
Interactive Object Detection

Priyanka Subramanya Vokuda

Publisher: Dean Prof. Dr. Wolfgang Heiden

Hochschule Bonn-Rhein-Sieg Ű University of Applied Sciences,
Department of Computer Science

Sankt Augustin, Germany

April 2019

Technical Report 01-2019

ISSN 1869-5272 ISBN 978-3-96043-072-8

Copyright c÷ 2019, by the author(s). All rights reserved. Permission to make
digital or hard copies of all or part of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for proĄt or
commercial advantage and that copies bear this notice and the full citation on the
Ąrst page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior speciĄc permission.

Das Urheberrecht des Autors bzw. der Autoren ist unveräußerlich. Das
Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Das Werk kann
innerhalb der engen Grenzen des Urheberrechtsgesetzes (UrhG), German copyright

law, genutzt werden. Jede weitergehende Nutzung regelt obiger englischsprachiger
Copyright-Vermerk. Die Nutzung des Werkes außerhalb des UrhG und des obigen
Copyright-Vermerks ist unzulässig und strafbar.

Digital Object Identifier doi:10.18418/978-3-96043-072-8
DOI-Resolver http://dx.doi.org/

b

http://dx.doi.org/10.18418/978-3-96043-072-8
http://dx.doi.org/

Bonn Rhein-Sieg University of Applied Sciences

Abstract

The success of state-of-the-art object detection methods depend heavily on the avail-

ability of a large amount of annotated image data. The raw image data available from

various sources are abundant but non-annotated. Annotating image data is often costly,

time-consuming or needs expert help. In this work, a new paradigm of learning called

Active Learning is explored which uses user interaction to obtain annotations for a sub-

set of the dataset. The goal of active learning is to achieve superior object detection

performance with images that are annotated on demand. To realize active learning

method, the trade-off between the effort to annotate (annotation cost) unlabelled data

and the performance of object detection model is minimised.

Random Forests based method called Hough Forest is chosen as the object detection

model and the annotation cost is calculated as the predicted false positive and false

negative rate. The framework is successfully evaluated on two Computer Vision bench-

mark and two Carl Zeiss custom datasets. Also, an evaluation of RGB, HoG and Deep

features for the task is presented.

Experimental results show that using Deep features with Hough Forest achieves the

maximum performance. By employing Active Learning, it is demonstrated that perfor-

mance comparable to the fully supervised setting can be achieved by annotating just

2.5% of the images. To this end, an annotation tool is developed for user interaction

during Active Learning.

Keywords: Object Detection, Interactive Object Detection, Active Learning

Contents

Abstract i

List of Figures iv

List of Tables vi

Abbreviations vii

1 Introduction 1

1.1 Motivation . 2

1.2 Problem statement . 3

1.3 Scope of this work . 5

1.4 Contributions . 6

1.5 Outline . 6

2 State of the Art 8

2.1 Object Detection . 8

2.1.1 Classical approaches . 8

2.1.2 Convolutional Neural Networks . 10

2.2 Learning with partially annotated data . 11

2.2.1 Weak annotations . 11

2.2.2 Transfer Learning . 12

2.2.3 Reinforcement Learning . 12

2.3 Interactive Learning . 12

3 Technical background 16

3.1 Hough Forests for object detection . 16

3.1.1 Training . 18

3.1.2 Testing . 19

3.2 Active learning . 22

4 Implementation details 27

4.1 Hough Forest . 27

4.1.1 Patch extraction . 27

4.1.2 Training . 31

4.1.3 Testing . 31

4.2 Interactive Learning stage . 32

4.3 Evaluation measure . 32

ii

Contents iii

4.4 Adaption in web annotation tool . 35

5 Evaluation 38

5.1 Experimental setup . 38

5.1.1 Datasets . 38

5.1.2 Experimental baselines . 40

5.1.3 Image augmentation . 40

5.1.4 Cross-Validation . 40

5.1.5 Tools . 40

5.1.6 Hough Forest hyperparameters . 41

5.1.7 Time taken in experiments . 42

5.2 Results . 43

5.2.1 Computer Vision benchmark datasets 43

5.2.1.1 Weizmann Horse . 43

5.2.1.2 PASCAL VOC 2007 . 46

5.2.2 Carl Zeiss custom datasets . 49

5.2.2.1 CZHisto . 50

5.2.2.2 CZHeLa . 51

6 Conclusions and Future work 55

Bibliography 57

A Miscellaneous plots 64

List of Figures

1.1 Why is object detection challenging? . 3

1.2 Example annotations in object detection. 3

1.3 Interactive Learning cycle. 4

1.4 Architecture of Interactive Object Detection 5

2.1 Interactive Learning method in the context of computer vision problem
domain. 9

2.2 Single Shot MultiBox Detector(SSD) explained. 11

2.3 Difference between Random and Active Learning. 13

2.4 Results of Interactive Object Detection from previous work 15

3.1 Simple example of Hough Transform. 16

3.2 Example of trained Hough Forest. 20

3.3 Example of Hough votes casting during testing. 21

3.4 Example Hough Forest detection output from our experiments. 23

3.5 Gamma probability density function of detection scores. 24

3.6 Convergence of (a) optimal threshold and (b) annotation cost over 10
iterations. 25

4.1 Positive and negative patches. 27

4.2 HoG features from the example image. 29

4.3 Visualization of the Convolutional layer’s filters. 30

4.4 Visualization of the Convolutional layer’s activations 31

4.5 The Active Learning evaluation pipeline. 33

4.6 Figure showing a graphical illustration of Intersection of Union (IoU) and
random bounding boxes with IoU of 0.25, 0.5, 0.75 and 0.97. 34

4.7 Precision-recall curve for example iteration. 35

4.8 Snapshot of our web annotation tool. 37

5.1 The scale variations for the four datasets. 39

5.2 Example images from data augmentation performed on Weizmann Horse
dataset. 41

5.3 Effect of various hyperparameters on Active Learning. 42

5.4 Example images from Weizmann Horse dataset. 44

5.5 Fully Supervised mAP for RGB, HoG and Deep features using Weizmann
Horse dataset. 45

5.6 Fully Supervised vs Passive vs Active learning, Deep features using Weiz-
mann Horse dataset. 45

5.7 Qualitative results from Weizmann Horse dataset. 46

iv

List of Figures v

5.8 Example images from PASCAL VOC 2007 dataset. 47

5.9 Fully Supervised mAP for RGB, HoG and Deep features using PASCAL
VOC 2007 dataset. 48

5.10 Fully Supervised vs Passive vs Active learning, Deep features using PAS-
CAL VOC 2007 dataset. 48

5.11 Qualitative results from PASCAL VOC dataset. 49

5.12 Fully Supervised mAP for RGB, HoG and Deep features using CZHisto
dataset. 51

5.13 Fully Supervised vs Passive vs Active learning, Deep features using CZHisto
dataset. 51

5.14 Example images from CZHeLa dataset. 52

5.15 Fully Supervised mAP for RGB, HoG and Deep features using CZHeLa
dataset. 53

5.16 Fully Supervised vs Passive vs Active learning, Deep features using CZHeLa
dataset. 53

5.17 Qualitative results from CZHeLa dataset. 54

A.1 Input image to visualize HoG features in 4.2. 64

A.2 VGG19 network architecture. 65

List of Tables

4.1 True/False Positive and Negative definition. 33

5.1 Characteristics of datasets used in the experiments. 39

5.2 Results of data augmentation on Weizmann Horse dataset. 40

5.3 5-way cross-validation results obtained by Fully Supervised Learning us-
ing RGB, Hog and Deep features for Weizmann Horse dataset. 43

5.4 Comparison of time taken to conduct Fully Supervised Learning vs Active
Learning experiments for Weizmann Horse dataset. 45

5.5 State-of-the-art object detection comparison for Weizmann Horse dataset. 45

5.6 5-way cross-validation results obtained by Fully Supervised Learning us-
ing RGB, Hog and Deep features PASCAL VOC dataset. 47

5.7 Comparison of time taken to conduct Fully Supervised Learning vs Active
Learning experiments for PASCAL VOC 2007 dataset. 48

5.8 State-of-the-art object detection comparison for PASCAL VOC 2007 dataset. 49

5.9 5-way cross-validation results obtained by Fully Supervised Learning us-
ing RGB, Hog and Deep features CZHisto dataset. 50

5.10 Comparison of time taken to conduct Fully Supervised Learning vs Active
Learning experiments for CZHisto dataset. 51

5.11 5-way cross-validation results obtained by Fully Supervised Learning us-
ing RGB, Hog and Deep features CZHisto dataset. 53

5.12 Comparison of time taken to conduct Fully Supervised Learning vs Active
Learning experiments on CZHeLa dataset. 54

vi

Abbreviations

Acronym What (it) Stands For

MRI Magnetic Resonance Imaging

CAPTCHA Completely Automated Public Turing test to tell Computers and Humans Apart

HoG Histogram of Oriented Gradients

SVM Support Vector Machine

CNN Convolutional Neural Network

R-CNN Regions with Convolutional Neural Network features

YOLO You Only Look Once

SSD Single Shot MultiBox Detector

VGG Visual Geometry Group

WSOL Weakly Supervised Object Localization

CONV Convolutional layer

RGB Red-Green-Blue

mAP mean Average Precision

FIB-SEM Focussed Ion Beam-Scanning Electron Microscope

HeLa Henrietta Lacks

vii

Chapter 1

Introduction

Artificial intelligence [2] is considered to drive the next industrial revolution [3] with

far-reaching effects, like that of electricity [4]. This has led to immense speculation and

demand to tap the economic potential of artificial intelligence in a variety of applications.

As a result, there is a demand to extract actionable information from raw data captured

from numerous applications like speech, healthcare, driving, consumer retail etc.

Data from such applications is captured by a variety of sensors that generate vast

amounts of multimodal raw data [5, 6] i.e. images, video, speech, text etc. Among

all modalities, the visual medium has dominated how living beings interact with their

environment [7]. This has resulted in significant innovations in the image capturing tech-

nologies e.g. colour cameras, Kinect [5], HoloLens [8], MRI devices etc. Coupled with

advances in manufacturing technologies and the Internet, cheap image sensors have been

embedded in many devices e.g. mobile phones, laptops, medical devices, microscopes

etc. and are easily shared. This incentivises efforts towards being able to extract ac-

tionable information and is actively researched by both academia [5, 9] and the industry

[10–12]. Extracting actionable information from images is, therefore, the central focus

of this thesis.

Automatically extracting information from images is addressed by computer vision which

is a subfield of Artifical Intelligence. Such information at the objective level, grounds

information within an image e.g. classification, segmentation, detection [9, 13, 14]. One

of the fundamental problems of this category is to extract ”which” objects are present

”where” in a given image. Here, an ”object” is an entity contained by a 2D bounding

box, ”which” classifies the bounding box into one of a predetermined set of class labels

and ”where” localizes the bounding box within the image. This problem is termed as

Object Detection [15] and is the focus of this thesis.

1

Introduction 2

1.1 Motivation

Object detection is a fundamental building block for semantic image understanding and

has been used in numerous applications such as tracking [16], pose estimation [17], image

segmentation [18], virtual reality [8], autonomous driving [19], robot navigation [20] and

biomedical image analysis [21].

The problem of object detection is tackled via representation learning [22]. In its simplest

form, features extracted from each bounding box is classified into object / non-object

using a model. The model is based on positive (object) and negative (non-object) train-

ing examples obtained through manual annotation [23] as shown in figure 1.2. There

exist various techniques of model-learning based on the availability and granularity of

manual annotations. In terms of annotation availability, learning is categorized as su-

pervised [13, 24], semi-supervised [25, 26] and unsupervised [27, 28] which employ fully

annotated to fully un-annotated training data.

State-of-the-art object detection techniques [13, 29, 30] typically depend on large fully

annotated datasets [9, 31]. Therefore, fully and consistently annotated data is key to

good object detection performance. In reality, however, obtaining ground truth an-

notations is a confusing, expensive and tedious task [32]. In real-world scenes, object

detection is a difficult problem because there can be intra-class variations, view- point

variations and articulation, illumination, background clutter, occlusion and motion blur

as shown in figure 1.1. The variations due to articulation, pose and occlusion results

in annotations biased on intra-/inter- human annotator. This is prevalent in medical

imaging applications where a high degree of disagreement between annotation experts

is common. Obtaining annotations also become prohibitively expensive based on avail-

ability, size and privacy restrictions of datasets and there is a need for expert annotators

e.g. for medical applications.

In this regard, numerous approaches have been devised to ease the complexity of ob-

taining ground truth annotations. The most popular approaches are online annotation

games [33] and CAPTCHA [34]. Annotations have also been obtained through crown-

sourcing [35] and through annotation firms [36, 37]. However, such solutions do not

scale well with dataset size and do not address the issue of data privacy. A different

approach is taken by Active Learning [32] which exploits the fact that examples are sta-

tistically dependent. Here, the annotation and model learning processes are interleaved.

In each iteration, those examples, which are most diverse or beneficial wrt. the model,

are annotated.

This thesis focuses on Active/Interactive Learning [1, 38–40] for object detection in im-

ages. The aim is to maximize object detection performance while minimizing annotation

effort by iterating between model learning and annotating (beneficial) examples.

Introduction 3

Figure 1.1: Why is object detection challenging? (a) discrete category labels merging
bathing and coffee mugs together, (b) intra-class variations within coffee mugs, (c) view-
point variations and articulation, (d) illumination, (e) background clutter, (f) occlusion,
(g) alternative functionalities and (h) motion blur. Images courtesy of websites: magice-
mart, qualitylogoproducts, toxel, ikea, wayfair, foodspotting, alicdn, financialexpress,
tinydeal, terapeak, designsponge, herpeculiarlife, thisiswhyimbroke, thisiswhyimbroke,

wordpress, craftychica, netdna-cdn.

Figure 1.2: Bounding boxes of objects and their labels as annotations required for
object detection problem is shown in (b) for the initial image (a).

1.2 Problem statement

To realise the goal of reduced annotation effort, a new paradigm of learning called

Interactive Learning [1] is explored. In Interactive Learning, the learning model is

Introduction 4

updated continuously by querying human/oracle who verifies the annotation proposed

by the model as illustrated in figure 1.3.

Figure 1.3: Interactive Learning cycle. Image adapted from [32]

This thesis explores two methods to realise Interactive Learning namely Incremental/-

Passive/Random learning and Active Learning [1]. In Incremental Learning, a fixed set

of examples are picked randomly from a pool of non-annotated data for verifying the

outcome of the most recent model. The model is then updated based on the newly

obtained annotations. A more optimal strategy might be to pick (statistically) inde-

pendent examples, that are most diverse wrt. the most recent model. This method is

called Active Learning where a fixed number of non-annotated examples most beneficial

to the model are picked for annotation. The intuitive idea is to pick conditionally ind-

pendent examples to maximize the diversity while minimizing the number of samples in

the training dataset.

In this regard, how to pick the most beneficial examples from the pool of non-annotated

data?

This is solved using a greedy procedure which iterates between minimizing the annota-

tion cost and maximizing the accuracy of the object detection model. Minimizing the

annotation cost amounts to selecting a subset of non-annotated examples to be presented

for feedback from oracle/human, as illustrated in figure 1.4. Maximizing the accuracy

of the model amounts to tuning the object detector to all annotated examples. In this

regard, the problem context, its scope and contributions are presented are follows.

Problem Context

While the importance of Active Learning for object detection is presented in section 1.1,

the following are important practical considerations:

• Real-time constraints: A fundamental requirement to realize an effective Active

Learning framework is to choose a suitable model for object detection. In such

scenarios, the model must have the capability of fast training/testing times. Also,

Introduction 5

Figure 1.4: Figure describing the architecture of Interactive Object Detection with
Active Learning. There is iteration between human interaction phase and object de-

tection phase.

the model must be capable of learning from small/mid-sized datasets. In this

regard, Hough Forests [30] is utilized as it has favourable runtimes, parallelizing

potential and is shown to be robust to small/mid-sized datasets.

• Robust annotation cost: Another aspect of an effective Active Learning framework

is to choose a robust annotation cost. The method [1] is adopted which is shown

to be successful on real-world datasets and is inline with the Hough Forest model.

• Ease of verification: Finally, a simple user interface needs to incorporate verifica-

tions from oracle/human in an effort effective manner needs to be realized.

1.3 Scope of this work

In this work, the focus is on developing real-time interactive object detection pipeline

using Hough Forests for object detection and Active Learning. Overall the following

challenges are solved.

• The problem of object detection can be challenging because of factors like view-

point variation, scale variation, deformation, occlusion, illumination conditions,

background clutter and intra-class variation as shown in figure 1.1 . The next

problem in object detection is solving two problems of locating objects and classi-

fying objects at the same time using the same model.

Both are solved using robust Hough Forests which uses deep features to defy view-

point variation, scale variation, illumination conditions and intra-class variation.

To solve both localization and classification problems, classification and regression

nodes are incorporated in Hough Forests. Hough forests are explained in chapter

3

Introduction 6

• The challenge in Active Learning is to find the most beneficial image to annotate,

tuned to object detection problem.

Beneficial images to annotate in each iteration are found using uncertainty sam-

pling based Active Learning method [1]. From the experiments, it is proved that

Active Learning performs better than choosing random images. The Active Learn-

ing method is explained in chapter 3 and experiments in chapter 5.

What is not in the scope of this work?

• Using deep learning methods for object detection: In this work real-time object

detection is desired and deep learning based methods are slow to train.

• Multiclass detection is not incorporated in the Hough Forest-based object detector.

Only one class of objects are detected per dataset.

• Comparision of different Active Learning query strategies (explained in section

2.3) are not shown in this work. Only uncertainty sampling based Active Learning

method is used for Active Learning.

1.4 Contributions

The contributions of this thesis are as follows:

• An Active Learning [1] framework for object detection [30] is realized.

• Traditional HoG features are replaced by state-of-the-art Deep features for im-

proved object detection (See section 4).

• A Web-based annotation tool to incorporate verification from orcale/human is

implemented.

• Custom implementation of Hough forests completely in Python, in comparison

with C++ based implementation. Visualizations obtained through the custom

implementation are shown in figure 3.2. The code is available in the CD attached.

• Qualitative and quantitative results on four Carl Zeiss/benchmark datasets is pre-

sented.

1.5 Outline

The thesis is organised as follows:

Chapter 2 presents related work for object detection, Semi/Weakly- Supervision and

Introduction 7

Active Learning.

Chapter 3 presents the methodology for Active Learning [1] and object detection [30].

Chapter 4 explains model parameters and presents implementation details.

Chapter 5 presents qualitative and quantative results on four (benchmark and Carl

Zeiss) datasets.

Chapter 6 presents observations and conclusions along with future work.

Chapter 2

State of the Art

In this chapter, popular approaches to solve the problem of object detection are ex-

plained. Next, working with fewer annotated images, Interactive Learning and Active

Learning are explained. State-of-the-art object detection methods, learning with par-

tially annotated data and other Active Learning methods are explained to get a more

relevant context.

Interactive Learning method in the context of computer vision problem domain is shown

in figure 2.1. Object detection is a sub-field of Computer Vision. Depending on the an-

notation in the dataset, object detection can be solved using Supervised, Unsupervised,

Weakly-supervised, Semi-supervised and Interactive Learning. In this work, Interactive

Learning is focussed.

Combining the advantages of using deep learning and fast object detection based on

Random Forests, method which uses deep features as an input to interactive object

detector based on Hough Forests[1] is the main focus of this work.

2.1 Object Detection

The object detection algorithms combine the functional aspects of object location (where

is the object?) [41] and object classification (which is the object?) [9] to detect objects.

2.1.1 Classical approaches

Earliest and most popular object detection method is using Haar features and cascade

of classifiers [15] to detect faces. It uses Haar features [42] which are composed of five

Haar templates. These features are extracted from a multi-scale sliding window. It uses

Adaboost [43] for learning the cascade of classifiers. This was considered simple and

8

Related Work 9

Figure 2.1: Interactive Learning method in the context of computer vision problem
domain. Object detection is a sub-field of Computer Vision. Depending on the anno-
tation in the dataset, object detection can be solved using Supervised, Unsupervised,
Weakly-supervised, Semi-supervised and Interactive Learning. In this work, Interactive

Learning is focussed.

fast by processing 15 frames per second and was used in point and shoot cameras which

allowed real-time face detection.

Another method [44] uses Histogram Of Gradients features (HoG) and Support Vector

Machines(SVM) [45] performed on a multiscale sliding window for person detection.

HoG features were proved to be better than Haar features.

The next classical method to solve object detection problem with lesser parameters to

tune in comparison to SVM is Random Forests [46]. The Random forest consists of

an ensemble of decision trees arranged in a forest. Method [47] for face detection con-

sists forests arranged in cascade structures influenced by method [15]. Another method

Hough Forests [30] uses Hough Transform with Random Forests to detect generic shapes

and object class instances. The input to the forest is HoG features extracted from im-

ages. Each tree in the forest consists of randomly placed classification and regression

nodes together performing detection. At the leaves of trees, the detection is performed

by weighted aggregation of evidence from regression. Hough forests are used as the

object detection component of this work’s Interactive Learning pipeline. This method

is explained in detail in section 3.

Feature-based learning methods suffer from a problem that they only capture a small

set of recognition cues and ignore other cues [48]. The features learned are image type

specific and have to be re-learned for new image types. So there was a desire to develop

algorithms to automatically learn features from images.

Related Work 10

2.1.2 Convolutional Neural Networks

With improved computational power and large annotated datasets, the Convolutional

Neural Network(CNN) paradigm today has largely been able to overcome the limitations

of feature-based learning methods by automatically learning the features.

Regions with CNN features (R-CNN) [49] with CNN provided a 50% improvement over

the best previous results on PASCAL VOC 2010 [50] dataset with feature-based meth-

ods. It follows a three-stage approach involving first generating object proposals using

selective search [51] method and feature extraction using CNNs, lastly classification us-

ing SVMs. This method was slower because of CNN feature extraction applied to each

proposal.

Quicker and modified approach Fast R-CNN [52] applied CNN to get features from

the complete image instead of each proposal and then used both Region of Interest

(RoI) pooling on the features with a final feed-forward network for detection. Usage

of selective search slowed down the run-time of this method. In Faster R-CNN [53],

a region proposal method was dropped to design a fully end-to-end trainable model.

Also called Region Proposal network (RPN) it has a fully convolutional network which

simultaneously predicts object bounding box and objectness scores for each position.

An alternative paradigm is explored in You Only Look Once (YOLO) [24]. Unlike

other object detection methods which use an intermediate object proposals stage, the

method employs a single neural network to simultaneously regress the spatial extent of

bounding boxes and its class label. This is performed by dividing the input image into

cell grids and the regressing bounding boxes and confidence scores for each cell. The

system used has 24 convolutional layers, 2 fully connected layers followed by a final layer

which predicts class probabilities and bounding box coordinates. This predictor model

is applied to an image at multiple locations and scales.

The next method called Single Shot MultiBox Detector (SSD) [13] combined the func-

tional aspects of Faster R-CNN and YOLO. Object localistion and classification are

performed in a single pass of the CNN. It is built on VGG-16 [53] base architecture with

addition of auxillary convolutional layers to extract features from multiple scales and

aspect ratios to compute confidence and location loss for classification and regression

tasks respectively. Figure 2.2 shows working of SSD with an example. This is among

the state-of-the-art, real-time object recognition systems.

All the methods mentioned above are based on Fully Supervised Learning approach

which requires a lot of annotated data to reach their full potential. Next, methods

which work with partially annotated data are explored.

Related Work 11

Figure 2.2: SSD framework explained. a) and b) shows auxillary convolutional layers
with different scales (e.g. 8 × 8 and 4 × 4). For each auxillary convolutional layer,
both the shape offsets and the confidences for all object categories (c1, c2, · · · , cp) are
predicted. Auxillary convolutional layers are matched to the ground truth boxes. For
example, the two auxillary convolutional layers with the cat and one with the dog, which
are treated as positives and the rest as negatives. The model loss is a weighted sum of

localization loss and confidence loss. Caption adapted from [13]

2.2 Learning with partially annotated data

2.2.1 Weak annotations

Given the difficulty in acquiring annotations, data annotation is a research area in itself.

There are methods which make the job of annotations easier by introducing simplified

annotation methods. In extreme clicking method [54], the bounding box annotations

are provided in form of four points (xlefttop,ylefttop), (xrighttop,yrighttop),

(xrightbottom,yrightbottom),(xleftbottom,yleftbottom). This speeds up the process of annota-

tion by 3x. In another method, object bounding-boxes are derived from eye-tracking

[55] by fixations from eye movement of the annotators. In [56], detection is treated as

a multi-stage problem. In the first stage, the user clicks on the centre of the object for

annotating a bounding box. These annotations are used by Weakly-supervised object

locations to localize the objects. These localised bounding boxes are used in next stage

for detection. In semantic segmentation [57], annotating each pixel is a time-consuming

task. Pixel-wise annotations are replaced by scribbles which is a user-friendly way of

annotation.

Next, learning methods which work with partially annotated data are explored.

Weakly-Supervised Learning

Weakly-Supervised Learning [26, 58] makes use of image or instance level annotation for

learning. This method is gaining popularity due to easily available image tags on images

or videos, which can serve as image level annotations. With respect to object detection,

the learning task is to localize and recognise the object using only image/instance level

annotation but not the location of the object. This task is often termed as Weakly-

supervised object localization (WSOL) [59]. The recent works in WSOL involving using

Related Work 12

CNN to extract features improved the detection performance but it still slow compared

to Fully Supervised Learning methods.

Semi-Supervised Learning

Semi-Supervised Learning [60, 61] makes use of small amount of annotated data with

a large amount of unlabelled data. This has an underlying assumption of data being

arranged in a cluster or along low dimensional manifolds. In self-learning method [62],

the annotated data act as the base for object detector. The detections are propagated

to unlabelled data and are further used to train the detector. There are chances that it

becomes confidently wrong. In graph-based learning [63], the annotated data propagates

the annotations to unlabelled data with a lower confidence. This is an iterative process

which can go infinitely and can be difficult to scale. Max-margin and ensemble methods

[64] develop a decision boundary based on the density of the mixture of annotated and

unlabelled examples. These methods are usually tied to SVM based methods.

2.2.2 Transfer Learning

Due to the advent of CNNs, the knowledge (network weights) acquired from training

very large datasets are transferred to learning unseen but related datasets. This transfer

of knowledge is called transfer learning [65, 66]. This transfer could be done by using

CNN as feature extractor or fine-tuning to already trained CNNs. This is, however,

CNN method dependent and cannot be used with other methods.

2.2.3 Reinforcement Learning

Reinforcement Learning is learning policy based on reward or punishment. In the con-

text of learning with partially annotated data, a policy for image annotation is learned

instead of image analysis. In work [67] the agent is rewarded for actions that reduce the

uncertainty about the unobserved images based on recurrant neural network to perform

active completion of panoramic natural scenes and 3D object shapes. For the kind of

data, setup and annotations present, this method cannot be used in our work due to the

reason that the method is noise sensitive.

2.3 Interactive Learning

Interactive Learning is performed by a collaboration between human and machine for

the process of learning. The interactive component can come from providing feedback

by correcting annotations or providing new annotations, in each iteration. The user

verification can be obtained for all images or a fixed number of images or for ”beneficial”

images.

Related Work 13

In [59] annotations for bounding box are verified during each iteration produced auto-

matically by object detection method. After verification, re-localization of object and

re-training of the detector are performed for every iteration. Here the verification is

sought for all images.

Incremental learning

In incremental learning [1], a fixed set of images for eg. every nth image or randomly cho-

sen image is annotated. These images are shown to the user via an interface to correct

the annotations. In each iteration, an optimal threshold is computed to differentiate

positive images from negative images. The order in which the images are annotated

influences the detector’s performance. Therefore, in next method called active learn-

ing, the images are selected in descending order of their difficulty to annotate. The

comparison between Incremental and Active Learning is shown in figure 2.3

Active learning

A comprehensive literature survey related to Active learning is provided in [38–40]. Ac-

tive Learning requires querying most beneficial images from the pool of data. Following

are query methods :

• Random sampling

Also called Incremental Learning, in this method, a random image is chosen in

every iteration instead of using any strategies. This strategy works best when

the dataset contains similar images. But it can lead to learning of non-beneficial,

repetitive images. The effectiveness of learning beneficial over random sampling

is illustrated in figure 2.3. Random sampling is used as a baseline method in

experiments section 5.

Figure 2.3: An illustrative example of the difference between Random and Active
Learning. (a) A toy dataset of 400 instances, evenly sampled from two class Gaussians.
The instances are represented as points in a 2D feature space. (b) A logistic regression
model trained with 30 annotated instances by picking random instances. The line rep-
resents the decision boundary of the classifier (70% accuracy). (c) A logistic regression

model trained with 30 beneficial instances. Image and caption from [32].

• Query-By-Committee

This is an Active Learning method which queries form pool of unlabelled data.

In each iteration, a committee of learning methods from the current training set

is chosen. All the learning methods predict the output for each unlabelled image

Related Work 14

in the dataset. The image whose prediction highly differs among the methods

in the committee is selected to be annotated. The committee can be formed by

same learning method with varying parameters [68] or by using ensemble learning

[69]. Disagreement of the committee can be measured using vote entropy or KL

divergence [70].

• Expected Model Change

In this method, the instance that results in the greatest change from the current

model is selected for annotation in each iteration. One of the famous works using

this method is [71] where, for each example of an unlabelled set, the expected

change of model predictions is calculated and marginalized over the unknown la-

bel. This results in a score for each unlabeled example that can be used for Active

Learning with a Gaussian process for classification. This method could be ineffi-

cient if both the feature space and set of labels are very large.

• Expected Error Reduction

In this method, the beneficial image is not selected on the basis of how the model is

likely to change, but how the generalization error is reduced. The unlabelled pool

of data is called validation set. If there is a highest decrease in generalization error

on the validation set when an image is not used, this image is considered to be

the beneficial image. In [72] a regressor is trained that predicts the expected error

reduction for a data in a particular learning state. This method is computationally

expensive because it requires estimating expected future error for each query and a

new model must be incrementally re-trained for each query labelling which iterates

over entire pool.

• Uncertainty Sampling

This Active Learning method queries an image whose annotation is most uncertain.

The uncertainty can be decided on by the confidence obtained from score predicted

by object detector [1] or entropy centred objective function as in [73]. It works

on the concept that the image patches generated from the same object share the

same label and differ slightly in their relative distance from the centre of the object.

These patches will also have the same prediction from the learning method. The

images having higher entropy generally indicate high variability among its patches.

These images with higher entropy can contribute to increasing the performance of

the learning method. The learning method used in this case is CNN. The Active

Learning method used in this thesis [1] is based on uncertainty sampling method.

It is explained in section 3. The disadvantage of using uncertainty based query

strategy is that there is a possibility of learning noisy images because these kind

of images have the highest uncertainty.

Further, deep learning is incorporated into Active Learning called ”Deep Active Learn-

ing” [73] based on uncertainty sampling and CNNs. In [74] Bayesian Deep Learning is

Related Work 15

used with high dimensional data to perform classification task. These methods suffer

from slow training process because of CNNs used as the learning method.

This work is based on Interactive Object Detection [1], where a Hough Forest-based

object detector which is optimised based on a realistic annotation cost model. The input

to the object detector is HoG features obtained from images. The detailed explanation of

this method is provided in Chapter 3. Figure 2.4 shows example output from Interactive

Object Detection method from three datasets with images and with annotation cost.

This work shows results on real-world datasets with fast object detection in order to

perform interactive detection with user feedback.

Figure 2.4: Results of the Interactive Object Detection framework for annotation from
work [1]. Green, red, and blue bounding boxes denote true positives, false positives, and
false negatives respectively according to the annotation task. The numbers denote the
predicted annotation cost, i.e., the cost to correct all detection errors in an image. The
predicted annotation cost allows the user to select images for correcting detections and

updating the object detector. Caption adapted from [1].

Chapter 3

Technical background

3.1 Hough Forests for object detection

Hough transform

Hough transform [1, 75, 76] can be used to find occurrences of a particular shape in

images. The requirement is for the shape to be represented in parametric form. It was

basically designed to find analytically defined shapes such as lines, circles and ellipsoids.

For instance, here Hough Transform to detect lines can be shown in figure 3.1. In image

space, a line can be expressed in cartesian co-ordinates with parameters ρ, θ where ρ is

the length of normal from the origin to the line to be found, and θ is the orientation of ρ

with respect to the x-axis as: ρ = x cos θ+y sin θ. For a given (xi and yi) and (xj and yj)

the family of lines that pass through this point are represented by: ρ = x0 cos θ+y0 sin θ

as shown in figure 3.1 (a). Here, the observed variables are from R ∈ (xj , yj) and

parametric space is R ∈ (ρ, θ)

Figure 3.1: Simple example of Hough Transform. A line shown in (a) is transformed
into curve shown in (b).

The possible values of (ρ,θ) are plotted against specific (xi and yi) and (xj and yj)

, values in cartesian image space, to curves in polar Hough parametric space. This

transformation is called Hough Transformation for lines. This allows for efficient and

robust implementation which is occlusion, noise and deformation independent.

16

Methodology 17

The observation is that locally observed variables (xj , yj) cast a vote for global confgu-

rations (ρ, θ).

This transformation is quantizing Hough parameter space into finite bins. In this Hough

parametric space, points on a line which share parameters, intersect at a common point

(ρ,θ). Each value (xi,yi) and (xj , yj) is transformed into discretised (ρ,θ) curve and

all the bins along this curve are aggregated as shown in figure 3.1 (b). The peaks in

Hough space bins represent the presence of a line. As there could be multiple possible

aggregated bins, the useful peaks are found by non-maximal suppression [77]. Hough

transform is extended to detecting other shapes which are analytically defined shapes

and object class instances [30][78].

Generalised Hough Transform

Hough transform can be applied for detection of any shape based on aggregation of

evidence of the presence of the transformed curve with respect to the image of interest

[30]. These evidences are called ”Hough votes” The parametric space here is called

”Hough space”. The parameters here can be set of object location in image, scales,

aspect ratios etc. The detection step is finding peaks of aggregation of Hough votes in

Hough space by non-maximal suppression. Next, how Hough Transform is used with

Random Forests to detect objects is presented.

Random forests with generalised Hough Transform

The previous research work is re-iterated here to explain random forests [29]. Hough

forests are a group of decision trees.

Random forest [46] is an ensemble of decision trees [79]. Decision trees are the hier-

archical tree-like representations consisting nodes and branches. During decision tree

learning, it looks into attributes in data to split the data into subsets. Splitting is done

according to different criteria like Gini impurity, regression or entropy loss. Here binary

tests are used to determine the best splits. The splitting is continued until the subsets

are pure and the results are stored in the leaf node. One disadvantage of decision trees

is it can easily over-fit the data. Random forests, on the other hand, is an ensemble of

decision trees whose input is a random subset of the actual data. The final result of the

random forest is the mean or mode of the result of individual decision trees.

The following equations are used as is and explanations are adapted from work [1, 30, 80].

In the Hough Forests implementation used from [30, 80], the features from the image are

mapped to corresponding votes in Hough space. y denotes the mid-point of input image

patch with dimension D. The features are denoted by (I1(y),I2(y),....If (y)) where F

denotes the number of feature channels. I denotes mapping from the patches to features.

In work [30], this mapping is done by HoG and RGB features. H denotes Hough space

and h denotes hypothesis.

Methodology 18

The leaves of the trees {L} model the mapping from the patch with centre y to proba-

bilistic Hough vote denoted by:

L : (y, I)−→p(h|L(y)) (3.1)

p(h|L(y) is the distribution of Hough votes in Hough space. Learning mapping L is also

learning Hough Forest model which is explained in next section.

3.1.1 Training

The trees are trained on image patches. For each class, c ∈ C training images are

available. Positive image patches are sampled from inside bounding box and negative

patches are sampled from the background as shown in figure 4.1. Each patch contains

information regarding its class. In addition, each positive patch also contains information

about offset from the centre of the patch to the centre of the object. The D-dimensional

image is used to build Hough tree T and forest T = {Tt} from the set of patches

{Pi = (Ii, ci,di)} where di is offset vector.

The tree consists of leaf and test nodes. Each non-leaf node is assigned a binary test

whose domain are the features I〉 = (I1i , I
2
iI

F
i). A binary test tθ(Ii) on a patch

is parametrised by θ = { f , p, q, τ } where f ∈ 1, 2, 3, ..., F is generated on two

randomly chosen positions p ∈ R
D and q ∈ R

D within feature matrix and a real-valued

threshold τ . The test is:

tθ(Ii) =

{

0 ifI
f
i (p) < I

f
i (q) + τ,

1 otherwise
(3.2)

The evaluation criteria for the binary test is to minimise the uncertainty for either

discrete or continuous random variables which are class labels c and offset vectors d.

Each non-leaf node in the tree is either classification (to minimise the uncertainty of

class label) or a regression node (to minimise the uncertainty of offset vectors) decided

randomly. Let P be set of incoming patches. For a classification node, the measure of

the uncertainty of set of patches is given by:

U1(P) = − |P |
∑

c∈C

p(c|P) ln(p(c|P)) (3.3)

where |P | is the number of patches in set P and p(c|P) is the proportion of patches

with label c in P . Minimising this expression for a node corresponds to maximising the

information gain.

For regression node, the measure of uncertainty of offset vectors is given by:

Methodology 19

U2(P) =
∑

c∈C

(
∑

d∈DP
c

∥

∥

∥
d− 1

|DP
c |

∑

d
′
∈DP

c
d

′

∥

∥

∥
)2 (3.4)

There are no displacement vectors d for negative patches. Dc
p is the set of all offsets of

patches from class c in set P .

At each node, a pool of binary tests { θk } are generated with random values of f , p,

q and τ sampled uniformly. Binary test θ for a test node is chosen in a greedy fashion

from a set {θk}. All the patches arriving at a node are evaluated for the set of binary

tests θk and the best binary set is chosen and stored at the node. Best test should

minimise the following minimization objective:

argmin
k

(U∗({Pi|θ
k = 0}) + U∗({Pi|θ

k = 1})) (3.5)

where ∗ indicates uncertainty measure for classification (U1) or regression (U2).

To construct a leaf node L , information from incoming patches are used to store the

class probability p(c|L) and a list of offset vectors DL
c = {di}ci=c.

The tree is constructed recursively starting from the root by choosing a binary test

and children nodes are constructed until a stopping criterion is reached. The stopping

criteria could be the tree reaching its maximum depth (in our case 15 trees) or the

number of patches falling below a threshold (in our case 2). When one of this criterion

is met, leaf nodes are constructed with information of class probabilities p(c|L) and list

of offset vectors D = {di}ci=c. One example of a trained Hough Forest with depth 3

can be seen in figure 3.2 where the image patches are fed into Hough Forests and they

traverse in the forest splitting in regression or classification node to reach leaf where offset

vectors and the probability of positive patches are stored. In the figure, the positive and

negative patches are fed into the root of the tree. The first node is a classification node

which differentiates negative patches from positive patches. The right child is also a

classification node. The left child is a regression node which differentiates front part of

the horse and back part of the horse. At the leaf nodes, as shown in the last row, the

class probability p(c|L) and a list of offset vectors DL
c = {di}ci=c centered at the red

point are stored.

3.1.2 Testing

During detection phase as shown in figure 3.3, the test image patches pass through each

tree in Hough forest. The leaves that the patches arrive cast votes in Hough space H.

The Hough space is composed of parameters image scale and position.

Let a patch with the centre at position y be Py = (Iy, cy,dc(y)) ∈ Ω ⊆ RD in the test

image. Here Ω is set of all pixel locations, Iy is the set of observed features of the patch,

Figure 3.2: Example of trained Hough Forest. The positive and negative patches are fed into the root of the tr
classification node which differentiates negative patches from positive patches. The right child (in green) is also a
is a regression node (in red) which differentiates front part of the horse and back part of the horse. At the leaf nod

probability p(c|L) and a list of offset vectors DL
c = {di}ci=c centered at the red point are

Methodology 21

Figure 3.3: For each of the three patches emphasized in (a), the pedestrian class-
specific Hough forest casts weighted votes about the possible location of a pedestrian (b)
(each colour channel corresponds to the vote of a sample patch). Note the weakness
of the vote from the background patch (green). After the votes from all patches are
aggregated into a Hough space (c), the pedestrian can be detected (d) as a peak in this

image. Caption and image from [1]

cy is the hidden class label and dc(y) is the hidden displacement from the patch to the

unknown object’s centre. Based on the feature Iy , patch Py ends in a leaf L(y). Let h

be the hypothesis for the object belonging to class c with size s and centered at x ∈ Ω.

The conditional probability p(h(c, x, s)|L(y)) can be computed as

p(h(c,x, s)|L(y)) =
∑

l∈C

p(h(c,x, s)|c(y) = l, L(y))· (c(y) = l|L(y)),

= p(h(c,x, s)|c(y) = c, L(y))· (c(y) = c|L(y)),

= p

(

x = y −
s

su
d(c)|c(y) = c, L(y)

)

· p(c(y) = c|L(y)),

(3.6)

where su is the unit size of the training data. p(c|L) is estimated as the proportion of

patches per class label reaching the leaf after training, the distribution p(h(c, x, s)|c(y) =

c, L(y)) can be approximated by a sum of Dirac measures δd for the displacement vectors

d ∈ DL
c :

p(h(c,x, s)|L(y)) =
p(c(y)) = c|L(y)

∣

∣

∣D
L(y)
c

∣

∣

∣

∑

d∈

∣

∣

∣

∣

D
L(y)
c

∣

∣

∣

∣

δd

(

su(y − x)

s

)

(3.7)

For the entire forest T , features of the patch are passed through all the trained trees and

average the probabilities from equation 3.7 from different leaves:

p(h|Iy) =
1

T

∣

∣

∣

∣

T
∣

∣

∣

∣

∑

t=1

p(h|Lt(y)),
(3.8)

where Lt(y) is the corresponding leaf for tree Tt. The votes from all patches of the image

are accumulated in the Hough space H:

Methodology 22

p(h|Iy) =
∑

y∈Ω

p(h|Iy) (3.9)

The modes of p(h|I) can be obtained by searching for local maxima using a Parzen

estimator with a Gaussian kernel K:

p̂(h|I) =
∑

h
′

∈h

w
′

h ·K(h− h
′

), where

w
′

h =
∑

y∈Ω

|T |
∑

t=1

∑

d∈Dt(y)
c

p(c(y) = c|Lt(y))
∣

∣

∣
D

Lt(y)
c

∣

∣

∣

δd

(

su(y − x)

s

) (3.10)

The weight of a hypothesis w
′

h accumulates votes that support similar hypotheses h
′

(c, x, s)

∈ H. After all votes are cast, p̂(h|I) represents the sum of the weights of the hypotheses

in the neighbourhood of h weighted by a Gaussian kernel K. While the location of a local

maximum ĥ(c, x, s) encodes class, position and size of the object, the value of p̂(ĥ|I) is

not a probability but serves as a confidence measure for each hypothesis.

Example detection from the experiments conducted is shown in figure 3.4. Figure 3.4

(a) shows original image, with its Hough space and next detection by non-maximal

suppression. And figure 3.4 (b) shows Hough space obtained for different scale which

detects the objects having different scales, the first Hough space with scale=1 detects

smaller objects and second Hough space with scale=0.5 detects bigger objects.

3.2 Active learning

Threshold estimation

In this section, implementation of Active Learning along with Hough Forests is described.

Hough forest provides a score for each bounding box (hypothesis) detected. These scores

can be thresholded to accept or reject the bounding box.

During Hough Forest detection, the positive and negative hypothesis needs to be distin-

guished using the bounding box scores. The detection scores corresponding to positive

hypothesis are denoted by Spos and scores from negative hypothesis denoted by Sneg.

The distribution of scores conditional to a positive or negative hypothesis is denoted

by p(s|pos) and p(s|neg). These conditional probabilities are modelled well by Gamma

distributions [81]:

p(s|pos) = γ(kpos, θpos)p(s|neg) = γ(kneg, θneg) (3.11)

Methodology 23

Figure 3.4: Testing part of Hough Forests explained with an example. (a) The Orig-
inal image, with its Hough space and next detection by non-maximal suppression. (b)
Synthetic dataset image with Hough space obtained for different scale detects the ob-
jects having different scales, the first Hough space with scale=1 detects smaller objects

and second Hough space with scale=0.5 detects bigger objects

k and θ are the parameters of the gamma distributions obtained from Spos and Sneg.

The optimal threshold is formulated as that value of threshold τ which minimises the

probability of false positive FP and false negative FN hypothesis for a given τ . This

can be mathematically written as:

argmin
τ

p(FP |τ) + p(FN |τ) (3.12)

based on above equations, following equations can be formulated:

p(FP |τ) = p(neg)

∫ ∞

τ

p(s|neg)ds (3.13)

p(FN |τ) = p(pos)

∫ τ

0
p(s|pos)ds (3.14)

where p(pos) =
|Spos|

|Spos|+|Sneg |
and p(neg) = 1− p(pos). The initial threshold is calculated

to be median of all the positive and negative hypothesis scores.

For every new score, the parameters of gamma distribution are updated. Initial threshold

estimation requires at-least two annotated images. With more training examples, a

Methodology 24

better threshold can be estimated. The initial threshold is higher and converges after

few iterations as shown in figure 3.6.

In figure 3.5 which shows gamma probability density function(PDF) of the scores, the

intersection of two PDFs shows the scores which are most uncertain ie. false positive

scores (red hashed regions) and false negative scores (blue hashed regions). The score

which clearly distinguishes the false positive scores from false negative scores is consid-

ered optimal threshold (green line).

Figure 3.5: Detection scores of positive (blue) and negative (red) detection scores
modelled by the gamma distribution. These distribution parameters are updated after
each incremental training step. false positive scores (red hashed regions) and false
negative scores (blue hashed regions). The score which clearly distinguishes the false
positive scores from false negative scores are considered optimal threshold (green line)

Annotation cost

As the order of annotating images is responsible for the quality of detections, next

Active Learning way of interactive detection is explored. Here the most beneficial images

which have highest annotation cost is selected to annotate first. The annotation cost is

formulated as:

fpred(S, τ) =
∑

s∈S

p(FP |s, τ) + p(FN |s, τ) (3.15)

and

p(E|s, τ) =
p(s|E, τ)p(E|τ)

p(s|neg)p(neg) + p(s|pos)p(pos)
(3.16)

where E ∈ FP, FN and

p(s|FN, τ) =

{

0 ifs ≥ τ
p(s|pos)

∫ τ

0 p(s|pos)ds
ifs < τ

(3.17)

Methodology 25

p(s|FP, τ) =

{

p(s|neg)
∫

∞

τ
p(s|neg)ds

ifs ≥ τ

0 ifs < τ
(3.18)

The intuitive understanding of this equations can be explained using figure 3.5. The

hashed region in the figure comprises the scores which are most uncertain. The equation

3.16 finds the image for which the area of uncertainty of all its scores is very high.

Thus, during every iteration of Active Learning, an image with highest annotation cost

is found. For this image, the annotation from the user is obtained and the iteration is

continued until the stopping criterion is reached. The stopping criterion is when the

annotation cost is 0 as shown in figure 3.6.

Figure 3.6: Convergence of (a) optimal threshold and (b) annotation cost over 10
iterations

The implementation of Active Learning is shown in the algorithm:

Methodology 26

Algorithm 1 Active learning algorithm

1: procedure getBeneficialImage(images)
2: τ ← median(prevsScores)
3: S ← houghForestPredict(images)
4: maxAnnotationCost← 0
5: for s in S do
6: if s ≥ τ then
7: Spos = s

8: else
9: Sneg = s

10: p(pos)←
|Spos|

|Spos|+|Sneg |

11: p(neg) = 1− p(pos)
12: kpos, θpos = getGammaParam(Spos)
13: kneg, θneg = getGammaParam(Sneg)
14: minτ = min(S)
15: maxτ = max(S)
16: τlist = uniform(minτ,maxτ, 100)
17: for τ in τlist do
18:

∫∞
τ

p(s|neg)ds = gammaCdf(t, kpos, θpos)
19:

∫ τ

0 p(s|pos)ds = gammaCdf(t, kneg, θneg)
20: p(FP |τ) = p(neg)

∫∞
τ

p(s|neg)ds
21: p(FN |τ) = p(pos)

∫ τ

0 p(s|pos)ds

22: for S, image in images do
23: annotationCost = 0
24: for s in S do
25: if s ≥ τ then
26: p(s|FN, τ) = 0

27: p(s|FP, τ) = p(FP |τ)p(neg)
∫

∞

τ
p(s|neg)ds

28: else
29: p(s|FP, τ) = 0

30: p(s|FP, τ) = p(FN |τ)p(pos)
∫ τ

0 p(s|pos)ds

31: p(FP |s, τ) = p(s|FP,τ)p(FP |τ)
p(s|neg)p(neg)+p(s|pos)p(pos)

32: p(FN |s, τ) = p(s|FN,τ)p(FN |τ)
p(s|neg)p(neg)+p(s|pos)p(pos)

33: annotationCost+ = p(FP |s, τ) + p(FN |s, τ)
34: if annotationCost ≥ maxAnnotationCost then
35: maxAnnotationCost = annotationCost

36: beneficialImage = image

37: return beneficialImage

Chapter 4

Implementation details

This chapter presents implementation details of the Hough Forests, the Active Learning

framework and the web-based annotation tool used to gather annotation from oracle/hu-

man.

4.1 Hough Forest

As discussed in section 3, Hough Forests uses generalized Hough Transform for generic

shapes/objects. The details of its components are described in following sections.

4.1.1 Patch extraction

The input to all experiments is RGB images and ground truth bounding boxes of positive

examples. In order to simplify the training procedure, positive bounding boxes are

rescaled to its median value. Testing is performed in scale space, corresponding to the

modes of scale distribution in the training data.

Patch extraction

The input to Hough Forests are patches of fixed n × n size patches extracted from the

training images. The size of the patches is fixed as 16 × 16. Positive and negative

patches are randomly sampled from within and outside the (scaled) positive examples

respectively. Instead of using just the RGB image patches, a simplified image represen-

Figure 4.1: Positive patches extracted from inside bounding box and negative patches
extracted the from the background.

27

Implementation details 28

tation which consists of ”useful” components from images, also called features, are used.

The features are designed to contain colour, edge, corner and texture information. E.g.,

while RGB-only patches contain colour information, Histogram of Oriented Gradients

(HoG) features capture structured edge information and Deep features capture edge and

texture information.

RGB features

RGB features are composed of R, G and B channels of the image. These are simplest

features having pixel intensity values for each colour channel. Here the features are the

images itself.

HoG features

HoG features have shown [44] to be state of the art features for object detection until

the advent of data-driven (deep) features. HoG features retain shape information by

capturing edge information. Due to localized normalization and binning, it is robust

to local variations in illumination and articulation. The distribution of directions of

gradients is used as HoG features. Gradients (horizontal and vertical) of an image are

useful because the magnitude of gradients is large around edges and corners which are

the regions of abrupt intensity changes. Therefore, edges and corners contain valuable

information about object shape.

HoG feature extraction is a three-step process: During the first step, first the horizontal,

gx and vertical, gy gradients are calculated. This is achieved by filtering the image

with the Sobel [82] filters. The gradient image has a high response at edges or object

boundaries and low response in uniformly coloured regions. Next, The magnitude and

direction of the gradient is computed as

g =
√

g2x + g2y

θ = arctan
gy

gx

(4.1)

Where g is the gradient magnitude and θ is the gradient direction. As for colour images,

the maximum gradient magnitude among the three channels and the corresponding

gradient direction is retained.

During the second step, the image is divided into 8×8 cells and a histogram of gradients

is calculated for each 8×8 cell.

In the final step, features are normalised to be independent of local lighting variations.

This is illustrated in figure 4.2. The figure shows the nine channelled HoG features with

(a) showing all horizontal gradients, (b) incorporating neck highlighting gradients, (c)

incorporating face and leg highlighting gradients, (d) incorporating face and leg high-

lighting gradients, (e) incorporating vertical gradients, (f,g,h) incorporating body and

Implementation details 29

some background highlighting gradients and (i) incorporating background highlighting

gradients.

Figure 4.2: The figure shows the nine channelled HoG features of input figure A.1
(a) showing all horizontal gradients, (b) incorporating neck highlighting gradients, (c)
incorporating face and leg highlighting gradients, (d) incorporating face and leg high-
lighting gradients, (e) incorporating vertical gradients, (f,g,h) incorporating body and
some background highlighting gradients and (i) incorporating background highlighting

gradients.

Deep features

Deep features are extracted using Convolutional Neural Networks (CNNs) which produce

hierarchical trainable features. These are robust [9] compared to handcrafted HoG

features. The layers of CNN have three dimensions - width, height and depth (activation

volume). CNNs make use of the property that if one filter is used to compute some

feature, then the same filter should also be useful to compute similar feature at a different

position. This property, called parameter sharing, also makes CNNs translation invariant

by detecting features regardless of their position in the image. CNNs also take into

Implementation details 30

consideration that images are spatially locally correlated by having a local connectivity

pattern between neurons of adjacent layers. The CNN consists of multiple convolutional,

rectified linear unit, pooling, dropout and fully connected layers. In this work, features

are extracted from the convolutional layer.

The convolutional layer consists of kernels/filters which have a receptive field. During

forward pass, the filter convolves around the image computing the dot product between

the entries of the filter and the input producing 2-dimensional ”activations” of the filter.

These filters learn specific features which activate when similar features are found else-

where in the image. There can be many such filters in a convolutional layer. Stacking

these ”activations” for all filters along the depth dimension forms the full output of that

convolution layer. Visualization of the Convolutional layer’s filters can be seen in figure

4.3 and activations in figure 4.4.

Figure 4.3: The input image on left and visualization of the Convolutional layer’s
filter on right.

The convolutional layer can have hyper-parameters like Receptive field F or size of the

filter, the number of filters K and Stride S with which filters slide. When the stride is

1, then filters are moved one pixel at a time, Size of zero-padding P padding the input

volume with zeros around the border. It allows us to control the spatial size of the

output of the filter.

If the filter receives an input volume of size W1×H1×D1, it produces a volume of size

W2×H2×D2 where:

W2 =
W1− F + 2P

S
+ 1

H2 =
H1− F + 2P

S
+ 1

D2 = K

(4.2)

With parameter sharing, it introduces F × F × D1 weights per filter, for a total of

(F × F ×D1) × K weights and K biases. In this work, VGG19 model trained on

Implementation details 31

Figure 4.4: Visualization of the Convolutional layer’s activations.

Imagenet [9] dataset is used. The features are extracted from the second convolutional

layer of this VGG model as shown in figure A.2.

4.1.2 Training

During the training of Hough forests, number of trees and depth of each tree was fixed

at 15. The effect of changing these parameters are explained in section 5. The number

of tests per each non-leaf node in the tree was fixed to 2000. The non-leaf nodes were

randomly chosen to be classification or regression nodes. In each leaf, the class proba-

bility and a list of offset vectors are stored. The patch size of the patches extracted from

the images from the datasets are fixed to height and width of 16 pixels. The number of

patches extracted per image is dependent on the dataset chosen. The stopping criteria

for training is when the maximum depth is reached or the number of patches reaching

the node is smaller than 2.

4.1.3 Testing

During testing, patches are extracted from the entire test image in multiple scale space.

The number of scales is different for different datasets which are dependent on the variety

of object shapes present. To find the peaks in Hough space, non-maximal suppression

Implementation details 32

[83] is performed to find n peaks for n objects. The number of objects n is pre-determined

depending on the dataset.

Bounding boxes from Hough space

The bounding box height and width is fixed to be median of height and width of all

bounding boxes seen during training. For each scale, the bounding boxes are rescaled

accordingly. After non-maximal suppression performed for each peak, a detection is

bounding box with centre at the peak.

4.2 Interactive Learning stage

As discussed in section 3, the Active Learning framework is initialized by annotating

two images. The first image is used to seed the Hough Forest-based object detector.

The scores from the second image are used for seeding the Active Learning phase.

The Active Learning pipeline is implemented as a procedure illustrated in figure 4.5 and

steps are as follows:

1. The dataset for Active Learning is chosen.

2. 20% of the dataset is held out for testing and 80% of the dataset is held out for

training.

3. Two annotated images or positive images and two negative images (the images

which do not contain the object of interest) are selected to train.

4. Interactive detection begins by training on two positive and two negative images.

5. Active learning is performed using bounding box scores obtained by rest of the

training images and trained forest model.

6. A beneficial image is chosen from rest of the images whose annotation cost is

highest and used for re-training.

7. Evaluation is performed on evaluation images with the trained forest model.

8. Steps 4 to 7 are repeated until the annotation cost is zero.

4.3 Evaluation measure

Object detection

The evaluation metric for object detection is mean Average Precision (mAP). This is

calculated as the area under the interpolated precision and recall curve.

Implementation details 33

Figure 4.5: The Active Learning evaluation pipeline showing steps during Active
Learning and evaluation. In step 1, the dataset is obtained. In step 2, the dataset
is divided into training and test images. In step 3, two annotated images and two
unlabelled images are selected to train. In step 4, 5 and 6, training, active learning and

evaluation are performed iteratively until stopping criteria is reached.

Actual class

Predicted class
Positive class Negative class

Positive class True positive False positive
Positive class False negative True negative

Table 4.1: True/False Positive and Negative definition.

To calculate precision and recall, first True Positives, False Positives and False Negatives

are evaluated. This is evaluated by using the Intersection over Union (IoU) metric where

True Positives have IoU ≥ 0.5, False Positives have IoU < 0.5 and False Negatives

are un-detected object instances. The definitions are tabulated in table 4.1. The IoU

between a detected bounding box d and a ground-truth bounding box g is calculated as

IoU(d, g) =
d ∩ g

d ∪ g
(4.3)

where d∩ g and d∪ g are areas of intersection and union between bounding boxes d and

g respectively. This is graphically illustrated in figure 4.6

Implementation details 34

Figure 4.6: Figure showing a graphical illustration of Intersection of Union (IoU) and
random bounding boxes with IoU of 0.25, 0.5, 0.75 and 0.97.

Precision is calculated as the fraction of positive detections among all detections:

Precision =
True Positive

True Positive + False Positive
(4.4)

and recall as the fraction of positive detections among all possible positive detections:

Recall =
True Positive

True Positive + False Negative
(4.5)

the precision-recall curve shows the tradeoff for varying thresholds of voting confidence.

A high value of the area under the curve shows both high recall and high precision. A

high precision value corresponds to low false positive detections and high recall value

corresponds to low false negative detections. If a model has a high recall and low

precision it results in many detections but most of its detections are incorrect. If a

model has high precision and low recall it results in few but correct detections. Ideal

object detection model has high precision and recall which results in many and correct

detections.

The mAP is then calculated as the area under the interpolated precision-recall curve, as

illustrated in figure 4.7 (hashed region).

Active learning

The effectiveness of Active Learning is found by comparing Active Learning to incremen-

tal/passive learning where new samples to be annotated are selected randomly. Further,

Active Learning experiments are performed until stopping criteria, i.e. when the anno-

tation cost is zero, is reached.

Hard Negative mining

A popular trick of boosting object detection performance is to incorporate hard negative

mining [84]. Here, false positives from the previous iteration are added as negative

examples during training the model in the present iteration. This helps the Hough

Implementation details 35

Figure 4.7: Interpolated precision-recall curve for example iteration.

Forest to distinguish between real positive samples and difficult negative samples. This

technique is incorporated in all experiments discussed in section 5.

4.4 Adaption in web annotation tool

To obtain annotations from the user in every iteration, a web-based annotation tool is

developed. It is adapted from [85] using Python [86] programming language and Flask

framework [87]. The snapshot of the tool is shown in figure 4.8. It has the following

functionalities

1. ”Start” experiment by loading two images.

2. Annotate object of interests with ground truth bounding boxes.

3. Download the annotations and ”Train” the Hough Forests.

4. Perform Active Learning using ”Test” button.

5. Load the beneficial image.

6. Repeat steps 3-5 n times to annotate n beneficial images.

To the available annotation application, the functionality of Active Learning has been

added. In figure 4.8, the top black task bar has ”Start” button to load first two images.

Implementation details 36

The image annotation is done using the left side tool bar by choosing the annotation

bounding box of our interest. The shape of the bounding box used is the rectangle. The

annotated images are trained using the ”Train” button on the top black task bar. For

the completely annotated datasets, a graph with mAP for the trained images is shown

below the black task bar (not shown in the figure). The graph also shows the comparison

of mAP of Fully Supervised, Passive and Active Learning. The graph is updated every

time after training. Active learning is performed by clicking on ”Test” button on the

top black task bar. ”Load” button is used to load the beneficial image which can be

used in next training and Active Learning iteration. The code for this tool is available

in the CD attached.

Figure 4.8: Snapshot of web annotation tool. The top black task bar has ”Start” button to load first two image
using the left side tool bar by choosing the annotation bounding box of our interest. The annotated images are
on the top black task bar. Active learning is performed by clicking on ”Test” button on the top black task bar. ”Load

beneficial image which can be used in next training and Active Learning iteration

Chapter 5

Evaluation

In this chapter, details of the datasets, experimental analysis, qualitative and quantita-

tive results are presented.

5.1 Experimental setup

5.1.1 Datasets

Four datasets are considered for experimental evaluation of Active Learning and object

detection. Two of these datasets are standard benchmark datasets used in the com-

puter vision community. The Weizmann Horse [88] is a relatively small RGB-dataset

containing horses as the object of interest. The PASCAL VOC 2007 [89] dataset is

closer to a medium-sized real-world RGB-dataset. The class ”car” is considered for

experimental evaluation as shown in [30]. Both datasets come bundled with ground

truth bounding box annotations. Sample images from both datasets are illustrated in

figure 5.4 and figure 5.8. The next two datasets are custom Carl Zeiss datasets. CZHisto

is a Histopathology RGB-dataset where objects of interest are steatosis cells. Finally,

CZHeLa [90] is a dataset captured by a Focussed Ion Beam -Scanning Electron Micro-

scope (FIB-SEM) of cervical cancer HeLa (Henrietta Lacks) cell where objects of interest

are mitochondria. Sample images from this dataset are illustrated in figure 5.14. Each

image is a single-channel image stack. Ground truth annotations for these datasets were

obtained through manual annotation. The properties of various datasets are summarized

in table 5.1.

The scale variations for the four datasets are shown in figure 5.1. For each dataset, the

median of minimum value among height and width of the bounding boxes is found. In the

figure 5.1, all the plots show median - 50% to median + 50% of scale variations. The plots

which have Gaussian nature represent lesser scale variations and others represent higher

scale variations. Clockwise, the first plot shows the scale variations for Weizmann Horse

38

Experiments and Results 39

Name Size Object # Objects Colour Challenges

Computer
vision

benchmark

Weizmann
Horse

328 horse 1 yes easy

PASCAL
VOC 2007

761 car 1-5 yes
occlusions,

scale
variations

Carl Zeiss
datasets

CZHisto 600
steatosis
cells

∼ 15 yes
unclear
object

boundaries

CZHeLa 120 mitochondria ∼ 20 grayscale
scale

variations

Table 5.1: Characteristics of datasets used in the experiments.

dataset. Second shows the scale variations for PASCAL VOC 2007 dataset. Third shows

scale variations for CZHeLa dataset and fourth shows variations for CZHisto dataset.

Among all the plots, PASCAL VOC 2007 shows highest scale variation and is also the

most difficult dataset.

Figure 5.1: All the plots show the scale variations from median - 50% to median +
50% of scale variations. The plots which have Gaussian nature represent lesser scale
variations and others represent higher scale variations. Clockwise, the first plot shows
the scale variations for Weizmann Horse dataset. Second shows the scale variations
for PASCAL VOC 2007 dataset. Third shows scale variations for CZHeLa dataset and
fourth shows variations for CZHisto dataset. Among all the plots, PASCAL VOC 2007

shows highest scale variation.

Experiments and Results 40

5.1.2 Experimental baselines

In order to know the impact of using RGB, HoG and Deep features, Fully Supervised

Learning is conducted on each dataset. Fully Supervised learning uses all annotated

training images. The best feature is chosen to conduct experiments using Active Learn-

ing. Further, Active Learning is compared to Incremental/Passive Learning where new

images to be annotated are obtained through random sampling. However, in Active

Learning, the beneficial images are picked according to equation 3.15 in every iteration.

The iterative procedure of Active Learning terminates when the annotation cost is zero.

5.1.3 Image augmentation

To check the effects of expanding the number of images in the dataset, image augmen-

tation is performed. Image augmentation is a process of expanding dataset by slightly

altering the existing images. The alteration can be done by flipping, inverting, blurring,

adding Gaussian noise and affine transformations. In this work, images are added by

flipping the images left to right and up to down. A Fully Supervised experiment is

performed on 1000 images extended from Weizmann Horse dataset. Some images from

the extended dataset are shown in figure 5.2. mAP of original dataset and with data

augmentation are compared in table 5.2. From the table, it can be seen that image

augmentation does not contribute to increased performance. So image augmentation is

not conducted on all datasets during experiments.

Original dataset With augmentation

Avg. mAP 0.95 0.93

Table 5.2: Results of data augmentation on Weizmann Horse dataset.

5.1.4 Cross-Validation

When multiple experiments are performed on same train and test set of the dataset, there

are chances that the model learns the dataset instead of generalising to an independent

dataset. This is called overfitting. In cross-validation, the dataset is partitioned into

different train and test sets in multiple rounds and in each round the experiments are

performed. The results are averaged over rounds to estimate the performance of the

model. In the experiments, cross-validation is performed for Fully Supervised Learning.

5.1.5 Tools

Python programming language version 3.0 is used to program Active Learning with

object detection. Fertilised Forests python library’s Hough Forest code [91] based on

Experiments and Results 41

Figure 5.2: Example images from data augmentation performed on Weizmann Horse
dataset.

work [30] is used and the Active Learning is implemented according to the method in

[1]. Annotation tool is adapted from web annotation tool [85] according to our needs

using Python programming language and Flask framework [92].

The hardware used is 64 bit, 8 GB RAM machine with core i5 2.50GHz processor and

GTX1080 GPU support only for Deep Learning experiments.

5.1.6 Hough Forest hyperparameters

The hyperparameters in Hough Forests are number of trees, depth of each tree, number

of patches extracted from images and number of scales in Hough space. The most

efficient values of hyperparameter are chosen to conduct final experiments. The effect

of varying hyperparameters on Weizmann Horse dataset is explained.

• Depth of trees in forest. From the experiments, the performance is best at tree

depth 10. For the experiments, tree depth of 15 is chosen. A comparison with

increasing tree depth is shown in figure 5.3 (a).

Experiments and Results 42

• Number of trees in forest: From the experiments, at least 5 trees are needed

to achieve good performance. After having 15 trees, the performance does not

change much. The number of trees is fixed 15 in the experiments. A comparison

with increasing number of trees is shown in figure 5.3 (b).

• Number patches extracted: A Higher number of patches encode more informa-

tion from the images. Best performance is achieved from 20 patches per image and

the performance saturates later. A comparison with increasing number of patches

is shown in figure 5.3 (c).

• Number of scales in Hough space: As the number of scales increase, the

objects of varying size can be detected. This hyperparameter is dataset dependant

and for Weizmann horse dataset, this number is found to be 3. The performance

falls if the number of scales is increased beyond 3. A comparison with increasing

number of scales is shown in figure 5.3 (d).

Figure 5.3: Effect of various hyperparameters on Active Learning. (a) Depth of trees
in forest. (b) Number of trees in forest. (c) Number patches extracted (d) Number of

scales in Hough space.

5.1.7 Time taken in experiments

The time taken to train each tree is found to be 0.40 seconds. To compute optimal

threshold, prediction and annotation cost in every iteration, for every image it takes

0.35 seconds.

Experiments and Results 43

Fully Supervised mAP

Cross-validation
set

RGB HoG
Deep

features

1 0.90 0.96 0.98

2 0.91 0.95 0.99

3 0.91 0.95 0.98

4 0.91 0.95 0.98

5 0.91 0.95 0.99

Avg. 0.91 0.95 0.98

Table 5.3: 5-way cross-validation results obtained by Fully Supervised Learning using
RGB, Hog and Deep features for Weizmann Horse dataset.

5.2 Results

The qualitative and quantitative results of all four datasets are present here.

5.2.1 Computer Vision benchmark datasets

Benchmark datasets have been released to stimulate the research in the field of computer

vision. Various computer vision algorithms perform experiments on this benchmark

datasets to compare their performance.

5.2.1.1 Weizmann Horse

Nature of dataset

This dataset has 328 images of horses which are coloured, in side-view. One image has

only one instance of horse object. The images are mostly collected from the Internet

and Caltech [93] database. The images from the Internet are cropped by hand. Figure

5.4 shows example images from the dataset. 262 images are used for training and 66

images for testing. Experiments show 25 patches per image are sufficient to obtain

state-of-the-art results.

Fully Supervised learning

All the 262 images are used for Fully Supervised training with Hough forests. The trained

forest model is used to evaluate on 66 images. Fully Supervised learning is performed

with RGB, HoG and Deep features extracted from images. Table 5.3 shows results from

the fully-supervised learning experiments with 5-way cross-validation. Figure 5.5 is a bar

graph showing the mean mAP of RGB, HoG and Deep features. This figure shows that

Deep features perform the best among other features with mAP 0.98. These features

are used for conducting Active Learning experiments.

Active learning

Active learning is conducted with the same validation set as Fully Supervised Learning

Experiments and Results 44

Figure 5.4: Example images from Weizmann Horse dataset.

for a fair comparison of scores. 10 experiments are performed with randomly chosen first

two images to train. In each experiment, Active Learning and Passive Learning exper-

iments are conducted. Figure 5.6 shows the results of experiments. After 5 iterations,

i.e after annotating 7 images, the annotation cost becomes zero. It can be observed that

Active and Passive Learning perform similarly due to the simple nature of the dataset

where there is not much intra-dataset variation. However, Active Learning slightly per-

forms better than Passive Learning. It is observed that Active Learning uses only 2%

of the annotated dataset to achieve mAP comparable to Fully Supervised Learning.

Model Training Times

In table 5.4 a comparison of time taken to perform Fully Supervised Learning and Active

Learning is made. For Active Learning experiment, a total of 7 images are annotated

and time taken to annotate each image is 2.5 seconds. So, in total, the time taken to

annotate is 7 × 2.5 which is equal to 17.5 seconds. Time taken to train is 15 × 0.4 which

is equal to 6 seconds and time taken to find the beneficial image is 262 test images × 0.35

is equal to 91.7 seconds. In total, the time taken for the Active Learning experiment is

17.50 + 6.0 + 91.7 = 115.2 seconds. For Fully Supervised experiments, the time taken to

annotate 328 images is equal to 820 seconds and time taken for the experiment is 66 test

images × 0.35 which is equal to 23.10 seconds. So total time taken for Fully Supervised

Experiments and Results 45

Figure 5.5: Fully Supervised
mAP for RGB, HoG and Deep
features using Weizmann Horse

dataset.

Figure 5.6: Fully Supervised vs
Passive vs Active learning, Deep
features using Weizmann Horse

dataset.

Time taken (s)

Fully Supervised 849.10

Active learning 115.2

Table 5.4: Comparison of time taken to conduct Fully Supervised Learning vs Active
Learning experiments for Weizmann Horse dataset.

Avg. precision

Hough Forests + HoG [30] 0.96

This work 0.98

Table 5.5: State-of-the-art object detection comparison for Weizmann Horse dataset.

experiments and its annotation is 820 + 23.10 + 6.0 is equal to 849.10 seconds. The

table shows Active Learning experiment results in 7.4x speed up.

State-of-the-art comparison

A previous work [30] using Hough Forests with HoG features reports a mAP 0.96 for

same hyperparameter settings (with varying aspect ratio values, a mAP of 0.98 is

achieved). This work with the same hyperparameter settings, but with Deep features

achieves average mAP of 0.98474. Therefore it is verified that Deep features can improve

object detection performance by 2%. A comparison canbe seen in table 5.5.

Qualitative results

Figure 5.7 shows qualitative results from Weizmann Horse dataset. Cyan boxes show

False Negative detections, blue boxes show False Positive detections and red boxes show

True Positive detections. The first image in each row has no positive detections. By

inspection, it is verified that if the horse does not cover the entire image or horse is not

completely in side-view, the detections are sometimes not positive.

Experiments and Results 46

Figure 5.7: Qualitative results from Weizmann Horse dataset.

5.2.1.2 PASCAL VOC 2007

Nature of dataset

The original dataset has 21 objects but only car object is chosen from the dataset. This

dataset has 761 images of cars which are of different colours and shapes. One image has

multiple instances of car object. The PASCAL VOC project provides standardised image

data sets for object class recognition. The main goal of PASCAL VOC 2007 challenge

is to recognize objects from a number of visual object classes in realistic scenes (i.e. not

pre-segmented objects). This is a difficult dataset with multiple objects in one image

of different shapes and with occlusions. Figure 5.8 shows example images from the

dataset. 609 images are used for training and 152 images for testing. Experiments show

200 patches are sufficient to obtain state-of-the-art results.

Quantitative results

Fully Supervised learning

All the 761 images are used for Fully Supervised training with Hough forests. The trained

forest model is used to evaluate on 152 images. Fully Supervised learning is performed

with RGB, HoG and Deep features extracted from images. Table 5.6 shows results

from the fully-supervised learning experiments with 5-way cross-validation. Figure 5.9

Experiments and Results 47

Figure 5.8: Example images from PASCAL VOC 2007 dataset.

Fully Supervised mAP

Cross-validation
set

RGB HoG
Deep

features

1 0.16 0.08 0.15

2 0.15 0.10 0.16

3 0.13 0.18 0.16

4 0.11 0.17 0.16

5 0.13 0.09 0.18

Avg. 0.14 0.13 0.16

Table 5.6: 5-way cross-validation results obtained by Fully Supervised Learning using
RGB, HoG and Deep features for PASCAL VOC dataset.

is the bar graph showing the mean mAP of RGB, HoG and Deep features. This figure

shows that Deep features perform the best among other features with mAP 0.16. These

features are used for conducting Active Learning experiments.

Active learning

Active learning is conducted with the same validation set as Fully Supervised Learning

for a fair comparison of scores. 10 experiments are performed with randomly chosen

first two images to train. In each experiment, Active Learning and Passive Learning

experiments are conducted. The figure 5.10 shows the results of experiments. After

Experiments and Results 48

Time taken (s)

Fully Supervised 3864.2

Active learning 254.5

Table 5.7: Comparison of time taken to conduct Fully Supervised Learning vs Active
Learning experiments for PASCAL VOC 2007 dataset.

5 iterations, i.e. after annotating 7 images, the annotation cost becomes zero. Active

learning outperforms Passive Learning. It is observed that Active Learning uses only

1% of the annotated dataset to achieve mAP comparable to Fully Supervised Learning.

Figure 5.9: Fully Supervised
mAP for RGB, HoG and Deep fea-
tures using PASCAL VOC 2007

dataset.

Figure 5.10: Fully Supervised
vs Passive vs Active learning,
Deep features PASCAL VOC 2007

dataset.

Time taken

In table 5.7 a comparison of time taken to perform Fully Supervised Learning and Active

Learning is made. For Active Learning experiment, a total of 7 images are annotated

and time taken to annotate each image is 5 seconds. So, in total, the time taken to

annotate is 7 × 5 is equal to 35 seconds. Time taken to train is 15 × 0.4 which is equal

to 6 seconds and time taken to find the beneficial image is 609 test images × 0.35 is

equal to 213.15 seconds. In total, the time taken for the Active Learning experiment is

35 + 6.0 + 213.15 = 254.5 seconds. For Fully Supervised experiments, the time taken

to annotate 761 images is equal to 3805 seconds and time taken for the experiment is

152 test images × 0.35 which is equal to 53.2 seconds. So total time taken for Fully

Supervised experiments and its annotation is 3805 + 53.2 + 6.0 is equal to 3864.2

seconds. The table shows Active Learning experiment results in 15.18x speed up.

State-of-the-art comparison

Deep learning state-of-the-art methods report mAP of 0.88. A similar work [30] reports

mAP of 0.166 with different aspect ratio values. This work reports a similar mAP of

0.1647. A comparison canbe seen in table 5.8.

Qualitative results

The figure 5.11 shows qualitative results from PASCAL VOC 2007 dataset. Cyan boxes

Experiments and Results 49

Avg. precision

Faster R-CNN [53] 0.88

SSD [13] 0.89

Hough Forests [30] 0.16

This work 0.16

Table 5.8: State-of-the-art object detection comparison for PASCAL VOC 2007
dataset.

show False Negative detections, blue boxes show False Positive detections and red boxes

show True Positive detections. In this dataset, there are images with highly varying

number of objects, their scales and occlusions. Therefore it results in a lot of False

Positive detections (shown in blue).

Figure 5.11: Qualitative results from PASCAL VOC dataset.

5.2.2 Carl Zeiss custom datasets

Next, the results from two Carl Zeiss custom datasets are explained.

Experiments and Results 50

Fully Supervised mAP

Cross-validation
set

RGB HoG
Deep

features

1 0.63 0.79 0.81

2 0.70 0.79 0.83

3 0.63 0.80 0.80

4 0.66 0.80 0.82

5 0.60 0.76 0.84

Avg. 0.64 0.79 0.82

Table 5.9: 5-way cross-validation results obtained by Fully Supervised Learning using
RGB, Hog and Deep features for CZHisto dataset.

5.2.2.1 CZHisto

Nature of dataset

This dataset has 600 images of steatosis (lipid) cells which are white in colour with round

shape. One image has multiple instances of steatosis cells. The images are collected at

Carl Zeiss. This dataset is hand annotated. This is a medium-level-difficulty dataset

with multiple cells in one image and with multiple shapes and unclear object boundaries.

480 images are used for training and 120 images for testing. The images from the dataset

cannot be shown due to privacy issues.

Quantitative results

Fully Supervised learning

All the 600 images are used for Fully Supervised training with Hough forests. The trained

forest model is used to evaluate on 120 images. Fully Supervised learning is performed

with RGB, HoG and Deep features extracted from images. Table 5.9 shows results

from the fully-supervised learning experiments with 5-way cross-validation. Figure 5.12

is a bar graph showing the mean mAP of RGB, HoG and Deep features. This figure

shows that Deep features perform the best among other features with mAP 0.82. These

features are used for conducting Active Learning experiments.

Active learning

Active learning is conducted with the same validation set as Fully Supervised Learning

for a fair comparison of scores. 10 experiments are performed with randomly chosen

first two images to train. In each experiment, Active Learning and Passive Learning

experiments are conducted. The figure 5.13 shows the results of experiments. After

10 iterations, i.e after annotating 12 images, the annotation cost becomes zero. Active

learning outperforms Passive Learning. It is observed that Active Learning uses only

2% of the annotated dataset to achieve mAP comparable to Fully Supervised Learning.

Time taken

In table 5.10 a comparison of time taken to perform Fully Supervised Learning and

Experiments and Results 51

Figure 5.12: Fully Supervised
mAP for RGB, HoG and Deep fea-

tures using CZHisto dataset.

Figure 5.13: Fully Supervised vs
Passive vs Active learning, Deep
features using CZHisto dataset.

Time taken (s)

Fully Supervised 30046

Active learning 774

Table 5.10: Comparison of time taken to hand-annotate dataset for Fully Supervised
Learning vs Active Learning, CZHisto dataset.

Active Learning is made. For Active Learning experiment, a total of 12 images are

annotated and time taken to annotate each image is 50 seconds. So, in total, the time

taken to annotate is 12 × 50 which is equal to 600 seconds. Time taken to train is 15 ×

0.4 which is equal to 6 seconds and time taken to find the beneficial image is 480 test

images × 0.35 is equal to 168 seconds. In total, the time taken for the Active Learning

experiment is 600 + 6.0 + 168 = 774 seconds. For Fully Supervised experiments, the

time taken to annotate 600 images is equal to 30000 seconds and time taken for the

experiment is 120 test images × 0.35 which is equal to 40 seconds. So total time taken

for Fully Supervised experiments and its annotation is 30000 + 40 + 6.0 is equal to

30046 seconds. The table shows Active Learning experiment results in 38.82x speed up.

State-of-the-art comparison

No object detection performance numbers are reported on this dataset.

Qualitative results

The images from the dataset cannot be shown due to privacy issues.

5.2.2.2 CZHeLa

Nature of dataset

This dataset has 120 images of HeLa (cervical cancer) cells which are grayscale images.

One image has multiple instances of mitochondria object. The images are collected from

FIB-SEM. The images are the slices of one 3-dimensional image of a HeLa cell. The

images are hand annotated. This is a difficult dataset of objects of different shapes.

Experiments and Results 52

Figure 5.14 shows example images from the dataset. 96 images are used for training and

24 images for testing.

Figure 5.14: Example images from CZHeLa dataset.

Quantitative results

Fully Supervised learning

All the 120 images are used for Fully Supervised training with Hough forests. The trained

forest model is used to evaluate on 24 images. Fully Supervised learning is performed

with RGB, HoG and Deep features extracted from images. Table 5.11 shows results

from the fully-supervised learning experiments with 5-way cross-validation. Figure 5.15

is a bar graph showing the mean mAP of RGB, HoG and Deep features. This figure

shows that HoG features perform the best among other features with mAP 0.38. The

CNN network used is VGG19 which is pre-trained on a coloured dataset, Imagenet.

As CZHeLa is a single channelled grayscale image dataset, the deep features do not

perform better than HoG features. HoG features are used for conducting Active Learning

experiments.

Active learning

Active learning is conducted with the same validation set as Fully Supervised Learning

for a fair comparison of scores. 10 experiments are performed with randomly chosen

first two images to train. In each experiment, Active Learning and Passive Learning

experiments are conducted. The figure 5.16 shows the results of experiments. After 10

iterations, i.e. after annotating 12 images, the annotation cost becomes zero. Active

learning outperforms Passive Learning. It is observed that Active Learning uses only

10% of the annotated dataset to achieve mAP comparable to Fully Supervised Learning.

However, it can be seen that Active Learning performance is lower than Fully Supervised

Experiments and Results 53

Fully Supervised mAP

Cross-validation
set

RGB HoG
Deep

features

1 0.10 0.40 0.31

2 0.10 0.41 0.36

3 0.10 0.36 0.32

4 0.11 0.37 0.33

5 0.13 0.38 0.32

Avg. 0.11 0.38 0.32

Table 5.11: 5-way cross-validation results obtained by Fully Supervised Learning
using RGB, Hog and Deep features for CZHisto dataset.

Learning. This is due to objects of two different object shapes (two non-overlapping

groups of object scores) found when annotation cost is zero.

Figure 5.15: Fully Supervised
mAP for RGB, HoG and Deep fea-

tures using CZHeLa dataset.

Figure 5.16: Fully Supervised vs
Passive vs Active learning, HoG
features using CZHeLa dataset.

Time taken

In table 5.12 a comparison of time taken to perform Fully Supervised Learning and

Active Learning is made. For Active Learning experiment, a total of 12 images are

annotated and time taken to annotate each image is 60 seconds. So, in total, the time

taken to annotate is 12 × 60 which is equal to 720 seconds. Time taken to train is 15

× 0.4 which is equal to 6 seconds and time taken to find the beneficial image is 96 test

images × 0.35 is equal to 33.6 seconds. In total, the time taken for the Active Learning

experiment is 33.6 + 6.0 + 720 = 759.6 seconds. For Fully Supervised experiments,

the time taken to annotate 120 images is equal to 7200 seconds and time taken for the

experiment is 96 test images × 0.35 which is equal to 33.6 seconds. So total time taken

for Fully Supervised experiments and its annotation is 7200 + 33.6 + 6.0 is equal to

7239.6 seconds. The table shows Active Learning experiment results in 9.5x speed up.

State-of-the-art comparison

No object detection performance numbers are reported on this dataset.

Experiments and Results 54

Time taken (s)

Fully Supervised 7239.6

Active learning 759.6

Table 5.12: Comparison of time taken to conduct Fully Supervised Learning vs Active
Learning experiments for CZHeLa dataset.

Qualitative results

The figure 5.17 shows qualitative results from CZHeLa dataset experiments. Cyan boxes

show False Negative detections, blue boxes show False Positive detections and red boxes

show True Positive detections. The number of objects per image and their scale vary in

the dataset which results in a lot of False Positive detections (in blue).

Figure 5.17: Qualitative results from CZHeLa dataset.

Chapter 6

Conclusions and Future work

In this work, an Interactive Object Detection pipeline is realized in order to minimise

the trade-off between the effort to annotate (annotation cost) unlabelled data and the

performance of object detection model. The detection pipeline is composed of an object

detection stage followed by an Active Learning stage performed iteratively. Hough

Forests are used for object detection. Given the increased ubiquity of CNNs, the utility

of deep features in improving performance is also explored. In Active Learning, to choose

the beneficial images, annotation cost is calculated as the predicted false positive and

false negative rate. The framework is successfully evaluated on two Computer Vision

benchmark datasets i.e. Weizmann Horse and PASCAL VOC 2007 and two Carl Zeiss

custom datasets i.e. CZHisto and CZHeLa.

As for image features, it is verified that the highest mAP is obtained from deep features

for most of the datasets because these features are automatically learned. The experi-

mental results also show that using deep features with Hough forest performs the best.

By employing Active Learning, it is demonstrated that after training around 2.5% of

data, almost same performance as training on the whole dataset can be achieved. An

annotation tool for user interaction during Active Learning is also developed.

The real-world dataset size can range from 1000 to 100000. State-of-the-art object

detection methods are based on deep learning. In these cases, Active Learning can be

incorporated as a preprocessing step to annotate only beneficial images from the entire

dataset. This annotated dataset can be used with deep learning methods.

Future work

There are several options to explore in incorporating Active Learning methods.

The annotation cost is formulated assuming the cost to correct false positive detections

is equal to cost to correct false negatives. In reality, this is not the case because the

time taken in annotating false negatives is greater than annotating false positives. A

55

Conclusions and Future work 56

user study in work [1] shows that effort to annotate false negatives is three times effort

to annotate false positives.

Deep Learning methods can be used for end-to-end learning to obtain annotation cost

[94].

Multiclass detection can be incorporated in Hough Forests by changing the split functions

in classification and regression nodes for more than one class. In regression nodes, the

offsets of multiple class should be minimised.

The uncertainty sampling-based methods suffer from the problem of learning noisy im-

ages. Therefore, other kinds of query methods can be explored.

The web-based annotation tool does not incorporate functionality for the user to correct

false positives or add false negatives. Also, the functionality to see all the propagated

annotations for the entire dataset is absent.

Bibliography

[1] A. Yao, J. Gall, C. Leistner, and L. Van Gool, “Interactive object detection,” in

Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on,

pp. 3242–3249, IEEE, 2012.

[2] S. J. Russell, P. Norvig, J. F. Canny, J. M. Malik, and D. D. Edwards, Artificial

intelligence: a modern approach, vol. 2. Prentice hall Upper Saddle River, 2003.

[3] J. O. Effoduh, “The fourth industrial revolution by klaus schwab,” 2016.

[4] “AI is the new electricity.” https://medium.com/@Synced/

artificial-intelligence-is-the-new-electricity-andrew-ng-cc132ea6264.

Accessed: 2018-03-02.

[5] Z. Zhang, “Microsoft kinect sensor and its effect,” IEEE multimedia, vol. 19, no. 2,

pp. 4–10, 2012.

[6] D. Murray and J. J. Little, “Using real-time stereo vision for mobile robot naviga-

tion,” autonomous robots, vol. 8, no. 2, pp. 161–171, 2000.

[7] “Stanford CNN lecture.” http://cs231n.stanford.edu/syllabus.html. Ac-

cessed: 2016-07-17.

[8] “HoloLens.” https://www.microsoft.com/en-us/hololens. Accessed: 2016-07-

17.

[9] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep

convolutional neural networks,” in Advances in neural information processing sys-

tems, pp. 1097–1105, 2012.

[10] “AmazonGo.” https://www.amazon.com/b?ie=UTF8&node=16008589011. Ac-

cessed: 2016-07-17.

[11] “GoogleCar.” https://waymo.com/. Accessed: 2016-07-17.

[12] “GoogleEcho.” https://store.google.com/product/google_home. Accessed:

2016-07-17.

57

https://medium.com/@Synced/artificial-intelligence-is-the-new-electricity-andrew-ng-cc132ea6264
https://medium.com/@Synced/artificial-intelligence-is-the-new-electricity-andrew-ng-cc132ea6264
http://cs231n.stanford.edu/syllabus.html
https://www.microsoft.com/en-us/hololens
https://www.amazon.com/b?ie=UTF8&node=16008589011
https://waymo.com/
https://store.google.com/product/google_home

Bibliography 58

[13] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg,

“Ssd: Single shot multibox detector,” in European conference on computer vision,

pp. 21–37, Springer, 2016.

[14] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for seman-

tic segmentation,” in Proceedings of the IEEE conference on computer vision and

pattern recognition, pp. 3431–3440, 2015.

[15] P. Viola and M. Jones, “Rapid object detection using a boosted cascade of simple

features,” in Computer Vision and Pattern Recognition, 2001. CVPR 2001. Pro-

ceedings of the 2001 IEEE Computer Society Conference on, vol. 1, pp. I–I, IEEE,

2001.

[16] A. Yilmaz, O. Javed, and M. Shah, “Object tracking: A survey,” ACM Comput.

Surv., vol. 38, Dec. 2006.

[17] X. Zhu and D. Ramanan, “Face detection, pose estimation, and landmark local-

ization in the wild,” in Computer Vision and Pattern Recognition (CVPR), 2012

IEEE Conference on, pp. 2879–2886, IEEE, 2012.

[18] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in Computer Vision

(ICCV), 2017 IEEE International Conference on, pp. 2980–2988, IEEE, 2017.

[19] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving?

the kitti vision benchmark suite,” in Computer Vision and Pattern Recognition

(CVPR), 2012 IEEE Conference on, pp. 3354–3361, IEEE, 2012.

[20] S. Thrun, “Learning metric-topological maps for indoor mobile robot navigation,”

Artificial Intelligence, vol. 99, no. 1, pp. 21–71, 1998.

[21] R. M. Rangayyan, Biomedical image analysis. CRC press, 2004.

[22] H.-Y. Lee, J.-B. Huang, M. Singh, and M.-H. Yang, “Unsupervised representation

learning by sorting sequences,” in 2017 IEEE International Conference on Com-

puter Vision (ICCV), pp. 667–676, IEEE, 2017.

[23] R. Bose, P. Buneman, and D. Ecklund, “Annotating scientific data: why it is

important and why it is difficult,” in Proceedings of the 2006 UK e-Science all

hands meeting, vol. 23, pp. 121–148, Citeseer, 2006.

[24] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified,

real-time object detection,” in Proceedings of the IEEE conference on computer

vision and pattern recognition, pp. 779–788, 2016.

[25] R. G. Cinbis, J. Verbeek, and C. Schmid, “Weakly supervised object localization

with multi-fold multiple instance learning,” IEEE transactions on pattern analysis

and machine intelligence, vol. 39, no. 1, pp. 189–203, 2017.

Bibliography 59

[26] H. Bilen, M. Pedersoli, and T. Tuytelaars, “Weakly supervised object detection

with convex clustering,” in Computer Vision and Pattern Recognition (CVPR),

2015 IEEE Conference on, pp. 1081–1089, IEEE, 2015.

[27] R. Fergus, P. Perona, and A. Zisserman, “Object class recognition by unsuper-

vised scale-invariant learning,” in Computer Vision and Pattern Recognition, 2003.

Proceedings. 2003 IEEE Computer Society Conference on, vol. 2, pp. II–II, IEEE,

2003.

[28] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan, “Object de-

tection with discriminatively trained part-based models,” IEEE transactions on

pattern analysis and machine intelligence, vol. 32, no. 9, pp. 1627–1645, 2010.

[29] P. Vokuda, “Object classification and segmentation using rgb-d images,” research

and development thesis, HBRS, August 2017.

[30] J. Gall, A. Yao, N. Razavi, L. Van Gool, and V. Lempitsky, “Hough forests for

object detection, tracking, and action recognition,” IEEE transactions on pattern

analysis and machine intelligence, vol. 33, no. 11, pp. 2188–2202, 2011.

[31] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and

C. L. Zitnick, “Microsoft coco: Common objects in context,” in European conference

on computer vision, pp. 740–755, Springer, 2014.

[32] B. Settles, “Active learning literature survey,” Computer Sciences Technical Report

1648, University of Wisconsin–Madison, 2009.

[33] “Online annotation game.” http://www.gwap.com. Accessed: 2018-02-14.

[34] L. Von Ahn, M. Blum, N. J. Hopper, and J. Langford, “Captcha: Using hard ai

problems for security,” in International Conference on the Theory and Applications

of Cryptographic Techniques, pp. 294–311, Springer, 2003.

[35] “Mechanical Turk.” https://www.mturk.com/. Accessed: 2018-02-14.

[36] “figure-eight.” https://www.figure-eight.com/platform/training-data/

computer-vision/. Accessed: 2016-07-17.

[37] “understand.ai.” https://understand.ai/. Accessed: 2016-07-17.

[38] B. Settles, “Active learning literature survey. 2010,” Computer Sciences Technical

Report, vol. 1648.

[39] C. C. Aggarwal, X. Kong, Q. Gu, J. Han, and P. S. Yu, “Active learning: A survey,”

2014.

[40] A. Krishnakumar, “Active learning literature survey,” tech. rep., Technical Report,

University of California, Santa Cruz, 2007.

http://www.gwap.com
https://www.mturk.com/
https://www.figure-eight.com/platform/training-data/computer-vision/
https://www.figure-eight.com/platform/training-data/computer-vision/
https://understand.ai/

Bibliography 60

[41] J. Sivic, B. C. Russell, A. A. Efros, A. Zisserman, and W. T. Freeman, “Discovering

objects and their location in images,” in Computer Vision, 2005. ICCV 2005. Tenth

IEEE International Conference on, vol. 1, pp. 370–377, IEEE, 2005.

[42] R. Lienhart and J. Maydt, “An extended set of haar-like features for rapid object

detection,” in Image Processing. 2002. Proceedings. 2002 International Conference

on, vol. 1, pp. I–I, IEEE, 2002.

[43] G. Rätsch, T. Onoda, and K.-R. Müller, “Soft margins for adaboost,” Machine

learning, vol. 42, no. 3, pp. 287–320, 2001.

[44] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,”

in Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer

Society Conference on, vol. 1, pp. 886–893, IEEE, 2005.

[45] J. A. Suykens and J. Vandewalle, “Least squares support vector machine classifiers,”

Neural processing letters, vol. 9, no. 3, pp. 293–300, 1999.

[46] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5–32, 2001.

[47] F. Baumann, A. Ehlers, K. Vogt, and B. Rosenhahn, “Cascaded random forest for

fast object detection,” in Scandinavian Conference on Image Analysis, pp. 131–142,

Springer, 2013.

[48] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553,

p. 436, 2015.

[49] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for

accurate object detection and semantic segmentation,” in Proceedings of the IEEE

conference on computer vision and pattern recognition, pp. 580–587, 2014.

[50] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman, “The

pascal visual object classes (voc) challenge,” International journal of computer vi-

sion, vol. 88, no. 2, pp. 303–338, 2010.

[51] J. R. Uijlings, K. E. Van De Sande, T. Gevers, and A. W. Smeulders, “Selective

search for object recognition,” International journal of computer vision, vol. 104,

no. 2, pp. 154–171, 2013.

[52] R. Girshick, “Fast r-cnn,” arXiv preprint arXiv:1504.08083, 2015.

[53] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object

detection with region proposal networks,” in Advances in neural information pro-

cessing systems, pp. 91–99, 2015.

[54] D. P. Papadopoulos, J. R. Uijlings, F. Keller, and V. Ferrari, “Extreme clicking for

efficient object annotation,” in 2017 IEEE International Conference on Computer

Vision (ICCV), pp. 4940–4949, IEEE, 2017.

Bibliography 61

[55] D. P. Papadopoulos, A. D. Clarke, F. Keller, and V. Ferrari, “Training object

class detectors from eye tracking data,” in European conference on computer vision,

pp. 361–376, Springer, 2014.

[56] D. P. Papadopoulos, J. R. Uijlings, F. Keller, and V. Ferrari, “Training object class

detectors with click supervision,” arXiv preprint arXiv:1704.06189, 2017.

[57] D. Lin, J. Dai, J. Jia, K. He, and J. Sun, “Scribblesup: Scribble-supervised convolu-

tional networks for semantic segmentation,” in Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pp. 3159–3167, 2016.

[58] H. Bilen, M. Pedersoli, and T. Tuytelaars, “Weakly supervised object detection

with posterior regularization,” in Proceedings BMVC 2014, pp. 1–12, 2014.

[59] D. P. Papadopoulos, J. R. Uijlings, F. Keller, and V. Ferrari, “We don’t need no

bounding-boxes: Training object class detectors using only human verification,”

arXiv preprint arXiv:1602.08405, 2016.

[60] X. Zhu and A. B. Goldberg, “Introduction to semi-supervised learning,” Synthesis

lectures on artificial intelligence and machine learning, vol. 3, no. 1, pp. 1–130,

2009.

[61] I. Misra, A. Shrivastava, and M. Hebert, “Watch and learn: Semi-supervised learn-

ing of object detectors from videos,” in Computer Vision and Pattern Recognition

(CVPR), 2015 IEEE Conference on, pp. 3593–3602, IEEE, 2015.

[62] Y. Grandvalet and Y. Bengio, “Semi-supervised learning by entropy minimization,”

in Advances in neural information processing systems, pp. 529–536, 2005.

[63] G. Camps-Valls, T. V. B. Marsheva, and D. Zhou, “Semi-supervised graph-based

hyperspectral image classification,” IEEE Transactions on Geoscience and Remote

Sensing, vol. 45, no. 10, pp. 3044–3054, 2007.

[64] O. Chapelle and A. Zien, “Semi-supervised classification by low density separa-

tion.,” in AISTATS, pp. 57–64, Citeseer, 2005.

[65] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transactions on

knowledge and data engineering, vol. 22, no. 10, pp. 1345–1359, 2010.

[66] M. Ristin, M. Guillaumin, J. Gall, and L. Van Gool, “Incremental learning of ncm

forests for large-scale image classification,” in Proceedings of the IEEE conference

on computer vision and pattern recognition, pp. 3654–3661, 2014.

[67] D. Jayaraman and K. Grauman, “Learning to look around: Intelligently exploring

unseen environments for unknown tasks,”

[68] S. Argamon-Engelson and I. Dagan, “Committee-based sample selection for prob-

abilistic classifiers,” Journal of Artificial Intelligence Research, vol. 11, no. 335,

p. 360, 1999.

Bibliography 62

[69] N. A. H. Mamitsuka et al., “Query learning strategies using boosting and bag-

ging,” in Machine learning: proceedings of the fifteenth international conference

(ICML’98), vol. 1, Morgan Kaufmann Pub, 1998.

[70] Y. Zhao, C. Xu, and Y. Cao, “Research on query-by-committee method of active

learning and application,” in International Conference on Advanced Data Mining

and Applications, pp. 985–991, Springer, 2006.

[71] A. Freytag, E. Rodner, and J. Denzler, “Selecting influential examples: Active

learning with expected model output changes,” in European Conference on Com-

puter Vision, pp. 562–577, Springer, 2014.

[72] K. Konyushkova, R. Sznitman, and P. Fua, “Learning active learning from data,”

in Advances in Neural Information Processing Systems, pp. 4228–4238, 2017.

[73] T. Ross, D. Zimmerer, A. Vemuri, F. Isensee, S. Bodenstedt, F. Both, P. Kessler,

M. Wagner, B. Müller, H. Kenngott, et al., “Exploiting the potential of un-

labeled endoscopic video data with self-supervised learning,” arXiv preprint

arXiv:1711.09726, 2017.

[74] Y. Gal, R. Islam, and Z. Ghahramani, “Deep bayesian active learning with image

data,” arXiv preprint arXiv:1703.02910, 2017.

[75] J. Illingworth and J. Kittler, “A survey of the hough transform,” Computer vision,

graphics, and image processing, vol. 44, no. 1, pp. 87–116, 1988.

[76] “hough trnsform.” https://homepages.inf.ed.ac.uk/rbf/HIPR2/hough.htm.

Accessed: 2016-07-17.

[77] A. Neubeck and L. Van Gool, “Efficient non-maximum suppression,” in Pattern

Recognition, 2006. ICPR 2006. 18th International Conference on, vol. 3, pp. 850–

855, IEEE, 2006.

[78] R. O. Duda and P. E. Hart, “Use of the hough transformation to detect lines and

curves in pictures,” Communications of the ACM, vol. 15, no. 1, pp. 11–15, 1972.

[79] J. R. Quinlan, “Induction of decision trees,” Machine learning, vol. 1, no. 1, pp. 81–

106, 1986.

[80] A. Srikantha, “Characterizing objects in images using human context,” doctor re-

rum naturalium, Rheinischen Friedrich–Wilhelms–University, Bonn, June 2017.

[81] M. Jambunathan et al., “Some properties of beta and gamma distributions,” The

annals of mathematical statistics, vol. 25, no. 2, pp. 401–405, 1954.

[82] T. Kobayashi, A. Hidaka, and T. Kurita, “Selection of histograms of oriented gra-

dients features for pedestrian detection,” in International Conference on Neural

Information Processing, pp. 598–607, Springer, 2007.

https://homepages.inf.ed.ac.uk/rbf/HIPR2/hough.htm

Bibliography 63

[83] M. B. Blaschko, “Branch and bound strategies for non-maximal suppression in

object detection,” in International Workshop on Energy Minimization Methods in

Computer Vision and Pattern Recognition, pp. 385–398, Springer, 2011.

[84] A. Shrivastava, A. Gupta, and R. Girshick, “Training region-based object detec-

tors with online hard example mining,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pp. 761–769, 2016.

[85] A. Dutta, A. Gupta, and A. Zissermann, “Vgg image annotator via.”

http://www.robots.ox.ac.uk/ vgg/software/via/, 2016. Accessed: 2018-03-02.

[86] “Python.” https://www.python.org/. Accessed: 2018-02-14.

[87] “Flask Web application.” http://flask.pocoo.org/. Accessed: 2018-02-14.

[88] E. Borenstein and S. Ullman, “Combined top-down/bottom-up segmentation,”

IEEE Transactions on pattern analysis and machine intelligence, vol. 30, no. 12,

pp. 2109–2125, 2008.

[89] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisser-

man, “The PASCAL Visual Object Classes Challenge 2007 (VOC2007) Results”.”

http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html”.

[90] A. Steyer and Y. Schwab, “Fib-sem hela cervical cancer cell.”

[91] C. Lassner and R. Lienhart, “The fertilized forests decision forest library,” in Pro-

ceedings of the 23rd ACM international conference on Multimedia, pp. 681–684,

ACM, 2015.

[92] S. Aggarwal, Flask Framework Cookbook. Packt Publishing Ltd, 2014.

[93] G. Griffin, A. Holub, and P. Perona, “Caltech-256 object category dataset,” 2007.

[94] Y. Gal and Z. Ghahramani, “Dropout as a bayesian approximation: Represent-

ing model uncertainty in deep learning,” in international conference on machine

learning, pp. 1050–1059, 2016.

[95] “VGG19 network model.” https://lihan.me/2018/01/

vgg19-caltech101-classification/. Accessed: 2018-03-02.

https://www.python.org/
http://flask.pocoo.org/
https://lihan.me/2018/01/vgg19-caltech101-classification/
https://lihan.me/2018/01/vgg19-caltech101-classification/

Appendix A

Miscellaneous plots

Figure A.1: Input image to visualize HoG features in 4.2.

64

Appendix 65

Figure A.2: VGG19 network architecture showing convolutional, pooling, fully-
connected and softmax layers. Image from [95].

	Abstract
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Problem statement
	1.3 Scope of this work
	1.4 Contributions
	1.5 Outline

	2 State of the Art
	2.1 Object Detection
	2.1.1 Classical approaches
	2.1.2 Convolutional Neural Networks

	2.2 Learning with partially annotated data
	2.2.1 Weak annotations
	2.2.2 Transfer Learning
	2.2.3 Reinforcement Learning

	2.3 Interactive Learning

	3 Technical background
	3.1 Hough Forests for object detection
	3.1.1 Training
	3.1.2 Testing

	3.2 Active learning

	4 Implementation details
	4.1 Hough Forest
	4.1.1 Patch extraction
	4.1.2 Training
	4.1.3 Testing

	4.2 Interactive Learning stage
	4.3 Evaluation measure
	4.4 Adaption in web annotation tool

	5 Evaluation
	5.1 Experimental setup
	5.1.1 Datasets
	5.1.2 Experimental baselines
	5.1.3 Image augmentation
	5.1.4 Cross-Validation
	5.1.5 Tools
	5.1.6 Hough Forest hyperparameters
	5.1.7 Time taken in experiments

	5.2 Results
	5.2.1 Computer Vision benchmark datasets
	5.2.1.1 Weizmann Horse
	5.2.1.2 PASCAL VOC 2007

	5.2.2 Carl Zeiss custom datasets
	5.2.2.1 CZHisto
	5.2.2.2 CZHeLa

	6 Conclusions and Future work
	Bibliography
	A An Appendix
	A.1 Miscellaneous plots

