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Abstract—In this paper, a gradient descent method is used
to build radar waveform sequences with good autocorrelation
and/or cross-correlation. The approach we propose is based
on the energy, a function that measures the sidelobe level of
a sequence, and its gradient. Then, we extend and apply it
to the optimization of the coherent MIMO (Multiple Input
Multiple Output) ambiguity function. We suggest to look for the
transmitted signals that reduce the autocorrelation sidelobe level
of the signal transmitted by the whole antenna. The obtained
results, highlighted by the low sidelobe level of the ambiguity
function, seem promising.

Index Terms—Waveform design – Aperiodic autocorrelation –
Cross-correlation – Gradient Descent – Coherent MIMO Radar
– Ambiguity Function

I. INTRODUCTION

Multiple Input Multiple Output (MIMO) radar is an emerg-
ing concept that has been inspired from wireless communi-
cations. Transmit elements of a MIMO radar send different
signals which can be separated at the receiving end, providing
waveform diversity. Two configurations of MIMO radars are
usually considered, denoted as statistical and coherent. In a
statistical MIMO radar, antenna elements are widely separated,
hence improving detection performance [1]. On the other hand,
all the elements of a coherent (or co-located) MIMO radar are
closely spaced, providing a better spatial resolution [2]. This
paper focuses on the latter, and especially on waveform design.

MIMO radar waveforms can be classified into different
categories [3]: CDMA (Code Division Multiple Access –
phase code per antenna), FDMA (Frequency-Division Multiple
Access – one frequency per antenna), TDMA (Time Division
Multiple Access – transmission in time), etc. However, all
these signals suffer from a range/angle coupling [4]. CDMA
waveforms seem to present the best coupling, at the cost of
high range sidelobe levels.

In general, considered phase codes are sequences providing
autocorrelation and cross-correlation with low sidelobes, be-
cause a signal with a "good" autocorrelation property may be
distinguished from a time-shifted version of itself, while the
cross-correlation property enables a signal to be set apart from
another signal. Some known families of sequences have been
reviewed in [5].

Searching for those sequences can be seen as an opti-
mization problem, for instance the minimization of some
energy criteria. The energy characterizes, for instance, the
autocorrelation sidelobe level of a sequence, like the Merit

Factor introduced by Golay [6]. A branch and bound approach
[7] or an evolutionary strategy [8] can be used to solve this
optimization problem. However, these algorithms become very
expensive and ineffective with long sequences.

A recent article [9] gives a solution to the particular
problem of the autocorrelation sidelobe minimization based
on a steepest descent algorithm based on the gradient of the
sidelobe energy. This method will be extended to the coherent
MIMO radar case. Instead of optimizing on the original signals
transmitted by the antennas, the optimization will rather be
done on the signal transmitted in different directions. These
directions are obtained by linear combinations of the signals
transmitted by the antennas.

This paper is organized as follows. In Section II, a gradient
descent is used in order to improve the autocorrelation of
a sequence, the cross-correlation of a couple of sequences,
and then both simultaneously. Section III tries to reduce the
sidelobes of the coherent MIMO ambiguity function, again
with a gradient descent.

II. OPTIMIZATION OF THE AUTOCORRELATION AND THE
CROSS-CORRELATION OF A SIGNAL

This section introduces a set of polyphase sequences with
small autocorrelations and cross-correlations. At first, each
property is studied separately for one sequence for the auto-
correlation, and a couple of sequences for the cross-correlation
case; obtained results are then combined.

The procedure employed here is inspired from a recent
article (Baden et al. [9]). It is based on a real function,
called "energy", that quantifies the energy present in the
autocorrelation sidelobes of a given sequence. It may be
enough to hunt for minima of the energy function to obtain
sequences with a low sidelobe level. Hence, this search is
equivalent to an optimization problem.

As said in the introduction, stochastic methods are usually
helpful. Their convergence to a global minimum is almost
certain theoretically. In practice though, global convergence
cannot be established, and furthermore, the longer the se-
quence is, the slower the algorithms are.

Here, a gradient descent, also known as a steep descent,
will be used. The steep descent is a fast algorithm for finding
a local minimum of a function. It starts with an initial guess
of the solution, and as many times as needed, moves it
towards the opposite direction of the gradient at that point. One
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As the radiated signal s(θc) is basically a linear combination
of the transmitted signals sm, it is not absurd to consider
the partial derivatives of the energy w.r.t. the real part (and
the imaginary part) of sm. Before that, we derive the cross-
correlation x:
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Set γ to γl = wl(xlx∗l )
p−1. Gathering all the previous

results gives:
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Let αu(v) the phase angle of the element suv . According to
the chain rule, the partial derivative of Ec with respect to that

phase can be written as:

∂Ec
∂αu(v)

= <(suv )
∂Ec
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−=(suv )

∂Ec
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m
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]
(13)

+ =
[
suv ((γ ◦ x)e−jϕm,u ∗ (sm)r)N+1−v

])
.

C. Application and Results

In this part, we will search for transmitted sequences sm in
such a way that the aperiodic correlation of the signal produced
by the array s(θc) is optimized. Since that signal s(θc) depends
on the direction θc (cf. equation (12)), and since we want
good sidelobes in any direction, we have to examine another
formulation of the minimization problem that considers several
directions Θ:

min
s0,...,sNE−1

E(s) :=
∑
θ∈Θ

Ec(s(θ), s(θ)) . (14)

As ∇E can easily be deduced from eq. (13), a steepest descent
is employed to find a transmitting set {s0, . . . , sNE−1} (which
is a local minima of E).

Figures 4 to 7 present some results of a simulated radar
antenna with four transmitters (NE = 4) and four receivers.
Phase codes are of length N = 256, and four directions are
inspected. Two methods are compared:

1) the proposed method, i.e. an optimization of the trans-
mitted waveforms in order to improve the autocorrela-
tion property of the radiated signal

2) the usual method, i.e. an optimization of the autocorre-
lation and the cross-correlation of the transmitting set.
This set is obtained with the procedure described in
Section II.

An improvement of the autocorrelation of the radiated signal
in a direction of interest is shown in Figure 4. A gain of
10 dB can be noticed compared to a random initialization
(represented by the red dotted line), whereas the second
method does not improve this autocorrelation. In the three
other directions of interest, sidelobe levels are quite similar.
Moreover, Figure 5 shows that it is not needed to take into
account the orthogonality of the transmitted sequences in order
to improve the autocorrelation of the radiated signal in a
direction.

Let us recall the problematic described in the introduction.
The aim of this article is to search for phase-coded wave-
forms so that the radar has a good range/angle resolution,
and low sidelobe levels (in range and in angle). The so-
called ambiguity function can provide directly a measure of
these criteria. Figure 6 and Figure 7 represent the ambiguity
function obtained for the proposed method and the usual one
respectively. We have made the assumption that there is no
Doppler effect during a pulse. Results are promising, as the
sidelobe level is around -28 dB. They are slightly better than
what we get with a Gold code, [4] or with the usual method.
Notice that the range cut at θ = 0 is equivalent to the
autocorrelation of the signal diffused by the whole antenna
(cf. Figure 4).




