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Abstract: It is well known that almost all uncertainty relations including Heisenberg uncertainty relation and Schrödinger
uncertainty relation were given by product types of trace inequalities. This is why these results were proved by Schwarz’s
inequality. These product types of uncertainty relations were extended to the case of not necessarily hermitian quantum
mechanical observables and positive operators representing quantum states. On the other hand sum types of uncertainty
relations were given for arbitrary finite N not necessarily hermitian quantum mechanical observables. Some uncertainty
relations are presented by generalized quasi-metric adjusted skew informations for two different generalized states. These
uncertainty relations are nontrivial as long as the observables are mutually noncommutative. The relations among these new and
existing uncertainty inequalities have been investigated. Finally, the reverse inequalities of the sum types of uncertainty
relations are obtained.
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1. Introduction

The famous uncertainty relations in quantum mechanics
were founded by Heisenberg and Schrödinger independently.
These results were proved by Schwarz’s inequality. Then
these are product type relations. On the other hand, sum
types of relations were given as inequalities related to entropy.
Recently several sum types of uncertainty relations were
obtained by [1, 2, 3, 4, 5, 6, 7]. Now we state two examples of
typical sum types of uncertainty relations.

Proposition 1.1 ([8]) Assume that observables A,B have
the following spectral decompositions.

A =

n∑
i=1

λi|φi〉〈φi|, B =

n∑
j=1

µj |ψj〉〈ψj |.

For any state |ϕ〉, the probability distributions are defined by

P = (p1, p2, . . . , pn), Q = (q1, q2, . . . , qn),

where

pi = |〈φi|ϕ〉|2, qj = |〈ψj |ϕ〉|2.

Let H(P ), H(Q) be Shannon entropies of P and Q,
respectively.

H(P ) = −
n∑
i=1

pi log pi, H(Q) = −
n∑
i=1

qi log qi.

Then the following sum type of uncertainty relation is
obtained.

H(P ) +H(Q) ≥ −2 log c,

where c = maxi,j |〈φi|ψj〉|.
Definition 1.1 The Fourie transformation of ψ ∈ L2(R) is

defined by

ψ̂(ω) =

∫ ∞
−∞

ψ(t)e−2πiωtdt.

And let

Q(R) =

{
f ∈ L2(R);

∫ ∞
−∞

t2|f(t)|2dt <∞
}
.

Then it is well known that the following result holds.
Proposition 1.2 ([9]) If ψ ∈ L2(R), ‖ψ‖2 = 1 satisfies

ψ, ψ̂ ∈ Q(R), then

S(ψ) + S(ψ̂) ≥ log
e

2
,
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where

S(ψ) = −
∫ ∞
−∞
|ψ(t)|2 log |ψ(t)|2dt,

S(ψ̂) = −
∫ ∞
−∞
|ψ̂(t)|2 log |ψ̂(t)|2dt.

Now the Heisenberg uncertainty relation [10] is stated as
follows;

Vρ(A)Vρ(B) ≥ 1

4
|Tr[ρ[A,B]]|2

for a quantum state (density operator) ρ and two observables
(self-adjoint operators) A and B, where [A,B] = AB −
BA. The further stronger result was given by Schrödinger in
[11, 12]:

Vρ(A)Vρ(B)− |Re {Covρ(A,B)} |2 ≥ 1

4
|Tr[ρ[A,B]]|2,

where the covariance is defined by

Covρ(A,B) ≡ Tr[ρ (A− Tr[ρA]I) (B − Tr[ρB]I)].

The Wigner-Yanase skew information represents a measure
for non-commutativity between a quantum state ρ and an
observableA. Luo introduced the quantity Uρ(A) representing
a quantum uncertainty excluding the classical mixture [13]:

Uρ(A) ≡
√
Vρ(A)2 − (Vρ(A)− Iρ(A))

2
,

with the Wigner-Yanase skew information [14]:

Iρ(A) ≡ 1

2
Tr
[
(i[ρ1/2, A0])2

]
= Tr[ρA2

0]− Tr[ρ1/2A0ρ
1/2A0],

A0 ≡ A− Tr[ρA]I

and then he successfully showed a new Heisenberg-type
uncertainty relation on Uρ(A) in [13]:

Uρ(A)Uρ(B) ≥ 1

4
|Tr[ρ[A,B]]|2. (1)

As stated in [13], the physical meaning of the quantity
Uρ(A) can be interpreted as follows. For a mixed state ρ,
the variance Vρ(A) has both classical mixture and quantum
uncertainty. Also, the Wigner-Yanase skew information Iρ(A)
represents a kind of quantum uncertainty [15, 16]. Thus, the
difference Vρ(A) − Iρ(A) has a classical mixture so that we
can regard that the quantity Uρ(A) has a quantum uncertainty
excluding a classical mixture. Therefore it is meaningful and
suitable to study an uncertainty relation for a mixed state by
the use of the quantity Uρ(A). After then a one-parameter
extension of the inequality (1) was given in [17]:

Uρ,α(A)Uρ,α(B) ≥ α(1− α)|Tr[ρ[A,B]]|2,

where

Uρ,α(A) ≡
√
Vρ(A)2 − (Vρ(A)− Iρ,α(A))

2
,

with the Wigner-Yanase-Dyson skew information Iρ,α(A) is
defined by

Iρ,α(A) ≡ 1

2
Tr
[
(i[ρα, A0])(i[ρ1−α, A0])

]
= Tr[ρA2

0]− Tr[ραA0ρ
1−αA0].

It is notable that the convexity of Iρ,α(A) with respect
to ρ was successfully proved by Lieb in [18]. The further
generalization of the Heisenberg-type uncertainty relation on
Uρ(A) has been given in [19] using the generalized Wigner-
Yanase-Dyson skew information introduced in [20]. Then it is
shown that these skew informations are connected to special
choices of quantum Fisher information in [21]. The family of
all quantum Fisher informations is parametrized by a certain
class of operator monotone functions Fop which were justified
in [22]. The Wigner-Yanase skew information and Wigner-
Yanase-Dyson skew information are given by the following
operator monotone functions

fWY (x) =

(√
x+ 1

2

)2

,

fWYD(x) = α(1− α)
(x− 1)2

(xα − 1)(x1−α − 1)
, α ∈ (0, 1),

respectively. In particular the operator monotonicity of the
function fWYD was proved in [23]. See also [24].

Definition 1.2 Let Mn(C) be a set of all n × n complex
matrices, Mn,sa(C) be a set of all n × n hermitian matrices,
Mn,+(C) be a set of all n × n positive definite complex
matrices and Mn,+,1(C) be a set of all n×n density matrices.
The inner product on Mn(C) is defined by

(A,B)HS = Tr(A∗B) =

n∑
i=1

n∑
j=1

aijbij ,

where A = (aij), B = (bij). For A ∈ Mn(C), left
multiplicative operator and right multiplicative operator are
defined as follows. respectively.

LA(X) = AX, RA(X) = XA, (X ∈Mn(C)).

Definition 1.3 When f : (0,+∞) → R satisfies the
condition

A,B ∈Mn,+(C), 0 ≤ A ≤ B =⇒ 0 ≤ f(A) ≤ f(B),

f(x) is said to be operator monotone function. When operator
monotone function f(x) satisfies f(x) = xf(x−1), it is said to
be symmetric. If f(1) = 1, then it is said to be normarized. Let
Fop be a set of all symmetric normarized operator monotone
functions.

Example 1.1

fRLD(x) =
2x

x+ 1
, fSLD(x) =

x+ 1

2
,

fBKM (x) =
x− 1

log x
, fWY (x) =

(√
x+ 1

2

)2

,

fWYD(x) = α(1− α)
(x− 1)2

(xα − 1)(x1−α − 1)
, α ∈ (0, 1).



87 International Journal of Mathematical Analysis and Applications 2018; 5(4): 85-94

For f ∈ Fop, let f(0) = limx→0 f(x). The regular function
and non-regular function are defined by

Frop = {f ∈ Fop|f(0) 6= 0}, Fnop = {f ∈ Fop|f(0) = 0},

respectively.
Definition 1.4 ([25, 26, 27]) For f ∈ Frop, f̃(x) is defined

by

f̃(x) =
1

2

{
(x+ 1)− (x− 1)2 f(0)

f(x)

}
, x > 0.

Example 1.2

f̃WY (x) =
√
x, f̃WYD(x) =

xα + x1−α

2
,

f̃SLD(x) =
2x

x+ 1
.

Proposition 1.3 ([21, 25]) f → f̃ is an one-to-one
correspondence between Frop and Fnop.

According to Kubo-Ando theory([28]), matrix mean mf is
combined with operator monotone functions in the following
way.

For f ∈ F ,

mf (A,B) = A1/2f(A−1/2BA−1/2)A1/2.

Then the monotone metric is defined as follows. For

ρ =

n∑
i=1

λi|φi〉〈φi| ∈Mn,+,1(C),

〈X,Y 〉f = Tr[X∗mf (Lρ, Rρ)
−1Y ], X, Y ∈Mn(C),

where

mf (Lρ, Rρ)
−1 =

∑
i,j

mf (λi, λj)
−1L|φi〉〈φi|R|φj〉〈φj |.

2. Generalized Quasi-metric Adjusted
Skew Information

For g, f ∈ Frop, the condition (A) is defined by .

g(x) ≥ k (x− 1)2

f(x)
, for some k > 0.

Then let

∆f
g (x) = g(x)− k (x− 1)2

f(x)
∈ Fop.

Furthermore the condition (B) is defined by

g(x) + ∆f
g (x) ≥ `f(x) for some ` > 0.

Definition 2.1 For X,Y ∈Mn(C), A,B ∈Mn,+(C),

Γ
(g,f)
A,B (X,Y ) = k〈(LA −RB)X, (LA −RB)Y 〉f

= kTr[X∗(LA −RB)mf (LA, RB)−1(LA −RB)Y ]

= Tr[X∗mg(LA, RB)Y ]− Tr[X∗m∆f
g
(LA, RB)Y ],

I
(g,f)
A,B (X) = Γ

(g,f)
A,B (X,X),

Ψ
(g,f)
A,B (X,Y ) = Tr[X∗mg(LA, RB)Y ]

+ Tr[X∗m∆f
g
(LA, RB)Y ],

J
(g,f)
A,B (X) = Ψ

(g,f)
A,B (X,X),

U
(g,f)
A,B (X) =

√
I

(g,f)
A,B (X) · J (g,f)

A,B (X).

Γ
(g,f)
A,B (X,Y ) is called a generalized quasi-metric adjusted

correlation measure and I
(g,f)
A,B (X) is called a generalized

quasi-metric adjusted skew information, respectively.
The folllowing results were given.
Theorem 2.1 ([29]) Under condition (A), we have (1), (2).

(1) For X,Y ∈ Mn(C), A,B ∈ Mn,+(C), the following
product type uncertainty relations hold.

I
(g,f)
A,B (X) · I(g,f)

A,B (Y ) ≥ |Γ(g,f)
A,B (X,Y )|2

≥ 1

16
(I

(g,f)
A,B (X + Y )− I(g,f)

A,B (X − Y ))2.

(2) For X,Y ∈ Mn(C), A,B ∈ Mn,+(C), if condition (B)
is satisfied, then the following uncertainty relations hold.

(a)U (g,f)
A,B (X) · U (g,f)

A,B (Y ) ≥ k`|Tr[X∗|LA −RB |Y ]|2.

(b) U (g,f)
A,B (X) · U (g,f)

A,B (Y ) ≥ f(0)2`

k
|Γ(g,f)
A,B (X,Y )|2.

Proof (1) Since the first inequality is proved in [19], the
second inequality has to be proved. Since

I
(g,f)
A,B (X ± Y ) = Tr[(X∗ ± Y ∗)mg(LA, RB)(X ± Y )]

− Tr[(X∗ ± Y ∗)m∆f
g
(LA, RB)(X ± Y )],

I
(g,f)
A,B (X + Y )− I(g,f)

A,B (X − Y )

= 2Tr[X∗mg(LA, RB)Y ] + 2TrY ∗mg(LA, RB)X]

− 2Tr[X∗m∆f
g
(LA, RB)Y ]− 2Tr[Y ∗m∆f

g
(LA, RB)X]

= 2Γ
(g,f)
A,B (X,Y ) + 2Γ

(g,f)
A,B (Y,X) = 4Re{Γ(g,f)

A,B (X,Y )}.

Then

Γ
(g,f)
A,B (X,Y ) = Re{Γ(g,f)

A,B (X,Y )}+ iIm{Γ(g,f)
A,B (X,Y )}

=
1

4
(I

(g,f)
A,B (X + Y )− I(g,f)

A,B (X − Y ))

+ iIm{Γ(g,f)
A,B (X,Y )}.

Therefore

|Γ(g,f)
A,B (X,Y )|2 =

1

16
(I

(g,f)
A,B (X + Y )− I(g,f)

A,B (X − Y ))2

+ (Im{Γ(g,f)
A,B (X,Y )})2

≥ 1

16
(I

(g,f)
A,B (X + Y )− I(g,f)

A,B (X − Y ))2,
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(2) Since (a) is proved in [19], (b) has to be proved. By
Lemma 3.3 and Lemma 3.4 in [3],

mg(x, y)2 −m∆f
g
(x, y)2 ≥ k`(x− y)2

≥ k`f(0)2

k2
(mg(x, y)−m∆f

g
(x, y))2.

Then

mg(x, y) +m∆f
g
(x, y) ≥ f(0)2`

k
(mg(x, y)−m∆f

g
(x, y)).

Hence

J
(g,f)
A,B (Y ) =

∑
i,j

{mg(λi, µj) +m∆f
g
(λi, µj)}|〈φi|Y |ψj〉|2

≥ f(0)2`

k

∑
i,j

{mg(λi, µj)

−m∆f
g
(λi, µj)}|〈φi|Y |ψj〉|2 =

f(0)2`

k
I

(g,f)
A,B (Y ).

By the first inequality in (1),

|Γ(g,f)
A,B (X,Y )|2 ≤ I(g,f)

A,B (X) · I(g,f)
A,B (Y )

≤ I(g,f)
A,B (X) · k

f(0)2`
J

(g,f)
A,B (Y ).

Then

I
(g,f)
A,B (X) · J (g,f)

A,B (Y ) ≥ f(0)2`

k
|Γ(g,f)
A,B (X.Y )|2.

Similarly,

J
(g,f)
A,B (X) · I(g,f)

A,B (Y ) ≥ f(0)2`

k
|Γ(g,f)
A,B (X.Y )|2.

So the proof is completed. 2

Remark 2.1 If A = B = ρ ∈ Mn,+,1(C), g = fSLD, f =
fWY , k = 1

8 , ` = 2, then the result of Luo [13] are given.

3. Sum Types of Uncertainty Relations

Theorem 3.1 For X,Y ∈ Mn(C), A,B ∈ Mn,+(C), the
following hold.

(1) I(g,f)
A,B (X) + I

(g,f)
A,B (Y ) ≥ 1

2
max{I(g,f)

A,B (X + Y ),

I
(g,f)
A,B (X − Y )}.

(2)
√
I

(g,f)
A,B (X) +

√
I

(g,f)
A,B (Y ) ≥ max{

√
I

(g,f)
A,B (X + Y ),√

I
(g,f)
A.B (X − Y )}.

(3)
√
I

(g,f)
A,B (X) +

√
I

(g,f)
A,B (Y ) ≤ 2 max{

√
I

(g,f)
A,B (X + Y ),√

I
(g,f)
A.B (X − Y )}.

Proof (1) Hilbert-Schmidt norm ‖ · ‖ satisfies

‖X‖2 + ‖Y ‖2 =
1

2
(‖X + Y ‖2 + ‖X − Y ‖2)

≥ 1

2
max{‖X + Y ‖2, ‖X − Y ‖2}.

Since I
(g,f)
A,B (X,X) is second power of Hilbert-Schmidt

norm, ‖X‖ =
√
I

(g,f)
A,B (X).

Then the result is obtained by substituting the above
inequality,

(2) The triangle inequality of general norm is applied for

‖X‖ =
√
I

(g,f)
A,B (X).

(3) The following norm inequality is proved:

‖X‖+ ‖Y ‖ ≤ ‖X + Y ‖+ ‖X − Y ‖. (2)

Since

‖X‖ = ‖1

2
(X+Y )+

1

2
(X−Y )‖ ≤ 1

2
‖X+Y ‖+

1

2
‖X−Y ‖

and

‖Y ‖ = ‖1

2
(Y +X)+

1

2
(Y −X)‖ ≤ 1

2
‖Y +X‖+ 1

2
‖Y −X‖,

the aimed result is given by adding two inequalities. 2

Theorem 3.2 The following hold.

(1) Ig,f)
A,B (X) is convex with respect to X , that is, for α, β ≥

0, α+ β = 1 and X,Y ∈Mn(C),

I
(g,f)
A,B (αX + βY ) ≤ αI(g,f)

A,B (X) + βI
(g,f)
A,B (Y ).

(2)
√
I

(g,f)
A,B (X) is convex with respect to X , that is, for

α, β ≥ 0, α+ β = 1 and X,Y ∈Mn(C),√
I

(g,f)
A,B (αX + βY ) ≤ α

√
I

(g,f)
A,B (X) + β

√
I

(g,f)
A,B (Y ).

Proof (1) Since

‖αX + βY ‖2 ≤ (α‖X‖+ β‖Y ‖)2

= α2‖X‖2 + 2αβ‖X‖‖Y ‖+ β2‖Y ‖2,

α‖X‖2 + β‖Y ‖2 − ‖αX + βY ‖2

≥ α‖X‖2 + β‖Y ‖2 − α2‖X‖2 − 2αβ‖X‖‖Y ‖
− β2‖Y ‖2 = αβ(‖X‖ − ‖Y ‖)2 ≥ 0.

Then ‖αX + βY ‖2 ≤ α‖X‖2 + β‖Y ‖2.
(2) It is clear. 2

Theorem 3.3 For {Xi}Ni=1, {Yj}Nj=1 ∈ Mn(C), A,B ∈
Mn,+(C), if the condition X∗i |LA − RB |Yj = δijC and the
condition (B) are satisfied, then the following hold.

(1)

(
N∑
i=1

U
(g,f)
A,B (Xi)

) N∑
j=1

U
(g,f)
A,B (Yj)

 ≥ Nk`|Tr[C]|2.

(2)

(
N∑
i=1

√
U

(g,f)
A,B (Xi)

)(
N∑

j=1

√
U

(g,f)
A,B (Yj)

)
≥ N
√
k`|Tr[C]|.

Proof (1) By Theorem ??(2)(a),

U
(g,f)
A,B (Xi) · U (g,f)

A,B (Yj) ≥ k`|Tr[X∗i |LA −RB |Yj ]|2. (3)
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Then (
N∑
i=1

U
(g,f)
A,B (Xi)

)
·

 N∑
j=1

U
(g,f)
A,B (Yj)

 ≥
∑
i,j

k`|Tr[X∗i |LA −RB |Yj ]|2

=
∑
i,j

k`|Tr[δijC]|2 =

N∑
i=1

k`|Tr[C]|2 = Nk`|Tr[C]|2.

(2) By (3) √
U

(g,f)
A,B (Xi) ·

√
U

(g,f)
A,B (Yj) ≥ N

√
k`|Tr[X∗i |LA −RB |Yj ]|.

Then the result is given by the same method as (1). 2

Theorem 3.4 For {Xi}Ni=1 ∈Mn(C), A,B ∈Mn,+(C) the followings hold.

(1)
N∑
i=1

I
(g,f)
A,B (Xi) ≥

1

N − 2

∑
1≤i<j≤N

I
(g,f)
A,B (Xi +Xj)−

1

(N − 1)2(N − 2)

∑
i<j

√
I

(g,f)
A,B (Xi +Xj)

2

.

(2)
N∑
i=1

√
I

(g,f)
A,B (Xi) ≥

1

N − 2

∑
i<j

√
I

(g,f)
A,B (Xi +Xj)−

√√√√I
(g,f)
A,B

(
N∑
i=1

Xi

) ≥ 1

N − 1

∑
i<j

√
I

(g,f)
A,B (Xi +Xj)

≥ max

 1

N − 2

∑
i<j

√
I

(g,f)
A,B (Xi +Xj)−

N∑
i=1

√
I

(g,f)
A,B (Xi)

 ,

√√√√I
(g,f)
A,B (

N∑
i=1

Xi)

.

(3)
1

N − 1

∑
i<j

√
I

(g,f)
A,B (Xi +Xj) +

∑
i<j

√
I

(g,f)
A,B (Xi −Xj)

 ≥ N∑
i=1

√
I

(g,f)
A,B (Xi)

≥ 1

2(N − 1)

∑
i<j

√
I

(g,f)
A.B (Xi +Xj) +

∑
i<j

√
I

(g,f)
A,B (Xi −Xj)

.

(4)
1

N(N − 1)2


∑
i<j

√
I

(g,f)
A,B (Xi +Xj)

2

+

∑
i<j

√
I

(g,f)
A,B (Xi −Xj)

2
 ≤

N∑
i=1

I
(g,f)
A,B (Xi)

≤ 1

N

∑
i<j

I
(g,f)
A,B (Xi −Xj) +

1

N(N − 1)2

∑
i<j

√
I

(g,f)
A,B (Xi +Xj)

2

.

The following lemma is used in order to prove these inequalities. Lemma 3.1 is proved in Appendix.

Lemma 3.1 Let ‖ · ‖ be the Hilbert Schmidt norm in Mn(C), For {Ai}Ni=1 ⊂Mn(C), the followings hold.

(1) ‖
N∑
i=1

Ai‖ ≤
1

N − 1

∑
i<j

‖Ai +Aj‖ ≤
N∑
i=1

‖Ai‖.

(2) ‖
N∑
i=1

Ai‖+ (N − 2)

N∑
i=1

‖Ai‖ ≥
∑
i<j

‖Ai +Aj‖.

(3)
1

N − 2

∑
i<j

‖Ai +Aj‖ −
1

N − 2
‖
N∑
i=1

Ai‖ ≥
1

N − 1

∑
i<j

‖Ai +Aj‖
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≥ max

 1

N − 2

∑
i<j

‖Ai +Aj‖ −
1

N − 2

N∑
i=1

‖Ai‖, ‖
N∑
i=1

Ai‖

.
(4)

1

2(N − 1)

∑
i<j

‖Ai +Aj‖+
∑
i<j

‖Ai −Aj‖

 ≤ N∑
i=1

‖Ai‖ ≤
1

N − 1

∑
i<j

‖Ai +Aj‖+
∑
i<j

‖Ai −Aj‖

.
(5) ‖

N∑
i=1

Ai‖2 + (N − 2)

N∑
i=1

‖Ai‖2 =
∑
i<j

‖Ai +Aj‖2.

(6)
N∑
i=1

‖Ai‖2 ≤
1

N

∑
i<j

‖Ai −Aj‖2 +

 1

N − 1

∑
i<j

‖Ai +Aj‖

2
.

(7)
N∑
i=1

‖Ai‖2 ≥
1

N


 1

N − 1

∑
i<j

‖Ai +Aj‖

2

+

 1

N − 1

∑
i<j

‖Ai −Aj‖

2
.

Lemma 3.1 Lemma 3.1 (4) is refined by the following.

1

N − 1

∑
i<j

max{‖Ai +Aj‖, ‖Ai −Aj‖} ≤
N∑
i=1

‖Ai‖

≤ 1

2(N − 1)

∑
i<j

(‖Ai +Aj‖+ ‖Ai −Aj‖) +
1

N − 1

∑
i<j

min{‖Ai‖, ‖Aj‖}.

Then Theorem 3.4 (3) is given by the stronger inequality

1

N − 1

∑
i<j

max{
√
I

(g,f)
A,B (Xi +Xj),

√
I

(g,f)
A,B (Xi −Xj)} ≤

∑
i<j

√
I

(g,f)
A,B (Xi)

≤ 1

2(N − 1)

∑
i<j

(

√
I

(g,f)
A,B (Xi +Xj) +

√
I

(g,f)
A,B (Xi −Xj))

+
1

N − 1

∑
i<j

min{
√
I

(g,f)
A,B (Xi),

√
I

(g,f)
A,B (Xj)}.

Theorem 3.5 For {Xi}Ni=1 ∈Mn(C), A,B ∈Mn,+(C), the followings hold.

(1)
N∑
i=1

√
I

(g,f)
A,B (Xi) ≤

√
2

N − 1

∑
i<j

√
I

(g,f)
A,B (Xi ±Xj)


√
I

(g,f)
A,B (Xi)I

(g,f)
A,B (Xj)√

I
(g,f)
A,B (Xi)I

(g,f)
A,B (Xj)± Re

{
Γ

(g,f)
A,B (Xi, Xj)

}


1/2

.

(2)
N∑
i=1

I
(g,f)
A,B (Xi) ≤

2

N − 1

∑
i<j

√
I

(g,f)
A,B (Xi)I

(g,f)
A,B (Xj)

 I
(g,f)
A,B (Xi ±Xj)√

I
(g,f)
A,B (Xi)I

(g,f)
A,B (Xj)± Re

{
Γ

(g,f)
A,B (Xi, Xj)

} − 1

.

Proof (1) For X,Y ∈Mn(C),

Γ
(g,f)
A,B (X,Y ) = 〈X,Y 〉,

√
I

(g,f)
A,B (X) = ‖X‖.

Then by the equality

‖ Xi

‖Xi‖
± Xj

‖Xj‖
‖ =
√

2

√
1± Re〈Xi, Xj〉

‖Xi‖‖Xj‖
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and Dunkl-Williams inequality

‖Xi‖+ ‖Xj‖ ≤
2‖Xi ±Xj‖
‖ Xi

‖Xi‖ ±
Xj

‖Xj‖‖
,

N∑
i=1

‖Xi‖ =
1

N − 1

∑
i<j

(‖Xi‖+ ‖Xj‖) ≤
2

N − 1

∑
i<j

‖Xi ±Xj‖
‖ Xi

‖Xi‖ ±
Xj

‖Xj‖‖

=

√
2

N − 1

∑
i<j

‖Xi ±Xj‖√
1± Re〈Xi,Xj〉

‖Xi‖‖Xj‖

=

√
2

N − 1

∑
i<j

‖Xi ±Xj‖
√
‖Xi‖‖Xj‖√

‖Xi‖‖Xj‖ ± Re〈Xi, Xj〉
.

(2) By the equality

‖ Xi

‖Xi‖
± Xj

‖Xj‖
‖2 = 2

{
1± Re〈Xi, Xj〉

‖Xi‖‖Xj‖

}
and the second power of Dunkl-Williams inequality,

‖Xi‖2 + ‖Xj‖2 ≤
4‖Xi ±Xj‖2

‖ Xi

‖Xi‖ ±
Xj

‖Xj‖‖
2
− 2‖Xi‖‖Xj‖,

N∑
i=1

‖Xi‖2 =
1

N − 1

∑
i<j

(‖Xi‖2 + ‖Xj‖2) ≤ 1

N − 1

∑
i<j

 4‖Xi ±Xj‖2

‖ Xi

‖Xi‖ ±
Xj

‖Xj‖‖
2
− 2‖Xi‖‖Xj‖


=

1

N − 1

∑
i<j

 2‖Xi ±Xj‖2

1± Re〈Xi,Xj〉
‖Xi‖‖Xj‖

− 2‖Xi‖‖Xj‖

 =
2

N − 1

∑
i<j

‖Xi‖‖Xj‖
{

‖Xi ±Xj‖2

‖Xi‖‖Xj‖ ± Re〈Xi, Xj〉
− 1

}
.

2

Remark 3.2 Theorem 3.1 (3), Theorem 3.4 (3), (4) and
Theorem 3.5 (1), (2) are considered as the reverse inequalities
of sum types of uncertainty relations.

4. Result
The product types of uncertainty relations for generalized

quasi-metric adjusted skew informations are obtained in
Theorem 2.1. The sum types of uncertainty relations
for generalized quasi-metric adjusted skew informations are
obtained in Theorem 3.1, Theorem 3.2, Theorem 3.3 and
Theorem 3.4. The reverse inequalities of the sum types of
uncertainty relations are obtained in Theorem 3.5.

5. Discussion
Let A,B, g, f, k, ` be taken by the following examples;

A = B = ρ ∈Mn,+,1(C), g = fSLD,

f = fWYD, k =
f(0)

2
, ` = 2.

Then product types of uncertainty relations for Wigner-

Yanase-Dyson skew informations are obtained. So the results
are most general in all of previous results. For sum types
of uncertainty relations for generalized quasi-metric addjusted
skew informations it is important to obtain different types of
uncertanty relations which modify the results obtained in this
paper. Though it is easy to calculate some fomulas in the
case of Hilbertian norms, it is difficult to do in the case of
general norms. Then the refinement of triangle inequality is
needed to give the new inequality. Also the reverse type of
triangle inequality is important to get the different type of
Dunkl-William inequality.

6. Conclution
All of results obtained in this paper are most general

inequalities representing product or sum types uncertainty
relations. Almost all of uncertainty relations obtained ago
are in the case of pure states and the results can be given by
simple version of our results. They are obtained as corollaries
of the main theorems in this paper by taking the values of
A,B, f, g, k, ` concletely. The product types of uncertainty
relations can be obtained by using Schwarz’s inequality and
the sum types of uncertainty relations can be obtained by using
refined properties of norms or square norms.
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Appendix

Proof of Lemma 3.1 (1) In general, for {xi}i=1,··· ,N ⊂ R

N∑
i=1

xi =
1

2
(

N∑
i=1

xi +

N∑
j=1

xj) =
1

2N

N∑
i=1

N∑
j=1

(xi + xj) =
1

2N
{2

N∑
i=1

xi +
∑
i 6=j

(xi + xj)}

=
1

N

N∑
i=1

xi +
1

2N
{
∑
i<j

(xi + xj) +
∑
i>j

(xi + xj)} =
1

N

N∑
i=1

xi +
1

N

∑
i<j

(xi + xj).

Then (
1− 1

N

) N∑
i=1

xi =
1

N

∑
i<j

(xi + xj).

Therefore
N∑
i=1

xi =
1

N − 1

∑
i<j

(xi + xj).

Let xi = ‖Ai‖, i = 1, 2, · · · , N .

N∑
i=1

‖Ai‖ =
1

N − 1

∑
i<j

(‖Ai‖+ ‖Aj‖) ≥
1

N − 1

∑
i<j

‖Ai +Aj‖.

By summarized in both sides,

‖
N∑
i=1

Ai‖ = ‖ 1

N − 1

∑
i<j

(Ai +Aj)‖ ≤
1

N − 1

∑
i<j

‖Ai +Aj‖.

By combing the above two equalities, (1) is given.

(2) It is clear by Hlawka’s inequality. ([30, 31])

(3) It is clear by ‖
N∑
i=1

Ai‖ ≤
1

N − 1

∑
i<j

‖Ai +Aj‖ ≤
N∑
i=1

‖Ai‖ in (1).

(4) By (2),
‖Ai‖+ ‖Aj‖ ≤ ‖Ai +Aj‖+ ‖Ai −Aj‖ ≤ 2(‖Ai‖+ ‖Aj‖).

Then ∑
i<j

(‖Ai‖+ ‖Aj‖) ≤
∑
i<j

‖Ai +Aj‖+
∑
i<j

‖Ai −Aj‖ ≤ 2
∑
i<j

(‖Ai‖+ ‖Aj‖).

Since
N∑
i=1

‖Ai‖ =
1

N − 1

∑
i<j

(‖Ai‖+ ‖Aj‖),

1

2(N − 1)
(
∑
i<j

‖Ai +Aj‖+
∑
i<j

‖Ai −Aj‖) ≤
N∑
i=1

‖Ai‖ ≤
1

N − 1
(
∑
i<j

‖Ai +Aj‖+
∑
i<j

‖Ai −Aj‖).

(5) By ‖Ai +Aj‖2 = 〈Ai +Aj |Ai +Aj〉 = ‖Ai‖2 + 〈Ai|Aj〉+ 〈Aj |Ai〉+ ‖Ai‖2,

∑
i,j

‖Ai +Aj‖2 = N

N∑
i=1

‖Ai‖2 + 2
∑
i,j

〈Ai|Aj〉+N

N∑
i=1

‖Ai‖2.
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And ∑
i,j

‖Ai +Aj‖2 = 4

N∑
i=1

‖Ai‖2 + 2
∑
i<j

‖Ai +Aj‖2.

By combing the above two equalities,

∑
i<j

‖Ai +Aj‖2 = (N − 2)

N∑
i=1

‖Ai‖2 + ‖
N∑
i=1

Ai‖2.

(6) By the same equalities as (5),

∑
i<j

‖Ai −Aj‖2 = N

N∑
i=1

‖Ai‖2 − ‖
N∑
i=1

Ai‖2.

Then

N∑
i=1

‖Ai‖2 =
1

N

∑
i<j

‖Ai −Aj‖2 + ‖
N∑
i=1

Ai‖2
 ≤ 1

N

∑
i<j

‖Ai −Aj‖2 +

 1

N − 1

∑
i<j

‖Ai +Aj‖

2
 .

(7)
2

N(N − 1)

∑
i<j

‖Ai ±Aj‖2 ≥

 2

N(N − 1)

∑
i<j

‖Ai ±Aj‖

2

.

That is, ∑
i<j

‖Ai ±Aj‖2 ≥
2

N(N − 1)

∑
i<j

‖Ai ±Aj‖

2

.

Hence

N∑
i=1

‖Ai‖2 =
1

2(N − 1)

∑
i<j

‖Ai +Aj‖2 +
∑
i<j

‖Ai −Aj‖2


≥ 1

N


 1

N − 1

∑
i<j

‖Ai +Aj‖

2

+

 1

N − 1

∑
i<j

‖Ai −Aj‖

2
 .

2
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