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Preparation of aqueous anionic poly(urethane-urea)
dispersions. Influence of the incorporation of acrylic,
polycarbonate and perfluoro-oligoether diols on the
dispersion and polymer properties

Vanessa Durrieu1* and Alessandro Gandini2
1

Ecole Française de Papeterie et des Industries Graphiques (INPG), BP 65, 38402 St Martin d’Hères Cedex, France
2

Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal

Aqueous poly(urethane-urea) dispersions were prepared by the prepolymer mixing technique, 
without using any organic solvent. This work focused on the incorporation into the prepolymer 
chain of specific macrodiols bearing acrylic, polycarbonate and perfluoro-oligoether chains, in con-
junction with a poly(propylene oxide) diol (Mn ¼ 1000). All the dispersions were synthesized with a 
fixed NCO/OH ratio, using a,a,a0,a0-tetramethyl-1,3-xylylene diisocayanate, a fixed proportion of 
emulsifying agent (dimethylol propionic acid, neutralized with triethylamine) and the same chain 
extender (1,2-ethylene diamine). The properties of both the dispersions and the dried polymer films 
were characterized as a function of the nature of the specific incorporated diol and its proportion in 
the polymer chain, in order to establish criteria leading to an optimized performance in terms of 
particle size, viscosity, and polymer film properties. 
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INTRODUCTION

Given the need for cost reductions and the progressive

restrictions associated with the decrease in the level of organ-

ic solvent emissions, water-based polymer systems have

recently received considerable attention, particularly in coat-

ing and adhesive applications.

Aqueous polyurethane dispersions (PUDs) are one of

the major families of such materials because they combine

these advantages with the unique properties of polyur-

ethanes, particularly in terms of flexibility, adhesion and

anti-abrasion resistance.1–4 Since the behavior and properties

of PUDs are significantly different from those of solvent-

based counterparts, the development of competitive PUDs

for industrial applications has called upon numerous studies

which provided valuable information on both the synthetic

aspects and the properties of the ensuing dispersions and

polymers.5–9

In pursuit of an ongoing investigation on PUDs, prepared

without any organic solvent,10,11 focus has been on the

incorporation of three novel macrodiols in the prepolymer

chain, namely an acrylic, a polycarbonate and a perfluoro-

oligoether diol.

As has been shown in a previous study,11 the chemical

nature of the macrodiol chain affects such properties as the

dispersion stability, the particle size1 and the polymer

mechanical properties.3 The addition of acrylic structures in

polyurethane chains has been reported to improve the

polymer mechanical properties, thermal stability and resis-

tance to hydrolysis,12,13 and to decrease the polymer

hydrophilicity, resulting in a higher average particle size

and a reduced viscosity.14 Carbonate groups would favor

interchain interactions by hydrogen bonds with urethane and

urea moieties and consequently improve the polymer

mechanical properties and resistance to hydrolysis and

solvent.15–17 Finally, the incorporation of perfluoro-oli-

goether diols was expected to improve more drastically the

polymer resistance to hydrolysis and oils, particularly in

coating applications, because these structures are known to

reduce dramatically the surface energy of materials. More-

over, their highly hydrophobic character could also affect the

average particle size of the dispersions.18

The present investigation deals with numerous PUDs,

prepared with the same diisocyanate, a fixed NCO/OH ratio,

the same catalyst, emulsifying agent (in a fixed proportion),

and chain extender, but with different mixtures of macro-

diols, made up of varying proportions of a conventional

poly(propylene oxide) diol and one of the three new
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macrodiols. These aqueous dispersions and the ensuing

dried polymer films were then characterized in order to

establish criteria related to their structure–properties rela-

tionships.

EXPERIMENTAL

Materials
The following commercial reagents were used without

further purification: a,a,a0,a0-tetramethyl-1,3-xylylene diiso-

cyanate (TMXDI, Cytec), poly(propylene oxide) glycol

(PPG, Mn¼ 1000, Shell), acrylic macrodiol (Tego,

Mn¼ 1000), polycarbonate diol (UBE, Mn¼ 1000), per-

fluoro-oligoether diol (Fomblin, Mn¼ 1200), dimethylol

propionic acid (DMPA, Perstorp), dibutyltin dilaurate

(DBTL, Aldrich), triethylamine (TEA, Acros) and 1,2-ethy-

lene diamine (EDA, Acros). The structure, functionality and

molecular weight of the three new macrodiols (Fig. 1) were

verified by FT-IR and 1H-NMR spectroscopy.

Synthesis
All the dispersions were prepared by the ‘‘prepolymer mix-

ing process’’ described in a previous studies.10,11

Figure 1. Specific macrodiol structures (a, acrylic macrodiol; b, polycarbonate diol; c,

perfluoro-oligoether diol), as assessed by spectroscopic techniques.

Figure 2. Mechanistic steps involved in the preparation of the dispersions.



Static and dynamic contact angles on the polymer films

were measured with a home-made goniometer equipped

with a CDD camera working at up to 200 images/sec.19

The results were collected on a video card and treated by

image analysis software. Among the approaches enabling

the determination of the different contributions to the surface

energy of a solid from contact angle measurements,20 those

proposed by Owens and Wendt and by van Oss were chosen,

as had been done in previous studies.10,11 The first provided

the polar, gp, and dispersive, gd, contributions and both

methods gave the total surface energy gt.

The average particle size measurements of the aqueous

dispersions were performed by light scattering, using a

Malvern Autosizer 2c apparatus. The z potential of these

particles was measured by their electrophoretic mobility with

a Malvern Zetasizer 2000 instrument.

RESULTS AND DISCUSSION

According to the results of a previous study10, TMXDI was

chosen as the diisocyanate, because it proved particularly

suitable for the preparation of PUDs, and a fixed [NCO]/

[OH] ratio of 1.8, which gave low-viscosity easily dispersable

prepolymers and stable polymer emulsions, characterized by

low particle sizes. Moreover, a high ratio, synonymous of

high urea moiety content, also gave polymers with higher

glass transition temperatures and better thermal stability.

PPG was chosen as the standard macrodiol, because it has

been previously found11 to be one of the most suitable

macrodiols for PUDs, in terms of dispersion stability and

particle sizes, as well as polymer film properties.

For each specific macrodiol, several dispersions were

prepared, varying the macrodiol proportion, namely 0, 5 or

10, 20 and 40% OH equivalents, relative to PPG.

Effect of the incorporation
of the acrylic macrodiol
The FT-IR spectra of the polymers prepared with the acrylic

macrodiol and their characteristics are presented in Fig. 3 and

5 % 

0 % 

20 % 

40 % 

4000.0 3600 3200 2800 2400 2000 1800 1600 1400 1200 1000 800 600.0

3338

3052

2972
2872

1713
1653

1556

1457
1375

1252

1097

734
706

3354

3054

2971 2873
1726

1650 1554

1457
1380

1250 1151
1087

735
705

%T 

cm-1

Figure 3. FT-IR spectra of polymers from PUDs prepared with different percentages of acrylic

macrodiols.

Prepolymer preparation
The synthesis of the polyurethane anionomers was carried 
out in bulk without the intervention of an organic solvent. 
This first step called upon the successive additions of 
DBTL, the diol mixture and DMPA to the diisocyanate in 
an inert atmosphere at 70–808C under vigorous stirring. 
PPG and each new macrodiol were preliminarily mixed 
and placed in an oven at 808C for 1 hr before the synthesis. 
Both the [NCO]/[OH] molar ratio (r ¼ 1.8) and the amount 
of DMPA (4.55% w/w, based on the prepolymer) were kept 
constant and only the nature of the specific diol and its rela-

tive proportion with respect to PPG were varied.

Dispersion in water and chain extension
Once the prepolymer had reached the final expected NCO 
residual content (as assessed by FT-IR spectroscopy), it 
was slowly poured into an aqueous TEA solution kept at 
25–308C and stirred at 280 rpm. The amount of added TEA 
was calculated to ensure the complete neutralization of the 
carboxylic group of DMPA, namely a 20% molar excess. 
Immediately after the completion of this addition, the chain 
extender (EDA) was slowly added and thereafter stirring 
was pursued for 90 min. The quantity of EDA added was cal-

culated in order to obtain a 1:1 [NCO]/[NH2] stoichiometry.

Figure 2 summarizes the different mechanistic steps 
involved in the overall preparation of these dispersions, 
which had a solid content of about 32% w/w.

Characterization
The aqueous dispersions were spread on a Teflon mold and 
dried to constant weight in an oven at 608C. FT-IR and 1H-

NMR spectra were taken with a Perkin–Elmer Paragon 
1000 and a Brucker 300 instrument, respectively.

The thermal analyses [differential scanning calorimetry 
(DSC) and thermogravimetric analysis (TGA)] were carried 
out using a Setaram DSC-TGA 92 calorimeter working under 
nitrogen, with a heating rate of 108C/min. The values given 
as degradation temperatures in the text correspond to the 
temperature at which the sample lost 10% of its initial weight.



increase in the average particle size with increasing incor-

poration of the acrylic macrodiol. Also a significant decrease

in zeta potential was observed with the addition of this diol,

which was attributed to the fact that its alkyl side chains

would migrate preferentially to the particle surface at the

expense of the carboxylic moieties.

The dispersion properties are given in Table 2. The small

increase in surface tension was probably due to the presence

of polar additives in the commercial acrylic macrodiol.

Finally, since the DMPA neutralization degree had been kept

constant, the pH of these dispersions did not show any

appreciable variation.

Effect of the incorporation of
the polycarbonate diol
The FT-IR spectra of these polymers showed unequivocally

the presence and the intensity increase of peaks relative

to the carbonate moieties (1740 and 1250 cm�1) which

confirmed the efficient polycarbonate diol incorporation

in the polyurethane chain. The other polymer properties

are given in Table 3. Because of the enhanced segmental

mobility introduced by the (CH2)6 sequences of the

polycarbonate diol (Fig. 1b), which confers a low glass

transition temperature to this macrodiol (Tg¼�638C), a

progressive decrease in the polyurethane glass transition

Acrylic macrodiol (%)

0 5 20 40

Glass transition temperature, Tg (8C) �26 �15 �12 1
Degradation temperature, Td (8C) 305 — 310 —
surface energy (Owens–Wendt method) gp (mN/m) 19.7 18.5 17.2 12.1

gd (mN/m) 17.7 19.2 19.4 19.0
gt (mN/m) 37.4 37.7 36.6 31.2

Surface energy (Van Oss method) gt (mN/m) 37.8 38.1 36.4 31.5

Table 2. Effect of the acrylic macrodiol incorporation on the ensuing dispersions properties

Acrylic macrodiol (%)

0 5 20 40

pH 9.0 8.0 8.6 8.3
Surface tension (mN/m) 38.6 38.4 39.0 41.3
Average particle size (nm) 51.2 75.8 112.5 146.6
Zeta potential (mV) �39.5 �37.8 �35.8 �27.4

Table 3. Effect of the polycarbonate diol incorporation on the ensuing polymer properties

Polycarbonate macrodiol (%)

0 5 20 40

Glass transition temperature Tg (8C) �26 �37 �46 �52
Degradation temperature Td (8C) 305 — 340 —
Surface energy (Owens–Wendt method) gp (mN/m) 19.7 19.0 17.1 15.2

gd (mN/m) 17.7 18.2 19.6 19.8
gt (mN/m) 37.4 37.2 36.7 35.0

Surface energy (Van Oss method) gt (mN/m) 37.8 37.3 36.9 35.8

Table 1. Effect of the acrylic macrodiol incorporation on the ensuing polymer properties

Table 1. In addition to the peaks attributed to urea and 
urethane function, and the TMXDI structure, the presence 
and the intensity increase of peaks due to the acrylic ester 
function (1726 and 1151 cm�1) with increasing acrylic macro-

diol, confirmed the efficient incorporation of this macrodiol 
into the polymer chain.

The other relevant properties of these polymers are given 
in Table 1. The glass transition temperature increased with 
the proportion of acrylic macrodiol, which is due to the 
relative stiffness of its structure (Fig. 1a). Indeed, the glass 
transition temperature of this macrodiol was significantly 
higher than that of PPG (respectively �40 and �658C). 
However, the degradation temperature did not seem to be 
affected by the incorporation of the new macrodiol.

The ether group sequence of PPG gives rise to a higher 
polarity than the side alkyl groups of the acrylic macrodiol 
(Fig. 1a). The polymer surface energies were therefore 
logically affected by the increase of acrylic macrodiol content 
in the polyurethane chain, as shown by the progressive 
decrease in the polar contribution, which gave a correspond-

ing decrease in the value of the total surface energy values 
(Table 1), obtained in good agreement using both 
approaches.

The polymer decrease in polarity involved a decrease of the 
polymer hydrophilicity, as indicated by the progressive



temperature was recorded with increasing polycarbonate

diol content in the polymer chain. As expected from the

fact that polycarbonates are among the most heat-resistant

polymers, the polyurethane degradation temperature

increased significantly with the incorporation of this

macrodiol, namely from 3058C without polycarbonate diol

to 3408C with only 20% (OH equivalent) of polycarbonate

diol, which represented only 11% of the total prepolymer

weight.

The polar contribution of the surface energy decreased

with increasing polycarbonate diol content, because of the

preferential migration of its polymethylene sequences to the

film surface, compared with PPG moieties.

Table 4 gives the properties of the corresponding disper-

sions. As expected, there were no appreciable variations in

either pH or surface tension with the incorporation of the

polycarbonate diol.

The average particle size of the PUDs increased and the zeta

potential decreased as the polycarbonate diol content in the

polymers was increased. Because of its chemical structure,

and particularly the (CH2)6 groups, this diol was clearly more

hydrophobic than PPG, whose ether groups give a modestly

hydrophilic character to the polymer. The increased hydro-

phobicity would again prevent a high proportion of

carboxylic groups to be located at the surface of the particles,

thus favoring higher particle sizes and lower zeta potentials.

However, the average particle sizes of these dispersions were

still sufficiently small (around 100 nm) for numerous

applications and particularly for coatings.

Effect of the incorporation of the
perfluoro-oligoether diol
The FT-IR spectra of these polymers showed mainly the

widening and the intensity increase of the 1300–1100 cm�1

band arising from the C–F stretching contribution, which

indicated the incorporation of the fluoro-oligoether macro-

diol in the polyurethane chains.

Table 5 gives the properties of these fluorinated polymers.

The perfluoro-oligoether diol (Fig. 1c) had a significantly

lower glass transition temperature than PPG (�99 versus

�698C). Thus, the incorporation of this macrodiol in the

polymer chains logically enhanced the softness consistence of

the polymers, which resulted in a progressive glass transition

temperature decrease with the increasing macrodiol content.

Since this macrodiol was a polyether, like PPG, its incorpora-

tion into the polyurethane chains did not have any significant

effect on their degradation temperature. Conversely, an

important decrease in the surface energy values was

observed as the fluoro macrodiol content increased (Fig. 4).

The two determination approaches gave concordant

results and the Owens–Wendt method highlighted that

this decrease came mainly from the polar contribution. This

feature was clearly attributed to the perfluoroalkyl moieties

of the incorporated diol.

The hydrophobicity induced by the fluoro-oligoether

segments had also an influence on the dispersion properties

Polycarbonate macrodiol (%)

0 5 20 40

pH 9.0 8.3 8.8 8.7
Surface tension (mN/m) 38.6 38.1 38.6 40.3
Average particle size (nm) 51.2 94.6 97.9 102.4
Zeta potential (mV) �39.5 �38.5 �35.5 �28.7

Table 5. Effect of the perfluoro-oligoether macrodiol incorporation on the ensuing polymer properties

Fluoro-oligoether macrodiol (%)

0 10 20 40

Glass transition temperature Tg (8C) �26 �29 �33 �35
Degradation temperature Td (8C) 305 — 300 —
Surface energy (Owens–Wendt method) gp (mN/m) 19.7 15.7 11.7 11.0

gd (mN/m) 17.7 14.6 16.1 15.6
gt (mN/m) 37.4 30.3 27.8 26.6

Surface energy (Van Oss method) gt (mN/m) 37.8 29.4 27.2 27.0

Table 4. Effect of the polycarbonate diol incorporation on the ensuing dispersions properties

Figure 4. Effect of the fluoro-oligoether diol content on the 
ensuing polymer surface energies.



shown in Table 6, with the double effect of increasing the

average particle size and decreasing their zeta potential. As in

the other systems studied here, the presence of the perfluoro-

oligoether diol in the polymer chains did not affect the pH

and the surface tension of the dispersions.

CONCLUSIONS

It was possible to add up to 40% of new macrodiols into the

prepolymer chains and to obtain stable aqueous PUDs, with

improved properties, without any modification of the

straightforward synthetic procedure.

In particular, the addition of an acrylic macrodiol induced

a higher glass transition temperature and a reduced surface

energy to the ensuing polymers, which is very interesting in

terms of coating applications. With the incorporation of a

polycarbonate diol, the heat resistance of the polymers was

particularly improved, even with relatively modest contents.

Finally, the incorporation of perfluoro-oligoether moieties

led to an important decrease in the polymer surface energy.

This is a notable advantage for materials used in applications

such as packaging or anti-graffiti coatings, where swelling

must be reduced. All these improvements were obtained

without any significant deterioration of the previously

optimized properties associated with the use of the

TMXDI/PPG monomer combination.
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