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Abstract—Circular markers are planar markers which offer
great performances for detection and pose estimation. For an
uncalibrated camera with an unknown focal length, at least the
images of at least two coplanar circles are generally required
to recover their poses. Unfortunately, detecting more than one
ellipse in the image must be tricky and time-consuming, especially
regarding concentric circles. On the other hand, when the camera
is calibrated, one circle suffices but the solution is twofold and
can hardly be disambiguated. Our contribution is to put beyond
this limit by dealing with the uncalibrated case of a camera
seeing one circle and discussing how to remove the ambiguity.
We propose a new problem formulation that enables to show
how to detect geometric configurations in which the ambiguity
can be removed. Furthermore, we introduce the notion of default
camera intrinsics and show, using intensive empirical works, the
surprising observation that very approximate calibration can lead
to accurate circle pose estimation.

I. INTRODUCTION

The problem of estimating the pose of a camera (or dually

of a 3D object) from a set of 2D projections in a single

view has been widely studied in the computer vision literature

for a long time [11]. The “minimal” problem i.e., which

requires the minimal amount of information necessary, is

known as the perspective-3-point-problem (P3P) and consists

in recovering the pose of a calibrated camera from three 3D-

2D point correspondences. Many solutions are available for

the general case when more information is available. When the

environment in the scene can be controlled, artificial features

with known positions are very often deployed in the scene.

They are used in a wide range of applications, especially when

a reliable reference is needed to, e.g., in cluttered or textureless

environments. The most popular artificial features are probably

coplanar features [4] whose layout in 2D space defines a so-

called planar marker. The mapping between a planar marker

and its image is a 2D projective transformation known as

(world-to-image) homography and can be estimated from at

least four world-to-image correspondences (the most simple

planar marker is a square). Once the camera is calibrated, the

decomposition of the homography matrix allows to recover

the pose of the camera (or dually that of the plane).

Other well-known artificial markers that have been recently

investigated again are those consisting of coplanar circles [1],

[5], [8], [13]. The knowledge of at least two circle images

(without any information on their parameters on the support

plane) allows to compute a world-to-image homography with-

out ambiguity for all the spatial configurations of two circles

except one [5].

Given a single circle image, it is well-known that a twofold

solution exists for the normal to the support plane (and so for

the pose) only if the camera is calibrated [13]. In this work,

our contribution is to put beyond this limit by dealing with the

case of an uncalibrated camera seeing one circle. Actually, our

starting point came from the surprising observation, learned

from empirical works, that very approximate calibration can

lead to accurate circle pose estimation. Our idea is to use de-

fault intrinsics by designing a generic camera model delivering

a default focal length based on off-line calibration of several

smartphone cameras.

Our first contribution is to run extensive experiments that

assess how the inaccuracy of the calibration impacts the quality

of the pose estimation. We found out that exact calibration may

not be required as small variations on the focal length does

not affect the reprojection error of other reference coplanar

points especially when the marker is far from the camera. Our

second contribution is to provide a new geometrical framework

to state the pose problem in which the issue of how to remove

the twofold ambiguity can be thoroughly investigated.

We review the related works in section II. Then in sec-

tion III, we remind the problem of recovering the pose from the

projection of a circle before introducing the solution proposed

in section IV. The idea is to introduce a new way of computing

the vanishing line (dual to the plane normal) from one circle

image. Thanks to it, as the general method leads to two

possible solutions, we show how under some assumptions

about the geometric configuration we can recover the correct

one. Then, as we suppose that we work with uncalibrated

images, we explain how we select parameter values to obtain

what we called default camera intrinsic parameters. Finally in

section V, we evaluate our method in the context of augmented

reality.

II. RELATED WORK

A lot of existing works suggest to use a set of features

encoded in a planar pattern to simplify the pose estimation.

Fiala et al. introduced a fiducial system [4] and proposed the

case of a special planar square marker. Recent efficient algo-

rithms allow to detect ellipses precisely and, in consequence,



circles become features worth of interest. The four projective

and affine parameters of the world-to-image homography (the

remaining four define a similarity on the world plane [6, p42])

can be recovered by detecting the images of two special point

of the support plane, known as circular points (e.g., see [6,

p52-53]) which are common to all circles. Gurdjos et al. [5]

relied on the notion of pencil of circle images to formulate

the problem of detecting the images of the circular points as a

problem of intersection of lines, obtained from the degenerate

members of the pencil. Kim et al. [8] proposed algebraic and

geometric solutions in the case of concentric circles. Calvet

et al. [2] described a whole fiducial system using concentric

circles which allows to accurately detect the position of the

image of the circles common center under highly challenging

conditions. In a same vein, Huang et al. [7] proposed to use

the common self-polar triangle of concentric circles.

When using circular markers it is also possible to simplify

the model of the camera to only depend on a sole focal length

parameter. Chen et al. [3] autocalibrate the focal length using

two or more coplanar circles. The problem to solve contains

two parameters: one ellipse and the focal length. Then, two

correspondences between a circle and an ellipse are necessary

to estimate the focal length. Based on the same method,

Bergamasco et al. [1] designed a marker composed of small

circles spread on the edge of two or more concentric rings.

The image of each circle is used with a vote system to estimate

the focal length and the image of the external rings.

Two circles on a planar marker (except if one encloses

the other) is the minimum to fully estimate the homography

without any other assumptions. However in some applications

e.g., dealing with concentric circles, detecting the images of

two or more circles can be tricky. First because the lack of

points induces an inaccurate estimation and, secondly because

it is time consuming. When the camera has already been

calibrated, it is possible to compute the homography from one

circle image with two ambiguities. Pagani et al. [9] introduced

a method quite similar to the solution proposed by Chen et

al. [3], where the ambiguity is solved by minimizing a distance

between the image of the marker rectified and the expected

pattern on all possible poses.

III. POSE ESTIMATION FROM THE IMAGE OF ONE CIRCLE

We remind here some geometrical background on the prob-

lem of pose estimation from the image of a single circle.

We consider an Euclidean projective camera, represented by

a 3 × 4-matrix P ∼ KR
[

I | T
]

, where the rotation matrix

R ∈ SO(3)1 and the translation vector T ∈ R
3 describe

the pose of the camera, i.e., respectively its orientation and

position in the object 3D frame. The upper triangular order-3
matrix K is the calibration matrix as defined in [6, page 157].

Assume that P is a plane with equation Z = 0 in the

world frame. The pose of P in the camera frame is given

by the vector [N = r3,−d]⊤, where r3, the third column of

R, defines the unit norm N of P , and d is the orthogonal

1SO(3) refers to the 3D rotation group.

distance to P . The restriction to P of the projection mapping

is an homography whose matrix writes H ∼ KR
[

e1 | e2 | T
]

,

where e1 and e2 are the first two columns of I. In the projective

plane, any conic can be represented in 2D homogeneous coor-

dinates by a real symmetric order-3 matrix. Under perspective

projection, any circle of P , assuming its quasi-affine invariance

[6, p515] i.e., that all its points lie in front of the camera,

is mapped under the homography H to an ellipse by the

projection equation C = H−⊤QH⊤, where Q ∈ Sym
3

2 is the

circle matrix and C ∈ Sym
3

is the ellipse matrix.

For reasons that will become clearer later, we want to

parameterize the homography H, from only the knowledge of

the circle image C and the vanishing line v∞ of P . Let SP
be a similarity on the world plane that puts the circle Q into

a unit circle centered at the origin and SI be a similarity on

the image plane P that puts C into a canonical diagonal form

C′ = diag(C ′
11
, C ′

22
, C ′

33
). Using an approach similar to [2]

with the notation [u, v, 1]⊤ ∼ C−1v∞, it can be shown that,

under the assumption of a camera with square pixels, we have

H ∼ S
−1

I MSP where

M =





−1 C ′
22
uv −u

0 −C ′
11
u2 + 1 −v

−C ′
11
u C ′

22
v 1









r 0 0
0 −1 0
0 0 s





with r = (−
C ′

22

C ′
11

(C ′
11
u2 + C ′

22
v2 + C ′

33
))1/2 (1)

and s =
(

−C ′
22
(1− C ′

11
u2)

)1/2

Note that the matrices SP and SI can be completely deter-

mined by the circle image C and M, except for an unknown

2D rotation around the circle centre on P . Recovering this

rotation is not the goal of this paper. Some simple solution

like placing a visible mark on the edge of the marker works

generally well in many cases.

Our main task will be to recover the vanishing line v∞

of the plane, as explained in the sequel. Note that the vector

xc = [u, v, 1]⊤ defined above is that of the image of the circle

centre which is the pole of v∞ w.r.t. the dual ellipse of C.

IV. SUPPORT PLANE’S VANISHING LINE ESTIMATION

We warn the reader that parts written in italics in this section

requires a proof that is not provided due to lack of space.

However all proofs will appear in an extended paper version.

A. A twofold solution in the calibrated case

In the case of calibrated image, an equivalent problem of

computing the pose of its support plane P is that of recovering

the vanishing line of P . Let Q be the matrix of a circle on

a plane P , and ψ = H⊤ωH be that of the back-projection

onto P of the image of the absolute conic [6, p. 81], where

ω = K−⊤K−1. It is easy to show that ψ represents also a

virtual3 circle (as does ω).

2Sym
3

refers to the space of order-3 real symmetric matrices.
3Virtual conics have positive definite matrices, so, no real points on them.



Let {αi}i=1..3 denotes the set of generalized eigenvalues

of the matrix-pair (Q,ψ), i.e., the three roots of the char-

acteristic equation det(Q − αψ) = 0. The set of matrices

{Q− αψ}α∈R∪{∞} defines a conic pencil [5] which includes

three degenerate conics with matrices Di = Q − αiψ.

These rank-2 matrices represent line-pairs and have the form

Di = lia(l
i
b)

⊤ + lib(l
i
a)

⊤, where lia and lib are vectors of

these lines. Such line-pair matrix Di can be easily decomposed

and vectors of its lines recovered albeit it is impossible to

distinguish lia from lib. It can be shown that the projective

signatures4 of the three degenerate members always are (1, 1),
(2, 0) and (0, 2). Assume, without loss of generality, that the

degenerate conic D2 is the one with signature (1, 1). A first

key result is that D2 is a pair of two distinct real lines, one

of which being the line at infinity l∞ = [0, 0, 1]⊤; the other

one being denoted by lo. The other two degenerate conics D1

and D3 —with signatures (2, 0) and (0, 2)— are pairs of two

conjugate complex lines. Consequently, the three (so-called)

base points xi, where lines in a pair meet, are real. Moreover,

their vectors are the generalized eigenvectors of (Q,ψ) and

satisfy Dixi = 0.

Similarly, in the image plane, if C denotes the image of

the circle Q, the set of matrices {C− βω}β∈R∪{∞} defines

also a conic pencil whose members are the images of the

pencil {Q− αψ}α∈R∪{∞}. Hence, the line-pair in {C− βω}
that includes the image of l∞ i.e., the vanishing line v∞, can

always be identified since it is the only degenerate member

with signature (1, 1). Nevertheless, at this step, it is impossible

to distinguish v∞ from the other line vo, image of lo.

Assume that all matrices Q, C, ψ and ω are normalized

to have a unit determinant. It is known that, in this case,

parameters in pencils satisfy α = β, so, the generalized

eigenvalues of the matrix-pair (Q,ψ) are exactly the same

as those of (C,ω). It can be shown that these eigenvalues

can always be sorted such that λ1 ≥ λ2 ≥ λ3, where

D2 = C− λ2ω is the (sole) degenerate conic with signature

(1, 1). Remind that D2 is the conic which contains v∞ plus

vo, which are two a priori indistinguishable lines denoted by

v1,2. Because the matrix D2 is real, symmetric, rank-2 and

order-3, its generalized eigen-decomposition using the base

point vectors x1,x3 ∈ R
3 writes as following:

D2 =
[

x1

‖x1‖
x3

‖x3‖

]

[

λ1 − λ2 0
0 λ3 − λ2

]





x
⊤

1

‖x1‖
x
⊤

3

‖x3‖



 (2)

from which it can be shown that

v1,2 =
√

λ1 − λ2

x1

‖x1‖
±
√

λ2 − λ3

x3

‖x3‖
(3)

The two solutions to the normal to P are given by

N1,2 = K⊤v1,2 in the camera frame, and (3) explains the

known doublefold ambiguity in the plane pose [3].

4The signature of a conic is σ(C) = (max(p, n),min(p, n)), where p and
n count the positive and negative eigenvalues of its (real) matrix C. It is left
unchanged by projective transformations.

B. About removing the twofold ambiguity

We have seen that there are two solutions for the vanishing

line (or the plane normal in the calibrated case) which are in

general not distinguishable. In this section, we discuss whether

known configurations allows the ambiguity to be removed.

We extend the new theoretical framework proposed in §IV-A

that involves the point q (on the support plane P) where the

optical axis cuts P plus the line L obtained by intersecting P
and the principal plane5 of the camera (L is orthogonal to the

orthogonal projection of the optical axis onto P). Now, let L′

denote the line parallel to L through the circle centre. Within

this geometrical framework, we can claim, for instance, that

a sufficient condition for the ambiguity to be solved is given

by the two following conditions:

(i) q and the orthogonal projection on P of the camera

centre lie on the same side of L′ ;

(ii) the point, intersection of the orthogonal projection on P
of the optical axis and L′, lies outside the circle centered

at q with same radius as Q.

Figure 1 illustrates this important result. We are convinced

that future investigations using this framework can help to

reveal more configurations in which the ambiguity can be

removed. We are now giving more geometrical insights in-

dciating how to determine such configurations, via three

propositions. The first is the second key result which is the

building brick of our approach:

Proposition 1 (second key result) The line lo in D2 sepa-

rates the two base points x1 and x3. Hence, denoting by x̄

the normalized vector x̄ = x/x3, the following inequalities

hold (l⊤∞x̄1)(l
⊤
∞x̄3) > 0 and (lo

⊤
x̄1)(lo

⊤
x̄3) < 0.

These two inequalities hold under any affine transformation

but not under a general projective transformation.

How the conditions in proposition 1 can be helpful in

removing the plane pose ambiguity? Can we state a corollary

saying that, in the image plane, under some known geometric

configuration, we know which the line vo in C − λ2ω,

image of lo, always separates points z1 and z3, images of

base points x1 and x3, while the other does not? That is,

if we a priori know sign(v⊤
o z̄1)(v

⊤
o z̄3) can we guarantee

that (v⊤
o z̄1)(v

⊤
o z̄3) = −(v⊤

∞z̄1)(v
⊤
∞z̄3)? If yes, since the

vectors of these base points are the generalized eigenvectors

of (C,ω) associated to parameters λj , j ∈ {1, 3} and can be

straightforwardly computed, we could remove the ambiguity

by choosing as vanishing line v∞ the “correct” line in C−λ2ω.

We claim the following proposition for this corollary to hold,

whose (omitted) proof directly follows from the properties of

quasi-affineness w.r.t. the base points [6].

Proposition 2 When x1 and x3 lie either both in front or

both behind the camera i.e., on the same half-plane bounded

by L , we have (v⊤
o z̄1)(v

⊤
o z̄3) < 0 and (v⊤

∞z̄1)(v
⊤
∞z̄3) > 0.

Otherwise (v⊤
o z̄1)(v

⊤
o z̄3) > 0 and (v⊤

∞z̄1)(v
⊤
∞z̄3) < 0.

5The 3D plane through the camera centre and parallel to the image plane.



Now let us investigate a formal condition saying when x1

and x3 lie on the same half-plane bounded by L. Consider

an Euclidean representation of the projective world in which

the origin is the point q at which the optical axis cuts the

plane P . Let the X-axis be parallel to the line L and the Y -

axis is the orthogonal projection of the optical axis onto P .

Consequently, the Z-axis is directed by the normal to P , as

shown in figure 1. Let C = [0,− cos θ, sin θ]⊤, θ ∈ [0, π
2
[,

be the 3D cartesian coordinates of the camera centre, where

π − θ is the angle between the Y -axis and the optical axis

in the Y Z-plane (note that we choose the scale such that the

camera centre is at distance 1 from the origin). Therefore the

direction of the optical axis is given by −C.

Fig. 1: Proposed parametrization for detecting the ambiguity.

In the 2D representation of the projective plane P (i.e., of

the XZ-plane), let the circle have centre (xc, yc) and radius

R. Let d = [0, 1, cos θ]⊤ is the vector of line L. It can be

shown, using a symbolic software like MAPLE
6, that:

Proposition 3 Base points x1 and x3 lie, in the world plane,

on the same side of L if and only if

cosθ(y2c−R2)(yc+cosθ)+yccosθ(1+x2

c)+x2

c+y2c ≤ 0 (4)

Since cosθ > 0, if yc > 0 and y2c − R2 > 0 then x1 and

x3 lie on opposite sides of L. The former inequality says

that q must lie on the same side of L′, the line parallel

to L through the circle centre, as the orthogonal projection

of the camera centre onto P . The latter inequality says the

point (0, yc) must lie outside the circle centered at q(0, 0)
with same radius R as Q. As we are in the “otherwise” part

of proposition 2, the vanishing line is given by the line that

does not separate the image of the base points. Since (0, yc)
represents the intersection of the orthogonal projection on P
of the optical axis and L′, this is the result announced at the

beginning of this section.

C. Defining default intrinsics for the camera

In the previous sections we have seen that, providing that

the camera intrinsics are known, there is a twofold solution

for the vanishing line. Recovering accurate intrinsics of a

camera requires generally a calibration procedure. In many

applications, the model of the camera can be simplified to

reduce the number of parameters. A very common model is

6https://fr.maplesoft.com/

that of a camera with square pixels and principal point at

the centre of the image plane. Consequently, the focal length

is the sole unknown, e.g., for self-calibration purposes [10].

The focal length value is sometimes available through EXIF

data, stored in digital images or video files, through camera

hardware on top level API (Android, iOS) or through data

provided by manufacturer on websites. Focal length, denoted

f , in pixels (what we need) can be obtained from this data if

we find the field of view in angle or the focal length equivalent

in 35mm. However the focal length is very often given in

millimetre without the sensor size required to obtain the focal

length in pixels.

We consider here the case where it is impossible to calibrate

the camera by none of the methods mentioned above. So

how to do? We propose to design a generic camera model

delivering default intrinsics (i.e., focal length) and based on

off-line calibration of several smartphone cameras. If a camera

can generally take any focal length value, the optics and the

sensor of smartphones are constrained by the device size and

the desired field of view. Why doing that? We found out that

surprisingly enough, that it is not necessary to have very accu-

rate intrinsics to estimate the vanishing line given the image of

a single circle. In fact, as shown in the experimental section V,

this estimation is very robust to intrinsics fluctuation.

After calibrating a dozen of camera devices and obtaining

data from manufacturers of twenty more smartphones, we

estimate a gaussian model of the focal length equivalent

in 35mm, as shown in figure 2. In our case we obtained
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Fig. 2: Focal calibration of different camera parameters

experimentally an average focal length of f35 = 29.95mm
with a variance of σ2

f35 = 11.86. More precisely, we estimate

a gaussian function (in blue) based of the focal values collected

or estimated (in red) from different smartphone device brands.

V. EXPERIMENTAL RESULTS

A. Test Description

The goal of the test presented in this section is to evaluate

the proposed method to estimate the pose of a camera. We

performed those tests on synthetic and real images in the

conditions illustrated in figure 3. In order to limit the poses

used in experiments, we made some hypotheses. First, we

suppose that the camera focus on the centre of the marker,



Fig. 3: Setup: reference chessboard and pose annotation

i.e. the principal axis of the camera passes through the centre

of the marker, see figure 3. Then, the angle γ has been set to

zero. In deed, we can simulate any angle by rotating the image

using the assumption that the principal point is centred on the

image and that the principal axis is orthogonal to the image

plane. Finally, the angle β has been fixed to zero as estimating

the 2D rotation around the plane normal is out of the scope

of this article. The remaining variables whose variations are

studied in our test are the angle α and the distance r.

We know that introducing generic camera parameter, as

proposed in section IV-C, should have a negative impact on

the accuracy of the pose estimation. Consequently, one of the

objectives of this experiment is to evaluate the sensitivity of

the proposed method to inaccurate camera focal parameter.

The observation of the distribution of focal length of various

smartphone camera, see figure 2, reveals that all 35mm focal

equivalent are included in [−30%,+30%] of the average value.

So, five different values that span this range are used in

the experiment: {0.7, 0.85, 1.0, 1.15, 1.3}. In order to generate

synthetic images, we have simulated a synthetic camera of

focal αx = 1280 and resolution of 1280 × 720 pixels. To

obtain real images, we have used the camera of a smartphone

which have been calibrated with openCV library7. In both

cases, we suppose that ellipses have been firstly detected in the

images, i.e. contour points are first detected and then ellipses

are estimated [12]. We try to evaluate the impact of errors of

this estimation to the quality of the results. In consequences,

in our synthetic tests, we have also simulated noises on the

detections of the ellipses, i.e. errors on the pixels that belong to

the ellipse. More precisely, edge points of the ellipse have been

translated with a zero mean gaussian variance of σx = 1.0.

Finally, we evaluate the quality of the results obtained by

using three different measurements relative to the pose and the

reprojection accuracy:

a) Error on the normal of the plane relative to the camera;

b) Error on the position of the marker;

c) Error of reprojection of 3D points close to the marker.

Each curve illustrates the results obtained by applying a mod-

ifier on focal length used for pose estimation. The resulting

errors are displayed as function of the distance r in the interval

[15 × D, 50 × D] where D is the diameter of the marker.

This interval is related to the distances used for being able

to detect and to recognize a marker for an augmented reality

7https://opencv.org/

application, i.e. the distance where the marker occupies, at

least 80 pixels. We also show results for three different angle

values, α ∈ {15, 30, 45}, displayed in three sub-figures.

B. Analysis of the results

Results on synthetic images are presented in figure 4. In 4a,

we show the error on the estimation of the orientation for

the pose. We can notice that as the distance of the marker

to the camera increases, the error on pose orientation also

increases. This relation is even more remarkable when the

angle is the lowest between the marker plane and the camera,

i.e. the graph on the left. In 4b, we can see that in the calibrated

case the accuracy in position stays low and does not depend

on the distance to the camera and the angles between the

marker plane and the camera. In the uncalibrated cases, as

expected the detection of the ellipses becomes less accurate

when the distance increases and, consequently, the quality

of the estimation of the marker position is also affected. In

fact, the error in position increases linearly when the distance

increases. This observation is quite intuitive. In deed observing

a marker with a zoom or taking its image closer leads to very

similar shape of the marker. The error on the reprojection of

3D points, presented in 4c, illustrates that, with a focal length

well estimated, the higher the distance, the higher the errors.

Whereas, when the focal length is not well estimated, the

higher the distance, the lower the error and, more important,

this error is quite near the error obtained when the focal length

is correctly estimated. It means that using generic parameter is

not affecting the quality of the reprojection in a context where

the marker is far from the camera.

The figure 5 allows us to present similar conclusions on

real images. The 3D point reprojection error is presented. The

error in calibrated case slightly increases with the distance

as observed in figure 4a. When the marker is close to the

camera, the error of reprojection when the camera is not

correctly calibrated is high but it drastically decreases when

the distance to the camera increases, and, finally, this error is

of the same order as that obtained with the calibrated case.

This observation is not really a surprise as the projection of a

distant object loses its perspective with distance. Again, this

result illustrates the interest of using generic camera parameter

in augmented reality.

VI. CONCLUSION

In this paper, we introduced a method to estimate the

pose of a camera from the image of a circular marker in a

calibrated case. If, in general case, two solutions are found,

some assumptions on geometric configuration can help to

distinguish the correct pose. Moreover, we demonstrated the

interest of using default camera parameters, in the context of

augmented reality. In particular, the results presented showed

that, in a case of a distant marker, the 3D reprojection errors

is low enough. Future work would be to use more information

in the marker environment to increase the stability of the

detection of the marker and the pose estimation and to allow

decoding from longer distance.
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(c) Reprojection of 3D points

Fig. 4: Error with synthetic images.

15 20 25 30 35 40 45 50

3
D

 p
o

in
ts

 r
e

p
ro

je
c
ti
o

n
 e

rr
o

r 
(p

ix
e

l)

0

1

2

3

4

5

6

7

8
alpha [11,15] °

distance d (circle diameter unit)

15 20 25 30 35 40 45 50
0

1

2

3

4

5

6

7

8
alpha [32,36] °

15 20 25 30 35 40 45 50
0

1

2

3

4

5

6

7

8
alpha [45,47] °

Fig. 5: Error with ellipses detected on real image: 3D points reprojection.
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