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Abstract

State-of-the-art van der Waals (vdW) corrected density functional theory (DFT) is routinely used to
overcome the failure of standard DFT in the description of molecule/surface long range interactions.
However, the systematic use of dispersion forces to model metallic surfaces could lead to less accurate
results than the standard DFT and the effect of these corrections on the metal properties should be
properly evaluated. In this framework, the behavior of two widely used vdW corrected DFT methods
(DFT-D2 and vdW-DE/optB86b) has been evaluated on six metals, i.e. Al, Cu, Au, Ni, Co and Fe,
with respect to standard GGA-DFT and experiments. Regarding bulk properties, general trends are
found for the lattice parameter, cohesive energy and magnetic moment variations when the vdW
correction is introduced. Surface energies, work functions and interlayer distances of closed packed
surfaces, Al(111), Cu(111), Au(111) and magnetic Ni(111), Co(0001) and Fe(110), are also strongly
affected by the dispersion forces. These modifications suggest a systematic verification of the surface
properties when a dispersion correction is included.

1. Introduction

London dispersion forces, usually referred as ‘van der Waals (vdW) forces’, originate from the instantaneous
interaction between dipoles induced by charge fluctuation. These interactions, varying as —1,/r° decay [ 1], are
missing in standard exchange-correlation (XC) functionals used in density functional theory (DFT). This
deficiency was one of the main obstacles encountered by DFT methods to properly describe weakly bonded
materials or the adsorption of molecules on surfaces. Moreover it was also demonstrated that the dipole—dipole
vdW forces contribute to the total cohesive energy in metals [2—5].

While solutions have been proposed to take into account dispersion forces in DFT calculations since the mid
of 90s, significant efforts in that regard were undertaken only within the past decade. In this framework, weakly
bonded systems were mostly investigated and were used as benchmark datasets (522 [6, 7], S66 [7], X23 [8]) for
the validation of the proposed vdW correction methods. As a result, the description of rare gases or molecular
crystals was significantly improved [9]. Considering the benefit of such vdW corrected DFT methods, they were
widely used for modeling the adsorption of molecules on metallic surfaces and several reviews were proposed in
the literature [7, 9-14]. For instance, Tkatchenko et al [15, 16] pointed out that a modeling of the structure and
stability of hybrid systems using dispersion corrected functionals is reliable and required. Indeed, an accurate
description of the molecule-surface interaction is mandatory for explaining and forecasting the behavior of
molecules on metals, in various fields such as catalysis, stabilization of nanoparticles, surface functionalization,
or even in surface protections or nanotechnology. However, in spite of a quasi-systematic use of vdW
corrections in recent DFT studies of molecule-surface systems, the effect of the introduction of such a correction
on the metallic surfaces has been under-researched. We found important to point out the modifications of the
surface properties induced by such corrections.

For bulk materials, Klime$ et al [17, 18] and Carrasco et al [19], have shown a good behavior of optB86b,
their modified vdW density functional (vdW-DF) on lattice parameter, bulk modulus and atomization energy of



different materials such as some noble metals, transition metals, alkali and alkaline-earth metals, ionic crystals,
oxide and semiconductors. In 2013, Schimka et al [20] have computed the lattice constants and cohesive
energies of a series of alkali, alkaline-earth and transition metals with the random phase approximation (RPA)
and with a vdW corrected DFT method (optB88-vdW). The sophisticated RPA method gave the lowest errors
when compared with experiments but this approach is too computationally demanding to be applied on large
surface models such as those used for studying molecular adsorption. The optB88-vdW functional scored less
well as it seemed to overestimate the dispersion forces in alkali and alkaline earth metals and thus lead to
underestimated lattice parameters for these solids. However, Ding et al [21] showed that the same functional
gave results particularly close to experimental counterpart for the bulk properties and plasticity of magnesium.
Bucko e al [22] have compared the vdW correction method proposed by Tkachenko and Scheffler [23] with and
without self-consistent screening (T'S-SC) on different solids including rare gas solids (Ne, Ar, Kr, Xe), molecular
solids (a N, sulfur dioxide, benzene, naphthalene and cytosine), layered materials and chain-like structures
(graphite, hexagonal boron nitride, vanadium pentoxide, MoS, and NbSe,), materials with chain-like structures
(selenium, tellurium, cellulose I-3), ionic crystals and metals (nickel, zinc, cadmium). They found that the
calculated structures are in good agreement with experiment but that the vdW corrections often overestimated
the binding energies. They pointed out that the TS-SCS approach leads to significantly better results in some
problematic cases.

For surfaces, very few studies have assessed the quality of the data (lattice parameter and/or bulk modulus
and/or surface relaxation) obtained using vdW-corrected DFT methods [10, 24, 25]. Moreover, in these studies,
these parameters were evaluated only for the method they used for studying the adsorption. To our knowledge,
only one study describes a comparison of the surface energy and relaxation of different facets of a given metal
obtained with and without a dispersion correction [26, 27]. The purpose of this work is neither to give an
exhaustive list of the metal surface properties obtained using all the existing corrections, nor to seek for the best
vdW corrected functional for describing a given metal surface. It is rather intended to show the typical
modifications one could expect on the surface properties arising from the use of vdW corrected functionals.

To this end, we have evaluated the effect of dispersion corrections on the surface properties of six compact
metallic surfaces, i.e. Al(111), Cu(111), Au(111), Ni(111), Co(0001) and Fe(110). Five of the six metals studied
are transition metals and all have been chosen because of their frequent use as molecular adsorption substrates
or as stable facets of nanoparticles [28—30]. We tested one example for each of the two most representative classes
of vdW correction methods (non-local correlation functional and semi-empirical additive DFT-D). After the
verification on lattice parameter, bulk modulus and cohesive energy for the bulk, we have focused on surface
energy, surface relaxation and work function of these surfaces. For magnetic metals, the magnetic properties
have also been computed. These results provide an indication of the modification of the surface properties
arising from taking into account the dispersion forces.

2. Computational details and models of the surfaces

Calculations in the framework of the DFT were performed by using the Vienna ab initio simulations package
(VASP) [31-33], a plane-wave basis implementation of DFT. Pseudopotentials based on the projector
augmented wave (PAW) method [34, 35] which allows an accurate description of the electronic structure were
used with different functionals. As a reference, lattice parameter, cohesive energy, bulk modulus, surface energy,
surface relaxation and work function were calculated at first with the well known Perdew—Burke—Ernzehof
(PBE) [36] functional in the generalized gradient approximation (GGA). These quantities were then compared
to that evaluated with vdW corrected DFT. Among the semi-empirical corrections, we selected the DFT-D2
method proposed by Grimme [37], which consists in adding a pair wise potential to the DFT total energy after
each self-consistent cycle.

E = Egs + Eqisp (1)
and
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where S is a global scaling factor, R ¥ the distance between atomsiandj, d adamping parameter, Cj the atomic
parameter and Rj the vdW radius of atom i. Note that the Cg and Rj parameters are identical for Fe, Co and Ni.




Table 1. Parameters used for the bulk cal-
culations. E is the cutoff energy,
k-points is the size of the k-points

grid(n X n X n).

Metal E . (eV) k-points

Al 450 15 x 15 x 15
Cu 500 17 x 17 x 17
Au 600 19 x 19 x 19
Co 650 21 x 21 x 21
Ni 600 19 x 19 x 19
Fe 400 18 x 18 x 18

In the Grimme correction method, the parameters C§ and Rj were obtained by fitting experimental data
[37]. For this class of correction methods, Tkatchenko and Scheffler proposed to obtain these same parameters
from the electron density [23].

Among the non-local functionals, also called vdW-DF [38], we selected the optB86b one, a functional
optimized by Klimes et al [ 18], and known for its ability to describe structural properties of solids. In this
method, the vdW interaction is considered implicitly by the nonlocal contribution of the electronic density

EYWPEo ()] = ESCAp ()] + EFP2 [p ()] + EM[p(D)]. (5)

2.1. Bulk calculations
For bulk materials, the convergence (less than 1 meV per atom) with respect to the cutoff energy (E...),
Methfessel-Paxton smearing o [39] and size of the Monkhorst—Pack mesh of k-points [40] was carefully
checked for each system. The calculation parameters used are presented in table 1. The value of the smearing o
was taken to 0.05 eV for all metals.

By fitting the total energy versus the lattice volume using equation (6), the optimized lattice parameters were
deduced from the volume at the minimum energy:

Epuik = a0 + iV + a, V2, (6)

where Eyp is the energy of the unit cell with N atoms and V the volume of the unit cell.
Cohesive energies Ep, per atom were calculated using equation (7):

Epuik )

- Eatom>

Econ =

where E o, is the energy of the isolated atom in vacuum.
The bulk modulus By measures the volume variation due to external pressure. It is defined as in equation (8).
This quantity was calculated by using the Murnaghan equation of state [41]
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2.2. Surfaces calculations
For surface calculations, symmetric slabs were chosen. The height of the vacuum region was checked to
minimize the interaction between periodic slabs in the z-direction. The total surface energies were calculated
with the same accuracy as the bulk, but using (n x n x 1) k-points grid, n being given in table 1. That leads to
good convergence of the surface energy [42]. The number of atomic layers was gradually increased to get the
convergence of the surface energy (A~ < 0.005 eV atom ~') and convergence of the interplanar distance
variation in the middle of the slab (see figure 6). The number of atomic layers was 19 layers for the Al, Cuand Au
slabs, 15 layers for Co and Ni metals and 20 layers for the Fe slab.

All atoms were fully relaxed with the conjugate gradient algorithm until forces on each of them were less than
0.001 eV A~ Spin polarization was taken into account for magnetic materials, i.e. Ni, Co and Fe.

The surface energy  for a symmetric slab was calculated using:

Eslab - fl%
=y 9
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Table 2. Calculated and experimental lattice parameters a, (A) for fccand bec,
ay/co for hep crystals.

Metal PBE DFT-D2 optB86b Exp. [43]
Al(fcc) 4.037 4.008 4.031 4.04/4.05
Cu(fec) 3.635 3.570 3.597 3.61
Au(fcc) 4.174 4.096 4.138 4.08
Ni(fcc) 3.525 3.464 3.494 3.52
Cothep) 2491/ 2.463/ 2.472/1.616 2.51/1.62
1.625 1.600
Fe(bce) 2.835 2.804 2.807 2.87

where Eq,y, is the total energy of the fully relaxed slab, n the number of metallic atoms in the supercell and A is the
surface area of the slab.
The relaxation of the surfaces was described by the interlayer distances variation:

dij — dpui

bulk

Ad,’j = x 100%, (10)

where dj;are the interlayer distances and i and j the index of the atomic layers from the surface, i.e. d;, is the
distance between the surface (index 1) and the subsurface (index 2) layers. dy, . is the interlayer distance in
the bulk.

The work function ¢ is the minimum energy required to extract an electron from the surface to the vacuum.
Work function changes A ¢ are particularly studied for the adsorption processes on metal surfaces. We
calculated the work function of the metals from the difference between the Fermi energy of the system and the
electrostatic potential energy in the middle of the vacuum region. ¢ is thus given by:

where Er is the Fermi energy of the system and V., is the electrostatic potential in the vacuum. No dipole
correction was necessary as we used symmetric slab models.

3. Results and discussions

3.1. Bulk

The equilibrium lattice parameters obtained by using the PBE, DFT-D2 and optB86b functionals are
summarized in table 2. The general trend of the g, variation is a graduated shift to smaller values from PBE to
optB86b and finally to DFT-D2 as shown in figure 1. This behavior of the lattice parameters agrees with literature
results [18, 19]. The authors showed that the optB86b-vdW functional gives smaller lattice parameters than the
PBE functional for all metals. The results obtained by optB88-vdW are not constant: the calculated lattice
parameters are similar using optB88 and PBE functionals for transition metals, whereas the optB88 functional
gives worst lattice parametres than the PBE functional for alkali and alkali-earth metals. In the present study, for
fcc Aland Ni, hep Co and bece Fe, the lattice parameters calculated with PBE best agree with the experimental
values. For Cu, the best agreement was obtained with optB86b with Aa, = —0.4%, whereas for Au the g,
calculated with DFT-D2 gives a deviation Aag of +0.4%. Therefore the inclusion of vdW forces in the
calculation tends to decrease the volume of the unit cell at 0 K for all studied metals.

The variation of the bulk modulus By is presented in table 3 and in figure 2. The analysis of the results of our
computations shows a shift of B, to larger values with the optB86b functional and DFT-D2 corrections for Cu,
Au, Niand Co, following thus the expected trend. On the contrary, the value of By is decreased for Al when we
turn from PBE to dispersion corrected methods and for Fe when the optB86b functional is used. For three of the
six studied metals (Cu, Ni, Co), the PBE functional gives the results that are in best agreement with their
experimental counterparts. For Al, Auand Fe, the best approach for the calculation of the bulk modulus is the
DFT-D2 one. The lack of clear trend for the variation of the bulk modulus with the functional might be
attributed to the well-known DFT error (with or without dispersion correction) which is around +20% , for
standard calculations. One could improve the agreement of the calculated bulk modulus with experiment by
increasing the accuracy of the calculation (finer k-points grid and higher cutoff). However, since the main
purpose of this paper is to show the effects of the vdW corrected DFT methods on the metal properties compared
to standard PBE, we decided to work at the same standard level of accuracy for all functionals.

The calculated value of the cohesive energy of a given metal is also method dependent. The cohesive energy
calculated without and with vdW corrections are presented in table 4 and compared to the experimental values.
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Figure 1. Deviation of the calculated lattice parameters from the experimental values, Aag = (a9 — ag*) x 100/as™* (and ag/co
for Co).

Table 3. Calculated and experimental bulk moduli B, (GPa).

Metal PBE DFT-D2 optB86b Exp. [43]
Al(fcc) 80 71 79 72
Cu(fcc) 139 144 149 137
Au(fec) 136 154 146 173
Ni(fec) 195 219 209 186
Col(hcp) 201 211 208 191
Fe(bcc) 186 176 199 168
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Figure 2. Deviation of the calculated bulk moduli from the experimental values. ABy = (By — B;*") x 100/B;**.

DFT is known to estimate reasonably well this quantity [ 18, 20]. In agreement with the previous studies [2, 3],
taking into account dispersion interactions increases the cohesion of the metallic bulks. In figure 3, the general
trend is that [EXSF| < |E c‘:ﬁfB%b| < |ERFT=D2|, except for Fe for which the calculated optB86b and PBE-D2
cohesive energies are similar. This variation of the cohesive energy is similar to the variation already shown for
the lattice parameter because, for a given metal, the values of the lattice parameter and of the cohesive energy are
in close relation: smaller gy lead to higher E}, (in absolute value). The minimum deviation to experimental
values is for Cu with a relative error of —0.57% (PBE), while the largest deviation is for Co, with a relative
variation of +34.17% (DFT-D2).




Table 4. Calculated and experimental cohesive energies (eV).

Metal PBE DFT-D2 optB86b Exp. [43]
Al(fce) —3.55 -3.80 —3.65 -3.39
Cu(fec) —3.47 -3.89 —3.76 -3.49
Au(fec) —2.98 —3.69 —3.55 -3.81
Ni(fcc) —4.87 -5.35 —5.08 —4.44
Co(hcp) —5.41 -5.89 —5.54 -4.39
Fe(bcc) —4.85 —5.27 —5.31 -4.28
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Figure 3. Deviation of the calculated cohesive energies from the experimental values. AEo, = (Ecoh — ESp) x 100/ESF .

Table 5. Calculated and experimental atomic magnetic moment

in jug/at.

Metal PBE DFT-D2 optB86b Exp.
Ni(fcc) 0.65 0.59 0.58 0.61[44]
Cot(hep) 1.61 1.55 1.56 1.71(at 77 K) [45]
Fe(bcc) 221 2.15 2.12 2.22[44]

In theliterature, Klimes et al [ 18] computed these same quantities for Al and Cu using the PBE and optB86b.
Their values for the lattice parameters, bulk modulus and cohesive energies were slightly different than ours due
to slight differences in the computational conditions (number of k-points and E,;). These properties have been
calculated for many solids using several vdW density functional methods. The cohesive properties for alkali
metals and alkali halides were improved by including dispersion non-local correlation term [18, 20].

For magnetic materials (Ni, Co and Fe), the atomic magnetic moments calculated with PBE, optB86b and
DFT-D2 are compiled in table 5. The PBE functional gives values of the atomic magnetic moment that are
decreased when using dispersion corrected methods. This is simply due to the fact that these methods decrease
the lattice parameter for a given metal (compared to the PBE functional), and therefore the hybridization
between the orbitals of neighbouring atoms is increased inducing a decrease of the magnetic moments.

To sum up, in comparison to PBE results, the application of vdW corrections in the semi-empirical scheme
(DFT-D2) or with the non-local functional approach (optB86b) decreases the lattice parameter and increases the
cohesive energy (in absolute value), inducing a decrease of the atomic magnetic moments for the magnetic
materials. The bulk modulus is also modified by the use of these functionals but no general trend was found.

Globally, we can conclude that the use of dispersion corrected methods modifies the calculated properties of
the six studied metals. Depending on the performance of the PBE functional for a given metal, the use ofa vdW
functional might improve the agreement with experiment or deteriorate it. Note that, for Au, the PBE
functional, as well as all gradient corrected exchange and correlation functionals, does not take into account the
spin—orbit coupling and then leads to inaccurate results for the lattice parameters and the bulk modulus. In that
case, the correction induced by taking into account the dispersion forces compensates artificially the error
coming from the lack of spin—orbit coupling.




Table 6. Calculated surface energies yin ] m~ 2 and deviation from the experimental values.

PBE DFT-D2 optB86b
Metal vy m™?] Error [%] vy m™3 Error [%)] vy m™3 Error [%] Exp. [46]
Al(111) 0.78 —31.98 1.08 —6.55 0.96 —16.98 1.16
Cu(111) 1.25 —31.42 1.95 +6.44 1.61 —11.91 1.83
Au(111) 0.71 —52.60 1.52 +1.60 1.10 —26.53 1.50
Ni(111) 1.92 —21.63 2.77 +13.14 2.33 —5.02 2.45
Co(0001) 2.12 —16.70 2.98 +16.74 2.57 +0.94 2.55
Fe(110) 2.42 —2.42 3.02 +21.93 2.89 +16.33 2.48
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Figure 4. Deviation of the calculated surface energies from the experimental values. Ay = (7 — yP) x 100/~ .

3.2. Surface properties

When a surface is created by cutting a solid, the atoms in and close to the surface tend to relax in order to
minimize the surface energy and surface strains. By the same time, the surface electronic structure as well as the
surface reactivity are modified consequently. It is thus of prime importance for DFT simulations to reproduce
correctly surface properties. In this study, only the most close-packed orientations were considered for each
metal,ie. Al(111), Cu(111), Au(111),Ni(111), Co(0001) and Fe (110). To describe these surfaces, we used
symmetric slabs as described in the ‘computational details’ section.

The calculated surface energies are summarized in table 6. For all the metals, the dispersion corrected
methods give a surface energy that is higher than the PBE values. The DFT-D2 approach gives accurate results
for the Al(111), Cu(111) and Au(111) surfaces, whereas the optB86b functional describes well the surface energy
of the Ni(111) and Co(0001) surfaces. The PBE functional gives results in best agreement with experimental
value only for the Fe(110) surface. Looking at figure 4, one can see that the dependence of the surface energies on
the functionals is similar to that of the cohesive energies in bulk materials (V5 < Yoptbssb < VpEr-p2)- From the
definition of the surface energy (equation (9)), one can try to understand these method dependent variations.
Taking into account dispersion forces decreases the lattice parameter ay, therefore the surface area, and increases
the cohesive energy (in absolute value). Thus the increase in surface energy observed in dispersion corrected
DFT compared to PBE can be explained by changes in the bulk properties.

As different vdW corrections significantly modify the bulk properties and the surface energies, we expect to
find noticeable differences for the work function from one method to the other. For the six metallic surfaces
investigated in the present work, the work functions are presented in table 7. The general variation trend here is
Pppg < Pppr-p2 < Popisen (see figure 5). The PBE and DFT-D2 methods give similar results and the best
agreement with experiment for the Co(0001) and Fe(110) surfaces whereas the optB86b functional describes
better the (111) surface of the Al, Cu, Au and Ni metals. Tkatchenko et al also noticed an increase of the work
function for the (111) surface of Cu, Rh and Au when applying the self-consistent PBE+vdW correction [47].
This variation is indeed linked to the change in the surface electronic density description. As the electronic
redistribution is at the origin of the surface relaxation [48], we also studied in details the dependence of the
surface relaxation of the slab on the method.




Table 7. Calculated and experimental work function ® in eV.

Metal PBE  DFT-D2  optB86b  Exp.[46]
Al(111) 4.05 4.05 418 424
Cu(111) 4.76 4.82 4.98 4.94
Au(111) 5.09 517 5.32 5.31
Ni(111) 5.09 5.11 5.27 5.35
Co(0001)  4.91 491 5.17 5.00
Fe(110) 4.75 478 5.00 4.50
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Figure 5. Deviation of the calculated surface work functions from the experimental values. A® = (& — OP) x 100/PP.

In the middle of the slabs, the interlayer distance should converge to its value in the bulk. In figure 6, the
deviation of the interlayer distances Ad;; as defined in equation (10) are presented for the six studied surfaces
and for the three functionals. One can notice that the interlayer distances converge to their bulk values for
Ni(111) whatever the calculation method used and for Fe(110) in the case of optB86b and PBE calculations. The
largest deviation is obtained for Al(111) with an interlayer distance variation of +1.0% relatively to the bulk with
the three functionals. To reach the bulk value, the number of atomic layers used to describe the Al slab should be
much larger (> 40). These deviations are usually attributed to quantum effects which decrease very slowly with
the number of atomic layers [49]. The calculations with a 40-layers slab being too computationally expensive, we
checked that the three methods give interlayer distance deviations that are in the same range of values for the 19-
layers slab and can be compared. For the other systems, the interlayer distances converge to the bulk value in the
middle of the slab with an incertainty of less than +1%.

It is interesting to notice that the surface relaxations, measured by the Ad,, and Ad,; deviations of the
interlayer distances, can be very different from one method to the other for a given metal. These surface
relaxations are reported in table 8.

Some experimental studies in the literature have shown that for most of the fcc metals, the surface relaxation
isinward, i.e. the distance between the two topmost atomic layers decreases when compared to this distance in
the bulk. But, some surfaces show an outward relaxation such as Al(111) and Au(111) or Cu(111) [50-52]. Since
experimental values are difficult to obtain with a reasonable uncertainty, the prediction of this opposite behavior
could be considered to evaluate the performance of the dispersion corrected approaches.

For Al(111), the calculated Adj, is positive for the three methods, i.e. PBE, DFT-D2 and optB86b but it is
much increased by the use of the vdW functionals, especially DFT-D2. This outward relaxation agrees with the
experimental observations and within acceptable errors for PBE and optB86b. For Cu(111), both PBE and
optB86b give a negative (inward) relaxation. Only the DFT-D2 reproduce the outward behavior
with Ad,, = 40.74%.

For Au(111), all methods reproduce the outward relaxation observed experimentally [51] but its magnitude
is much bigger for the DFT-D2 method. The Ni(111) surface shows experimentally an inward relaxation, which
is reproduced by the three methods. However, the optB86b value (-1.31%) agrees better with the—1.2% =+ 1.2%
estimated by Lahtinen et al[56]. For the Co(0001) surface, all methods reproduce the inward relaxation. Finally




Figure 6. Deviation of the calculated interlayer distances from the interlayer distance in the bulk (in %).

for the Fe(110) surface, the DFT-D2 method gives an outward relaxation (+1.01%), while PBE and optB86b
simulate an inward relaxation of —0.29% and —0.18% respectively.

For all metals, the agreement with experiment is difficult to evaluate because of the dispersion of the
experimental values. Globally, we note that for the Ad,, variation, the PBE and optB86b functional show the
same trends whereas DFT-D2 has a different behavior for Cu(111) and Fe(110). These trends and the
comparisons with experimental values are shown in figure 7, where the Ady, are depicted. From this figure, it is
clear that the DFT-D2 method tends to increase the surface deviation Ad, compared to the PBE and optB86b
ones and this effect changes the relaxation from inward to outward in some cases (Cu(111) and Fe(110)).

For magnetic surfaces, the magnetic moment of atoms belonging to the different layers shows a similar
variation for the three methods (see figure 8). Similarly to what was observed in the bulk, the decrease of the
lattice parameter when the dispersive forces are included induces a decrease of the atomic magnetic moment in
the middle of the slabs. At the surface, due to the lack of neighbouring atoms, the magnetic moment of the
surface atoms is exalted. This exaltation is obtained with the three functionals and the differences between the
obtained values are simply due to the change in bulk atomic moments.




Table 8. Calculated and experimental deviation of the interlayer distances
Ady, Adys,and Adsy, from the corresponding bulk values (in %).

Element PBE DFT-D2 optB86b Exp.
Al(111)
Ady, +1.34 +2.39 +1.69 +1.8 £ 0.3/
+1.7 + 0.3[50,53]
Ady; +0.22 +0.48 +0.38 +0.1 + 0.7/
0.5 + 0.7[50, 53]
Ads, +1.12 +1.29 +1.29
Cu(l11)
Ady, ~0.30 +0.74 —0.68 +0.5 —
1+ 1-25%[52]
Adys +0.35 +0.19 —0.06
Ads, —0.71 +0.43 +0.27
Au(111)
Ad, +0.82 +2.93 +0.89 +1.5/
+3.3 £ 0.4[51,54]
Adys ~0.84 —0.12 ~0.66 —0.8 & 0.4[54]
Adsy —0.53 -0.33 —0.44
Ni(111)
Ady -0.82 -0.11 —1.31 -1.2 £ 1.2[55]
Adys +0.14 ~0.05 —0.35
Adsy +0.13 —0.09 +0.09
Co(0001)
Ady, —3.24 —-1.18 —2.81 -2.1[56]
Adys +1.41 +2.02 +2.30 +1.3[56]
Adsy —-1.13 +0.03 —0.80
Fe(110)
Ady -0.29 +1.01 —0.18 +0.5 + 2[57],
1+ 2[58]
Adys +0.57 +0.80 +0.54 +0.5 £ 2[58]
Adsy -0.32 -0.34 —0.36
4

-2~ =—aDFT-D2
r e—e optB86b
Exp.
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Figure 7. Surface relaxations A, with respect to the bulk interlayer distances (in %) and comparison with the experimental values.

To summarize, similarly to the bulk properties, the variation trend of surface properties using PBE, DFT-D2
and optB86b methods strongly depends on the system. For the surface energy, it is clear that the use of the
dispersion forces increases the value of the surface energy when compared to the PBE results, for all metals. The
method dependence of the work function is different with a systematic increase of the value using the optB86b
functional. But the use of the DFT-D2 method does not affect systematically the PBE value of the work function.




Figure 8. Calculated atomic magnetic moment (in 11, /at.) at different layer positions in the Ni(111), Co(0001) and Fe(110) slabs.

Concerning the surface relaxation, the DFT-D2 method clearly increases the interlayer distance between the
topmost layers. However the comparison with experiments is not conclusive. For what concerns the surface
magnetic moments, the trend follows that found for the bulk magnetic moment, i.e. it is closely related to the

lattice parameter.




4, Conclusion

In this paper, we have evaluated the performance of two vdW-corrected DFT functionals (DFT-D2 and vdW—
DF/optB86b) on six metals, i.e. Al, Cu, Au, Ni, Co and Fe by comparing with PBE results and experiments. A
systematic decrease of the lattice parameter compared to the PBE value was observed which is directly related to
the inclusion of the attractive dispersion forces in the metal. For the same reasons, the cohesive energy is
systematically increased in absolute value and the magnetic moment is decreased when vdW corrected
functionals are used, with respect to PBE. Based on the investigated metals (including transition 3d/5d metals),
one could generalize this trend: the use of vdW corrected DFT induces a decrease of the lattice parameter, a
decrease of the magnetic moment and an increase of the cohesive energy in absolute values with respect to
standard GGA-DFT calculations. However, for the bulk moduli which is linked to the elastic properties of the
materials, no general trend could be found.

Surface energies, work functions and surface relaxations of Al(111), Cu(111), Au(111) and magnetic
Ni(111), Co(0001) and Fe(111) surfaces were computed with and without the vdW corrections. A variation
trend was underlined for the surface energy: Yo < Yopms6p < Yprr-py» Which can be attributed to the changes in
the bulk properties. Concerning the work function, the ordering is different and the trend is: ®ppg <
Pppr-p2 < Poppsen- For surface relaxations, the DFT-D2 correction tends to increase the distance between the
two topmost layers compared to the very similar behavior found with PBE and the optB86b functionals.

A proper description of molecule/surface systems implies to take into account London dispersion forces
which is not done in standard GGA-DFT calculations. The state-of-the-art vdW corrected functionals are now
routinely used to overcome this failure of DFT. Care should be taken regarding the effects induced by these
forces on the metal properties. In this work, we have observed that the use of vdW corrected functionals strongly
affects the bulk and surface properties of the investigated metals. In order to avoid this effect, for semi-empirical
corrections based on pairwise additive interactions, one could introduce the corrections between the atoms of
the molecule and of the surface only [59]. This strategy can not be used for non-local vdW corrected functionals.
In this latter case, the general trends pointed out in the present study could be used to predict the change of the
metal properties with respect to standard DFT.
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