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Abstract

Reconstruction of the 3D shape information is a fundamental problem in computer vision.
Among different shape recovering technologies, photometric stereo is highlighted for its
capability to produce high quality 3D reconstruction. This dissertation generalizes pho-
tometric stereo in different aspects towards creating a practical 3D reconstruction. The
proposed techniques can be considered as a fundamental support to develop future cameras
offering 3D shapes for various applications such as movie and video game industry, medical
sciences, virtual reality, automotive driving and etc. The first generalization is developed
for addressing specularities in 3D reconstructions and also involving the perspective pro-
jection. These attempts lead to remove the limitation of working with diffuse materials and
confined projected scenes. We will prove the applicability of our approach using complex
scenes like endoscopy images. In the second proposed approach, we will offer a real-time
3D reconstruction of micro-details with a more generalized reflectance model. Moreover,
a recurrent optimization network will be provided. These innovations lead to presenting
the 3D reconstruction of details which are even invisible to human eyes like micro-prints
on the banknote. This information recovery can be used in various areas such as detecting
security items on financial documents for fraud detection and also the quality control of
any industrial productions including delicate details such as printed circuits. In the third
proposed model, we develop a PS reconstruction technique using neural networks for the
uncalibrated PS where the light direction is not available. Finally, for the first time, benefit-
ing from deep neural networks and meta heuristic algorithms, we will devise an approach
which can deliver high qualified 3D shape from the internet and out-door images, without
any pre-necessary knowledge.
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Deutsche Zusammenfassung

Die Rekonstruktion von 3D Gestaltinformationen ist eine fundamentale Aufgabenstellung
im Computer-Vision Bereich. Unter den verschiedenen Techniken ist das sogenannte Pho-
tometrische Stereo Verfahren (PS) hervorzuheben, da es im Vergleich zu anderen Ansätzen
ein höheres Potenzial für eine hoch genaue 3D Rekonstruktion besitzt. Diese Arbeit be-
fasst sich mit Verallgemeinerungen klassischer PS-Ansätze, die dieses Potenzial weiter
ausschöpfen sollen. Die Entwicklungen können beispielsweise verwendet werden, um
in Zukunft die 3D Information in verschiedensten Bereichen für einen Anwender zu er-
schließen, wie etwa in der Medizin, der Film- und Videospieleindustrie, beim autonomen
Fahren oder für Anwendungen in der virtueller Realität. Die erste der Neuentwicklun-
gen betrifft die systematische Verwendung von hellen Lichtreflexionen in der Berech-
nung der 3D Rekonstruktion sowie die perspektivische Projektion. Hierdurch werden
Beschränkungen üblicher Methoden, wie auf die Rekonstruktion diffus reflektierender Ma-
terialien und auf relativ weit entfernte Objekte, aufgehoben. Die Anwendbarkeit des en-
twickelten Ansatzes wird mittels der Rekonstruktion aus endoskopischen Bildern mit vie-
len hellen Lichtreflexionen untermauert. In einem weiteren Schritt wird gezeigt, wie man
in Echtzeit eine 3D Rekonstruktion auch von sehr feinen Details mittels eines verallge-
meinerten Reflexionsmodells erreichen kann. Hierdurch werden hochaufgelöste Rekon-
struktionen auch von Details erreicht, die für das menschliche Auge in Bildern unsichtbar
sind. Hieraus ergeben sich viele potenzielle Anwendungsmöglichkeiten, etwa im Bere-
ich der automatischen Detektion von Mikrodruck, die im Sicherheitsbereich Verwendung
finden, oder in der industriellen Produktion für die Detektion sehr feiner Strukturen wie
etwa gedruckter Schaltkreise. Als ein weiterer Beitrag der Arbeit wird ein Verfahren für
das sogenannte nicht-kalibrierte PS entwickelt, bei dem neuronale Netzwerke verwendet
werden, um die in diesem Fall fehlende Information der Beleuchtungsrichtung auszugle-
ichen. Weiterhin wird zum ersten Mal in der Literatur beschrieben, wie man basierend
auf Metaheuristiken und tiefen neuronalen Netzen eine qualitativ hochwertige 3D Rekon-
struktion allein mittels Bildern aus dem Internet oder natürlichen Bildern ohne weiteres
zusätzliches Wissen erlangt.
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Chapter 1

Computer vision

1.1 Introduction

In computer vision as the science of automatic analysis of useful information, our aim is

doing an inverse operation. It means that we try to describe the world that is seen in one or

more images and to reconstruct its characteristics such as shape, translucency, illumination,

color and texture distributions. It is fascinating that humans and animals do this task very

easily and unconsciously using their neural resources, while computer vision techniques

are so prone to error because it is an ill-posed problem due to the loss of depth information

and inferences. People who have not experienced this field may underestimate difficulties

in this area. For example, providing a software which is able to recognize and name all

the people in an image is very challenging and hard task. This misinterpretation that vision

should be easy dates back to the early days of emerging artificial intelligence, when it was

initially believed that the cognitive (logic proving and planning) parts of intelligence were

intrinsically more difficult than the perceptual components [26]. The good point is that

computer vision is very popular in a wide variety of real-world applications. Some of them

can be mentioned as:

∙ Biological information: Studying and processing of our biological vision system us-

ing some visual mechanisms from retina to cortex for different tasks such as mimick-

ing the behaviour of biological systems at different levels of complexity, biometric-
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based visual identification of people and inventing various robotic helpers. This also

led to some of the learning-based methods e.g. image and feature analysis or classi-

fication based on the neural net and deep learning approaches.

∙ Quality control: Providing automatic inspections to ensure the quality of products

or looking for defects. To illustrate, by exploring a series of physicochemical charac-

teristics of goods such as its maturity, size, weight, shape, color, the existence of dirt,

diseases, stem, seeds, sugar content, etc. These features can cover all components

influencing the appearance of a product and properties related to its conservation.

∙ Object recognition: This task can be applied to different fields such as automated

checkout lanes, security monitoring, alerting and detection of the anomaly.

∙ Medical imaging: This topic includes a wide range of processing techniques in

medical sciences. For example, registering pre-operative and intra-operative imagery,

performing long-term studies of brain morphology, intelligently aiding the surgeon,

producing data to provide us with the better diagnosis, treatment and prediction of

diseases.

∙ 3D modeling : Automated construction of 3D models from images used in different

systems such as bing maps, movie and video game industry, medical sciences to pro-

vide detailed models of organs, architectural models, designing of new devices and

vehicles, the earth science community to construct 3D geological models and phys-

ical devices that are built with 3D printers or Computer Numerical Control (CNC)

machines.

∙ Automotive safety: As the study and design of equipment for detecting unexpected

obstacles to minimize traffic collisions, accidents, improving road safety, developing

driver assistance and self-driving cars.

This extensive range of applications is due to this fact that computer vision systems present

a considerable amount of information about different attributes of scene analyses. In addi-

tion, this technology provides the possibility of studying scenes in the level of the electro-

magnetic spectrum in which the human visual system is not sensitive, such as ultraviolet
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radiation (UV) or infrared (IR) spectral regions.

Our rich human visual system is capable to perceive diverse essential information about

the three-dimensional (3D) configuration of objects, using different cues. This 3D impres-

sion as the shape of real-world objects is done automatically by our brain when we are

looking at the environment. Much of our 3D vision can be even perceived already from

2D images. A common question for researchers is whether a computer vision system can

provide this brain ability for a variety of applications such as modern future cameras, scene

understanding and describing, industrial modeling, robotics, virtual reality, etc. Inspired

by the evolution of capturing devices and many modern trends one may conjecture that the

need of reliable and fast methods for 3D shape reconstruction is going to increase and this

may represent an important building block of future mainstream multimedia applications.

Understanding human cognition is also another increasing interest in analyzing 3D shapes

of facial surfaces with various applications such as Human-Computer Interaction (HCI),

facial surgery, biometrics, 3D animation and video communications.

A classification of 3D shape from X techniques can be provided based on the structure of

these techniques. They can be divided into two types of approaches: geometric based meth-

ods and photometric based techniques. Geometric approaches such as multiview stereo and

structure-from-motion give sparse 3D points based on finding correspondence points on im-

ages and triangulation operation on projection rays.

Many input images taken from different viewpoints and constant illumination should be

provided for these approaches (please refer to [113] for a survey). The detailed quality of

produced 3D points depends on the performance of correspondence matching because the

similarities in appearance of multi-view images make difficulties for matching correspond-

ing points [38]. For further reading on stereo vision (cameras calibration, stereo matching

algorithms, reconstruction, etc.), we refer the reader to a research provided in [128]. In

general, multiview stereo and structure-from-motion focus on obtaining the rough depth

(coarse shape information) using geometric constraints instead of the highly detailed sur-

face. On the other hand, photometric approaches like Photometric Stereo (PS) and shape

from-shading offer a dense normal field using shading information. This shading informa-

tion are caused by shading variations in images due to the interactions of shape (surface
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normal orientation), reflectance and lighting.

To illustrate, we can consider a rectangle white plane and a cylindrical bottle which has a

rectangle shape in its front side with an equal size of the rectangle white plane. Taking im-

ages from both objects with the same viewpoint produces two rectangles of the same sizes.

But we can recognize the differences and the 3D volume of the bottle since the image of

plane presents constant reflected light intensity; whereas the bottle shows brighter intensity

in areas closing to the light source (and vice versa). This basic idea of shading information

as the gray level changes are considered as changes in the direction of the surface normal

which display the 3D shape.

Shape from focus is another scheme for 3D shape reconstruction. This technique uses a

sequence of images taken by a camera at different focus levels to compute the shape of

objects. The performance of shape from focus depends on an effective estimating of the

focus. Specular or translucent materials can make problems for the focus estimation and

produce inaccurate results.

Shape from shading [63] can also provide 3D information. It uses one input image for

producing a 3D shape. Unfortunately, it is an ill-posed problem. Because different ob-

jects which are illuminated from different lighting directions can produce the same image

appearance. So, the normal of a patch cannot be obtained uniquely from its intensity and

there are infinite solutions in the case of using a single image. Applying more images as

utilized in PS, can solve this problem as the consecutive observed intensities for the surface

patches lead to only a single normal orientation.

In PS several input images taken from a fixed view point under different illumination direc-

tions are used for the 3D reconstruction. The pioneers of the problem are Woodham [144]

[64] and Horn et al. [65] . As shown by Woodham [145] the orientation of a Lambertian

surface can be uniquely determined provided at least three input images are given. Since

in PS the pixel-wise surface normal map in the same resolution of the input image is pro-

duced, it reaches a high accuracy which is not accessible by any geometric approach. So

PS is a potential technique when a graceful geometric structure of objects is required and

it provides the estimation of surface properties rather than image properties.

PS has received wide attention in different practical applications such as industrial quality
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control [45, 154, 97, 70], face recognition [151, 155, 153, 50], medical science [100, 138],

texture classification [111, 121, 88] and estimation of weather condition [117]. Another

benefit of PS is to generate invariant features utilized in different kinds of recognition tasks

[132, 122].

1.1.1 Motivations

Most of the later works on PS kept some simplifying building blocks. Therefore, obtain-

ing reliable PS results is still a challenging task when dealing with real-world images. For

example, they consider the Lambertian surface reflectance for their 3D reconstruction, fol-

lowing the Lambert’s law [79]. However, it may easily fail for surfaces whose reflection

is non-Lambertian. Corresponding effects e.g. highlights as occurring on shiny objects

are quite readily observable in real-world images. The orthographic projection is another

considered assumption for the camera model. But the latter assumption is realistic when

objects are far away from the camera, but not if they are close since then perspective effects

grow to be important. Using a single point light source distantly (distant or directional

lighting) is also a general assumption which is not commonly occurred. In addition, the

main limitation is that the light source direction should be given in advance; whereas for

the complex case no information is available about the lighting setup. In addition, another

trend is the widespread use of smart phones. Consequently, it can be expected that multime-

dia applications based on real-time 3D technology with inexpensive devices can constitute

an important research area. Considering all aforementioned points, the key problem is how

to generalize the assumptions of photometric stereo and we focus on this topic to signifi-

cantly extend scenarios for the wide applicability of PS as well as providing real-time 3D

reconstruction.

1.1.2 Challenges

We consider here our framework for the generalized PS as the PS setup does not strictly

meet the mentioned simplified assumptions in the previous section. We can conclude this

section, summarizing all the hypotheses as:
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Figure 1-1: Perspective perception of a scene captured by the camera [9].

Light source

Different types of light sources can be defined based on the emission from a single point

in space with some varying distribution of outgoing lights. At first, we consider the distant

light, also known as a directional light as an emitter which deposits illumination from the

same direction at every point in space. As well as directional lightening, they do not atten-

uate their energy with the distance between the light source and object [101]. Starting from

the distant light source, we will equip our models with the spatially varying lightening and

consider point-wise light source.

Camera model based on the perspective projection

Projection simply means creating a view of an object on a plane and in the real-world,

our eyes perceive scenes as the perspective projection (cf. Fig. 1-1). So, it is important to

implement the camera model in 3D reconstruction approaches as the perspective camera

where depicted objects look more like what our visual system realizes and not as the ortho-

graphic one.

Surface reflectance
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Geometry is a part of the image formation process. In order to generate an image, we

should determine not only how to project a surface, but also what brightness value should

be assigned to it. So, the interaction of light with the surface is at the core studies in

computer vision. In many of the proposed works for 3D reconstruction, the reconstructed

object is supposed to be Lembertian surface which leads to considering the reflectance

function based on the Lambert’s law. The latter case is observed on diffuse objects like a

white wall. However, objects in real-world strictly admit the Lambertian assumption for

reflectance, and even many diffuse materials such as matte plastic, wood, fabric, etc. have

deviations from this simplest assumption. Therefore, we will address PS with more realis-

tic reflectance functions.

Neural Network (NN) based PS for uncalibrated light direction

The main point of PS is that the light source direction should be given in advance as a

pre-knowledge as many other methods also need some necessary given information. On

the other hand, this information is not always available. Consequently, we design a neural

network structure not to only solve the problem of uncalibrated PS and also to leverage the

hierarchical properties of neural networks.

Internet and out-door images

A successful 3D reconstruction should be able to provide 3D reconstruction from ordinarily

available images such as the internet or out-door images where there is no any information

about the scene, light direction or depth values and image is the only available information.

So, we will devise a deep meta heuristic algorithm for dealing with these difficulties which

is able to provide outstanding results in these complex scenes.

Real-time 3D reconstruction

By emerging 3D scanners, a new age for industrial activities and also commercial com-

panies is provided. Despite their popularity, they can obtain only the rough geometry of

scanned objects due to the limited assumption that the scanned surfaces should be Lam-

bertian. So, they break down in the presence of specularities for non-Lambertian objects.
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Therefore, offering a real-time accurate 3D scanner to recover fine details of a scanned

object is still a challenge. Following the mentioned necessity, and also motivated by the

growing demand for interactive environments, we equipped our approach with a real-time

per-pixel process in addition to generalizing photometric stereo in different aspects where

it can be significantly applicable.

Providing consumer-level equipment

Image capture process should be possible with inexpensive camera equipment and instru-

ments. Specialized equipment like professional situation provided in laboratory should not

be required. Instruments should be easy available so that it would be sufficient for general

consumers. Our real-world images used for our 3D reconstruction are provided without

any laboratory facilities.

Practical input data capture

The image capture process should be easy, straightforward and not time-consuming. As

few images as possible should be required. Calibration objects should be avoided. It is

clear that increasing the number of input images leads to the complexity of the image for-

mation process and is time-consuming.

To summarise: the ideal technique uses inexpensive equipment, requires few input images

and minimal or no calibration. In addition, the resulting 3D reconstruction per pixel is fast

to compute and provides high level accuracy. These points motivated us to use the mini-

mum necessary input images in all our experiments captured by an ordinary camera like

smartphone camera in a simple room and not in a laboratory. Finally, in the last chapter,

we will extend our approach to work with even one internet input image.

1.1.3 Contributions and outline

The main contributions of this dissertation are summarized as follows: Methods for pho-

tometric stereo with general reflectances:

Since the Lambertian assumption is not always accurate in real cases and pure Lamber-
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tian objects can seldom be found in real-world, more general reflectances are considered

to extend the generality of the materials that can be handled. Consequently, we explore

non-lambertian reflectance models for obtaining an accurate 3D shape from surfaces with

non-Lambertian effects.

Real-time photometric stereo with perspective projection using recurrent optimiza-

tion network:

We facilitate models with the perspective projection which is a manner closest to how we

perceive the objects with our eyes. Furthermore, a real-time 3D reconstruction is provided.

In addition, we propose our recurrent optimization network to obtain an accurate 3D recon-

struction of micro details.

Adopting more light setting in PS :

In addition, we adjust our approaches for a different light set up which can be applied in

different situations.

Neural network based PS:

Furthermore, we design a practical photometric stereo system by benefiting from the neu-

ral network framework that works without knowing light directions and using a general

reflectance model. This model would be of great value in obtaining 3D surface representa-

tion.

Deep uncalibrated PS using a meta heuristic technique:

In addition, we will provide a deep PS using a meta heuristic technique. This approach

can provide highly qualified 3D shape from out-door or internet images without any pre-

necessary information like light direction, scene information or depth values.

The attempts and achievements in this dissertation alleviate the classical assumptions and

promote the practical competences of photometric stereo technique.

This thesis consists of six chapters. Chapter 1 is introductory, it includes a review of exist-

ing related 3D reconstruction techniques and assumptions on the properties of the acquisi-

tion system and surface which they serve as the basis of their approach. Chapter 2 describes

the foundations of the image formation process and its relation to the photometric stereo

algorithms. In Chapter 3 we explain the proposed methods which are suitable for the gen-

eralization of the photometric stereo to the reflectance properties of much more abundant
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types of objects. Chapter 4 presents a real-time 3D reconstruction of micro-details. The

proposed algorithm of neural network based photometric stereo is presented in Chapter 5.

Thanks to this algorithm, it is possible to obtain the 3D shape without prior knowledge on

lighting. Chapter 6 provides meta-heuristic optimization algorithm based on deep learning

for uncalibrated PS and internet images.
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Chapter 2

From surface to image

2.1 Image formation

The shape of a surface, its reflectance, and the incoming illumination make the image of

the object in our eyes or on a camera sensor. The shading changes based on the local ori-

entation of the surface and also the characteristics of incoming light. The ability of the

human visual system is remarkable in deducing different information from images while

recovering such information is a much more difficult task for a computer system. Since the

photometric stereo is a process that drives the information on the surface from the intensity,

we will describe this process in this chapter. The image formation process involves the in-

teraction of several essential elements in the scene. We analyze here the relation between

image irradiance, light source, camera and surface. Let us discuss in details each factor of

this interaction and the acquisition system for images.

2.1.1 Light source

Light source is the first important element of the image formation model since there is not

any image without light. When light interacts with surfaces on a macroscopic level, it can

be absorbed, transmitted, or reflected.
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Infinite light (directional light)

Illumination used during each image acquisition can be constituted from different light

sources. The light source used for each image acquisition can be of a directional nature.

This kind of light source is of a very small size and can be considered like a point light

source at infinity (e.g. distant source like the sun which can be treated as an area light

source or the reflected light from the moon). The illumination incident on the object is

uniform in direction and intensity. The intensity of the directed light source is related to the

number of photons which is emitted by the light source. Color of the source also depends

on the wavelength of the emitted light. The emitted light can be in a visible range of

wavelengths (white light), or the wavelengths of ultraviolet or infrared ranges.

Spatially point light

Another situation that we will consider in this thesis is developing a technique that is able

to consider lighting that varies spatially across the object. This light source casts rays in a

cone shape from a single point source. To implement spatially point light, we should con-

sider a geometric model of the object and estimate the indirect illumination which results

from the spatially varying incident illumination. Then, we can calculate each incident ray

of light in a scene.

In our approach we make an assumption of a single light source, which may vary in di-

rection and intensity from one acquisition to another. This light source is of a visible

wavelength range. In the following sections where we want to involve different lightening

models in our approach, we will discuss more about light sources.

2.1.2 Camera

Another element of the image formation is the camera. The camera is designed to capture

the reflected or emitted light. It can work with the light in the visible spectrum or with

other portions of the electromagnetic spectrum. The camera as an optical device produces

the image of objects or scenes and records them on an electronic sensor or photographic
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Figure 2-1: A simple model of image formation [73]. Light is emitted by the light source
and then is reflected from a surface. A portion of this light is directed towards the camera.
This process is an imitation from image formation in our eyes.

film (mostly for the old cameras). The main mechanism for producing an image is imitated

from our eyes (cf. Fig. 2-1). This process is defined as follows: light enters into a box

through a converging lens and the image is recorded on a medium which is sensitive to light

(mainly from a transition metal halides). A shutter is used which controls the length of time

for entering the light to the camera. Many of cameras allow the photographer to view the

scene and modify it such that the desired area is in focus, or the exposure can be managed to

prevent the cases of too bright or too dim. A display screen (usually from a Liquid Crystal

Display (LCD)), provides the scene view before recording and settings different parameter

likes ISO speed, exposure, and shutter speed. Since we develop the perspective projection

in our approach we do not have to put the photographed object far from the camera like

in the hypothesis of orthographic projection. The camera is considered to be fixed in the

image acquisition leads to the total correspondence between pixels of different images. So,

there is no need to deal with the additional problem of point correspondence. In addition,

we will model a Charge-Coupled Device camera (CCD camera) in our photometric stereo

technique.
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Figure 2-2: Different interactions of light with a surface [73].

2.1.3 Surface

The surface is the most complex component of the image formation process. Once the light

interacts with the surface point, the complicated light-matter process occurs. This interac-

tion process depends on the physical characteristics of the light and the physical compo-

sition and characteristics of the surface. A part of the incident light is reflected, some of

the light is transmitted, and another portion of the light can be absorbed by the medium

itself. Since light is an energy form, so the law of energy conservation for light implies

that: the light incident at a surface is a summation of light reflected and light absorbed and

light transmitted. Reflection is an external surface process. Refraction (or transmission) is

an internal surface event and is related to the transparent or translucent object. It is mod-

eled by the means of the Bidirectional Transmittance Distribution Functions (BTDFs) and

describes how much light is transmitted when interacting with a material. The BTDF is

not used alone for the image formation modeling, it usually applied in combination with

Bidirectional Reflectance Distribution Functions (BRDFs) for the transparent objects.

Scattering is composed of both external and internal phenomenon and is the complex in-
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cident light interaction with the surface. In this situation, it is supposed that the incident

light is transported inside of the material of the surface and interacts with the material and

goes out from the material but not necessarily at the point of incidence when it hits the sur-

face. So, the scattering is a combination of transmission and reflection. It is formulated by

the Bidirectional Surface Scattering Reflection Distribution Functions (BSSRDFs) as the

compound of the BRDFs and the BTDFs. These phenomena are schematically presented

in Fig. 2-2. We consider here only the fraction of light that is reflected.

when light hits an object which is a Lambertian surface (an ideal matte), it will be reflected

in lots of different directions. This kind of reflectance model has a simple reflectance

function and is proportional only to the cosine of the incident angle. In addition, these

Lambertian surfaces look equally bright from any direction when they are illuminated un-

der uniform or collimated illumination. Because the amount of light reflected from a unit

area goes down as the cosine of the viewing angle, but the amount of area seen in any

solid angle goes up at the reciprocal of the cosine of the viewing angle. Consequently, the

realized intensity of a surface element is constant with respect to the viewer direction. On

the other hand, most surfaces have a specular component in their reflection and in general,

some light is reflected at all angles in decreasing amounts of the specular angle. In order

to achieve this effect, the cosine of the angle between the predicted specular angle and the

viewing angle should be also involved. More discussion about these reflectance models

will be provided in following chapters.

2.1.4 Reflectance model

In this section, we present a concise description of a basic radiometric image formation

model. Different models have been proposed to model the interaction of light and surface.

We first describe the most general form and then deal with some more specialized models,

we also discuss how these models can be extended to the different perspective projection

techniques and also to the different illumination corresponding to a scene.
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Figure 2-3: The geometry of light reflection at a surface [73]. Reflection is generally
described by a bidirectional reflectance distribution.

Bidirectional Reflectance Distribution Function (BRDF)

The BRDF describes surface reflection at a point. Considering the setting in Fig. 2-3, we

would like to know how much radiance is outgoing the surface in the direction toward the

viewer, as a result of incident radiance.

In general, the extent to which light is reflected depends on the position of viewer and light

relative to the surface normal. To illustrate, a shiny surface is illuminated by a point light

source. Since it is made of the shiny material, some surface regions show a shiny highlight

seen by an observer. If the observer changes his position (changes view direction), the po-

sition of the highlight will also change. Similarly, if the light source is moved, the highlight

shifts.

Since the BRDF describes how light is reflected, it should consider this dependency on

the view and light directions. So, the BRDF is a function of incoming light direction and

outgoing view direction relative to a local orientation at the light interaction point. Addi-

tionally, when light interacts with a surface, different wavelengths (colors) of light can be

reflected in varying degrees (upon the physical properties of the material itself). Therefore,

the BRDF is also a function of wavelength 𝜆.

Furthermore, the BRDF can be position variant and different from one surface point (𝑥, 𝑦)
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to another because light interacts differently with different regions of a surface. This prop-

erty, known as positional variance and this manner of light leads to the generating of surface

details. For example, the ringing and striping patterns which can be seen in wood imply that

the BRDF changes with the surface spatial orientation. We consider these dependencies for

BRDF and also simplify the representation of the BRDF as 𝐵𝑅𝐷𝐹𝜆(𝜃𝑖, 𝜑𝑖, 𝜃𝑜, 𝜑𝑜, 𝑥, 𝑦) =

𝐵𝑅𝐷𝐹 (𝜃𝑖, 𝜑𝑖, 𝜃𝑜, 𝜑𝑜), where (𝜃𝑖, 𝜑𝑖) and (𝜃𝑜, 𝜑𝑜) are respectively the incident and the re-

flected light directions in the spherical coordinate system for the unit vectors. In the fol-

lowing sections, the BRDF keeps its dependency to the incident light wavelengths, even if

its notation is not shown or mentioned explicitly in the given descriptions and explanations.

The BRDF is defined as the ratio of radiance 𝐿𝑜 to the irradiance 𝐸𝑖 which are the quantity

of light reflected in the considered direction (𝜃𝑜, 𝜑𝑜) and the quantity of light arriving the

surface with the incoming direction (𝜃𝑖, 𝜑𝑖):

𝐵𝑅𝐷𝐹 (𝜃𝑖, 𝜑𝑖, 𝜃𝑜, 𝜑𝑜) =
𝐿𝑜

𝐸𝑖

(2.1)

Differential solid angle

As BRDF measures how light reflects off a surface when viewed under different viewing

positions, we should have a good perception about the amount of light arrives at a surface

element (or leaves a surface element) from a particular direction. So, it is important to

describe the concept of a differential solid angle.

In order to deal with the light arriving (or leaving) a surface, it is better to consider the

quantity of light arriving at or going across an area of space. The reason for this is that

light is measured in terms of flow through an area because the light is an energy per-unit

surface area (Watts/meter2). Therefore, we should be careful about applying the amount of

light arriving from a direction and it is more meaningful to regard the light coming from a

small region of directions.

We can consider a solid angle like 2D angle in a plane (planar angle) which is extended to

an angle on a sphere (space angle). So, the solid angle locates in a 3D unit sphere instead
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Figure 2-4: The solid angle is the area of a small patch region on the surface of the sphere
[73]. This concept comes about when the plane angle is extended into the 3D space.

of a 2D unit circle. The total area 𝑠 corresponding to the area of a small rectangular region

on a unit sphere is the solid angle shown in Fig. 2-4. This is a simple way to understand

the concept of solid angle.

In Fig. 2-5 a light direction arrives at a small surface element and a small cone of surround-

ing incoming directions are presented. The amount of light received by a small surface

element can be determined through a small cross-sectional area surrounding a direction.

This cone constituting a volume of directions can make the pyramid patch shape of the

solid angle on the inside of the sphere like in Fig. 2-4. Since the differential solid angle is

regarded as the area of this small patch, we will compute this area in spherical coordinates

(𝜃, 𝜑) using small differential angular changes (𝑑𝜃, 𝑑𝜑). The differential solid angle 𝑑𝑤 is

defined as

𝑑𝑤 = (ℎ𝑒𝑖𝑔ℎ𝑡)(𝑤𝑖𝑑𝑡ℎ) (2.2)

𝑑𝑤 = (𝑑𝜃)(𝑠𝑖𝑛𝜃𝑑𝜑) (2.3)

𝑑𝑤 = 𝑠𝑖𝑛𝜃𝑑𝜃𝑑𝜑 (2.4)
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Figure 2-5: We should consider the light flow through a neighborhood of directions to
specify the amount of light arriving at or leaving a surface [73].

The width and the height of the rectangular patch are measured in radians. So, the area

quantity has the unit of radians squared (or steradians with the abbreviation of sr). In

practice, the simplest imagination concept of solid angle is to think of it as the area of a

small surface region uniquely defined along with each direction like the small area on the

unit sphere defined by a neighbourhood around a given direction.

Now we consider Fig. 2-6. The figure represents a small surface element like a pixel or

a point on the surface which is illuminated by a point light source. The amount of light

arriving from direction 𝑤𝑖 is proportional to the amount of light arriving at the differential

solid angle. We show the light source intensity with 𝑙𝑖. Since the differential solid angle as

a flat region on the hemisphere is small, it is uniformly illuminated and receives the same

quantity of light, 𝑙𝑖 , for each position on the differential solid angle. As a result, the total

amount of incoming light into the region is 𝑙𝑖 * 𝑤𝑖.

If we want to consider the amount of light spread on (projected onto) the element of the

surface instead of the solid angle, this projection should be done by accounting 𝑐𝑜𝑠𝜃𝑖 =

𝑁.𝑤𝑖 (where 𝜃𝑖 is the angle between the unit vector in direction 𝑤𝑖 and the normal vector

𝑁 ) and considering the foreshortened area of the surface element as 𝑐𝑜𝑠𝜃𝑖𝑑𝑤𝑖. So, the total

energy reaches the surface element 𝑑𝑤 as the irradiance is:

𝐸𝑖 = 𝑙𝑖𝑐𝑜𝑠𝜃𝑖𝑑𝑤𝑖. (2.5)
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Figure 2-6: A small element of surface (a pixel or a surface point) illuminated by a point
light source [73].

So, the quantity of light receiving by the surface element is the intensity of the light times

the width of the cross sectional surface area (differential solid angle) on the unit sphere

where the light passes.

𝐵𝑅𝐷𝐹 =
𝐿0

𝑙𝑖𝑐𝑜𝑠𝜃𝑖𝑑𝑤𝑖

. (2.6)

Based on the formulation of BRDF, it is deduced that the BRDF is not bounded to the

interval of [0,1]. This is because of the division by the cosine term in the denominator

which may leads to values larger than 1 for BRDF. In addition, in the definition of BRDF

there is a division by the solid angle with the unit of steradians (sr). So, the unit of a BRDF

is the inverse of steradians (sr −1 ).

2.1.5 Brightness at a surface point

It can be seen that the BRDF is the starting point for the analysis of the surface reflectance

properties. Although it can be used to reconstruct surface normal field or to render realistic

images, but dealing with it in the presented form is not easy. It is a function dependent on

four variables of the angles of the incident and reflected directions (𝜃𝑖, 𝜑𝑖, 𝜃𝑜, 𝜑𝑜). So, it is

better to get an easier reflectance function which encodes the main behavior of the surface

and obtain the illumination produced at a point of the surface.

In fact, all lights that hit an object point from the hemisphere of incoming directions are

involved in the produced illumination (cf. Fig. 2-7) . So, in order to calculate the amount of

light generated at a surface point, we should sum the irradiance over all hemisphere using
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Figure 2-7: Incident light arriving from all incoming directions constitute the amount of
light reflected towards the camera or viewer [73].

integration:

𝐿𝑜 =

∫︁
Ω

𝐿𝑜𝑖(𝑤𝑖, 𝑤𝑜)𝑑𝑤𝑖. (2.7)

where 𝐿𝑜𝑖(𝑤𝑖, 𝑤𝑜) is the amount of light reflected along with the direction 𝑤𝑜 resulting

from incident direction 𝑤𝑖. Ω is the hemisphere of incident light directions. If we consider

a discrete space rather than in a continuous one (the light sources are discrete like a finite

number of point light sources), we can replace the integral with a summation:

𝐿𝑜 =
∑︁
𝑖

𝐿𝑜𝑖(𝑤𝑖, 𝑤𝑜) (2.8)

On the other hand, by considering equation (2.6), we know that the amount of reflected

light as the radiance resulting from the light arriving with direction 𝑤𝑖, is defined based on

the BRDF and irradiance 𝐸𝑖 as follows:

𝐿𝑜𝑖 = 𝐵𝑅𝐷𝐹 × 𝐸𝑖 (2.9)

Since 𝑑𝑤𝑖 in the formulation of 𝐸𝑖 can be neglected in the discrete case (all incoming

directions are equally weighted), so we will have 𝐸𝑖 = 𝑙𝑖𝑐𝑜𝑠𝜃𝑖. This implies that:

𝐿𝑜𝑖 = 𝐵𝑅𝐷𝐹 × 𝑙𝑖𝑐𝑜𝑠𝜃𝑖 (2.10)

Eqution (2.10) provides the light reflected in the direction of an observer for a single point

light source, which is also known as the BRDF brightness equation or BRDF lighting

equation [64].
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Figure 2-8: Diffuse reflection which is produced by rough surfaces and tends to reflect light
in irregularly in all directions [73].

2.1.6 Diffuse reflectance model

The diffuse reflection (known also as the Lambertian or matte reflection) considers the

interaction between the surface and light as the way light scatters as the microscopic vari-

ations. It means that incident light reflected uniformly in all directions as shown in Fig.

2-8 and shows the smooth variation of intensity like the case that can be seen in the statue

Fig. 2-9. Diffuse reflection conveys the body color to the light because it is created by the

absorption and redistributing of light inside the material of the object [114, 51].

For this kind of reflectance, the BRDF is a constant value because light is reflected uni-

formly in all directions and a Lambertian surface looks equally bright from every viewing

direction. Therefore, in this case, we will have:

𝐵𝑅𝐷𝐹 (𝜃𝑖, 𝜑𝑖, 𝜃𝑜, 𝜑𝑜) = 𝐵𝑅𝐷𝐹 (2.11)

it is also shown by𝜌 and called Albedo (surface chromaticity or body colour). In this

dissertation, we denote albedo by the 𝑘𝑑 as the diffuse material reflectance. So, equation

(2.10) as the light reflected from the surface is obtained as:

𝐿𝑜𝑖 = 𝑘𝑑 × 𝑙𝑖𝑐𝑜𝑠𝜃𝑖 (2.12)

where 𝜃𝑖 is the angle between the surface normal 𝑁 and the incoming light 𝐿. By substi-

tuting the value of 𝑐𝑜𝑠𝜃𝑖 in equation (2.12) and removing 𝑖 from the light source intensity
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Figure 2-9: A statue shows diffuse reflection as slow variations in intensities [73].

𝑙𝑖 ( we have just one point light source), the following equation will be presented:

𝐼 = 𝑘𝑑 × 𝑙
(︀ 𝑁.𝐿

||𝑁 || ||𝐿||
)︀

(2.13)

Where 𝐼 is the image intensity (the amount of light reflected towards a viewer or camera

named the outgoing radiance in the view direction). This equation is also known as the

image irradiance equation or reflectance function.

2.1.7 Dichromatic reflectance model

Motivation

When reflection from a surface is specular in nature, highlights are observed. They corre-

spond to large spikes in image intensity value. The Lambertian model is unable to accu-

rately represent specular reflection. As a result, surfaces and textures which exhibit spec-

ular reflectance (which are ubiquitous in the environment) are neglected in the Lambertian

reflectance, while specularities should be explicitly considered in the reflectance function.

It is quite well proved that a light source illuminating most surfaces, reflects a significant

part of the light as described by a non-Lambertian reflectance model [129, 28, 23].
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Since the assumption considered by Lambertian reflectance is not always accurate for real

surfaces, it is not suited for surfaces with complex reflectance behavior. This makes prob-

lems not only for a reasonable 3D reconstruction but also a reliable retrieval of the features

becomes very difficult or even impossible [66]. As a result, more general reflectance should

be considered to extend the generality of the materials that can be dealt with. Two major

light reflection components including specular reflection as the high frequency variations

and diffuse reflection as the low frequency component should be combined to provide a

successful reflectance model [103, 93, 143] since, in reality, most of the objects show both

of these reflections in different areas. Therefore, they include both reflection models at the

same time.

Consequently, we address the dichromatic reflectance models. The model is named dichro-

matic because an interface reflection component (specular) and a body scattering compo-

nent (diffuse) are used to present the reflected light and components described with a geo-

metrical and a spectral term [114]. In addition, it is shown that using a second such term in

a BRDF model can lead to decreasing the fitting error by more than 20% [94, 42]. Another

attractive point about the dichromatic reflectance model is that they are able to interpret a

pixel color constitution regarding the spectral distribution power and the geometrical scale

factor [114].

2.1.8 Microfacet theory

This theory assumes that surfaces which are not perfectly smooth are composed of many

very tiny facets. This surface is essentially a height field (cf. Fig. 2-10), where the dis-

tribution of facet is described statistically. So, the main component of these models is an

expression for the distribution of microfacet normals enabling them to effectively model

many real surfaces [101, 61]. Each facet is regarded to be a perfect reflector and satisfies

the physical laws of reflection for dielectrics. In addition, interreflection of light from sev-

eral facets before leaving the surface and occlusion of that facets, due to their orientations,

are other points considered in this theory [78]. The following reflectance models, addressed

in our approach, admit this theory.
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Figure 2-10: Theory of microfacet. This theory consider specular reflection by assuming
that surfaces are made of microfacets as tinny mirrors reflecting incoming light in the mirror
direction around the microfacet normal [73].

2.1.9 Computing specular reflection

As the second major component of a BRDF is the specular reflection, some insight into

the physical modelling of specular reflection will be provided. It will be showed that the

specular reflection has a strong dependency on the direction of the outgoing light.

Snell’s law

Specular reflection applies Snell’s Law as:

1. The incoming ray, the surface normal, and the reflected ray all lie in a common plane.

2. The angle that the incoming ray forms with the surface normal as the angle of incidence

𝜃𝑖 is determined by the angle that the outgoing ray forms with the surface normal as the

reflected angle of 𝜃𝑟.

Fig. 2-11 shows the geometry of specular (perfect mirror) reflection which is derived from

Snell’s law (second law: law of reflection). For an ideal reflector, such as a mirror, based on

the Snell’s law, the angle of incidence is equal to the angle of specular reflection, as shown

in Fig. 2-11. 𝑅 is the direction of specular reflection (it is also called a perfect reflecting

direction) and 𝑉 is the viewer direction (which reflected around the normal vector). In the

case of the mirror reflection, the specular reflection is visible only when 𝑉 and 𝑅 coincide.

However, in the case of real objects (not perfect reflectors) the specular reflectance can be
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Figure 2-11: Specular reflection. The angle of incident light is equal to the angle of re-
flected light. Each individual ray obeys the laws of reflection and the viewer can see the
reflection at only one point [73].

seen even if 𝑉 and 𝑅 do not coincide means that it is visible over a range of a values (a

cone of values), because the specular reflection may spread out slightly in a cone and light

is most intense in the center of cone and falls off in its neighborhood. So, if the viewer is

not looking exactly at 𝑅, he still observes a reduced reflection.

We compute the specular direction 𝑅 based on the following assumption:

∙ 𝜃𝑖 = incidence angle.

∙ 𝑅 is the vector of perfect reflection and is coplanar with 𝐿 and 𝑁 .

∙ ||𝑁 || = ||𝐿|| = ||𝑅|| = 1.

∙ 𝐿.𝑁 = 𝑅.𝑁 = cos 𝜃𝑖 = cos 𝜃𝑟.

We can get the following linear combination for 𝑅 based on the mentioned condition of

coplanar for 𝐿, 𝑁 and 𝑅:

𝑅 = 𝛼𝐿+ 𝛽𝑁 (2.14)

Then taking dot product of 𝑁 for the equation (2.14) leads to the following expressions:

𝑅.𝑁 = 𝛼𝐿.𝑁 + 𝛽𝑁.𝑁 =⇒ cos 𝜃𝑖 = 𝛼 cos 𝜃𝑖 + 𝛽 (2.15)

By squaring (2.14), we can get:

𝑅.𝑅 = 𝛼2 + 𝛽2 + 2 𝛼 𝛽 (𝐿.𝑁) (2.16)
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=⇒

1 = 𝛼2 + 𝛽2 + 2 𝛼 𝛽 cos 𝜃 (2.17)

And finally solving (2.15) and (2.17) results in:

𝛼 = −1, 𝛽 = 2cos 𝜃 = 2𝐿.𝑁 (2.18)

Substituting 𝛼 and 𝛽 in equation (2.14) provides the specular reflection 𝑅 as:

𝑅 = 2 (𝐿.𝑁)𝑁 − 𝐿 (2.19)

By estimating the specular reflection, the Phong model [102] is presented as:

𝐼(𝑥, 𝑦) = 𝑘𝑑

(︂
𝐿 ·𝑁(𝑥, 𝑦)

‖𝐿‖‖𝑁(𝑥, 𝑦)‖

)︂
𝑙𝑑⏟  ⏞  

𝑑𝑖𝑓𝑓𝑢𝑠𝑒 𝑡𝑒𝑟𝑚

+ 𝑘𝑠

(︂
𝑅(𝑥, 𝑦) · 𝑉 (𝑥, 𝑦)

‖𝑅(𝑥, 𝑦)‖‖𝑉 (𝑥, 𝑦)‖

)︂𝑛

𝑙𝑠⏟  ⏞  
𝑠𝑝𝑒𝑐𝑢𝑙𝑎𝑟 𝑡𝑒𝑟𝑚

(2.20)

𝑘𝑑 is the diffuse material parameter (diffuse color). 𝑘𝑠 is the specular material parameter and

shows the fraction of specularly reflected light. This is so that specularities appear to show

the color of the source as the highlight color because the specular reflection coefficient 𝑘𝑠

is not a function of wavelength. 𝐼(𝑥, 𝑦) is the intensity at pixel (𝑥, 𝑦). We show the diffuse

intensity as 𝑙𝑑. In addition, we considered 𝑙𝑠 which is the specular light source intensity.

Finally, the exponent 𝑛 is also called the specular exponent or glossiness which determines

the sharpness of specularity peaks and varies the rate of falloff. In the Phong model, the

strength of specularity is proportional to the angle between 𝑉 and 𝑅.
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Figure 2-12: Microfacets which have equal normal (𝑁 ) and halfway (𝐻) vectors are ori-
ented into viewing direction. These microfacets contribute to the BRDF [73].

2.1.10 Why Blinn- Phong model instead of Phong model

The Phong model allows to represent not only the diffuse surface material but also glossy

materials with specular component, but we now concentrate on the specular term modeled

by Phong reflectance equation. Jim Blinn proposed a modification on the Phong model

using Blinn-Phong reflectance model [25].

He used the more physically meaningful vector of 𝐻 which is defined to be the halfway

vector between the viewing vector 𝑉 and the light vector 𝐿. In addition, the half vector is

the direction to which the microfacet normals need be oriented to reflect 𝐿 into 𝑉 [61] (see

Fig. 2-12). While the reflection vector used in Phong model [102] has no such physical

significance [61]. He used this approximation that when 𝑉 overlaps 𝑅, 𝐻 overlaps with

𝑁 , so the center of reflected energy is still at 𝑅.

The justification for this is that 𝐻 specifies the direction that the surface normal should be

so that 𝑉 would be the mirror direction and the maximum highlight happens and 𝐻 is the

direction of maximum highlight [5]. So, the Blinn-Phong Model uses the halfway vector

𝐻 , which is faster to compute than reflection vector 𝑅 and still view dependent since 𝐻

depends on 𝑉 .

Now the question is that:

Does using 𝑁.𝐻 vs. 𝑅.𝑉 affect highlights? Although Blinn-Phong model is more physi-

cally meaningful than the original Phong model, we can ask whether this makes any prac-

tical difference for production shading. Yes, highlights spread as seen in Fig. 2-13.

Blinn-Phong may be considered more realistic as the specularity behaves differently, when
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the viewer looks at a grazing angle towards the surface. The specularity will be more oval

shaped, so it is projected circularly, instead of being circular and projected as an oval. This

is more realistic than Phong model [61] and it creates more precise models of empirically

determined BRDFs than Phong for many types of surfaces [94]. Ngan et al. [94] explored

some underlying reasons for this and showed that BRDFs based on the halfway vector yield

more visually plausible results than BRDFs based on the incident direction [42]. Another

advantage of the halfway vector is that, in a microfacet-based BRDF model, the halfway

vector 𝐻 equals the normal vector of the microfacets responsible for reflection [42] as seen

in Fig. 2-12.

2.1.11 Blinn-Phong reflectance model

The Blinn Phone reflectance model can be considered as the bi-polynomial model by setting

coefficients that are related to the dot product of 𝑁.𝐻 as a description for the distribution

of the specular zone intensities. Therefore, the Blinn-Phong model is a dichromatic model

which provides the possibility of representing not only diffuse surface material but also

shiny materials with the specular component.

In order to modelling the major component of specular reflection that depends strongly on

the direction of outgoing light, Blinn-Phong reflectance model is presented as:

Figure 2-13: Comparision between Blinn-Phong reflectance model and Phong reflectance
model. source:[1]
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Figure 2-14: Blinn-Phong model. The incident light ray direction is reflected onto the
specular direction around the surface normal [73].

𝐼(𝑥, 𝑦) = 𝑘𝑑

(︂
𝐿 ·𝑁(𝑥, 𝑦)

‖𝐿‖‖𝑁(𝑥, 𝑦)‖

)︂
𝑙𝑑⏟  ⏞  

𝑑𝑖𝑓𝑓𝑢𝑠𝑒 𝑡𝑒𝑟𝑚

+ 𝑘𝑠

(︂
𝐻(𝑥, 𝑦, 𝑧) ·𝑁(𝑥, 𝑦)

‖𝐻(𝑥, 𝑦, 𝑧)‖‖𝑁(𝑥, 𝑦)‖

)︂𝑛

𝑙𝑠⏟  ⏞  
𝑠𝑝𝑒𝑐𝑢𝑙𝑎𝑟 𝑡𝑒𝑟𝑚

(2.21)

The vector 𝐻 will coincide with the surface normal if the reflected light coincides with the

viewer direction.

The statistical distribution of facet normals in Blinn-Phong model is approximated by

(𝐻.𝑁)𝑛 as an exponential falloff. This term can be considered as a lobe projected on the

half-vector [33]. One of the most important points regarding the dichromatic reflectance

model is the dimensions added to BRDF, means the spatial ones. BRDFs naturally vary

with position on a surface, and it is important to model this variation. While this popular

variation is provided by Blinn-Phong model, as mentioned before it is not possible to pro-

vide it for the case of Lambertian reflection. All elements included in Blinn-Phong model

is illustrated in Fig. 2-14.
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2.1.12 Cook-Torrance reflectance model

Although Blinn-Phong reflectance model is much more physically meaningful than Lam-

bertian model or the original Phong model but we want to try some more microfacet theory

and deal with a model derived from geometrical optics which consider more features like

subsurface scattering or the Fresnel reflection in the reflectance model.

Cook-Torrance model [37] like the recent popular theoretical models consider the assump-

tion that the large scale BRDF is the result of fine scale roughness of the surface [110]

and the roughness (as a collection of microfacets with random sizes and orientations) is

involved in this model. This property enables them to effectively model many real-world

surfaces [101] in which, mirror-like facets is modelled by the Cook-Torrance reflectance

to retrieve the local shape from specularity. In addition, this model assumes that the facets

might be of size comparable to the wavelength of light. This means that the wave nature of

light, and hence phenomena such as interference, must be taken into account.

The final model for the BRDF is complex, but agrees well with actual measured BRDFs

[110]. Following, the Cook-Torrance model is presented as:

𝐼(𝑥, 𝑦) = 𝑘𝑑
𝐿 ·𝑁(𝑥, 𝑦)

‖𝐿‖ ‖𝑁(𝑥, 𝑦)‖
𝑙𝑑⏟  ⏞  

𝑑𝑖𝑓𝑓𝑢𝑠𝑒 𝑡𝑒𝑟𝑚

+
𝐺(𝑥, 𝑦, 𝑧)𝐷(𝑥, 𝑦, 𝑧)𝐹 (𝑥, 𝑦, 𝑧)

4 𝑉 (𝑥,𝑦,𝑧)·𝑁(𝑥,𝑦)
‖𝑉 (𝑥,𝑦,𝑧)‖‖𝑁(𝑥,𝑦)‖

𝐿·𝑁(𝑥,𝑦)
‖𝐿‖‖𝑁(𝑥,𝑦)‖⏟  ⏞  

𝑠𝑝𝑒𝑐𝑢𝑙𝑎𝑟 𝑡𝑒𝑟𝑚

(2.22)

where

𝐺(𝑥, 𝑦, 𝑧) = min

{︃
1, 𝑇 (𝑥, 𝑦, 𝑧), 𝑅(𝑥, 𝑦, 𝑧)

}︃
(2.23)

and

𝑇 (𝑥, 𝑦, 𝑧) =

2𝐻(𝑥,𝑦,𝑧)·𝑁(𝑥,𝑦)
‖𝐻(𝑥,𝑦,𝑧)‖‖𝑁(𝑥,𝑦)‖

𝑉 (𝑥,𝑦,𝑧)·𝑁(𝑥,𝑦)
‖𝑉 (𝑥,𝑦,𝑧)‖‖𝑁(𝑥,𝑦)‖

𝑄(𝑥, 𝑦, 𝑧)
(2.24)
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𝑅(𝑥, 𝑦, 𝑧) =

2𝐻(𝑥,𝑦,𝑧)·𝑁(𝑥,𝑦)
‖𝐻(𝑥,𝑦,𝑧)‖‖𝑁(𝑥,𝑦)‖

𝐿·𝑁(𝑥,𝑦)
‖𝐿‖‖𝑁(𝑥,𝑦)‖

𝑄(𝑥, 𝑦, 𝑧)
(2.25)

𝑄(𝑥, 𝑦, 𝑧) =
𝑉 (𝑥, 𝑦, 𝑧) ·𝐻(𝑥, 𝑦, 𝑧)

‖𝑉 (𝑥, 𝑦, 𝑧)‖ ‖𝐻(𝑥, 𝑦, 𝑧)‖
(2.26)

𝐷(𝑥, 𝑦, 𝑧) =
1

𝜋𝑚2cos4(𝛼)
exp

(︂
− tan2(𝛼)

𝑚2

)︂
(2.27)

𝛼 = arccos

(︂
𝐻(𝑥, 𝑦, 𝑧) ·𝑁(𝑥, 𝑦)

‖𝐻(𝑥, 𝑦, 𝑧)‖ ‖𝑁(𝑥, 𝑦)‖

)︂
(2.28)

𝐹 (𝑥, 𝑦, 𝑧) = 𝑓𝜆

+(1− 𝑓𝜆)
(︂
1− 𝐻(𝑥, 𝑦, 𝑧) · 𝑉 (𝑥, 𝑦, 𝑧)

‖𝐻(𝑥, 𝑦, 𝑧)‖ ‖𝑉 (𝑥, 𝑦, 𝑧)‖

)︂5

(2.29)

𝑚 is the root mean square slope of the surface microfacets (i.e. the surface roughness).

It is worth to mention that in expression (2.29) 𝐻 is used instead of 𝑁 as suggested in [61].

𝐹 is the Fresnel term (to describe the phenomenon that specular is stronger at grazing angle)

and 𝑓𝜆 is called the reflection coefficient or refractive index (the reflectance of the surface at

normal incidence). Here, the distribution function of facets is described by𝐷 and measures

the proportionate number of facets oriented at an angle 𝛼 forming the average normal to

the surface and finally 𝐺 is the geometrical attenuation term. The specular component is

assumed to come from the reflection in those facets oriented in the direction of half vector

𝐻 as also shown in Fig. 2-12.

2.1.13 Light interaction with the surface

Lighting is one of the main component interacting with other elements in image formation.

In this section, we present briefly some intuition behind light interactions with the surface.

Then we formulate the light models applied in our approach. The question about the iden-
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tity of light has been debated for many centuries. The sun is the most important source

of radiating light. Electrical instruments are also developed to brighten our darkness, and

many other applications of light affect our lives daily. Light is a special kind of electro-

magnetic energy. It travels quite fast with the speed which is in a vacuum expressed as

𝑐 = 2.99 × 108 𝑚/𝑠. Light movement in a vacuum is at a constant speed which is con-

sidered a universal constant. It should be mentioned that its speed changes with travelling

through non-vacuum media such as air by 0.03 percent slower or glass by 30.0 percent

slower. In order to work with light in real applications, we represent light in terms of its

magnitude and direction. As it is discussed, reflection as one of the phenomena of light

interacting with a surface is explicitly modeled by BRDF which considers all properties of

the light source, the object surface and the viewer and quantifies how much light is reflected

in the camera direction when it interacts with a surface made of a certain material. The field

of detection and measurement of light energy is called radiometry.

2.1.14 Types of light sources

Light sources can generally be divided into point and area light sources.

Point light sources

We begin with the analyzing of point light sources. In computer graphics, we usually treat

lights as rays emanating from a source. A point light source originates at a single location

in space. Point light source is a simplified model of any small light sources compared to the

scene or distant light source such as a distant light bulb, a star, or perhaps the sun, in which

we treat it as an infinitesimal. Although, light source is not infinitely small, but assuming

that it is a point leads to the simpler analyses. Let us mention that spot lights used for

example in theater and film are also supported as a special form of point light which casts

rays in a cone shape from a single point source and emits illumination in all directions.

Light sources are related to an output power. It is the amount of energy consumed per

unit of time (for example, joules per second). The most common unit of power for light
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Figure 2-15: Point light casts light rays in all directions from a single point. The path of
light from this source casts a shadow with the uniform density [73].

sources is watt such as 60-watt or 100-watt light bulbs. This power valuation is the amount

of power consumed by the bulb. In general, it is assumed that the input power (as the

consumed energy) and the output power (as light) are the same.

To illustrate, the wattage of the sun is around 3.846 × 1026 watts. A point light source

of W watts radiates the same amount of energy in all directions. If a point light source

is encompassed by a sphere with the radius of 1 meter, then all of the light output from

the source land on the sphere. The emitting power of point light source, or its radiance,

is usually measured in watts per unit solid angle or watts per steradian. It may be also

simply given in watts, which can be thought of as watts per 4𝜋 steradians (the solid angle

subtended by all space on the surface of a unit sphere equals 4𝜋).

In practice, instead of using units of radiance for describing the light arriving at a point due

to a light source, radiant intensity is used as the proper unit [101].

Extended light sources

Another modelled light sources are extended light sources which are the light source to

some extent, whether it is small or large. As a way of example, the entire sky on an overcast

day, the light coming through a window on a cloudy day or a simple area light source such

as a fluorescent ceiling light. In this type of light, the power of the light emitting from a

single infinitesimal point is considered to be negligible or 0. On the other hand, the power

emanating from a finite area is of interest. So, in order to calculate the power for extended
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Figure 2-16: Extended light source in which the light is not coming from one single point
and produces shadow with varying density [73].

light sources, we consider not just as watts per steradian, but rather, as watts per steradian

per unit area. The area refers to the area of the emitter, not to the surface on which light

is hitting. Fig. 2-15 and Fig. 2-16 are depicted to simulate light emitting from mentioned

light sources.

2.1.15 Different lighting models

The diverse types of light sources can be modeled for illuminating the scene.

Initially, we consider the distant light and then we develop our perspective models with

spatially varying lightening by considering point-wise light source.

Directionally varying illumination or isotropic light source

When the surface is lit by a point light source at infinity (like sun), the implication is that

the resulting rays of light are parallel with each other when they hit the surface and rays

emanate in all directions so that it is named directional light. So, the illumination incident

on the scene is considered to be uniform in direction and intensity and we can consider it

as an isotropic point light source (the light source have a directional falloff or dependence).

Since their energy does not depend on the distance between the light source and object

[101], we can represent the light with only a direction vector shwon with 𝐿 = (𝛼, 𝛽, 𝛾).

61



Spatially varying lighting

So far, many techniques in 3D reconstruction, consider the lighting environment as a direc-

tional lighting. While such a measurement registers the directionally varying illumination

for light sources and surfaces, it does not take into account the spatially varying illumina-

tion in the scene which implies that how the light varies from one point to another. This

makes a necessity to model the spatially as well as directionally varying illumination for

the scene which simulate the effects of lighting varies spatially across the subject and al-

lows for the independent control of intensities [139]. As a result, building on the base of

light, a more complex light based on spatially varying radiance field will be introduced and

we show that how such more detailed measurements of lighting can be used to achieve a

higher level of realism in 3D reconstructions.

This modelling is partly based on the ray-tracing algorithm. Ray tracing algorithms on

computers track the path of light source rays through the scene until they intersect a sur-

face. This approach provides a method for finding the visible surface points seen from

any position and direction [101, 118]. That is, knowing which point in space projects onto

which point on the image plane allows one to directly associate the radiance at the point to

the irradiance of its image [85].

In the case of ray tracing, following the reflected rays and finding their intersection points

with the surface is part of the process. Similarly, for spatially varying lighting, we trace

the direction of vectors which are the light vectors and try to model their intersections with

the surface. It is worth to mention that we also developed the perspective projection in

geometric modelling of spatially varying lighting.

To this aim, a three dimensional vector fields for the light vector of 𝐿 should be imposed

instead of a directional light vector 𝐿. Furthermore, the rate at which light falls off with

distance is another issue which should be induced to make the model more consistent to

the actual physical aspects.

Integrating all the mentioned points, the new spatially dependent light vector 𝐿 is defined

as:

𝐿(𝑥, 𝑦) = Π
ϒ− 𝑆(𝑥, 𝑦)
‖ϒ− 𝑆(𝑥, 𝑦)‖

(2.30)
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with the light attenuation Π:

Π =
𝑙𝑑

‖ϒ− 𝑆(𝑥, 𝑦)‖2
(2.31)

where ϒ is the light source position.

It should be remembered that since we developed the perspective projection, so the per-

spective surface parameterization is imposed in 𝑆(𝑥, 𝑦) for this point light source. As a

result, the light direction depends not only to the point (x,y), but also to the depth of the

surface itself. So, in this case, an initial guess for the depth of the surface is required.

2.1.16 The geometric model of perspective projection

This part provides some tutorial for introducing the central ideas in the perspective geom-

etry of 2D space and 3D space and how this geometry may be represented or estimated.

Since the Renaissance period, paintings with extremely accurate perspective were devel-

oped. It is like an accompaniment that early attempts to establish the rules of perspective

originate from skilled artists in architecture and engineering. In contrast, orthographic

comes from the Greek word for straight writing or drawing. The orthographic transfor-

mation captures a rectangular area of the scene and projects it onto the front face of the

box defining the area. It does not consider the effect of foreshortening for objects which

leads to becoming smaller on the image plane when they get farther away and feeling like

it has less depth. In addition, it keeps parallel lines as parallel (collinearity) and it preserves

relative distance between objects (cf. Fig. 2-17).

As can be seen in Fig. 2-17 orthographic is single side view (front, left side, right side, top

or bottom) of an object, but the perspective is a 3D view as shown in Fig. 2-18, where we

can see 3 sides for example, top, left, front of an object which provides for the viewer an

understanding of its shape. This reconstruction conducted by such a painting is done where

the human’s eye view or camera as depicted in Fig. 2-19 is the most common inspiration

for sketching.

The perspective projection also projects a volume of space onto a 2D image plane by con-
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Figure 2-17: Orthographic painting (depicted by a Persian painter) [4]. All objects are seen
in the same size without considering their distance and view space (near and far: objects
located far away should be projected smaller) and it shows only one side of an object on a
principal plane. Furthermore, parallel lines are imaged as parallel lines in contrast to the
perspective projection.

sidering the effect of foreshortening.

An excellent presentation of the algebraic and matrix representations of perspective cam-

eras can be found in [57]. Now, we need to specify how 3D primitives are projected onto

the image plane. A mathematical model for this process should account for the following

types of transformations:

∙ coordinate transformations between the camera frame and the world frame

∙ projection of 3D coordinates onto 2D image coordinates

These concepts are shown in Fig. 2-20. In order to project the real-world point 𝑅 to the
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Figure 2-18: Perspective painting of Iranian Imperial Mirror Hall (depicted by the famous
Persian artist Kamal-ol-molk) [7] which resembles our eye’s view to feel the distance effect
(foreshortening), 3D space and shape. Moreover, straight line is imaged as a straight line,
whilst others are not. The horizon is the vanishing line of the ground plane.

point 𝑟 on the image plane Ω, we will consider the Thales theorem in both horizontal red

and vertical blue triangles:
𝑓

𝑧(𝑥, 𝑦)
=
𝑥

𝑢
=
𝑦

𝜈
(2.32)

On the other hand, in reality the image plane Ω lies behind the lens. So, under the perspec-

tive projection model, the surface parameterization is performed as follows:

𝑆(𝑥, 𝑦) =

⎡⎢⎢⎢⎣
−𝑥𝑧(𝑥,𝑦)

𝑓

−𝑦𝑧(𝑥,𝑦)
𝑓

𝑧(𝑥, 𝑦)

⎤⎥⎥⎥⎦ (2.33)

where 𝑓 is the focal length.
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Figure 2-19: Perspective viewing of the scene captured by a camera (Zandiyeh complex
in Shiraz, Iran) [16]. This projection model is a reasonable close match to the way that an
eye or camera lens generates images of objects in our 3D world and make the view more
realistic looking.

The normal vector as the cross product of the partial derivatives of the surface is computed

as:

𝑁(𝑥, 𝑦) =

⎡⎢⎣ 𝑧(𝑥,𝑦)
𝑓
∇𝑧(𝑥, 𝑦)

𝑧(𝑥,𝑦)
𝑓2 (∇𝑧(𝑥, 𝑦).(𝑥, 𝑦) + 𝑧(𝑥, 𝑦))

⎤⎥⎦ (2.34)

where ∇𝑧(𝑥, 𝑦) = (𝑧𝑥, 𝑧𝑦) is the gradient field. This more accurately models the behavior

of real cameras.
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Figure 2-20: Perspective projection of the real point 𝑅 to the image plane Ω̄ [73].
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Chapter 3

Our approach using the Blinn-Phong

reflectance with different perspective

projections

3.1 Introduction

3.1.1 Our contributions

We briefly explain contributions that our method yields over the previous models in the

field.

1. As mentioned in [36], a successful reflectance model for 3D reconstruction of objects

should combine two major components: diffuse lobe and specular lobe, because reflectance

characteristic of real world surfaces is not the same across the entire surface. As a result, the

novel method we propose involves the conceptual advantages of considering perspective

projection and non-Lambertian reflectance simultaneously based on the complete Blinn-

Phong model composed of both diffuse and also specular lobes [25, 102].

2. As another originality of our work, we consider specular light (showing the ratio of

specular reflected light) as well as diffuse light. Furthermore, large values of shininess are

imposed in our approach. Combining all these features leads to produce strong specularties

in our input images and makes the problem more challenging. We think that the superiority
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of our approach to handle these intense specularties which we demonstrate in our experi-

ments is undeniable.

3. We advanced the complete Blinn-Phong model with two various perspective projection

approaches and could cope with the arising highly non linear frameworks in both cases,

while very few works address perspective projection in their method because of the in-

herent difficulty of several non linear terms in this kind of projection. Moreover, these

perspective approaches will be compared and investigated from different aspects.

4. In order to tackle the problem of applying perspective projection within complicated

reflectance equations, we introduce a novel heuristic partial linearization strategy which

makes the problem easier to solve, cf. section 3.2.1. This scheme can be used in future

researches as a basis for solving the challenging work of combining perspective projection

and even more advanced reflectance.

5. Finally, as the CCD camera (a camera with the charge-coupled device sensor) is one of

the most important perspective cameras [57], we investigate the effect of modelling CCD

camera in our method and the quality of results.

Involving the mentioned model assumptions leads to a concrete PS algorithm as sketched

in Fig. 3-1.

Our work extends the approach presented by Khanian et al. [74]. A main point of the latter

paper is to study the effect of important task of lightening directions on numerical stability

while the presentation is restricted there to one spatial dimension and signal reconstruc-

tion. The investigations there has motivated us to consider an indicator for good lighting

conditions in 3D reconstruction as presented in the next section.

3.1.2 Related works

Many studies in PS considered non-Lambertian effects as outliers and tried to remove them.

Mukaigawa et al. [92] suggested a random sample consensus based approach where only

diffuse reflection is selected from among the candidates. Mallick et al. [86] introduced

a rotation transformation for transforming the RGB color channel to a SUV color chan-

nel with the specular channel S and diffuse channels UV. Then, the specular channel S
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is used for removing specularities. Chanki et al. [152] introduced a strategy based on a

maximum feasible subsystem approach. In their method, the maximum subset of images

satisfying the Lambertian constraint is obtained among the whole set of PS images that in-

clude non-Lambertian effects like specularities. A median filtering technique is illustrated

by Miyazaki et al. [91] to evade the influence of specular reflections which they considered

as outliers. Another method relying on this concept is presented by Tang et al. [131] who

proposed a coupled Markov Random Field based on treating the specularities and shadows

as noise. Wu et al. [147] considered the 3D recovery problem using a convex optimization

technique for separating specularities as deviations from the basic Lambertian assumption

in the objective function. Smith et al. [122] used a model-based approach that excludes

observations that do not fit the Lambertian image formation model. Hertzmann et al. [60]

employed some reference objects which are considered to be of homogeneous material for

simplicity, meaning that purely specular or purely diffuse materials are addressed. In some

other works more complex appearance models are fitted to estimated data, thereby relying

e.g. as in the work of Goldman et al. [54] on the use of a convex combination of a small

number of known materials, or as in the paper of Oxholm et al. [98] on a probabilistic

formulation for linking geometry and lighting estimation by introducing priors.

Regarding the perspective projection, one of the first works combining this technique with

PS is performed by Galo et al. [48]. Their work relies on considering point light sources

proximate to the lighted object surface. A perspective PS model is also proposed by Tankus

et al. based on the Lambertian reflection [133]. A technically different perspective method

for Lambertian PS using hyperbolic Partial Differential Equations (PDEs) is presented by

Mecca et al. [90]. Turning to the use of non-Lambertian surface reflectance to account

for specular highlights in photometric methods, we may note that the investigation of a

shape-from-shading method using the Phong model has been shown to give very reason-

able results when employing it within a useful process chain [142]. Therefore it seems

apparent that an extension to PS making use of the Blinn-Phong image irradiance equation

yields even better results given that PS is proposed to solve the ill-posed problem of shape

from shading and advantage of Blinn-Phong model over the Phong model as described

before.
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Figure 3-1: Highly specular photometric stereo setup illustrated by a complex synthetic
experiment [73]. In real world, surfaces show both specular and diffuse reflections, so
considering only diffuse component or specular component singly is not enough for real
world applications. This surface is illuminated by three non-coplanar light sources with
both specular and diffuse lights. Shading due to each light is captured in a perspective
CCD camera. As can be seen, considering all stated assumptions, we are able to recover
shape with high degree of surface details.

By the combination of the mentioned benefits, we propose a more robust and effectively

easier to use method than previous literature, as we detail below. As a side note, since the

complete Blinn-Phong model we employ is extensively studied in computer graphics, the

surface reflectance in input images as well as expected computational results are potentially

easier to interpret than in methods that rely on complex preprocessing steps.

In the following, we deal with the investigation of advancing our method with two different

approaches of realizing the perspective projection. The first method is to compute the nor-

mal field and then modifying the gradient field based on the perspective projection which is

also proposed in [106, 99]. As it manipulates the normal vectors, we refer to this technique

as the perspective projection based on the normal field (PPN) method. The second method

is to consider a perspective parameterization of photographed object surfaces for getting

the gradient field of the surface. We call this approach the perspective projection based on
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the surface parameterization (PPS) method.

As we will also consider for experimental comparison a Lambertian perspective PS model,

we also recall its construction here. We recall that the Lambertian scene with albedo 𝑘𝑑

which is illuminated from directions 𝐿𝑘 = (𝛼𝑘, 𝛽𝑘, 𝛾𝑘)
⊤, where 𝑘 = 1, 2, 3, by correspond-

ing point light sources at infinity, with diffuse intensity 𝑙𝑑, satisfies the following reflectance

equation [64]:

𝐼𝑘(𝑥, 𝑦) = 𝑘𝑑

(︂
𝐿𝑘 ·𝑁(𝑥, 𝑦)

‖𝐿𝑘‖‖𝑁(𝑥, 𝑦)‖

)︂
𝑙𝑑 (3.1)

3.1.3 Modifying normal vectors

The first perspective projection method deals with processing the field of normal vectors

𝑁(𝑥, 𝑦) = (𝑛1(𝑥, 𝑦), 𝑛2(𝑥, 𝑦), 𝑛3(𝑥, 𝑦))
⊤. Once the normal vectors are reconstructed from

the orthographic image irradiance equations, the depth map is recovered by giving the fol-

lowing components in to the integrator:

𝑝(𝑥, 𝑦) =
−𝑛1(𝑥, 𝑦)

𝑑(𝑥, 𝑦)
, 𝑞(𝑥, 𝑦) =

−𝑛2(𝑥, 𝑦)

𝑑(𝑥, 𝑦)
(3.2)

where (𝑝, 𝑞) constitute the perspective gradient field for points (x,y) in Ω̄ as the image plane

and 𝑑(𝑥, 𝑦) for a camera with the focal length 𝑓 is:

𝑑(𝑥, 𝑦) = 𝑥𝑛1(𝑥, 𝑦) + 𝑦𝑛2(𝑥, 𝑦) + 𝑓𝑛3(𝑥, 𝑦) (3.3)

𝑑 is the dot product of 𝑂𝑃 and normal vector 𝑁(𝑥, 𝑦) where 𝑂𝑃 is the radial distance of

the sensor point 𝑃 := (𝑥, 𝑦, 𝑓) to the optical center 𝑂 when the camera is located at the

origin of the coordinate system. In what follows, we show the strategy of this projection

in Algorihm 1. The perspective projection realised via projection of the normal vector is

denoted by PPN.
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Algorithm 1: Transferring orthographic normal filed to the perspective gradient
field

1: Obtain normal field 𝑁(𝑥, 𝑦) from the orthographic image irradiance equation for
(x,y) ∈ Ω̄ as the image plane
2: Define the distance 𝑂𝑃 := (𝑥, 𝑦, 𝑓) as the radial distance of the sensor point 𝑃 to
the optical center 𝑂
3: Constitute the parameter of 𝑑(𝑥, 𝑦) as the dot product of 𝑁(𝑥, 𝑦) and 𝑂𝑃 (𝑥, 𝑦) as in
equation (3.3)
4: Compute the perspective gradient field (𝑝, 𝑞) using (3.2)

3.1.4 Direct perspective surface parameterization

Another approach to apply the perspective projection is via corresponding surface param-

eterization, shown in Fig. 2-20. So, in this case, the obtained surface normal (2.34) will

be used in image irradiance equation. We recall here the Lambertian perspective image

irradiance equation [133], as this will be extended in our model.

In order to remove the dependency of the image irradiance equation on the unknown depth

𝑧, it will be substituted by 𝜈 = 𝑙𝑛(𝑧), 𝑧𝑥 = 𝑧𝜈𝑥, 𝑧𝑦 = 𝑧𝜈𝑦, so that we have to apply

𝑧 = exp(𝜈) to obtain the depth 𝑧 out of our new unknown 𝜈. This yields:

𝐼𝑘(𝑥, 𝑦) = 𝑘𝑑
𝑓𝛼𝑘𝜈𝑥 + 𝑓𝛽𝑘𝜈𝑦 + 𝛾𝑘(𝑦𝜈𝑦 + 𝑥𝜈𝑥 + 1)√︀
(𝑓𝜈𝑥)2 + (𝑓𝜈𝑦)2 + (𝑦𝜈𝑦 + 𝑥𝜈𝑥 + 1)2‖𝐿𝑘‖

𝑙𝑑 (3.4)

A closed form solution for the gradient field is obtained in [133]. For completeness of the

presentation, we now recall the main points in its construction. Let us consider three input

images (the minimum needed inputs in classic PS). By finding 𝑘𝑑 from the first image irra-

diance equation in (3.4), and replacing it in the second and third image irradiance equation,

a linear system of equations 𝑀𝑋 = 𝐻 should be solved for obtaining the unknown vector

𝑋 = (𝜈𝑥, 𝜈𝑦):

𝑀 =

⎛⎝ 𝑚1 𝑚2

𝑚3 𝑚4

⎞⎠ , 𝐻 =

⎛⎝ ℎ1

ℎ2

⎞⎠ (3.5)
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where, we have with 𝑟𝑖 = 𝐼𝑖‖𝐿𝑖‖:

𝑚1 = 𝑟2(𝑓𝛼1 + 𝑥𝛾1)− 𝑟1(𝑓𝛼2 + 𝑥𝛾2) (3.6)

𝑚2 = 𝑟2(𝑓𝛽1 + 𝑦𝛾1)− 𝑟1(𝑓𝛽2 + 𝑦𝛾2) (3.7)

𝑚3 = 𝑟3(𝑓𝛼1 + 𝑥𝛾1)− 𝑟1(𝑓𝛼3 + 𝑥𝛾3) (3.8)

𝑚4 = 𝑟3(𝑓𝛽1 + 𝑦𝛾1)− 𝑟1𝑓(𝛽3 + 𝑦𝛾3) (3.9)

ℎ1 = −𝑟2𝛾1 + 𝑟1𝛾2, ℎ2 = −𝑟3𝛾1 + 𝑟1𝛾3 (3.10)

The explicit solutions are:

𝜈𝑥 =
ℎ1𝑚4 −𝑚2ℎ2
𝑚1𝑚4 −𝑚2𝑚3

, 𝜈𝑦 =
𝑚1ℎ2 − ℎ1𝑚3

𝑚1𝑚4 −𝑚2𝑚3

(3.11)

Now, we can obtain the albedo of the surface by plugging the resultant gradient vector for

instance into the following equation:

𝑘𝑑 =
𝐼1 ‖ 𝐿1 ‖

√︀
(𝑓𝜈𝑥)2 + (𝑓𝜈𝑦)2 + (𝑦𝜈𝑦 + 𝑥𝜈𝑥 + 1)2

𝑙𝑑
√︀

(𝑓𝛼1𝜈𝑥) + (𝑓𝛽1𝜈𝑦) + 𝛾1(𝑦𝜈𝑦 + 𝑥𝜈𝑥 + 1)
(3.12)

3.1.5 Sensitivity of the solution

We try to access the sensitivity of the solution with respect to the lighting directions, which

may lead to conditions on the illumination. To this end, the non-singularity condition of the

matrix of coefficients𝑀 introduced in the previous paragraph should be explored. So, after

computing the determinant of 𝑀 and considering the non-singularity condition 𝑑𝑒𝑡𝑀 ̸= 0,

the non-singularity can be assured in virtually all cases by ensuring that the contributing

terms are not zero. This idea leads to the indicator shown in (3.13).

The first three expressions imply the linear independence of light directions and it can be

also obtained from the non-singularity condition of the light directions matrix. It should

be noted that since PPN deals with obtaining normal vectors from orthographic image
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irradiance equation its necessary condition for lights is the non-singularity of the light

directions. The other resultant expressions are different and satisfying all of them may

not be an easy task. Consequently, the sensitivity of the solution to the lightening in PPS

technique can be higher than the PPN approach.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝛽1𝛼3 − 𝛼1𝛽3 ̸= 0

𝛽2𝛼1 − 𝛼2𝛽1 ̸= 0

𝛼2𝛽3 − 𝛽2𝛼3 ̸= 0

𝑦𝛼1𝛾1 − 𝑥𝛽1𝛾1 ̸= 0

𝑥𝛽2𝛼1 − 𝑦𝛼2𝛾1 ̸= 0

𝑦𝛼2𝛾3 − 𝑥𝛽2𝛾3 ̸= 0

𝑥𝛾1𝛽1 − 𝑦𝛾1𝛼1 ̸= 0

𝑦𝛾1𝛼3 − 𝑥𝛾1𝛽3 ̸= 0

𝑦𝛾2𝛼1 − 𝑥𝛾2𝛽1 ̸= 0

𝑦𝛼2𝛾1 − 𝑥𝛽2𝛾1 ̸= 0

𝑥𝛾2𝛽3 − 𝑦𝛾2𝛼3 ̸= 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.13)

3.2 Perspective Blinn-Phong reflectance model

Now we want to develop the Blinn-Phong model by introducing the perspective projection

to this reflectance model. To this end, we apply again the two different mentioned perspec-

tive approaches. We recall the Blinn-Phong image irradiance equation as:

𝐼(𝑥, 𝑦) = 𝑘𝑑

(︂
𝐿 ·𝑁(𝑥, 𝑦)

‖𝐿‖‖𝑁(𝑥, 𝑦)‖

)︂
𝑙𝑑

+𝑘𝑠

(︂
𝐻(𝑥, 𝑦, 𝑧) ·𝑁(𝑥, 𝑦)

‖𝐻(𝑥, 𝑦, 𝑧)‖‖𝑁(𝑥, 𝑦)‖

)︂𝑛

𝑙𝑠 (3.14)

To develop the perspective Blinn-Phong PS model, we focus on the surface parameteriza-

tion and plug in the perspective normal (2.34) in (3.14).

Considering 𝑘 input images for corresponding lighting directions, this yields after some
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computation the perspective Blinn-Phong reflectance equations as:

𝐼𝑘(𝑥, 𝑦) = 𝑘𝑑𝑙𝑑
𝑓𝜈𝑥𝛼𝑘 + 𝑓𝜈𝑦𝛽𝑘 + 𝛾𝑘𝑤

𝑔
√︀

(𝑓𝜈𝑥)2 + (𝑓𝜈𝑦)2 + (𝑤)2

+𝑘𝑠𝑙𝑠

(︃
𝑓𝜈𝑥𝐷(1) + 𝑓𝜈𝑦𝐷(2) + (𝑤)𝐷(3)√︀

𝑟 + (𝑤)2‖𝐷‖

)︃𝑛

(3.15)

where

𝑝 := ‖(𝑥, 𝑦, 𝑓)‖, 𝑔 := ‖𝐿𝑘‖ (3.16)

𝑟 := 𝑓 2(𝜈2𝑥 + 𝜈2𝑦) (3.17)

𝐷 :=

⎡⎢⎢⎢⎣
𝛼𝑘𝑝+ 𝑔𝑥

𝛽𝑘𝑝+ 𝑔𝑦

𝛾𝑘𝑝− 𝑔𝑓

⎤⎥⎥⎥⎦ (3.18)

𝑤 = (𝑦𝜈𝑦 + 𝑥𝜈𝑥 + 1) (3.19)

3.2.1 Numerical approach

Now, we present the numerical procedure which can be applied for addressing such a

highly nonlinear system of equations. Recalling the description of a system of equations

as 𝐹 (𝑋) = 0, where 𝐹 : R𝑛 −→ R𝑚 is a given function by the equations from (3.15), we

will discuss our solution procedure.

In order to cope with such a nonlinear system of equations, we applied the Levenberg-

Marquardt method introduced in [80, 87] as a combination of the Gauß-Newton method

and steepest descent direction technique. In this method, if 𝑋𝑘 is the point at iteration 𝑘,

the next iteration can be computed as:

𝑋𝑘+1 := 𝑋𝑘 + 𝑑𝑘, (3.20)

𝑑𝑘 := −(𝐽𝐹 (𝑋𝑘)𝐽𝐹 (𝑋𝑘)𝑇 + 𝜆𝑘𝐼)
−1𝐽𝐹 (𝑋𝑘)𝐹 (𝑋𝑘) (3.21)
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with 𝜆𝑘 > 0.

The matrix 𝐽𝐹 (𝑋𝑘)𝐽𝐹 (𝑋𝑘)𝑇 +𝜆𝑘𝐼 is positive definite and 𝑑𝑘 is well-defined. In addition,

this method does not need the conditions such as the invertibility of Jacobian matrix or

Hessian matrix or 𝑚 = 𝑛.

Partial linearization strategy

Our numerical approach for the PPS method is based on the following formulation which

makes the problem much easier to handle by providing a partially linearized system from

that highly nonlinear system of equations. Recalling the perspective Blinn-Phong re-

flectance equations (3.15), and dividing three equations (𝐼1/𝐼2, 𝐼2/𝐼3, 𝐼1/𝐼3, corresponding

to the three used images in our method) leads to a system of equations, with the equations

like the following equation as obtained for dividing the first and second images:

∙ Integrating two terms in equation (3.15) which results in:

𝐼𝑘(𝑥, 𝑦) =
𝐴(𝑓𝜈𝑥𝛼𝑘 + 𝑓𝜈𝑦𝛽𝑘 + 𝛾𝑘𝑤)(

√︀
𝑟 + (𝑤)2‖𝐷‖)𝑛 +𝐵𝐶𝑛

𝑔
√︀
(𝑓𝜈𝑥)2 + (𝑓𝜈𝑦)2 + (𝑤)2

(︁√︀
𝑟 + (𝑤)2‖𝐷‖

)︁𝑛

(3.22)

where

𝐴 := 𝑘𝑑𝑙𝑑, 𝐵 := 𝑘𝑠𝑙𝑠𝑔

(︂√︀
𝑟 + (𝑤)2

)︂
(3.23)

𝐶 :=

(︂
𝑓𝜈𝑥𝐷(1) + 𝑓𝜈𝑦𝐷(2) + (𝑤)𝐷(3)

)︂𝑛

(3.24)

∙ Dividing two of irradiance equations for the first and second images

leading to:

𝐼1(𝑥, 𝑦)/𝐼2(𝑥, 𝑦) =
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(︂
𝐴(𝑓𝜈𝑥𝛼1 + 𝑓𝜈𝑦𝛽1 + 𝛾1𝑤)(

√︀
𝑟 + (𝑤)2‖𝐾‖)𝑛 +𝐵1𝐶1

𝑛

)︂
𝐹(︂

𝐴(𝑓𝜈𝑥𝛼2 + 𝑓𝜈𝑦𝛽2 + 𝛾2𝑤)(
√︀
𝑟 + (𝑤)2‖𝑆‖)𝑛 +𝐵2𝐶2

𝑛

)︂
𝐺

(3.25)

where

𝐵1 := 𝑘𝑠𝑙𝑠‖𝐿1‖
(︂√︀

𝑟 + (𝑤)2
)︂

(3.26)

𝐶1 :=

(︂
𝑓𝜈𝑥𝐾(1) + 𝑓𝜈𝑦𝐾(2) + (𝑤)𝐾(3)

)︂𝑛

(3.27)

𝑎𝑛𝑑 𝐾 :=

⎡⎢⎢⎢⎣
𝛼1𝑝+ ‖𝐿1‖𝑥

𝛽1𝑝+ ‖𝐿1‖𝑦

𝛾1𝑝− ‖𝐿1‖𝑓

⎤⎥⎥⎥⎦ (3.28)

𝐵2 := 𝑘𝑠𝑙𝑠‖𝐿2‖
(︂√︀

𝑟 + (𝑤)2
)︂

(3.29)

𝐶2 :=

(︂
𝑓𝜈𝑥𝑆(1) + 𝑓𝜈𝑦𝑆(2) + (𝑤)𝑆(3)

)︂𝑛

(3.30)

𝑎𝑛𝑑 𝑆 :=

⎡⎢⎢⎢⎣
𝛼2𝑝+ ‖𝐿2‖𝑥

𝛽2𝑝+ ‖𝐿2‖𝑦

𝛾2𝑝− ‖𝐿2‖𝑓

⎤⎥⎥⎥⎦ (3.31)

𝐹 := ‖𝐿2‖
(︂
‖𝑆‖

)︂𝑛

(3.32)

𝐺 := ‖𝐿1‖
(︂
‖𝐾‖

)︂𝑛

(3.33)

∙ Unifying two fractions in (3.25) as follows:

𝐼1(𝑥, 𝑦)

(︂
𝐴(𝑓𝜈𝑥𝛼2 + 𝑓𝜈𝑦𝛽2 + 𝛾2𝑤)(

√︀
𝑟 + (𝑤)2‖𝑆‖)𝑛
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+𝐵2𝐶2
𝑛

)︂
𝐺− 𝐼2(𝑥, 𝑦)

(︂
𝐴(𝑓𝜈𝑥𝛼1 + 𝑓𝜈𝑦𝛽1 + 𝛾1𝑤)

(
√︀
𝑟 + (𝑤)2‖𝐾‖)𝑛 +𝐵1𝐶1

𝑛

)︂
𝐹 = 0 (3.34)

By proceeding the same approach for constituting (𝐼2/𝐼3) and (𝐼1/𝐼3) , the partially lin-

earized system of equations will be arised. It should be noted that even in this case of

existing specularities and in the process of solving the perspective PS system for the Blinn-

Phong model (3.15), we will still follow Woodham and make use of only three input im-

ages.

Furthermore, as for the case of Lambertian PS, we will also deal with the Blinn-Phong

model using the perspective version based on transforming the normal vectors (PPN method),

i.e. after orthographic Blinn-Phong PS. Finally, the obtained gradient fields are processed

by the Poisson integrator. see e.g. [19] for a recent account of surface normal integration.

3.3 CCD cameras

We will also investigate the modeling of the CCD camera. In the case of CCD cameras, the

following projection mapping is used as presented in [57]. The matrix

Γ =

⎡⎢⎢⎢⎣
𝜓𝑥 𝜉 𝛿𝑥

0 𝜓𝑦 𝛿𝑦

0 0 1

⎤⎥⎥⎥⎦ (3.35)

contains the intrinsic parameters of the camera, namely the focal length in 𝑥− and 𝑦− di-

rection equal to 𝜓𝑥 = 𝑓
ℎ𝑥

and 𝜓𝑦 = 𝑓
ℎ𝑦

, with the sensor sizes ℎ𝑥 and ℎ𝑦 and the principal

point or focal point (𝛿𝑥, 𝛿𝑦)⊤. The parameter 𝜉 is called skew parameter. Here, we neglect

this parameter since it will be zero for most of normal cameras [57]. Using this matrix, we

will introduce the following transformation to convert the dimensionless pixel coordinate

𝑋 = (𝑥, 𝑦, 1)⊤ to the image coordinate 𝜒 = (𝑐, 𝑑, 𝑓)⊤ as follows:
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Figure 3-2: Comparison of the surface reconstruction techniques [73]. Top: Input image.
Bottom left: Our 3D reconstruction using orthographic projection. Bottom right: Our 3D
reconstruction by perspective projection. It can be observed that the perspective approach
is able to generate a more compatible result with respect to the original image.

𝑋 = Γ
1

𝑓
𝜒 (3.36)

By applying the above-mentioned transformation, the following representation for the pro-

jected point 𝜒 will be obtained:

⎡⎣ 𝑐

𝑑

⎤⎦ =

⎡⎣ ℎ𝑥(𝑥− 𝛿𝑥)

ℎ𝑦(𝑦 − 𝛿𝑦)

⎤⎦ (3.37)

The effect of this modeling can be potentially interesting, since this information is not

always accessible. The above transformation is called centerizing in the experiments.
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3.4 Experiments

This section describes our experiments performed by the proposed model and approaches.

In a first test we confirm the investigation of Tankus et al. [135] that the use of an ortho-

graphic camera model may yield apparent distortions in the reconstruction while a perspec-

tive model may take the geometry better into account, see the experiment documented in

Fig. 3-2. This justifies the use of the perspective camera model. Note that in the figure the

object of interest is relatively close to the camera.

In a series of tests we now turn to quantitative evaluations of the proposed computational

models. To this end, we consider the set of test images in the next experiments as shown

in Fig. 3-4. The Beethoven test images (which depict a real world scene) and the Sphere

images are of the size 128 × 128. The Stanford Bunny test images have a resolution of

150× 120. Both Bunny and Sphere are rendered using Blender. The 3D model of Stanford

Bunny is obtained from the Stanford 3D scanning repository [13]. The 3D model of the

face presented in Fig. 3-11 is taken from [126] with the size of 256× 256. For comparing

our results, the ground truth depth maps are extracted, and we will make use of the Mean

Squared Error (MSE) showing the accuracy.

After considering the mentioned test settings, we demonstrate the applicability of our

method at hand of real world medical test images from gastro endoscopy and discuss its

superior reconstruction capabilities compared to previous models.

3.4.1 Tests of accuracy

In the first evaluation, we compare the results of two mentioned perspective techniques of

PPN and PPS, applied to the specular Sphere in Fig. 3-4 (c) with different values of focal

length. MSE results of these 3D reconstructions are shown in Fig. 3-3. While obtained

results of described perspective methods for some low values of focal lengths are close to

each other, PPN perspective strategy outperforms PPS as the focal length increases. In the

second experiment concerned with the Beethoven image set, we investigate the difference

between two mentioned perspective approaches on a more complex real world object scene.

To this end, we give in Table 3.1 the MSE comparing gray value data of the reprojected and
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Figure 3-3: Comparing our results with two described perspective methods regarding their
depth reconstructions [73]. Considering all mentioned innovations yields to an accurate
perspective PS able to handle specularities.

input images. Since in this case the ground truth depth map is not available, we reconstruct

the reprojected images by obtaining the gradient fields from the mentioned perspective

approaches and replacing them in the Lambertian reflectance equation. It can be deduced

from Table 3.1 that reprojecting from PPS method reaches a close accuracy regarding the

third input image, while the PPN approach achieves higher accuracy in terms of the first

and especially second input image.

As the reprojected images in Fig. 3-5 show, the difference between these methods as given

in Table 3.1 can be quite significant. Furthermore, it is indicative of higher sensitivity of

the PPS method to the lightening than the PPN approach.

Table 3.1: Comparison between MSE of the reprojected Beethoven images from two de-
scribed perspective methods of PPN and PPS.

Perspective method MSE for 1st input MSE for 2nd input MSE for 3rd input
PPN method 0.004239 0.003297 0.007535
PPS method 0.008042 0.021409 0.007644
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Figure 3-4: Set of three test images used for our 3D reconstruction [73]. (a) Real scene
used for reprojecting; (b) and (c) are rendered images used for our 3D reconstruction in
presence of specularity.

Figure 3-5: An account of reprojected Beethoven images [73]. Left: Second input image
for PS. Middle: Reprojected second image obtained from PPN method. Right: Reprojected
second image using the PPS technique.

3.4.2 Slant and tilt

Two well-known indicators of 3D information are slant and tilt [96]. Basically, there are

some individual neurons in our brain’s caudal intraparietal area (a critical neural locus for

encoding 3D information of objects) which are responsible to encode slant and tilt of the

surfaces [109, 125]. Here, we performed some other experiments to probe the behavior of

both proposed perspective techniques for slant and tilt parameters which can be considered

as the perceptual properties of the surface [112, 124]. Slant is defined as the angle between

the surface normal and the line of sight, while the tilt angle determines the orientation of

the surface normal projection on the fronto-parallel plane (the perpendicular plane to the

viewing direction which is also called image plane) shown in Fig. 3-6. These parameters
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Figure 3-6: Two angular variables of slant and tilt [73] as the important parameters used for
encoding the 3D perceptions in our brain [109, 125]. The tilt of a surface corresponds to
the direction of largest variation in perceived distance and slant varies with the magnitude
of the gradient according to (3.38).

are obtained for the case of two illustrated perspective projection methods.

Since in perspective projection we deal with the surface gradient field (𝑝, 𝑞), slant and tilt

formulas will be difined as follows [124]:

∀(𝑥, 𝑦) ∈ Ω̄ :

𝜎(𝑥, 𝑦) = arctan(

√︁
𝑝(𝑥, 𝑦)2 + 𝑞(𝑥, 𝑦)2) (3.38)

𝜏(𝑥, 𝑦) = arctan
𝑞(𝑥, 𝑦)

𝑝(𝑥, 𝑦)
(3.39)

In PPN, the gradient field is computed using equation (3.2), while in PPS it is obtained by:

𝑝 := 𝑧𝜈𝑥, 𝑞 := 𝑧𝜈𝑦 (3.40)

Variations of the slant and tilt on a unit sphere are shown in Fig. 3-7. As can be seen, the

slant parameter changes in the interval of [0∘, 90∘], whereas tilt varies in [0∘, 180∘].

To conduct a fair comparison between PPN and PPS influence on 3D information, we

gained tilt and slant angels of a unit sphere under those two projections, calculated the
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Figure 3-7: Slant (red) and tilt (blue) components of surface orientation on a unit sphere
[73]. Red circles (including two bi-colors) represent an area with equal slant angels and
blue circles (including two bi-colors) indicate an area with equal tilt angels on the sphere.

Figure 3-8: Mean square error of tilt angle (MSEA in degrees) for two mentioned perspec-
tive techniques applied on the sphere against different focal lengths [73]. As can be seen,
the error in estimating tilt angle is decreasing by increasing focal length.

Mean Square Error of obtained Angles (MSEA) and compared them in Fig. 3-8 and Fig.

3-9, respectively.

It is important to note that any deviation in tilt reconstruction leads to false perception of
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the object orientation which is not detrimental for the perception of a symmetric 3D shape

such as a sphere, whilst any failure in slant value reconstruction yields to loss of the object

curvature understanding. In other words, the geometrical interpretation of an erroneous

slant estimation is the distorted curvature of the reconstructed surface.

As depicted in Fig. 3-8 and Fig. 3-9, the gradual increase of the focal length diminishes

the estimation error with respect to both tilt and slant angels.

A quick glance on the first chart (Fig. 3-8) reveals that the range of tilt values for two

perspective projections remain close together confirming that direction estimation accuracy

(tilt impression) is not a discriminative criterion to measure the difference between these

two projections in the case of a spherical surface reconstruction.

In contrast, curvature estimation accuracy (slant impression) in Fig. 3-9, conveys the more

successful performance of the PPN approach to preserve curvature properties of the surface

during 3D reconstruction process.

Our conclusion is in accordance with some previous studies on the human visual system

[137, 29], where it turns out perspective characteristics of the human visual system is the

main source of slant perception.

Figure 3-9: Mean square error of slant angle (MSEA in degrees) for two mentioned per-
spective techniques applied on the sphere against different focal lengths [73]. The trend of
error is descending with respect to gradual increasing of focal length. This amount of de-
creasing can be seen in PPN perspective projection more than PPS perspective technique.

87



Table 3.2: MSE of the reconstructed depth from images with specularities by two perspec-
tive methods of PPN and PPS. As it is clear, we consider 3D reconstruction in the presence
of both diffuse and specular reflection simultaneously from the surface which leads to in-
volving both 𝑘𝑑 and 𝑘𝑠 and applying complete Blinn-Phong model. In addition, we applied
both diffuse and specular light. Finally, we extended our model to different perspective
projection techniques.

Reconstruction Error 𝑘𝑑 𝑘𝑠 𝑙𝑑 𝑙𝑠 shininess centerizing no centerizing
MSE of PPN (Bunny) 0.6 0.4 1.2 1.2 50 0.006355 0.042082
MSE of PPS (Bunny) 0.6 0.4 1.2 1.2 50 0.012318 0.011318
MSE of PPN (Sphere) 0.5 0.5 1.2 1.2 150 0.008264 0.022568
MSE of PPS (Sphere) 0.5 0.5 1.2 1.2 150 0.008431 0.007716

3.4.3 Perspective methods and CCD camera model

Table 3.2 and Fig. 3-10 present the results of our 3D reconstructions for highly specular

input images as shown in Fig. 3-4 (b) and Fig. 3-4 (c), respectively. In order to produce

such images, we set non-zero intensities for diffuse and also specular light. Furthermore,

the objects include both diffuse and specular reflections. Values of MSE for 3D recon-

struction show the high accuracy of our depth reconstructions by applying the complete

Blinn-Phong model which is accompanied by two presented perspective schemes. On the

other hand, while results of the recovered depth map for the sphere are close to some ex-

tent, the outcome of the computed depth map for Bunny based on the PPN method obtains

higher accuracy. However, the table also illustrates the higher sensitivity of the PPN per-

spective scheme to centerizing transformation than the PPS perspective method. Finally,

we compare our approach with the Lambertian model which is the most common model

applied in PS and also the method presented by Mecca [89]. Last row in Fig. 3-10 shows

the outcome of applying the Lambertian model. The deviation from faithful reconstruction

over the specular area of the surface can be seen clearly. The comparison between our

approach and [89] is also shown in Fig. 3-11. As already indicated, our method applies

complete perspective Blinn-Phong model on three images including both diffuse and spec-

ular reflections and lights, while the method in [89] uses the specular term in Blinn-Phong

model to handle four purely specular images. The excellent result of the proposed method

presented in Fig. 3-11 (b) over the high value of specularity with the absence of any de-

88



Figure 3-10: First and second row: Left: Groud truth. Middle: depth reconstruction from
complete Blinn-Phong model with PPN approach. Right: depth reconstruction from com-
plete Blinn-Phong model with PPS approach. These results turn out the proficiency of the
proposed method for appealing reconstruction of the images including strong specularities.
In addition, PPN approach achieves more faithful reconstructions. Last row: Depth recon-
struction from Lambertian model in the presence of specularity accompanied by different
perspective projection. Left: PPN approach. Right: PPS method. As it can be seen, the
Lambertian model is not able to provide a faithful reconstruction for the specular surface
[73].

viation or artifact shows that the proposed method outperforms state-of-the-art approaches

such as in [89]. The MSE values of 3D reconstruction associated with experiments in Fig.

3-11 are also illustrated in Table 3.3.

3.4.4 Tests of applicability on real world test images

This section describes experiments conducted by the proposed approach on realistic im-

ages. We first turn to some real world medical test images. It should be noticed that we
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Figure 3-11: First row: Four purely specular input images as applied in purely specular
model of [89] and the 3D reconstruction of the [89] approach which shows deviations
especially around the highly specular areas. Second row: Three ordinary input images
including both diffuse and specular components as the input of our method and Our 3D
reconstruction. Note that our method does not need the decomposition of the input images
into purely diffuse and purely specular components which is a very difficult task even for
synthetic images [73].

may also call these images realistic because we did not benefit from a controlled setup or

additional laboratory facilities. We used just the images that are available as in any kind of

medical (or many other real world) experiments. Let us note that experiments with endo-

scopic images are well known to yield a challenging test and they are widely accepted for

indicating possible medical applications of photometric approaches, see e.g. [134, 136]. As

for our work, the usefulness of computational results for the indicated, concrete medical

Table 3.3: MSE of the reconstructed depth from images with high specularities shown in
Figure 3-11.

Depth reconstruction approach 𝑘𝑑 𝑘𝑠 𝑙𝑑 𝑙𝑠 shininess MSE
Proposed method 0.3 0.7 1.2 1.2 50 0.004019

Mecca [89] 0 0.7 0 1.2 50 0.056586
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application is confirmed via collaboration with specialized medical doctors. 1 We have per-

formed trials on endoscopic images in which existence of high specularities is unavoidable.

Input images are presented in Fig. 3-12 (a) and Fig. 3-12 (b) which are endoscopies of the

upper gastrointestinal system. Their 3D reconstructions are represented in Fig. 3-13 and

Fig. 3-14.

Similar to all the previous experiments only three input images are used. All outputs are

displayed with an identical viewpoint enabling their visual comparison. The first column

in Fig. 3-13 is indicative of the deviation in the Lambertian result. As it is visible in the

cropped region in Fig. 3-12 (a), shown in the rectangular part, the beginning and end points

of all three folds (marked by A, B and C) should be at about the same level, instead a drastic

deviation toward downside is showing up at the left side of the surface (cf. Fig. 3-13 (a))

in results obtained by applying Lambertian reflectance model as also indicated by the blue

area in the corresponding depth map shown in Fig. 3-13 (d).

However, this deviation is rectified by applying the complete Blinn-Phong model accompa-

nied by PPS as can be seen in the second column of the Fig. 3-13 and also entirely corrected

using this model with PPN approach represented in the third column in Fig. 3-13. Further-

more, three folds of the surface are reconstructed very well in the Blinn-Phong outcomes

(second and third columns of Fig. 3-13). This obviously desirable complete reconstruction

of those folds cannot be seen in the Lambertian output.

Finally, as also the color alteration (in depth maps) represented in the second row of Fig.

3-13 shows, high frequency details are recovered as well in the Blinn-Phong outputs espe-

cially in the case of PPN approach.

These reconstruction aspects are again clearly observable in another endoscopy image

depth reconstruction in Fig. 3-14 which are the depth resultings from inputs as in Fig.

3-12 (b). Once more, a deviation from the desirable output shape appears in the Lamber-

tian outcome especially in the left corner side (Fig. 3-14 (a)). This part of the surface,

which is marked by (C) in the input and 3D resulting images, has a cavity toward the up-

side in reality, which is reconstructed well by the Blinn-Phong outputs in contrast to the

1We mention as a reference the collaboration with Dr. Mohammad Karami H. (Dr.mokaho@skums.ac.ir)
who is a gastroenterologist and internal medicine specialist at Shahrekord University of Medical Science
(Iran). The input endoscopy images are also his courtesy.
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Lambertian result. The Lambertian model apparently provides a reconstruction completely

on the opposite side for this region of the original surface.

Let us pay attention also to the second row in Fig. 3-14 displying depth maps. A curved

line of the upper corrugated region (A) is obtained in the right corner of the Blinn-Phong

outputs (Fig. 3-14 (e) and Fig. 3-14 (f)), whereas this region is just a straight line in the

right corner of the Lambertian outcome (Fig. 3-14 (d)). The height of corrugated regions

are obviously more faithfully reconstructed in the Blinn-Phong results compared to the

Lambertian one.

Last but not least, it is worth to mention that the viewing angle of the endoscopy cameras is

very tight. Using cropped parts of those images in our experiments makes this experiment

a highly challenging task of 3D reconstruction. The success of our approach to reconstruct

such a tiny range of the depth values without any knowledge about photographic conditions

reveals the capability of our proposed method in challenging real world applications.

In another test with real world input images, we compared our method with the approach

used in [133] by making use of the input images depicted as Fig. 2 (a), Fig. 2 (b) and Fig. 2

(c) in [133]. The surface is a plastic mannequin head, and the plastic material itself shows

specularities. It is well-known in computer graphics that plastic is a material that can be

readily rendered by using the Blinn-Phong model [101].

The depth reconstructions obtained by our technique and method of Tankus for those real

world images are presented in Fig. 3-15 and Fig. 3-16. Once again, the deviation from

a natural shape in the Lambertian result of [133] can be clearly observed in the output in

Fig. 3-15 (b) shown in an identical view with our result in Fig. 3-15 (a). In addition, let us

note that the output of the Blinn-Phong model is very clear and smooth, also at highlights.

The inhomogeneous recovery of the shape when using the Lambertian model is cropped

at some regions such as chin and tip of the nose cf. Fig. 3-15 (c), where we had to turn

the Lambertian result to show these regions. The curved line appearing in the chin and the

sharp point at the nose in the Lambertian reconstruction are also visible in [133]. More-

over, as proposed in [133], they could not process eyes in images, due to their specularities,

while we succeeded in recovering the faithful 3D shape even with eyes using the complete

Blinn-Phong model as presented in Fig. 3-16.
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Figure 3-12: Test images with high specularity used in realistic real world senario [73].
These images are produced in an endoscopy experiment. So, they do not benefit from any
laboratory facilities or confine to the controlled setup conditions.
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Figure 3-13: Depth reconstruction from real world endoscopy images: (first column) re-
sults of Lambertian model, (second column) results of the first proposed method (complete
Blinn-Phong using PPS) and (third column) results of second proposed approach (complete
Blinn-Phong model using PPN). All images are shown from identical view to show the dif-
ferences. The deviation in the Lambertian results can be clearly seen, while the results of
our approach provide faithful 3D reconstruction without any deviation and also with a high
amount of details [73].
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Figure 3-14: Depth reconstruction from real world endoscopy images: (first column) re-
sults of Lambertian model, (second column) results of the first proposed method (complete
Blinn-Phong using PPS) and (third column) results of second proposed approach (complete
Blinn-Phong model using PPN). All images are shown from identical view to show the dif-
ferences. Once more, the deviation in Lambertian outcomes is clear, whereas our approach
provides a trustable 3D reconstruction without any deviation [73].
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Figure 3-15: Depth reconstructions from real world images: (a) Results of our proposed
method using complete Blinn-Phong model, (b), (c) results of [133]. Both images are
shown from identical view to represent the differences. We have also cropped some parts
of our results and shown them together with the same cropped area of outcomes of [133]
in (c). As it is clear, our approach shows significant superiority over [133] in terms of
advantages such as smoothness over the rough output of [133], reconstruction success in
specularities and absence of deviation from natural symmetric shape [73].
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(a) (b)

Figure 3-16: Depth reconstructions from real world images: (a) results of our proposed
method using complete Blinn-Phong model, (b) results of [133]. As it is mentioned in
[133], they could not obtain the reconstruction in the presence of eyes (due to the specu-
larities) unlike our approach which provides faithful results even with including eyes [73].
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3.5 Summary and conclusion

A new framework in PS considering the complete perspective Blinn-Phong reflectance in-

cluding strong specular highlights is presented. The advantages of our method over state-

of-the-art PS methods and also the Lambertian model are proved via a variety of experi-

ments. The model includes a perspective camera projection. Furthermore, two different

techniques applied in perspective projection are evaluated. In addition, we have also eval-

uated the modelling of CCD camera. All results are obtained using a minimum necessary

number of input images, which is an aspect of practical relevance in different applications

and makes PS an interesting technique for close to real-time reconstruction, where a mini-

mal set of images is required. We have demonstrated experimentally also the merits of our

PS model for possible challenging real world applications, where we recover the surface

with high degree of details. Let us also comment that our computational times are very

reasonable i.e. in the order of a few seconds in all experiments.

Concerning possible limitations, as with all the possible approaches that rely on a para-

metric representation of surface reflectance, the corresponding additional parameters in the

reflectance function have to be fixed. This issue may provide challenging numerical as-

pects in the optimization. Also, while the Blinn-Phong model gives already reasonable

results as we demonstrated, other more sophisticated reflectance models may be adequate

for handling highly complicated surfaces, which may be a possible issue of future research.
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Chapter 4

Real-time 3D shape of micro-details

4.1 Introduction

4.1.1 Our contributions

In this chapter, we provide the following innovations:

1. We proposed an accurate hybrid real-time 3D reconstruction approach which merges

the benefits of perspective projection and non-Lambertian reflectance model motivated by

Cook-Torrance reflectance [37] to handle complex reflecting characteristics. To the best of

our knowledge, this is the first work for the real-time PS which also regarded the applica-

tion of perspective Cook-Torrance model [37].

2. Introducing a Recurrent Optimization Network (RON) which provides a robust PS

framework to obtain a highly-detailed 3D shape from even micro-prints texts where their

visibility is hard for the human visual system as can be seen in Fig. 4-1. In this figure, we

could reconstruct 3D shape of two regions of A and B with high details, while these regions

are very tiny microtext. The information hidden in these areas became completely clear by

our approach. As a result, our technique can be used in different applied areas.

3. Since the performance of many optimization techniques is highly-dependent on the

initialization process, we provided a Dijkstra Gaussian Mean Curvature (DGMC) tech-

nique to find anchor points which can be applied as a key point to offer more effective

optimization approach.
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4. Furthermore, we extended our proposed approach to deal with the realistic lightening

situation using spatially dependent lighting.

5. We show that our approach is able to provide the real-time 3D shape of objects as

captured by an ordinary mobile phone camera without employing controlled laboratory

conditions (cf. Fig. 4-2). So, our PS process is conducted by the consumer-level equipment

where specialized equipment and professional laboratory settings are not required. Our

instruments are easily available for general consumers as should be expected for an ideal

solution. Consequently, our method can be readily employed in real-world situations. We

demonstrate that this attempt provides the basis for a potentially useful 3D reconstruction

technique. This improvement breaks inhibitor limitations of a controlled setup and the ne-

cessity of working with specific scenes (e.g. Lambertian materials) and turns mobile phone

into powerful 3D shape reconstruction tools.

6. Finally, our approach also provides non-uniform colorful albedo from images with di-

verse color intensities as shown in Fig. 4-12.

All these efforts greatly advance the applicability of photometric stereo to various applica-

tions, especially for reconstructing 3D surfaces from very tiny structures like micro-prints.

4.1.2 Related works

In order to circumvent difficulties of specularities, commercial instruments for 3D recon-

struction use sophisticated techniques such as white light interferometry or scanning focal

microscopy, while these laboratory-based devices tend to be large, slow, or at the expense

of $100,000 or more.

A preprocessing technique is presented by Yang et al. [149] to remove specularities. A

maximum-likelihood estimation [141] and an expectation maximization [148] are other

approaches based on assuming specularities as the outliers. Zickler et al. [156] provides an

analyze to a subspace which is free from highlights for image transformation. Ikehata et al.

[68] suggested a regression procedure that deals with the specular component as a sparse

error of an underlying purely diffuse reflectance equation. An inpainting technique for the
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Figure 4-1: A successful 3D reconstruction from very fine details of micro-prints on a
50 euro banknote shown in gray color rectangular parts of (A) and (B) [73]. As can be
seen, these details are even invisible to human eyes, while our real-time 3D reconstruction
from these regions is able to reveal hidden information and features in high amount of
details. This information recovery can be used in various applied areas such as detecting
security items on financial documents for fraud detection and also the quality control of
any industrial productions that include delicate details such as printed circuits.

highlights correction is presented by Tan et al. [105] using the color of illuminant and the

diffuse component. In [130] and [116] the pixel chromaticity direct analysis and specular-

free image are used respectively to specularity correction in which the diffuse component

is adjusted to a criterion. This criterion is an indicative of smooth transition of color be-

tween diffuse and specular regions and evaluated using a nonlinear shifting of specular

pixels intensity and chromaticity. Johnson et al. [69] presented an elastomer using a sensor

skin constructed with a metal-flake pigment which is attached to the surface to change its

BRDF. However, in all these works, the shape information that is evidently contained in

non-Lambertian effects (e.g. highlights) is discarded.

4.1.3 Lightening sensitivity analysis

In addition to the directional light, we also equipped our perspective Cook-Torrance model

with spatially varying lightening. To this aim, a three dimensional vector field of the light
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Figure 4-2: A complex real scene including several objects with different sizes captured by
a mobile phone with a simple setup which is used for our 3D shape reconstruction [73].

𝐿 should be imposed as in (2.31) instead of a directional light vector.

4.1.4 Optimization process

In cases where problems seem hard to solve, different sciences get in different ways to

solve the problem. Researchers know that finding solutions to problems can be faster by

modeling them in the virtual world and finding the solution in this way can be possible.

Therefore, it helped optimization methods to be applied up to now even for cutting edge

technologies and fields. The aim of optimization is maximizing desired output as well as

minimizing the consumed time. In the nature of optimization, we deal with determining the

value of functions whose constraints and limits are clear. In general, problems addressed

in optimization techniques can be divided into two types of linear and nonlinear.

Naturally, nonlinear problems are harder to solve and require more complicated optimiza-

tion algorithms to get the result. This motivated us to devise a RON framework for our

approach.
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4.1.5 Different optimization algorithms

We recall the Cook-Torrance reflectance designed to cope with the problem of modeling

reflections of realistic materials [37]. The Cook-Torrance image irradiance equation is:

𝐼(𝑥, 𝑦) = 𝑘𝑑
𝐿 ·𝑁(𝑥, 𝑦)

‖𝐿‖ ‖𝑁(𝑥, 𝑦)‖
𝑙𝑑⏟  ⏞  

𝑑𝑖𝑓𝑓𝑢𝑠𝑒 𝑡𝑒𝑟𝑚

+
𝐺(𝑥, 𝑦, 𝑧)𝐷(𝑥, 𝑦, 𝑧)𝐹 (𝑥, 𝑦, 𝑧)

4 𝑉 (𝑥,𝑦,𝑧)·𝑁(𝑥,𝑦)
‖𝑉 (𝑥,𝑦,𝑧)‖‖𝑁(𝑥,𝑦)‖

𝐿·𝑁(𝑥,𝑦)
‖𝐿‖‖𝑁(𝑥,𝑦)‖⏟  ⏞  

𝑠𝑝𝑒𝑐𝑢𝑙𝑎𝑟 𝑡𝑒𝑟𝑚

(4.1)

Using equation (4.1) for three input images (as the minimum number of input images in

PS), we constitute a system of equation 𝐹 (𝑋) = 0, where 𝐹 : R𝑛 −→ R𝑚 is defined as

𝐹 (𝑋) = [𝑓ℎ], ℎ = 1, 2, 3 and formed by equations given by (4.1) corresponding to each

input image 𝐼ℎ(𝑥, 𝑦), ℎ = 1, 2, 3 as:

𝑓ℎ = 𝐼ℎ(𝑥, 𝑦)− (𝑑𝑖𝑓𝑓𝑢𝑠𝑒 𝑡𝑒𝑟𝑚)− (𝑠𝑝𝑒𝑐𝑢𝑙𝑎𝑟 𝑡𝑒𝑟𝑚) = 0 (4.2)

To estimate the normal field, we should solve the optimization problem as follows:

𝑋* = 𝑎𝑟𝑔𝑚𝑖𝑛 1
2
‖𝐹 (𝑋)‖2 = 1

2

∑︀3
ℎ=1 𝑓

2
ℎ

In optimization process, we update the solution using an iterative procedure:

𝑋𝑘+1 := 𝑋𝑘 + 𝑑𝑘, (4.3)

Here, 𝑑𝑘 is the search direction in iteration 𝑘. The main difference between various opti-

mization approaches is caused by the definition of 𝑑𝑘.

4.1.6 Quasi-Newton with BFGS updating

In this section, we investigate various procedures that we applied for the nonlinear system

of equations described by 𝐹 (𝑥) = 0. Among many iterative methods, Newton’s method is
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one of the popular approaches. But this method has some drawbacks which can be removed

by its modified versions. Here, we used the updated formula known as Quasi-Newton with

BFGS suggested independently by [30, 46, 53, 115], which as explained in [104], has much

better performance than other modified versions of Newton’s method and it has proven to

show good performance even for non-smooth optimizations [81]. In this approach, the

Quasi-Newton condition (secant condition) is used to find the search direction 𝑑𝑘:

𝑑𝑘 := −(𝐵−1)𝑘▽Ψ(𝑋𝑘) (4.4)

where𝐵 and 𝐽(𝑋) are the Hessian matrix approximation and the Jacobian matrix of 𝐹 (𝑋),

respectively. The following expression is known as Quasi-Newton condition or the BFGS

formula for updating 𝐵:

𝐵𝑘+1 = 𝐵(𝑋𝑘) +
𝑌 𝑘(𝑌 𝑘)𝑇

(Θ𝑘)𝑇𝑌 𝑘
− 𝑈𝑘(𝑈𝑘)𝑇

(Θ𝑘)𝑇𝑈𝑘
(4.5)

with

𝑌 𝑘 = ▽Ψ(𝑋𝑘+1)−▽Ψ(𝑋𝑘), (4.6)

Θ𝑘 = 𝑋𝑘+1 −𝑋𝑘, (4.7)

𝑈𝑘 = 𝐵𝑘Θ𝑘 (4.8)

4.1.7 Levenberg-Marquardt

Another strategy that we considered is the Levenberg-Marquardt method [80, 87] with the

search direction determined as:

𝑑𝑘 = −(𝐽(𝑋𝑘)𝐽(𝑋𝑘)𝑇 + 𝜆𝑘𝐼)
−1𝐽(𝑋𝑘)𝐹 (𝑋𝑘) (4.9)

where 𝜆𝑘 > 0 and the (𝐽(𝑋𝑘)𝐽(𝑋𝑘)𝑇 + 𝜆𝑘𝐼)
−1 is positive definite.
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4.1.8 Powell’s Dog Leg

In this technique, a strategy is proposed to choose optimization steps based on a parameter

called radius of trust region Δ. Three search directions are applied as follows:

ℎ𝑔𝑛
𝑘 := −𝐽(𝑋𝑘)−1𝐹 (𝑋𝑘), (4.10)

ℎ𝑠𝑑
𝑘 := −𝛼𝐽(𝑋𝑘)𝑇𝐹 (𝑋𝑘), (4.11)

ℎ𝑑𝑙
𝑘 := ℎ𝑔𝑛

𝑘, 𝑖𝑓
⃦⃦
ℎ𝑔𝑛

𝑘
⃦⃦
≤ Δ (4.12)

ℎ𝑑𝑙
𝑘 :=

Δ⃦⃦
ℎ𝑠𝑑

𝑘
⃦⃦ℎ𝑠𝑑𝑘, 𝑖𝑓

⃦⃦
𝛼ℎ𝑠𝑑

𝑘
⃦⃦
≥ Δ (4.13)

ℎ𝑑𝑙
𝑘 := 𝛼ℎ𝑠𝑑

𝑘 + 𝛽(ℎ𝑔𝑛
𝑘 − 𝛼ℎ𝑠𝑑𝑘), 𝑜.𝑤. (4.14)

where

𝛼 :=

⃦⃦
𝐽(𝑋𝑘)𝑇𝐹 (𝑋𝑘)

⃦⃦2

‖𝐽(𝑋𝑘)𝐽(𝑋𝑘)𝑇𝐹 (𝑋𝑘)‖2
(4.15)

Here, we have also used the strategy applied in [95] to choose 𝛽 and Δ. The general process

of mentioned algorithms is illustrated in next sections.

4.1.9 Dijkstra Gaussian Mean Curvature (DGMC) technique

As a heuristic search to find a proper initial value for the normal field, we have devised a

technique that consists of two phases. At the first stage, we employ the Dijkstra algorithm

[40] to find the nearest point in the outer highlight boundary 𝑆 to each specular pixel 𝑝 .

This point is denoted as 𝑞.

In the second step, we compute the Gaussian Curvature (GC) and the Mean Curvature

(MC) properties of 𝑝 and 𝑞, separately:

𝐺𝐶 = 𝐾1 ×𝐾2, 𝑀𝐶 =
𝐾1 +𝐾2

2
(4.16)

where 𝐾1 is the smallest and 𝐾2 is the biggest eigenvalues of the Hessian matrix of the

pixel local neighboring area. Having those parameter for both points allows us to define
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their local geometric similarity conditions as follows:

𝐺𝐶𝑞 = 𝐺𝐶𝑝 ± 5% (4.17)

𝑀𝐶𝑞 =𝑀𝐶𝑝 ± 5% (4.18)

In case that 𝑞 does not meet similarity conditions, the next nearest member of 𝑆 to 𝑝 will

be nominated.

4.1.10 Recurrent Optimization Network (RON)

We will introduce an intermittent optimization strategy which allows updating not only

the surface normal but also the albedo and roughness parameter. At first, we consider a

constant albedo and also a constant roughness so that we can obtain the surface normal.

After obtaining the normal field, we update the albedo values. Furthermore, the roughness

parameter is updated as well. To this aim, we use the following formulation proposed in

[56] to update the roughness parameter 𝑚, where we already obtained the depth map 𝑧 by

integrating the normal field.

𝑚 =

⎯⎸⎸⎷ 1

𝑛

𝑛∑︁
𝑥=1

𝑛∑︁
𝑦=1

(︁
𝑧(𝑥, 𝑦)− 𝑧(𝑥, 𝑦)

)︁
(4.19)

Here, 𝑧(𝑥, 𝑦) is the mean surface depth, and 𝑛 is the number of pixels. The whole algorithm

of mentioned RON procedure is illustrated in Algorithm 2.

Thanks to this concise optimization network with back-tracing steps and DGMC technique

which are integrated into the photometric stereo algorithm, our method enables PS to work

in diverse applications by removing restrictions such as diffuse objects, orthographic pro-

jection, laboratory set up and professional equipment.
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Algorithm 2: Recurrent optimization network
output : Normal vectors, colorful albedo, roughness value and the

depth map

while stopping criterion is not satisfied do

1. Compute normal vectors from (4.1) using the proposed DGMC technique and one
of Algoritm 3, Algoritm 4 or Algoritm 5 by the constant albedo and roughness

2. Update albedo from (4.1) by the obtained normal field using the same choice of
Algoritm 3, Algoritm 4 or Algoritm 5

3. Integrate the normal field using the proposed approach in section 4.1.11 to obtain
depth map 𝑧

4. Update the roughness value by applying equation (4.19)

5. Update the normal field from (4.1) using the recent albedo and roughness

end

4.1.11 Integration

As the integrator of the normal field, the energy minimization of the following functional

should be considered:

ℱ (𝑢) =

∫︁∫︁
Ω

‖∇𝑧(𝑥, 𝑦)−𝑁(𝑥, 𝑦)‖2𝑑𝑥 𝑑𝑦 (4.20)

which leads to the Euiler-Lagrange equation Δ𝑧 = ∇.𝑁 .

In order to solve the mentioned minimization problem, we applied Generalized Minimal

RESidual (GMRES) with the initial solution of Simchony [119].

4.2 Experiments

In the case of synthetic experiments, to perform a quantitative evaluation, we will make

use of Mean Angular Error of Normal vectors (MAEN) in degrees and also Mean Squared

Error (MSE) of depth.
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4.2.1 Tests of accuracy on synthetic data

In the following, we discuss our results obtained for the synthetic test images as displayed

in Figures 4-6, 4-7 and 4-8. All images are rendered using Blender software. The 3D

model of Oldman and Woman images are obtained from [8] and [11] respectively. 3D

models of the other synthetic images are publicly available at [12]. All images except Cop-

ing (256×200) are in the size of 256×256. All implementations are performed on an Intel

Core i7 processor with 8 GB of RAM.

Comparison with other BRDFs:

In Fig. 4-3 documenting the first set of experiments, we represent the results of comparison

between the recent approach suggested by Khanian et al. [75] and also the results of Lam-

bertian reflectance model (as the most common model applied in PS). The model presented

in [75] is based on the Blinn-Phong reflectance. We extended our experiments to a wide

range of the specular material parameter 𝑘𝑠 = 1− 𝑘𝑑 to evaluate how the varying 𝑘𝑠 influ-

ence the error of 3D reconstruction. It can be noticed that the output of our method achieves

higher rate of accuracy over [75] and Lambertian model as 𝑘𝑠 increases. Whereas, there

are some fluctuations when 𝑘𝑑 ≫ 𝑘𝑠 or 𝑘𝑑 ≪ 𝑘𝑠. As illustrated, error rates of presented

models are almost similar for low values of 𝑘𝑠. However, as 𝑘𝑠 increases, the superiority

of our model over Lambertian and [75] is significant. This observation agrees well with

our motivation for focusing on the high frequency variations and model these components

explicitly. One particular interpretation for the sharp ascending trend of the error rate for

Coping input image (in the case of higher values of 𝑘𝑠 parameter) is the presence of the flat

background region which leads to high amount of shiny highlighted areas in input images.

As for the difference between [75] and Lambertian model, we find that the Lambertian still

performs a little better on very low values of 𝑘𝑠; however, when 𝑘𝑠 is larger than 0.3, [75]

improves accuracy much more than Lambertian model. As indicated, the MSE compar-

ing our 3D reconstruction and ground truth data, demonstrates that our method is capable

of producing accurate 3D reconstructions for the indicated images with specularity. The

qualitative evaluations can be also seen as recovered surfaces shown in Fig. 4-6. Our
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(a) Soldier (b) Horseman

(c) Fighter (d) Coping

Figure 4-3: Comparison with [75] and results obtained by Lambertian reflectance (as the
most common model applied in PS) in presence of specularity. For a fair evaluation, these
experiments are performed against various material parameter (𝑘𝑠) for different input im-
ages [73].

faithful 3D reconstructions with a high amount of details even for tiny surfaces containing

low-depth details (e.g. Coping) represent the proficiency of our approach.

Optimization procedures:

As the next experiment shown in Fig. 4-4, we compared various optimization procedures

(applied in first and second steps of RON technique) for several surfaces with diverse 𝑘𝑠.

It turns out that Dog Leg method achieves higher accuracy in all cases. Although, BFGS

and Levenberg approaches follow the same trend for lower values of 𝑘𝑠 (Levenberg method

can slightly outperform BFGS technique for low values of 𝑘𝑠) BFGS performs better as 𝑘𝑠

increases.
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Table 4.1: MSE of our 3D shape reconstruction with perspective Cook-Torrance reflectance
model in the presence of specularities using different lightening models.

MSE comparison for the applied Lightening models
PLPS for Oldman 0.007700
DLPS for Oldman 0.012408
PLPS for Woman 0.008439
DLPS for Woman 0.011801
PLPS for Carpenter 0.002580
DLPS for Carpenter 0.003085

Lightening analysis:

To investigate the 3D reconstruction sensitivity w.r.t. the lightening model, we applied dif-

ferent PS frameworks. Quantitative and qualitative results of this investigation are shown in

Table 4.1 and Fig. 4-7, respectively. To this end, we evaluated our approach regarding dif-

ferent available lightening conditions. In the first experiment, we consider the distant light

source leads to perform directional-light-based PS referred as DLPS. The output images

of this simulation resemble the real-world images that are illuminated by sun. The second

evaluation is conducted to simulate spatially dependent light resulting in point-wise-light-

based PS denoted as PLPS. We observed that the higher accuracy is achieved by applying

the point-wise light source and adjusting lightings based on spatially dependent light as

presented in (2.30). Fig. 4-7 reveals that DLPS has problem to recover some areas since

capturing images by directional-light leads to more shadows as shown in Fig. 4-7. On

the other hand, using the point-wise light source in the scene and formulating PLPS can

provide the higher amount of accuracy (cf. Table 4.1).

Table 4.2: Our total speed improvement over other methods for all images of Table 4.3. It
can be seen that our scheme can decrease consuming time dramatically as well as providing
reliable results.

[67] [21] [89] [145]
99.87% 99.90 % 96.31 % 96.63 %
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(a) Oldman (b) Militaryman

(c) Carpenter (d) Woman
Figure 4-4: MSE of our 3D reconstructions with different optimization procedures for
specular surfaces with varying material parameter (𝑘𝑠) for different input images [73].

Comparison with several PS methods:

As another evaluation shown in Table 4.2 and Table 4.3, we compared our method from

different aspects on the set of images with the state-of-the-art approaches: constrained

bivariate regression [67], differential ratios [89], dimensionality reduction based on PCA

[21] and also least squares-regression [145]. For a fair comparison, normal map are ob-

tained by the finite-difference of depth map for the methods suggested in [67, 89] (these

schemes provide depth, but not normal vectors) and the depth map is obtained by our inte-

grator (section 4.1.11) for [21, 145] (these techniques obtain normal vectors, but not depth

map). All methods show worse performances than our approach. One reason is that high-

frequency variations are mis-classified and leads to the unpredictable errors. As can be seen

in Table 4.3, the proposed strategy dramatically reduces error in computing normal vectors

and depth map in comparison with other approaches thanks to our effective techniques of

DGMC and RON and capability of handling specularities. The total accuracy of obtained
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Figure 4-5: Left: Total MSED and Right: Total MAEN gained by our approach and com-
pared methods on all images mentioned in Table 1 [73]. As it can be seen in the graph, the
proposed method can be also favored due to its higher accuracy w.r.t both obtained normal
vectors and depth map. To illustrate, our technique can provide accuracy improvement in
normal field extraction over [67] by 97.78 % and over [21] by 96.87 % . Furthermore, this
improvement in accuracy of depth reconstruction by our scheme over [67] is 89.51 % and
over [21] is 76.17 %.

normal field and depth map for all images applied in Table 4.3 is shown in Fig. 4-5. For ex-

ample, we could improve the accuracy in extracted normals by 93.15% over [89] and 90.43

% over [145] and provide higher accuracy in depth reconstruction by 73.29% over [89] and

70.46 % over [145]. Furthermore, the first row in Table 4.3 demonstrates the efficiency of

our proposed method. Our method is the first one with significant high speed providing all

information of normal vectors, colorful albedo, roughness value and depth map. Our speed

improvement over mentioned techniques is represented in Table 4.2. The running time of

[89, 145] are comparable, yet their results appear both quantitatively and qualitatively dif-

ferent. The qualitative comparison of our approach with the mentioned methods is shown

in Fig. 4-8. The performance ranking of methods is consistent with qualitative results. Our

results demonstrate the ability of the proposed scheme to provide a complete reconstruction

without any deviation at specularities which outperforms other comparing approaches.

4.2.2 Test of applicability on real-world images

Finally, we evaluated the capability of our approach on a set of real-world images shown

in Figures 4-9, 4-10, 4-11, 4-12 as a test of the practical applicability of our method. All

the images used in these experiments are captured by the camera of a Samsung Galaxy S5
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smartphone and using a flash. For image acquisition the photographed figurine is standing

on a table covered by a black tablecloth as shown in Fig. 4-2. The light directions are

measured by considering the camera as the origin of the coordinate system. The recovered

3D shape for the first real-world image is presented in Fig. 4-9. In this case, we created

a complex scene composed of numerous small statues with different sizes as a challeng-

ing set. However, we could reconstruct the surface with correct geometry where relevant

details and main features are recovered faithfully. Let us stress that our real-world images

are taken without any laboratory equipment or controlled setups. Nevertheless, the recon-

struction result is in our opinion very reasonable. This test demonstrates the robustness of

our method and its potential for real-world applications even using consumer-level equip-

ment. Moreover, again for this real-world scene, we applied different PS-based lightnings

models for a same light source of a flash. Improved quality of the 3D reconstruction with

spatially dependent lights (PLPS) shown in Fig. 4-9 (in terms of the height field of depth

map and details) can be an advantage offered by this model. More real-world experiments

are presented in Figures 4-10 and 4-11. As can be seen, our approach succeeds in produc-

ing accurate 3D reconstruction results even for high frequency details of tiny structure of

Berlin souvenir statues. The colors of these images are extracted in Fig. 4-12 where the

diversity of colors is recovered as well in our non-uniform colorful albedo reconstruction.

Let us also point out that our results show the capability of reliable 3D reconstruction for

specular materials by using a minimum number of input images (for all synthetic and real-

world experiments, we used three input images). Thus we document here that our method

works under reasonable practical conditions with inexpensive instruments so that it can be

used for many potential applications.

4.3 Summary and conclusion

We presented a real-time robust PS which is also benefiting from perspective Cook-Torrance

reflectance model to explicitly handle specularities and remove the limitations of working

with diffuse materials or orthographic projection. A RON optimization technique based

on DGMC approach is introduced to obtain accurate information of normal vectors, depth,
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roughness and colorful albedo. Our proposed RON and DGMC techniques can be applied

in any highly non-linear optimization framework as a key point for providing multi-variable

solutions and proper initialization. These innovations provide important steps towards a re-

liable PS. Furthermore, we equipped our model with the spatially dependent Lightening

offering more reasonable reconstructions. We have demonstrated the applicability of our

method by applying minimum number of input images without any laboratory conditions

or facilities. Furthermore, we stretch our approach to its full potential by extracting 3D

reconstruction of micro-prints. Our method has the potential to be useful as the basis of

future developments.
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Table 4.3: Comparison of several PS methods w.r.t Mean Square Error of Depth (MSED),
Mean Angular Error of Normal vectors (MAEN in degrees), and Time in seconds. Inno-
vations aggregated in our approach leads to a significant improvement regarding obtained
normal vectors and depth as well as computational Time.

Coping
Methods MAEN MSED Time

Our 0.4163 0.0070 0.0485
[67] 22.5992 0.1879 40.9955
[21] 12.9628 0.0424 58.4178
[89] 15.2238 0.0495 1.3645

[145] 11.9886 0.0409 1.4385
Horseman

Methods MAEN MSED Time
Our 0.7241 0.0138 0.0470
[67] 24.1228 0.0511 37.5942
[21] 14.2859 0.0306 52.3987
[89] 10.3619 0.0356 1.2781

[145] 4.2274 0.0424 1.3470

Soldier
MAEN MSED Time
0.2045 0.0007 0.0320

29.6263 0.0455 32.1078
19.8908 0.0205 45.9023
7.2661 0.0131 1.0775
5.2925 0.0113 1.1977

Fighter
MAEN MSED Time
0.5948 0.0079 0.0460

15.4457 0.0279 28.2307
10.7417 0.0107 39.9016
4.8770 0.0133 0.9929
4.8039 0.0114 1.0205

Oldman
Methods MAEN MSED Time

Our 0.6734 0.0124 0.0466
[67] 18.5054 0.0779 37.3778
[21] 13.2650 0.0400 51.4226
[89] 5.1195 0.0290 1.1693
[145] 3.9751 0.0222 1.3908

woman
Methods MAEN MSED Time

Our 0.6157 0.0128 0.0393
[67] 12.0515 0.11641 21.0516
[21] 8.5208 0.0538 28.3929
[89] 3.3653 0.04354 1.0492
[145] 2.6305 0.0350 0.7499

Militaryman
MAEN MSED Time
0.2659 0.0053 0.0429

24.3848 0.06356 40.4892
19.9172 0.0430 57.1407
3.9674 0.0399 1.2868
5.4562 0.0409 1.4496

Carpenter
MAEN MSED Time
0.2761 0.00308 0.0420

23.2172 0.03018 39.9192
21.1159 0.02331 29.1174
4.8680 0.01192 0.9669
1.0557 0.00915 1.4744
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4.3.1 Algorithms

Here, the whole algorithms of proposed optimization techniques are presented.

Algorithm 3: Quasi-Newton with BFGS updating
Primary input : 𝑋0 that should be computed using our proposed "DGMC"

technique explained in section 5.4. of the paper
Secondary inputs: 𝜗 = 0, k = 0
output : Normal vectors for photometric stereo

while ‖▽Ψ(𝑋𝑘)‖ > 𝜀, and 𝑘 < 𝑘𝑚𝑎𝑥 and 𝜗 < 𝜗𝑚𝑎𝑥 do
Compute 𝑑𝑘 := −(𝐵(𝑋𝑘)

−1
)▽Ψ(𝑋𝑘)

[𝑋𝑘+1, 𝑑𝜗]← line search (𝑋𝑘, 𝑑𝑘) as applied in reference [33] of the paper
𝜗← 𝜗+ 𝑑𝜗
Θ← 𝑋𝑘+1 −𝑋𝑘

𝑌 ←▽Ψ(𝑋𝑘+1)−▽Ψ(𝑋𝑘)
if (Θ)𝑇𝑌 >

√
𝜛‖Θ‖2‖𝑌 ‖2 then

𝑈 ← 𝐵(𝑋𝑘)Θ

𝐵(𝑋𝑘+1) := 𝐵(𝑋𝑘) + 𝑌 𝑘(𝑌 𝑘)𝑇

(Θ𝑘)𝑇𝑌 𝑘 − 𝑈𝑘(𝑈𝑘)𝑇

(Θ𝑘)𝑇𝑈𝑘

end
𝑘← 𝑘 + 1

end
Where 𝜛 is the computer accuracy and 𝜀 = 1e -12 is considered.
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Algorithm 4: Levenberg-Marquardt
Primary input : 𝑋0 that should be computed using our proposed "DGMC"

technique explained in section 5.4. of the paper
Secondary inputs: 𝜗 = 2, 𝜆𝑘 = 𝜏 max{𝑎𝑖𝑖}, where {𝑎𝑖𝑖} is the set of the diagonal

elements of 𝐴 = 𝐽(𝑋)𝐽(𝑋)𝑇 , Ψ(𝑋) = 1
2
‖𝐹 (𝑋)‖22, k = 0

output : Normal vectors for photometric stereo

while ‖𝐽(𝑋𝑘)𝑇𝐹 (𝑋𝑘)‖∞ > 𝜀1, and 𝑘 < 𝑘𝑚𝑎𝑥 do
𝑑𝑘 := −(𝐽(𝑋𝑘)𝐽(𝑋𝑘)𝑇 + 𝜆𝑘𝐼)

−1𝐽(𝑋𝑘)𝑇𝐹 (𝑋𝑘)
if ‖𝑑𝑘‖ > 𝜀2(‖𝑋𝑘‖+ 𝜀2) then

𝑋𝑘+1← 𝑋𝑘 + 𝑑𝑘

ℵ = Ψ(𝑋𝑘)−Ψ(𝑋𝑘+1)

1
2
(𝑑𝑘)𝑇

(︀
𝜆𝑘(𝑑𝑘)−𝐽(𝑋𝑘)𝑇𝐹 (𝑋𝑘)

)︀
if ℵ > 0 then

𝜆𝑘+1 = 𝜆𝑘 max
{︀

1
3
, 1− (2ℵ − 1)3

}︀
, 𝜗 = 2

else
𝜆𝑘+1 = 𝜆𝑘𝜗, 𝜗 = 2𝜗

end
else

Exit
end
𝑘← 𝑘 + 1

end
Where 𝜏 = 9e-2 and 𝜀1 = 𝜀2 = 1e-15 are considered.
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Algorithm 5: Powell’s Dog Leg
Primary input : 𝑋0 that should be computed using our proposed "DGMC"

technique explained in section 5.4. of the paper
Secondary inputs: Δ = Δ0, Ψ(𝑋) = 1

2
‖𝐹 (𝑋)‖22, k = 0

output : Normal vectors for photometric stereo

while ‖𝐹 (𝑋𝑘)‖∞ > 𝜀1 and ‖𝐽(𝑋𝑘)𝑇𝐹 (𝑋𝑘)‖∞ > 𝜀2 and (𝑘 < 𝑘𝑚𝑎𝑥) do

𝛼 = ‖𝐽(𝑋𝑘)𝑇𝐹 (𝑋𝑘)‖2

‖𝐽(𝑋𝑘)𝐽(𝑋𝑘)𝑇𝐹 (𝑋𝑘)‖2

ℎ𝑠𝑑 = −𝛼𝐽(𝑋𝑘)𝑇𝐹 (𝑋𝑘)

ℎ𝑔𝑛 = −𝐽(𝑋𝑘)−1𝐹 (𝑋𝑘)

ℎ𝑑𝑙 =

⎧⎪⎪⎨⎪⎪⎩
ℎ𝑔𝑛 ‖ℎ𝑔𝑛‖ ≤ Δ

Δℎ𝑠𝑑

‖ℎ𝑠𝑑‖
‖𝛼ℎ𝑠𝑑‖ ≥ Δ

𝛼ℎ𝑠𝑑 + 𝛽(ℎ𝑔𝑛 − 𝛼ℎ𝑠𝑑) o.w.

if ‖ℎ𝑑𝑙‖ > 𝜀3(‖𝑋𝑘‖+ 𝜀3) then
𝑋𝑘+1← 𝑋𝑘 + ℎ𝑑𝑙
ℵ = Ψ(𝑋𝑘)−Ψ(𝑋𝑘+1)

𝐿(0)−𝐿(ℎ𝑑𝑙)

if ℵ > 0.75 then
Δ = max

{︀
Δ, 3‖ℎ𝑑𝑙‖

}︀
else if ℵ < 0.25 then

Δ = Δ
2

end
if Δ ≤ 𝜀3(‖𝑋𝑘‖+ 𝜀3) then

Exit
end

else
Exit

end
end

where
𝐿(0)− 𝐿(ℎ𝑑𝑙) =⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Ψ(𝑋) 𝑖𝑓 ℎ𝑑𝑙 = ℎ𝑔𝑛

Δ

(︂
2‖𝛼𝐽(𝑋𝑘)𝑇𝐹 (𝑋𝑘)‖−Δ

)︂
2𝛼

𝑖𝑓 ℎ𝑑𝑙 =
−Δ𝐽(𝑋𝑘)𝑇𝐹 (𝑋𝑘)
‖𝐽(𝑋𝑘)𝑇𝐹 (𝑋𝑘)‖

1
2
𝛼(1− 𝛽)2‖𝐽(𝑋𝑘)𝑇𝐹 (𝑋𝑘)‖2 + 𝛽(2− 𝛽)𝐹 (𝑋) o.w.
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Coping

Horseman

Soldier

Fighter

Figure 4-6: Left: input images including specularity [73]. Right: our 3D reconstruction
results using perspective Cook-Torrance reflectance model. These results illustrate the ca-
pability of the proposed method for providing faithful reconstructions with high frequency
details even for the fine details of a tiny surface (e.g. first input image).
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Carpenter Oldman Woman

Figure 4-7: First row: input specular images with directional light [73]. Second row: our
3D output using DLPS. Third row: input images with pointwise light. Last row: our 3D
output with PLPS. Images produced by directional light are imposed by more specularity
and shadows in comparison with images with pointwise light. These shadow parts lead to
losing some reconstructed area.
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Figure 4-8: Comparison of several PS methods. From left: 1) input image (Militaryman)
including high specularities [73], and the 3D results of 2) our reconstruction applying per-
spective Cook-Torrance reflectance model without any deviation or artifacts, 3) reconstruc-
tion of [145], 4) reconstruction of [89] which shows deviations specially around the highly
specular areas 5) [21] shows problem in producing complete 3D reconstruction in presence
of spcularity and 5) [67] which still includes distortions.

Figure 4-9: From left: 1) input real-world image including several tiny statues captured
without laboratory setting cf. Fig. 4-2, 2) our 3D reconstruction with Cook-Torrance re-
flectance model, 3) our 3D reconstruction using DLPS for the face of the smallest statue in
the scene and 4) our 3D reconstruction using PLPS for the same statue [73].
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Figure 4-10: More real-world experiments with specularity, first row) input images includ-
ing Einstein statue, two Berlin souvenir statues and a metallic coin, second row) their 3D
reconstruction using DLPS and last row) their 3D reconstruction using PLPS. High quality
details and structures recovered by the proposed approach confirm offered advantages [73].
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Figure 4-11: Some qualitative evaluations for the proposed method [73]: from left) zooms
of our reconstruction results corresponding to the red, blue, green and magenta rectangular
areas in Coping as synthetic input and Einstein, Coin and first Berlin statue as the real
scenes. It can be seen that our method achieves desirable reconstruction quality even for
very fine details.

Figure 4-12: Reconstructed albedo of two color input images shown in Fig. 10. As can
be seen, our RON approach can produce non-uniform albedo from images with a variety
of colors. Since the albedo is not same across the entire real-world surfaces, our variant
albedo extraction is more adjusted for real-world situations. It should be noticed that these
statues are very tiny surfaces [73].
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Chapter 5

A supervised learning approach for

uncalibrated PS using a general

reflectance model

5.1 Introduction

5.1.1 Our contributions

In the PS setting, the light source direction should be given in advance. In this section, we

extend the task of photometric stereo to the Neural Network (NN) based architecture and

the supervised learning framework where the pre-knowledge of the light direction is not

necessary. Furthermore, the pixel-wise albedo values are the extra information that will be

provided.

5.1.2 Related works

Most works in the area of uncalibrated PS apply Lambertian reflectance equation and are

based on factorization technique proposed by Hayakawa [58]. Hayakawa proposed a bilin-

ear modelling based on the Lambertian surface. The presented method needs to consider

the constraint like: providing at least 6 pixels with constant or known relative value of the
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Figure 5-1: Different components of a biological neuron [10]. The figure is redrawn based
on [14]

surface reflection. Basri et al. [22] suggested a descriptive photometric model based on

the spherical harmonic representation of lighting for Lambertian objects using more than

ten images [22]. Other recent works are suggested by [84] using more than one hundred

images and [32] which needs pre-knowledge to determine surface normals. The most re-

markable work in this area is presented by [83], where a symmetric neural building block is

used. In [83], a hybrid reflectance model is proposed that uses two parallel building blocks

to simulate diffuse and specular elements of the hybrid model.

In this part, we develop an architecture to utilize a more accurate specular component lead-

ing to enhance the quality of the resulting depth and albedo outcomes.

5.1.3 Artificial Neural Networks

With the use of different cortices of the brain, our visual system is able to perform com-

plicated visual recognition tasks. Such an ability is the result of a long natural evolution

process in a world where the whole information is in the shape of electromagnetic signals.

So, our brain consists of a complex combination of neurons in which each individual neu-
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ron can form many of connections with other neurons. Implementation of such an ability

in the digital world is a hard task.

Based on the human brain structure, the basic building block of the artificial neural net-

works is a neuron. As illustrated in Fig. 5-1, a biological neuron is formed by several axon

terminals connected via synapses to dendrites of other neurons. During the learning process

of the human, the obtained knowledge will be encoded by adjusting connections between

neurons. Although, the role of a single neuron in the whole process of the brain should

not be neglected. Inter-neuron connections are the place of linear and nonlinear operations

that shape the brain elementary computations. If the summation of the incoming signals

reaches a predetermined level of value, the neuron will be activated and starts to generate

its output. The artificial neuron is designed based on the same concept. It takes several

inputs, determines each input impact by its coefficient or weight, computes aggregation of

weighted inputs and provides the output of its computations if the aggregation output ex-

ceeds the predefined threshold of neuron activation. Since the fundamental mathematical

aspect of the neural networks is the function estimation, applying a linear activation func-

tion such a step function on the linear combination of inputs preserves the linearity, while

many interesting functions are nonlinear. Consequently, in modern network architectures,

a nonlinear function such as Sigmoid or hyperbolic tangent is used as an activation function

Figure 5-2: The general concept of an artificial neuron [10]. The figure is redrawn based
on [15]
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to confine the output range of the neuron in a certain interval and provide nonlinear func-

tionality to the neuron. Moreover, there can be an extra input known as bias in each neuron

that affects the initial level of the desired non-linearity performance. Such a structure of an

artificial neuron is shown in Fig. 5-2.

5.1.4 The architecture of our proposed method

The heart of our proposed model is a dual pseudo autoencoder building box where the

shape of each sub-network is illustrated in Fig. 5-3. In each module, the first layer is used

to normalize the input vector that contains all the pixel values of each input image. The

second layer is the albedo applicator, the third and fourth layers are light extractor and nor-

malizer respectively. The last two layers are used to extract and normalize the reflectance

map values as the final output of the network that is expected to be the same as the network

input.

In the proposed building block, the normalized pixel values at layer one should be di-

vided by pixel-wise albedo values at layer two to generate 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦
𝑎𝑙𝑏𝑒𝑑𝑜

values equivalent to

𝑛𝑜𝑟𝑚𝑎𝑙 × 𝑙𝑖𝑔ℎ𝑡 based on the Lambertian reflectance model. The weight matrix between

the second and the third layer (𝑊 ) should contain the inverse value of the normal vectors

to extract light directions in layer three while the weight matrix between the fourth and the

fifth layers (𝑁 ) is expected to include normal values to operate inversely and reproduce

𝑛𝑜𝑟𝑚𝑎𝑙 × 𝑙𝑖𝑔ℎ𝑡 values as the same value of the reflectance intensities.

5.1.5 Network specular component

While we implement the Lambertian reflectance model in diffuse component of the net-

work, the specular component operates based on the Ashikhmin-Shirley [17] reflectance

equation:

𝐼(𝑥, 𝑦) =

√︀
(𝜂𝑢 + 1)(𝜂𝑣 + 1)

8𝜋

(︁
𝐻·𝑁(𝑥,𝑦)

‖𝐻‖‖𝑁(𝑥,𝑦)‖

)︁𝜁

𝐻·𝑉
‖𝐻‖‖𝑉 ‖

𝐹, (5.1)
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𝜁 =
𝜂𝑢ℎ𝑢

2 + 𝜂𝑣ℎ𝑣
2

1−
(︁

𝐻·𝑁(𝑥,𝑦)
‖𝐻‖‖𝑁(𝑥,𝑦)‖

)︁2 (5.2)

where two exponential factors (𝜂𝑢,𝜂𝑣) define the reflectance properties of the surface and

in our case have the value of 10 and 𝐹 is the Fresnel reflection. In this case, the viewing

direction 𝑉 is considered as the orthographic viewing direction whereas the material pa-

rameter.

During backpropagation through the specular component, we update surface normal vec-

tors located in 𝑁 weight matrix by:

𝑁(𝑡+1) = 𝑁(𝑡) + 2 𝑙𝑟 (𝐼 −𝑅)𝑇 Φ, (5.3)

Φ =

√︀
(𝜂𝑢 + 1)(𝜂𝑣 + 1) 𝐶𝐹 (𝐻2𝑁2(2 ln(𝐻.𝑁)− 1) + 1)

8𝜋𝑁(𝐻.𝑁)𝑑((1− (𝐻.𝑁)2)2(𝐻.𝑉 )
, (5.4)

𝐶 = 𝜂𝑢ℎ𝑢
2 + 𝜂𝑣ℎ𝑣

2, (5.5)

𝑑 =
𝐶

((1− (𝐻.𝑁)2)2
. (5.6)

where 𝐼 and 𝑅 are the sub-network input and output respectively.

For both diffuse and specular components, in each time step 𝑡, the heterogeneous albedo

map 𝐴 is the weight matrix between the first and the second layers and can be obtained as:

𝐴(𝑡) =
⃦⃦
𝑁(𝑡)

⃦⃦
(5.7)

5.1.6 Network weight initialization

For the network initialization, we exploit the SVD decomposition of the input matrix 𝑃

containing each input image as a column. The weight matrix 𝑁 (normal surface values)

can be initialized by:

𝑃 = 𝑈Σ𝑉 𝑇 , 𝑁 =
𝑆𝑃 𝑇

𝐴
(5.8)

where 𝐴 is the vector of pixel intensities divided by rough albedo value that can be esti-

mated by surface material information. Finally, the 𝑊 weight matrix can be initialized by

the inverse value of the 𝑁 weight matrix.
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5.1.7 Post-processing step

Since the network will be trained using three input images separately, the outcome of the

learning process is an independent set of normal vectors for each input image. Since the

network is trained using three input images separately, the outcome of the learning process

for each input image is the three components of the normal vectors:

𝑖𝑚𝑔1 → {𝑁𝑥1, 𝑁𝑦1, 𝑁𝑧1},

𝑖𝑚𝑔2 → {𝑁𝑥2, 𝑁𝑦2, 𝑁𝑧2},

𝑖𝑚𝑔3 → {𝑁𝑥3, 𝑁𝑦3, 𝑁𝑧3}.

To generate desired components of the final normal vectors, we used the Principal Com-

ponent Analysis (PCA) to perform dimensionality reduction on the network outputs in fol-

lowing steps:

1) Spatial separation of the surface normal components into component matrices:

𝑁𝑥 = {𝑁𝑥1, 𝑁𝑥2, 𝑁𝑥3},

𝑁𝑦 = {𝑁𝑦1, 𝑁𝑦2, 𝑁𝑦3},

𝑁𝑧 = {𝑁𝑧1, 𝑁𝑧2, 𝑁𝑧3}.

2) Calculation of the covariance matrix and its corresponding eigenvectors for the trans-

pose of the above-mentioned component matrices:

𝑁𝑥 → 𝑁𝑇
𝑥 → 𝐶𝑂𝑉𝑥 → 𝑉𝑥,

𝑁𝑦 → 𝑁𝑇
𝑦 → 𝐶𝑂𝑉𝑦 → 𝑉𝑦,

𝑁𝑧 → 𝑁𝑇
𝑧 → 𝐶𝑂𝑉𝑧 → 𝑉𝑧.

As the result, each eigenvector matrix contains the principal directions of the equivalent

component matrix.

3) Since the final aim is to compute the depth information that is related to the third di-
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mension of the data, the third columns of 𝑉𝑥, 𝑉𝑦 and 𝑉𝑧 should be utilized to project each

component matrix on its principal component with respect to the depth direction. The out-

comes of this step constitute desired components of the final normal vectors:

𝑁1 = 𝑁𝑥 · 𝑉𝑥(:, 3),

𝑁2 = 𝑁𝑦 · 𝑉𝑦(:, 3),

𝑁3 = 𝑁𝑧 · 𝑉𝑧(:, 3),

𝑁𝑓𝑖𝑛𝑎𝑙 = {𝑁1, 𝑁2, 𝑁3}.

5.2 Experiments

To evaluate the strength of the proposed neural framework for depth reconstruction and

also pixel-wise albedo approximation in the absence of the light information, we used the

model for face reconstruction on Yale Face Database B [50]. Furthermore, we compared

our approach with state-of-art techniques. It can be seen in Figure 5-4 that our approach

is able to offer faithful 3D reconstruction and also albedo without knowing the light direc-

tions. As illustrated in Figure 5-5 the quality of the extracted albedo is clearly increased by

our approach and the depth distortion is reduced. It should be noticed that all the results

are obtained without any pre-knowledge of the light direction. The network converges very

fast after 20 epoch for each input image and the desire learning rate is 5e-3.

5.3 Summary and conclusion

We presented a neural-network-based framework for uncalibrated PS which is also bene-

fiting from Ashikhmin-Shirley reflectance model. A supervised learning technique is used

for the training of our proposed model. These attempts lead to obtain accurate information

about depth and also albedo. These innovations provide important improvements towards
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uncalibrated PS. Furthermore, we evaluated our model using the comparison with state-of-

art approaches and show that our model is able to offer more reasonable reconstructions.

The applicability of our method is again shown by applying the minimum number of input

images without any information about lights.

Figure 5-4: 3D and albedo reconstruction using uncalibrated PS with NN-based learning.
First row: input images obtained from [50]. Second row: results of our proposed hybrid
neural network model for providing the albedo and depth reconstruction .
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Figure 5-5: Comparison with other neural network based 3D reconstructions. First row:
input images [50]. Second row: results of the proposed neural network in [35]. Third
row: results of the adaptive neural network suggested in [83]. Last row: results of our
proposed hybrid neural network model benefiting from a supervised learning and a gen-
eral reflectance model which shows more improvements regarding the complex albedo and
depth reconstruction provided by our model.

134



Chapter 6

Deep meta heuristic algorithm for 3D

reconstruction

6.1 Introduction

6.1.1 Our contributions

In this chapter, we will devise an innovative model, for the first time, benefiting from a

meta-heuristic algorithm and a deep learning framework. Our approach can be applied for

finding depth and normal map information of out-door and internet images without any

pre-necessary information and calibration.

6.1.2 Artificial intelligence

By the fast progress in different technologies, our new life has drastic changes in compar-

ison with the past. These developments lead to devise effective solutions for real world

problems. Nowadays, it is clear that the biological environment acts very productive in

solving many tough and complex real world problems [24]. The nature helps scientists to

design many equations, formulations and techniques. The science of Artificial Intelligence

(AI) is also inspired by the biological world. Artificial intelligence is established in the

1950s with the aim of incorporating the neurology new mathematics in information theory,

control theory in cybernetics and digital computers.
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Since AI aims at developing and exploring intelligent systems, it focuses on computations.

Approaches based on AI are divided into two groups: Neat and Scruffy techniques. In

neat methods, an up-down strategy is applied based on logical process which explains why

system works. Although, these neat based procedures had lots of successes, but they show

weakness in solving big complex problems regarding some difficulties such as time com-

putation and memory management. In contrast, scruffy algorithms are able to provide

solutions for mentioned problems with the reasonable cost.

These schemes apply a descriptive approach to provide a fast solution for complex prob-

lems. The most important characteristic of these techniques are using a stochastic process

in the decision making and an induction strategy.

6.1.3 Computational intelligence

Computational intelligence is a sub-field in AI which focuses on intelligent and adaptive

systems. In fact, this science describes techniques that emphasize strategy-outcome policy.

Meta heuristic algorithms are important techniques which are included in the science of

computational intelligence as will be discussed in the following.

6.1.4 Meta heuristic algorithms

Meta Heuristic (MH) algorithms belongs to the computational intelligence area which com-

bines natural computing and AI. In 1945, Alan Turing in National Physical Laboratory

(NLP) developed an electromechanical machine for automatic computing and in 1948, he

provided his innovative theories in learning, machine intelligence, neural networks and

evolutionary computation in his reports at NLP. The 1960s and 1970s are two important

decades in developing evolutionary algorithms. MH techniques are the results of recent at-

tempts and bio- searches for finding the solution of many complex problems in real world,

where classic methods apply just the information existing in the problem and they are not

able to overcome tough problems. The robustness of MH methods to the dynamic changes

in the environment leads to the variety of their applications such as: Operation of power
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systems and control [34, 140, 20], NP-Hard combinatorial problems [47, 27], schedule

problems [146], chemical process [31]. They are applicable for both continuous and dis-

continuous problems. In following, a brief history of important MH algorithms will be

provided.

Genetic algorithms

At first, Holland [62] developed Genetic Algorithms in university of Michigan. He pre-

sented complex adaptive systems (CAS) studies in 1962. He was the first one who used re-

combination and mutation techniques for modelling CAS systems. In general, GA is based

on the following operations: selection operation for choosing the best parents between the

current generations, reproduction operation for producing a new child and mutation opera-

tion for changing the gene.

Simple hill-climbing

Rechenberg [107] proposed the evolution technology in technical university of Berlin which

was applied in aerospace engineering. Then Bienert joined him and made an automatic ex-

perimental device which worked with the mutation and selection rules. This method was a

simple hill-climbing with randomization.

Simulated annealing

In 1980s and 1990s , the remarkable changes emerged in meta heuristic algorithms. Sim-

ulated Annealing is proposed by Kirkpatrick et al. [76] inspiring from gradual cold pro-

cessing of metals in which the substance is heated above its melting temperature and then

gradually cools to produce the crystalline lattice with the minimum level of energy and

entropy.

Ant colony

In 1992, Dorigo devised an Ant Colony optimization in his thesis inspired by the pheromone

trail laying of ant colonies. His work is later published in [41]. It is a population based
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search technique. This approach is a good example of a cooperation in which the agent

which are not inherently capable elements can get results through a collaboration.

Particle swarm

Particle optimization is also another technique provided by Kennedy et al. [72] in 1999.

This stochastic algorithm is inspired by social behavior of bird flocking or fish schooling

[44]. In fact, it uses two separate procedures: a. Swarm intelligence: based on the inter-

actions, habits and repetitive behavior of birds and fishes. b. Evolutionary computation:

based on the movement of particles. Each particle is moving with a certain speed.

Tabu search

Tabu search is the first technique based on the memory structures proposed by Glover

[52]. This approach consists of three important elements: search space, neighborhood

structures and search memory.

Harmony search

In 2001, Gemm et al. [49] developed harmony search scheme as a special case of evolution

strategy and is inspired by the improvisation process of jazz musicians. Harmony search

has variety of applications such as water distribution, transport systems, geotechnical anal-

ysis, biomedical engineering and prediction of energy demands.

Artificial bee colony

Artificial bee colony algorithm is proposed by Karaboga [71] in 2005. This scheme works

based on stochastic movement, information transmission and ranking performance of bees

for searching food. Some of its applications are: training of artificial neural networks, time

modelling of manufacturing machines, information clustering and adjusting fuzzy logic in

robotic science.
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Cuckoo search

In 2009, Yang et al. [150] devised a strategy inspiring by the obligate brood parasitism

of cuckoos which lay their eggs in the nests of other host birds. As proved in [150], this

algorithm is more efficient than most of other MA techniques. In our approach, we will

develop a 3D reconstruction based on the Cuckoo search and a deep learning architecture.

6.2 Cuckoo optimization algorithm for 3D reconstruction

Cuckoo algorithm is inspired by the cuckoo life. The cuckoo types include the common or

European cuckoo, roadrunners, koels, malkohas, couas, coucals and anis. Coucals and anis

are usually live as distinct families composed of Centropodidae and Crotophagidae.

Cuckoos are generally medium-sized slender birds. Most of them live in trees, but the

habitat of a minority is the ground. They extended as an international distribution, although

a majority of species are tropical kind.

Some species are migratory. Cuckoos feed on insects, insect larvae, other animals and

fruits. Some species are brood parasites, laying their eggs in the nests of other species.

Cuckoos have been existed in human culture for thousands of years (in Greek mythology).

In Europe, cuckoos appear in spring. In India, cuckoos are sacred to Kamadeva (the god of

desire and longing), while in Japan, the cuckoo symbolises unrequited love.

6.2.1 Brood parasitism for reproduction

Birds have the same approach for reproduction. They lay eggs in a protective shell and

incubate them. Some eggs are big and make problems for the female with carrying and car-

ing. In addition, finding a safe place and hatching are hard duties. In general, motherhood

is not an easy task. Consequently, some birds found a way which is not fair. Their way is

named brood parasites. They never build their own nests and lay their eggs in the nest of

other bird. One of the experts in this area is cuckoo with a policy of tough cruel deception.

They have different strategies for putting their egg into a host nest, but they are common in

these points: stealth, surprise and speed. In addition, they choose their strategy based on
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the host defensive strategies. Female cuckoos remove one egg laid by the host and lays her

egg instead. This process takes just some seconds (about 10 seconds), but in some cases,

males deceive hosts and make them away from their nests so that the female can put her

egg in the host nest.

Cuckoo can mimic the color and pattern of host eggs for her own eggs [FIG]. Some other

species of cuckoo lay eggs which are dark in color when their hosts’ eggs are light [39].

This is a trick to hide the egg from the host, and is exhibited in cuckoos that parasitize hosts

with dark, domed nests as a trick to hide the egg from the host. Some European cuckoos

that females will lay their egg in the nest of a host that has eggs looking similar to its own

[18]. Some birds learn to recognize the cuckoo eggs hidden in their nest and throw it out

or even leave their nest because cuckoos completely destroy the host’s clutch if they reject

the cuckoo egg [39].

As a result, cuckoos constantly try to improve their mimicry policy (cf. 6-1), in return hosts

try to be expert in recognizing cuckoo eggs. This attempt is going on as a race to survive

[6].

Most species of cuckoo are sedentary, but some of them immigrate regularly to warmer

climates in the winter and others immigrate partially around their range. After putting the

egg in the host nest, the cuckoo chick hatches after 11–13 days and evicts all host chick-

ens from host nests. The chick rolls the host eggs out of the nest by pushing them using

his (her) back. If host eggs born before the cuckoo’s, the cuckoo chick again pushes host

chicks out of the nest. Then the cuckoo chick forces the host to provide food by constantly

screaming.

6.2.2 Cuckoo algorithm

Another point about cuckoo life is that they try constantly to find better position. It means

that the new generation of cuckoos tries to follow the successful cuckoos and move to the

regions with the lowest possibility of detecting their eggs. So they converge to locations in

where more cuckoo eggs survived. As a result, some principles set in this algorithm:

∙ Each cuckoo lays one egg in the host nest and choose the nest randomly.
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Figure 6-1: Cuckoo mimics host birds eggs [3]. Two top images are examples of a success-
ful mimicking and the down image still needs more attempts to provide more similarities.

∙ The best nest with the highest survived eggs will transfer to the next generation.

∙ The probability of detecting egg by the host is 𝑝𝑐 ∈ [0, 1].

The goal is finding a new habitat. A habitat is an array 𝑋 ∈ R𝑛. The value of each habitat

is shown by 𝐹 (𝑋) : R𝑛 −→ R𝑚 and we aim at maximizing the value function. To produce

a candidate initial habitat, some random numbers can be provided. For finding the next

habitat, cuckoos choose a Lévy flight defined as:

𝑋𝑘+1 := (𝑋𝑘)⊕𝛽𝐿𝑒𝑣𝑦(𝜒) (6.1)

with

𝐿𝑒𝑣𝑦(𝜒) = 𝑅𝜓𝜒 (6.2)
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where 𝜒 is defined as:

𝜒 = (𝑋𝑘 −𝑋𝑏𝑒𝑠𝑡
𝑘) (6.3)

and

𝑅∼𝑁(0, 𝜎2) (6.4)

where 𝜓 is defined as:

𝜓 =
𝑢

|𝜈|
1
𝛽

(6.5)

where

𝑢∼𝑁(0, 𝜎𝑢
2) (6.6)

and

𝜎𝑢 =

[︃
Γ(1 + 𝛽)𝑠𝑖𝑛(𝜋𝛽

2
)

Γ
(︁

1+𝛽
2

)︁
𝛽(2)

𝛽−1
2

]︃ 1
𝛽

(6.7)

and for the 𝜈:

𝜈∼𝑁(0, 𝜎𝜈
2) (6.8)

with

𝜎𝜈 = 1 (6.9)

⊕ indicates the entry wise multiplication. The step lengths defined in the L𝑒vy have a

probability distribution that is heavy tailed. We constitute our system of equations 𝐹 (𝑋)

using Blinn-Phong model. The whole algorithm of cuckoo is illustrated in Algorithm 6.

For more discussion about L𝑒vy flight, [82] can be suggested. By this way, new solutions

will be generated by L𝑒vy fight around the best solutions achieved so far.

6.2.3 Convolutional Neural Networks (CNNs)

In ordinary feed-forward networks, each node of a hidden layer is fully connected to all the

neurons of the previous layer. Apparently, such a connection strategy is computationally

expensive when dealing with large color images. For example, when we convert an ordi-

nary color image with the common size of 512× 512 into a one-dimensional input vector,

this leads to 512 × 512 × 3 = 786, 432 input neurons. In deep architectures, we would
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Algorithm 6: Cuckoo search algorithm

1 while stopping criterion is not satisfied do

1. Consider the objective function 𝐹 (𝑋) : R𝑛 −→ R𝑚

2. Generate the initial population with 𝑛 habitats 𝑋 ∈ R𝑛

3. Move the initial population using Lévy flight

4. Choose a habitat 𝑗 randomly

5. Compute the value of habitat 𝑗 and 𝑖 (𝐹 (𝑋𝑖), 𝐹 (𝑋𝑗))

6. If the value of habitat 𝑗 is better than 𝑖, accept 𝑗 as the new solution

7. A fraction (𝑝𝑐) of worse habitats can be abandoned and keep the best habitats

8. Rank the habitats and choose the best one

2 end

almost certainly want to have lots of neurons over multiple layers, so the number of the

network connections would add up quite quickly.

In contrast, a Convolutional Neural Network (CNN) architecture [77, 120, 127, 59] in-

cludes convolutional, pooling and non-linearity layers optionally followed by a few fully

connected layers. The network input is normally a 3D matrix with 𝐻 ×𝑊 × 𝐷 dimen-

sionality where 𝐻 stands for Height, 𝑊 stands for width and 𝐷 stands for the depth of the

input matrix.

As illustrated in Fig. 6-2, in a convolution/pooling block, each neuron has selective con-

nections to a small, local region of the preceding layer and weights of these connections

form a filter (kernel) that will be changed during the training phase of the network. At the

time of the convolution process, each filter traverses the entire scope of the input matrix to

generate its own feature map. In practice, filters often have the square shape of size 1× 1,

3× 3 or 5× 5. Three hyperparameters control the size of the output volume: depth, stride,

and zero-padding.

Depth corresponds to the number of filters in a convolutional layer, where each filter learns

to look for something different in the input. For example, if the first convolutional layer

takes as input the raw image, then different neurons along the depth dimension may activate
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Figure 6-2: A repaint [73] of the general architecture of a Covolutional Neural Network
(CNN).

in presence of various oriented edges, or blobs of color. The distance between consecutive

applications of a filter over the input scope is called stride. When the stride is 𝑛, we move

the filters 𝑛 pixel at a time. The bigger the stride, the smaller the output size. Sometimes

it will be convenient to pad the input volume with zeros around the border. The size of this

zero-padding operation enables us to control the spatial size of the output volumes. It also

makes it possible to preserve the spatial size of the input volume, so, the input and output

height and width remain unchanged. An important property of a convolution layer is that

all spatial locations share the same convolution kernel, which greatly reduces the number

of parameters of the layer. Because of sharing parameters, a kernel that is specialized to

detect a pattern will detect it anywhere in the image.

As mentioned before, it is a convention to apply a non-linear function to grant non-linearity

to a system that basically performs linear operations. In comparison with Sigmoid and

hyperbolic tangent activation functions, Rectified Linear Unit (ReLU) is able to greatly

accelerate the convergence of stochastic gradient descent due to its linear, non-saturating

form. Moreover, it can be implemented by simply thresholding the matrix of activations at

zero. It also helps to alleviate the vanishing gradient problem, which is the issue where the

lower layers of the network train very slowly because the gradient decreases exponentially

through the layers. The ReLU layer applies the function 𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥) to all of the

values in the input volume. In basic terms, this layer blocks all the negative activations.

Finally, to constantly reduce the dimension of feature maps, sharpen the located features,
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and control the amount of the computation in the network, it is common to perform a pool-

ing operation after a convolutional layer. Typically, a pooling layer uses the maximum or

the average operation to resize the dimension of the input and does not include any param-

eter. In max pooling, the pooling operator maps a sub-region to its maximum value, while

the average pooling maps a sub-region to its average value. Furthermore, pooling helps to

make the representation approximately invariant to small translation, rotation and shifting.

In this way, CNNs are able to encode a wide variety of visual features via their specific

structure during the learning process. This kind of neural networks is usually used for

visual classification, similarity detection (clustering), and object recognition

6.2.4 Deep learning architecture

During last couple of years, CNNs have shown incredible promise in a wide range of well-

known computer vision tasks such as object detection, image classification and region seg-

mentation. More recently, their application is extended for learning visual interpretations

including depth and surface normals [108, 123].

Now we provide a proper initialization for the cuckoo algorithm and develop it to the PS

such that it can overcome complexities like lack of information about light and 3D recon-

struction from out-door or internet images. We employed the proposed multi-scale deep

neural network of [43] (cf. Fig. 6-3) that is dedicated to estimate surface normals and

also depth by regressing from one input image to depth and normal maps in real-time. At

the first module, a cascade of convolutional and fully connected layers provides a coarse

global prediction as a set of spatially-varying features that are extracted from the whole

image area. The task of the second scale that consists of five convolutional layers is to

combine a more detailed but narrower view of the image with the full-image information

supplied by the previous module. The third and the final scale includes four convolutional

layers and predicts x, y and Z components of the normal at each pixel. To this aim, it em-

ploys an element-wise objective function to compare the predicted normal of the pixel with

the ground truth:

𝐿(𝑁,𝑁*) = − 1

𝑚 * 𝑛
∑︁
𝑖

𝑁𝑖.𝑁
*
𝑖 = − 1

𝑛
𝑁.𝑁* (6.10)
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Figure 6-3: Architecture of the deep model that we used to provide initial values of the
depth and normal estimation for the cuckoo algorithm [73].

where 𝑁 and 𝑁* are predicted and ground truth normal vectors, 𝑖 indicates the valid pixels

for normal estimation and 𝑚 * 𝑛 is the number of valid pixels.

For the depth reconstruction, the following formulation will be applied:

𝐿(𝑍,𝑍*) =
1

𝑚 * 𝑛
∑︁
𝑖

𝐷𝑖
2 − 1

2(𝑚 * 𝑛)2
(︀∑︁

𝑖

𝐷𝑖

)︀2
+

1

𝑚 * 𝑛
∑︁
𝑖

(︀
∇𝑥𝐷𝑖

2 +∇𝑦𝐷𝑖
2
)︀

(6.11)

where, 𝐷 = 𝑍 − 𝑍* as the obtained and ground truth depth maps. 𝑚 * 𝑛 is the number of

pixels. ∇𝑥𝐷𝑖
2 and ∇𝑦𝐷𝑖

2 are the horizontal and vertical gradients.

6.2.5 Experiments

In this section, we will represent our results from both the proposed deep architecture and

meta heuristic PS. We will demonstrate our algorithms on real-world scenes of internet

images, out-door images and even the image captured from the Moon surface. It should

be mentioned that our deep model uses just one input image to produce normal and depth
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maps simultaneously, while for the depth reconstruction by PS we should use three input

images. The step size 𝛽 is considered 0.01, 𝑝𝑐 is 0.4 for the cuckoo algorithm. Results of

the proposed deep architecture are shown in Figs. 6-4, 6-5, 6-6, 6-7 regarding the output

normals, depth map and 3D reconstructions. In addition, the outputs of our meta heuristic

PS are represented in Figs. 6-8, 6-9, 6-10. Although our deep network succeeds in produc-

ing outstanding results using just one input internet image without any information about

light direction, scene or calibration, but we can improve its results using our meta heuristic

PS specially for tiny surfaces as it is shown in Fig. 6-11.

6.2.6 Summary and conclusion

We presented, for the first time, a technique for the 3D reconstruction from out-door and

internet images, where we do not have any information about the light direction, depth

values, scene, etc. To this aim, we devised a deep network providing normals and depth

values using an input image, then we applied a meta heuristic algorithm on the network

output using PS and could improve the results of our deep network. We demonstrated the

applicability of our approach using different real-world internet images and also on the

moon image. For the future work, we aim at devising a deep network for applying directly

PS.
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Figure 6-4: First row: one input internet real-world image [73]. Second, third and last
rows: our normals, depth maps and 3D reconstruction obtained by the proposed deep ar-
chitecture model. These results gained by one input image without any information about
light direction or scene. As can be seen our approach can recover structures successfully
which agrees well with the input image.

148



Figure 6-5: First row: one input internet real-world image [73]. Second, third and last rows:
our normals, depth map and 3D reconstruction obtained by the proposed deep architecture
model.
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Figure 6-6: First row: one input internet real-world image [73]. Second, third and last rows:
our normals, depth map and 3D reconstruction obtained by the proposed deep architecture
model.
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Figure 6-7: First row: one input internet real-world image [73]. Second, third and last rows:
our normals, depth map and 3D reconstruction obtained by the proposed deep architecture
model.
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Figure 6-8: First row: three input real-world images from MIT Intrinsic Images [55]. Sec-
ond, third and last rows: our normal, depth map and 3D reconstruction produced by the
proposed PS model. These results obtained without any information about the light direc-
tion, scene, etc.. As can be seen our proposed metaheuristic deep architecture can provide
high qualified results for uncalibrated PS.
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Figure 6-9: First row: three input real-world images from MIT Intrinsic Images [55]. Sec-
ond, third and last rows: our normal, depth map and 3D reconstruction obtained by the
proposed PS model. We think that our approach is successful in producing faithful nor-
mals, depth and 3D reconstruction for uncalibrated PS.
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Figure 6-10: First row: three input real-world images from MIT Intrinsic Images [55].
Second, third and last rows: our normal, depth map and 3D reconstruction obtained by the
proposed PS model. Our model could reconstruct all these information simultaneously as
well.
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Figure 6-11: First row: three input internet real-world images from Moon [2]. Second,
third and last rows: our normal, depth map and 3D reconstruction obtained by the pro-
posed PS model (left) and by the deep network (right). It can be seen that applying meta
heuristic PS on deep network outputs can improve results specially for tiny details. These
results obtained without any information about the light direction, scene, etc.. Astronom-
ical images can be regarded as a challenging experiment, our technique is able to provide
reasonable results even for this experiment.
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Chapter 7

Conclusion

7.1 Summary

Photometric stereo is one of the important 3D shape estimation approaches. By probing

the shading variations under different illumination directions, photometric stereo is able to

estimate the surface normal map. The obtained normal map can be applied to reconstruct

the 3D shape of surfaces. The applicability of photometric stereo is really restricted by the

assumptions that the classic photometric stereo relies on, particularly the diffuse surfaces,

distant lighting, orthographic projection and pre-knowledge about light direction assump-

tions. These confined assumptions can seldom be held in real world applications. This dis-

sertation focuses on generalizing photometric stereo method to make it applicable for more

diverse cases and practical applications. To this aim, we have proposed different solutions

for general reflectance models, spatially varying light, a supervised learning approach and

finally a deep meta heuristic method. Moreover, we have proposed the photometric stereo

techniques that work in a wild setup assuming unknown and general environment lightings

as well as uncontrolled environment. All these efforts greatly improve the applicability

of photometric stereo to various real world applications, especially for reconstructing 3D

surfaces with fine details.
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7.2 Future directions

This dissertation is concluded by mentioning some future improvements that we believe

are important to pursue. One interesting future work can be providing the complete-view

3D reconstruction. This can be done by combining the photometric stereo with other 3D

reconstruction techniques for example, multi-view stereo. Another point that we would

like to consider is offering 3D reconstruction on portable devices such as smart phones,

tablets and so on. Moreover, one assumption considered in the photometric stereo is that

the surface should be fixed. So it would be nice if we can extend photometric stereo to

work for the moving objects.
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