

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible

This is an author's version published in: <u>http://oatao.univ-toulouse.fr/23529</u>

To cite this version:

Cathalifaud, Patricia and Zagzoule, Mokhtar and Balédent, Olivier Biomechanical modeling and Magnetic Resonance Imaging to investigate CSF flow physiology. (2018) In: 8th World Congress of Biomechanics - WCB 2018, 8-12 July 2018 (Dublin, Ireland). (Unpublished)

Any correspondence concerning this service should be sent to the repository administrator: <u>tech-oatao@listes-diff.inp-toulouse.fr</u>

BIOMECHANICAL MODELING AND MAGNETIC RESONANCE IMAGING TO INVESTIGATE CSF FLOW PHYSIOLOGY

Patricia Cathalifaud⁽¹⁾, Mokhtar Zagzoule⁽¹⁾ & Olivier Balédent⁽²⁾

(1) Institut de Mécanique des Fluides de Toulouse (IMFT), Université de Toulouse, CNRS, Toulouse, France (2) BioFlowImage, CHU Amiens-Picardie, Amiens, France

Abstract/Objective

Nowadays Phase contrast Magnetic Resonance Imaging (PC-MRI) is the only sensor able to measure in physiological conditions blood and cerebrospinal fluids (CSF) flow dynamics during cardiac cycle at different levels of the craniospinal system [1]. Combining modelling and in Vivo PC-MRI measurments of CSF Flow at the cervical Spinal (Q_s) and Aqueduct of Sylvius (Q_v) or Sub-Arachnoidal cerebral (Q_c) levels makes it possible to compute Intracranial pressure (ICP) as well as get a deep insight into the LCS dynamical system. Inertia has been neglected in most of previous LCS models. Our simple model show that inertia plays a crucial role in particular in the optimal LCS flow amplitudes and phases.

The Cerebro-Spinal Model

We modelled the cerebro-spinal sytem as a bifurcation of 3 rigid tubes of length L_k and section A_k , $k \in \{s, v, c\}$, filled of cerebro-spinal fluid (CSF) of density ρ and dynamic viscosity μ , and ended with 3 compliant compartments. The subscripts $\{s, v, c\}$ represent respectively the spinal subarachnoid space (SAS), the ventricular space and the cerebral SAS.

The governing equations

Assuming that the spinal flow rate $Q_s = Q_{\text{max}} e^{i\omega t}$ is known, we obtain that the flow rate Q_k , with $k \in \{c, v\}$, is solution of the following differential equation:

$$\frac{\mathrm{d}^2 Q_k}{\mathrm{d}t^2} + \frac{\mathrm{d}Q_k}{\mathrm{d}t} + \frac{1}{T_C} Q_k = F_k Q_s \tag{1}$$

which introduces 2 characteristic times depending only on the fluid characteristics, and ventricular and cerebral SAS parameters as follows:

$$T_{I} = \frac{\rho \sum_{i=c,v} \frac{L_{i}}{A_{i}}}{\sum_{i=c,v} \sigma_{i}} \text{ inertial time} \qquad T_{C} = \frac{\sum_{i=c,v} \sigma_{i}}{\sum_{i=c,v} \frac{1}{C_{i}}} \text{ compliant time}$$

where $\sigma_k = \frac{8\pi\mu L_k}{A_k^2}$ if we assume a parabolic velocity profile. The forcing term, F_kQ_s represents the spinal flow Q_s modulated by the collateral branch reactance and resistance factor F_k given by:

$$F_c = \left[\left(\frac{1}{C_v} - \frac{\rho L_v}{A_v} \omega^2 \right) + i\omega \sigma_v \right] / \sum_{i=c,v} \sigma_i, \qquad F_v = \left[\left(\frac{1}{C_c} - \frac{\rho L_c}{A_c} \omega^2 \right) + i\omega \sigma_e \right] / \sum_{i=c,v} \sigma_i$$

Natural angular frequency of the model: Ω

Relative importance of inertial/viscous/compliant effects

Patient specific simulations

Discussion

The flows are optimal when inertia and compliance cancels each other, i.e when cardiac angular frequency equals the natural angular frequency of the coupled LCS system. A reduced global compliance induces a ventricular compartment more active, even if the relative compliance ratio remains the same. The 2 characteristics parameters Ω and EQP may be used to find the specific patient parameters, as compliances, based on flow rates data.

References

[1] Baledent, O. and Idy-Peretti, I. Investigate radiology 36 (7), p. 368-377, 2001.