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Abstract

A tourism company that offers fly-in safaris is faced with the challenge to route and schedule
its fleet of airplanes in an optimal way. Over the course of a given time horizon several
groups of tourists have to be picked up at airports and flown to their destinations within a
certain time-window. Furthermore the number of available seats, the consumption of fuel, the
maximal takeoff weight, and restrictions on the detour of the individual groups have to be
taken into account. The task of optimally scheduling the airplanes and tour groups belongs
to the class of vehicle routing problems with pickup and delivery and time-windows. A flow-
over-flow formulation on the time expanded graph of the airports was used in the literature
in order to model this problem as a mixed integer linear program. Most of the benchmark
problems however could not be solved within a time limit of three hours, which was overcome
by formulating the problem for a simplified (time-free) graph and the use of an incumbent
callback to check for feasibility in the original graph. While this approach led to very good
results for instances, where few time-free solutions were infeasible for the original problem,
some instances remained unsolved. In order to overcome this problem we derive two new exact
formulations that include time as variables. Although these formulations by themselves are
not better than the approach from the literature, they allow for an effective construction of
graphs which can be interpreted as intermediate graphs between the graph of airports and the
expanded graph with vertices for each visit. Using similar relaxation techniques to the time-
free approach and constructing these graphs based on solutions of the relaxations guarantees
that only critical airports are expanded. A computational study was performed in order to
compare the new formulations to the methods from the literature. Within a time limit of 3
hours the new approach was able to find proven optimal solutions for all previously unsolved
benchmark instances. Furthermore the average computation time of all benchmark instances
was reduced by 90 percent.

Keywords: Mixed Integer Linear Programming, Vehicle Routing Problem, Time-Dependent
Airplane Routing, Dynamic Graph Expansion.

1 Introduction and Literature Review

A company in southern Africa is offering safaris at several locations and is flying groups of tourists
from one location to another with small airplanes (with up to 12 passenger seats). Everyday
several tour groups have to be picked up at their respective current locations and to be flown to
their next destination within a given time-window. The operating cost mainly depends on the
overall distance flown by the airplanes, so that an optimized routing is crucial to the success of
the company. Since the tour groups usually consist of less people than the number of seats on the
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airplanes they are not necessarily flown directly to their destination. It is possible that their routes
include intermediate stops for refueling the airplane or picking up other groups on the way. The
number of intermediate stops and the length of the detour however are bounded in order to reduce
the inconvenience this practice imposes on each group. Furthermore fuel consumption has to be
tracked, not only because not all airports provide fuel for each airplane, but also due to differing
weight limits for takeoff and landing at the airports. We call this problem the air-travel scheduling
and routing problem (ASRP).

Although the ASRP is very specific in its constraints it does fit into the general framework of
vehicle routing problems with pickup and delivery and time-windows (VRP-PD-TW), to which just
finding a solution is already NP-hard, as shown by Savelsbergh [15], for the less general traveling
salesman problem with time-windows. In the literature, see for example Savelsbergh and Sol
[16], general mixed integer linear programs (MILP) for VRP-PD-TW can be found. These VRP
problems are usually defined on graphs whose only vertices are origins and destinations of the
transportation requests. In the ASRP, however, the number of stops at airports that provide fuel
is not known a priori, which necessitates the inclusion of additional vertices. Furthermore in the
ASRP several requests share origins and destinations, which in the VRP-PD-TW setting require
separate vertices connected by arcs of length zero. This introduces short cycles, and therefore
weakens the linear relaxations. For this reason a new, very specific MILP was derived for the
ASRP.

Fügenschuh et al. [9] were the first to study the ASRP. They proposed a time-indexed MILP
formulation based on a time-expanded network [7] derived from the graph of airports. Already
for problem instances with very few transportation requests, airplanes and airports the required
number of variables and constraints was too large to be handled by state-of-the-art MILP solvers.
Hence, when they implemented the time-indexed formulation for instances derived from real data,
even if the fleet was restricted to two airplanes, a 3 hour time limit for a MILP solver did not
suffice to find an optimal solution and prove its optimality.

In order to reduce the problem size they then used, what they called time-free relaxations. This
relaxation is structurally the same model but defined for the graph of airports with integer (and not
binary) variables for the airplane route instead of the time expanded graph with binary variables.
Since this formulation avoids all time indexes, it is by no means guaranteed that solutions of the
relaxations could be expanded to feasible solutions of the time-indexed model. In fact, they might
not even form continuous paths for the airplanes. The benefit of this relaxation, however, is that
often within seconds it provided much better lower bounds than the classical LP relaxation of the
time-expanded models. With an incumbent callback that cut off all solutions without a feasible
expansion and a high quality primal heuristic they were then able to reduce the optimality gap on
average to less than 5 % and even prove optimality of the solution in many cases.

The time-free formulation in [9] can be seen as a special case of what is sometimes referred
to as a time-bucket formulation [6] and has been applied to many graph based problems with
time-windows. The idea of these formulations is to use a time-expanded formulation, in which the
vertices are associated with time-intervals instead of single points of time and link them with arc
if one interval can be reached from the other. Other authors such as Wang and Regan [20] call
this the under-constrained network. Wang and Regan [21] also study the convergence of different
approaches of refinement of the intervals. The time-free approach in [9] formulation takes it to the
extreme as it uses only one interval (the whole time horizon) for each vertex.

Recently these kind of graphs have been used by Boland et al. [2] and He et al. [12] in their
dynamic discretization discovery algorithm, which they successfully applied to routing problems
constrained by time-windows. The idea of this algorithm is to define relaxations based on time-
bucket formulations and iteratively refine the buckets until the optimal solution of the relaxation is
feasible for the time expanded graph and therefore proven to be the optimal solution. Another use
of time-bucket formulations was found by Dash et al. [6], where a good time-bucket formulation
for the traveling salesman problem with time-windows is found by a heuristic and cutting planes
are used to cut off all infeasible solutions occurring due to the coarse refinement of the graph.

The problem we faced when using these methods was that even while the relaxations still
permitted cycles, the the time limit was exceeded for most benchmark instances. We attribute
this mainly to the fact that airports can be visited more than once and that it is not a priori
known how often an airport has to be visited. Cycles are therefore not necessarily infeasible and
cannot be cut off with additional valid inequalities for eliminating subtours as Vu et al. [19] did
to enhance the performance of the dynamic discretization discovery algorithm and Dash et al. [6]
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did to guarantee feasibility.

Another and maybe more common approach for dealing with time-window constraints is to
include the aspect of time explicitly with variables. For example, Solomon and Desrosiers [17] use
a model in their survey for vehicle routing problems with time-windows that includes variables for
the service time of each vertex. Gavish and Graves [10] give the first MILP formulation that uses
time variables indexed by arcs instead of vertices. However, both of these formulations cannot
directly be applied to the ASRP problem studied here, since vertices as well as arcs might appear
multiple times in the airplane paths of the optimal solution.

In this work we derive two formulations for the ASRP that combine ideas from time-bucket
formulations with arc based time-variables and extend the results and ideas we presented in [11].
We construct a network in which multiple vertices correspond to a single airport (as in the time-
bucket formulation), but we do not associate a certain time or time-bucket with the vertices.
Instead we require that each vertex can only be visited at most once and leave the arrival times
as variables in the MILP. It can therefore be considered as an expanded formulation with variable
time assignments. The first formulation, ASRP-ARC, is closer to the formulation given in [9] and
uses arc based variables for the requests. The second, ASRP-PATH, uses an extensive formulation
for the paths of the requests, where an x-variable in the MILP corresponds to a feasible path of a
tour group. Such a formulation was first used for vehicle routing problems by Balinski and Quandt
[1] and has been used as the basis of several column generation approaches by Toth and Vigo [18].
The time-free relaxation in [9] can be obtained from the first MILP by using only one vertex per
airport and allowing vertices to be visited more than once. With the time-free relaxation as a
basis we derive an algorithm, similar to the dynamic discretization discovery algorithm of Boland
et al. [2], to iteratively increase the number of vertices associated with each airport. Only few
iterations of this algorithm were necessary to find relaxations for all benchmark instances that have
an optimal solution that is feasible and therefore also optimal for the ASRP. Furthermore, at the
same time average computation time for the whole solution process, comparing to the time-free
approach run on the same hardware, was reduced from more than 4000 seconds to less than 400
seconds.

2 Two New MILP Formulations of the Problem

Following the notations introduced by Fügenschuh et al. [9] in the original description of the ASRP
we give a detailed description of it to provide the context and necessary notations for understanding
the following sections.

The fleet of airplanes of the company is denoted by the set P, whose elements correspond
to the airplanes that have to be scheduled and routed. The fleet of airplanes is inhomogeneous
and therefore different airplanes might require different parameter values in the model. For each
airplane p ∈ P the number of passenger seats is given by sp and the required type of fuel by ρp ∈ F ,
where F is the set of all fuel types.

When we use the term airport in the problem description we use it rather generously as even
improvised runways that provide nothing but a location to takeoff and land might be considered
airports in the ASRP. The set of all airports are denoted by V and the flight connections between
them by A ⊆ V × V. For each airport i ∈ V we denote by Fi the set of available fuel types. For
an airplane p ∈ P and a trip (i, j) ∈ A the flight distance is given by di,j ∈ R+, the traveling cost
by cpi,j ∈ R+, the flight duration by δpi,j ∈ R+, the required fuel by γpi,j ∈ R+, the fuel capacity by

f
p

i,j ∈ R+, and the maximum total payload at takeoff by wp
i,j ∈ R+.

Each tour group is associated with a flight request (request, for short), r ∈ R, with R as a
notation for the set of all requests. For a request r ∈ R the number of required seats sr ∈ N
and the total weight of the passengers and their luggage wr has to be specified. The routes of the
airplanes and requests are further restricted as follows. Each airplane p ∈ P has a given starting
point Dp ∈ V and a given final location Ap ∈ V. For each request r ∈ R the departure airport is
specified by Dr ∈ V and the destination by Ar ∈ V. Their routes are further restricted by an upper
bound on the maximal allowed detours dr ∈ R+ and a maximal allowed number of intermediate
stops Mr ∈ N0.

For the scheduling constraints, the airplanes can only operate between a time τpdep ∈ R+ and a
time τparr ∈ R+, and the requests r ∈ R cannot be picked up earlier than τ rdep ∈ R+ and have to
arrive at their destination before τ rarr ∈ R+. Finally, there are lower bounds ϕ

p
∈ R+ and upper
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bounds ϕp ∈ R+ for the amount of fuel carried at the initial departure and similar bounds ψ
p
∈ R+

and ψp ∈ R+ on the amount of fuel at the final airport of each airplane p ∈ P, in order to avoid
solutions with low-fuel airplanes far away from refueling airports.

Now, in order to derive the new MILP formulation for this problem we introduce some additional
notations. We denote by ni a given upper bound on the number of trips starting or ending in airport
i ∈ V (if not given in the data valid bounds can be calculated by taking flight durations and the
service times of the airplanes into account). We use these to define the extended set of airports
Vext as the set of all tuples i = (i1, i2) with i1 ∈ V and i2 ∈ {1, . . . , ni1} and the extended set of
trips Aext ⊂ Vext×Vext, with (i, j) ∈ Vext×Vext iff (i1, j1) ∈ A. For ease of notation all parameters
defined for airports in V and trips in A may be indexed by corresponding airports in Vext or trips
in Aext and take the same value. An overview for of the sets and parameters can be found in Table
1 and Table 2.

Notation Explanation
P set of airplanes
V set of airports
A set of connections between airports
R set of requests
F set of fuel types
Vext extended set of airports
Aext extended set of connections

Table 1: Sets for describing the ASRP.

Parameter Explanation
sp Number of seats on airplane p
ρp Required fuel type of airplane p
Fi available fuel types at airport i
di,j distance between airports i and j
cpi,j cost of airplane p flying from i to j

δpi,j duration of airplane p flying from i to j

γpi,j fuel consumption of airplane p on trip (i, j)

f
p

i,j maximal fuel capacity of airplane p on trip (i, j)
wp

i,j maximal payload of airplane p on trip (i, j)

sr number of passengers of request r
wr weight associated with request r
Dp, Ap arrival and departure airports of airplane p
Dr, Ar arrival and departure airports of request r

dr maximal allowed detour for request r
Mr maximal number of stops for request r
[τpdep, τ

p
arr] timw-window of airplane p[

τ rdep, τ
r
arr

]
time-window of request r

ϕ
p

minimal amount of fuel on airplane p at departure

ϕp maximal amount of fuel on airplane p at departure
ψ
p

minimal amount of fuel on airplane p at arrival

ψp maximal amount of fuel on airplane p at arrival
ni upper bound on the visits to airport i

Table 2: Parameters in the mathematical model.

4



2.1 A Time-Flow Formulation for the ASRP

The time-expanded formulation introduced by Fügenschuh et al. [9] had the major draw back
that the MILPs were too large to be solved by state-of-the-art solvers, even for problems with
only two airplanes. They circumvented this problem by eliminating the time index and using an
incumbent callback to check if the solution obtained by this relaxation was feasible for the original
model. If this was not the case the incumbent was rejected. The derivation of high quality time-
bucket formulations is difficult since the time-windows are associated with the requests and not
the nodes (airports), furthermore sub-tour elimination cuts, which have been successfully used for
many touring problems [5, 18], cannot be used since airports can be visited multiple times and
cycles therefore often appear in feasible solutions. Thus we give a new formulation, that uses a
commodity flow formulation with variables indexed by the arcs (which can traced back to Gavish
and Graves [10] for the traditional VRP) of a network. This network has the extended set of
airports Vext as vertices and the extended set of trips Aext as arcs. As it is a model for the same
problem, the variables and constraints are mostly adapted from the ones proposed in [9] to the
extended network, with additional variables and constraints for the modeling of the aspect of time.

2.1.1 Decision Variables

For the decisions concerning the routes of the airplanes we introduce variables

∀ (i, j) ∈ Aext, p ∈ P : ypi,j ∈ {0, 1}, (1a)

which are set to 1, iff (i, j) is part of the route of airplane p. Furthermore, due to the formulation
on the expanded network it is necessary to decide at which copy of its origin (destination) airport
the airplane departs (arrives). This decision is modeled by the variables

∀ p ∈ P, i ∈ Vext s.t. i1 = Dp : yp
dep,i ∈ {0, 1}, (1b)

∀ p ∈ P, i ∈ Vext s.t. i1 = Ap : yp
arr,i ∈ {0, 1}, (1c)

where a variable set to 1 corresponds to the decision of starting (finishing) at the respective copy.
Analogously the decisions for the routes of the requests are expressed by variables

∀ r ∈ R, (i, j) ∈ Aext, p ∈ P : xr,pi,j ∈ {0, 1} (1d)

and the decisions concerning departure and arrival of the requests by variables

∀ r ∈ R, p ∈ P, i ∈ Vext s.t. i1 = Dr : xr,p
dep,i ∈ {0, 1}, (1e)

∀ r ∈ R, p ∈ P, i ∈ Vext s.t. i1 = Ar : xr,p
arr,i ∈ {0, 1}. (1f)

The fuel consumption of the airplanes is tracked by continuous variables,

∀ (i, j) ∈ Aext, p ∈ P : fpi,j ∈ R+, (1g)

that take the amount of fuel on board of airplane p at takeoff from i on its trip to j as their values.
For the fuel on airplane p ∈ P at its first departure and the remaining fuel at its last arrival we
further introduce continuous variables

∀ p ∈ P, i ∈ Vext s.t. i1 = Dp : fp
dep,i ∈

[
0, ϕp

]
, (1h)

∀ p ∈ P, i ∈ Vext s.t. i1 = Ap : fp
arr,i ∈

[
0, ψp

]
. (1i)

The payload at takeoff of airplane p on the trip from i to j is given by the continuous variables

∀ p ∈ P, (i, j) ∈ Aext : wp
i,j ∈ R+. (1j)

Similarly to the tracking of fuel consumption, the schedule of the airplanes departures and arrivals
are tracked by continuous variables

∀ (i, j) ∈ Aext, p ∈ P : tpi,j ∈ R+, (1k)

that take the time airplane p arrives at j after starting at i as its value. For the initial and final
time we introduce variables

∀ p ∈ P, i ∈ Vext s.t. i1 = Dp : tp
dep,i ∈

[
0, τpdep

]
, (1l)

∀ p ∈ P, i ∈ Vext s.t. i1 = Ap : tp
arr,i ∈ [0, τparr] . (1m)
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2.1.2 Constraints

The following constraints are formulated to ensure that each feasible variable assignment corre-
sponds to an admissible solution of the ASRP. In both the movements of the airplanes, requests
and the consumption of fuel are modeled as commodity flows. In ASRP, however, we also model
the time as another commodity flow. Flow conservation is imposed on the variables for the routes
of the airplanes with the constraints

∀ j ∈ Vext, p ∈ P :
∑

i:(i,j)∈Aext

ypi,j +

{
yp
dep,j , if j1 = Dp,

0, else,

=
∑

k:(j,k)∈Aext

ypj,k +

{
yp
dep,j , if j1 = Ap,

0, else.

(2a)

Analogously flow has to be preserved on the routes of the requests, which is guaranteed by the
conditions

∀ j ∈ Vext, r ∈ R, p ∈ P :
∑

i:(i,j)∈Aext

xr,pi,j +

{
xr,p

dep,j , if j1 = Dr,

0, else,

=
∑

k:(j,k)∈Aext

xr,pj,k +

{
xr,p

dep,j , if j1 = Ar,

0, else.

(2b)

Additionally we have to ensure that each request is served by exactly one airplane by requiring

∀ r ∈ R :
∑

i∈Vext

i1=Dr

∑
p∈P

xr,p
dep,i = 1. (2c)

The bound on the number of intermediate stops of a request is ensured by putting constraints

∀ r ∈ R :
∑

(i,j)∈Aext

∑
p∈P

xr,pi,j ≤Mr + 1 (2d)

and the restrictions on the detours are ensured by constraints

∀ r ∈ R :
∑

(i,j)∈Aext

∑
p∈P

di,j · xr,pi,j ≤ dr. (2e)

The airplane routes and request routes are coupled by seat capacity constraints

∀ (i, j) ∈ Aext, p ∈ P :
∑
r∈R

(i,j)∈Aext

sr · xr,pi,j ≤ sp · y
p
i,j . (2f)

Since there are some airports that provide the required fuel type for an airplane and some that do
not, two different flow conditions are put for the fuel variables. For airports j ∈ V without fuel
provision for an airplane p ∈ P, that means ρp /∈ Fj , we impose

∀ j ∈ Vext, p ∈ P :
∑

i:(i,j)∈Aext

fpi,j +

{
fp
dep,j , if j1 = Dp,

0, else,

=
∑

k:(j,k)∈Aext

(
fpj,k + γpj,k · y

p
j,k

)
+

{
fp
arr,j , if j1 = Ap,

0, else.

(2g)

and otherwise, if ρp ∈ Fj holds

∀ j ∈ Vext, p ∈ P :
∑

i:(i,j)∈Aext

fpi,j +

{
fp
dep,j , if j1 = Dp,

0, else,

≤
∑

k:(j,k)∈Aext

(
fpj,k + γpj,k · y

p
j,k

)
+

{
fp
arr,j , if j1 = Ap,

0, else.

(2h)

6



For setting the correct bounds on the initial and final values we further require

∀ p ∈ P, i ∈ Vext s.t. i1 = Dp : fp
dep,i ≥ y

p
dep,i · ϕp

, (2i)

∀ p ∈ P, i ∈ Vext s.t. i1 = Ap : fp
arr,i ≥ y

p
arr,i · ψp

. (2j)

Similarly to the request variables the fuel variables are coupled to the airplane variables by capacity
constraints

∀ (i, j) ∈ Aext, p ∈ P : fpi,j ≤ f
p

i,j · y
p
i,j . (2k)

The payload weight is the sum of the weight of the assigned requests and the fuel on board, so we
set

∀ (i, j) ∈ Aext, p ∈ P : wp
i,j =

∑
r∈R

wr · xr,pi,j + fpi,j . (2l)

The restrictions on the maximum takeoff and the maximum landing weights depending on the
airports are incorporated by upper bounds on the payload weights

∀ (i, j) ∈ Aext, p ∈ P : wp
i,j ≤ w

p
i,j · y

p
i,j . (2m)

Although time is not a physical commodity the time variables can be seen as an abstract resource
that is picked up on the way. Therefore we impose flow conservation constraints

∀ j ∈ Vext, p ∈ P :
∑

i:(i,j)∈Aext

(
tpi,j + δpi,j · y

p
i,j

)
+

{
τpdep, if j1 = Dp and j2 = 1,

0, else,

≤
∑

k:(j,k)∈Aext

tpj,k +

{
τparr, if j1 = Ap,

0, else.

(2n)

The values of the variables for the initial departure (final arrival) time have to be restricted by
capacity constraints

∀ p ∈ P, i ∈ Vext s.t. i1 = Dp : tp
dep,i ≥ y

p
dep,i · τ

p
dep. (2o)

In [9] the time-windows of the requests were implicitly imposed by the construction of the time-
expanded graph. However, this is not possible when time-variables are used. Therefore we have to
use big-M -type constraints, to guarantee feasibility of the schedule of requests. Hence, we impose

∀ p ∈ P, (i, j) ∈ Aext, r ∈ R : tpi,j ≤ τ
r
arr +M(1− xr,pi,j ), (2p)

in order to guarantee feasibility of the arrival times of the request schedules. These constraints
are only restrictive when a request variable is set to 1 and therefore a request is routed on the
respective arc. In order to guarantee feasibility of the departure time we analogously impose

∀ p ∈ P, (i, j) ∈ Aext, r ∈ R : tpi,j ≥ τ
r
dep − 2M(1− xr,pi,j )−M(ypi,j − 1). (2q)

The flow conservation constraints only guarantee feasible assignments to the included variables if
each vertex can only be visited once. One of the problems with using a commodity flow formulation
and allowing nodes of the network to be visited multiple times is illustrated in Figure 1 for the
time variables. The flow on the sub-cycle can be shifted by any nonnegative constant K and
therefore allowing for non-admissible variable assignments. So, in order to prevent commodities
from skipping sub-cycles multiple visits to the same copy of an airports have to be abrogated and
we impose

∀ j ∈ Vext, p ∈ P :
∑

i:(i,j)∈Aext

ypi,j ≤ 1, (2r)

∀ j ∈ Vext, p ∈ P :
∑

i:(j,k)∈Aext

ypj,k ≤ 1. (2s)
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a b

c

d

ta,b = 0

tb,c = Ktc,b = K + δb,c

tb,d = δa,b + δb,c + δc,b

Figure 1: Possible variable assignments for a path with sub-cycle.

2.1.3 The MILP

In addition to these constraints we included all cuts that were already identified by Fügenschuh
et al. [9] to be effective for this problem in order to define the MILP, that we will refer to as the
Time-Flow Formulation (ASRP-ARC) for the Airline Routing and Scheduling Problem:

minimize
∑

(i,j)∈Aext

∑
p∈P

cpi,j · y
p
i,j

subject to (1a)− (1m),

(2a)− (2s).

(ASRP-ARC)

The objective function is simply a linear combination of the respective variables for the airplane
routes, because it is assumed that the operating cost only depends on the paths of the airplanes.

2.1.4 Computational Results

In this section we present computational results for the new formulation on the instances from
Fügenschuh et al. [9], that they used to show the effectiveness of the time-free approach. These
instances were derived from real world data, in which the fleet was restricted to contain two
airplanes with 5 or 12 seats. While the number of requests ranges from 10 to 23 and only 8 to 13
airports have to be considered. All results reported in this paper were obtained on a Macbook-Pro
2017 with an 3.1 GHz Intel Core i7 CPU and 16 GB of RAM. For solving the MILPs Cplex 12.6.3.0
was used.
The results for the ASRP-ARC can be found in Table 3 and the results for the time-free approach
results are reported in Table 4. In order to allow for a comparison the solver was initialized in
both cases with a primal solution found by the heuristic introduced by Fügenschuh et al. [9]. For
the results on the ASRP-ARC we further note that a tight estimation of the upper bounds on the
number of copies of the airports that provide fuel for an airplane is very difficult and is highly
dependent on a lot of the instance parameters. In order to avoid very large upper bounds for the
number of visits at those airports, the ni were estimated heuristically by taking the number of
visits in the primal solution plus two. Consequently a reported gap of 0% does not imply that the
found solution was proven optimal. However, in all cases the optimal solution coincided with the
ones found by an exact method introduced in the later sections.
The computation times reported for both problems show a high variance among the instances,
while some could be solved within a second many instances could not be solved to optimality
within the three hour time limit. The remaining optimality gap was often not even close to zero
but up to 16.5% for ASRP-ARC and up to about 21% for the time-free method. Since the number
of indexed copies of airports in the computational study of ASRP-ARC were not guaranteed to
allow for all optimal routes to be feasible, the given dual bounds (and therefore the gaps) are
not necessary valid for the ASRP. From the average objective value and computation times we
however can conclude that the ASRP-ARC allows for solutions of similar quality (even slightly
better) to be found in less time on average. It is also noteworthy that while the ASRP-ARC
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instance name b&c dual bd. obj. val. gap b&c time
BUF-AIV 12614 12614 0.00 % 133
BUF-ANT 16466 18519 11.09 % 10800
BUF-BEE 15177 17633 13.93 % 10800
BUF-BOK 12917 12917 0.00 % 482
BUF-EGL 18450 22113 16.56 % 10800
BUF-GNU 14890 17350 14.18 % 10800
BUF-JKL 17756 20774 14.53 % 10800
BUF-LEO 21211 24938 14.94 % 10800
BUF-NAS 15549 15549 0.00 % 266
BUF-OWL 15766 16898 6.70 % 10800
BUF-ZEB 14688 14688 0.00 % 8920
EGL-BEE 16322 16322 0.00 % 2
EGL-GNU 19225 19225 0.00 % 1147
EGL-LEO 19388 19388 0.00 % 2587
GNU-BEE 10906 11165 2.32 % 10800
GNU-JKL 10557 10557 0.00 % 786
GNU-LEO 17863 17863 0.00 % 1178
LEO-AIV 13615 13615 0.00 % 1
LEO-ANT 16678 16678 0.00 % 16
LEO-BEE 17814 18900 5.74 % 10800
LEO-BOK 15372 15372 0.00 % 40
LEO-JKL 17551 17551 0.00 % 320
LEO-NAS 18192 18192 0.00 % 23
LEO-OWL 15827 15827 0.00 % 5
Average 16033 16860 4.17 % 4713

Table 3: Computational results for ASRP-ARC.

needed less computation time on average, the time-free method clearly outperforms it on some of
the instances, such as BUF-AIV and BUF-BOK.

2.2 A Time Flow Formulation with Path-Indexed Variables for the Re-
quests

In model ASRP-ARC the requests are treated as commodities with additional constraints (2d)
and (2e). If the routes of all airplanes were fixed the decisions for the tours of the request are
reduced to the choice of an airplane and a pickup location. So, in principle, as an alternative to
the commodity flow it is possible to have one binary decision variable for each feasible path of the
requests. This kind of approach is rarely used for a simple reason: the number of feasible paths in a
graph is usually much larger than the number of arcs and therefore much more variables would be
required. In our case, however, this alternative approach seems to be promising since the number
of intermediate stops and the length of the tours are bounded. Therefore, if Mr or dr are small for
a request r ∈ R, path indexed decision variables might be worth considering. In the benchmark
instances which are derived from real-world data no path may include more than 2 intermediate
stops which implies that the number of feasible paths for a request is of order |Vext|2, which is of
the same order as the number of arc based variables.

We denote the set of all paths on (Vext,Aext) with first vertex Dr and final vertex Ar by Pr for
all r ∈ R and with a slight abuse of notation (arcs as elements of a path) define

∀ r ∈ R : Qr :=

 p ∈ Pr

∣∣∣∣∣∣
∑

(i,j)∈p

1 ≤Mr + 1,
∑

(i,j)∈p

di,j ≤ dr

 , (3)

the sets of the feasible paths. In order to derive a MILP based on decision variables indexed by
these paths we replace the variables (1d), (1e), and (1f) with variables

∀ r ∈ R, p ∈ P, q ∈ Qr : xqr,p ∈ {0, 1}. (1d’)
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instance name b&c dual bd. obj. val. gap b&c time
BUF-AIV 12614 12614 0.00 % 1
BUF-ANT 16353 20723 21.09 % 10800
BUF-BEE 16197 17633 8.14 % 8937*
BUF-BOK 12917 12917 0.00 % 2
BUF-EGL 19362 22113 12.44 % 10800
BUF-GNU 16762 17350 3.39 % 7525*
BUF-JKL 19155 20774 7.79 % 10800
BUF-LEO 22488 24938 9.82 % 10800
BUF-NAS 15549 15549 0.00 % 38
BUF-OWL 16797 16797 0.00 % 829
BUF-ZEB 14688 14688 0.00 % 162
EGL-BEE 16428 16653 1.34 % 10800
EGL-GNU 16862 20238 16.68 % 10800
EGL-LEO 19287 19388 0.52 % 10800
GNU-BEE 10257 11311 9.31 % 10800
GNU-JKL 10275 11098 7.42 % 10800
GNU-LEO 17863 17863 0.00 % 815
LEO-AIV 13615 13615 0.00 % 8
LEO-ANT 16678 16678 0.00 % 48
LEO-BEE 17306 18870 8.43 % 10800
LEO-BOK 15372 15372 0.00 % 4468
LEO-JKL 17551 17551 0.00 % 591
LEO-NAS 18191 18192 0.00 % 136
LEO-OWL 15827 15827 0.00 % 5
Average 16183 17032 4.43 % 5482
*16GB Memorylimit reached

Table 4: Computational results for the time-free approach.

The constraints then have to be adjusted to these variables. First of all, the constraints (2b),(2d),
and (2e) are already used in the definition of the request variables and are therefore omitted
without a replacement.

Instead of constraint (2c) we impose

∀ r ∈ R :
∑
p∈P

∑
q∈Qr

xqr,p = 1 (2c’)

which ensures that for each request exactly one feasible path is chosen. The constraints for the
weight and number of used seats on the arcs have to be adjusted. Hence, the seat capacity
constraint (2f) is replaced by

∀ (i, j) ∈ Aext, p ∈ P :
∑
r∈R

∑
q∈Qr

(i,j)∈q

sr · xqr,p ≤ sp · y
p
i,j (2f’)

and (2l) is replaced by

∀ (i, j) ∈ Aext, p ∈ P : wp
i,j =

∑
r∈R

∑
q∈Qr

(i,j)∈q

wr · xqr,p + fpi,j . (2l’)

Similarly (2p) and (2q), the constraints for the time-windows, are adjusted to the new variables
and replaced by

∀ p ∈ P, (i, j) ∈ Aext, r ∈ R : tpi,j ≤ τ
r
arr +M − 2M

∑
q∈Qr

(i,j)∈q

xqr,p +Mypi,j , (2p’)

∀ p ∈ P, (i, j) ∈ Aext, r ∈ R : tpi,j ≥ τ
r
dep −M +M

∑
q∈Qr

(i,j)∈q

xqr,p. (2q’)
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2.2.1 The MILP

Using the adapted constraints and variables we can define the second new MILP formulation
for the ASRP, which we call the Time-Flow Formulation with Extensive Request Path Variables
ASRP-PATH:

minimize
∑

(i,j)∈Aext

∑
p∈P

cpi,j · y
p
i,j

subject to (1a)− (1c), (1d’), (1g)− (1m),

(2a), (2g)− (2k), (2m)− (2o), (2r), (2s),

(2c’), (2f’), (2l’), (2p’), (2q’).

(ASRP-PATH)

Since the variables for the airplane paths did not change, the same objective function as in ASRP-
ARC is used.

2.2.2 Computational Results

Analogously to the computational study on ASRP-ARC we performed a test of ASRP-PATH for
the benchmark instances. The results can be found in Table 5. The results show that on average

instance name b&c dual bd. obj. val. gap b&c time
BUF-AIV 12614 12614 0.00 % 247
BUF-ANT 16111 19194 16.06 % 10800
BUF-BEE 14492 17520 17.29 % 10800
BUF-BOK 12917 12917 0.00 % 1395
BUF-EGL 18473 22113 16.46 % 10800
BUF-GNU 15202 17350 12.38 % 10800
BUF-JKL 18099 20774 12.87 % 10800
BUF-LEO 22122 24938 11.29 % 10800
BUF-NAS 15549 15549 0.00 % 284
BUF-OWL 15770 16898 6.68 % 10800
BUF-ZEB 14010 15088 7.14 % 10800
EGL-BEE 16322 16322 0.00 % 1
EGL-GNU 19225 19225 0.00 % 2119
EGL-LEO 19388 19388 0.00 % 4675
GNU-BEE 11165 11165 0.00 % 2081
GNU-JKL 10557 10557 0.00 % 585
GNU-LEO 17863 17863 0.00 % 2891
LEO-AIV 13615 13615 0.00 % 1
LEO-ANT 16678 16678 0.00 % 13
LEO-BEE 18900 18900 0.00 % 7327
LEO-BOK 15372 15372 0.00 % 39
LEO-JKL 17551 17551 0.00 % 371
LEO-NAS 18192 18192 0.00 % 6
LEO-OWL 15827 15827 0.00 % 5
Average 16084 16900 4.17 % 4518

Table 5: Computational results for ASRP-PATH.

the MILPs derived from ASRP-PATH were solved faster, although not by a large margin. When
comparing instance by instance, each formulation seems to be better suited for some.

3 Cutting Planes

Although several benchmark cases could be solved by directly solving the two MILP formulations
with a MILP solver, other instances still remain unsolved and it is not clear if they indeed out-
perform the time-free approach from [9]. A method that is known to have the potential to reduce
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computation time is to find valid inequalities (cutting planes), that have the potential to tighten the
linear relaxations and speed up the solution process (Fügenschuh et al. [8], Marchand et al. [13],
Cornuejols [4]). Therefore, in this section we describe two types of additional constraints that can
be added to the MILP formulations, such that maybe some but not all optimal solutions are cut off.

Copy Priority Cuts. While the indexing of the airports suggests that there is an ordering,
no such ordering has been imposed on the variables explicitly. Hence for any feasible solution there
are many solutions only differing in the index of the visited airport copies. Introducing additional
constraints that make some of these (often called symmetric) solutions infeasible, has often been
a very helpful tool for improving the performance of branch-and-bound solvers (see for example
Margot [14], Coelho and Laporte [3]). In order to break the symmetries inherent to the presented
formulations the constraints

∀ p ∈ P, j ∈ Vext, s.t. j2 6= nj :
∑

i:(i,j)∈Aext

ypi,j ≥
∑

i:(i,j)∈Aext

ypi,(j1,j2+1) (4)

∀ p ∈ P, j ∈ Vext, s.t. j2 6= nj :
∑

k:(j,k)∈Aext

ypj,k ≥
∑

k:(j,k)∈Aext

yp(j1,j2+1),k (5)

can be added, which we call Copy Priority Cuts. They explicitly impose that an arc to a copy
of an airport can only be used if there is already an arc going to the copy with index one less.
Inductively this implies that all copies with a lower index have to be visited in order to include a
copy of an airport that does not have the index 1, so these have priority for visits.

Useless Detour Cuts. So far we link request paths to airplane paths only by the seat capacity
constraints. It is easy to see that each arc included in an optimal path has to either serve a request
or contain a refueling airport. Otherwise the path could be shortened by the triangle inequality.
Consequently, for airports that do not provide fuel for airplane p we can impose cuts

∀ (i, j) ∈ Aext, p ∈ P : ypi,j ≤
∑
r∈R

xr,pi,j , (6)

∀ (i, j) ∈ Aext, p ∈ P : ypi,j ≤
∑
r∈R

∑
q∈Qr

(i,j)∈q

xqr,p, (6’)

without cutting off any optimal solutions. Since they literally prevent detours without a purpose
we call them Useless Detour Cuts.

Time Order Cuts. The Copy Priority Cuts (4), (5) do not require that copies with lower
index have to be visited first in the solution, as none of the time variables are restricted. With ω

,j,p

as the minimal time for airplane p ∈ P to leave from and return to airport j ∈ V the constraints

∀ p ∈ P, j ∈ Vext, s.t. j2 6= 1 : ωj,p,+

∑
i:(i,j)∈Aext

tpi,(j1,j2−1) ≤ (1− ypi,j)τ
p
arr + tpi,j (7)

impose an explicit timed ordering of the visited copies.

Time-Window Conflict Cuts. These cuts can only be formulated for the path based for-
mulation and are motivated by the following observation: Two feasible paths for two requests
not sharing an arc can only be assigned to the same airplane, if they can be flown in succession
without violating the time-windows of the requests. For two requests r1, r2 ∈ R and two paths
q1 ∈ Qr1 , q2 ∈ Qr2 that do not share an arc this can be expressed as conditions

τ r1dep + δpr1,q1+δpAr1
,Dr2

+ δpr2,q2 > τ r2arr

and

τ r2dep + δpr2,q2+δpAr2
,Dr1

+ δpr1,q2 > τ r1arr.

(8)

Therefore

∀ p ∈ P,∀ r1, r2,∈ R, q1 ∈ Qr1 , q2 ∈ Qr2 , s.t. (8) holds : xq1r1,p + xq2r2,p ≤ 1 (9)

is a valid inequality for the ASRP-PATH, which we call Time-Window Conflict Cuts.
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3.1 Computational Results

The computational study of the previous section was carried out on the same instances, with the
cutting planes added to the models. The results for ASRP-ARC with the cuts (4), (5), (6), (7) are
presented in Table 6 and the ones for ASRP-PATH with the same cuts and additionally (9) are
presented in Table 7.

instance name b&c dual bd. obj. val. gap b&c time
BUF-AIV 12614 12614 0.00 % 76
BUF-ANT 17607 20049 12.18 % 10800
BUF-BEE 14221 17633 19.35 % 10800
BUF-BOK 12917 12917 0.00 % 320
BUF-EGL 18569 22113 16.03 % 10800
BUF-GNU 14877 17350 14.25 % 10800
BUF-JKL 18350 20774 11.67 % 10800
BUF-LEO 21477 24938 13.88 % 10800
BUF-NAS 15549 15549 0.00 % 236
BUF-OWL 16797 16797 0.00 % 4168
BUF-ZEB 14688 14688 0.00 % 7264
EGL-BEE 16322 16322 0.00 % 1
EGL-GNU 19225 19225 0.00 % 646
EGL-LEO 19388 19388 0.00 % 269
GNU-BEE 11165 11165 0.00 % 806
GNU-JKL 11098 11098 0.00 % 213
GNU-LEO 17863 17863 0.00 % 1633
LEO-AIV 13615 13615 0.00 % 1
LEO-ANT 16678 16678 0.00 % 7
LEO-BEE 17219 18900 8.89 % 10800
LEO-BOK 15372 15372 0.00 % 8
LEO-JKL 17551 17551 0.00 % 48
LEO-NAS 18192 18192 0.00 % 5
LEO-OWL 15827 15827 0.00 % 12
Average 16134 16944 3.52 % 3805

Table 6: Computational results for ASRP-ARC with cuts (4), (5), (6), (7).

In both cases only 7 instances remain with a non-zero gap. Furthermore the average compu-
tation time and the average gap were reduced as well. The performance of the two formulations
differs from instance to instance, so that we cannot conclude that one clearly outperforms the
other. These results further indicate, that these approaches only work well for some instances, as
several instances remain unsolved for any of the two formulations and also the time-free approach
of [9].

When we looked at the best solution found and the number of copies in the model for each
airport (which was not even an exact estimate), there was a significant over-estimation of the
number of required copies. The derivation of good estimations, that are correct upper bounds
however is difficult, because there might be feasible solutions with very similar objective value,
that have a highly differing number of visits to some airports (for example due to refueling). If
an a priori estimate is difficult, similar to the time-free approach, information and routes obtained
from relaxations could be useful in order to find proven optimal solutions. In the time-free approach
the time index was deleted in an aggregated formulation, in the new formulation the variables for
the copies of the same airports are candidates for an aggregation approach. In the following we
show, how the ideas of the time-free approach can be used effectively for the two new formulations
in order to find more compact models, which have solutions that are proven optimal for the ASRP.
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instance name b&c dual bd. obj. val. gap b&c time
BUF-AIV 12614 12614 0.00 % 73
BUF-ANT 17624 18519 4.83 % 10800
BUF-BEE 16259 17633 7.79 % 10800
BUF-BOK 12917 12917 0.00 % 597
BUF-EGL 19429 21900 11.28 % 10800
BUF-GNU 14481 17350 16.53 % 10800
BUF-JKL 18643 20774 10.25 % 10800
BUF-LEO 22056 24938 11.55 % 10800
BUF-NAS 15549 15549 0.00 % 209
BUF-OWL 16797 16797 0.00 % 2409
BUF-ZEB 14688 14688 0.00 % 9530
EGL-BEE 16322 16322 0.00 % 1
EGL-GNU 19225 19225 0.00 % 634
EGL-LEO 19388 19388 0.00 % 703
GNU-BEE 11165 11165 0.00 % 248
GNU-JKL 11098 11098 0.00 % 80
GNU-LEO 17863 17863 0.00 % 4344
LEO-AIV 13615 13615 0.00 % 1
LEO-ANT 16678 16678 0.00 % 5
LEO-BEE 18386 18900 2.71 % 10800
LEO-BOK 15372 15372 0.00 % 6
LEO-JKL 17551 17551 0.00 % 188
LEO-NAS 18192 18192 0.00 % 1
LEO-OWL 15827 15827 0.00 % 2
Average 16324 16872 2.71 % 3943

Table 7: Computational results for ASRP-ARC with cuts (4), (5), (6), (7), (9).

4 Relaxations of the MILPs Underestimating the Number
of Necessary Airport Copies

Although our model does not fit the traditional time-bucket formulation, it still allows for similar
relaxation techniques to be used. Instead of introducing nodes representing intervals for including
multiple of the discrete points of time, it is possible to reduce the number of copies of airports
in Vext. In order to guarantee that it is in fact a relaxation some slight changes have to be made
to the models ASRP-ARC and ASRP-PATH. First of all, since an arc may be traversed multiple
times in the optimal solution some y-variables have to be integer instead of binary. Furthermore
constraints (2r) and (2s), which enforce that each copy can only be visited once, are in conflict
with the idea of using less copies than necessary. It however suffices to exempt one copy from this
constraint, resulting in the new conditions

∀ j ∈ Vext, s.t. j2 6= nj , p ∈ P :
∑

i:(i,j)∈Aext

ypi,j ≤ 1, (10)

∀ j ∈ Vext, s.t. j2 6= nj , p ∈ P :
∑

i:(j,k)∈Aext

ypj,k ≤ 1. (11)

Now if an arc is traversed multiple times by the same airplane, the corresponding time and fuel
variables have to store the summed values of each trip. As a consequence not only their upper
bounds have to be omitted but at the same time (2q) has to be changed. We replace it with

∀ p ∈ P, (i, j) ∈ Aext, r ∈ R : tpi,j ≥ τ
r
dep − 2M(1− xr,pi,j )−M(ypi,j − 1), (12)

∀ p ∈ P, (i, j) ∈ Aext, r ∈ R :

tpi,j ≥ τ
r
dep − 2M(1−

∑
q∈Qr

(i,j)∈q

xqr,p)−M(ypi,j − 1). (12’)
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Where the second term softens the constraint if the ypi,j is greater than 1. With these changes we can
define MILPs that are relaxations of ASRP-ARC and ASRP-PATH for any combination of values
for nj with j ∈ V. From now on we refer to these relaxations as intermediate time-flow formulations
for the ASRP and to formulations with correct bounds nj as the fully expanded formulation. If the
optimal solution of any such relaxation is feasible to ASRP-ARC (resp. ASRP-PATH) then it is also
optimal for ASRP-ARC (resp. ASRP-PATH). Note that for a sufficient number of copies feasibility
is guaranteed, if the instance has a solution. The simplest intermediate time-flow formulation is
obtained by setting nj = 1 for all j ∈ V. It is, however, also the furthest from guaranteeing
feasibility. The next step is to find intermediate time-flow formulations that are relatively easy
to solve and presumably are feasible. In order to do so we developed Algorithm 1 which has the
goal to construct intermediate graphs efficiently based on previously checked relaxations with too
few copies of some airports. Since the time-free relaxation of Fügenschuh et al. [9] already had a

Algorithm 1: Iterative Construction of Relaxations

Data: a full parameter description of the airplane routing problem
1 for i ∈ V do
2 ñi ← 1;

3 CurrentReduction ← Relaxation of the Time-Flow MILP with ni = ñi for all i ∈ V;
4 Solve CurrentReduction;
5 CurrentSolution ← Optimal solution of CurrentReduction;
6 while CurrentSolution is infeasible for Time-Flow MILP do
7 for i ∈ V do
8 stops ← the maximum of the total number of arrivals and departures from i in

CurrentSolution;
9 if ñi < stops then

10 ñi ← the total number of visits to i;

11 CurrentReduction ← Relaxation of the Time-Flow MILP with ni = ñi for all i ∈ V;
12 Solve CurrentReduction;
13 CurrentSolution ← Optimal solution of CurrentReduction;

14 OptimalSolution ← CurrentSolution

relatively small gap, Algorithm 1 is initialized with a similar relaxation in which each airport has
only one indexed copy (line 2). If the obtained routing and schedule is already feasible for a fully
expanded formulation, the optimal solution has been found. Otherwise the loop starting in line 6
is entered. Here, only the number of copies of those airports is increased which are visited more
often than its current number of copies (lines 9, 10). If in the optimal solution of an intermediate
formulation each copy is visited no more than once, then no cycles are included on the routes and
feasibility to fully expanded formulations is ensured. Consequently the number of copies of at least
one airport is increased in each iteration and the loop terminates in finitely many iterations. We
note that for the computational studies we improved Algorithm 1 in such a way that all other
infeasible solutions found during the branch-and-bound process with better objective than the
currently known optimum are abrogated by introducing additional copies. This led to less loop
iterations and therefore a reduced number of MILPs that had to be solved.

5 Computational Results

In order to test the effectiveness of Algorithm 1 for the ASRP-ARC and ASRP-PATH we performed
a computational study on the same benchmark instances as before. Its results are then be compared
to the ones previously obtained for the models where the number of copies was fixed. The results
for the arc based model can be found in Table 8 and the results for the path based model in
Table 9. We tested 4 (5 for the ASRP-PATH) different configurations of cutting planes, which all
included (4) and (5) as they necessary for applying Algorithm 1, namely: No additional cutting
planes, each cutting plane individually, and all cutting planes at the same time. Instead of giving
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instance cutting planes b&c dual bd. obj. val. gap b&c time iterations
BUF-AIV (6),(7) 12614 12614 0.00 % 1 1
BUF-ANT (6) 18225 18225 0.00 % 80 3
BUF-BEE (6),(7) 17120 17120 0.00 % 171 2
BUF-BOK (6),(7) 12917 12917 0.00 % 2 1
BUF-EGL (6),(7) 21575 21575 0.00 % 865 2
BUF-GNU (6),(7) 17350 17350 0.00 % 1132 3
BUF-JKL (6),(7) 20374 20374 0.00 % 6761 4
BUF-LEO (6) 22888 22888 0.00 % 1112 2
BUF-NAS (6),(7) 15549 15549 0.00 % 3 2
BUF-OWL (6),(7) 16797 16797 0.00 % 28 2
BUF-ZEB (6) 14688 14688 0.00 % 28 2
EGL-BEE (6),(7) 16322 16322 0.00 % 2 2
EGL-GNU (6),(7) 19225 19225 0.00 % 6 4
EGL-LEO (6),(7) 19388 19388 0.00 % 4 2
GNU-BEE (6),(7) 11165 11165 0.00 % 33 3
GNU-JKL (6) 11098 11098 0.00 % 14 2
GNU-LEO (6) 17863 17863 0.00 % 12 2
LEO-AIV (6),(7) 13615 13615 0.00 % 0 1
LEO-ANT (6),(7) 16678 16678 0.00 % 1 1
LEO-BEE (6) 18900 18900 0.00 % 599 3
LEO-BOK (6),(7) 15372 15372 0.00 % 4 3
LEO-JKL (6),(7) 17551 17551 0.00 % 3 2
LEO-NAS (6),(7) 18192 18192 0.00 % 2 3
LEO-OWL (6),(7) 15827 15827 0.00 % 1 1
Average (6),(7) 16722 16722 0.00 % 609 2.3
Average (6) 16710 16729 0.09 % 825 2.4
Average (7) 16666 16899 1.07 % 1987 2.5
Average None 16628 16737 0.54 % 2558 2.7

Table 8: Computational results for ASRP-ARC with Alg. 1.

a long list of all results for all of the tested configurations, only the best result per instance and
the overall averages are reported. In both cases the results vary between the instances, but overall
the inclusion of all cutting planes is best for most instances. Furthermore it is the best on average
in both cases followed by only using the Useless Detour Cuts (6). Although they still perform
much better than the models with a fixed number of copies the configurations with only (6), (9),
(7), or no cutting planes are worse by a rather large margin. This indicates that the cutting plane
(6) is the most important for reducing computation times. We observed that without this cut in
some of the instances it is possible for solutions to exist that include detours only to reach a copy
of higher index. This then allows for the unwanted variable assignments, which were previously
depicted in Figure 1. With the addition of (6) these detours are infeasible if no request is served
while visiting a copy of an airport, which therefore potentially reduces the number of copies that
have to be introduced. When comparing the results for the two different new formulations it is also
visible that ASRP-PATH is indeed an improvement over ASRP-ARC. We mainly attribute this to
the short maximal length of the requests routes and the small number of copies necessary to find
a proven optimal solution. For instances in which this is not the case we expect ASRP-ARC to
be superior as the number of variables in ASRP-PATH is very sensitive with respect to those two
characteristics.

6 Conclusions

In this paper we presented two new MILP formulations for the ASRP proposed by Fügenschuh
et al. [9]. Instead of using arrival times as additional indices these formulations incorporate
the aspect of time in form of variables. In computational experiments we found that we had to
heuristically bound the number of visits to the airports for them to be applicable. With a state-of-
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instance cutting b&c obj. val. gap b&c iter.
name planes dual bd. time
BUF-AIV (6),(7),(9) 12614 12614 0.00 % 1 1
BUF-ANT (6) 18225 18225 0.00 % 134 3
BUF-BEE (6),(7),(9) 17120 17120 0.00 % 298 2
BUF-BOK (6),(7),(9) 12917 12917 0.00 % 2 1
BUF-EGL (6),(7),(9) 21575 21575 0.00 % 808 2
BUF-GNU (6),(7),(9) 17350 17350 0.00 % 455 4
BUF-JKL (6),(7),(9) 20374 20374 0.00 % 3153 4
BUF-LEO None 22888 22888 0.00 % 857 4
BUF-NAS (6),(7),(9) 15549 15549 0.00 % 2 2
BUF-OWL (6),(7),(9) 16797 16797 0.00 % 14 2
BUF-ZEB (6),(7),(9) 14688 14688 0.00 % 20 2
EGL-BEE (6),(7),(9) 16322 16322 0.00 % 1 2
EGL-GNU (6),(7),(9) 19225 19225 0.00 % 3 3
EGL-LEO (6) 19388 19388 0.00 % 3 2
GNU-BEE (6) 11165 11165 0.00 % 33 3
GNU-JKL (6),(7),(9) 11098 11098 0.00 % 7 2
GNU-LEO (9) 17863 17863 0.00 % 8 2
LEO-AIV (6),(7),(9) 13615 13615 0.00 % 0 1
LEO-ANT (6),(7),(9) 16678 16678 0.00 % 0 1
LEO-BEE (9) 18900 18900 0.00 % 238 4
LEO-BOK (9) 15372 15372 0.00 % 3 3
LEO-JKL (9) 17551 17551 0.00 % 4 2
LEO-NAS (6),(7),(9) 18192 18192 0.00 % 1 3
LEO-OWL (6),(7),(9) 15827 15827 0.00 % 0 1
Average (6),(7),(9) 16722 16722 0.00 % 344 2.2
Average (6) 16710 16718 0.04 % 809 2.5
Average (7) 16673 16742 0.34 % 1572 2.5
Average (9) 16651 16724 0.36 % 2036 2.5
Average None 16672 16722 0.25 % 2012 2.8

Table 9: Computational results for ASRP-PATH with Alg. 1.

the-art MILP solver we were then able to find feasible solutions for the benchmark instances with
objective values comparable to the best known upper bounds from the literature. However, due to
the use bounded number of visits, no conclusions for the lower bounds can be made. In order to
overcome this downside we showed that relaxations which can be interpreted as partially expanded
formulations can be used. With the use of Algorithm 1 we were able to effectively construct
intermediate graph expansions and solve all benchmark instances to proven optimality. In addition
to that we managed to do this while reducing the average computation time by over 90 %. But,
further improvements might be possible, since so far only information about incumbent solutions of
previous iterations is used in Algorithm 1. All additional information obtained during the branch-
and-bound step (such as infeasible branches) is neglected. We observed that a large percentage
of the overall computation time is spent until the lower bound reaches the objective value of the
previous iteration. A branch-and-bound algorithm that not only cuts off solutions based on the
LP-relaxation, but also by using information from branch-and-bound-trees of previous iterations
might reduce this time significantly. Finally we note that the proposed methods are not restricted
to the ASRP and it seems to be worth investigating whether such a reduction in computation time
can be achieved for problems of similar structure. Especially routing problems in which locations
can be visited multiple times are candidates for our method, since in this case many conventional
methods cannot be applied.
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