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Abstract—In this paper, we consider a multicarrier waveform
to perform simultaneously data transmission and radar sensing.
On the radar receiver side, a state-of-the-art symbol-based
algorithm generates a range-Doppler map affected by a self-
interference phenomenon, potentially leading to target masking
issues. Herein, we propose a successive interference cancellation
procedure to enhance the radar performance while keeping
a low-complexity implementation. We show that a very low
reconstruction error is obtained in various scenarios. We also
investigate the robustness of the proposed algorithm since it is
subject to error propagation.

I. INTRODUCTION

As part of spectrum sharing techniques, waveform sharing
between radar and communications systems may help to
deal with the spectrum congestion problem. Besides radiofre-
quency’s, it might as well save other types of resources such as
energy, weight or volume and thereby address typical integra-
tion issues encountered in intelligent transportation systems,
unmanned aerial vehicles, etc.

In this work, we focus on the radar processing ap-
plied to a multicarrier communication signal referred to as
weighted cyclic prefix orthogonal frequency-division multi-
plexing (WCP-OFDM). The monostatic scenario we consider
(also known as RadCom [1], see Fig. 1) allows the use
of a 3-stage low-complexity radar architecture based on the
knowledge of the transmitted symbols at the receiver [1], [2].

However, in practice, this approach was shown to result in
a twofold self-interference phenomenon in the range-Doppler
map [3], namely losses on the target peaks that translate into
an increased white interference-plus-noise level, so that target
masking is more likely to occur [4]. To address this issue
while maintaining a low-computational complexity processing
at the receiver, we here propose a Successive (self-) Interfer-
ence Cancellation (SIC) algorithm inspired from the ad-hoc
CLEAN procedure [5], [6].

The remaining of the paper is organized as follows. In
Section II, expressions of the WCP-OFDM radar model and
self-interference statistics are recalled to justify the need for
mitigating this phenomenon. Section III exhibits the per-
formance of our CLEAN-based SIC procedure assessed in
both single and multitarget scenarios, as well as a robustness
analysis. Finally, Section IV concludes and provides prospects
for future work.
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Fig. 1. Typical RadCom scenario involving a shared waveform to simultane-
ously perform monostatic radar sensing and data transmission.

II. RADCOM SYSTEM MODEL

Herein, we recall the model of the low-complexity WCP-
OFDM radar transceiver of [2], [3] and justify the need for
mitigating the self-interference.

A. Waveform properties

The WCP-OFDM waveform is a generalization of the
widespread cyclic prefix (CP-)OFDM to non-rectangular
pulse-shapes that still implies: (i) transmit and receive pulses
g and ǧ shorter than the duration of a multicarrier symbol,
or block; (ii) perfect reconstruction (PR) of the data symbols
on an ideal channel. Specifically in this paper, two types of
WCP-OFDM pulse-shapes are focused on:
• the conventional rectangular pulses with CP;
• the time-frequency localized (TFL) pulses [7];

For radar sensing, the orthogonal scheme (i.e., ǧ = g) and
improved frequency localization of TFL-pulses make them
outperform CP-pulses in low-range and high-velocity scenar-
ios [2], [3].

B. RadCom model

In the following, IN stands for the finite set of integers
{0, . . . , N − 1}.

1) RadCom TX: The WCP-OFDM transmitter operates
over K subcarriers along M blocks (or sweeps) to transmit
a sequence of data symbols {dk,m}(k,m)∈IK×IM . The latter
are assumed to be independent and uniformly distributed in
a constellation that is centrally symmetric, such as usual
phase shift keying (PSK) or quadrature-amplitude modulation
(QAM) constellations. The baseband transmitted signal sam-
pled at critical rate 1/Ts can be expressed by blocks [8], [9]:

s =
[
IM ⊗ (DgPFHK)

]
d (1)
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Fig. 2. Flowchart of the low-complexity WCP-OFDM radar transceiver.

where d is the symbol vector such that [d]k+mK , dk,m, FK
the unitary K-DFT matrix, P the L×K cyclic extension ma-
trix with expansion factor L/K ≥ 1 involving the Kronecker
symbol, namely [P]l,k = δl,k + δl,k+K , Dg = diag(g) with
g = [g[0], . . . , g[L−1]]T the transmit pulse-shape vector with
`2-squared norm ‖g‖2 = K, and IM is the M -size identity
matrix.

2) Radar channel: Consider H single-point targets with
complex amplitudes αh, round-trip delays τ0,h and radial
velocities vh that partly backscatter the WCP-OFDM signal (1)
towards the monostatic radar transceiver. Particularly, we as-
sume that for all h ∈ IH :

• targets are perfectly located, with no ambiguity in range
gates l0,h, namely τ0,h = l0,hTs with l0,h ∈ IL;

• Doppler effects boil down to frequency shifts Fd,h =
2vhFc/c such that Fd,h � 1/Ts, with Fc the carrier
frequency of s and c the speed of light;

Assuming that clutter returns can be disregarded, the sampled
baseband received radar signal is then

r =

H−1∑
h=0

αhZhs + n (2)

where [Zh](l,l′)∈IML×IML
= ej2πfd,hl/Lδl,l′+l0,h models the

range-Doppler shifts induced by the hth target on s, with
fd,h = Fd,hLTs its normalized Doppler frequency, and n ∼
CN (0, σ2IML) denotes the white thermal noise vector.

3) Radar RX: The 3-stage low-complexity processing of [1]
that assumes a range-Doppler tolerant waveform [2, Eq. (6)]
is then performed on the received radar signal (2), namely: (i)
linear symbol estimation; (ii) symbol removal; (iii) range-
Doppler map computation. It is condensed into

x = (FM ⊗ FHK)︸ ︷︷ ︸
(iii)

D−1
d︸︷︷︸

(ii)

[IM ⊗ (FKPTDH
ǧ )]︸ ︷︷ ︸

(i)

r (3)

with Dǧ = diag(ǧ) where ǧ = [ǧ[0], . . . , ǧ[L − 1]]T is the
receive pulse-shape vector with ‖ǧ‖2 determined by ‖g‖2 and
the waveform’s PR condition, and D−1

d = diag−1(d). The
presented system model is summed up in Fig. 2. In practice,
note that zero-padding can be exploited in step (iii), subject
to few changes in the expressions of (3).

C. Focus on the self-interference phenomenon

Let first consider the single-target case (i.e., H = 1) and
drop the index on the target parameters. Due to the time-

frequency selective radar channel (2), the range-Doppler map
x can be split into 3 terms [3]:

x = x(t) + x(i) + x(n) (4)

with ·(t) and ·(n) the resulting useful signal and noise,
and ·(i) the intercarrier-plus-interblock interference, or self-
interference from a target detection perspective. Provided that
E{α} = 0, it has been proved that [4]

E
{

x(t)Hx(t)
}

= σ2
t ,

E
{(

x(n) + x(i)
)(

x(n) + x(i)
)H}

=
(
σ2
n + σ2

i

)
IKM

(5)

where variances of the target σ2
t , noise σ2

n and self-interference
σ2
i detailed in (5a)-(5c) involve σ2

d , E{|dk,m|2}, σ2
d−1 ,

E{1/|dk,m|2} as well as the cross-ambiguity function of ǧ, g

Aǧ,g(l, f) = K−1
+∞∑
p=−∞

ǧ[p]g[p− l]ej2πfp.

In practice, (5) means that a highly reflective target (i.e.,
E{|α|2} � 1) induces a significant white self-interference-
plus-noise level in the range-Doppler map which is empha-
sized as l0 and/or fd is high, namely as the loss on the target
peak |Aǧ,g(l0, fd/L)|2 grows.

The latter phenomenon is all the more concerning as the
number of targets H increases in (2). Indeed, if assuming
statistical independence between targets, then by linearity of
the radar processing (3) the self-interference power becomes

σ2
i =

H−1∑
h=0

σ2
i,h (6)

with σ2
i,h the self-interference power related to target h and

defined in (5c). As a result, the cumulated self-interference-
plus-noise contribution is susceptible to mask weak targets in
the range-Doppler map, as exemplified in Fig. 5a.

III. SUCCESSIVE SELF-INTERFERENCE CANCELLATION

The CLEAN algorithm was originally introduced to fight
sidelobes masking effects in radio astronomy [5], then in
radar [6]. Herein we adapt this ad-hoc procedure to curb the
aforementioned self-interference masking phenomenon while
maintaining a low-complexity radar receiver processing. Per-
formance and robustness analyses are provided.



σ2
t = E{|α|2}KM

∣∣∣∣Aǧ,g (l0, fdL
)∣∣∣∣2 (5a)

σ2
n = σ2σ2

d−1K−1 ‖ǧ‖2 (5b)

σ2
i '
M�1

E{|α|2}σ2
dσ

2
d−1

[
K−1∑
k=1

∣∣∣∣Aǧ,g (l0, fdL +
k

K

)∣∣∣∣2 +

K−1∑
k=0

∣∣∣∣Aǧ,g (l0 − L, fdL +
k

K

)∣∣∣∣2
]

(5c)

A. Presentation of the procedure
The proposed SIC is described in Alg. 1. It takes the

received signal (2) as an input. Then, at each iteration the
procedure: computes a range-Doppler map following (3);
detects the most powerful contribution in it (| · | denoting the
elementwise modulus); deduce and store the corresponding
range, Doppler and complex amplitude while compensating
for the peak loss evidenced in (5a)1; update the received signal
by removing the estimated contribution from it. The algorithm
keeps running until a predefined stop criterion is met. As an
output, it provides a clean range-Doppler map built syntheti-
cally from the stored parameters. Note that the procedure can
be easily adapted to handle zero-padded versions of (iii) in (3)
(as done in Section III-B2).

Algorithm 1 Proposed CLEAN-based procedure
Input: Received signal r

Initialization: j = 0.
while the stop criterion is not met do

Compute x following (3).
Find (k̂j , m̂j) = argmax(k,m)∈IK×IM [|x|]k+mK .
Get l̂0,j = k̂j and f̂d,j = m̂j/M .
Deduce Ẑj following (2) and compute α̂j =
[x]k̂j+m̂jK

/(
√
KMAǧ,g(l̂0,j , f̂d,j/L)).

Update: r← r− α̂jẐjs and j ← j + 1.
end while
return Synthetic clean range-Doppler map estimate:
[x̂clean]k+mK =

√
KM

∑j−1
i=0 α̂iδk̂i,kδm̂i,m.

In the following simulations and unless otherwise speci-
fied, we assume that target amplitudes αh are deterministic
and that their number H is known in advance, so that the
algorithm stops after H iterations. Also, in what follows,
estimates ̂σ2

n + σ2
i of the self-interference-plus-noise power

are computed from all the range-Doppler bins that contain
non-target contributions only.

B. Performance in a single-target scenario (H = 1)
1) On-grid: Herein we consider a single on-grid target with

given range and Doppler frequency. We plot in Fig. 3 the
normalized mean-squared error (NMSE) of our estimate α̂,
defined as

NMSE(α̂) ,
E{|α− α̂|2}
E{|α|2}

(7)

1but not for the induced self-interference contribution in the cell.

for varying pulse-shapes and expansion factors L/K, as a
function of the theoretical Signal-to-Noise-Ratio (SNRth). The
latter is achieved when the target is located in (l0, fd) = (0, 0)
and therefore does not induce any self-interference, namely [2]

SNRth =
E{|α|2}K2M

σ2σ2
d−1‖ǧ‖2

. (8)

In addition, and to avoid overloading the figure, we plot the
normalized Cramér-Rao lower bound (NCRLB) of α for a
single waveform setting (i.e., CP-pulses with L/K = 12/8),
derived from the signal model in the target range-Doppler cell
when neglecting x(i), i.e.,

x = α
√
KMAǧ,g(l0, fd/L) + x(n) (9)

where x(n) ∼ CN (0, σ2
n). We observe that the NCRLB and the

corresponding NMSE match in between two values of SNRth,
roughly 15 and 30 dB:
• below, the target peak in the range-Doppler map is

insufficient to be reliably detected and estimated by the
procedure;

• beyond, the target is very reflective and thus detected but
x(i) is no longer negligible in the target bin (9). As SNRth
keeps growing, the NMSE even tends to a constant value.

These interval values actually depend on the target parameters
(i.e., the radar scene) together with the waveform parameters,
as hinted by Fig. 3.

2) Robustness to off-grid: Now suppose that the target is
not perfectly located in its range gate, i.e., l0 = bl0c + εl0
with b·c the floor function and εl0 ∈ [0, 1). Compared to (9),
the target term incurs a straddle loss that may degrade our
estimate of α and therefore the performance of the procedure.
In Fig. 4 we quantify these degradations in terms of NMSE
of α̂ and residual self-interference-plus-noise power measured
in the updated range-Doppler map x, respectively, both as a
function of the misalignment εl0 . It is seen that zeropadding
the initial range-Doppler map (in the range dimension) by a
factor zpK = 4 or zpK = 8 leads to greatly lowered NMSE
and more importantly, to an efficient self-interference removal.
Similar conclusions are drawn regarding the Doppler dimen-
sion. The procedure is thus quite robust to off-grid provided
that a sufficient zeropadding is performed beforehand, namely
in stage (iii) of the radar receiver (3).

C. Performance in a multitarget scenario (H > 1)

Herein we consider the radar scene described in Table I
containing H = 3 statistically independent on-grid targets and



0 10 20 30 40 50 60 70

−40

−20

0

20

SNRth [dB]

N
M

SE
(α̂

)
[d

B
]

CP L/K = 12/8 TFL L/K = 12/8

CP L/K = 9/8 TFL L/K = 9/8

Fig. 3. NMSE of α̂ obtained with our CLEAN-inspired procedure as a
function of the theoretical SNR. Monte-Carlo simulation on 3,000 runs. QPSK
symbols such that σ2

d−1 = 1, K = 64, M = 32, σ2 = 1, varying L/K and
pulses, target located in (l0, fd/L) = (35, 1/(4K)) and E{|α|2} defined
by (8). Circle markers represent the NCRLB of α in model (9) for CP-pulses
with L/K = 12/8.

0 0.1 0.2 0.3 0.4 0.5
−30

−20

−10

0

10

ε`0

N
M

SE
(α̂

)
[d

B
]

zpK = 1 zpK = 2 zpK = 4 zpK = 8

(a) NMSE of α̂ (j = 0 in Alg. 1)

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

2

ε`0

̂
σ
2 n
+
σ
2 i

[d
B

]

zpK = 1 zpK = 2 zpK = 4 zpK = 8

(b) Residual self-interference-plus-noise power (j = 1 in Alg. 1)
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QPSK symbols such that σ2

d−1 = 1, K = 64, M = 32, L/K = 12/8, TFL-
pulses, σ2 = 1. SNRth = 35 dB, the target is located in (l0, fd/L) = (35+
εl0 , 1/(4K)) with εl0 ∈ [0, 0.5] and is correctly detected by the procedure.

Initial self-interference-plus-noise power (j = 0 in Alg. 1): ̂σ2
n + σ2

i = 3.02
dB.

displayed in the range-Doppler domain in Fig. 5a when using
CP-pulses with L/K = 12/8. In this scenario, the weakest
target (i.e., index h = 2) can hardly be distinguished from
the self-interference-plus-noise level, mainly produced by the
most powerful target h = 0 (namely, the one from Fig. 3).
Alg. 1 is thus performed on the received signal r, and results
after 2 iterations are illustrated in the rest of Fig. 5. We notice
that target h = 2 can then be easily detected and removed by
the algorithm. This observation is confirmed in Fig. 6 (orange
dashdotted curve) where the NMSE of x̂clean

NMSE(x̂clean) =
E{‖xclean − x̂clean‖2}

E{‖xclean‖2}
(10)

indeed reaches a minimum at iteration j = 3, xclean being the
clairvoyant clean range-Doppler map

[xclean]k+mK =
√
KM

H−1∑
h=0

αhδ(l0,h),kδ(fd,hM),m.

While keeping the same radar scene, we now assume that
the operator of the RadCom system uses another set of
pulse-shapes and expansion factor, namely TFL-pulses with
L/K = 9/8. The corresponding NMSE of x̂clean is depicted
in Fig. 6 (magenta solid line). It is seen that having a higher
self-interference power (as hinted by Fig. 3) might require
more iterations of the SIC to achieve the NMSE minimum
than the actual number of targets in the radar scene. In this
specific setting, the procedure indeed often requires 2 iterations
to completely extract the signature of target h = 0. However,
this additional iteration is not necessarily detrimental given the
low-computational complexity of the procedure. Plus, if it is to
occur after having detected targets h = 1 and h = 2 (i.e., once
the procedure’s purpose is already achieved) it may even be
avoided with an appropriate stop criterion. The extra-cost may
even be worth it here since it benefits to spectral efficiency.

TABLE I
TARGETS PARAMETERS FOR FIG. 6

h 0 1 2

l0,h 35 10 20

fd,h/L 1/(4K) 1/(12K) 1/(6K)

SNRth,h (dB) 50 22 17

IV. CONCLUSION

In this paper, we implemented a CLEAN-based SIC proce-
dure to iteratively remove the self-interference induced by tar-
gets throughout a previously described WCP-OFDM symbol-
based radar processing. Particularly, we show that the proposed
method may be an efficient way to overcome masking issues
due to self-interference contributions, while keeping a low-
complexity radar receiver. However, to that end, an appropriate
stop criterion still needs to be defined to ensure an optimal
estimation of the interference-free range-Doppler map while
avoiding error propagation.
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Fig. 5. Illustration of our CLEAN-based procedure on a range-Doppler
map obtained from the radar scene in Table I. QPSK symbols such that
σ2
d−1 = 1, CP-pulses, K = 64, M = 32, L/K = 12/8, σ2 = 1.

Circles represent true targets locations. Detected peak (l̂0,j , f̂d,j , |x̂j |2) with
x̂j the measured amplitude in (l̂0,j , f̂d,j): (a) (35, 0.375, 48.84 dB); (b)
(10, 0.125, 21.02 dB) and (c) (20, 0.25, 14.58 dB).
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