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Abstract

The almost complete transcription of the human genome yield in a high number of transcripts,
that do not encode proteins. However, the functional elucidation of especially long non cod-
ing RNAs is still difficult. Secondary structure analysis is assumed to be a possible method to
detect functional relationships of lncRNAs on a large scale, but it is still time consuming and
error-prone. GRAPHCLUST, the currently most suitable clustering tool based on RNA secondary
structure analysis, lacks mainly in an efficient method for the interpretation of its results. Hence,
an independent and interactive RNA clustering interpretation tool was developed to allow visu-
alisation and an efficient analysis of RNA clustering results.
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1 Introduction

Research like the ENCODE-Project showed that eukaryotic genomes are transcribed
almost entirely, with only 1.5-2% of the transcripts encode proteins. Thus, the majority
belong to non-protein coding RNAs (ncRNAs) [The07]. The smaller part of these are
short ncRNAs, whereas the mass is named long ncRNA (lncRNA), because they are
of at least 200 nucleotides (nt). In contrast to short ncRNAs, lncRNAs are less well
understood. The few analysed lncRNAs show involvement in transcriptional or postran-
scriptional gene regulation, including epigenetic processes like reorganizing chromatin
structure by protein interaction. Nevertheless, for the majority of lncRNAs the function
is still unknown [WC11,WKG14].
While protein-coding genes are often elucidated by sequence conservation, this ap-
proach yield no or just poor results in case of long non-coding RNAs, because of quite
distinct sequences. However, the three-dimensional structure is believed to be evolu-
tionarily conserved to maintain essential functions on RNA level, because destroying
this structure means losing the function and decreasing the fitness of the organism. But
determining 3D-structures is a complex problem and not yet applicable for a comprehen-
sive similarity search. Instead, the secondary structure is used, which is only defined by
base pairings, and which forms the basis for 3D interactions.
Finally sequence and structure similarities (motifs) allow to divide ncRNAs into families,
clans and classes. This classification provides a quick overview to elucidate relation-
ships and functions. For example similar structure motifs hint at similar binding partners,
as it is observed for protein-binding short ncRNAs [LRB+12].
While short ncRNAs can be classified well by their secondary structures, it is still open
whether common sequence and/or structure motifs among lncRNAs exist. In order to
infer such motifs one could use clustering approaches (unsupervised pattern recogni-
tion for classification). But current clustering methods either need a known secondary
structure as input, which do not allow to find clusters of unknown structures, or they are
critical in time requirement. Heyne et al. [HCRB12] introduced 2012 a new clustering
tool named GRAPHCLUST, which is said to be applicable to ‘hundreds of thousands of
sequences’.

The aim of this work, is to establish an complete pipeline based on GRAPHCLUST,
that allows to analyse data of a transcriptome wide study to identify secondary struc-
ture motifs in and relations between lncRNAs. This includes firstly the adaptation of
GRAPHCLUST to the given technical conditions and to the requirement of large dataset
processing. Secondly, the development of an framework for visualisation and interpre-
tation of RNA clustering results is needed to efficiently conclude biologically functional
motifs from the derived clusters. Finally, the pipeline should be exemplarily applied to a
transcriptome-wide dataset of long-non-coding RNAs differentially expressed during the
T cell development.
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2 Background

2.1 T cell development

T cells belong together with B cells and Natural killer cells (NK cells) to the group of
lymphocytes. These are white blood cells, which are responsible for immune defence to
impurities and pathogens. While T and B cells, also referred to as T or B lymphocytes,
are important for the adaptive (specific) immune response, NK cells are involved in the
innate (unspecific) immune response. B cells release antibodies into the body fluids
(humoral immunity), whereas T and NK cells mainly function through direct cell contact
(cell mediated immunity). T cells express T cell receptors (TCR) to discover changes
on other cell surfaces by antigen recognition. These receptors are developed during
maturation in the thymus. The overall T cell development can be divided in several
stages, while it starts with the progenitor cells deriving from the bone marrow.

Progenitor cells
All T cells have their origin in the bone marrow. Here hematopoietic pluripotent stem
cells differentiate stepwise into thymus settling progenitor cells [KR11, LK06]. It is
still controversial, how much these progenitors are lymphoid committed respectively T
cell committed [KR11]. Different progenitor populations are discussed. For instance
early thymic progenitors (ETP), which already have moved into the thymus, were ob-
served in vitro and showed potential for T cells and myelocytes (non lymphatic blood
cells). Koch and Radtke [KR11] mention on the other side a study, which tracks lym-
phocyte development in vivo. They did not recognise significant myeloid potential at the
ETP stage. Thus, the authors confirm the existence of classical common lymphoid
progenitor (CLP), a cell with T, B and NK cell potential. They further assume myeloid
potential might be repressed by the physiological micro-environments. These are for
instance the conditions of the different zones within the thymus, where further T cell
differentiation takes place (see Fig.2.1).
Beside the local assignment, the differentiation process of T cells within the thymus is
usually described by specifically expressed cell surface markers [KR11]. Such mark-
ers compose the cells immune phenotypes and are used to classify cells and to track
their increasing differentiation (clusters of differentiation, short CD) [Kau14, ZSB+07].
The thymic T cell lineage can be characterised by the expression patterns of the two
co-receptors CD4 and CD8 (for further details see Fig.2.1):

Double Negatives (DN)
The early thymic progenitor lacks both co-receptors (CD4-CD8-), thus it is referred to as
Double Negatives. This stage is divided in four sub-stages:
DN1 cells are the most undifferentiated DN cells within the thymus. They are located
within the thymic corticomedullar zone, where they seem to be stimulated by cortical
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Figure 2.1: T cell development. Adapted from [BM04, RMY08, LK06, MCG+13, RMTC13]. T
cells have their origin in bone marrow. Here hematopoietic pluripotent stem cells
differentiate in thymus settling cells (left). However, it is unclear how much these are
committed to the T cell lineage. Different models are discussed (dashed arrows).
In general (full arrow) a common lymphoid progenitor is assumed, which has also
potential for B cells and Natural killer cells (NK) (full arrow). The cells finally maturate
within the thymus (left). This can be tracked by T cell specific surface markers (CD),
while +/- describes their expression. CD4 and CD8 are mainly used, so that three
subtypes are clearly distinct: Double Negative (DN), Double Positive (DP) and Single
Positive (SP). The early thymic progenitor (ETP) belongs to the DN fraction. These T
cells divide in αβ or γδ types depending on the expressed T cell receptor. Only the
αβ types reach the DP stage. Cells of defective TCRs are discarded by triggering
apoptosis during one of the three selections steps (β , positive, negative). Finally,
mature, but inactive (naive) SP T cells leave the thymus, CD4 cells are mostly T
helper cells (Th) or regulatory T cells (Treg), while CD8 cells usually function as
cytotoxic cells.

thymic epithelial cells [KR11, KFB+08]. These cells carry the transmembrane protein
DLL4. This is a ligand to the Notch1 receptor on the DN cell surface. Removing DLL4
seems to cause B cell development in thymus, instead.
DN2 stage follows by moving trough the cortex into the thymic subcapsular zone, where
the development of the T cell receptor (TCR) starts [KR11]. This is a process of gene
rearrangements of the TCR loci, that generate one of two TCR types. Mature T cells
carry finally either a TCRαβ or a TCRγδ . During phase DN2 the genes of the β -, γ-
and δ -chains are rearranged [KR11, YR14]. However, first evidence to one of the two
fates is given during this stage [KR11]. High expression of the Interleukin-7 receptor
(IL-7R) points to future γδ cells, while low expression correspond to future αβ cells.
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The expression of genes, which are significant for the αβ T cell lineage (e.g. Ptrca,
Rag1), does not increase until the end of stage DN2 .
DN3 cells still remain within the subcapsular zone, while the TCR rearrangements pro-
ceed [KR11]. This stage ends with the result that some cells express functional TCRγδ ,
whereas the others express a pre-TCR with a functional TCRβ -chain [YR14]. While
the former remain in the DN stage and mainly function as cytotoxic cells in derma, in-
testine and lung epithelium [CHS00, Kau14, Spe99], the latter enter a fourth DN stage
and finally a Double Positive stage. However, before changing the stage, pre-TCR cells
are subject to the β -selection, where apoptisis is induced to cells with defective TCRβ -
chains [MZP02].
DN4 are conform TCRβ -cells, that start to re-migrate into the corticomedullar zone of
the thymus and up-regulate CD4 and CD8 expression [KR11].

Double Positives (DP)
TCRβ -T-Lymphocytes within this stage show highest expression rates of the two co-
receptors CD4 and CD8 (CD4+CD8+) and initiate rearrangement of TCRα [KR11,YR14].
Finally non-functional TCRαβ cells are eliminated by positive selection of functional
ones. For this purpose thymic epithelium cells present the major histocompatibility com-
plex (MHC) to these cells [YR14]. This is an endogenous component, which is used
to present antigens on the cell surface and which is required for antigen recognition by
TCRαβ lymphocytes. Non-funtional T cells do not bind to MHC and perish within the
thymus.

Single Positives (SP)
By the help of the positive selection process the TCRαβ T cells differentiate into two
distinct subclasses, which now express only one of both co-receptors CD4 or CD8.
This division depends on the class of the recognised MHC, which exist as MHC class I
and MHC class II [CHS00]. T cells, which show only CD4 co-receptors (CD4+) mainly
associate with MHC class II, whereas CD8 single positives (CD8+) prefer MHC class
I. A further selection step rejects auto-reactive cells by negative selection within the
medulla [KR11, YR14]. This means cells binding MHC stronger than required remain
within the thymus, which leads them to apoptosis. Correctly functioning SP cells fi-
nally increase expression of the sphingosine-1-phosphat receptor 1 (S1P1) to leave thy-
mus and enter the peripheral lymphatic system with higher S1P1 concentration. Here
they are able to move through the organisms body as naive (mature, but inactive) T-
Lymphocytes, which express CD3 [CHS00, Kau14]. They become active by interaction
with antigens and are called effector T cells then.
CD4+ cells differentiate in numerous effector types [CHS00, ZCL09, Kau14]. Their dif-
ferentiation fate is mainly induced by cytokines (growth and differentiation regulating
proteins) in the microenvironment, which were produced by antigen-presenting cells,
that interact with the CD4+ cells (cf. Fig.2.1). The majority of them becomes T helper
(Th) cells, which can be divided again in several subclasses. Th1 cells were stimulated
by the cytokines Interleukin 12 (IL-12) and IL-γ . They are finally a part of the protec-
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tion against intracellular microorganisms. In contrast, Th cells, that are stimulated by
IL-4, differentiate into Th2 cells. These are involved in the elimination of extracellular
pathogens. Another prominent example is the subset of Th17 cells, which is required
for controlling extracellular bacteria and fungi. This subset emerges trough the influence
of TGF-β (transforming growth factor β ) together with IL-6, IL-21 and IL-23.
SP CD4+ cells can also occur as regulatory T cells (Treg), if they were stimulated by
TGF-β and IL-2. This class differs from the Th class in the production of CD25 and the
transcription factor Foxp3. Thus, Treg’s can be described by CD4+CD8-CD25+Foxp3+,
while Th cells show the signature CD4+CD8-CD25-Foxp3-. Treg cells suppress immune
reactions in order to finish them after infection elimination and to prevent autoimmune
reactions.
CD8+ cells, instead, mainly have cytolytic effects on virus-infected endogenous cells by
cell-cell interaction [Kau14]. But also CD8+ Th cells are known [Rie94]. These addition-
ally express CDw60.

Figure 2.2: Differentiation of CD4+ T cells depends on cytokine microenvironments. Taken
from [BNH+14]. Antigen-presenting cells (DC) produce, during interaction with naive
CD4+ T cells, proteins that regulate cell growth and differentiation (cytokines). The
specific cytokines, i.e. interleukins (IL) and transforming growth factors (TGF), de-
termine the T cells differentiation fate. Thus, four major subset are known: T-helper
cells Th1, Th2 and Th17 as well as the regulatory T cells (Treg). These cells pro-
duce, finally, cytokines by themselves to stimulate specific immune responses to
pathogenic cells.

In summary the T cell differentiation is a complex process with many influences to iden-
tify and to clarify. Thus, it is still controversial, how the fate of a cell is determined.

2.2 Long non-coding RNAs

The DNA sequence of an organism consists of just four nucleotides (Adenin, Cytosin,
Guanin, Thymin), but still it has to encode all information required to define its phe-
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notype. Hence, one of the most fundamental tasks in biological research is to detect
functional elements and their regulatory mechanisms, which interpret the organisms
phenotypic complexity within this simple four letter code. For many decades, protein-
coding genes were the best known functional genomic elements. However, the number
of these genes does not correlate with the complexity of the organism, i.e. the number
of cell types. For example, thread worms of the species Caenorhabditis elegans own
20,541 genes, whereas in human genome 20,805 are known (Ensembl release 75). Ac-
cording to current research, most genomic loci are actively transcribed, with just a small
fraction of transcripts (≈2%) translated into proteins [Mat03]. Thus, the vast majority of
the genomic regions does not follow the classical central dogma of molecular biology,
which only a one-way flow of genetic information. According to that, DNA is read and
transcribed into intermediary RNA (messengerRNA, mRNA), which is finally translated
into functional proteins (DNA→RNA→protein). Most genomic regions are transcribed,
but the transcripts are not translated into proteins. Consequently such transcripts are
called non(-protein) coding transcripts (ncRNAs). Furthermore, ncRNAs are believed to
form an additional layer of genomic regulation [Mat03]. Hence, the intergenic space is
not longer termed ‘junk DNA’.
During the last decade knowledge has been growing fast especially for small/short ncR-
NAs with less than 200 nucleotides. Many subgroups are now known beside transfer
RNAs (tRNAs), like for example microRNA (miRNAs) or small nucleolar RNAs (snoR-
NAs). In contrast, the description of the significantly larger group of ncRNAs longer
than 200nt, so called long non-coding RNAs (lncRNAs), is still in its infancy. Some ex-
amples of lncRNAs are associated with regulatory functions, but for most of them it is
unclear whether they are biologically functional or if they are just transcriptional noise.
Although, first long non-coding RNAs H19 and Xist were already described in the early
1990 [KCL13], new transcripts are still described and characterised individually. How-
ever, no general sequence or structure characteristics have currently been identified for
lncRNAs. Hence, the division of lncRNAs into subclasses is hindered, not to mention
systematic functional elucidation.

2.2.1 Epigenetic and genomic characteristics of lncRNA

The genomic loci of lncRNAs show similar characteristics to the genomic loci of protein-
coding genes [WKG14, GR12, KCL13]. They are also often encoded in exon-like struc-
tures, which are spliced into several isoforms. Even transcription by the enzyme RNA
polymerase II and polyadenylation of the transcripts were found in many cases [GR12].
Another common characteristic is the epigenetic labeling. This is no attribute of the DNA
by itself but of DNA associated proteins named histones. Histones build complexes,
which are used to roll up the DNA and form a higher condensation level. Modifications
of these histones regulate DNA activity by en- or disabling its accessibility [SGE09,
p.333,382]. Interestingly, both protein- and non-coding loci exhibit upstream, at their
promoter site, a short series of histones with a trimethylated (me3) aminoacid Lysin (K)
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at position 4 in protein H3 (H3K4me3). Furthermore, their transcriptional active sites
are covered by histones with a methylation (me) of Lysin (K) at position 36 in protein H3
(H3K36me). Thus, this epigenetic labeling has been used to identify numerous mem-
bers of the prominent class of long intergenic ncRNAs (lincRNAs). The difference to
protein-coding sequences is, in particular, the missing protein encoding and on average
a lower number of exons [GR12].

Figure 2.3: Genomic locations of lncRNAs. Adapted from [KCL13], this figure illustrates the
genomic regions, in which lncRNAs are encoded in. Many lncRNAs have been
found within intergenic regions (orange). However, they may also arise from regu-
latory elements (green) of protein-coding genes (grey) or from their introns (yellow).
Even some defective copies of protein-coding genes, so called pseudogenes, are
transcribed and can function as ncRNAs (red).
Additionally, for many coding and non-coding regions the antisense strand also en-
codes transcripts (blue). These antisense regions are mostly located around the
sense promoter or terminator region, but completely nested or divergent sense-
antisense pairs are known, too.

In addition to this, a prominent number of non-coding transcripts can be found in anti-
sense reading direction to the known loci. Moreover, it does not matter, whether these
loci are coding or non-coding [KCL13, KTK+05], but mRNA-lncRNA pairs have been
observed more frequently than lncRNA-lncRNA pairs. Corresponding instances are the
mRNA Igf2r together with the lncRNA Air [KCL13] and the lncRNA pair Xist and Tsix
[KCL13]. The genomic locations of sense-antisense pairs may be divergent, overlapping
or nested. More often the antisense transcripts tend to be located either at the 3’ or the 5’
region of the sense gene (Fig.2.3). By the way it can be mentioned, antisense transcripts
are not limited to lncRNAs, even mRNAs occur as antisense transcripts. WRAP53, for
example, is the antisense mRNA to the mRNA of the protein P53 [MHC+09,MHF+11].
Apart from intergenic transcripts, other ncRNAs have been described, which originate
from protein-coding regions. As shown in Fig.2.3, they can be assigned to introns,
but also to enhancers or promoters nearby transcription start sites [KCL13]. Especially
enhancer-associated transcripts (eRNAs) differ from the above mentioned lncRNAs, be-
cause of a distinct characteristic epigenetic label (H3K4me1) and the involvement of the
transcriptional coactivator p300 [GR12,KCL13,OrS13].
Finally, imperfect copies of protein-coding genes, which lost their messenger function,
have been described to act as functional lncRNAs [KCL13, PWC+11]. These so called
pseudogenes are caused by accumulated mutations within a copy [SGE09, p.338].

Independent of the previous mentioned characteristics, many lncRNAs have evolution-
arily conserved promoters, but in general their expression patterns seem to be high spe-
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cific regarding cell-type, tissue and developmental stage. Thus, H19 was found to be
involved in mouse liver development, whereas Xist showed involvement in inactivation of
one of the two X chromosomes in female mammals [GR12]. Moreover, Hackermüller et
al. assume: lncRNAs seem to be transcribed pathway specifically [HRO+14]. Accord-
ingly, many different functions for lncRNAs have been described until now [GR12].

2.2.2 Functions and molecular mechanisms

LncRNAs are described to be involved in several cellular processes, like establishing
epigenetic modifications, regulation of transcription and RNA processing, or even in
translation [PRP+13, KCL13]. Hence, they have crucial influence on gene expression
and can play important roles in diseases [PRP+13].
For example, instances of transcribed pseudogenes control the expression of corre-
sponding parent genes by epigenetic changes. Such an instance is the ATP-binding
cassette (ABC) transporter ABCC6, whose mRNA expression is decreased by its pseu-
dogene ABCC6P1 [KCL13, PWC+11]. The eRNAs, instead, have been associated
with differential expression of neighbouring protein-coding genes [OrS13], while few
examples of promoter-associated ncRNAs showed interactions with epigenetic factors
[KCL13]. In addition, Reiche et al. [RKS+14] revealed the role of antisense lncRNAs
within breast cancer.

LncRNA effects are primarily distinguished in cis and trans activities. Cis-acting means
‘on this side’ and is the regulation of genes, which are located on the same DNA
molecule. Whereas, trans denotes ‘on the other side’ and defines effects on genes
of other alleles or chromosomes [AAA+14, p.164] [GR12]. All in all, for lncRNAs cis ac-
tivity has been observed less frequently than trans activity until now [GR12]. However,
an lncRNA is not necessarily limited to one of both types [KCL13]. Some transcripts,
e.g. Xist, may act as cis regulator as well as trans regulator [JL11].
It is assumed that lncRNAs interact with proteins as well as RNA and DNA. Based on
guilt-by-association and loss-of-function experiments several models have been devel-
oped:

Molecular guides have been described from the observation, that some lncRNAs bind
chromatin associated proteins and carry them to their specific loci. They were firstly
observed for an lncRNA of the inactivated X chromosome of female mammals [GR12].
The X-inactive specific transcript, short Xist, is highly expressed before X chromosome
inactivation to cover its host chromosome. This covering enables to catch silencing
factors like the Polycomb repressing complex 2 (PRC2) and bring them close to the
chromatin. PRC2, for example, is reponsible for establishing the histone modification
H3K27me3 of inactive chromatin [KCL13,ZSE+08]. This case clearly demonstrates the
cis-activity of Xist.
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Molecular scaffolds are another type of linkers. They bind diverse molecules to as-
semble a functional complex [GR12, PRP+13, KCL13]. This model was characterised
by the DNA synthesising enzyme Telomerase, which maintains the chromosomal ends.
It comprises a telomerase RNA component (TERC), that interacts with the polymerase
enzyme and several accessory proteins. Simultaneously, TERC is used as template for
the missing telomeric repeats [GR12, WC11]. In addition, it is proposed that lncRNAs
can also be flexible modular scaffolds, that own discrete domains for various specific
molecules [GR12]. Particular combinations of these components may then form unique
functional complexes. Thereby, other RNAs and also DNA are not excluded.

Molecular decoys, instead, bind Proteins or RNA to prevent their activities. One exam-
ple is the lncRNA Tsix, which is an antisense transcript of Xist. Zhao et al. [ZSE+08]
proposed, that Tsix binds PRC2 as well and that it seems to protect the prospective
active X chromosome by competitive inhibition of PRC2. More prominent is Gas5, the
growth arrest-specific 5 lncRNA. It disables hormone receptors for glucocorticoids, by
reserving its DNA-binding site, that usually interacts with hormone response elements
within the genome [GR12,KCL13].

miRNA sponges are RNAs with multiple binding sites for miRNAs [KCL13, ENS07,
CCL+11]. These binding sites are short sequences, that are complementary to the
characteristic miRNAs seed sequences of around seven nucleotides. Hence, whole
miRNA families can be inhibited [ENS07]. Thus, miRNA sponges are a special type of
‘molecular decoys’, but they are more efficient in inhibiting mRNA repression by miR-
NAs [KCL13, CCL+11]. The linc-MD1, a muscle-specific lncRNA, has 36 highly con-
served miRNA binding sites, including two for miR-135 and one for miR-133 [CCL+11].
These miRNAs repress the expression of muscle-specific genes by inactivation of their
transcription factors. The sponge activity of linc-MD1 is based on a lower binding en-
ergy. Consequently the lincRNA-miRNA complex is a more favourable energetic state
than the mRNA-miRNA complex.

Precursors are lncRNAs, which host small ncRNAs, like miRNAs or snoRNAs [KCL13].
Gas5, as such an example, contains ten highly conserved snoRNAs, whereas H19
comprises miR-675.

To sum up, the activities of lncRNAs are derived from single examples, which were
studied intensively in wet lab. Nevertheless only a little is known about the functionality
and function of most lncRNAs. Experimental elucidation of lncRNA functions in wet labs
is still time consuming, thus not suitable on a large scale.

2.2.3 Sequence and secondary structure

A well established and fast method to elucidate functions is based on computational
identification of similarities on sequence level. Unfortunately this requires well con-
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served sequences like they are observed for mRNAs or amino-acid sequences. LncR-
NAs, instead, are less well conserved [WKG14, GR12, KCL13]. Although sequence
constraints have already been found for lncRNAs, the approach of sequence similarity
often does not yield a result, because they are related, in particular, by short conserved
pieces within large non-conserved areas [WKG14].
However, it is assumed that the function of lncRNAs is particularly influenced by their
three-dimensional (3D) structure, since lncRNAs are single stranded and able to fold
back and bind themselves [TUL71]. Furthermore, in case a structure is essential for the
function of an RNA, it is likely to be conserved, because destroying this structure means
losing the function and decreasing the fitness of the organism [ED94]. But determining
3D-structures is a complex problem and not yet applicable for a comprehensive simi-
larity search [WWH+12]. Alternatively the secondary structure can be used. It is only
defined by base pairings, which form the basis of 3D interactions. The most popular
example of a secondary structure is the cloverleaf structure of tRNAs [WWH+12]. Such
structural similarities (motifs) can hint at similar binding partners, as it is observed for
protein-binding short ncRNAs [ED94, LRB+12]. While short ncRNAs can be classified
well by their binding motifs, it is still open whether common sequence and/or structure
motifs among lncRNAs exist.

2.3 lncRNAs in T cells

There are already some few studies about lncRNAs in T cells [PDM+09, HTS+13,
XDY+14]. The lncRNA of TMEVPG1 is probably the first mentioned example in this con-
text. Other names are NEST, IFNG-AS1 or LincR-Ifng-3’AS. It was firstly described by
Vigneau et al. [VRBB03], who studied resistance to Theiler’s virus infections, a mouse
model system for multiple sclerosis. TMEVPG1 expression was only observed in re-
sistant unstimulated CD4+ T cells, CD8+ T cells and in NK cells. It is transcribed in
‘convergent’ antisense (see Fig.2.4) to the gene of interferon gamma (IFNG), a cytocine
expressed in response to intracellular infections and tumors. After antigen stimulation
these two genes showed negatively correlated expression for mouse and human. Vi-
gneau et al. [VRBB03] concluded down-regulated expression of IFNG by TMEVPG1.
Collier et al. [CCW+12] took up this issue, but they described TMEVPG1 as specific
lncRNA of Th1 cells and as beneficial to IFNG expression. In addition, the expression
of both genes is based on the presence of the Th1-specific transcription factors STAT-4
and T-bet. Thus, they concluded the regulation of the Ifng transcription by TMEVPG1 is
linked to the Th1 differentiation fate [CCW+12].

Pang et al. [PDM+09] were the first, who focused on a genome-wide lincRNA char-
acterisation in CD8+ cells. Several hundred/thousand lncRNAs were identified for the
human/mouse, while about 1% is both lymphoid-specific and differentially expressed in
CD8+ cells. Many of these lncRNAs are nearby protein-coding genes, that are associ-
ated with T cell differentiation and activation. About a fifth of them seem to be organised
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Figure 2.4: Genomic context of NEST, taken from patent US 2014/0056929 A1 [KBGC14].
The lncRNA NEST, also known as TMEVPG1, IFNG-AS1 or LincR-Ifng-3’AS, is lo-
cated in antisense to the cytocine gene interferon gamma (IFNG). But both genes do
share a common promoter. Instead, their transcription sites converge. This applies
to both mouse (murine) and human.

in antisense to protein-coding genes. Two examples are the antisense lncRNAs of the
lymphoid enhancer binding factor 1 (Lef1) and the protein tyrosine phosphatase recep-
tor type E (Ptpre). Both of them overlap at least one isoform of its protein-coding gene.
Thus, the authors suggest a regulative function for these antisense lncRNAs. But also
intronic lncRNAs, for example within the interleukin 2 receptor IL2Rα , as well as pro-
moter overlapping or small RNA overlapping lncRNAs were found.
Since promoters of mammalian protein-coding genes are often related to a high CpG-
content in case of ‘housekeeping function’, respectively to a low CpG-content in case
of tissue-specificity, a CpG-analysis was done for promoters of lncRNAs expressed in
CD8+ cells. One third showed a low content and one fifth a hight content. The authors
consider this result to be a confirmation of the fact, that lncRNAs mostly have tissue-
specific effects. Finally primary sequences and secondary structures were studied. Cor-
responding to the lncRNA knowledge the primary sequences were weakly conserved
as a whole, but show some conserved elements. Furthermore, secondary structures of
small ncRNAs and novel secondary structures have been detected within lncRNAs. For
instance a non-coding isoform of the chemokine Ccl4, which is critical for T cell adhe-
sion and migration, seems to form a large, double-stranded hairpin. All in all this study
proves the existence of lncRNAs within the T cell lineage and confirms the properties of
them. However, no specific functional elucidation was made.

Hu et al. [HTS+13] focused on transcriptome analysis during T cell development from
early T cell progenitors to Th cells. Here more than 1524 lincRNAs have been identi-
fied, with 73% not unnotated. The comparison of the expression patters of the different
T cell stages showed stage and lineage specificity for more than 50% of that lncRNAs.
Additionally, it was shown, that lncRNAs are often polyadenylated, spliced and dynam-
ically regulated. Even in this study the T cell lncRNAs are close to genes, which are
associated with functions of immune-regulatory functions. Interestingly many of these
lncRNAs show regulation through transcription factors (TF), which are significant for T
cell lineage. For instance, GATA-3 and STAT-4 are critical for Th1 differentiation, while T-
bet and STAT-6 are critical for Th2 cell differentiation. A stronger binding between such
a TF and a lncRNA seems to point out in which T cell lineage the lncRNA is expressed.
For example, LincR-Ccr2-5’ AS, an antisense lincRNA cluster of the chemokine recep-
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tor gene Ccr2, is preferentially expressed in Th2 cells and is controlled by GATA-3. This
lncRNA was then further investigated and showed a correlation to protein-coding genes
involved in chemokine-mediated signalling pathways. Artificial depletion of LincR-Ccr2-
5’ AS led to significant impairment in tissue migration, down-regulation of genes en-
riched in gene ontology (GO) terms like cell cycle and nuclear division, but up-regulation
of genes known for immune system processes and defence response. The positive reg-
ulated genes are often co-expressed ones. The assumption LincR-Ccr2-5’ AS causes
a epigenetic regulation to them, could not be confirmed.

Most recently Xia et al. [XDY+14] published a study about lncRNA within T cell develop-
ment. The four stages DN, DP, naive CD4+ and activated CD4+ were compared. They
confirm the previous summarised general assertions, but found three times more lincR-
NAs. In addition to a GO analysis of close mRNAs and mRNAs with correlating expres-
sion patterns for functional elucidation of the lncRNAs, a sequence similarity analysis
was performed by using the BLAT Algorithm (UCSC). For lncRNA, which matches an
mRNA or its flanking region of 1kb, regulation of that gene is assumed. This allowed
to create regulatory networks of lncRNAs and mRNAs for each differentiation step, e.g.
DN→DP. These depicted genes are controlled by many lncRNAs, while lncRNAs may
have several target genes (see Fig.2.5).

Figure 2.5: Exemplary regulatory network of lncRNAs within T cells. Taken from Xia et
al. [XDY+14]. The authors of this study assume differentially expressed lncRNAs,
which matches a correlated mRNA or its flanking region of 1kb, regulate this gene.
This regulatory network depicts the relations between the lncRNAs and mRNAs
differentially expressed during differentiation step DN→DP.
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2.4 Secondary structure based classification

2.4.1 Secondary structure of RNAs

A secondary structure is a first approximation to model the complex problem of an RNA
three-dimensional structure. It describes the folding of the sequence according to the
biological background of hydrogen bonds between complementary bases of the same
sequence. These bindings are results of reactions, which run spontaneously, so that
energy is set free and an energetically more favourable state is reached. The biologically
strongest and most probable pairs are formed by cytosine (C) and guanine (G) as well
as adenine (A) and uracil (U). Additionally, to these Watson-Crick base pairs RNAs
often contain G:U pairs [TUL71], which are known as wobble base pairs. In some few
cases, as for instance in tRNAs, also inosine(I):A, I:C or I:U wobble base pairs have
been observed. However, in tRNAs these pairs are not formed within the secondary
structure, but within the binding of an mRNA [AVG07]. Hence, the inosine pairs are not
considered in most bioinformatic approaches:

Definition 2.1 (RNA secondary structure [MW09])
Let R := r1r2...rn with ri ∈ Σ be a sequence over the alphabet Σ := {A,C,G,U}.
Then, an RNA secondary structure is defined as a set S of pairs (ri,r j) ∈ {(A : U),(C :
G),(G : U),(U : G),(U : A),(G : U)}, provided that 1≤ i < j ≤ n and j− i > 4.

The fundamental importance of base pairings causes two basic elements of an RNA
secondary structure [TUL71, WWH+12]: double stranded regions of base pairings, so
called Stem/Stacking regions, and unpaired regions named loops (cf. Fig.2.6 A). Loops
are diverse. One immediate consequence of ‘self-binding’ is the existence of an un-
paired subsequence located at the end of stem region, where sequence changes direc-
tion. These so called hairpin loops are at least three free bases long, otherwise steric
hindrances prevent the folding. Bulges, instead, disrupt a stem region by forming a loop
at only one side of the double strand. If two bulges arise oppositely at both strands, they
are denoted as interior loops and if they link more than two stem regions, multi loops.
Longer RNA sequences are able to form additional bindings between basic loops (Fig.2.6
B, top), so called pseudoknots:

Definition 2.2 (Pseudoknots [MW09])
A pseudoknot occurs in an RNA secondary structure S, if two pairs (ri,r j) ∈ S, (rk,rl) ∈
S exist, with i < k < j < l.

These can be visualised by drawing the sequence as straight-lined chain with bindings
as edges, while crossings of bindings correspond to pseudoknots (see Fig.2.6 B, bot-
tom). Missing empirical data of these structures and insufficient computational solutions
result in the fact that pseudoknots are ignored in most secondary structure prediction
algorithms [WWH+12].
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A

B

Figure 2.6: Elements of RNA secondary structures taken from Washietl [WWH+12]. Exam-
ple (A) includes basic elements. Example (B) depicts pseudoknots.

Prediction
Predicting secondary structures of RNAs is an optimisation problem, that tries to find
the most energetically favourable solution from the set of all feasible foldings, given a
particular energy model. A standard solution process for bioinformatic folding problems
is dynamic programming. It describes the partitioning of an optimisation problem in
several similar subproblems. By combining the optimal subsolutions stepwise, one can
receive the complete optimal solution in an efficient way [NPGK78, WWH+12]. This
strategy mirrors quite well the biological RNA folding process, since the whole structure
arise step-by-step out of single local foldings [TUL71].Thus, the optimal structure of an
RNA sequence can be determined by combining the optimal structures of its subse-
quences. In this case the word ‘optimal’ basically means the most favourable energetic
state, which is defined by the minimal free energy value (MFE).

First approaches, like the NUSSINOV ALGORITHM, just maximise the number of base
pairs to simplify the MFE minimisation. This is due to the fact that base pairs decrease
this value, while loops increase it. However, it is shown that the maximal number of base
pairs does not necessarily determine biologically relevant structures, because number
and size of bulges and loops as well as length of stems are not restricted. Instead, stack-
ing interactions were postulated [TUL71]. In this way single base pairs are more unlikely,
because initial base pairs promote further pairings of immediate neighbours. Further-
more, other thermodynamic conditions influence the result, as for instances tempera-
ture, pressure, the presence of other binding partners or the ion strength. Hence, Zuker
and Stiegler [ZS81] published a more adequate approach, known as Zuker algorithm. It
uses empirical thermodynamic data of single RNA molecule analysis and minimises the
MFE to predict the optimal secondary structure of an single RNA sequence up to 600nt.
Nevertheless in many cases the results are still far away from the biological relevant
folding. On the one hand most folding algorithms ignore the existence of pseudo-
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knots [WWH+12]. On the other hand RNAs are dynamic molecules, which belong to
a dynamic changing system. Numerous parameters have an effect on the shape of
an RNA, so that more than one structure can be formed [McC90, WWH+12]. This en-
semble of possible structures exists also physically and can be determined with the
MCCASKILL ALGORITHM [McC90]. It calculates dynamically a matrix of the base pairing
probabilities to identify all thermodynamic stable secondary structures (equilibrium par-
tition function) for an RNA sequence. Thereby, its complexity of O(n3), with n as length
of the sequence, is the same like that of the folding algorithms of Nussinov and Zuker.

An efficient implementation of these algorithms is provided by the VIENNARNA PACK-
AGE, a well known collection of several RNA secondary structures prediction and com-
parison tools [LBH+11]. Its tool RNAFOLD allows to compute both the MFE (Zuker) as
well as the equilibrium partition function (McCaskill) and as an alternative option one
can also choose the maximisation of base pairs (Nussinov) [HFS+94].

Anyway, the prediction of a biological relevant structure for just a single RNA sequence
remains error-prone [GVR04,WWH+12], but it improves remarkably in case evolutionary
related RNA sequences are taken into account. Thus, a sequence can be compared to
another, whose structure is known, or if both structures are unknown, the comparison
can restrict the solution space.

Comparative Prediction
In consequence of the assumption, that essential secondary structures have to be evo-
lutionarily conserved, further information can also be taken from multi-sequence align-
ments. These may reveal compensatory mutations, which change the sequence while
maintaining the structure [WWH+12].
In such a way RNAALIFOLD predicts a MFE secondary structure for a multiple sequence
alignment on the basis of the ZUKER ALGORITHM mentioned above. The crucial differ-
ence is the adaptation of the energy model. It incorporates information of base pair
conservation and computes the energetic average over all sequences [BHW+08]. An-
other approach is the use of stochastic context free grammars. They combine produc-
tion rules and machine learning to conclude a secondary structure of a single RNA from
the knowledge of homologous RNAs [WWH+12, BB07, 330ff.]. The production rules
describe, how RNA secondary structure elements derive from the primary sequence.
Then, machine learning is used to support this rules with statistical probabilities deter-
mined by a training set of sequence-structure pairs. This is the basic idea of for example
PFOLD [KH03].

An further alternative is given by the SANKOFF ALGORITHM [San85]. Here two se-
quences are simultaneously aligned and folded, so that the consensus is optimised
in both the alignment and the minimal free energy, despite of low sequence similarity.
The original algorithm has a time requirement of O(L3×N) for N sequences of length L,
so that it is impractical for multiple comparison, but feasible for two sequences of rea-
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sonable length.
Only ten years later Gorodkin et al. [GHS97] come up with a simplified derivative in-
cluded in FOLDALIGN. It uses the SANKOFF ALGORITHM progressively for just two se-
quences. A following greedy algorithm select the best alignments and restart the Sankoff
step for aligning each alignment with a new sequence or another alignment. Thus, se-
quences, that do not match the rest and might sophisticate the result, are discarded.
FOLDALIGN is, furthermore, restricted to a maximal number of sequences per align-
ment and to local alignments. Thus, nothing but the most significant common pat-
tern is presented. As a result, the time requirement is reduced to O(n4) [GHS97].
The first version, additionally, even maximised the number of base pairs and neglected
multibranches [GHS97], while the current version allows all pseudoknot-free substruc-
tures and adapts the scoring function by involving energetic values and substitution
rates [HLSG05]. Anyway, it predicts only one recurring secondary structure pattern
(motif).

2.4.2 Clustering / Unsupervised classification

In order to infer several motifs within a pool of secondary structures, clustering ap-
proaches could be used. Clustering is an unsupervised learning method that recognises
patterns common in subsets of the input data [MW09, p.105].
Most suitable previous clustering tools for RNA secondary structures are based on the
same Sankoff-like concept. It was introduced by Hofacker et al. [HBS04] as PMCOMP

and PMMULTI and captured, for example, by the derivatives LOCARNA [WRH+07] and
FOLDALIGN [THG07].

Instead of searching for the MFE structure, PMCOMP directly compares two base pair
probability matrices computed by the MCCASKILL ALGORITHM. Comparing whole equi-
librium partition functions would go beyond the time constraints again, as it is an NP-
complete problem [HBS04]. To avoid this problem, PMCOMP is limited to the search
for the secondary structure of maximal ‘weight’, which both matrices have in common.
Additionally, the process is speeded up by restricting the alignment to substructures of
comparable length (differing in length less than a predefined value) [HBS04]. Thus, PM-
COMP reaches a computational time of O(n4).
PMMULTI allows progressive multiple alignments, which uses PMCOMP first for all-
against-all pairwise comparison. Through hierarchical clustering by the weighted pair
group method (WPGMA) , the closest possibility/consensus matrices are arranged step-
wise. The resulting tree is finally used to guide the progressive multiple alignment.

FOLDALIGNM additionally allows, instead of McCaskill matrices, the usage of pair prob-
ability score matrices generated by pairwise runs of FOLDALIGN (global). In this way,
they are able to use the SANKOFF ALGORITHM, and thus a real simultaneously aligning
and folding, already at the pre-step. Since the SANKOFF ALOGRITHM is efficient only on
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short sequences, first multibranch points are located to just align unbranched regions in
the following. Furthermore, the matrix is reduced to only branch points and significant
base pairs, while base pair scores below a given threshold are discarded. As PM-
COMP, FOLDALIGNM also restricts the alignments by a maximal length difference of the
subsequences and apply a progressive alignment base on a WPGMA generated guide
tree. All in all, the time and memory complexity of O(n4) is reached again. In addition,
FOLDALIGNM provide a clustering of significant pairwise results (threshold). Here, sin-
gle linkage is used to collect alignments that share a sequence step-by-step [THG07].
Although FOLDALIGNM is based in global alignments, one could use the local alignment
mode of FOLDALIGN to finally cluster semi-locally. This is more sensible for prediction of
secondary structure motifs since functional sites may be surrounded by flanking regions,
that may disturb the prediction.

Contemporary LOCARNA was developed. It also focuses on local alignments of two
probability matrices, while it is, again, only based on McCaskill’s probability matrices,
which are computed by RNAFOLD of the ViennaRNA package. Similar to FOLDALIGNM,
LOCARNA reduces the matrix to base pairs above a probability cutoff, but goes one
step further by saving only matching base pairs. It does not compute multibranch points
separately and is not restricted to alignments of sequences of similar length. Instead, the
dynamic programming is even more efficiently exploited by using an temporary auxiliary
matrix to prevent redundant computation. Progressive semi-local multiple alignment can
then be done by the version MLOCARNA, which is similar to PMMULTI. Nevertheless,
PMCOMP sets the score of mismatches to zero, which lowers the base pair probabilities
substantially and leads to an increasing loss of structural information, while MLOCARNA
uses for mismatches the probability expected for a random occurrence of the considered
base pair. In this way, even the LOCARNA package provides an efficient basis for further
clustering approaches, like it is proposed by Will et al. [WRH+07].

These clustering methods are still too time consuming, and thus unsuitable, for cluster-
ing of big data sets like whole transcriptomes in reasonable time. Heyne et al. [HCRB12]
published the first clustering method, which captures this problem. Their approach
GRAPHCLUST is a pipeline of different tools, that compare and cluster RNAs by se-
quence and secondary structure similarities. Thereby, it accelerates the comparison
process by the use of mathematical representation for RNA structures. GRAPHCLUST

is said to be applicable to ‘hundreds of thousands of sequences’ in linear time. Thus,
it may be probable to analyse data of a transcriptome wide study to identify secondary
structure motifs in and relations between lncRNAs.

2.4.3 GRAPHCLUST

GRAPHCLUST provides a new alignment-free clustering method, that involves both se-
quence and structure information, with the biggest advantage of linear computational
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time [HCRB12]. Thus, it is the first approach, which is eminently suitable for big data.
The speed-up is mostly achieved at the overall comparison process by using graph-
theoretical representation of RNA structures and hashing techniques. The graph rep-
resentation allows to observe inner local structure relationships by a NEIGHBOURHOOD

SUBGRAPH PAIRWISE DISTANCE KERNEL (NSPDK). Here, pairs of near small subgraphs
define ‘inner relation motifs’. These ‘motifs’ are transferred into a hash-code and for
each RNA structure it is counted, how often each ‘motif’ is present. This leads to high-
dimensional vectors, that are easily comparable.
This novel idea is part of a pipeline of different well known RNA and cluster analysing
tools. These reduce nearly identical sequences (BLASTCLUST [LG06]), determine ab-
stracted representative secondary structures (RNASHAPE [GVR04]) or model, scan and
refine clusters (LOCARNA, CMFINDER [YWR06], INFERNAL [NKE09]). All in all GRAPH-
CLUST consists of 9 steps:

Phase 1 - Preprocessing
This phase is responsible for splitting all input sequences in overlapping fragments of
similar length. They are then cleaned of duplicates and almost identical replicates by
the tool BLASTCLUST. The remaining fragments are passed to the next phase, where
the structural analysis starts.

Phase 2 - Structure determination
Each fragment is processed by RNASHAPE, which performs an abstract shape analy-
sis [GVR04]: Here, the complete folding space of a sequence is explored and divided
into classes of characteristic motifs. In detail, all possible folding structures of natural
base pairings are computed and compared to each other by using a pre-defined ab-
straction level. Thus, the first abstraction, for example, ignores the length of stacking
regions. These abstraction levels ensure a minimum of aggregation and depend on the
sequence length. Finally, two folding structures belong to the same class if they have
the same shape at the same abstraction level. For each class the structure with the
minimal free energy is chosen as the shape representative (shrep) of this class.
In GRAPHCLUST this abstract shape analysis is done twice. First, the fragment is anal-
ysed in its full length to detect large multiloop structures. Second, a smaller window size
allows to obtain local bulges or hairpins. For each of each window the most representa-
tive shape is further processed [HCRB12].
For chosen shapes, further secondary structures feature are determined in the following
phase in order to easily compare their secondary structures.

Phase 3 - Feature determination and Encoding
For that purpose the sets of representative shapes have to be transformed into graph
representation of vertices and edges first. For each fragment a single labelled graph is
built, which has n disconnected components namely one for each shape. The shapes
by itself are connected subgraphs. Here, nucleotides are the vertices, whereas nu-
cleotide adjacencies and bindings of base pairing are the edges. This models the basic



20 Chapter 2: Background

Figure 2.7: RNA secondary structure encoding and Graph Kernel Features. This picture,
taken from Heyne et al. [HCRB12], illustrates in step (A) how a nucleotide sequence
and one of its secondary structures are transferred into a simple graph representa-
tion. Vertices and its labels (here colours) symbolise nucleotides, whereas edges
represent base pairings. In GRAPHCLUST additional vertices (light grey) together
with 4 edge are assigned to the graphs (B). These insert stacking information of two
base pairs. Furthermore, neighbourhood subgraphs up to radius r = 3 are shown
exemplarily for vertex v on the right within dashed ovals. Graph kernel features are
then determined by comparing this neighbourhood subgraphs of vertex v to those of
others vertices, which are within a pre-defined distance d, like for example vertex u.

elements of biological RNA folding. Furthermore, each pair of adjacent base pairs, so
called quadruplet, receives an additional connection. It is made by one vertex, that has
one edge to each of the four involved nucleotide vertices (Fig.2.7.B). The quadruplet
connection should emphasise the important role of stacking regions.
With these sparse graphs the actual feature determination can be done. Here, a graph
kernel is used. Graph kernels are inner product functions, which are used ‘to capture
the long range relationships between data points induced by the local structure of the
graph’ [KL02]. So one can get an independent feature set for each data point as well as
for the entire graph. These feature sets can then be used to compare graphs.

GRAPHCLUST applies the NEIGHBOURHOOD SUBGRAPH PAIRWISE DISTANCE KERNEL

(NSPDK) published by [CG03] for each fragment graph. In this kernel two vertices are
compared by their neighbourhood subgraphs of radius ≤ r (Fig.2.7, right). A neighbour-
hood subgraph of a vertex v with radius r is denoted as (Nr)

v. By definition it is rooted
in v and includes all vertices, which are connected to v by a shortest path (minimal num-
ber of edges) ≤ r, and all induced edges. For two vertices the comparison is made for
all (Nr)

v of radius r ≤ r∗. Each pair of such small neighbourhood subgraphs defines a
feature of the vertex v.
Such a complete pairwise vertex comparison is computationally not feasible for data
space of huge graphs. Hence, the comparisons are restricted to vertices with a dis-
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tance d ≤ d∗ (Fig.2.7, lower left). Thus, the number of features and their information
content can be adjusted by the upper boundary values d∗ and r∗.

The basic principle of this subgraph comparison is an isomorphism test, meaning that
a structure- and label-preserving, bijective mapping has to be found, which transforms
two graphs into each other. At graph representation level this is still a gigantic compu-
tational effort. Hence, NSPDK maps the features into an integer code, ‘such that two
isomorphic graphs can be reduced to an identical string’ [HCRB12]. The encoding is
made by three relabelling functions (Fig.3.7):
The first one L v renames the vertices. Here, for each vertex v of a rooted neigh-
bourhood subgraph a sorted list is created, which contains for all other vertices u of
the subgraph a double label. Such a double label is made up of D(v,u), the distance
between root v and node u, and the original nucleotide label L(u). The list is then lexi-
cographically sorted by the double labels 〈D(v,u),L(u)〉. Furthermore, the double label
〈D(v,root),ROOT 〉 is added at the first position of the list. Finally the list is read as a
string, which is then transformed into an integer code by a hash-function.
The second relabelling function L e uses the new vertex labelling to change the edge
labels to triplet labels. These are of the sorted hash-codes of the two nodes followed by
the original label of the edge 〈L v(u),L v(v),L(uv)〉.
The last relabelling function L g(G) sorts all edge labels of the rooted subgraph G and
encodes this string by an additional hashing into another integer code [CG03, suppl.].

Figure 2.8: Graph Kernel Feature encoding. An encoding of neighbouring subgraphs into in-
teger codes (hashing) simpifies and precipitate the comparison. Differend functions
are used to compute such hash codes. 1. Each node of of a subgraph is relabelled
by a first hash code, which is determined from the ordered list of the distances to
each node of that subgraph plus distance to the root node (bottom). 2. Edges are
labelled by the hash codes of the vertexes they connect and are sorted in increasing
order (top, second from right). 3. Another hash function determines the subgraphs
hash code (top, right). Taken from Costa [Cos11].

All in all the NSPDK calculates the such a hash code for each subgraphs und sum-
marises for each of them, for all radii ≤ r∗ and all distances ≤ d∗, the amount of
identical neighbouring subgraphs. [CG03]. By dividing each count by the number of
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overall counts, one receives equally weighted features. These are collected in a high-
dimensional sparse vector ∈Rm, with m as the number of the features. Such a vector
is then used to compare the fragments secondary structures in linear time.

Phase 4 - Candidate clusters
The fragments comparison is finally computed by an approximate nearest neighbour
search, which clusters the resulting sparse vectors into sequences with identical fea-
tures. But according to the high-dimensional feature space a pairwise comparison in
linear time is still too time consuming for large datasets, because the number of fea-
tures is exponential [HCRB12]. That is why the min-hash technique is used to reduce
the number of features and to reach a sublinear computational time in this phase.
The min-hash technique approximates the Jaccard index J = |A∩B|

|A∪B| , an exact similar-
ity measure. However, for this the sparse vectors have to be transformed into the
binary system: {0,1}m, with 1 for non-null features. Additionally, the vector position
i is assigned to each vector element vi ∈ v = (v1, ...,vm)

T as hash key, for example
h(v1) = 1,h(v2) = 2, ... . After re-arranging the vector elements randomly, the hash key
of the first binary 1 (hmin(v)) of each vector v is returned. Vectors with the same hmin

value are assumed to be similar: u,v ∈ 0,1m. Since min-hashing is locality sensitive
it is likelier to map closer objects onto the same cluster than distinct objects. An ex-
ample, which summarise this method, is shown in Fig.2.9. To improve the similarity

1

2

3

4

5
position


3
0
0
2
1


~x


1
2
0
0
1


~y


0
0
1
4
1


~z

A⇒

1

2

3

4

5
hash key


1
0
0
1
1


~x


1
1
0
0
1


~y


0
0
1
1
1


~z

B⇒

3

1

5

2

4
hash key


0
1
1
0
1


~x


0
1
0
1
0


~y


1
0
1
0
1


~z

C⇒
hmin(~x) = 1
hmin(~y) = 1
hmin(~z) = 3

D⇒~x =~v

Figure 2.9: Example of min-hashing. This example depicts the min-hashing technique, which
is used to compute a approximated similarity measure of secondary feature vectors.
Therefore, the vector entries are mapped to zero if the feature does not occure in the
vector, otherwise it is mapped to one. Furthermore, the position number is assigned
as hash key (A). In the following the vector entries are re-arranged by chance (B).
The first hash key, whose value is one, (hmin) is returned for each vector (C). Similar
hmin hash codes of different vectors hint at the similarity of these vectors (D). These
procedure is applied several times, while the average is an approximation of the
complete comparison (not shown here).

estimation the re-arranging step is done with a pre-defined number of different permu-
tation functions. The average of these single similarity estimators results in sufficient
similarity estimator for each pair of vectors. GRAPHCLUST follows a different strategy. It
collects for each vector v and each permutation function all similar vectors as approxi-
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mate neighbourhood. Then the most frequent neighbours are sorted according to their
NSPDK similarity to v. The k-closest of this are the k-neighbourhood. The average pair-
wise similarity of a vector v to its k neighbours, so called density, is used to choose the
candidate clusters. These are at least the most compact neighbourhoods of a randomly
chosen subset, whose overlap is beneath a specified threshold. The choice by chance
is necessary here for a further speed-up.

Phase 5 to 8 - Cluster refinement, model, scanning and Iteration
A local sequence-structure Alignment with the tool LOCARNA is applied to each cluster
to incorporate domain specific information and improve the quality of the cluster model.
By using an UPGMA created cluster tree the subcluster with the best average pairwise
alignment score and at least three sequences is used to build the model. But before
modelling an additional alignment with LOCARNA-P is applied. This probabilistic ver-
sion of LOCARNA offers local and global reliability scores. Thus, sequence length will
be refined to trusted seed regions. These regions are finally used to determine a covari-
ance model (CM) by the tool INFERNAL. Such a covariance model of RNAs is ”based on
pairwise covariation in multiple alignments”, so that it ”clearly describes both the sec-
ondary structure and the primary sequence consensus”, like first remarked by [ED94].
Furthermore, it is qualified for searching databases. Hence, the CM of a cluster is used
to detect cluster members in the entire dataset. After all clustered sequences are re-
moved from the dataset and the clustering pipeline is started again at phase 4. The
repetition is stopped if a iteration or time limit is reached or all sequences are clustered.
Since, several clusters can finally contain fragments of the same input sequences and
since these may overlap, a post-processing step is performed at the end of GRAPH-
CLUST.

Phase 9 - Post-processing
Lastly strong overlapping clusters are merged. This depends on the amount of identical
input sequence IDs and the size of the fragments overlap. For example, two clusters are
merged, if they have more than 60% of the sequence IDs in common, with a fragment
overlap of more than 50%. If a sequence belongs to different clusters at the end, the
CM bit score decides on the final cluster assignment.
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3 Framework for efficient biological
interpretation of functional RNA motifs

Due to its linear computing time, GRAPHCLUST is currently the most suitable clustering
tool allowing secondary structure analysis of whole transcriptome data. However, some
of its pre- and post-processing steps as well as large memory requirements are not suit-
able to process large datasets. For these reasons, GRAPHCLUST was adapted in some
points first to ensure an error-free usage in feasible time and under the given condition
of large datasets. Afterwards an additional post-processing method was developed to
improve interpretability of the results.

3.1 Methods

The clustering process of GRAPHCLUST is affected by three major hindrances in case
of large datasets: First, the pre-processing tool BLASTCLUST is highly time-intensive.
Second, the data structure of feature vectors is highly memory-intensive. And third, the
parallel processing parameters have to be adjusted at both steps. More details and
corresponding adaptations are described in the following together with the complete
RNA clustering pipeline, that is finally available.

3.1.1 Preprocessing - Detecting sequence similarity in
transcriptome data

One essential step in pre-processing is to filter sequences with high sequence similarity
to reduce the number of sequence-structure alignments and thus decrease computa-
tional time and memory requirements.
To discard redundancies on sequence level GRAPHCLUST uses BLASTCLUST [AMS+97]
in its initial phase, which clusters sequences by pairwise all-against-all sequences align-
ments. Pairs of high sequence similarity are connected in a similarity graph to finally
detect clusters of linked sequences (single-linkage).
The underlying alignment algorithm is BLAST [AMS+97] in case of amino acid se-
quences, respectively MEGABLAST [ZSWM00], a greedy version of BLAST, in case of
(long, slightly different) nucleotide sequences. BLAST is a tool for scanning databases.
It first extracts all substrings of length k (k-mers/short word filter) of a query sequence to
filter then matching k-mers (hits) from the database sequences. If two hits occur in the
query sequence as well as in a database sequences in the same order (same diagonal
in the alignment matrix) within a predefined distance, they are merged to a high-scoring
segment pair. These pairs are used to rank the database sequences to finally align the
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database sequence of the highest score against the query sequence [MW09, ZB08].
The BLASTCLUST standalone version uses the input FASTA file to generate such a
database and allows in this way an all-against-all comparison. BLASTCLUST has to
be called iteratively, because the clustering procedure assesses similarity just for the
best-scoring alignment for each input sequence. Hence, high-scoring alignments with
slightly smaller scores than the best-scoring alignment are not included in the neighbour
graph used for subsequent single-linkage clustering. Restricting the neighbour graph to
only the best-scoring alignment for each in input sequence results in a sparse graph
missing many less-optimal alignments. Hence, especially for large datasets, this feature
of BLASTCLUST may result in many false negatives.

Nevertheless BLASTCLUST is known to be highly time consuming in case of large input
data [LG06, ABM+12], because it is based on all-against-all comparison. Even if multi-
core processing (threads) is used, BLASTCLUST needs over 6 hours for a test dataset
of 5,000 sequences of an average length of 138nt (see Tab. 3.1). Hence, BLASTCLUST

is not suitable for large datasets. In addition, the integrated alignment algorithm BLAST
expects only one input database, but in BLASTCLUST large datasets are by default split
into several databases by FORMATDB, the software used to build BLAST databases. As
a result, it was decided to replace BLASTCLUST by a more recent and faster method.
As an alternative tool, CD-HIT-EST [LG06] was chosen. It is less restrictive than
BLASTCLUST and thus allows the processing of large datasets in reasonable time
[LG06]. This is achieved by reducing the number of pairwise comparisons. CD-HIT-
EST, first sorts input sequences by length and aligns them top down with a short word
filter. In detail, the longest sequence is chosen as the representative of the very first
cluster. The second sequence is aligned to this first representative. If it matches well, it
is assigned to the first cluster, otherwise it becomes the representative of a new cluster.
All following sequences are aligned stepwise against the representatives, while they are
assigned to the first matching cluster (by default) or optional to the best matching cluster
found. Since both variants reduce the dataset, but the latter is slower and time saving is
the most crucial factor, CD-HIT-EST is applied by default. Furthermore, in contrast to
BLASTCLUST, CD-HIT-EST is not used iteratively, as the sequences/representatives
always remain sorted and thus no improvement of clusters is expected.

To test the performance of CD-HIT-EST compared to BLASTCLUST, four different sce-
narios are feasible: (i) BLASTCLUST is used non-iteratively, (ii) BLASTCLUST is used
iteratively, (iii) CD-HIT-EST is used non-iteratively or (iv) CD-HIT-EST is used in com-
bination with BLASTCLUST as post-processing (see Tab.3.1). As discussed above, an
iterative use of BLASTCLUST is not reasonable.
For testing the non-iterative versions, BLASTCLUST was turned off in the GRAPHCLUST

process by setting the configuration file parameter input_blastclust to 0 and stop
GRAPHCLUST at the end of the stage 1 with the command-line argument �stage-end
1. In this step all input sequences are fragmented and the fragments are written into
a FASTA file. This FASTA file was used as input for both tools. Their performance was
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assessed by computation time and the number of remaining fragments (Tab.3.1). The
iterative way of using BLASTCLUST (ii) is the default implementation in GRAPHCLUST

(input_blastclust 1). For the combination of both tools (iv), CD-HIT-EST (iii) was
added in the source code of GRAPHCLUST prior to BLASTCLUST (ii). GRAPHCLUST

was then started in the same way as before.
The results show, that BLASTCLUST (ii) is more sensible in detecting sequence clus-
ters than CD-HIT-EST (iii), while CD-HIT-EST (iii) is, in case of large input files, more
sensitive than BLASTCLUST (i). This confirms, that BLASTCLUST has to be used itera-
tively. However, it is also apparent, that the iterative BLASTCLUST (ii) shows the longest
runtime (cf. Tab.3.1). CD-HIT-EST (iii), instead, is faster no matter of file input size (cf.
Tab.3.1). In contrast to CD-HIT-EST (iii), the minor improvements, if any, achieved by
an additional BLASTCLUST run (iv) are associated with a drastically increased runtime
(cf. Tab. 3.1). Hence, combining CD-HIT-EST and BLASTCLUST is not feasible for
large datasets. Thus, scenario (iii) was chosen.

GRAPHCLUST test input BLASTCLUST CD-HIT-EST combination
input (fragments) 1 run (i) interative (ii) 1 run (iii) (iv)

#seq 100 12,419 2,079 3,516 2,079 3,514
runtime 00:00:20 00:00:20 00:00:04 00:00:07

#seq 1,000 148,159 133,534 30,730 40,638 40,592
runtime 00:04:05 00:14:21 00:00:55 00:02:50

#seq 5,000 689,997 675,256 159,676 187,906 187,674
runtime 00:48:35 06:10:31 00:14:09 01:08:54

#seq 10,000 1,4 mio — — 372,076 371,668
00:50:30 4:34:45

Table 3.1: Performance comparison of BLASTCLUST and CD-HIT-EST. To avoid redundant
computation, GRAPHCLUST frees the input set of RNA sequences from near identi-
cal entries. The tools BLASTCLUST and CD-HIT-EST are used for this task, while
four different scenarios were tested (col. 3-6) to measure runtime (hh:mm:ss, grey)
and the number of remaining sequences (#seqs, black). ‘1 run’ depicts non-iterative
versions of the tested tools (col.3,5), while ‘iterative’ means repeated application in
GRAPHCLUST (col.4) and ‘combination’ denotes CD-HIT-EST runs once prior to the
iterative BLASTCLUST version. Since GRAPHCLUST splits input sequences (col.1) in
overlapping fragments prior to this filtering, the FASTA file of the fragments is used
as ‘test input’ (col.2) for BLASTCLUST and CD-HIT-EST. Both columns quote the
number of sequences. ‘—’ indicates the test failed, because BLASTCLUST cannot
process large input files (see text for details).

3.1.2 Memory requirements and parallel processing

The advantage of GRAPHCLUST is its gain of time, which is a result of the encoding
of sequences and their structure features. This encoding generates high-dimensional
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vectors, that include information about the number of features (also of other sequences)
occurring in a specific sequence. The computation of these feature vectors for all se-
quences causes a huge amount of additional data, which is loaded as a whole into the
memory (RAM).
GRAPHCLUST produces, during the feature encoding, one file, that contains vectors of
all fragments of each input sequence. As mentioned above, this file has to fit into the
RAM, but it easily reaches the region of several GB for only 1000 sequences of reason-
able length [HCRB12]. For example, an input FASTA file of 13MB (≈12,000 sequences)
results in a vector file of 30GB, whereas an input FASTA file of 61MB (≈120,000 se-
quences) causes a vector file of already 148GB. Thus, a high performance system is
definitely needed to analyse large-scale input datasets. If a vector file goes beyond the
scope of available RAM, one possible solution is to restrict the input file. For instance,
if lncRNAs in transcriptome data shall be analysed, one may use lncRNAs of intergenic
regions only.

In case of large input files, the required computation time can be decreased by parallel
processing on a high-performance computing cluster (HPC-cluster). GRAPHCLUST pro-
vides options to use threads (multiple core computing) and/or the SUN GRID ENGINE

(SGE) to speed up the RNA clustering process. SGE is a system for distributing and
managing processes on a HPC-cluster.
Since individual HPC-clusters come with individual SGE configurations, the correspond-
ing options were tested and finally adapted. At the available HPC-system it is required
to declare obligatory parameters prior to submitting a job to the cluster. This parameters
are:

• -l h_rt the upper hard runtime boundary

• -binding linear:1 the core binding, required in case threads are disabled,

• -l centos6 to define the operating system,

• -S /bin/bash to define the shell type and furthermore

• -l highmem in case of large memory requirements (>59GB).

However, GRAPHCLUST needs to be started on a local resource and submits jobs on
it’s own. But not all obligatory parameters are declared in the source code of GRAPH-
CLUST. Hence, it was necessary to adapt the code. This explicitly includes all SGE
job submitting scripts, but also the main script MASTER_GraphClust.pl. Into the latter,
the code ‘$qsub_opst .= "$-l highmem" if($size>59)’ was added at line 643 to
dynamically insert the option for jobs, that require high memory. Thus, GRAPHCLUST

can load the complete vector file into the RAM in case of large input files. Further, the
SGE parameter -l h_vmem (hard memory limit), given in the GRAPHCLUST job sub-
mitting scripts, had to be increased stepwise for large input files. The same is true for
-l h_rt, the upper hard runtime boundary. All in all, the GRAPHCLUST job submitting
scripts are potential sources of processing errors, if the underlying computer/software
system changes or the input increases.
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3.1.3 Final clustering pipeline for transcriptome data

With all the adaptations described above, a ready-to-use RNA clustering pipeline for
transcriptome-wide datasets is available. The final pipeline is summarised in Fig.3.1, in-
cluding the generation of input files by GTF2FASTA.R (A), the new GRAPHCLUST-internal
pre-processing by CD-HIT-EST (C.1) and the adaptations within the GRAPHCLUST-
scripts needed for parallel processing on HPC-clusters (C.2).

Figure 3.1: Final clustering pipeline for transcriptome data. (A) Pre-processing prior to
GRAPHCLUST allows to generate the input FASTA file from a GTF assembly file. (B)
GRAPHCLUST pipeline of 9 steps [HCRB12]. (C) Adaptations: (C.1) CD-HIT-EST re-
places BLASTCLUST for efficiency reasons. (C.2) Example of obligatory parameters
of SGE submit scripts adapted to large datasets and the specific high-performance
computing cluster.

To generate input files for GRAPHCLUST, transcript annotation must be exported to
FASTA files (Fig.3.1). One format for transcript annotation is, for example, the General
Transfer Format (GTF). It is a widely used flat file format, that describes genomic annota-
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tion by 9 tabulator-separated features: chromosome, data source, feature type

(e.g. CDS, exon or intron), start, end, score, strand (+,-), reading

frame and further attributes. Genes respectively transcripts and exons are char-
acterised by separate lines. This information has to be combined to get the full transcript
sequences for the subsequent clustering process by GRAPHCLUST. Alternatively, one
can also use single feature types only, e.g. 3’UTRs or exons, but this would lose se-
quence information at splice sites and is thus not reasonable for RNA secondary struc-
ture analysis.
For generating a FASTA file from a GTF files, the script GTF2FASTA.R was developed
(see Fig.3.2). It is based on R [R C14] and BIOCONDUCTOR [GCB+04], since both pro-
vide packages for handling standard file formats for transcript annotation and biological
sequences.
The script GTF2FASTA.R basically reads a GTF file and generates a transcript database
by the BIOCONDUCTOR package GENOMICFEATURES [LHP+13], while redundant in-
formation is filtered. Alternatively, GTF2FASTA.R allows the direct input of an existing
transcript database to save time. Beside the obligatory input file, an optional BED file is
excepted. BED files are also tab-delimited flat files describing genomic regions, but in
contrast to GTF without gene/transcript type information. Such a file can be used to dis-
card database transcripts overlapping genomic regions, that are defined in the BED file in
order to restrict the final FASTA dataset. For reading the BED file the package RTRACK-
LAYER [LGC09] is used. After defining the locations of all final transcripts, the corre-
sponding sequences are extracted by the package BSGENOME [Pag14] with respect to
a provided genome package, e.g. BSGENOME.HSAPIENS.UCSC.HG19 [Tea14]. These
sequences are finally exported into a FASTA file by using the package RTRACKLAYER.

Figure 3.2: Flowchart of GTF2FASTA.R. This R script generates a FASTA file from transcripts
given by an assembly file in GTF format or as transcript database of the GE-
NOMICFEATURES package. An optional filter of genomic regions reduces the number
of transcripts.
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3.1.4 Interpretation of clustering results of transcriptome data

To reach the main goal of detecting secondary structure motifs in RNA sequences, the
most important step is to finally interpret the clustering results. GRAPHCLUST provides
all results as flat text files, complicating the biological interpretation of clusters. In detail,
during the start of GRAPHCLUST the command-line parameter �root specifies the di-
rectory of output. This includes after a successful run a RESULT directory, which contains
one directory per final cluster and the file cluster.final.stats, that summarises all
clusters in tab-limited lines.

In the summary file each cluster is described by the number of its sequences, the num-
ber of identical sequence names as well as by two widely used similarity measures of
RNA sequences: the mean pairwise identity (MPI) and the structure conservation in-
dex (SCI). While the MPI denotes similarity on the sequence level, the SCI assesses
similarity on the structure level:

SCI(A) =
MFEconsensus(A)

1
|A| ∑

i∈A
MFE(i)

. (3.1)

The SCI is defined as ratio of the minimal free energy of the consensus structure
MFEconsensus of an alignment A and the average of the minimal free energies of the
corresponding sequences i ∈ A, where |A| denotes the number of sequences of the
alignment A [WHS05]. Both values, MPI and SCI, together indicate the biologically
functional relevance of a cluster.
A cluster seems to be a potential functional structure motif, if it owns a high SCI together
with an MPI of about 60% – 90% [WHS05,HLSG05,RKS08]. If the MPI is larger in this
context, it is not clear which conservation level is crucial, because highly similar RNA
sequences likely fold into the same MFE structure. The interpretation, whether a partic-
ular cluster consists of a structural motif, is also problematic, if the MPI is less than 50%.
The underlying alignment algorithms require a minimum of sequence conservation, be-
cause they perform for cost reasons a multiple sequence alignment prior to the folding,
instead of aligning sequences and predicting structure simultaneously [BSG10].

All sequences of a cluster are described in detail in the text file cluster.all, which is
located within the cluster directory of the corresponding cluster number. Such a clus-
ter directory, furthermore, contains several other files and directories, which are vector
graphics of the alignment and the secondary structure of the top five as well as the top
ten sequences in PostScript format (generated by LOCARNA and RNAALIFOLD). In
addition it contains the related covariance models and FASTA files. These files are sup-
posed to be a first visualisation and starting point for analyses. But only cluster.all

describes all sequences in detail, that belong to the cluster and thus define the struc-
tural motif (see Fig.3.3 bottom).
In the file cluster.all the motif sequences are labelled by an internal transcript iden-
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tifier (ID), consisting of its local start and end position as well as the strand. The original
name of the source transcript is saved in the columns ORIGID and if the name is a stan-
dardised FASTA header also in ORIGHEAD. Additionally, for each sequence it is saved
during which phase it was assigned to the cluster (column 6). In this case BLASTCLUST

denotes the sequence was filtered by sequence similarity (phase 1), MODEL marks an
assignment through vector similarity (the cluster origin phase, phase 5), while CMSEARCH

hints at an successful search by the covariance model (CM). Aside from this fact, for all
sequences the CM_SCORE is computed, which denotes how well a sequence finally fits
the clusters covariance model [EHH13].

(A) cluster.final.stats

(B) cluster.all of a single cluster

Figure 3.3: GRAPHCLUST output. The resulting clusters are basically described by two types
of tab-limited text files, whose head is shown here. Odd columns are the head-
ers of even columns. (A) The cluster.final.stats file, with MPI_TOP5 as Mean
pairwise identity of the top 5 sequences and SCI_TOP5 as corresponding structure
conservation index, summarises all clusters. (B) The cluster.all file depicts the
sequences of a single cluster. Here, each sequence is named by the source se-
quence, start and end position plus strand. Column 3 quotes the cluster number,
CM_SCORE denotes the significance of the search by the covariance model and col-
umn 4 hints at how the sequence was assigned to the cluster. For more details see
main text.

Taken as a whole, the output of GRAPHCLUST is well structures and easily readable –
in case of some few clusters. But, large input files may result in several thousand clus-
ters and since the corresponding files are substantially text based, reading manually will
be well-nigh impossible, not to mention interpreting these data. By the way, GRAPH-
CLUST provides just a low-level post-processing, with files of secondary structures and
covariance models, limited to top matching sequences (top five/ten). Hence, the user is
bound to this post-processing initial files and can not change them without great effort.
In addition, each cluster also includes inherently much more information, that can be
helpful to interpret the motif biologically, but which is currently not well presented to the
GRAPHCLUST user:

• location of the motif in the transcript
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• conservation on sequence and/or structure level
• number of a motif copies in a transcript
• number of different motifs in a transcript
• and many more ... .

Such details require graphical representation.

Another point is, that the true number of clusters (granularity) is unknown. Clustering
approaches are learning techniques, that try to extrapolate grouping features from a
given set of data points [MW09]. Since they are based on limited knowledge defining
which information is used and how this is done, they are just approximations, which
do not have the right balance between details and relations. Accordingly, it might be
possible, that some clusters should be joined, while others can be further divided (see
Fig.3.4). For these reasons also the clusters themselves should be compared.

Figure 3.4: Clustering and granularity. The true number of clusters is often not known. Red,
green, blue and yellow dots denote data points and their ‘real’ relations as an exam-
ple. Grey, dashed circles mark a possible result of an clustering process.

One reasonable solution is the development of an additional, user-friendly post-processing
tool, which can be used for an easy visualisation, filtering and further meta-analysis of
the clustering results.
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3.2 Results

In order to detect secondary structures motifs within RNA sequences, RNA clustering
pipelines need a further post-processing step, especially if they provide just text-based
output. Such a additional post-processing should visualise the data in a appropriate
manner including the incorporation of biological knowledge and computation of a further
meta-analysis. Thus, it should support the interpretation of the clustering result. Hence,
the development of such an additional post-processing method is based on some re-
quirements, for example adequate visualisation methods. Corresponding to these re-
quirements the framework for efficient biological interpretation of functional RNA motifs
was implemented.

3.2.1 Requirement analysis

Each user has to develop its own automatic approach to post-process the the text-based
output of GRAPHCLUST. Alternatively, a general and reusable post-processing tool for
RNA clusters may simplify and speed up the cluster analysis pipeline. However, such
a tool has to meet some requirements, which have to be covered during the develop-
ment. These requirements can be broadly divided in three crucial aspects (see Fig.3.5):
increasing interpretability (I), quality control (II) and an adequate software design (III)
depending on (I) and (II).

Interpretability (I)
One of the most important points in data analysis is the improvement of the interpretabil-
ity, which inherently means, firstly, visualisation by illustrative plots and graphics. This
includes, secondly, the representation of data by different summary statistics. Such
statistics are quite informative, especially if, thirdly, biological ancillary data are added.
For example, if novel RNA transcripts fall into the same cluster of known transcripts,
knowledge about the function of the known transcripts can be projected to novel tran-
scripts. An additional biological indispensable information is the transcripts nucleotide
sequence, which is needed to display the motifs secondary structure independently from
the clustering tool. Fourth, interpretability can also be increased by a meta-analysis of
the clustering. Since the true number of clusters (granularity) is unknown, single clus-
ter analysis do not detect relations between clusters. Comparative analyses based on
cluster similarity measures (pairwise distances) may hint at a more appropriate granu-
larity.

Quality control (II)
In order to assess whether the chosen parameters for the clustering process yield reli-
able results, the quality of the overall clustering is controlled. Sequences of known RNA
classes (here referred as spike-ins) are included in the input file and assessed if they
have been grouped into separate clusters. Such a quality control allows to evaluate
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Figure 3.5: Mind map of requirements for a RNA cluster analysis tool.

if the overall clustering result is of reasonable granularity with respect to known RNA
classes.

Software design (III)
Beside pursuing easy interpretation of clusters as well as a reasonable quality control,
the third major issue is to decide on an adequate software design. According to the
first requirement, of course, straightforward visualisation methods are required sixthly to
support interpretability. In addition, meta-analysis of the clustering requires the choice
of user-defined parameters (e.g. selecting a subset of clusters as input for the meta-
clustering process), hence in turn the seventh requirement is user-interaction. To allow,
furthermore, easy and fast extension of the software to new analysis concepts, eighthly,
modularity is needed, because new questions may arise during the analysis. Ninthly,
independence from the clustering tool used is important to increase the area of applica-
tion of the proposed RNA cluster analysis software. This leads directly to requirement
ten: the tool must also be able to handle large dataset. Last but not least, a common
fact of good research is reproducibility [Xie14]. Hence, it is required to ensure reliability
of the whole method.
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3.2.2 A development environment complying with the
requirements

It is widely accepted, that R is a popular framework for summary statistics (ii) and plotting
(i,vi) [R C14]. R is complemented by a range of packages (viii), whose number and func-
tional diversity grow continually. By now, several packages are available for biological
and bioinformatical topics, which are available as BIOCONDUCTOR packages [GCB+04].
Thus, standard file formats as FASTA or GTF files can be handled easily, while the corre-
sponding data can be analysed and depicted (iii).
Although R is inherently not suitable for large data, because data is loaded completely
into the RAM [IG96], there are several packages, that provide solutions to this problem
(x). The package ANNOTATIONDBI [PCFL], for example, utilises the indexing of data
and reduces duplicates by using the relational database concept and SQL (structured
query language). The packages SNOW [TRLS13] and PARALLEL [R C14], instead, can
be used to decrease time requirements by parallel computing.
Hence, by using the programming language R all requirements described above are
met. This is even true for reproducibility, since the packages KNITR [Xie14] and SHINY

[RI14] aim at dynamic reproducible documentation (xi).

KNITR
The R package KNITR allows to create static documentations as PDF files or websites.
These display the source code in combination with the analysis results in form of tables,
plots or text. Thus, results can be published and reconstructed by other researchers.
However, KNITR has some drawbacks:
Firstly, static documentations require that all computations are run at once. Hence,
all processing steps and parameters have to be previously defined. However, meta-
analysis, that compares single clusters, depend on the results of the summary statistics
and have to be adapted accordingly. Alternatively, both steps, summary statistics and
meta-analysis, can be computed separately, but this produce several files for a analysis
in total and is error-prone, because the source code has to be changed manually each
time. Hence, user-interaction (vii) is needed, but not provided.
Secondly, the resulting PDF files or web pages are easily shareable, but the method
cannot be shared easily. The only solution would be to make the source code available.
However, still all required R packages and third-party software have to be installed. This
hinders users with low computer science background to use the method at all.
All in all, KNITR is an option, but it meets the requirements only partially.

SHINY

An alternative to KNITR is given by the R package SHINY [RI14]. SHINY is used, simi-
lar to KNITR, to generate reproducible reports, but in contrast, it is based on websites
only. However, this restriction allows to utilise user-interaction (vii), including file up- and
downloads as well as reactive pictures. Even parameter settings for meta-computations
can be defined by the user.
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So called ‘interactive web applications (apps)’ [RI14] are created by a modular system
(viii) of layout features, interfaces and reactive methods, so that all basics of an user-
friendly web page are already implemented. By providing such an web application and
all necessary software on a server the method is suitable for sharing, because the user
is independent from soft- and hardware. As a result different groups may use the same
analysis process and do not need to develop a project-related solution. Hence, SHINY

offers a good basis for an independent analysis tool of RNA secondary-structure clus-
ters.

3.2.3 Independent standard input file format for RNA clusters

The last two requirements are: independence from the clustering tool (ix) and a quality
control of the overall clustering by infiltrating and observe known RNA classes, so called
‘spike-ins’ (v). Both depend on the file format and the data structure, which are used to
import the cluster data into the final analysis tool. To achieve interdependency from the
clustering tool used, the input file of the cluster exploration tool must contain standard
cluster features (ix), like a cluster identifier (ID), the motif-presenting sequences and
scores. To detect ‘spike-ins’, i.e. control sequences of known RNA classes, the data
structure has to include an additional feature that tags selected sequences as control
sequence (v).
The clustering tool GRAPHCLUST provides only the basic information and these in one
text-based file per cluster and in one summary file. This is unreasonable for analysing
the data as well as unhandy for uploading them onto a server. Hence, the whole cluster
information should be available in one single file of a standardised format.
A, standard RNA cluster file has to combine metadata, like cluster ID and quality, as well
as the essential cluster data – the motif-presenting sequences – together with the control
tag. In this way, a tabular representation as often used in R is not suitable, because it
would include dozen copies of the metadata and thus unnecessary inflate the file. A
more adequate format is, instead, proposed by Ben-Kiki, Evans and Ingerson [BKEI04],
who developed YAML a language for data formats based on lists.

YAML
YAML was known as the abbreviation of ‘Yet Another Markup Language’ [IEBK01], but
the authors renamed it to ‘YAML Ain’t Markup language’ [BKEI04]. The reason is, that a
markup language is used to structure a document – like HTML structures an web page.
YAML, instead, is a structured language for serialisation of object-oriented data.

To put it in a nutshell, object-orientation is a concept of programming, that models a com-
plex system by classes and their instances. Classes define data structures of attributes
and methods. An instance of a class is a realisation, that assign data to variables ac-
cording to the data structure of a specified class [FH11, p.625f.,701]. Such instances
or objects, usually exist only during the execution of the corresponding program. The
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objects and their current states are not persistently save. Serialisation is a method, that
transfers an object into a byte stream, together with all objects that refer to this objects,
meaning the whole object graph. In this way the data are machine readable and can be
written to a file on a persistent data storage device. Thereby, the object exists at least
twice: once in memory and once as persistent file, while changing the former does not
effect the latter. Accordingly, persistent data can also be read again (deserialisation)
and reused in the same state as before [FH11, p.804f.,667] [SB05, p.429ff.].

Thus, YAML is a language, that allows to persistently save and reload object-oriented
data. Further advantages are: First, YAML utilises the printable international standard-
ised character code, called Unicode, which is both machine readable as well as human
readable. Second, YAML is based on the assumption, that all data structures can be
reduced to combinations of only three basic structures (see. Fig.3.6): scalars (i.e.
strings and numbers), mappings (‘key: value’ pairs) as well as unordered sequences

(e.g. lists) [BKEI04]. Hence, YAML is reasonable for sharing data between several pro-
gramming languages working on these three data structures. This also includes R,
where mappings are named lists and series are unnamed list or vectors. Furthermore,
YAML just requires a small set of structural characters in this way.
Taken together, both facts allow to easily create and control YAML files. In addition, since
lists are well parallelisable data structures in R, YAML is well suitable for storing and shar-
ing large data, as e.g. resulting from an RNA clustering process. YAML is available for R
through a package with the same name, i.e. YAML [Ste14].

sequence of scalars mapping scalars to scalars
- mean pairwise identity value: 92.3

- SCI min: 0

- MFE_consensus max: 100

mapping of sequences sequence of mappings
cluster scores: -

- mean pairwise identity score: mean pairwise identity

- SCI value: 84.74

- MFE_consensus -

sequence scores: score: MFE_consensus

- CM_SCORE value: -65.13

Figure 3.6: Selected basics of YAMLs structural characters. YAML is defined on only three
basic data structures: scalars (strings, numbers), mappings (hashes/directories)
and unsorted sequences (lists,arrays). Its authors assume, that all other data struc-
tures can be reduced to combinations of the three basic structures. This picture is
based on [BKEI04].

A YAML based standard input file format for RNA clusters
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By using the list-based YAML format a standard RNA cluster file can be defined by a
list of clusters (cf. Fig.3.7). Thereby, a cluster is made up of two items: the metadata
and the set of motif-presenting sequence data. Both items are mappings, whose tags
map onto the corresponding data. The former is tagged by the key META, the latter by
the key CLUSTER.

-

META:

CLUSTER_ID: <character>

SCORES:

<scalar>: <numeric> (+)

CLUSTER:

TRANSCRIPT_ID: <list of N scalars>

ASSIGN_TYPE: <list of N scalars∈{"CORE", "SEQUENCE", "STRUCTURE"}>

IS_CONTROL: <list of N boolean values>

MOTIF_START: <list of N numerics>

MOTIF_END: <list of N numerics>

SCORES:

<scalar>: <list of N numerics> (+)

Figure 3.7: A YAML-based data structure for a standard RNA cluster file. The standard RNA
cluster file is a list of clusters, that are defined by metadata (META) and a motif-
representing sequence set (CLUSTER). ‘-’ denotes an unnamed list element. ‘:’ rep-
resents a mapping of a key to a value (data). ‘<>’ labels the basic data structure.
‘(+)’ denotes, that the element occurs at least once. For further details see text.

Metadata consists of at least two entries. The first is the cluster ID, where the key
CLUSTER_ID maps onto a string, which names the specific cluster uniquely. The sec-
ond element is a set of scores, which describe the clusters biological relevance. It is
named by the key SCORES. The scores themselves are defined by user-defined score
names, that map to numerical values. This subdivision allows to use one, but also
several different scores. This enables a more exact interpretation, like it was shown in
the GRAPHCLUST results by the mean pairwise identity (MPI) and the secondary struc-
ture index (SCI). Furthermore, inconvenient placeholders are not needed, since score
names are marked as scores and thus can be directly handled by their names.
Further metadata are possible, for example the consensus structure in dot-bracket no-
tation, but they are not needed yet or can be easily determined from the existing cluster
data.

The set of motif-presenting sequences tagged by the key CLUSTER is specified by six
features: the transcript ID, the local start and end position (in relation to the transcript),
the similarity level used to assign the motif-presenting sequence to the cluster, the con-
trol tag (requirement ix) and scores, that denote membership qualities.
To save all these information efficiently, each feature maps to a vector of length N, with N
as number of cluster-specific, motif-presenting sequences. Hence, the transcript infor-
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mation is distributed over different vectors, where the position number within the vectors
denotes the information of a specific transcript.
The first three items are tagged by the keys TRANSCRIPT_ID, MOTIF_START and MO-

TIF_END. They allow to conclude annotation and biological interpretation, if a widely
used ID type is employed. This could be for instance the Ensembl ID type (ENST000004-
21406.1). Alternatively, it was thought about the usage of the gene ID instead, but this
may lose information of active isoforms, whereas the transcript ID inherently includes
the gene id.
The fourth element – the similarity level – has the key ASSIGN_TYPE. This informa-
tion denotes which sequence level was used to assign the specific motif-presenting
sequence to the cluster. Three ways are possible: by similarity on sequence level, by
similarity on structure level or by an another method, that depends on the clustering
tool. Accordingly the values `SEQUENCE', `STRUCTURE' and `CORE' are used. This
information may hint at clusters of duplicates, if for example all sequences are added by
sequence similarity.
The fifth entry within CLUSTER is tagged by the key IS_CONTROL. Thereby the boolean
value true is used to denote control sequences, which were mixed into the input file for
control reasons, and false otherwise. This is necessary in order to check clusters of
known structural motifs for correct granularity.
Of course, also the motif-presenting sequences are scored to give a quality measure.
Such a score list, is constructed similarly to the score list within the metadata. The only
difference is, that these scores must map to a list of length N in order to associate each
transcript with a value.

This basic data structure contains all necessary information about a cluster. Further
data, especially a possible secondary structure, can be computed from them. Ad-
ditional biological information, like for example sequences and annotation should be
handled separately, because these may be needed across different clusters. For the
nucleotide sequence information, the FASTA file initially committed to the clustering pro-
cess is supposed to be used again. In this way, the user works on the same data in
each step. Furthermore, it ensures, that all nucleotide sequences are available, and
independence from public databases. The annotation is based on GTF files, that include
information about gene type and transcript type. These are available from public anno-
tation databases, like Ensembl or Gencode. This gives each user the ability to choose
the database source, the organism and a version number. Thus, it is only required, that
all three files, YAML, FASTA and GTF, contain the same transcript IDs.

Parser for the standard RNA cluster files
Transferring a file type into another requires a translator method – a so-called parser. A
parser reads the input file, categorises the data to pieces and creates the new file format
by reassembling the data in accordance with the specific structure [FH11, p.655].
Since each RNA clustering tool provides a specific output format, specific parsers are
needed. A exemplary parser was implemented to transfer output files of the clustering
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tool GRAPHCLUST to the standard RNA cluster file format mentioned above.
The parser is called by the R function GraphClust2YAML(path). It requires the ar-
gument path, a character vector of a path name to a directory. This directory has
to be specified before, during the start of GRAPHCLUST by the parameter �root, and
has to contain a subdirectory called RESULTS, if the GRAPHCLUST run finished suc-
cessfully. GraphClust2YAML tries to read file names from this RESULTS directory with
in the given path "path". It has to find both file types of the GRAPHCLUST output: a
cluster.final.stats file as well as the cluster.all cluster files.
First, the summary file cluster.final.stats is read and transformed into a data
frame, a easy manageable tabular data structure of R. This ‘meta data frame’ is re-
stricted to three columns: the CLUSTER_ID and the scores MPI_TOP5 as well as SCI_TOP5.
By going through the data frame row by row, the corresponding cluster files cluster.all
are read iteratively. Thereby, each of these cluster files is also transformed into a data
frame, where the column names are adapted to the keys of the YAML-based standard
RNA cluster structure:
The TRANSCRIPT_ID is extracted from the columns ORIGID and ORIGHEAD, while the
MOTIF_START and MOTIF_END are extracted from the GRAPHCLUST-internal fragment
ID. The ASSIGN_TYPE is extracted from the column including the information which sim-
ilarity level was used to assign a specific sequence to the cluster. Thereby, BLASTCLUST
is transformed to SEQUENCE, CMSEARCH to STRUCTURE and MODEL to CORE. To allow, then,
to detect control sequences, the user has to add the suffix ‘RNA’ to the transcript IDs al-
ready within the inital FASTA file. In this way, for all sequences, whose TRANSCRIPT_ID

includes this suffix, IS_CONTROL can be set to true, while all other are characterised
by false. It is also allowed to use suffixes like ‘miRNA’, ‘tRNA’ or ‘snoRNAcd’ in order
to distinguish between different classes of control RNAs. Finally the scores list is gen-
erated by extracting the CM_SCORE values together with this header as score name.
By summarising all required cluster information, it is possible to create a YAML-based
list entry, that is structured in the required standard RNA cluster format. The whole list
of clusters is then generated by the concatenation of all list entries. The final YAML code
is finally created by using the R package YAML and saved within a file by the R stan-
dard function ‘cat’. The final YAML file is the input file of the independent RNA cluster
analysis tool, described in the following.

3.2.4 Implementation

The framework for RNA cluster interpretation is finally based on SHINY web applica-
tions. This application requires an YAML-based input file in standard RNA cluster for-
mat, that contains the clusters resulting from an RNA clustering tool. Several summary
statistics are provided to visualise the results, while potentially functional motifs can be
recognised by filtering the clusters by their scores. A GTF and a FASTA file are option-
ally accepted to allow biological interpretation. Moreover an exemplary meta-analysis
for comparing potentially functional clusters is provided by computing the pairwise dis-
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tances and displaying them in a heatmap. The entire application is structured in a
modular way, so that further elements, i.e. summary statistics or meta-analyses, can be
easily integrated.

Basics of SHINY interactive web applications
The R package SHINY provides methods to create user-friendly, interactive web pages
(applications). Since, SHINY is based on R, this package is reasonable to present results
and share the methods to allow other users to analyse own data in the same way. Thus,
SHINY is taken as a basis for the required framework for efficient biological interpretation
of functional RNA motif clusters.

SHINY applications (app) are basically made up of two files: an user-interface script
(ui.R) and a server script (server.R) (cf. Fig.3.8). The former describes the compo-
sition of the app, the latter contains the background computations required for reactive
plots and other elements. Both files have to be in the same directory, because otherwise
the app is not able to start. To run an app, one has to call R , load the SHINY package
first by library(shiny) and use the command runApp(path), with the path being a
character vector of the full path name of the SHINY app directory [RI14].

In more detail, the user-interface script ui.R consists of two nested functions (cf. Fig.3.8
(A)): The outer function shinyUI(ui) declares an new user interface ui within SHINY.
The inner function, the argument of shinyUI(), instantiate a user interface of a prede-
fined page layout. This can be a simple page of a fluid or fixed layout or a page of more
complex layout. In the former, panels (sub-windows) are located side by side, while
objects are either adjustable to the browser (fluid) or not (fixed). Instead, a more com-
plex page, like navbarPage(), provides a fluid layout together with a navigation menu.
Such a menu allows to switch between different panels. Within this a inner function all
further elements of the web application are listed and specified, for example a title or
a panel by itself. These elements are again functions, that contemporary declare and
instantiate the specific objects. In this way, also classical HTML structure statements
are implemented. Thus, for instance, a header of level three is defined by h3(text)

instead of the HTML tag <h3>text<\3>. In addition, control elements (widgets resp.
window gadgets) can be placed into the page. They are already implemented to take
user-inputs and thus to allow reactivity. A corresponding example is sliderInput().
It yields a slider, shown in Fig.3.8, that enables the input of a number of a predefined
range. Since, reactivity inherently also includes output, output functions are available,
too. plotOutput(), for example, can be called to display ‘plot object’ like histograms
(cf. in Fig.3.8). However, additional background computations are needed to process
the user input to generate and display a reactive output. Hence, the second file of a
SHINY app – server.R – requires modifications.

The basic server script file server.R is again structured by two nested main functions
shinyServer(function(input,output [,session]){}). Here, the outer function
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(A) (B)

(C)

Figure 3.8: Basis structure of SHINY applications. This figure depicts the basic example from
the RSTUDIO documentation of the SHINY package: a reactive histogram, whose
bar size (number of bins) can be changed by a slider. [RI14]. (A) The user-interface
script ui.R describes the basic composition. (B) The server script server.R defines
the underlying computations needed for reactivity. (C) Final reactive web application.

shinyServer(func) realises the server functionality by processing the inner function
func. This inner function is unnamed, but has two mandatory parameters (input,
output) plus an optional one (session) (see Fig.3.8(B)). The parameters input and
output are lists, that transfer all ui.R inputs elements respectively output elements to
the server functions. The optional argument session is an environment object, that
transfers client data, and thus allows multi-user services. Return values of func are not
expected and thus ignored by shinyServer(). However, all further functions, that are
needed to build the specific app, have to be declared within the body of the inner server
function func (cf. Fig.3.8(B)).
There are two types of functions: non-reactive and reactive functions. Non-reactive
functions need to be re-called manually, if a parameter changes, to re-compute the out-
put. Reactive functions, instead, are notified by their reactive input parameters in case
of changes, and re-execute their internal code automatically. Since, all reactive func-
tions require reactive inputs, the parameter input of the inner server function (func)
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is inherently available to all of them. Hence, required reactive input values can be ob-
served and used directly by calling input$<input_object_ID>. Reactive functions,
that do not produce output by itself, are called ‘observers’ and are used to start side-
computations. All other reactive functions return their results by changing/adding an
element of/to the list of output values within the parameter output, which is also the ar-
gument of the inner server function func. In this way, reactive functions can be used as
links between input elements and output elements of the user-interface. For example,
renderPlot({}) (see. Fig.3.8) can create reactive plot objects. Therefore, it has to
observe an input object , e.g. a slider named ‘slider1’. by calling input$slider1. This
variable can be used then during the generation of a plot, e.g. a histogram. If the value
of this variable changes, the plot is re-build and a new picture is displayed in the app.

It should be noticed here, that apart from the two basic files ui.R and server.R, SHINY

also accepts the additional file global.R. This file can be used to define non-reactive
variables and functions, that should be available within the global environment. In this
way they are known to all functions within the app and within all sessions, in case of
multi-user service.
Following these simple structure of files and functions, a basic web application can be
created quickly, while the numerous reactive elements and further options also provide
more complex approaches.

Layout and functions of the RNA cluster interpretation framework
For reasons of clarity and comprehensibility, as basic layout of the RNA cluster inter-
pretation tool a page with a navigation bar (navbarPage()) was chosen. This allows
to define different panels (sub-windows), that can be displayed separately. Four pan-
els were created: ‘Data’, ‘Single Cluster’, ‘All Cluster’ and ‘Meta-analysis’ (see Fig.3.9).
Each of these panels is again made up of two sub-panels to optically separate input
elements from output elements.

The ‘Data’ panel is the first panel the user can see (cf. Fig.3.9). It allows file uploads and
data control. Three different file types are required to compute visualisations, analysis
and interpretation of an RNA clustering result. First, a file in YAML-based standard
RNA cluster format is needed to upload clusters determined by a RNA clustering tool.
Second, a FASTA file is supposed to provide the corresponding RNA sequences and
third a GTF supplies biological annotations including the information of transcript type
and gene type. Corresponding to these file types three upload buttons are available.
The output area is likewise organised in three panels. Here, the uploaded data are
presented separately in tables or respectively as text, in case of nucleotide sequences.
Each of these output panels is equipped with reactive input elements in order to allow
data selection. Thus, the user can choose a specific cluster by its identifier from a
drop-down menu and can restrict the number of cluster elements by using a slider. For
searching sequence and annotation data a text input element expects a transcript ID,
while a submit button starts the search.
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Figure 3.9: Layout of the RNA cluster interpretation framework. A page with navigation bar
allows to use four separate panels. ‘Data’ allows file upload and data control. ‘Single
Cluster’ provides summary statistics and figures of single clusters. ‘All clusters’
depicts all clusters by their metadata. ‘Meta-analysis’ allows further comparative
analyses. Each main panel is again divided into two sub-panels: an input and an
output panel.

The summary statistics of a single cluster are shown in the main panel ‘Single Clus-
ter’ (see Fig.3.10). By activating this panel, the plots are computed for all clusters first.
Thereby, a progress bar indicates the computation process. Afterwards a single cluster
can be selected by a drop-down menu again, while the single pictures are chosen by
activating radio buttons. The app is able to run with a YAML-based file only, this yields
summary statistics of the raw cluster data. If an annotation (GTF) is available, it com-
pletes the summary statistics by including the biological information of transcript type
and gene type. In addition, sequence information (FASTA) is used for generating a pic-
ture of the secondary structure, while the transcript length is used to draw a picture of
the motif locations within the transcripts. Hence, all three files have to be uploaded, to
utilise the visualisation methods in complete an thus allow increased interpretability.

The third main panel ‘All Cluster’ contains a single plot, that displays all clusters by their
cluster scores on a two-dimensional dot plot. This enables an initial comparison and
offers first indications of biologically functional motifs. Therefore two drop-down menus,
one per axis, allow to select the score names used to plot the cluster data points. The
size of the data points denotes the number of motif-presenting sequences in a cluster,
while transparency of data points correspond to the ratio of the number of transcript
IDs to the number of motif-presenting sequences within a specific cluster. Hence, big
and pale coloured dots indicate clusters with many motif-presenting sequences, from
which several share a transcript ID, so that single transcripts contain multiple copies of
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Figure 3.10: ‘Single Cluster’ panel of the RNA cluster interpretation framework. Visualisa-
tion by summary statistics and further plots are available for each cluster. Thereby,
the user can choose between a single plot or an overview, that entails all picturesm
but of smaller size. Nevertheless biological information like gene type or transcript
type is included, only if an annotation is available (GTF). Otherwise all transcripts
are tagged as novel transcripts.

the specific motif. Small, intense coloured dots, in contrast, signalise clusters consisting
of few transcripts, that contain a motif on average once. Furthermore, the dot plot
highlights clusters of control sequences (‘spike-ins’) by colouring dots red and labelling
them by the corresponding cluster IDs. Thus, the user gets a fast overview whether
the expected granularity of known RNA classes, which where mixed in the initial set
of sequences, was determined correctly. This knowledge can then be used for further
comparative analysis (meta-analysis).

The last main panel ‘Meta-analysis’ provides further analysis methods. Its input box is
made up of several reactive elements that allow to restrict the meta-analysis to a subset
of clusters as well as a subset of sequences per cluster. This restriction is necessary
for cost reasons, especially to save time. Clusters of interest can be chosen by at least
one double slider, while each slider represents a cluster score and its range observed
within the cluster data. The restriction of sequences is achieved by, firstly, three check
boxes, which include respectively exclude sequences in/from the meta-analysis, that
were assigned to the cluster by sequence similarity or structure similarity or by an an-
other method based on the clustering tool(i). Secondly, a score is usable for shrinking
the set of sequences. Therefore the user has to select one of the available scores
by activating the corresponding radio button. Additionally, to select the most reliable
sequences, the user has to define the direction of the score optimisation, since some
scores – the minimum free energy for example – are optimised by decreasing values,
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Figure 3.11: ‘All Cluster’ panel of the RNA cluster interpretation framework. The plot allows
an initial comparison of the clusters in accordance to their scores. Two scores can
be selected on the left by their names, one for each axis.

while most other are optimised by increasing values. Finally, sequences meeting both
requirements, similarity type (i) and score (ii) , can be further restricted by using exclu-
sively a certain percentage. After restricting the data, the analysis is started by clicking
the ‘GO!’ button. In this way a matrix of the pairwise cluster distances is computed,
which can be used for further analyses. Exemplarily, a heatmap was choosen to depict
the result of the meta-clustering together with a distance tree. A heatmap transfers the
values of a distance matrix into a colour code. The matrix elements of the closest clus-
ters are coloured red, while elements of increasing distance tend to blue. A distance
tree supports the visualisation by fitting the distances into a hierarchical order, with the
most distant cluster pair as root and the most closest as leafs.

Background computations of the RNA cluster interpretation framework
One essential point of the implementation of the RNA cluster interpretation framework
is the development of input elements of reactive choices. Many panels described in the
layout require input elements of selection, whose option lists (values) depend on the
uploaded data. For example drop-down menus are used at the ‘All Cluster’ panel. They
allow to choose the specific scores for the axes of clustering dot plot and thus need to
include score names as options. Hence, the option lists have to be reactive by them-
selves, if the score names change. But, input elements integrated in the user-interface
script ui.R do not allow reactive choices. Thus, most of the input elements have to
be defined within the server script server.R, like all other reactive functions. How-
ever, SHINY provides methods to adapt user-interface objects within the server script:
renderUI({}) and uiOutput(). The function renderUI({}) allows to create HTML
objects in the server script, albeit they are usually defined in ui.R. The second func-
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Figure 3.12: ‘Meta-analysis’ panel of the RNA cluster interpretation framework. This anal-
ysis allows to compare clusters by computing pairwise distances. The user has to
restrict the data set to clusters of interest and subsets of sequences (left). Finally
a heatmap with a guide tree is computed to visualise the distance matrix (right).

tion uiOutput() defines then the user-interface object. Thus, reactive values can be
extracted from the uploaded data, like for instance the score names, and can be used
to rebuild the specific input element according to the new option list. In this way the
application becomes more user-friendly, because it automatically adjusts itself to the
data.

However, before choosing data, the upload and integration is needed. Three different
file types (YAML, FASTA, GTF) are required by the RNA cluster interpretation framework.
Although the R packages YAML [Ste14], RTRACKLAYER [LGC09] and GENOMICFEA-
TURES [LHP+13] provide functions for reading these three file types, only the sequence
information from the FASTA file is afterwards directly usable. The cluster data (YAML)
and the annotation data (GTF), instead, need some adaptations.
The imported YAML object has to be checked for the standard RNA cluster data structure
firstly, because the YAML format enables to transfer structured objects of any kind. To
verify the required RNA cluster format, a set of functions was developed, that depend
on each other. The function is.validClusterList(), for example, checks whether
imported YAML objects are lists of valid clusters, that in addition share the same score
names. Thereby, the function is.validClusterSet() is called to test each cluster
for the two required sub-lists ‘META’ and ‘CLUSTER’, which describe the metadata and
the motif-presenting sequences of a cluster. In accordance to the further substruc-
ture of the standard RNA cluster data structure, verification functions are available
for all sub-elements, similar to an object-oriented approach. After verification of the
YAML object, the score names are saved globally to allow the use of the scores by



Chapter 3: Framework for efficient biological interpretation of functional RNA motifs 49

their true names. Furthermore, metadata and cluster data of each cluster are trans-
formed into data frames to make access as well as filtering more comfortable. Thereby,
further columns are added. Thus, the ‘META’ data frame gets the entries NrOfSeqs,
that describes the number of motif-presenting sequences within the specific cluster,
IDs_UNIQUE, that depict the number of unique transcript IDs, and WITH_CONTROL to
show whether the cluster entails control sequences. In the ‘CLUSTER’ data frame only
one column is added. It is named ANNOTATION and contains information about the se-
quences annotation state. Three states are possible: ‘CONTROL, NOVEL and KNOWN. The
last value is set in case of an available annotation, that contains the specific transcript
ID.
After all, if a valid cluster list is available, a drop-down menu, that uses the cluster IDs
as options, is built at the ‘Data’ panel. The user is now able to select a cluster by its
ID. This cluster ID is then used to extract the cluster specific data. Since ‘META’- and
‘CLUSTER’ data are still data-frame objects, they can be easily rendered to a HTML table
object and finally printed. In contrast to the ‘META’-data table, which is directly printed,
the ‘CLUSTER data is linked to another condition. The user has, in particular, the option
to select a subset of entries that should be printed by using a double slider. Hence, the
data frame is supposed to react to these selections. Accordingly, a separate reactive
function is needed for rendering and displaying the ‘CLUSTER data frame.
The annotation data are imported from a GTF file by the R package GENOMICFEA-
TURES. The corresponding function makeTranscriptDbFromGFF() reads the file and
generates a SQLite database. Unfortunately, the package is designed for protein-coding
sequences only, so that entries are just filtered by the feature types ‘gene’, ‘mRNA’,
‘exon’ and ‘CDS’. Hence, some informations of non-coding transcripts may be lost dur-
ing the import process. Furthermore, the ninth column ‘further attributes’ of the GTF

is ignored completely, because these information does not belong to the standard-
ised part of the format. This column provides data like the transcript type, the gene
type or the gene symbol. However, the transcript and gene type is required to im-
port biological knowledge to the RNA cluster interpretation tool. Thus, on the one
hand the uploaded GTF has to be checked for these required elements, while on the
other hand the SQLite database has to be complemented by an additional filtering
for the feature type ‘transcript’ as well as by an additional table including gene type
and transcript type. To solve all three problems at once, a new import function was
implemented called gtf2txdbWithGnTtypes(). This function is based on the func-
tion makeTranscriptDbFromGFF() from the package GENOMICFEATURES. This stan-
dard function, firstly uses the package rtracklayer to import the data into a data
frame, while rows are simultaneously filtered by the feature types mentioned above.
Finally it builds the database structure. The new function gtf2txdbWithGnTtypes()

trades on these intermediate steps. It adds the feature type ‘transcript’ to the filter-
ing, which is used during the initial import of the data, so that it does not lose non-
coding transcripts. If the data frame is successfully imported, it is checked for the col-
umn names ‘gene_type’ and ‘transcript_type’. If they are missing, the computa-
tion is cancelled with an error message. Otherwise, the SQLite database is build by
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default. Afterwards an additional table is added by using another new function called
addGnTtypesTable(). These function takes a data frame as well as an existing tran-
script database and creates a SQLite conform table, that is added to the given database.
Thereby, the data frame has to contain the columns ‘transcript_id’, ‘gene_type’ and
‘transcript_type’, where the first becomes the foreign key, that link the additional an-
notation to the transcripts. However, a third function is needed, to get this information
back from the database. For this reason, the function getGnTtypes() is provided. It
takes as mandatory argument a transcript database, that includes the ‘gene/transcript
type’ table. If this parameter is given only, the complete ‘gene/transcript type’ table is
returned. If additionally the optional argument ‘transcripts’ – a vector of transcript IDs
– is defined, the subset of the corresponding entries is returned, instead. Since all
returned annotations are again data frame objects, the usage and the output is handy.
The imported annotation information is afterwards used to adapt the current ‘CLUSTER’
data frames of the clusters. Thereby, the annotation state is adapted by searching the
database for all transcript IDs marked as NOVEL, i.e. non-annotated. The annotation
level is changed to KNOWN, if the transcript ID has been found within the database. In
this case, the columns GENE_TYPE and TRANSCRIPT_TYPE are added additionally.

The initial adaptations of the input data enables finally to visualise the clusters by several
summary statistics and further plots as well as the computations of the meta-analysis.
Since visualisation is spread over three panels of the user-interface (‘Single Cluster’, ‘All
Cluster’, ‘Meta-analysis’) and, furthermore, the meta-analysis depends on the results of
the summary statistics, the generation of the corresponding plots and figures is com-
puted separately for each panel.
The visualisation of single clusters is needed for individual interpretation. Hence, the
majority of the pictures has to be computed at the panel ‘Single Cluster’. For reasons
of effectiveness, all pictures are computed at once. In this way one can take advantage
of the internal list structure, which is used for the cluster data. On the one hand, it al-
lows to apply a single function easily stepwise to each cluster, so that for all clusters
finally the same pictures are available. On the other hand, R provides packages, that
distribute the list entries over several compute nodes and thus allow parallel processing.
Such packages are, for example, PARALLEL [R C14] and SNOW [TRLS13]. Afterwards,
all pictures are available and the user can switch quickly between them. For comput-
ing the pictures the non-reactive function visualiseCluster() was implemented, that
defines all kind of required plots and pictures by calling their specific functions. These
functions are implemented separately. This allows to add further plot or pictures in a
simple way, because only the single function visualiseCluster() has to be adapted.
visualiseCluster() itself is called by a reactive function out of the server script, so
that it is recomputed just in case of exchanged data. At the moment seven histograms
and four Venn diagrams are provided as well as a motif location plot and a picture of the
secondary consensus structure:
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Histogram_By_

AssignmentType

This histogram shows the distribution of the motif-
presenting sequences to the similarity levels used to as-
sign the sequences to the cluster: CORE, STRUCTURE,
SEQUENCE. It may hint at true secondary structure clusters,
if most sequences are assigned to the cluster by the sec-
ondary structure or by the ‘core’ method depending on the
clustering tool (see Fig.A.1).

Histogram_By_

GeneType /

Histogram_By_

TranscriptType

Both histograms are similar to the Histogram_By_

AssignmentType. They just split the bars additionally by
using the biological knowledge of gene type respectively
transcript type. Thus, the user can distinguish, for exam-
ple, clusters of protein-coding genes from clusters of non-
coding RNAs (see Fig.A.2/A.3).

Histogram_By_

CORE_IDs

This bar plot just focuses on motif-presenting sequences
used initially to build the cluster, i.e. they were assigned
to the cluster by the ‘CORE’ method. This set is more dif-
ferentiated, so that the the sequences are grouped by the
corresponding transcript IDs. In this way, one could see
if the initial cluster model is based on either a single tran-
script or on several transcripts (see Fig.A.4).

Histogram_By_

<score>

In this histogram the distribution of a sequence score
(<score>) is depicted. Since the score name depends on
the uploaded data, the histogram name is adapted, corre-
spondingly. Furthermore, several scores are allowed, that
is why a histogram is computed for each score name given
for a motif-presenting sequence (see Fig.A.5).

Histogram_

NrOfTxFragments

InCluster

NrOfTxFragmentsInCluster is a abbreviation for the
number of transcript fragments occurring within the spe-
cific cluster. It counts for each transcript ID the number of
motif-presenting sequences, that occur in this cluster. This
may hint at repeating motifs (see Fig.A.6).

Histogram_

NrOfTxFragments

Outside

NrOfTxFragmentsOutside is a abbreviation for the num-
ber of fragments, whose transcript IDs overlap with other
clusters. It counts the number of motif-presenting se-
quences of other clusters, that share a transcript ID, which
occur in the current cluster. This may hint at transcripts of
several different motifs (see Fig.A.7).
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VennDiagram_<all>

_transcripts

A Venn diagram is another method to display overlap be-
tween distributions. Here, the transcript IDs are assigned
to the similarity level, that was used to assign a motif-
presenting sequence to the cluster (CORE, STRUCTURE,
SEQUENCE). The diagram finally depicts, whether all tran-
scripts were assigned by a specific similarity level. Such a
Venn diagram is available for all sequences of a cluster or
for the subsets CONTROL sequences, NOVEL sequences or
KNOWN sequences. Hence, <all> is replaced by the specific
tag for each Venn diagram (see Fig.A.8-A.11).

2DStructure_TOP5 This graph displays the consensus secondary structure of
the motif based on the top five sequences of this clus-
ter. The graph includes a colour code, that depicts both
the structural conservation and the conservation on se-
quence level. Thereby, each each consensus base pair is
considered, where red denotes for all aligned sequences
the same base-pair at this position, yellow encodes two
different base-pairs, cyan three, green four, blue five and
purple all six different Watson-Crick base-pair constella-
tions. The colours become paler if incompatible base-pairs
are included [LBH+11]. This means, bright red empha-
sises conservation on sequence level, while bright blue
to purple emphasise compensatory mutations and thus
secondary structure conservation. This picture provide a
prompt overview of the conservation degree and arrange-
ment (see Fig.A.13).

Locations_Of_

Motif_In_TXs

In this figure the motif-presenting sequences are mapped
to their corresponding transcripts. Hence, the local po-
sitions are shown, which may point to dominant regions
within the transcripts (see Fig.A.12).

All histograms are generated by the R package GGPLOT2 [Wic09], while the picture of
the motif location within the transcripts is build by the package ggbio [YCL12], which is
based on ggplot.
The Venn diagrams, instead, were computed by the R package VENNERABLE [Swi13].
But, additional functions were needed to catch the exception, that a set of sequences is
defined by just one group. In this case, VENNERABLE builds the Venn diagram object,
but throws an error if the object should be printed. Hence, the function vennDiagrams()

was reimplemented. It re-uses the generation of the basic Venn diagram object, but af-
terwards this object is integrated into a new class, that checks the object for the single
group error and catches this error. If a single-group Venn diagram occurs, a simple cir-
cle is drawn, similar to the VENNERABLE Venn diagrams, based on R package GRID [R
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C14]. The corresponding generic functions print() and plot() are now able to plot
all Venn diagrams up to a size of three groups.
The picture of the secondary structure of a motif, is computed externally (outside of R) by
using LOCARNA [WRH+07] and RNAALIFOLD [BHW+08]. For that reason, the function
motif2fasta() was implemented to extract the motifs sequences and export them to a
FASTA file. The function get2Dstructure(), in turn, calls firstly motif2fasta(), sec-
ondly LOCARNA to generate the matrices of base pair probabilities, and thirdly RNAAL-
IFOLD to generate the pictures. Finally, the function imports the pictures, which are in
Postscript format, by using the R package GRIMPORT [Mur09].

However, the visualisation of the cluster data by summary statistics and motif pictures
is still time consuming, because the user has to check all clusters. Hence, the overview
plot (see Fig.3.11) is supposed to point out clusters of possibly biological functionality,
so called clusters of interest. Based on this plot the user is able to consider more specif-
ically single clusters. The overview plot is a simple dot plot of the given cluster scores,
generated by ggplot.
Last but not least, by using the knowledge about clusters of interest, a meta-analysis
allows to recognise further relationships of the clusters, so that granularity can be cor-
rected to get a more credible result, and aims to detect structural similarities between
clusters which have not been found by GRAPHCLUST. The meta-analysis is based
on the tools LOCARNA and RNACLUST [Rei10]. The pipeline, again, starts with the
function motif2fasta(), that generates a FASTA file for each cluster of interest corre-
sponding to the user-defined restrictions. Each FASTA file is then used to align and fold
the sequences by LOCARNA to get the consensus base pair probability matrix of each
cluster. Afterwards, these probability matrices are compared pairwise by RNACLUST

to get the distance matrix of the clusters of interest. The distance matrix can be used
finally in different ways. A basic method is to represent the matrix by a hierarchical clus-
ter tree or by a heatmap. Both concepts are realised at once by using the R package
PHEATMAP [Kol13].

All in all the RNA cluster interpretation framework provides a web application that is
able to handle standardised clustering results together with corresponding sequence
and annotation data. Several functions are implemented to import, visualise and further
analyse these data. Hence, a basic approach complements the clustering tools and
thus allows to detect secondary structure motif within these data.

3.3 Application by using a T cell transcriptome data
set

The complete pipeline of the GRAPHCLUST clustering tool and the RNA cluster inter-
pretation tool was applied to transcriptome data of human T cells to identify functional
secondary structure motifs within differentially expressed transcripts. However, before
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starting the overall process, the parameters of GRAPHCLUST have to be adjusted to the
data to get the most reliable result. Afterwards these resulting clusters can be easily
analysed and interpreted.

3.3.1 Data

Transcriptome data
The data used for cluster analysis derives from an transcriptome analysis of human T
cell samples. This analysis aims at the elucidation of the differentiation process of naive
T-helper cells (CD4 single positive) to Th1-effector cells. This process was induced by
activation through antibody interaction, while the antibodies αCD3 and αCD28 were
used. CD3 antibodies are needed, because the T cell receptor (TCR) is associated with
the CD3 receptor, which in turn is essential to transmit the activation signal into the cell.
The CD28 antibodies, instead, cause a co-stimulatory signal, that is needed by the cell
to recognise foreign cells and preserve auto-reactivity [Kau14].
The transcriptome analysis is applied to the naive state, the effector state and the Th1
state as well as at different time points after activation: 0h, 2h, 24h, 72h. After sequenc-
ing and assembling differential expressed transcripts [LHA14] are extracted that show a
false discovery rate of less than 0.01.
The dataset was, furthermore, restricted to just intergenic transcripts, i.e. sequences,
which to not overlap protein-coding regions. The final dataset consists of 9166 se-
quences of an average length of 1.4 kb.

Control sequences
The Rfam database [LRB+12] collects information about non-coding RNAs that share
similar secondary structures motifs and classifies them into families, clans and classes.
Thereby, RNA families are defined as sets of well alignable, homologous sequences
of the same function. Clans are RNA families, that own the same ancestor, but differ
strongly either in sequence or in function. Classes instead collect families of common
characteristic sequence and/or structure features, while evolutionary relation is not nec-
essarily required [LRB+12]. This classification provides a quick overview and thus elu-
cidation of relationships and functions. While short ncRNAs can be classified well by
their secondary structures, it is still open whether common sequence and/or structure
motifs among lncRNAs exist. To assess the overall quality of the GraphClust output, a
set of structurally well-characterised short ncRNAs classes was downloaded from the
Rfam database and used as control sequences, so called ‘spike-ins’, during the cluster-
ing process. Thereby, the quality is tested by comparing the expected number of control
clusters (number of used RFAM classes) to the number of the clusters computed by
GRAPHCLUST.

Finally, a set of four RNA families was chosen as control data. It includes SNORNA73
(RF00045), a family of the small nucleolar RNAs H/ACA class, snoCD11 (RF00538)
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a family of the snoRNA C/D class, tRNA (RF00005) and the miRNA let-7 precursor
(RF00027). From each but one family 20 members were randomly chosen. Since, fam-
ily snoCD11 (RF00538) contains only 26 members, the whole family was used.
To recognise these RNAs as control sequences, the sequence identifiers (FASTA head-
ers) were adapted by the suffixes ‘snoRNAcd’, ‘snoRNAhaca’, ‘miRNA’ and ‘tRNA’.

Annotation
The annotation data of the human genome was taken from the GENCODE project
[HFG+12], where release 19 (Ensembl release 73, 09.2013) was the most recent ver-
sion at the beginning of this project.

3.3.2 Parameter setting of GRAPHCLUST

The RNA clustering tool GRAPHCLUST is a collection of different tools, resulting in
a range of parameters (>35), which need to be defined. To verify the installation of
GRAPHCLUST and to adjust the parameters in accordance to the data, that should be
analysed, the intergenic T cell data was mixed with the Rfam control sequences.
Initially, GRAPHCLUST was started by default. Unfortunately, no control sequences oc-
curred in the computed clusters. However, testing each parameter and their combina-
tions is highly time consuming. That is why, five important parameters were selected:
The first parameter varied was the number of iterations (1), it allows to find new cluster

parameter description default variation
(1) GLOBAL_iterations number of GRAPHCLUST

iterations
2 5, 10

(2) GLOBAL_num_clusters number of new cluster candi-
dates per iteration

10
100, 1000,
2000, 5000

(3) nspdk_knn_center number of densest vectors,
that initially define a cluster
within the NSPDK

20 5

(4) OPTS_nspdk -D 3 the distance of root nodes of
features within the NSPDK

3 1, 6

(5) OPTS_nspdk -R 3 radius of the subgraphs of
features within the NSPDK

3 1, 4

Table 3.2: Five important parameters of GRAPHCLUST varied during the parameter con-
figuration. ‘parameter’ – GRAPHCLUST internal name of the parameter. ‘default’ –
default value. ‘variation’ – values tested additionally. NSPDK – NEIGHBOURHOOD

SUBGRAPH PAIRWISE DISTANCE KERNEL

candidates and further cluster members for all clusters computed up to this point. By
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changing this value from 2 to 5, the Rfam families of both snoRNAs types (RF00045,
RF00538) were found in complete and grouped in well separated clusters. Members
of the tRNA family (RF00005) was just found in a mixed cluster, with six missing tRNA
members and additional non-control sequences, by applying 10 iterations. The miRNAs
(RF00027) could not be found up to this point. For that reason GLOBAL_num_clusters

(2) was firstly altered into 100 and 1000. Both values increased the number of tRNAs
(to 18 resp. 19), but the miRNAs were still missing.
Furthermore, the combination of both parameters (1) and (2) was checked. The result
remained roughly unchanged. Only the parameter setting of GLOBAL_iterations=10
and GLOBAL_num_clusters=1000 was able to find all four of the Rfam families, while all
but the tRNAs were again grouped in well separated clusters. To refined the result, this
parameter setting was tested in combination with nspdk_knn_center (3). This parame-
ter allows to in-/decrease the number of vectors, that define a candidate cluster. Hence,
lower values yield slightly specific clusters in most cases, so that more members, es-
pecially in case of tRNAs, can be found. That is why this parameter (5) was decreased
from 20 to 5. As a result each of the control clusters contained several non-control se-
quences and the tRNA cluster was split in five single clusters. Hence, the default value
yielded a more reliable granularity (true number of clusters).
An alternative is to change the parameters NSPDK distance (4) and the NSPDK radius
(5), that allow to refine the feature vectors used to find candidate clusters. In case of
higher values more and larger subgraphs are compared to each other. Hence, the infor-
mation content is more specific. If the value is decreased, less and smaller subgraphs
are compared and the information content of the feature vectors is lower. Both values
were altered into the minimal and maximal values supposed by the GRAPHCLUST au-
thors, so that all combinations of radius r ∈ {1,3,4} and distance d ∈ {1,3,6} were
checked. For time reasons, the parameter GLOBAL_num_clusters=100 (2) was basi-
cally used in this test, because it was the quickest test yielded both snoRNA clusters
and the tRNAs. However, decreasing the NSPDK distance (4) and the NSPDK radius
(5) led to the loss of all control clusters, while by increasing the result remained un-
changed again. Thus, refinements are not expected by these parameters.
To finally reduce computation time, but preserve clusters of all four Rfam families, the
GLOBAL_num_clusters (2) was altered again to 2000 and 5000 clusters per iteration,
while all other parameters are used by default. As a result, 2 iterations of each 5000
clusters yield the same result as 10 iterations of each 1000 clusters, but is above one
day faster (1d 14h↔ 2d 23 h).

These results depend on three values per Rfam family: the number of clusters contain-
ing the control sequences, the number of the overall sequences of the specific clusters
and the number of control sequences in these clusters. They were controlled manually
for cluster, that contains sequences of an Rfam family. However, a objective measure of
the overall accuracy of the results can be statistically computed by the F-measure:
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F = 2 ·
T P

T P+FN ·
T N

T N+FP
T P

T P+FN + T N
T N+FP

= 2 · recall · precision
recall + precision

(3.2)

where TP and TN denotes the true positive respectively true negative sequences, while
FP and FN denotes false positive and false negative sequences. Hence, the F-measure
allows to consider both the recall (true positive rate) and the precision (true negative
rate) of a classification test in a combined manner [WRH+07].
Since each control cluster should just contain the sequences of a specific Rfam family,
TPs are clustered control sequences of one Rfam family, while FPs are sequences of
other Rfam families as well as non-control sequences. In addition, FNs are sequences
of the Rfam familie, which where not found, while TN is a empty set, because no other
sequences are allowed. Thus, the F-measure of the Rfam families is given by:

F = 2 ·
|R f am_ f amiliyx

⋂
cluster|

|R f am_ f amiliyx| · |R f am_ f amiliyx
⋂

cluster|
|cluster|

|R f am_ f amiliyx
⋂

cluster|
|R f am_ f amiliyx| + |R f am_ f amiliyx

⋂
cluster|

|cluster|

(3.3)

The F-measures are presented in Fig.3.13. Thereby, the results are the average F-
measures of all parameter test, that use the specific parameter given at the x-axis with
the specific value. The results confirm the manually result mentioned above. Hence,
the most accurate parameter setting is given by GLOBAL_iterations=10 and GLOBAL-

_num_clusters=1000, while all other parameters are used by default.

Figure 3.13: Results of GRAPHCLUST validation with 4 Rfam RNA families. Five important
parameters were selected to set the parameters of GRAPHCLUST in accordance to
the transcriptome data.
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3.3.3 Characterisation of derived clusters

To finally show the application of the RNA cluster analysis tool developed during this
work, the result of the most reliable parameter setting (10 iterations of 1000 cluster)
should be exemplarily analysed. Thus, the dataset consists of the sequences of the four
Rfam families as well as of the T cell transcripts. They are grouped GRAPHCLUST in
3225 clusters.

After transformation of the clustering output into the standard RNA cluster format, the
dataset can be uploaded to the RNA cluster analysis tool. In addition, two files can
be imported: the FASTA file used initially to run the clustering GRAPHCLUST, and the
GENCODE annotation as GTF file.

Figure 3.14: Dot plot ‘All Clusters’ – Overview of an exemplary clustering result.

To get an first overview of the clusters, the ‘All Cluster’ panel is chosen, which shows a
dot plot of the distribution of the clusters by their scores. Since GRAPHCLUST provides
exactly two cluster scores, the mean pairwise identity (MPI_TOP5) and the structure
conservation index (SCI_TOP5) of the top five sequences, these scores are automati-
cally chosen for the x- and the y-axis of the plot. The plot, shown in Fig.3.14, depicts
a cloud of data points that runs from bottom left to top right. The dot size and the
transparency seem to increase in the same direction. Hence, the clusters on the left
consists of comparatively few motif-presenting sequences, which all belong to different
transcripts, so that each transcript entails the motif just once. The clusters on the right,
instead, are made up of numerous motif-presenting sequences, while on average each
transcript exhibit multiple copies of this motif.
Nevertheless, for interpretation, one has to consider the cluster scores. Since structural
motifs are wanted, the SCI has to be above 50%, because it assesses the similarity
of RNAs on structure level. The MPI, which describes the RNA similarity on sequence
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level, should be in the range of 60-90%, because a minimum of sequence similarity is
needed by the underlying alignment algorithms, while the maximum should not be ex-
ceeded, because in this case it is not clear which feature is the important one. Thus, the
set of potentially, biologically functional clusters can be reduced to this range. These
clusters of interest are marked manually in Fig.3.14 by a green frame. However, it is
easy recognisable, that the similarity on sequence level is either in a higher level or in a
lower level, while in the space between only a few clusters exist.
In addition to the cluster of interest, mentioned above, a second group, marked in the
dot plot by a red frame, may be of biological importance. These dots have, in particular,
a very low MPI, but a relatively high SCI of above 60% und thus are quite interesting.
A further nice feature of the overview dot plot is the identification of clusters, that contain
control sequences, i.e. sequences of the Rfam families. These clusters are coloured
red and labelled by the cluster ID. In this way, it is easy to see that the obtained gran-
ularity of control clusters does not match the expected granularity, i.e. the number of
Rfam families. By switching to the ‘Data’ panel, one can see that cluster 29 includes the
sequences of the snoRNA C/D class, cluster 49 the members of the snoRNAs HACA
class and cluster 1824 the miRNA sequences. The other three control clusters (242,
346, 119) contain tRNAs, while cluster 119 entails most of them. All control clusters
show both high SCI and high MPI, and on average only one motif per transcript. Hence,
the parameter setting is all right.

All of these facts can be used for the meta-analysis of the clusters, which allows to find
further relationships. The restriction of the overall dataset is sensible, because unneces-
sary background alignments are prevented and thus computation time is reduced. The
main fraction of the clusters of interest (green frame) is further restricted to clusters of a
MPI between 60% and 80% and of a SCI >50%, since this is the most reliable range of
possibly, biologically functional structures. Each cluster was then reduced to all ‘CORE’
sequences, that defined the cluster initially. The result of this meta-analysis is pictured
in Fig.3.15. The heatmap in combination with a guide tree shows five reddish main ar-
eas, which denote relationships between the clusters. One can see that, for example,
the clusters 346 and 242 belong to same reddish main area. This is quite interesting,
because these are two of the three clusters that contain sequences of the tRNA family.
The third one is not included, because its MPI is higher than 80%. However, a better
trend is given by the guide tree. It signalise, that the cluster 346 is much closer to cluster
1824, which entails the miRNA precursor sequences. To consider this result, one can
switch to the ‘Single Cluster’ and have look at the summary statistics and other plots.
The comparison of both secondary structures shows that both of them are made of a
long and a short hairpin loops (cf. App.B.1). This means the meta-analysis seems to
find only rough similarities.The reason is, that LOCARNA, the tool which is uses to com-
pare the clusters by their base probability matrices, just performs a global alignment, so
that mismatches at the sequence ends influence the result. Furthermore, their pictures
of the motif location, does not show a trend of the motif location (cf. App.B.1). All in all
a biological relationship can not be concluded.
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Figure 3.15: Meta-analysis of potentially, biologially functional clusters. The heatmap de-
picts five reddish main groups, while guide tree facilitates comparisons. Bright red
fields denote stronger similarity, while blue fields mark quite distant clusters.

Another pair of clusters highlighted by the guide tree is build by cluster 444 and clus-
ter 154. Both clusters show again a quite different secondary structure, which entails
two hairpin loops, similar to clusters 346 and 1824, but the hairpins are less different
in length. Hence, it is not surprising, that all four of these clusters occur in one of the
reddish main areas of the heatmap. In contrast to the former cluster pair of tRNAs and
miRNAs, the clusters 154 and 444 contain non-control sequences only.
Their summary statistic plots, that depict the distribution of the transcript types in accor-
dance to the similarity level (used to assign a motif-presenting sequence to the cluster),
show that both clusters are mainly defined by structural similarity, while lincRNAs and
sense-intronic RNAs are included. By searching external databases like Ensemble, on
can now search for the now transcript IDs. For example ‘ENST00000580048’ of the
cluster 444 is an transcript, which is located in antisense to the zinc finger protein 407
(ZNF407). ‘ENST0000606434’ is located in antisense to the Steroid 5-alpha-reductase
(SRD5A1).

To sum up, the RNA cluster interpretation tool provides a simple method to visualise
and analyse a clustering result. The user can quickly filter clusters of possibly biological
function and is able to apply an meta-analysis to detect further relationships between
these clusters of interest. These are well represented and easy to recognise within in
a heatmap and the corresponding guide tree. The single cluster plots allow then to
compare such cluster pairs in detail, to search for preferences of the location of a motif
or to find functional similarities by using known transcripts IDs of the clusters. Hence, it
simplifies the overall result interpretation of an RNA clustering tool.
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4 Discussion and Outlook

It is well known, that the human genome is transcribed nearly entirely, while many of
these transcripts do not encode proteins. It is assumed, that the so called non-coding
RNAs represent an additional layer of genomic regulation. However, for the majority
of these transcripts the biological relevance and function still remain unclear. This is
particularly true for the large group of long ncRNAs (>200nt), because they often show
quite distinct sequences. Hence, functional elucidation by sequence similarity yield no
result. Instead, the three-dimensional structure of RNA molecules is expected to be
evolutionary conserved in case its function is essential and thus has to be preserved.
Since the three-dimensional structure is complex, prediction algorithms use as approx-
imation the secondary structure. Nevertheless, the clustering of RNAs based on their
secondary structure is still time consuming respectively impossible on a large scale, like
it is required for transcriptome data. Heyne et al. published with GRAPHCLUST the first
RNA clustering tool, that is intended to process large datasets in reasonable time.
Anyhow, during this work, it was shown, that GRAPHCLUST has three crucial drawbacks
in case of large dataset processing: 1. it uses BLASTCLUST to reduce sequence sim-
ilarity a priori, albeit this is known to be highly time consuming, 2. it generates one
large file of structure features, that becomes highly memory consuming, and 3. the text-
based output is not manually interpretable. As a first result of this work GRAPHCLUST

was adapted by replacing BLASTCLUST with CD-HIT-EST, a less sensitive, but con-
siderably faster clustering method based on sequence similarity. The advantage was
demonstrated. In contrast to the first drawback, the second is a fundamental problem,
which depends on the inherent data structure of feature vectors. Thus, the user still has
to restrict the dataset, if the vector file becomes to large. However, as main result, a
framework for efficient biological interpretation of functional RNA motifs was introduced
together with a standardised file format for RNA clustering results. These approach al-
lows to analyse and to interpret clustering results semi-automatically and independently
from the clustering tool in a visualised and interactive manner.
The standardised RNA cluster format is based on YAML, a human- and machine read-
able language for saving and sharing data in combination with their object-oriented data
structures. Thus, a simple flat file format is proposed, that entails all basically required
information of RNA clusters.
By using R and SHINY as basis of the framework, it was possible to realise a interactive
and reproducible web application, that can be provided via the internet. However, R
loads data in complete into the memory, which is quite complicate in case of large data.
On the one hand the use of databases was suggested, on the other hand parallelisation
of the computations, but the computation of several summary statistics and plots goes
beyond the scope of memory. Hence, plots of single clusters have be restricted firstly to
clusters of potentially biological relevance or have to be saved externally. Nevertheless,
these plots together with the ‘All Cluster’ overview dot plot as well as the ‘Meta-analysis’
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heatmap with guide tree supply a simple, but efficient method to get an fast overview of
the clustering result, to filter relevant information quickly and detect further relationships.
The framework is implemented in a modular way, so that further methods can be inte-
grated easily. For example, it is sensible to extend the meta-analysis by further meth-
ods, like computing the average silhouette width – a quality measure, that compares the
cluster internal distances with the intra-cluster distances [Rou87]. In addition, a boot-
strapping meta-analysis would yield more reliable results of relationships [MW09].
Beside the meta-analysis, the available biological information has to be enlarged. Know-
ing the transcript ID and the transcript type is a first step, but for functional elucidation
further information is needed. Thus, the annotation database can be completed by
adding gene names (symbols), which are not accepted yet. Alternatively, an external
database can be used, for example, by using the R package BIOMART [DSBH09]. But in
this case data independence is lost. Last but not least, the covariance models could be
used to search the Rfam database for related, known structural RNA families, classes
or clans. The tool CMCOMPARE [EHH13] provides such comparisons.

Taken all together, the framework for efficient biological interpretation of functional RNA
motifs provides a basic method, which is required urgently to visualise, analyse and
interpret RNA clustering results, especially in case of large data. It is a user-friendly
method with high expandability, that generally complements clustering pipelines and
even so annotation pipelines.
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Appendix A: Plots of a single RNA cluster

Histograms

Figure A.1: Histogram_By_AssignmentType.

Figure A.2: Histogram_By_GeneType.

Figure A.3: Histogram_By_TranscriptType.
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Figure A.4: Histogram_By_CORE_IDs.

Figure A.5: Histogram_By_CM_SCORE.

Figure A.6: Histogram_NrOfTxFragmentsInCluster.
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Figure A.7: Histogram_NrOfTxFragmentsInOutside.
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Venn diagrams

Figure A.8: VennDiagram_all_transcripts.

Figure A.9: VennDiagram_KNOWN_transcripts.

Figure A.10: VennDiagram_NOVEL_transcripts.

Figure A.11: VennDiagram_CONTROL_transcripts.
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Further graphics

Figure A.12: 2DStructure_TOP5.

Figure A.13: Locations_Of_ Motif_In_TXs.
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Appendix B: Comparison of clusters

(346) (1824)

Figure B.1: Comparison of cluster 346 and 1824 by their secondary structures and the mo-
tif location. Both structures show a long and a short hairpin loop, while a location
trend is not apparent from both motif location pictures.



70 Appendix B: Comparison of clusters

(154) (444)

(154)

(444)

Figure B.2: Comparison of cluster 154 and 444 by their secondary structures and their
transcript types. Both structures show roughly similar structures of hairpin loops.
The motif-presenting sequences are assigned to the cluster mainly by structure sim-
ilarity, while in particular no-coding RNAs are included.
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Figure B.3: [Motif locations of cluster 444. The locations of the motif 444 show no preference
to the 3’ or 5’ end. The transcript IDs of annotated sequences can be used to search
external databases for functional relationships.
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