflectance of the automatically selected water, vegetation and soil 

endmembers (standard deviations shown in brackets) 

Image dates *𝛒𝐆𝐰 𝛒𝐍𝐈𝐑𝐰 𝛒𝐆𝐯 𝛒𝐍𝐈𝐑𝐯 𝛒𝐆𝐬 𝛒𝐍𝐈𝐑𝐬 

MERIS 
17 April 2008 

0.051 (±0.011) 0.034 (±0.012) 0.060 (±0.08) 0.241 (±0.033) 0.081 (±0.016) 0.198 (±0.043) 

TM 
17 April 2008 

0.038 (±0.049) 0.030 (±0.021) 0.060 (±0.011) 0.234 (±0.034) 0.105 (±0.016) 0.252 (±0.026) 

MERIS 
23 May 2009 

0.041 (±0.016) 0.023 (±0.012) 0.056 (±0.009) 0.214 (±0.030) 0.071 (±0.018) 0.187 (±0.057) 

TM 
22 May 2009 

0.026 (±0.046) 0.020 (±0.017) 0.055 (±0.011) 0.204 (±0.033) 0.090 (±0.019) 0.215 (±0.029) 

*ρGw is reflectance in green for pure water pixel; ρNIRw is reflectance in NIR for pure water pixel, ρGv is for reflectance in 

green for pure vegetation pixel, ρNIRv Reflectance in NIR for pure vegetation pixel, ρGs reflectance in green for pure soil pixel 

and ρNIRs reflectance in NIR for pure soil pixel. 

MERIS has slightly higher mean water reflectance in the green band (𝜌𝐺𝑤) as compared to TM 

data. There is no significant difference in the 𝜌𝐺𝑣 endmember selection between MERIS and 

TM. A slight difference in near infrared reflectance of vegetation endmembers can be observed 

when comparing different dates, i.e., the 𝜌𝑁𝐼𝑅𝑣 in April 2008 is higher than that of May 2009 for 

both sensors. Moreover, 𝜌𝑁𝐼𝑅𝑣 is also slightly different if comparing MERIS and TM values in 

the same date of May 2009, but this is probably related to the different dates and times of the 

MERIS and TM observations. In general, MERIS shows much higher reflectance values than 

TM in both green and NIR for water and vegetation endmembers for the two dates. However, it 

is the opposite for soil endmembers on both dates. Nevertheless, the scatter plot of green versus 

NIR reflectance (Figure 3.7) show a good separability of water, soil and vegetation endmembers. 
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Figure 3.7 shows that differences in the mean reflectance of the mean land cover types are 

significant and the correlation of NIR and green reflectance reduces the internal diameter of each 

class, thus improving separability. Water pixels are clustered at the left bottom corner of the 2D 

plane (Figure 3.7) due to water high absorption of the NIR radiation and high reflectance of the 

green radiation. The distribution of the MERIS and TM endmembers are comparable. 

  
Figure 3.7 Scatter plot of green versus NIR spectral reflectance of an endmembers sample selected automatically 

from (a) TM and (b) MERIS images on 17 April 2008 

The visual inspection of the correspondence of soil, water and vegetation endmembers with the 

land cover suggested, in a first instance, a correct identification of pure pixels (Figure 3.8). In 

MERIS images the selected soil endmembers pixels are approximatively selected in the same 

area as TM (Figure 3.8) even if it is clear that most of the pixels are a mixture of different soils at 

high and low absorption in NIR, respectively corresponding to wet and dry soils. In a few cases 

they include a small amount of vegetation (see Figure 3.8). 

It remains a challenge, however, to select, even manually, sufficiently large targets to yield pure 

spectral endmembers in the MERIS images due to the heterogeneity of the study area. Thus, we 

considered the automatic selection of soil endmembers based on a satisfactory procedure 

(described in 3.3.6) to narrow down the range of possible endmember reflectance, but not 

sufficient to obtain the final endmembers. However, the high standard deviation of water 

endmember selected in TM compared to the other endmembers (Table 3.2) may impact the 𝛾𝑤 

estimates, so the selection of endmembers was further refined as described in Section 3.3.6. 

(a) (b) 
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Figure 3.8 Different extents of (a) soil, (b) vegetation and (c) water endmembers selected by the automatic 

procedure explained in Section 2.6 from TM (red shade) and MERIS images (blue shade) on 17 April 

2008 over TM true colour composite (RGB)  

Forty realisations of the endmembers were generated and applied in SU (Figure 3.9). The results 

(Figure 3.9a) show that at the spatial resolution of the TM images, 𝛾𝑤 cannot be estimated with 

just one selection of endmembers, since the variability across the forty realisations remains large.  

One realisation appears sufficient to select the vegetation and soil endmembers (Figure 3.9c–f). 

The final 𝛾𝑤 map was then generated taking the median 𝛾𝑤 for each pixel.  

(a) (b) 

(c) 
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Figure 3.9 Medians (black diamonds) and interquartile range (IQR) (red diamonds) of the 𝛾𝑤 distributions calculated 

with the proposed IBSU method for the Caprivi study area from TM and MERIS images on 17 April 

2008 by randomly changing water (a,b), vegetation (c,d) and soil (e,f) endmembers 

As shown in Figure 3.10 this gives a stable estimate of 𝛾𝑤, since both the median and the 

interquartile range stabilize after averaging over some twenty realisations.  
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Figure 3.10 (a) Medians; (b) interquartile range (IQR) of ensemble 𝛾𝑤 calculated over the study area as a function of 

number of runs included in the ensemble 

As can be seen in Table 3.3, there is a difference of 0.02 between the 𝑁𝐷𝑉𝐼𝑖𝑛𝑓 of MERIS and 

TM 𝑁𝐷𝑉𝐼𝑖𝑛𝑓 for the 17 April 2008 images. However, there is a much larger difference of 0.12 in 

𝑁𝐷𝑉𝐼0 for the same image pair. The value of 𝑁𝐷𝑉𝐼𝑖𝑛𝑓 for the images used in the study was 

found to be in the range of 0.64–0.74. 

Table 3.3 Mean values of 𝑁𝐷𝑉𝐼𝑖𝑛𝑓  and 𝑁𝐷𝑉𝐼 0 calculated respectively as percentiles 99.5 and 0.5 of NDVI 

distribution within the study area 

Image date 𝑵𝑫𝑽𝑰𝒊𝒏𝒇 𝑵𝑫𝑽𝑰𝟎 

MERIS 17 April 2008 0.69 0.17 

TM 17 April 2008 0.67 0.05 

MERIS 23 May 2009 0.74 0.05 

TM 22 May 2009 0.64 0.00 

3.4.3 Spectral indices-based unmixing versus linear spectral unmixing 

The 𝛾𝑤 was estimated for both the MERIS-TM image pairs by applying the procedure explained 

in Section 2.5. The resulting 𝛾𝑤 maps are shown in Figure 3.11. Resultants cell-wise mean values 

of 𝛾𝑤, estimated by IBSU with MERIS and TM images over 1200 m × 1200 m cells are shown in 

Figure 3.12. The bulk of the estimates with TM data is in good agreement with MERIS 

estimates, i.e., the black zone indicating a high number of observations, while this representation 

emphasised outliers in the MERIS retrievals, i.e., the spikes in both Figure 3.12a and Figure 

3.12b.  

(a) (b) 
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Figure 3.11 The 𝛾𝑤 calculated with the 17 April 2008 (a) TM and (b) MERIS images, compared to the 𝛾𝑤 derived 

from the (c) 22 May 2009 and (d) 23 May 2009 MERIS images 

At a glance it seems that there is a good agreement between MERIS and TM 𝛾𝑤 retrievals, 

particularly when the spatial patterns and individual features are visually compared. The low 

resolution images underestimate 𝛾𝑤 in areas with relatively low 𝛾𝑤 (e.g., 𝛾𝑤 < 0.3), particularly 

when there is also a large proportion of vegetation mixed with water. MERIS overestimates 𝛾𝑤 

where 𝛾𝑤 > 0.3 for 17 April 2008 (Figure 3.12a). This is also due to fragmentation of pixels, 

particularly with vegetation plus water and wet soil, where the lower spatial resolution leads to 

MERIS sampling to mimic a majority filter, i.e., to assign the entire footprint to the dominant 

class. 
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Figure 3.12 Mean fractional abundance estimated by spectral indices unmixing method over the 1.2 km × 1.2 km 

cells of an arbitrary grid in (a) April 2008 and (b) May 2009 images indices-based spectral unmixing 

 
Figure 3.13 Histograms of 𝛾𝑤retrieved with MERIS and TM data: (a) IBSU on 17 April 2008; (b) LSU on 17 April 

2008; (c) IBSU on 22 (TM) (MERIS) and 23 May 2009; (d) LSU on 22 (TM) and 23 (MERIS) May 

2009 

(a) (b) 
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When the frequency distributions (Figure 3.13a and Figure 3.13c) are compared it is evident that 

the TM and MERIS retrievals are in good agreement at values of 𝛾𝑤 between 0.3 and 0.5. 

MERIS mostly overestimates 𝛾𝑤 at high and low values for both IBSU and LSU.  

The frequency distributions of 𝛾𝑤 estimated by LSU show relatively large differences between 

TM and MERIS retrievals on both dates, while the IBSU retrievals are comparable. The 

fractional abundances calculated using LSU have in all the cases a larger spatial variability 

compared to those obtained with IBSU (Figure 3.14).  

 
Figure 3.14 The 𝛾𝑤 maps produced by applying (a) IBSU and (b) LSU on the 17 April 2008 TM image, compared to 

(c) IBSU and (d) LSU applied to the MERIS image of the same date 

3.5 DISCUSSION 

Remote sensing holds much potential for flood monitoring, but because floods can occur rapidly 

and affect large areas, sensors with frequent revisit times and large swath widths are required. 
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Most existing optical sensors with these characteristics have relatively coarse spatial resolution. 

Mapping water surfaces with such imagery has been shown to be challenging (Gebbinck & 

Schouten 1995), mainly due to the inability of lower spatial resolution imagery to adequately 

characterise pixel fragmentation, i.e., the so-called mixed pixel effect. This effect is augmented 

in vegetated floodplains (Thomas et al. 2015) where the spectral response of vegetation weakens 

water signatures. For instance, in this study, it was found that NDWI and NDVI derived from 

low (300 m) MERIS images were generally higher over water surfaces than those generated from 

high-resolution (30 m) TM images. This finding is in accordance with Cheruiyot et al. (2014), 

who found that MERIS had higher reflectance values over water surfaces in the green band 

compared to TM. Most studies (Huang, Chen & Wu 2014; Islam, Bala & Haque 2010; Jain et al. 

2006) that make use of coarse-resolution optical imagery for flood mapping do not adequately 

account for the effects of mixed pixels. 

SU has been shown to reduce the effect of mixed pixels, as the measured spectrum of a pixel is 

decomposed into a collection of spectral endmembers and a set of corresponding fractional 

abundances within the pixel. However, the success of SU is highly dependent on the quality of 

spectral endmembers. Selecting pure endmembers in vegetated floodplains is particularly 

difficult (Sarker et al. 2015; Zurita-Milla et al. 2011). This is demonstrated in Figure 3.14a and b 

where both the low (MERIS) and high-resolution (TM) data contain 𝛾𝑤, even in the areas with 

dense vegetation. Our proposed IBSU method reduces this effect and produced consistent water 

fraction maps, as evident in Figure 3.13b and Figure 3.14d. However, in Figure 3.11b and c it is 

clear that the 𝛾𝑤 derived from MERIS included larger areas with high values of water fraction. 

Lake Liambezi (southwest of the flood plain) did not flood in April 2008, but did flood in May 

2009. This result is supported by Mazvimavi & Wolski (2006), which confirmed that Zambezi 

water will push back into the Chobe River causing floods in the southern part of the flood plain 

during late May. Homogeneous areas, such as the Zambezi River and Lake Liambezi, generally 

agreed well with the reference data. When the frequency distributions (Figure 3.13a and c) are 

compared it is evident that the TM and MERIS retrievals are in good agreement at 𝛾𝑤 values 

between 0.3 and 0.5. MERIS mostly overestimated 𝛾𝑤 at high and low fractions for both IBSU 

and LSU. These results show that detection accuracy of water may vary with the portion of the 

pixel occupied with water. 

Authors in Plaza et al. (2004) and Zurita-Milla et al. (2011) argued that the best endmember 

selection method must consider both spatial and spectral information. We adopted this principle 

in estimating the fractional abundance of water by automatically selecting an ensemble of 
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endmembers (Figure 3.8) to a produce more complete and robust unmixing results based on only 

three bands (red, green and NIR). This is in contrast to Boardman (1993) in which a spectral 

library was derived based on all bands of all pixels. Spectral bands are also often highly 

correlated leading to spectral information redundancy (Keshava & Mustard 2002). In addition, 

materials of different physical composition may exhibit similar spectral properties in a given 

wavelength range or have spectral properties that cannot be mathematically defined by a linear 

combination (Keshava & Mustard 2002). Our proposed IBSU allows the type and number of 

endmembers to vary within each pixel, which yields more accurate fractional information than 

conventional unmixing methods. IBSU is straight forward and relatively easy to implement 

because it integrates only two well-known indices, namely NDWI and NDVI. Despite of its 

simplicity, it was able to successfully model the complex flooded and vegetated landscape of the 

Caprivi region. 

Although the results clearly demonstrate the advantages of using the proposed IBSU method, the 

accuracy of the results in this study were estimated by using higher resolution (30 m) TM images 

as reference. This is not ideal as such imagery also contains some degree of mixed pixels. 

Ideally, in situ data should have be used for verification purposes, but given the temporal nature 

of flood events and the difficulty in accessing flooded areas; such an approach will in most cases 

be ineffective. It would thus be of great value if the proposed method can be compared against 

synchronous, very high-resolution (<10 m) imagery, such as the image data acquired by the 

Multi-Spectral Imager onboard the S2 satellites, to get a better sense of how well the unmixing 

procedures are performing. 

3.6 CONCLUSION 

Timely and frequent observations of flood plains can provide information needed to mitigate the 

social, economic and environmental impacts of floods. While it is advisable to use finer spatial 

resolution image data to accurately map flood plains, coarse-resolution products remain best 

suited for flood monitoring, since they have more frequent revisits and better coverage. It is 

necessary to understand which remote sensing techniques work best for flood mapping with 

coarse-resolution products, especially in heterogeneous environments. In this study, we 

described and demonstrated a new method, called IBSU, to map inundated areas in 

heterogeneous environments using coarse-resolution MERIS image data and TM as reference. 

The method mitigates the mixed pixel effect of coarse-resolution imagery and has the advantage 

of using fewer bands. A new method was developed and applied to obtain ensemble estimates of 

spectral endmembers and of fractional abundances. Moreover, the combination of NDWI and 
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NDVI into the same equation (Equation 3.6) yielded a nonlinear relationship between 𝛾𝑤 and 

endmember spectral reflectance. 

The results demonstrate that inundated areas can be adequately monitored by coarse-resolution 

data such as MERIS FR. Notwithstanding the complexity and fragmentation of the Caprivi Basin 

landscape, the proposed IBSU method produced results that are comparable to those generated 

using high-resolution TM data. The method, as it stands now, can be used to monitor the 

floodplain by using the data acquired by OLCI on board S3. LSU shows, instead, relatively large 

differences between TM and MERIS retrievals, detecting larger spatial variability when 

compared to the retrievals by the MERIS IBSU method. 

Considering the recent launch of the S3 satellite, which offers daily revisit frequency,  

300 m spatial resolution and MERIS-like spectral sampling by OLCI, we conclude that the 

proposed inundation detection technique is a useful method to quickly identify the extent of 

flooding in large and heterogeneous river basins with a fully automated procedure. More work is 

needed, however, to investigate how the technique can be used for operational (automated) 

inundation monitoring. Ideally, inundated areas mapped using SAR data should be incorporated 

into monitoring systems, especially in areas with persistent cloud coverage. Although some 

constellations of commercial high-resolution satellites are capable of providing frequent 

observations (through tasking), the cost of such acquisitions is often prohibitively expensive, 

especially over large floodplains. Therefore, our study focused on using freely available data. 
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CHAPTER 4:  FLOOD EXTENT MAPPING WITHIN THE CAPRIVI 

FLOODPLAIN USING SENTINEL-1 TIME SERIES 

ANALYSIS 

4.1 ABSTRACT 

The use of synthetic aperture radar (SAR) data has become increasingly relevant for mapping 

and monitoring floods. Remotely sensed SAR data enable cost-effective, robust and efficient 

monitoring of large and inaccessible floodplains. Its use of this data has largely been limited by 

the availability of sensors with sufficiently high spatial resolution and short enough revisit times. 

The establishment of the Sentinel-1 (S1) satellite constellation carrying a C-band SAR system 

allows for continuous monitoring of floods at frequent intervals. The purpose of operational 

flood monitoring services is to promptly and accurately map flood extents from their onset until 

return to non-flooded conditions. This study evaluates the efficacy of S1 time series data for 

mapping temporary flooded vegetation (FV) in complex environments. A novel algorithm based 

on statistical time series modelling of flooded (F) and a non-flooded (NF) S1 pixels is proposed. 

For each new available image, the probability of temporary flooded conditions is tested against 

historical images. Specifically, changes in land cover characteristics are considered in the 

procedure. The resulting inundation maps were compared to those produced using Landsat-8 

Operational Land Imager (OLI) imagery and in situ observations. The flood map derived from 

the proposed algorithm show good spatial agreement with the Landsat-based maps. Overall 

classification accuracies suggest fused VH and VH/VV images are more effective (84.5%) than 

VH (78.7%) images alone. The classification accuracies from VH polarisations are significantly 

lower (z > 1.96) compared to those obtained from fused products. These results demonstrate that 

the fusion of VH/VV and VV has the potential to improve flood mapping in vegetated 

floodplains. 

Keywords: Flooded vegetation, Sentinel-1, SAR, time series, land cover, flood mapping 

4.2 INTRODUCTION 

Riparian areas, such as the Caprivi flood plain, are flooded almost every year due to excess 

rainfall in the upper catchments (Zhao et al. 2018). Riverine flooding affects ecological (e.g., 

ecosystem productivity, species distribution and occurrence, nutrients and sediment dynamics) 

and socio-economic systems (e.g., causing loss of life, water-borne diseases, destruction of 

shelter and infrastructure damage). Accurate and detailed near real-time images about the extent 

of inundated areas provides important information that could guide the identification of the most 
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prone areas and provide data necessary for mitigating flood hazards (Hong et al. 2015; Twele et 

al. 2016). In situ observations of flooding are severely limited by the inaccessibility of such areas 

due to flooding, poor road infrastructure, slide soils and dense vegetation. Remote sensing (RS) 

techniques that make use of synthetic aperture radar (SAR) and multispectral data have been 

widely recognised as an alternative method for mapping floods over large geographical and 

inaccessible areas (Townsend 2001; Twele et al. 2016). 

Multispectral imagery is easily interpretable and the extraction of open water from such data is 

relatively straightforward (Acharya et al. 2016). However, cloud conditions associated with 

flood events can limit the application of multispectral imagery for flood mapping. In contrast, 

SAR sensors have all-weather/day-night imaging capabilities (Martinis, Plank & Ćwik 2018). 

Furthermore, SAR has been shown to partly penetrate vegetation canopies depending on 

wavelength and polarisation, which helps to observe partly obscured surface water that is 

difficult to detect using sensors operating in the infrared and visible range of the electromagnetic 

spectrum (EMS) (Plank et al. 2017; Tsyganskaya et al. 2018b; White et al. 2014). 

SAR data have been successfully used for flood mapping in a number of studies. Examples 

include Kuenzer et al. (2013), Schlaffer et al. (2015), Hong et al. (2015), Giustarini et al. (2016) 

and Bioresita et al. (2018). These studies focused on detecting open water, assuming perfectly 

smooth surfaces of high dielectric constants that reflect most radiation away from side-looking 

SAR sensors. Open water regions were thus identified as regions of low backscatter. This 

approach successfully delineates open water in most cases, but the presence of emergent 

vegetation and wind increase backscatter to such an extent that inundated areas display similar 

backscatter characteristics to those of dry land surfaces (Tsyganskaya et al. 2018b). This is often 

the case when trees, grass, shrubs and crops are flooded or partially flooded. Under such 

conditions, a high backscatter is returned due to double-bounce and diffuse backscattering (Plank 

et al. 2017). The interaction between the SAR signal and the vegetation canopy is volumetric, 

thus the fraction of vegetation in a given pixel resolution has a significant impact on the SAR 

signal (Srivastava et al. 2009). This makes flood detection in vegetated areas more challenging 

than for open water features. 

Recently, there have been significant improvements in SAR-based algorithms for observing the 

influence of flooded vegetation (FV) (Cazals et al. 2016; Mleczko & Mróz 2018; Muro et al. 

2016; Plank et al. 2017; Twele et al. 2016; White et al. 2014). The commonality of these 

algorithms is that they all make use of thresholding to initialise the classification process. 

However, accuracy of thresholding varies dramatically depending on to the land cover (LC) 
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characteristics (e.g. rough soil surface, vegetation) within the scene. Theoretical electromagnetic 

backscattering models have traditionally been used to define appropriate threshold values for 

mapping FV (Pulvirenti et al. 2013). However, such approaches require detailed soil, vegetation 

and LC maps to accurately estimate thresholds – data that are often unavailable. There is thus a 

need for approaches that automatically determine the optimal threshold value for a scene without 

the need for ancillary data. Such techniques must take into account double bouncing caused by 

vegetation and the diffuse backscatter from dry and bare surfaces. Martinis, Twele & Voigt 

(2009) pioneered an approach that applies a split-based automatic thresholding procedure on 

TerraSAR-X data for near real-time (NRT) flood detection. Other examples of this approach 

include Matgen et al. (2011), who performed thresholding by modelling the flood class using a 

nonlinear fitting algorithm under the gamma distribution assumption. Schumann et al. (2010) 

and Pulvirenti et al. (2012) computed threshold values from the global grey level histograms of 

SAR data using the popular Otsu algorithm (Otsu 1975). The Otsu method finds a threshold that 

minimises the inter-class variance between two classes e.g. water and non-water areas. 

Automatic processing chains based on thresholding are ideal for rapid flood mapping activities 

and improve the delivery time of emergency information. Twele et al. (2016) proposed an 

automated Sentinel-1 (S1) based processing chain for detecting and monitoring floods in NRT. 

The algorithm was applied to individual SAR images to detect open water. Although an 

individual SAR image can provide a reasonable estimate of the flood extent, setting a threshold 

for flood probability based on a single image is risky and inflexible, especially in vegetated flood 

plains as local variations in LC are difficult to deduce from a single image. However, by 

analysing a series of SAR images additional information, such as temporary FV, can be extracted 

by considering backscatter trends and relating changes in backscatter to in situ observations. 

Temporary FV refers to vegetation that is covered with water after heavy rains or during a flood 

event (Tsyganskaya et al. 2018a). 

This study presents a rapid, simple and semi-automated pixel-based technique for mapping open 

water, temporary open water and FV over a large and complex region. The method is based on a 

S1 time series and does not require any ancillary data such as river levels and land cover. For 

each new available image, the probability of flooded conditions is estimated using the 

observations from the previous images, and is tested against the probability of dry land 

conditions. A pixel-adaptive modelling and testing procedure is applied to the cross-polarized 

backscatter VH and to the polarization ratio VH/VV. User intervention is needed only during the 
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initial algorithm calibration step, where the desired balance between false flood positives and 

negatives must be determined.  

4.3 MATERIALS 

4.3.1 Study area 

The proposed technique was evaluated in the Caprivi floodplain, which is on the border between 

Namibia, Zambia, Zimbabwe and Botswana (Figure 4.1). The Caprivi is an extensive flat sand-

filled inland Kalahari basin with elevations ranging from 950 to 980 m.a.s.l. The flood plain is 

complex and surrounded by four rivers namely the Zambezi (fourth longest river in Africa), 

Cuando/Kwando, Linyanti and Chobe (Long, Fatoyinbo & Policelli 2014; Skakun et al. 2014). 

These rivers have different hydrological regimes with diverse habitats, vegetation and aquatic 

life (Van der Waal 1990). The Zambezi River has a typical autumn flood regime, with a peak 

flow from March-May. The Chobe River flows in a south-western direction when the Zambezi 

River starts flooding and changes direction towards the Zambezi (north-east) when the levels of 

the Zambezi start subsiding. The Kwando and Linyanti Rivers normally flood in June and July 

respectively (Long, Fatoyinbo & Policelli 2014).  

The Caprivi flood plain is a typical savannah ecosystem, consisting of sparsely distributed 

impalila, riverine, mopane and Kalahari woodlands interspersed with open thick stemmed 

grasslands (Mendelsohn, Robets & Hines 1997). The main economic activity of the area is 

tourism, subsistence agriculture and commercial fishing. The Caprivi people have adapted to the 

flooding cycles by migrating to temporary accommodation in elevated campsites (established by 

the government) during the wet season. When the floodwater recedes, the communities return to 

their homes to continue with their agricultural activities. 
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Figure 4.1 Location map of the (a) collected ground observations overlayed on a true colour image (4, 3, 2) of 

Landsat-8 (10 April 2017) and (b) study area 

4.3.2 In situ data collection 

In situ observations (Figure 4.1) in the form of global positioning system (GPS) readings were 

collected for different vegetation types and flood levels during a flood event. The field surveys 

were conducted from 4–7 April 2017 using a Trimble differential GPS with a sub-metre 

accuracy. The samples were stratified according to LC, although some samples were inaccessible 

during the field survey. The visited locations were recorded and were used to extract spectral 

data and backscatter dB values from Landsat-8 OLI (LS) and S1 data respectively. The major LC 

classes observed at the sampled locations were dry soil, temporary open water, open water, 

flooded vegetation and non-flooded vegetation. Redundant locations were deleted resulting in 

725 samples, 125 for each LC type. The samples were also labelled as flooded and non-flooded. 
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Figure 4.2 shows the rainfall records in the Caprivi floodplain at Katimo Mlilo (Figure 4.1) for 

the period 1 July 2015 to 31 October 2018 based on the data from Integrated Multi-satellite 

Retrievals for Global Precipitation Measurement Mission (IMERG). The figure shows that 

rainfall started around mid-October and ended in early April from 2015 to 2018. 

 

Figure 4.2 Rainfall events in the Caprivi floodplain from July 2015 to October 2018 

The peak rainfall occurs between January and March. Therefore, the floods in Caprivi are not as 

a result of excessive rainfall received in the area. Towards the end of the rainy season, large 

volumes of upstream water break the banks of the Zambezi River. 
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4.3.3 Remote sensing data collection 

For the period from December 2016 to September 2018, the test area is covered by 55 S1 

Interferometric Wide Swath (IW) acquisitions with a regular sampling of 12 days. Only one 

satellite (Sentinel-1B) in the ascending orbit (6 PM local time) is active over the region. The 

Ground Range Detected (GRD) products were used for the study. As outlined in Table 4.1, the 

images have a spatial ground resolution of 20 x 22 m (ground range and azimuth) with an 

estimated equivalent number of looks (ENL) of 4.4. Both the VH and the VV polarized images 

underwent the standard pre-processing operations described in the following section. The study 

area is illuminated with incidence angles ranging from 33 to 39 degrees. Therefore, it is assumed 

that the impact of a six-degree difference on backscatter is negligible. 

Table 4.1 Acquisition dates for Sentinel-1 and Landsat-8 OLI images used in this study 

SENTINEL-1 LANDSAT-8 

Satellite Sentinel-1B Instrument Operational Land Imager (OLI) 

Mode Ascending Acquisition time 10 AM 

Acquisition time 6 PM Product USGS Surface Reflectance 

Incidence angles 33° - 36° Resolution 30 m 

Product Ground Range Detected Cloud Coverage < 40 % 

Resolution 
20 m (azimuth) x 5 m (ground 
range) 

Number of images 
27 (February 2017 - August 
2018) 

Number of images 
55 (December 2016 - 
September 2018) 

The images of 25 March and 6 April 2017 represented the flood peak and correspond well to the 

field survey. It also closely matches the cloud free Landsat-8 OLI (L8) images (25 March and 10 

April 2017) which were used for algorithm calibration and validation. 

4.4 Backscatter analysis 

The interaction of water with vegetation and soil changes the nature and intensity of the SAR 

polarimetric mechanisms (Martinis 2017). Although this study focuses on the Caprivi region, 

similar pattern elements can be observed in regions with similar climate, landscape morphology 

and vegetation patterns.  

During the onset of the rainy season (from November to February), the backscatter gradually 

increases in both the co-polarized and cross-polarized components as vegetation canopies 

develop and water content in both the soil and the vegetation increases.  The occurrence of a 
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flood event manifests itself through abrupt changes in the signal amplitude or/and in the nature 

of the scattering mechanisms (Pradhan, Sameen & Kalantar 2017). Such changes are LC 

dependent. 

Short grass has different backscatter patterns compared to taller grass or shrubs, as graphically 

illustrated in Figure 4.3. Short vegetation (blue line in Figure 4.3a) show a sudden backscatter 

suppression as soon as the soil is flooded. Bragg surface scattering due to wind-blown waves and 

short vegetation standing out from the water is expected during the entire flood period, 

characterised by extremely low VH and VV, especially the latter as it is more sensitive to the 

roughness of the water surface. 

In the case of tall vegetation, with vertically oriented elements in the plant geometric structure, a 

more diverse temporal trajectory can be expected. When the signal penetrates the canopy and 

reaches the water surface, double-bounce reflection and multiple scattering occur (Plank et al. 

2017; Tsyganskaya et al. 2018b). The water-plant interaction attenuates the co-polarization 

channels (HH and VV), while it has negligible effects on the cross-polarization (HV and VH) 

intensities. The VH backscatter shows a slight decrease because of the reduction of the above-

water vegetation volume. The VH/VV ratio is the most sensitive indicator of FV in a dual 

polarization system, given that the VV enhancement is larger than the drop in VH. For grasses 

and sparse shrubs, i.e. the dominant vegetation in semi-arid areas, the increase in VV occurs at 

the beginning and end of the flood event when the water is shallow, as shown by the red-

coloured line in Figure 4.3a. The backscatter drops to bare soil levels when the water is high 

enough to submerge most of the plant structure. It can reach and even fall below the noise 

equivalent sigma nought (NESZ) power in the case of open and smooth water surface. In such 

flooded conditions, the VH intensity is the most suited indicator for detecting the presence of 

(open) water. In support of these considerations and further assisted by Figure 4.3, four different 

LC regions in the dual polarization backscatter domain can be identified, namely:  

a) a double-bounce region with high (> 10 dB) VH/VV ratio values (this region typically 

delineates FV and man-made structures);  

b) a low overall backscatter region, with low (< -20 dB) VH and low (< -15 dB) VV 

backscatter values, typically associated with open and calm water surfaces (in the 

absence of wind) and dry bare soil;  
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c) a medium backscatter region, with moderate VH and VV values, which includes a variety 

of LC conditions ranging from vegetated surfaces (grasses, shrubs and crops) to wet bare 

soil; and  

d) a high overall backscatter region, with high VH (> -15 dB) and high VV (> -10 dB) 

values, mainly comprising dense vegetation. Therefore, the cross-polarization and the co-

polarization intensities as well as their temporal trajectories are essential for delineating 

and mapping FV.  

Therefore, the cross-polarisation and the co-polarisation intensities as well as their temporal 

trajectories are essential for delineating and mapping FV. 

    

Figure 4.3 The (a) Sentinel-1 time series in the VH and VV plane of two different pixels before, during and after the 

flood event. The first location (dark red line) has tall grass and shrubs whereas the second (blue line) 

has short grass. The coloured markers show the temporal information. In the first location, the flooding 

period started earlier and ended later than in the second location. (b) Schematic representation of the 

scattering mechanisms for the different LC types and different flood levels. Note: The scenarios r and z 

essentially produce the same mechanism type and NESZ is the noise equivalent sigma zero 

4.5 METHODS 

Based on the conceptual analysis presented in the previous section, a novel approach for the 

continuous monitoring of floods, from their onset until the return to non-flooded conditions, is 

proposed. The mapping algorithm is entirely based on S1 data, whereas its calibration and 

validation are based on optical and in situ data. The use of digital elevation models (DEMs), a 

common ancillary data source for spatial flood constraining, was not considered since the 

Caprivi floodplain is extremely flat, with an estimated total elevation range of 28 m over a 3 000 

km2 area. As conveyed by the flowchart in Figure 4.4, when a new S1 product is available at 

time t, a new processing cycle, or iteration, is carried out. The cycle receives as inputs the pre-

(a) (b) 
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processed VH and VV images at time t the stack of the past L images and the intermediate 

products generated by the previous iteration at time t − 1, comprising the land and water 

signature models (discussed in section 4.5.1.1) and the flood map output. Every cycle includes a 

pre-processing, modelling and classification step. The modelling and classification steps, 

highlighted by the blue-coloured frame in the flowchart, are applied independently to the cross-

polarized backscatter, σ0(𝑉𝐻) and to the polarization ratio σ0(𝑉𝐻

𝑉𝑉
).  Although not explicitly 

reported in Figure 4.4, two distinct sets of intermediate products are thus returned at the end of 

the iteration. 

4.5.1.1 Pre-processing 

The S1 VH and VV GRD products are radiometrically calibrated, terrain-corrected and projected 

to a geographic coordinate system using the Sentinel Application Platform (SNAP). The two 

polarisation channels are speckle filtered by applying a refined Lee-sigma filter. The polarization 

ratio (in dB) is computed through simple band subtraction.  

4.5.1.2 Modelling 

For every up-to-date image at time, or epoch, t, the observed pixel feature, 𝑦𝑡, is tested against 

two probability models: 1) a dry/non-flooded (NF) land model and 2) a flooded (F) land model. 

The model parameters are predicted from the previous observations and are thus computed at 

time 𝑡 − 1. Simple unimodal Gaussian distributions have been adopted for both models. The 

outcome of the testing procedure, illustrated in section 4.5.1.3, with pixels labelled as either NF 

(non-flooded) or F (flooded). 

4.5.1.2.1 NF model 

The observed feature of a generic pixel with NF conditions at time t is described by: 

𝑦𝑡  ~ 𝒩(𝜇𝑡 , 𝜈𝑡) 
Equation 4.1 

where 𝜇𝑡 is the theoretical mean and 

 𝜈𝑡 is the variance of the probability density function (PDF) model. 

Note that the generic nomenclature 𝑦𝑡 can represent either VH or the ratio VH/VV, expressed in 

dB. The set of the L previous observations is defined as: 
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𝑦𝑡 = {𝑦𝑛 , 𝑛 = (𝑡 − 𝐿), … . , (𝑡 − 1)} 
Equation 4.2 

where 𝒀t the observed feature at time t is not included. 

The observation area is extended to a spatial neighbourhood of Ω of the pixel by defining 

𝒀𝑡 = {𝒚𝑡 , ∀ 𝑝𝑖𝑥𝑒𝑙 ∈  Ω } 
Equation 4.3  

where Ω  is the spatial neighbourhood of the pixel. 

Under the assumption of process stationarity, the NF distribution parameters can be estimated 

from the samples in Equation 4.2 and Equation 4.3 by means of: 

µ̌𝑡  =  〈𝒚𝑡〉  Equation 4.4 

�̌�𝑡  = var (𝐘𝑡  )  Equation 4.5 

where 〈 . 〉 represents the sample mean and 

 (.)   represents the sample variance estimators. 

Note that the assumption of stationarity is reasonable only for short temporal intervals (a 

maximum of 1-1.5 months) and thus for low L values. Since the Caprivi area is covered by S1 

data every 12-days, L was set to three. The neighbourhood Ω was set to a 5 × 5 spatial window 

centred on the pixel. The decision to account for a spatial neighbourhood in the variance was 

motivated by the intrinsic higher uncertainty of variance estimations compared to those of 

means. The bound was implemented as a function of µ̌[𝑉𝐻], i.e. the estimated µ̌ for VH [dB]. This 

constraint is expressed as: 

𝑣 = max {�̌�[0.16(µ̌[𝑉𝐻] + 25) + 𝑣0]
2

}  Equation 4.6 

where 𝑣0 is set at -3.5 for VH and 

 𝑣0 is set at -3.5 + √2 for VH/VV. 

For the VH feature case, the application of Equation 4.6 leads, for instance, to a minimum 

standard deviation of 3.5 dB and 1 dB for estimated µ̌ values of -25 and -10 dB respectively. It is 

reasonable to assume that weak scatterers, with normalized radar cross-section close to the NESZ 

(reported at -25 dB for S1), are more affected by the thermal noise than stronger scatterers. 

4.5.1.2.2 F model  

Similarly, to the NF case, the flooded pixels are statistically modelled as: 
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𝑦𝑡~𝒩(𝜇𝑡
𝐹 , 𝑣𝑡

𝐹) Equation 4.7 

In this case, however, the model is not pixel-adaptive. The same set of parameters µ𝐹, 𝑣𝐹 is 

adopted for all the pixels. To account for all the pixels classified as flooded in the previous 

iteration, the parameters are estimated as: 

µ̌𝑡
𝐹 = 〈𝑦𝑡−1, ∀ F 𝑝𝑖𝑥𝑒𝑙 𝑎𝑡 (𝑡 − 1)〉 Equation 4.8 

�̌�𝑡
𝐹 = 𝑣𝑎𝑟(𝑦𝑡−1, ∀ F 𝑝𝑖𝑥𝑒𝑙 𝑎𝑡 (𝑡 − 1)) Equation 4.9 

The same constraint expressed in Equation 4.6 for the NF case is applied to 𝑣𝐹. The model 

initialization is based on the Zambezi and Chobe River area at the beginning of the time-series. 

When the image at time 𝑡 − 1 does not offer enough flooded pixels, the last significantly flooded 

image or the reference/initial river-based parameters are used. 

4.5.1.3 Classification 

For every pixel, the algorithm performs at time t one of the following two tests (Figure 4.4), 

depending on the class label (F or NF) at time t-1: 

 NF2F: a NF to F change, test if the pixel was classified was NF; or 

 F2NF: an F to NF change, test if the pixel was classified as F. 

The tests are based on the likelihoods computed from the distributions defined in Equation 4.10 

and Equation 4.11. In the NF2F case the generalised likelihood ratio test takes the expression: 

𝐿𝑅 =
ℓ𝐹(𝑡)

ℓ𝑁𝐹(𝑡)
=

𝑃(𝑦𝑡|𝜇𝑡
𝐹, 𝑣𝑡

𝐹)

𝑃(𝑦𝑡|𝜇𝑡 , 𝑣𝑡)
 

𝐹
≷

𝑁𝐹
 𝛾 Equation 4.10 

where ℓ𝐹 and ℓ𝑁𝐹  are the two likelihood functions evaluated for the observation 𝑦𝑡. 

The expression conveys that a change from NF to F conditions is accepted if the probability of 

the pixel being flooded is γ times larger than that of being not flooded, with 𝛾 > 1. A large γ 

value would yield few false positives, defined as pixels erroneously classified as F, but a large 

number of false negatives (missed flood pixels). Small values of γ would intuitively lead to the 

opposite performance outcome. 

For flooded pixels the F2NF test is instead performed, defined as: 
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𝐿𝑅 =
ℓ𝑁𝐹(𝑡)

ℓ𝐹(𝑡)
=

𝑃(𝑦𝑡|𝜇𝑡𝑠𝑡𝑎𝑟𝑡
,𝑣𝑡𝑠𝑡𝑎𝑟𝑡

)

𝑃(𝑦𝑡|, 𝜇𝑡
𝐹 , 𝑣𝑡

𝐹)
 
𝑁𝐹
≷
𝐹

 𝛽 Equation 4.11 

where 𝛽 > 1 regulates the return of the surface to dry conditions and 

 𝑡𝑠𝑡𝑎𝑟𝑡 refers to the time of the last NF observation of the pixel in the time series.  

The PDF parameters 𝜇𝑡 and 𝜈𝑡 stop being updated when the pixel is labelled as flooded. A pixel 

therefore returns to its NF status when its backscatter tends to its pre-flood backscatter level and 

farther from the overall flooded area signature. 

 
Figure 4.4 Flowchart for the cycle/iteration t of the flood mapping algorithm. The blue-coloured frame represents 

the processing block that is identically applied to both the VH and VH/VV inputs. Note that the 

flowchart does not include the map fusion step. Fusion is performed as post-processing step (Section 

4.5.1.4). 

The assembled outcome from the tests (Equation 4.10) and (Equation 4.11) is spatially processed 

to remove outliers, by applying a majority filter with a 5 × 5 window size. The model parameters 

for the next iteration, at time 𝑡 + 1, are calculated by Equation 4.4, Equation 4.5, Equation 4.8 

and Equation 4.9.  

4.5.1.4 Flood map fusion 

The flood mapping process is extended by fusing the VH output with VH/VV output. . In light of 

the analysis in Section 0, the two flood maps can be combined as shown in Table 4.2 to produce 
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three land cover classes namely non-flooded land (NF), flooded vegetation (FV) and temporary 

water (TW).  

Table 4.2 Classes produced by fusing the VH and VH/VV maps 

  VH/VV Map 

  NF F 

VH Map 

NF NF FV 

F TW FV 

Note: F is flooded areas; NF is non-flooded areas; TW is temporary open water; FV is flooded vegetation 

 

4.5.2 Calibration and validation  

4.5.2.1 Calibration and cross-validation with Landsat 

The performance of the proposed algorithm was evaluated by comparing the classification results 

to LS8 derived maps. These were produced by thresholding the normalized difference wetness 

index (NDWI) (McFeeters 1996) with a value of -0.25, as suggested by Bangira et al. (2017). 

NDWI is calculated as follows: 

NDWI =
𝜌𝐺 − 𝜌𝑁𝐼𝑅

𝜌𝐺 + 𝜌𝑁𝐼𝑅

 Equation 4.12 

where 𝜌𝑔 is spectral reflectance in the green (band 2) region of the spectrum and 

 𝜌𝑁𝐼𝑅  is spectral reflectance in the near infrared (band 5) regions of the spectrum.  

The comparison is carried out on the total flooded area obtained by merging (Boolean union) the 

FV and TW pixel sets (see Table 4.2) or, equivalently, by merging the F pixels from the VH and 

VH/VV maps. Two performance indicators are defined for both calibration and validation 

purposes: 

𝐹𝑎𝑙𝑠𝑒 𝑆1 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 =
#(𝑆1 𝑓𝑙𝑜𝑜𝑑 𝐴𝑁𝐷 𝐿𝑆8 𝑑𝑟𝑦) 

#𝑆1 𝑓𝑙𝑜𝑜𝑑 
 Equation 4.13 

𝐹𝑎𝑙𝑠𝑒 𝑆1 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 =
#(𝑆1 𝑑𝑟𝑦 𝐴𝑁𝐷 𝐿𝑆8 𝑓𝑙𝑜𝑜𝑑)

#𝐿𝑆8 𝑓𝑙𝑜𝑜𝑑 
 Equation 4.14 

These metrics can be regarded as the user’s and producer’s accuracy for the water class, where 

the classified data are the S1-based maps and the reference data are the LS8-based maps. The 

expressions (Equation 4.13 and Equation 4.14) are evaluated by matching the closest LS8 map 

(in time) to the S1-based map under assessment over an area of 800 km2.  
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The calibration procedure aims to achieve the best trade-off between false S1 positives and 

negatives during the two flood transition phases: the flood expansion phase and the flood 

recession phase. The first iteration is exploited to tune the threshold γ, hence regulating the 

change rate from NF to F conditions, whereas the latter is used to tune β. In this study, the 

calibration was performed on the 2017 season. A supervised decision, based on the maps 

generated for the 25 March, 12 May and 29 June 2017 acquisitions, was made. However, for all 

these dates a concurrent LS8 acquisition was available. The performance analysis is reported in 

Figure 4.5. The value of γ was set to four (resulting in 27% false S1 positives and 21% false S1 

negatives) thus slightly favouring an aggressive flood alarm strategy over a conservative one. 

For the flood recession scenario, the performance trade-off is complicated by the dominance of 

false negatives over the false positives. Although the selection of large β values can reduce the 

false negatives during the flood recession phase, it can block the return to NF conditions, thereby 

increasing the number of false positives after the end of the flood. As conveyed in Figure 4.5a, a 

value of β > 10 would lead to flooded area extents larger than 100 km2, compared to the 25 km2 

estimate of the LS8 based map. The configuration β = four provided a good false positive 

balance throughout the year. 

 

 

Figure 4.5 The (a) performance of the algorithm for different likelihood ratio thresholds γ and 𝛽 evaluated on the LS 

and S1 images, collected on 25 March 2017 (flood peak) and 12 May 2017 (flood recession) and (b) 

estimated flooded area by algorithm (VH + VH/VV) and by the LS NDWI thresholding method on the 

images collected on 29 June 2017. The selected thresholds (γ = 4 and 𝛽=3) are highlighted 

4.5.2.2 Validation with in situ data 

The flood classification results produced by the algorithm were assessed using the observations 

collected during the in situ survey. The evaluation was performed on the maps generated from 

the 06 April 2017 S1 acquisition, as it closely matched the in situ observations (07 April). 

Several classification accuracy measures were implemented, namely the producer’s accuracy 

(a) (b) 
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(PA), user’s accuracy (UA), overall accuracy (OA) and Kappa (K) (Foody 2004). In contrast to 

Equation 4.13 and Equation 4.14, the PA and UA were applied on both the NF and F classes and 

the average accuracies were considered. A McNemar’s test (Lu, Wang & Zhang 2017) was also 

performed to assess the statistical significance of the improvements brought by the map fusion 

(VH + VH/VV) compared to using a single feature (VH or VH/VV). Differences were 

considered as statistically significant at the 5% confidence level, thus, for a Z value greater than 

1.96. 

4.6 RESULTS 

4.6.1 Model analysis on exemplary time-series 

This section overviews the application of the proposed modelling technique and classification 

concepts (Equation 4.2 to Equation 4.11) on an actual time series S1 data covering  a section of 

the Caprivi floodplain is herewith analysed. Two land cover features, namely short grass and tall 

grass, are used for demonstration purposes. The first series (Figure 4.6) represents a field 

(Reference Point 1:latitude: -17.5950; longitude: 24.6137) covered with short grass (the same 

represented by the blue line in Figure 4.3, whereas the second series (Figure 4.7) represents a 

field covered by thicker grass (Reference Point 2: latitude: -17.5853; longitude: 24.6496).  

 
Figure 4.6 Example of S1 time series for a pixel at Reference Point 1 (short grass). The blue vertical bars show the 

flooded dates as mapped by the VH and VV algorithms respectively. The means (circle markers) and 

standard deviations (width of band) of the probability density functions (PDFs) of the dry/non-flooded 

(brown) and of the flooded (purple). The date of the ground campaign date is highlighted by the red 

vertical bars. 

In the short grass scenario, the temporal behaviour of VH and VV intensities are similar. The 

VH/VV dynamics are constant (around the -12 dB) during the dry months, between June and 
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February. When the flood starts, for example around March 2017, the dB values drop sharply by 

about eight to nine dB.  

 
Figure 4.7 Example of S1 time series for a pixel at Reference Point 1 (short grass). The blue and green vertical bars 

show the flooded dates as mapped by the VH and VH/VV algorithms respectively. The means (circle 

markers) and standard deviations (width of band) of the probability density functions (PDFs) of the 

dry/non-flooded (brown) and of the flooded (purple). The date of the ground campaign date is 

highlighted by the red vertical bars. 

A difference between 2017 and 2018 was registered at Reference Point 2 (tall grass). A double 

bounce mechanism was observed by the VH/VV classifier in both years. However, the intensity 

of the double bounce mechanism was significantly stronger in 2017, as signified by the higher 

VH and VV backscatter levels (around +6 dB) from March to April.  

From Figure 4.6 and Figure 4.7, it is clear that the model provides a generalisation of events, 

especially dry (NF) conditions. There is also a slight lag after the flood event. This smoothing 

effect, caused by setting the temporal integration to L = 3 samples, is important as it helps to 

stabilise the changes. Some criticalities might arise when VH/VV decrease insignificantly during 

the flood onset, as shown in Figure 4.7 during March 2017. It can be observed that in such 

critical scenario the classifier manages to produce a reasonable output, hardly distinguishable 

from a user-supervised labelling intervention. 

4.6.2 Potential of the fusion of VH and VH/VV in mapping flooded vegetation 

Figure 4.8 depicts the changes in flooded area in the study region when VH, VH/VV and the 

fused product (VH + VH/VV) are classified. The VH/VV ratio highlighted the double bounce 

effect of FV, while VH missed it, thus the union of VH and VH/VV shows the total flood extent. 
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Figure 4.8 The multi-temporal comparison of the flooded area extracted from VH, VH/VV and the union of the two 

The time to maximum flood extent is very short, unlike the time it takes for the flood to recede. 

Under short grass conditions, around February, the VH/VV ratio provides a better representation 

of the flood extent than the VH band. 

The classification accuracy assessment of the proposed method was done based on the VH and 

the fused product for 6 April 2017. Figure 4.9 shows the PA, UA, OA and K values for the VH 

and VH+VH/VV flood maps. For the TW class, the UA and PA are 84.7% and 83.8% 

respectively when the VH dataset is used as input, while for when the VH+VH/VV dataset is 

used it is 93.4and 85.2% respectively. In comparison, the accuracy of the NF class is lower, with 

85.3% (UA) and 79.2% (PA) for VH, and 88.7% (UA) and 82.8% (PA) for the VH+VH/VV 

dataset. In terms of TW, the fused dataset achieved the highest improvement in UA (8.7%), 

while the PA for TW achieved the least improvement (1.4%) over the VH. 

 
Figure 4.9 Classification accuracy results for the time series approach for VH and fusion of VH and VH/VV images 

for 6 April 2017 
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On average, the OA achieved on the classification of the fused dataset is about 5% higher 

compared to the VH-based classification. The McNemar’s test showed that the difference in 

accuracies when the VH and VH+VH/VV datasets were used as input are  statistically significant 

(Z > 1.96) in classification accuracies between VH and VH+VH/VV. 

4.6.3 Classification performance when a fusion of VH and VH/VV polarisation and 

NDWI is used 

Figure 4.10 compares the derived flooded extent (area) for the period between January and 

October 2018 when the S1 and LS8 datasets were used as input to the classifications. Only the 

valid (non-cloudy) LS8 observations within the region of interest were used and the comparison 

only considers the F and NF classes. Overall, the union of VH and VH/VV based on LS8 dataset 

showed a larger flood extent compared to S1. In 2018, the duration of the inundated area was 

much longer than the previous year. As the flood starts to recede, the difference between the 

flood extents derived from the two data sets increases and eventually become equal during dry 

periods. 

 

Figure 4.10 Total flood extent (TW + FV) extracted from the Landsat-derived NDWI dataset compared to the 

Sentinel-1 derived maps, with the (a) blue line representing the percentage of inundation extent. The 

two performance metrics are shown with saturated colours in (b), while images with marginal 

inundation extents are shown with desaturated colours.  

Figure 4.10b shows that S1-based flood maps have a high proportion of false negatives, which 

implies that the S1-based flood maps showed a smaller inundation extent when compared toLS8-

(b) 

(a) 
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based flood maps. The percentage of false negatives is higher during flood recession than at the 

onset of the flood and during the flood peak. 

Figure 4.11 shows a spatial and temporal comparison of the flooded area extent derived from the 

proposed algorithm and LS8 datasets. The two NDWI images and the flood maps derived from 

the union of the VH and VH/VV datasets display the flood extent for non-flooded (NF) 

vegetation. During the flood event (25 March 2017), the map generated using the proposed 

model show a larger flood extent compared to the one derived from the NDWI. During the flood 

recession (12 May 2017), flood maps from the proposed method show larger areas of S1 

negative. 

 
Figure 4.11 Comparison during flood peak (25 March 2017) and recession (12 May 2017) in the area surrounding 

the Malindi village, with (a) showing an RGB colour composite (3, 2, 1) and (b) an NDWI derived 

from Landsat. The Sentinel-1 polarisations (VV, VH, VH/VV) are shown as a colour composite (c), 

while the flood maps generated by the merging (union) of the TW and FV maps are shown in (d). The 

matching pixels between the NDWI and the merged S1 dataset are depicted in black and red for the dry 

(non-flooded) and the flooded areas respectively. The (false) S1 negatives and positives are shown 

with yellow and magenta. 

Figure 4.12 shows the time series of the final flood maps covering the entire Caprivi flood plain 

based on the fusion of VH and VH/VV for the period from 13 March to 12 May 2017. From 

these maps it is clear that the inundation started in the north along the Zambezi River along the 
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Chobe River in the south-east. The flood then progresses to the east. Overall, the eastern parts of 

the floodplain experiences most of the inundation. 

 

Figure 4.12 Flood maps of the Caprivi floodplain from 13 March 2017 to 12 May 2017 as produced using the union 

of the VH and VH/VV time series results. 

4.7 DISCUSSION 

The principal aim of this study was to explore the suitability of using a S1 time series for 

mapping the flood extent in a vegetated floodplain. Specifically, the study investigated the 

potential of the unique data acquisition properties of S1, notably dual polarisation (VH+VV), 

13 March 25 March 

06 April 18 April 

30 April 12 May 
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steep incidence angles (30.4° – 46.2°), large coverage (250 km swath width), high spatial 

resolution (20 m) and short revisit time (six days) for monitoring the inundation extent of 

vegetated floodplains. 

FV and temporary open water respectively showed an increase and decrease in the backscatter 

values during the April 2017 flood event (Figure 4.6 and Figure 4.7). The increase in backscatter 

during the beginning of the wet season is as a result of diffuse scattering from the wet soil 

(Amazirh et al. 2018). The low backscatter of temporary open water is caused by specular 

reflection in which much of the emitted radar energy is reflected away from the sensor (Martinis 

& Rieke 2015). The increase in backscatter during flood events can be explained by the double-

bounce interactions of the radar signal with the calm water surface that partly covers vegetation 

(e.g., branches and trunks) (Plank et al. 2017; Tsyganskaya et al. 2018b; Twele et al. 2016). 

Previous studies (Plank et al. 2017; Tsyganskaya et al. 2018a; Zhao et al. 2014) observed similar 

backscatter characteristics of flooded vegetation and temporary open water. These temporal 

changes in backscatter values are difficult to deduce from a single image, but from a series of 

SAR images, they can be compared to infer additional information. 

This study found that the VH polarisation is more sensitive than VV to FV due to the effect of 

double-bounce scattering, which mainly depends on the vegetation characteristics and roughness 

of the water surface (Amazirh et al. 2018). The same sensitivity of VH polarisations to FV was 

observed in Tsyganskaya et al. (2018a) and Westra et al. (2010). However, Manjusree et al. 

(2012) argued that a VV polarisation is better than a VH polarisation for identifying partially 

submerged vegetation. 

Overall classification results obtained from the proposed multi-temporal technique were 

comparable to those obtained using the cloud-free LS8 and in situ observations. The superior 

performance of the fused VH and VH/VV maps is primarily attributed to the ability of the 

VH/VV data to represent the effect of FV. The relevance of VH/VV in monitoring FV has been 

shown (Tsyganskaya et al. 2018a), but the addition of VH improved the results in our case study, 

which is a new finding. The dual polarisation of S1 thus offers a good characterisation of FV, 

which is typical of many floodplains. 

The study showed that LC has an impact on the observed backscatter and the selection of 

thresholds. In previous studies, absolute backscatter threshold values were applied for the 

extraction of flood extent on individual images using either VH, HH or VV (Plank et al. 2017). 

This can lead to misclassifications and limit the applicability of the method for operational use. 
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The limitations of the selection of a suitable backscatter threshold can be overcome by averaging 

the backscatter values over the time series, and thereby consider LC changes. The use of a single 

polarisation will enable the detection of open water and disregard flooded vegetation. 

Furthermore, unlike other studies (Plank et al. 2017; Tsyganskaya et al. 2018a) the proposed 

method does not require ancillary data sets to map the flood extent. 

This study has shown that C-band radar and optical sensors have similar capabilities in detecting 

flooded areas. The observed flood extent during the flood peak, based on the union of VH and 

VH/VV, was very similar to the NDWI-based map. However, polarimetric radar signals clearly 

have an intrinsic potential to distinguish between the two-flooded conditions, namely open water 

and flooded vegetation. The sensitivity of the C-band to partially submerged vegetation is 

particularly high for vegetation with vertical structures such as stems and trunks as it leads to 

double bounce. In contrast, NDWI is more influenced by the amount of open water and the 

liquid water content of the vegetation recorded in a pixel. In addition, the ability of SAR to 

acquire images during cloud cover gives the statistical modelling developed in this study an 

advantage over methods that make use of optical data. Although optical imagery is easy to 

interpret, the proposed SAR-based multi-temporal technique is more suitable for flood mapping 

as it is not affected by cloud cover and considers LC changes.  

In this study, the S1-based flood maps were compared to maps generated from optical images. 

However, it will be insightful to compare the produced maps to those generated with other SAR 

systems (e.g. RADARSAT-2) as it would provide a more in-depth understanding of the 

backscatter patterns. In addition, the developed method was tested over an area with a flat 

terrain. It is not clear how the method will perform in other of landscapes with more dramatic 

relief. It is likely that the inclusion of ancillary data (e.g. DEMs) will improve the performance 

of the technique, but more work is needed to integrate such data into the workflow. 

4.8 CONCLUSION 

This study evaluated the potential of S1 SAR images for mapping a flood event (April 2017) in 

the Caprivi floodplain using novel statistical time series modelling of FV, TW and NF areas. The 

method uses time series analysis to detect inundation extent by taking LC characteristics into 

consideration. The technique was applied to VV, VH and VH/VV ratio polarisations. A multi-

temporal inspection of backscatter characteristics showed that the ratio between VH and VV 

captures the effect of FV better than when the features are used on their own. 

Based on the findings if this study we conclude that: 
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(a) S1 SAR is an invaluable primary data source for flood monitoring; 

(b) VH/VV ratios are superior to VH polarisations for flood mapping; and 

(c) the fusion of VH and VH/VV in a time series approach is well suited to map temporary 

surface water partly obscured by vegetation, thus eliminating the limitation of flood 

extent underestimation in vegetated floodplains. 

Another major advantage of the proposed method is that the classification thresholds are 

automatically selected by considering previous pixel conditions, which allows the technique to 

be fully automated for near real-time flood extent mapping.  
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CHAPTER 5:  COMPARING THRESHOLDING WITH MACHINE 

LEARNING CLASSIFIERS FOR MAPPING COMPLEX 

WATER BODIES3 

5.1 ABSTRACT 

Small reservoirs play an important role in mining, industries and agriculture, but are very 

dynamic in nature. Accurate and up-to-date maps of surface water storage and distribution are 

invaluable for informing decisions relating to water security, flood monitoring and water 

resources management. Satellite remote sensing is an effective way of monitoring the dynamics 

of surface waterbodies over large areas. The European Space Agency (ESA) has recently 

launched constellations of Sentinel-1(S1) and Sentinel-2 (S2) satellites carrying C-band synthetic 

aperture radar (SAR) and a multispectral imaging radiometer respectively. The constellations 

improve global coverage of remotely sensed imagery and enable the development of near real-

time operational products. This unprecedented data availability leads to an urgent need for 

developing fully automatic, feasible and accurate retrieval methods for mapping and monitoring 

waterbodies. Mapping of waterbodies can take advantage of the synthesis of SAR and 

multispectral remote sensing data in order to increase classification accuracy. In this study, we 

propose an approach that combines automatic thresholding of near-concurrent normalized 

difference wetness index (NDWI) (generated from S2) and VH backscatter bands (generated 

from S1) for the mapping of waterbodies (mainly reservoirs and dams) with diverse spectral and 

spatial characteristics. Waterbodies of different sizes and varying levels of turbidity, 

sedimentation and eutrophication were targeted. The resulting maps are compared to the 

classification performances of five machine learning algorithms (MLAs), namely decision tree 

(DT), k-nearest neighbour (k-NN), random forest (RF), and two implementations of the support 

vector machine (SVM). Several experiments were carried out to better understand the 

complexities involved in mapping spectrally and spatially complex waterbodies. It was found 

that the combination of multispectral indices with SAR data is highly beneficial for classifying 

complex waterbodies and that the proposed thresholding approach classified waterbodies with an 

                                                 

3
 Bangira T, van Niekerk A, Menenti M 2018. Comparing thresholding with machine learning classifiers for 

mapping complex water bodies (In review) 
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overall classification accuracy of 89.3%. However, the varying concentrations of suspended 

sediments (turbidity), dissolved particles and aquatic plants negatively affected the classification 

accuracies of the proposed method, whereas the MLAs (SVM in particular) were less sensitive to 

such variations. The main disadvantage of using MLAs for operational waterbody mapping is the 

requirement of suitable training samples, representing both water and non-water land covers. The 

dynamic nature of reservoirs (many reservoirs are depleted at least once a year) makes the re-use 

of training data unfeasible. The study thus concludes that the combination fully automated 

thresholding techniques with SAR and optical data is viable for classifying complex waterbodies, 

but that further refinements are required to improve accuracies. 

Keywords: waterbody mapping, machine learning, thresholding, optically complex, remote 

sensing 

5.2 INTRODUCTION 

Communities in developing countries rely on freshwater stored in small waterbodies for 

agricultural, domestic, mining and industrial use (Araujo, Abiodun & Crespo 2016). These water 

resources are highly susceptible to climate variations and are often not sufficient to withstand 

long periods of drought. Recently, the water resources of the Cape Winelands District of South 

Africa have been under severe pressure due to drought conditions brought about by the El Niño 

weather cycle (Botai et al. 2017). Agriculture plays a critical role in this region’s economy 

(Gilbertson, Kemp & Van Niekerk 2017), with wine production alone contributing to more than 

30% of its regional gross domestic product (RGDP). The wine production industry furthermore 

provides more than 8% of the employment in the Western Cape Province (DAFF 2018). The 

district is well-known for perennial crop irrigation of grapes (mostly wine production) and fruits 

(apples, pears, peaches, olives and citrus) (Botai et al. 2017). In contrast to other parts of 

southern Africa, the area has a semi-arid, Mediterranean climate with a mean annual rainfall of 

about 400 mm (Hoffman et al. 2009), and as such receives winter rainfall when demand for 

irrigation water is relatively low. In contrast, the growing season occurs during the dry and hot 

months when rainfall is low (about 20% of the total annual) and water demand for irrigation is at 

its apex (Engelbrecht et al. 2015). 

During the recent drought (2015–2018), water reserves in the principal reservoirs were reduced 

to below 17% in April 2018, necessitating the implementation of drastic water restrictions by as 

much as 80% of normal usage for crop irrigation and industrial and domestic use (Evans 2018). 

Authorities were confronted with difficult decisions about how to best manage the limited 

available water resources and minimise the inevitable socio-economic impacts. Many 
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limitations of existing procedures and gaps in available information sources were exposed. One 

of the biggest needs was to determine how resilient the agricultural industry, in particular the 

perennial crops sector, would be to severe water restrictions. This proved to be challenging 

given that no operational systems are in place to quantify and monitor how much water is 

stored in privately owned and managed reservoirs (dams). Most of these dams are ungauged, 

and setting up, maintaining and managing conventional in situ surveys, gauge stations and 

telemetry systems would be prohibitively expensive and time-consuming (Bangira et al. 2015). 

Satellite remote sensing techniques have been shown to provide a viable alternative for 

monitoring water bodies. Satellite data can provide macroscopic, real-time, dynamic and cost-

effective information, and Earth observation procedures can be set up to provide operational 

(autonomous) monitoring of water resources (Du et al. 2016; Hanqiu 2005). Several methods 

have been proposed to classify surface water areas using either multispectral (Bangira et al. 

2017; Du et al. 2016; Yang et al. 2017) or SAR remotely sensed data (Pham-Duc, Prigent & 

Aires 2017; Schlaffer et al. 2016). Popular techniques are image thresholding (rule-based 

classification) and supervised/unsupervised classification (Chini et al. 2017). Image thresholding 

is easy to implement, autonomous (thresholds that can be applied to images of different dates 

and areas are automatically generated) and computationally inexpensive (not time-consuming) 

(Du et al. 2016; Zhang et al. 2012b). During thresholding, a single threshold value within the 

image scene is determined and all pixels below (or above) it are classified as water or non-water. 

According to Pierdicca et al. (2013), the identification of a suitable threshold relies on a range of 

environmental factors, including atmospheric conditions, adjacency effects, mixed pixels, 

shadows and system factors such as viewing angle and pixel size (Li et al. 2015; Niroumand-

Jadidi & Vitti 2017). Defining a robust threshold – one that will work effectively in different 

areas and on imagery acquired on different dates – has been cited by Feyisa et al. (2014) as being 

a very challenging task, especially in optically complex (e.g. flooded vegetation and sedimented 

and turbid water) environments. An alternative approach to finding a single “optimal” threshold 

that will work in multiple situations is to make use of automated, image – specific, threshold 

identification methods. Several such techniques have been proposed, among which Otsu’s simple 

and robust algorithm (Otsu 1975) is one of the most utilised techniques for surface water 

mapping (Bangira et al. 2017; Chini et al. 2017; Du et al. 2016). The Otsu algorithm finds a 

threshold by maximising the inter-class variance and minimising the weighted within-class 

variance (Otsu 1975). 
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Supervised and unsupervised classification techniques have also been popular for mapping water 

features using remotely sensed data (Hasmadi, Pakhriazad & Shahrin 2009; Martinis, Twele & 

Voigt 2011). For instance, using 30 m multispectral Landsat TM, Xie et al. (2016b) obtained an 

accuracy of 96%, whereas Pradhan, Tehrany & Jebur (2016) achieved an accuracy of 58% using 

3 m TerraSAR-X data to retrieve water (flooded) pixels based on the ISODATA unsupervised 

classification technique. The relatively low accuracy of the latter study was attributed to the 

presence of vegetation in the flooded area. Feng et al. (2015) employed supervised classification 

to map surface waterbodies with 30 m multispectral HJ-1B imagery and achieved 94% overall 

accuracies. Similarly, Verpoorter, Kutser & Tranvik (2012) achieved an accuracy of 95% using 

Landsat 7 ETM+ imagery. Although many authors agree that supervised classification is an 

efficient (accurate and fast) approach to map waterbodies, many highlight the need for prior 

definitions (training samples) to construct models capable of classifying unknown values. The 

generation and collection of training samples is time-consuming, expensive and tedious, often 

requiring extensive field visits. Nevertheless, recent implementations of non-parametric MLAs, 

including support vector machine (SVM), RF and DT, have demonstrated their value for 

mapping surface water. MLAs have the ability to generalise well using relatively small training 

sets and can handle large numbers of features (Gilbertson & Van Niekerk 2017). 

In general, SAR and multispectral techniques are capable of accurately extracting water features 

if there is a significant contrast between water and non-water features in the data. However, the 

optical complexity of water affects the reflected spectral profile and backscatter values. For 

instance, the waterbodies in the Cape Winelands are characterised by varying concentrations of 

suspended sediments (turbidity), algae (e.g. chlorophylls, carotenoids), chemicals (e.g. nutrients, 

pesticides and metals), dissolved organic matter and aquatic plants. This makes it difficult to 

develop reliable, universal and autonomous supervised remote sensing-based water extraction 

methods. To date, the remote sensing research community has given very little attention to how 

these variations affect waterbody mapping. Notable exceptions include Hong et al. (2015) and 

Yang & Chen (2017) who used RADARSAT-1 (16 m), Landsat TM (30 m) and S2 (10 m) data 

to map optically complex waterbodies. The latter study mapped optically complex waterbodies 

in urban areas and concluded that it is necessary to find the most appropriate and practical water 

identification methods regardless of the physical and chemical characteristics of waterbodies. 

The ESA recently launched a constellation of high spatial and temporal resolution satellites, 

namely S1 and S2, carrying C-band SAR and multispectral sensors respectively (Donlon et al. 

2012). Thanks to their dual-satellite-per-orbit configurations, S1 and S2 have relatively high 
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revisit times of six and five days respectively. To our knowledge, no research has evaluated how 

data from these satellites can be combined to improve classification accuracies of waterbodies in 

complex environments such as the Winelands District of South Africa. 

Taking into account the challenges of mapping waterbodies with diverse physical and chemical 

characteristics, the objectives of this study are: 

1. To compare the performance of simple rule-based methods, i.e. the application of 

dynamic thresholds that can be easily incorporated into operational workflows, to the 

performance of supervised learning approaches (i.e. MLAs); 

2. To investigate how variations in the water optics (caused by physical and chemical 

variations) influence classification accuracies. 

Thresholding and MLAs were applied to a range of features derived from S1 (SAR) and S2 

(multispectral) data. This included a range of existing and new water indices and texture 

measures. Five popular MLAs, namely DTs, RF, k-NN, c-SVM and SVM were implemented to 

serve as a benchmark against which the autonomous rule-based techniques could be compared. 

The study concludes by assessing the value of combining SAR and multispectral thresholding 

rules for mapping optically complex waterbodies. 

5.3 MATERIALS AND METHODS 

5.3.1 Study area 

A 40×45km study area located in the Cape Winelands district of South Africa was chosen for the 

comparisons. The area (Figure 5.1) was chosen because it is the major wine and fruit producing 

region in South Africa and because of the optical complexity of the dams and reservoirs located 

therein. The area has a Mediterranean climate characterised by warm, dry summers and cool, wet 

winters (Hoffman et al. 2009). It receives a mean annual rainfall of about 400 mm and has a 

mean annual minimum and maximum temperature of 11°C and 22°C respectively. 

Approximately 80% of precipitation falls within the winter months of April to September, hence 

the demand for summer irrigation (Engelbrecht et al. 2015). 

The Cape Winelands district has a complex topography, ranging from coastal plains to mega-

anticlinal complex mountain ranges separated by synclinal valleys. During the rainy months, the 

high mountain ranges receive rainfall of up to 2000 mm (Van Niekerk & Joubert 2011) and 

catchments naturally collect rainfall runoff and channel it to rivers that feed reservoirs in valleys. 
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Figure 5.1 Study area and location of field survey sites 

The geology of the area is dominated by pre-Cambrian metamorphosed shales and fine 

sandstones of marine origin, known as the Malmesbury group (Wooldridge 2003). Soils on 

hillslopes are generally shallower than in valleys and are highly associated with erosion and 

transportation regimes resulting in sedimentation of waterbodies (Meadows 2003). 

The suitable climate and presence of rivers and dams have led to agricultural activities and 

urbanisation. Fertilisers containing phosphorous and nitrogen are widely used to increase crop 

harvests. These nutrients are carried by runoff from agricultural areas to waterbodies, resulting in 

eutrophication. 

5.3.2 Data collection and preparation 

5.3.2.1 Test sites and data collection 

To investigate the performance of thresholding and MLAs in the extraction of waterbodies, eight 

test sites (Figure 5.1) located in areas with diverse land cover/use featuring different types of 

waterbodies (Table 5.1) were chosen to evaluate the performance of the proposed methods. 
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Table 5.1 Description of the physical characteristics of the study sites 

Site Description 

Site A Very shallow with low eutrophication and turbidity 

Site B Shallow with moderate turbidity and eutrophication  

Site C Clear with moderate eutrophication  

Site D Shallow and humic-rich (black) water  

Site E Very shallow and eutrophic  

Site F Shallow, sedimented and humic-rich (black) water  

Site G Shallow and moderate turbidity  

Site H Shallow, clear and wind-induced turbulence  

The in situ data used for accuracy assessment of the classification results were collected using a 

handheld global positioning system (GPS) receiver (three meters accuracy) during four field 

surveys on dates that corresponded closely with satellite acquisitions (Table 5.2) to get an 

accurate representation of the relationship between the remotely sensed water features and 

ground observations. 

Table 5.2 Sentinel image acquisition and field visit dates 

Field visit Sentinel-1 image Sentinel-2 image 

27 October 2016 27 October 2016 23 October 2016 

26 November 2016 25 November 2016 22 November 2016 

28 January 2017 31 January 2017 31 January 2017 

25 February 2017 24 February 2017 03 March 2017 

An in situ reference point was defined as a 10 m x 10 m plot (corresponding to a S2 pixel) and 

each plot were assigned a single land cover label based on majority coverage. For the MLAs, a 

broad five-class classification scheme was adopted, namely water, built-up, shadow, bare ground 

and vegetation, which was subsequently reduced (reclassified) to two classes, namely water and 

non-water. The latter two-class classification scheme was also used in the thresholding 

experiments. 

5.3.2.2 Multispectral image pre-processing 

The S2 multispectral images used in this study have 13 bands of which four bands (blue, green, 

red and NIR) have a spatial resolution of 10 m; six bands (including SWIR) have a spatial 

resolution of 20 m; and three have a 60 m resolution (coastal aerosol, water vapour and SWIR-

Cirrus bands). The images were atmospherically corrected using the Sen2cor algorithm available 

in the Sentinel Application Platform (SNAP) toolbox, which uses the Climate Change Initiative 

(CCI) land cover data use to characterise atmospheric conditions at the time of acquisition. The 
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process was carried out at 10 m resolution resulting in the output excluding the 60 m bands 

(Bands 1, 9 and 10) (Louis et al. 2016). Thus, ten bands were preserved for further analysis. 

5.3.2.3 SAR data pre-processing 

The S1 constellation consists of two SAR satellites (S1A and S1B) that record C-band (5.405 

GHz) backscatter at incidence angles ranging from 29–46°. Four-cloud free Sentinel-2 level-1C 

image and four interferometric wide (IW) swath mode Level-1 ground range detected (GRD) S1 

scenes were downloaded from ESA’s Scientific Data Hub (https://scihub.copernicus.eu/dhus/). 

IW images have large swath widths (250 km) and moderately high spatial resolutions (5×20 m). 

IW offers dual polarisation capability, which can provide more information about ground 

surfaces as compared to single polarisations. Only HV and VV polarisations were available over 

the study area. 

The S1 toolbox (S-1 TBX) available in SNAP was used for the pre-processing of the SAR 

dataset. Figure 5.2 shows the pre-processing chain followed. 

 
Figure 5.2 Pre-processing steps for Sentinel-1 data 

The images were projected and resampled using nearest neighbour to 10 m resolution. The 

Universal Transverse Mercator (UTM) WGS84 coordinate system (zone 34 South) was used to 

allow for pixel-to-pixel comparison with the S2 images. 

5.3.3 Feature set generation for classification 

In addition to the ten S2 spectral and two HV and VV S1 polarisation bands, a range of 

supplementary features was generated and used as input to the classification methods. Table 5.3 

outlines the 252 (63 per image capture date) features considered. To reduce the number of 

variables (feature dimensionality), Bands 5 (vegetation red-edge), 7 (vegetation red-edge), 8a 

(narrow NIR) and 12 (SWIR) were excluded as they were highly correlated with Bands 6, 8 and 

11 respectively. 
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Table 5.3 Features used as input to the thresholding and MLAs 

Data type Type Subtype Description Total features 

Sentinel-1 

Speckle filters 

HV Boxcar, none, median(5x5), 
Lee-sigma, refined Lee, 

frost, gamma MAP, IDAN 
and Lee 

9 

VV 9 

Band ratios 
𝐻𝑉

𝑉𝑉
 

Boxcar, none, median(5x5), 
Lee-sigma, refined Lee, 

frost, gamma MAP, IDAN 
and Lee 

9 

Sentinel-2 

Spectral indices 

Reflectance bands and 
mean of the six bands 

B2, B3, B4, B6, B8, B11 
and Mean 

7 

normalized difference 
spectral indices (NDSIs) 

Band combinations from 
Sentinel-2 bands (B2, B3, 
B4, B6, B8, B11) e.g. (B2-

B3)/(B2+B3) 

16 

Pan-sharpening of SWIR 
(Band 11) 

Band combinations from 
P1 of B11 

5 

Band combinations from P2 
of B11 

5 

Textural features 

GLCM 
Correlation, Homogeneity 

 
2 

GLDV 
Contrast, Entropy, Mean 

 
3 

Image transforms 
Principle components 

(PC`s) 
PC1 and PC2 2 

Note: P1=ATWT pan-sharpening, P2=Gram-Schmidt pan-sharpening, PC=principal component and B=band 

The S2 spectral bands were used to develop NDSIs, which include the normalised difference 

water index (NDWI) (McFeeters 1996), normalized difference moisture index (NDMI) (Wilson 

& Sader 2002), modified normalized difference water index (MNDWI) (Xu 2006) and water 

ratio index (WRI) (Shen & Li 2010) indices. Table 5.4 shows the calculation of the popular 

indices. Band 11 was downscaled from 20 m to 10 m (e.g. for generating a 10 m resolution 

MNDWI) using pan-sharpening, where Band 8 was employed as the panchromatic (PAN) band 

as suggested by Du et al. (2016). 

Table 5.4 Calculation of the popular indices-based on Sentinel-2 reflectance bands 

Index Equation 

Normalized difference water index NDWI = 
𝐵𝑎𝑛𝑑 3−𝐵𝑎𝑛𝑑 8

𝐵𝑎𝑛𝑑 3+𝐵𝑎𝑛𝑑 8
 

Normalized difference moisture index NDMI = 
𝐵𝑎𝑛𝑑 8−𝐵𝑎𝑛𝑑 11

𝐵𝑎𝑛𝑑 8+𝐵𝑎𝑛𝑑 11
 

Modified normalized difference water 
index 

MNDWI = 
𝐵𝑎𝑛𝑑 3−𝐵𝑎𝑛𝑑 11

𝐵𝑎𝑛𝑑 3+𝐵𝑎𝑛𝑑 11
 

Water ratio index WRI = 
𝐵𝑎𝑛𝑑 3+𝐵𝑎𝑛𝑑 4

𝐵𝑎𝑛𝑑 8 +𝐵𝑎𝑛𝑑 11
 

Automated water extraction index 
AWEI = 4(𝐵𝑎𝑛𝑑 3 − 𝐵𝑎𝑛𝑑 11) − (0.25𝐵𝑎𝑛𝑑 8 + 2.75𝐵𝑎𝑛𝑑11) 

 

Two popular pan-sharpening algorithms were used, namely Gram-Schmidt (GS) (Laben & 

Brower 2000) and À Trous Wavelet Transform (ATWT) (Shensa 1992). Several other NDSIs 
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generated from other S2 band combinations (not included in the hand-selected water indices) and 

the mean of all bands (i.e. brightness) were included to investigate whether they were useful for 

water feature detection. 

Principal component analysis (PCA) was performed on all S2 bands per image and the two first 

components (PC1 and PC2) with the largest Eigenvalues were retained (Kalantari et al. 2014). 

Two types of textural measures, namely the grey level co-occurrence matrix (GLCM) and grey 

level difference vector (GLDV), were generated from each PC1. These measures quantify 

differences in the grey levels within a local window (Haralick, Shanmugam & Dinstein 1973). In 

this study the window size was set to (5 x 5) pixels as suggested by Zhang et al. (2017). The 

GLDV texture measures employed were contrast, entropy and mean, while correlation and 

homogeneity were selected from the GLCM analyses. 

Nine popular speckle filters available in SNAP, namely boxcar, none, median (5×5), Lee-sigma, 

refined Lee, frost, gamma MAP, IDAN and Lee, were applied to the HV and VV SAR 

polarisations (Argenti et al. 2013). 

5.3.4 Experimental design 

The thresholding results were compared to the classifications produced by the MLAs to get a 

sense of relative performance (i.e. the MLA results were used as benchmarks against which the 

autonomous rule-based approaches could be compared). The classification experiments were 

applied for each site separately and in combination to better understand how variations in 

waterbody types influence accuracies. Table 5.5 summarises the experiments, classification 

methods and input features. The thresholding classified each feature individually, whereas MLAs 

considered them all in combination. 

Table 5.5 Experiments carried out 

Experiment set Classification method Input features Number of experiments 

A Thresholding Each feature individually 252 x 9 = 2268 

B k-NN All features combined 1 x 9 = 9 

C DT All features combined 1 x 9 = 9 

D RF All features combined 1 x 9 = 9 

E SVM All features combined 1 x 9 = 9 

F c-SVM All features combined 1 x 9 = 9 
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5.3.5 Image thresholding 

Threshold selection is a key step in using rule-based approaches for waterbody mapping. Several 

researchers have noted the difficulty of selecting robust threshold values, as image variables (e.g. 

spectral indices and backscatter) are often dynamic vary both temporally and spatially among 

regions, depending on different image and water characteristics. 

The use of a deterministic threshold (e.g. zero in NDWI) can either overestimate or 

underestimate surface water areas. Various automatic threshold selection methods have 

consequently been proposed in the literature (Al-Bayati & El-Zaart 2013). In this study, 

waterbody masks were extracted from each of the 252 features (Table 5.3) by applying a 

threshold dynamically generated with the Otsu algorithm (Otsu 1975). The algorithm is a widely 

used automatic thresholding method aimed at maximising inter-class variance and minimising 

intra-class variance (Du et al. 2016; Schlaffer et al. 2015). The thresholding experiments per 

feature (Table 5.5) and per each site were automated in Matlab software. 

Otsu automatically defines a threshold value t that divides the image into two classes. In this 

study, the two classes were set to water and non-water. The threshold value t separating these 

classes was determined as follows: 

𝛿2 = Pnw · (Mnw − 𝑀)2 + P𝑤  ∙ (M𝑤 − M)2 Equation 5.1 

M = Pnw · M𝑛𝑤 + P𝑤 ∙ M𝑤  
Equation 5.2 

P𝑛𝑤 + P𝑤 = 1 Equation 5.3 

t∗ =
𝐴𝑟𝑔 𝑀𝑎𝑥

 𝑎 ≤ 𝑡 ≤ 𝑏
{Pnw · (Mnw − M)2  +  Pw  ∙ (Mw − M)2} Equation 5.4 

where P𝑛𝑤  is the probabilities of one pixel belonging to non-water class; 

 P𝑤  is the probabilities of one pixel belonging to water class;  

 M𝑛𝑤  is the mean values of the non-water class;  

 M𝑤  is an arbitrary multiplier representing the upper standardised range value; and 

 𝑀 is the mean value of the feature image. 
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5.3.6 Machine learning 

The Supervised Learning and Image Classification Environment (SLICE) software developed by 

the Centre for Geographical Analysis at Stellenbosch University (Myburgh & Van Niekerk 

2014) was used for the supervised machine learning classification. SLICE was developed using 

the C++ programming language and libraries from OpenCV (Open Source Computer Vision 

Library) 2.2 (Garage 2011) and Libsvm (Library for Support Vector Machines) (Chang & Lin 

2011). 

SLICE integrates five popular machine learning algorithms, namely DTs, k-NN, RF, constant 

optimisation parameter SVM (c-SVM) and SVM. These machine-learning techniques are well 

established in remote sensing applications, mainly thanks to their flexibility, simplicity and 

computational efficiency (Myburgh & Van Niekerk 2014; Zheng et al. 2015). 

SVM is a non-parametric supervised classification technique based on a statistical learning 

theory, and aims to determine the location of decision boundaries by maximising the margin 

between classes (Vapnik 2013). In the case of two linearly separable classes, SVM selects from 

among the infinite number of linear decision boundaries the optimal separating hyperplane 

(OSH), which minimises the generalisation error. The OSH ensures a maximum margin between 

the hyperplane and the closest training samples (dubbed support vectors) of each class and it is 

calculated by standard quadratic programming optimisation techniques (Pal & Mather 2005). 

The support vectors are the only training samples used in the classification. When the data are 

not linearly separable in two dimensions, SVM is extended by introducing slack variables and 

applying a kernel function to solve the optimisation problem in higher-dimensional space 

(Steinwart & Christmann 2008). Commonly used kernels are linear, polynomial and the radial 

basis function (RBF). The performance of SVM largely depends on the choice of the kernel 

function and the assignment of kernel parameters (Pal & Mather 2005). The RBF kernel usually 

trains much faster by mapping every point to a Gaussian function and was chosen for this study, 

as recommended by Jia, Wu & Li (2013). The c parameter in c-SVM helps to optimise SVM 

since the value is tuned based on the input data. The range of c is from zero to infinity. For large 

values of c, the optimisation will choose a smaller-margin hyperplane whereas a very small value 

of c will cause the optimiser to look for a larger-margin separating hyperplane, even if that 

hyperplane misclassifies more points. 

DT classifier is a predictive, flexible and comprehensive classification algorithm that labels an 

unknown class using a sequence of rules that leads to a classification decision (Sun, Yu & 
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Goldberg 2011). A decision tree is composed of a root node, a set of interior nodes and terminal 

nodes (termed leaf nodes). The root node and interior nodes are linked to decision stages, while 

the terminal nodes represent the final classification. The classification process is implemented by 

a set of rules that determines the path to be followed, starting from the root node and ending at 

one terminal node that represents the label for the object being classified. At each nonterminal 

node, a decision is made about the path to the next node. The efficiency and performance of this 

algorithm strongly depends on the set of rules controlling a decision tree and the nature of 

decisions being set (Mather & Tso 2016). 

RF is an ensemble machine learning method consisting of a combination of DT classifiers (Pal 

2005). All trees are trained with the same features but on various training sets, which are 

generated randomly from the original training data. After training, each tree assigns a class label 

to the test data. Finally, the results of all decision trees are fused and the majority of votes 

determine the class label for each land cover (Amani et al. 2017). Depth and minimum sample 

number are the two important tuning parameters in the RF algorithm. In this study, the DT and 

RF classifiers were parameterised according to the suggestions in the OpenCV library 

documentation presented by Garage (2011), i.e. the maximum depth was set to 50, the minimum 

number of samples was set to one and pruning harshness was set to the minimum. 

The k-NN classifier is a distance rule-based technique often employed in image classification. 

The rule assigns an unknown sample to the class that occurs most frequently among its k-nearest 

neighbours (Aggarwal (Compiler and ed) 2014; Campbell & Wynne 2011). The basic 

functioning behind k-NN is that the group of k samples in the calibration dataset that are nearest 

(in feature space) to an unknown sample is used to infer (through a majority vote) its 

membership (Qian et al. 2015; Thanh Noi & Kappas 2018). Therefore, k is the key tuning 

parameter in this classifier and largely determines the performance of the classifier. For this 

study k was set to 1, as proposed by (Qian et al. 2015). 

5.3.7 Accuracy assessment 

A 3:2 sample split ratio was used for classifier training and accuracy assessment, i.e. 40% of the 

samples was randomly excluded from classifier training and used exclusively for assessing the 

accuracy of the resulting classifier, as suggested by Gilbertson, Kemp & Van Niekerk (2017). To 

compare the performance of each classifier, the same training (input) and testing (validation) 

dataset were used for all the classification experiments to ensure that differences in accuracy 
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could be attributed to the nature of the class allocation processes. The same set of samples was 

used for assessing the accuracies of the thresholding and machine learning classification results. 

A confusion matrix, producer’s accuracy (PA), user’s accuracy (UA), overall accuracy (OA) and 

the kappa coefficient (K) were generated for each classification experiment. OA is easily 

interpreted as it represents the percentage of classified pixels in the image that have been 

correctly labelled (Campbell & Wynne 2011), while K can be used to assess statistical 

differences between classifications (Foody & Mathur 2004). 

The statistical significance of the accuracy differences among experiments was evaluated using 

non-parametric statistical tests, namely McNemar’s (Adedokun & Burgess 2011) and Friedman’s 

test, as implemented in the Statistical Package for Social Sciences (SPSS). Differences were 

considered as statistically significant at P<0.05. 

5.4 RESULTS 

5.4.1 Thresholding 

Table 5.6 lists the results of the six best performing Otsu-based thresholding experiments (named 

T1–T6 for easier notation). Compared to the S1 features, higher accuracies were achieved when 

thresholding was applied to the S2 variables, with only one SAR-based experiment (T2) being 

among the six best results. When considering the combination of all the study sites, NDWI (T1), 

derived from the green and NIR S2 bands, was the most successful in separating water from 

other land covers with an OA of 81.6% and K of 0.73. The second best performing feature was 

the S1 VH band (T2), derived from the refined Lee (RL) filter, with OA and K values of 77.7% 

and 0.67 respectively. According to McNemar’s test, the difference between T1 and T2 is 

statistically significant. The second best performing S2 feature (OA of 71.8%) was the MNDWI, 

derived from the green band, and the ATWT pan-sharpened SWIR S2 Band 11 (T3). This result 

was significantly lower than both T1 and T2, but not significantly higher than when individual 

bands (T4 and T5) were used as input to the thresholding algorithm. The accuracy levels dropped 

off sharply in T6 when Gram-Schmidt pan-sharpening was used for MNDWI. 

Generally, thresholding was more successful when each site was classified individually (i.e. 

using a locally adapted threshold). For instance, the mean OA of the per site NDWI (T1) 

classifications was 90.7%, which is significantly higher than the 81.6% OA achieved when all 

the sites were classified in combination. A similar pattern is observed for the other features (all 

differences between mean OAs per site and OAs of all sites combined were statistically 
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significant), although the variation among site-specific classifications varied considerably. 

Notably, the standard deviation (SD) of the NDWI (T1) classifications was 1.57%, while for 

MNDWIGS (T6) and MNDWIATWT (T3) it was 13.2% and 11.8% respectively, which brings the 

stability of the latter two features into question. The stability of the S1 VH RL speckle filter (T2) 

was better (SD of 3.1) than that of the two MNDWI-based features (T3 and T6), but still 

significantly lower than that of NDWI (T1). This suggests that no single threshold could 

accurately separate water and non-water land covers in all sites. This is supported by Figure 5.3a, 

b and c which demonstrates the temporal variability of NDWI, MNDWI and VH/VV for the 

points taken at the same waterbody (Site G) on different dates. Furthermore, Figure 5.3d shows 

the spectral variability within the same waterbody based on a S2 image acquired on 22 

November 2016. 

Table 5.6 Overall accuracies (OAs), kappa coefficients (K), mean (x̅) and standard deviation (δ) values for the six 

best performing thresholding features.  

Site 

Thresholding Average 

T1 T2 T3 T4 T5 T6 
OA K 

NDWI VH BandRL MNDWIATWT  Band 8 Band 11ATWT MNDWIGS 

OA  K OA  K OA  K OA  K OA  K OA  K x̅  δ x̅  δ 

Site A 88.2 0.83 85.5 0.65 73.2 0.59 74  0.53 63.7 0.53 64.2 0.51 77.6 9.5 0.50 0.27 

Site B 91.8 0.84 88.5 0.77 68.3 0.58 77.6 0.55 75.4 0.51 71.6 0.54 76.8 12.1 0.40 0.38 

Site C 90.8 0.83 88.4 0.77 93.6 0.87 81.2 0.73 78 0.57 84.2 0.89 86.9 7.1 0.78 0.15 

Site D 91.6 0.89 89.6 0.79 75.8 0.62 76.7 0.53 65.9 0.51 65.7 0.51 77.8 11.4 0.49 0.30 

Site E 90.7 0.81 89.5 0.79 94.6 0.89 80.8 0.62 75.9 0.52 85.1 0.92 87.1 8.0 0.78 0.17 

Site F 89.1 0.78 88.7 0.77 65.9 0.55 78.9 0.58 73.1 0.57 64.3 0.51 75.4 16.0 0.38 0.37 

Site G 96.1 0.92 92.4 0.85 98.2 0.91 88.8 0.78 88.6 0.77 93.2 0.93 90.5 6.0 0.81 0.11 

Site H 90.3 0.81 82.8 0.71 91.1 0.82 76.3 0.53 75.7 0.52 70.4 0.54 83.9 11.0 0.63 0.20 

Mean 90.7 0.82 86.3 0.70 85.2 0.67 81.3 0.61 77.8 0.55 75.2 0.73 82.8 5.8 0.7 0.13 

SD 1.57 0.03 3.1 0.10 11.8 0.20 4.5 0.10 6.2 0.05 13.2 0.15 6.73 4.75 0.11 0.06 

All 
sites 

81.6 0.76 77.7 0.71 73.8 0.69 69.5 0.57 67.7 0.57 65.2 0.56 72.3 6.25 0.64 0.08 

Notes: GS = Gram-Schmidt; ATWT = pan-sharpening à Trous wavelet transform; RL= refined Lee speckle filtering. Kappa 

values greater than 0.8 are highlighted in red. 

The accuracies among study sites varied substantially. Site G, which is slightly turbid and 

eutrophic achieved the highest mean OA (90.5%), while the lowest accuracy was recorded at site 

F (mean OA 75.4%). The latter site is a shallow dam with humic-rich water from a slow-moving 

channel flowing through forested plantations (Eucalyptus pine and swamps, Table 5.1). MNDWI 

(T3) showed the highest accuracy for delineating sites C, E and H. These sites represent clear 

and eutrophic water. Thresholding of NDWI (T1) produced the best results when humic water 

sites were classified (i.e. A, B, D and F), while T2 (SAR backscatter) performed generally well 

(>82%) in all sites. This suggests that the SAR data were less affected by the optical variabilities 
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among the waterbodies. A Friedman’s test showed that the difference between feature type and 

optical variability of water are statistically significant (P = 0.002). 

  

  

Figure 5.3 The water points collected on the same waterbody (Site G) showing the temporal and spatial variability in 

(a) NDWI, (b) MNDWI, (c) VH/VV on different dates and (d) spectral variability on Sentinel-2 image 

of 22 November 2016 

Unlike the other indices tested, NDWI was found to have the ability to spectrally differentiate 

surface water with different characteristics located among different land cover types, including 

shadows or dark areas. For instance Figure 5.4 shows that MNDWI incorrectly classified humic-

rich water as non-water and confused shadows with water (Figure 5.5). Details of confusion 

matrices, including commission and omission errors when applying NDWI, MNDWI and 

VHBandRL, are shown in Appendix A. The waterbodies were better captured by NDWI in all 

cases. 

(a) (b) 

(c) (d) 
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Figure 5.4 Detailed (large-scale) examples of the 10 m true colour maps of Sentinel-2 (4, 3, 2), MNDWI and NDWI 

images. The first column represents site A and the second column is for site F. Values greater than -0.2 

were classified as water 

Shadows and water are spectrally similar and were consequently difficult to discriminate, as 

depicted by large errors of omission and commission in the shadow class with all the MNDWI, 

NDWI and VH BandRL. For example, for MNDWI, a higher commission error in the shadow 

class was detected (47%) (mainly due to misclassification of water), which is also reflected in the 

high omission error (16.5%). Furthermore, this is supported by the visualisation of false positives 

for MNDWI, especially in mountainous terrain (Figure 5.5). 
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Figure 5.5 Visual comparison of a Sentinel-2 (a) true colour image (4, 3, 2), (b) MNDWI and (c) NDWI 

misrepresentation of shadows by MNDWI. Values greater than -0.2 were classified as water 

Figure 5.6 provides a qualitative comparison of T1 and T2 in test site F generated from images 

captured on 31 January 2017. In general, it seems that T1 classified water with greater accuracy 

than T2; however T1 (marked with green squares) and T2 (marked with red squares) omitted 

water in some areas (Figure 5.6). To reduce these errors and in the interest of finding a solution 

to classify water automatically and accurately, an additional experiment (called “T1+T2”) was 

carried out in which T1 and T2 were intersected (i.e. using the Boolean operator OR). 

 
Figure 5.6 The visualisation of water masks derived from T1 (NDWI), T2 (SAR VH band) and T1+T2 (fusion of T1 

and T2). An aerial photograph of October 2014 was used at which time the water level was lower than 

those at T1 and T2.  

(a) (b) (c) 
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Visual inspection of Figure 5.6 suggests that T1+T2 resulted in better accuracy of surface water 

mapping compared to either T1 or T2. The accuracy of T1+T2 was significantly (8%) higher 

than that of T1, achieving an OA of 89.3%. 

5.4.2 Benchmarking thresholding to machine learning 

Table 5.7 summarises the machine learning classification results. Generally, all the classifiers 

performed well at classifying slightly turbid water (site G). SVM significantly outperformed the 

other classifiers when the classifications were carried per individual site, with site G recording 

the highest mean OA of 95.9%. This result is significantly higher (P = 0.03) than the second best 

classifier c-SVM (mean OA = 93.3%). On average, DT was the worst performing classifier 

(mean OA of 88.4%) when the classifications were carried out per site, except for site G (94.6%) 

where it outperformed RF (92.5%) and k-NN (93.8%). With a SD of 3.7, DT was also the least 

stable of the five classifiers. The c-SVM was the second best performing classifier, but it did not 

perform well at classifying sites D and E (relative to k-NN and RF). 

Table 5.7 Overall accuracies (OAs), kappa coefficients (K), mean (x̅) and standard deviation (δ) values for the 

machine learning algorithms (MLAs) 

Site 

CLASSIFFIER OVERALL AVERAGE 

SVM c-SVM k-NN RF DT OA K 

OA  K OA  K OA  K OA  K OA  K x̅  δ x̅  δ 

Site A 95.8 0.91 92.7 0.90 87.2 0.85 88.7  0.86 81.7 0.79  89.2 4.73 0.86 0.05 

Site B 97.4 0.93 94.2 0.91 89.0 0.87 89.8 0.86 85.0 0.82 91 4.07 0.88 0.05 

Site C 96.8 0.94 94.4 0.91 90.5 0.89 89.3 0.86 86.2 0.83 91.2 3.39 0.88 0.04 

Site D 95 0.94 90.7 0.92 91.8 0.90 91.3 0.89 90.2 0.89 93.9 1.89 0.91 0.02 

Site E 96.3 0.88 93.3 0.95 93.6 0.90 91.4 0.89 91.2 0.89 93 1.52 0.90 0.03 

Site F 94.5 0.90 92.2 0.90 89.7 0.87 88.7 0.86 86.2 0.83 90 2.1 0.87 0.03 

Site G 98.2 0.96 95.7 0.95 93.8  0.89 92.5 0.89 94.6 0.95 94 2.67 0.93 0.03 

Site H 94.6 0.91 94.3 0.93 91.5 0.89 92.7 0.90 91.3 0.90 93 1.08 0.91 0.02 

Mean 95.9 0.93 93.3 0.92 90.8 0.9 90.5 0.88 88.4  0.89 91.8 2.89 0.90 0.03 

SD 2.17 0.03 1.1 0.02 2.26 0.02 2.6 0.04 3.7 0.03 2.37 0.93 0.03 0.01 

All 
sites 

91.7 0.82 89.6 0.81 80.7 0.78 79.5 0.77 78.7 0.76 81.2 2.32 0.79 0.03 

SVM consistently outperformed the other classifiers, with an OA and K values of 91.7% and 

0.82 respectively when all sites were combined. This was significantly higher (P = 0.03) than the 

second best performing classifier c-SVM, which achieved an OA of 89.6%. DT delivered the 

poorest overall classification results (OA = 78.7%), followed by RF (79.5%) and k-NN (80.7%). 

The accuracies of all classifiers dropped significantly when all the sites were classified in 

combination (i.e. when the complexity of the target classes increased), with RF and k-NN being 

the most affected (reduction in mean OA of more than 10%). 
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The OAs of the MLAs and best thresholding classifications are graphically compared in Figure 

5.7. SVM and c-SVM performed the best, regardless of the characteristics of the waterbody. T1 

performed better than the worst performing machine learning classifier (k-NN) at sites A, B and 

C, which are characterised by moderately eutrophic water. At site D (humic water), T1 achieved 

a 1.5% higher OA than c-SVM. Although T3 was the worst performing classification when all 

sites were combined, it performed on par with the machine learning classifiers at sites C, E, G 

and H. For instance, at site E its accuracy was significantly (1.3%) higher than what was 

obtained with c-SVM. 

 
Figure 5.7 Comparison between thresholding and MLAs for all sites 

Although SVM was superior, the fusion of the T1 and T2 rulesets improved the threshold-based 

classification outcome to achieve competitive results. T1+T2 achieved a higher accuracy than k-

NN at all individual sites and at site D; it outperformed c-SVM by about 2.7%. At site E 

(eutrophic waterbody), T1+T2 attained the highest accuracy, while at sites C and G, its accuracy 

was almost on par with that of c-SVM. It is important to note that the fusion of T1 and T2 did 

not improve the OAs at sites D and H by much. Figure 5.7 show that all the classifiers struggled 

(OAs below 95%) at sites D, F and H. These sites are characterised by humic-rich water and are 

located in mountainous terrain. 
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5.5 DISCUSSION 

The results show that the characteristics of the water, type of classifier and input feature dataset 

had a significant impact on the accuracies of the surface water classifications. With the 

multispectral data, the selection of the spectral index had a significant impact on accuracies. 

MNDWI’s lower OA compared to NDWI was mainly due to the under classification of humic-

rich water (Figure 5.4) and over classification of shadows (Figure 5.5). 

NDWI was able to highlight dark, turbid and eutrophic water more effectively than MNDWI. 

This finding contrast with those of Xu (2006) and Zhai et al. (2015) who noted that MNDWI 

provided better discriminatory power than NDWI for shadowed and dark areas in close spectral 

proximity to water. Zhai et al. (2015) found that MNDWI performed substantially better than 

NDWI in mapping waterbodies that have similar spectral profiles to shadows, while Xu (2006) 

showed that MNDWI performed significantly better than NDWI for extracting turbid water, 

which has a high spectral resemblance to some non-water classes. It should be noted, however, 

that these studies used spectral bands from Landsat 7 and Landsat-8, which differ from S2 bands 

used in this study. However, our observations support those of Rokni et al. (2014) and Zhou et 

al. (2017) who found NDWI to be superior to other indices in delineating shallow and turbid 

lakes respectively. A likely explanation for NDWI performing better than MNDWI in our study 

was the study region. The latter index is known to be more effective than NDWI in suppressing 

built-up features (Du et al. 2016; Yang et al. 2017) and our study region is mostly rural. 

Nevertheless, the different OAs of NDWI and MNDWI suggest that the NIR and SWIR bands 

were more sensitive to the variations in physical and chemical properties of water than the green 

band. 

It was observed that the SAR VH band classified water more accurately than the VV band did, 

irrespective of the targeted water characteristics. Classification errors at site H were mainly due 

to windy conditions at the time of acquisition, which created waves on the water surface and 

resulted in high backscatter signals. The VV polarisation produced higher backscatter values 

over water surfaces than the VH polarisation, which suggests that the former configuration is 

more sensitive to variations between water and non-water features. A bigger difference between 

the backscatter responses of land and water features was noted in the VH polarisation than in the 

VV polarisation. This corresponds well with Clement, Kilsby & Moore (2018) who also noted 

that VH outperformed VV polarisation for turbid water mapping. Our study observed that the 

refined Lee speckle filter can suppress the speckle effect and maintain details of the water 
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boundary (Pham-Duc, Prigent & Aires 2017), which is important for the identification of water 

pixels at the water/soil interface. 

In this study, the semi-automated MLAs were used for benchmarking the autonomous 

thresholding results. All multispectral and SAR features were included in the MLAs to produce a 

best-case scenario. Although inequality within the waterbodies (e.g. depth, colour and sediment 

variations) has been shown to affect classification results when using remotely sensed data 

(Gómez-Palacios, Torres & Reinoso 2017), this study has proved SVM to be less sensitive to 

intra-class variations compared to other classifiers. Moreover, SVM was credited with its ability 

to effectively separate classes that are spectrally similar (e.g. humic-rich water and shadows). 

This was likely a major contributing factor to its outstanding performance in this study. 

Challenges relating to different applications and data used were encountered when attempts were 

made to directly compare the findings of this study with those of previous studies. The majority 

of the published studies that focus on the use of MLAs for the supervised classification of remote 

sensing data have been done for vegetation and crop type classification using Landsat data. 

However, the outcomes of this study are closely related to those of Sarp & Ozcelik (2017) who 

revealed that machine learning algorithms marginally outperform thresholding. 

Although MLAs (specifically SVM) outperformed the thresholding methods in individual sites 

and when the sites were combined (i.e. when complexity increased), the main drawback of 

supervised MLAs is their dependence on training data. The application of supervised approaches 

is limited to regions for which representative samples of labelled data are available. Once 

training samples are established, they can be reused and applied to images with different dates 

and even of different areas. However, the accuracy of the resulting classifications is usually 

negatively affected (Hasmadi, Pakhriazad & Shahrin 2009; Ireland, Volpi & Petropoulos 2015; 

Verhulp & Van Niekerk 2017), mainly due to temporal and regional variations. Waterbodies are 

highly dynamic as they continuously fill up and empty, which makes the re-use of training sets 

very challenging and limits the operational implementation of supervised techniques for 

monitoring changes in surface water reservoirs. 

Despite the relatively lower recorded accuracies of thresholding (compared to those of MLAs), it 

seems to be a viable solution for operational implementations. In contrast to supervised 

approaches that require training data and rule-set (expert system) approaches that make use of a 

set of static thresholds, thresholding generates dynamic rules (appropriate thresholds) that do not 

require human interaction or training data. However, our results show that the use of a single 
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feature (rule) for thresholding produced relatively poor and unstable results. Combining the 

outputs of different thresholding results produced much better and more robust results. For 

instance, we combined the two best thresholding outputs (NDWI and VH BandRL) and found that 

the combination of these SAR and multispectral features significantly improved the accuracy and 

stability of the surface water classifications. More work is needed to investigate the efficacy of 

other combinations of thresholding outputs. 

5.6 CONCLUSION 

Accurate temporal and spatial changes for small waterbodies are critical for water security, 

drought monitoring and crop irrigation decision-making. Remote sensing offers a reliable, cost-

effective and potentially autonomous alternative for surface water mapping of large and 

inaccessible areas. The recently launched S1 and S2 satellites provide fine spatial and temporal 

resolution remote sensing data, which makes it ideal for mapping waterbodies at regional and 

even global scales. 

In this study, we proposed an approach that combines automatic thresholding of near-concurrent 

NDWI (generated from S1) and VH backscatter bands (generated from S1) for mapping 

waterbodies (mainly reservoirs and dams) with diverse spectral and spatial characteristics. 

Waterbodies of different sizes and varying levels of turbidity, sedimentation and eutrophication 

were targeted. The resulting maps were compared to the classification performances of five 

MLAs, namely DT, k-nearest neighbour (k-NN), RF and two implementations of the SVM. The 

results showed that the physical and chemical properties of water significantly affected 

classification accuracies. The performance of the best machine learning classifier (SVM) and 

thresholding (NDWI) dropped by more than 10% when the complexity of the task was increased 

(i.e. when the classifiers were applied to all sites in combination). However, the combination the 

two best thresholding results (NDWI and VH BandRL) was relatively accurate and stable, likely 

because it takes advantage of both SAR and multispectral data. Although several heterogeneous 

sites were used to evaluate the results, more work is needed to test whether the dynamic NDWI–

VH BandRL rule-set will be as effective in other areas, on other water types, during different 

seasons and under contrasting conditions. Other indices such as the automated water extraction 

index (AWEI) and tasselled cap wetness transformation should also be evaluated when the 

coefficients for S2 bands are made available. 

In summary, the techniques and datasets evaluated in this study show much promise for the 

accurate classification of optically complex waterbodies. Moreover, the relatively accurate and 
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stable classifications achieved when the multispectral and SAR data were fused and 

automatically thresholded are very encouraging and may provide a viable solution for the 

operational monitoring of surface waterbodies in the Winelands district of South Africa. The 

implementation of this technique will provide invaluable information for water management and 

water security. 
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CHAPTER 6:  LAND SURFACE WATER MAPPING USING REMOTE 

SENSING IN COMPLEX AND HETEROGENEOUS 

ENVIRONMENTS: CONCLUSION 

6.1 INTRODUCTION 

Mapping of surface water (LSW) is of particular importance for monitoring flood events and 

water resources (Kundzewicz et al. 2014; Mueller et al. 2016). According to the 

Intergovernmental Panel on Climate Change (IPCC (2014), global climate change and the 

occurrence and severity of floods and droughts are projected to be more pronounced in the near 

future than previously foreseen. The impacts of these events will likely be more destructive in 

developing countries, particularly those in Africa, where the adaptive capacity is low and 

community vulnerability high (IPCC 2014; Long, Fatoyinbo & Policelli 2014). Responsible 

organisations in these countries are often inadequately equipped to monitor the impacts of 

climate change on LSW resources and risks. 

Recently, there has been an improved understanding of the connection between climate change 

and the dynamics of LSW resources (Amitrano et al. 2018; Bessinger 2016; Ouled et al. 2018; 

Sadegh et al. 2017). In situ hydrological data are useful in quantifying the temporal and spatial 

changes of LSW resources. Studies have used field surveys data to monitor seasonal and long-

term climatic changes of LSW resources (Correia et al. 1998; Hess et al. 1995). These surveys 

are limited in temporal and spatial coverage, however, and are thus inadequate for monitoring 

dynamics in LSW over large areas. This inadequacy is pronounced in developing countries 

where financial constraints make it difficult to carry out field surveys regularly (Rahman & Di 

2017). Further, even in well-resourced, developed nations, it is not economically viable or 

practical to implement frequent field surveys for monitoring LSW resources. On the other hand, 

space-borne remote sensing has been proposed as an alternative approach for mapping and 

monitoring LSW resources over large areas and at short temporal intervals (Makapela et al. 

2015; Yan et al. 2015). However, most RS applications for LSW mapping have not given much 

attention to the effects of surrounding land covers, partly submerged vegetation, as well as 

dissolved and suspended substances in water (Plank et al. 2017). According to Song et al. (2014), 

the increased level of turbidity and the presence of water underneath the vegetation can increase 

backscatter and reflectance values of water. This can result in underestimation of wetlands and 

inundation extents in vegetated floodplains (Plank et al. 2017; Wei et al. 2017) and optically 

complex (e.g. turbid and eutrophic) waterbodies (Sarp & Ozcelik 2017). Therefore, effective 
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LSW mapping requires an understanding of the impacts of these complexities on SAR 

backscatter and reflectance values. 

The next section revisits the research aims and objectives in order to critically reflect on the 

value of this study. 

6.1 RESEARCH OBJECTIVES REVISITED 

The primary aim of the research was to evaluate the potential of remotely sensed data with 

different temporal, spatial and radiometric properties to map LSW under complex conditions. 

The first objective (see Section 6.2) was to review the literature on the trade-offs between 

conventional (i.e. field-based) and remote sensing techniques for mapping LSW. In Chapter 2 we 

reviewed the literature on different classification methods, i.e. visual interpretation, supervised 

classification, unsupervised classification and expert systems, applied to SAR and multispectral 

data for LSW mapping. The review of the use of satellite RS for LSW mapping showed that only 

a few studies targeted the mapping of heterogeneous and optically complex waterbodies. The 

review also highlighted the challenges associated with the use of RS for this purpose. The trade-

offs between pixel size and revisit time were cited by many researchers as a major limitation of 

RS for mapping flooded vegetation in near real-time. This drawback, coupled with the growing 

demand for near real-time information on flood monitoring, has motivated many researchers to 

embark on linear spectral unmixing, unsupervised classification (e.g. thresholding), as well as 

multisensory and data fusion approaches. 

The second objective of the study was to develop a technique whereby surface water can be 

mapped in the presence of vegetation using high temporal and low spatial resolution RS data. 

MERIS imagery was chosen to map a historical flood event in the Caprivi floodplain using a 

novel spectral unmixing approach (Chapter 3). MERIS images are similar to the Ocean and Land 

Colour Instrument (OLCI) imagery acquired by the recently launched Sentinel-3 (S3) satellite. A 

challenge to spectral unmixing for flooded area mapping is the estimation of spectral 

endmembers, i.e. pure spectra of land cover features. In this study, an unmixing method based on 

an ensemble of spectral endmembers was developed to take into account spectral variability 

within each endmember. Specifically, the fractional abundance of water (𝛾𝑤) was estimated by 

applying a new spectral indices-based unmixing algorithm using three spectral bands. The 

NDWI was applied to delineate the water surface and combined with NDVI to account for partly 

submerged vegetation within inundated areas. The quality of the flood map was assessed against 

high (30 m) spatial resolution Landsat Thematic Mapper (TM) images on two different dates (17 
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April 2008 and 22 May 2009) during which floods occurred. The findings show that both the 

spatial and the frequency distribution of the fractional abundance of water extracted from the 

MERIS data were in good agreement with the TM retrievals. In contrast, conventional linear 

unmixing, performed using the all the available bands in each image, resulted in relatively large 

differences between TM and MERIS retrievals. 

Flood maps derived from SAR data are critical for accurate flood monitoring. SAR has the 

capability to penetrate the vegetation canopy to a certain extent depending on the wavelength and 

its sensitivity to water underneath the vegetation (Tsyganskaya et al. 2018b). From the literature 

it was established that most studies make use of single SAR images and land use and land cover 

(LULC) maps for estimating flood extent. The principle of such an approach is to find a satellite-

observed backscatter value below which a pixel can be regarded as being flooded. This approach 

is, however, limiting as the threshold applying to flood conditions does not take local land 

surface characteristics (e.g. rough soil surface, vegetation) affecting backscatter observations into 

account. An evaluation of the utility of a time series of Sentinel-1 (S1) SAR data for mapping 

flooded vegetation (Chapter 4) thus addressed the third objective of the research. A time series 

classification technique based on the Bayesian probability was developed. A quantitative 

assessment of the derived inundated area during a flood event on 7 April 2017 was done using 

Landsat OLI images. It was shown that, compared to S1 SAR images, the optical Landsat images 

overestimated the flooded area by about 11%. The evaluation showed that setting a fixed 

backscatter value as a threshold for estimating the probability of a pixel being flooded is 

inflexible and that it is difficult to capture local land surface characteristics from a single image; 

however, additional information can be extracted from a time series statistics of SAR images. 

Chapter 5 investigated the value of combining multispectral and SAR data for mapping small 

and fragmented surface waterbodies, thereby addressing the final objective of this research. 

MLAs were used to benchmark a range of autonomous thresholding experiments. The study 

showed that combining multispectral indices with SAR data is highly beneficial for classifying 

complex waterbodies and that the proposed thresholding approach classified waterbodies with an 

overall classification accuracy of 89.3%. Although MLAs classified the complex waterbodies 

with higher accuracy (91.7%) than thresholding, they require training data to be collected (and 

updated) and as such cannot be fully automated. In contrast, fully automated thresholding can be 

operationalised to map and monitor LSW over large and in complex areas with relatively high 

and stable accuracies. 

  

Stellenbosch University  https://scholar.sun.ac.za



  129 

6.2 RESEARCH VALUE AND CONTRIBUTION 

This study has contributed to existing knowledge on LSW mapping to aid flood monitoring and 

water security management, particularly in turbid, vegetated, sedimented and eutrophic 

waterbodies. Many communities in developing countries rely on such LSW for agricultural 

production, as well as domestic and industrial use (Botai et al. 2017). The trade-off between 

pixel size and revisit time was addressed by developing and demonstrating a novel spectral 

unmixing method (Chapter 3). The combined ability to capture variability of spectral 

endmembers and thresholds is novel. The developed method makes use of ensemble estimation 

of spectral endmembers to capture and take into account spectral variability within each 

endmember and can be used to improve the accuracy of flood extent mapping in the 

heterogeneous environments. 

Chapter 4 showed that local land surface characteristics are difficult to deduce from a single 

SAR image, but that invaluable information on LSW can be extracted from a series of images. 

This finding is novel and the fusion of VH and VH/VV polarisations to derive the extent of 

flooded vegetation also contributes to existing knowledge. 

Another contribution of this research was the integration of SAR and multispectral indices to 

improve the classification accuracy of optically complex waterbodies. The varying 

concentrations of suspended sediments (turbidity), dissolved particles and aquatic plants 

negatively affect the classification accuracies of Earth observation methods, although it seems 

that MLAs (SVM in particular) are less sensitive to such variations. The dynamic nature of 

reservoirs (many reservoirs are depleted at least once a year) makes the re-use of training data 

unfeasible, which lends support to implementing fully automated thresholding techniques that 

combines SAR and optical data for mapping and monitoring complex waterbodies. 

An additional benefit of the study is the range of flood and LSW maps generated in the Southern 

African region. The maps act as proof of the concept of the use of SAR and multispectral data in 

the region and will hopefully create awareness of the value of RS data and techniques for 

operational LSW monitoring. At the very least, these maps can be used to calibrate and validate 

other techniques such as hydraulic models (Dimitriadis et al. 2016; Shen et al. 2015). 
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6.3 LIMITATIONS, RECOMMENDATIONS AND SUGGESTIONS FOR FUTURE 

STUDIES 

As with most research, this study has several limitations, which should be addressed in future 

work. For this research, the assumptions were that multispectral and SAR images can be easily 

classified into land and water based on different spectral and SAR backscatter returns 

respectively. This assumption works well in clear open water bodies. The case studies for this 

research are complex areas characterised with turbid, sedimented and merged vegetation, which 

have impacts on the spectral profile and backscatter return. For the SAR images, flooded 

vegetation had high backscatter values similar to dry features. Delineating these complex 

environments using multispectral images, however, proved to be difficult as well. The spectral 

signature from different bands was a mixture of vegetation, water, wet soil and sediments. In 

addition, the LSW under vegetation canopies and at the boundaries between water and non-water 

classes was erroneously excluded in the flooded class. The complexity of these environments 

together with the trade-offs between spatial and temporal resolutions of satellite data make 

mapping of LSW in these environments complicated.  

The spectral unmixing developed in Chapter 3 was used to map a historical flood event based on 

MERIS data from the now decommissioned Envisat satellite. The technique needs to be tested on 

new datasets, for instance those acquired by the OLCI instrument on board S3, which have 

technical similarities to the MERIS image data. In addition, the accuracy of the spectral 

unmixing method was assessed using Landsat imagery with a spatial resolution of 30 m. Higher 

resolution imagery would have been better, but was not available for the historical event. It is 

recommended that the technique is carried out in an area for which very high resolution (VHR) 

imagery such as S-2 is available during or shortly after a flood event. 

Coarse spatial resolution imagery is typically used for real-time flood mapping. The spectral 

unmixing method developed in this research (Chapter 3) requires substantial manual inputs (e.g. 

selection of pure endmembers). More work is needed to automatically select pure endmembers. 

Furthermore, there is a need for developing algorithms to spatially upscale coarse-resolution 

remote sensing data to produce datasets with acceptable spatial and temporal resolution for LSW 

monitoring, particularly in heterogeneous environments. Future experiments should test the 

utility of the new datasets with coarse spatial resolutions and frequent revisit times, with S-3 / 

OLCI data being a logical candidate. 
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This study did not consider the impact of different types of flooded vegetation on SAR 

backscatter (Chapter 4). Future studies should differentiate backscatter according to vegetation 

types, specifically tall graminoids (e.g. grass and reeds), shrubs and dense forests. Another 

limitation of the study was the per-pixel classification approach used. Future studies should 

assess the value of using object-based classification techniques, which could reduce noise and 

improve depiction of real-word objects. 

The mapping of complex waterbodies using RS techniques (Chapter 5) was applied to a 

relatively small area (40×45 km) in the Western Cape province of South Africa. Although the 

waterbodies in the area are highly diverse, it would be worth testing the suggested multispectral 

and SAR thresholding technique in a larger area and in different landscape types to assess the 

robustness thereof. Other automatic thresholding algorithms (i.e. in addition to Otsu used in this 

research), such as histogram-shape-based, entropy-based and attribute-based techniques, should 

be tested. The levels of turbidity and chlorophyll concentration of these water bodies were not 

tested. It is therefore, recommended that future studies have to quantitatively evaluate the 

physical and chemical properties of the waterbodies.  

6.4 CONCLUSION 

The purpose of this study was to evaluate the performance and strength of remote sensing data 

for mapping flooded vegetation, as well as turbid, sedimented and eutrophic water. One of the 

main findings is that SAR backscatter and multispectral signatures are strongly affected by 

variations in suspended, dissolved, chemical and physical constituents of water, which in turn 

impacts classification accuracies. The research concludes that the fusion of SAR and optical 

data, combined with the use of fully automated thresholding techniques, is a viable solution for 

mapping and monitoring complex waterbodies, but that further refinements are required to 

improve accuracies. Based on the results of this work, it was shown that a time series of SAR 

data backscatter statistics of a specific area can be characterised year round under a range of 

conditions. These backscatter statistics can be utilised to precisely determine whether a specific 

area is flooded or not, irrespective of weather conditions or time of day. 

The future of RS for LSW mapping looks promising. The advent of very high resolution EO data 

such as Kompsat-3A, DEIMOS-2, WorldView-4, Pleiades-Neo 1-44 and CartoSat-2 (C-F), in 

                                                 

4 Not yet launched 
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conjunction with the continuous improvements in image classification techniques (e.g. data 

fusion and MLAs) and the increasing public awareness of EO data through platforms such as 

social media, television and newspaper articles, will likely promote the increased use of EO 

methods and efficient monitoring of LSW resources in developing countries. There is need to 

integrate LiDAR altimetry (water level) with hyperspectral data and multi – frequency polarised 

SAR to find out if different EM signals improve the classification accuracy for mapping 

heterogeneous and complex environments. Moreover, the use of emerging technologies such as 

smartphones equipped with very high resolution cameras and UAVs will likely improve access 

to data needed for LSW mapping. 

RS has been recognised as an effective alternative to conventional methods of monitoring LSW 

as it reduces costs and time associated with obtaining information about the extent of LSW. 

LSW, which include temporary surface water features, is highly susceptible to climate variations. 

Increased impacts of climate change on LSW have resulted in regional floods and water 

shortages, which have considerable ecological, social and economic consequences. LSW maps 

and techniques developed in this study is critical for flood status monitoring, water resources 

planning and disaster management, and will as such hopefully reduce the impact of floods and 

droughts on vulnerable communities living in southern Africa.   
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APPENDIX 

CONFUSION MATRICES 

Table A. 1 NDWI confusion matrix 

 Water Trees & shrubs Bare & built Grass Shadow TOTALS PA*% EO†% 

Water 3607 69 88 54 183 4160 86.7 13.3 
Trees & shrubs 67 2645 123 326 68 3329 79.5 20.5 
Bare & built 104 87 4162 189 248 4990 83.4 16.6 
Grass 27 458 101 1794 66 2496 71.9 28.1 
Shadow 119 38 62 21 1425 1665 85.6 14.4 

TOTALS 3924 3297 4536 2384 1990 16640   

CA‡% 91.9 80.2 91.7 75.3 71.6    
EC§% 8.1 19.8 8.3 24.7 28.4    
Overall accuracy 81.6        
Overall kappa 0.76        

*PA = Producer’s accuracy; †EO = Errors of omission; ‡CA = Consumer’s accuracy; EC = Errors of commission 

 

Table A. 2 VH Band confusion matrix 

 Water Trees & shrubs Bare & built Grass Shadow TOTALS PA*% EO†% 

Water 3597 83 79 89 262 4110 86.5 13.5 
Trees & shrubs 88 2679 60 218 284 3329 80.5 19.5 
Bare & built 179 193 3805 381 145 4703 76.3 23.7 
Grass 41 303 158 1920 49 2471 76.9 23.1 
Shadow 168 104 162 63 1168 1665 70.1 29.9 

TOTALS 4073 3362 4264 2671 1908 16640   

CA‡% 88.3 79.7 89.2 71.9 61.2    
EC§% 11.7 20.3 10.8 28.1 38.8    
Overall accuracy 77.7        
Overall kappa 0.71        

*PA = Producer’s accuracy; †EO = Errors of omission; ‡CA = Consumer’s accuracy; EC = Errors of commission 

 

Table A. 3 MNDWI confusion matrix 

 Water Trees & shrubs Bare & built Grass Shadow TOTALS PA*% EO†% 

Water 3271 85 189 56 469 4160 83.5 16.5 
Trees & shrubs 69 2879 97 128 56 3329 78.2 21.8 
Bare & built 90 126 4271 147 186 4990 73.8 26.2 
Grass 49 401 93 1625 48 2496 74.1 25.9 
Shadow 463 49 97 89 857 1665 70.2 29.8 

TOTALS 3942 3540 4747 2045 1616    

CA‡% 83 81.3 89 79.5 53    
EC§% 17 18.7 11 20.5 47    
Overall accuracy 73.8        
Overall kappa 0.69        

*PA = Producer’s accuracy; †EO = Errors of omission; ‡CA = Consumer’s accuracy; EC = Errors of commission 
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