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9.1.2. Feladat és célkitűzés . . . . . . . . . . . . . . . . . . . . . . . 107

9.2. Konklúziók . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

References 115

Appendices 127

A A list of the most important vector similarity measures tested 129

B A list of the most important weighting schemes tested 147

C The used Hungarian datasets 161
C.1 Hungarian TOEFL dataset part 1 . . . . . . . . . . . . . . . . . . . . 161
C.2 Hungarian TOEFL dataset part 2 . . . . . . . . . . . . . . . . . . . . 163
C.3 Hungarian Rubenstein-Goodenough dataset . . . . . . . . . . . . . 165



List of Figures

2.1 The semiotic triangle of symbol, referent and thought/reference
(triangle of meaning), taken from Ogden and Richards (1923). . . . 8

5.1 First-phase performance of vector similarity measures using the
DcBnc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2 First-phase performance of weighting schemes using the DcBnc. . . 50

5.3 First-phase performance of feature transformation techniques us-
ing the DcBnc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.4 First-phase performance of dimensionality reduction techniques
using the DcBnc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.5 First-phase performance of smoothing techniques using the DcBnc. 53

5.6 First-phase performance of vector normalization techniques using
the DcBnc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.7 First-phase performance achieved by filtering and not filtering stop-
words using the DcBnc. . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.8 First-phase performance achieved by setting minimum limits on
word-feature tuple frequencies using the DcBnc. . . . . . . . . . . . 56

5.9 First-phase performance achieved by setting minimum limits on
word-feature tuple weights using the DcBnc. . . . . . . . . . . . . . 57



vi LIST OF FIGURES

5.10 First-phase performance achieved by the setting minimum limits
on feature frequencies using the DcBnc. . . . . . . . . . . . . . . . . 58

5.11 First-phase performance of vector similarity measures using the Mv. 59
5.12 First-phase performance of feature transformation techniques us-

ing the Mv. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.13 First-phase performance of vector normalization techniques using

the Mv. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.14 First-phase performance achieved by setting minimum limits on

word-feature tuple weights using the Mv. . . . . . . . . . . . . . . . 62



List of Tables

5.1 Second-phase performance of a selection of configurations using
the DcBnc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 Performance of a selection of configurations from the heuristic anal-
ysis in the second phase using the Mv. . . . . . . . . . . . . . . . . . 66

5.3 Performance of our best models on the MT dataset. The methods
are grouped into 3 categories based on the type of input data used. 69

5.4 Performance of our best models and some state-of-the-art systems
on the test datasets, evaluated on the test datasets with the help of
the Pearson (P) and Spearman (S) correlation coefficients, as well
as the H scores calculated from them. Please note that the results
on the RG, MC, WC and TO datasets are rather unreliable, so con-
clusions based on them should be taken cautiously, as also noted
in Section 3.2. The results for the models marked with * come from
reproductions of the given model by us, to be able to report all
scores for those models. (In case of the model of Yin and Schütze
(2016) this was also necessary as the results reported in the origi-
nal article were produced using only those words that were in the
vocabulary of their model, and not on the full test datasets.) . . . . 73



viii LIST OF TABLES

5.5 Comparison of our best configurations with state-of-the-art mod-
els, with the original configuration (OSC) proposed by the authors
for those models, using the same input data for the OSCs and for
our best configurations, evaluated on the MT dataset. . . . . . . . . 77

6.1 The top 5 performing setting for each parameter in case of all 3
languages, in descending order of H scores . . . . . . . . . . . . . . 89

6.2 Second-phase performance of a selection of configurations for Span-
ish on the Moldovan dataset. . . . . . . . . . . . . . . . . . . . . . . 90

6.3 Second-phase performance of a selection of configurations for Hun-
garian on the second part of the Hungarian TOEFL dataset. . . . . . 91

6.4 Results on the test datasets, in descending order of H scores . . . . 91



Abbreviations

NLP natural language processing

DSM distributional semantic model

CVBM count-vector-based model

PM predictive model

MF full MEN dataset

MD1, MD2 the two development parts of the MEN dataset

MT the test part of the MEN dataset

RG RubensteinGoodenough-65 dataset

MC MillerCharles-28 dataset

WS WordSim-353 dataset

SL SimLex-999 dataset

TO TOEFL dataset



x Abbreviations

Ew the 26.05.2011 dump of the English Wikipedia

Dc the information extraction method of Dobó and Csirik (2013)

Lc the information extraction method of Levy et al. (2015)

Ec the information extraction method of Salle et al. (2016a)

Mv the semantic vectors of Mikolov et al. (2013b)

Bv the semantic vectors of Baroni et al. (2014)

Pv the semantic vectors of Pennington et al. (2014)

Sv the semantic vectors of Speer et al. (2017)

Ev the semantic vectors of Salle et al. (2018)

P Pearson’s correlation

S Spearman’s correlation

H modified harmonic mean of P and S

A accuracy

BSS basic settings set

CPS a specific combination of parameter settings for a model

configuration a specific combination of parameter settings for a model

model a system with specific configuration using specific input data

XUsingY a specific model with configuration X using Y as input data



Acknowledgements

First of all, I would like to express my deepest gratitude to my wife Marianna
for all her support. She has always been a great motivation to me and has been
by my side at all times. Furthermore, I would like to thank both her and my
daughters Dalma and Hanga for all the love and joy I received from them, and
all the patience they showed towards me throughout pursuing my PhD.

Moreover, I would like to thank my PhD supervisor, János Csirik, for supervis-
ing my work. His advice, as well as his constructive and often critical comments
have always been of great value to me.

Additionally, I am grateful to my master’s supervisor, Stephen Pulman, for
raising my interest in Natural Language Processing through his exciting Compu-
tational Linguistics lectures and for helping me kick-start my research in this field
while doing my MSc in Oxford.

Last but not least, I would like to say thank you to my parents for supporting
me throughout my education.



xii Acknowledgements



Abstract

Measuring the semantic similarity and relatedness of words is important for many
natural language processing tasks. Although distributional semantic models de-
signed for this task have many different parameters, such as vector similarity
measures, weighting schemes and dimensionality reduction techniques, there is
no truly comprehensive study simultaneously evaluating these parameters while
also analysing the differences in the findings for multiple languages.

We would like to address this gap with our systematic study by searching
for the best configuration in the creation and comparison of feature vectors in
distributional semantic models for English, Spanish and Hungarian separately,
and then comparing our findings across these languages.

During our extensive analysis we test a large number of possible settings for
all parameters, with more than a thousand novel variants in case of some of them.
As a result of this we were able to find such configurations that significantly out-
perform conventional configurations and achieve state-of-the-art results.
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CHAPTER 1

Introduction

For many natural language processing (NLP) problems, including information re-

trieval (Hliaoutakis et al., 2006), spelling correction (Budanitsky and Hirst, 2001)

and noun compound interpretation (Dobó and Pulman, 2011) among many oth-

ers, it is crucial to determine the semantic similarity or semantic relatedness of

words. While relatedness takes a wide range of relations between words (includ-

ing similarity) into account, similarity only considers how much the concepts

denoted by the words are truly alike. Thus similarity entices relatedness, but not

vice versa. For example, the words "bicycle" and "motorbike" are similar, as both

denote 2-wheeled vehicles, and thus they are also related. On the other hand, the

words "postman" and "mail" are highly related, as usually mails are delivered by

postmen, and yet they are not similar, as they denote rather different concepts.
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Further, the words "furnace" and "voyage" are neither similar nor related. For

a detailed discussion about meaning, relatedness and similarity please refer to

Section 2.

1.1 Motivation

Most models are based on the distributional hypothesis of meaning (Harris, 1954),

and thus calculate this similarity or relatedness using distributional data extracted

from large corpora. These models can be collectively called as distributional se-

mantic models (DSMs) (Baroni and Lenci, 2010; Baroni et al., 2014). In these mod-

els first possible features are identified, usually in the form of context words,

and then a weight is assigned for each word-feature pair using complex meth-

ods, thus creating feature vectors for all words. The similarity or relatedness of

words are then calculated by comparing their feature vectors using vector sim-

ilarity measures. Although DSMs have many possible parameters, a truly com-

prehensive study of these parameters, also fully considering the dependencies

between them, is still missing and would be needed, as also suggested by Levy

et al. (2015).

Most papers presenting DSMs focus on only one or two aspects of the prob-

lem, and take all the other parameters as granted with some standard setting.

For example, the majority of studies simply use cosine as vector similarity mea-

sure (e.g. Bruni et al., 2013; Baroni et al., 2014; Speer et al., 2017; Salle et al., 2018)

and/or (positive) pointwise mutual information as weighting scheme (e.g. Islam

and Inkpen, 2008; Hill et al., 2014b; Salle et al., 2018) out of convention. And even

in case of the considered parameters, usually only a handful of possible settings
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are tested for. Further, there are also such parameters that are completely ignored

by most studies and have not been truly studied in the past, not even separately

(e.g. smoothing, vector normalization or minimum feature frequency). What’s

more, as these parameters can influence each other greatly, evaluating them sep-

arately, one-by-one, would not even be sufficient, as that would not account for

the interaction between them.

There are a couple of studies that consider several parameters with multiple

possible settings, such as Lapesa and Evert (2014) and Kiela and Clark (2014),

but even these are far from truly comprehensive, and do not fully test for the

interaction between the different parameters. So, although an extensive analy-

sis of the possible parameters and their combinations would be crucial, as also

suggested by (Levy et al., 2015), there has been no research to date that would

have evaluated these truly comprehensively. Moreover, despite the fact that the

best parameter settings for the parameters can differ for different languages, the

vast majority of papers consider DSMs for only one language (mostly English),

or consider multiple languages but without a real comparison of findings across

languages. In this thesis we would like to address these gaps.

1.2 Aims and objectives

DSMs have two distinct phases in general. In the first phase statistical informa-

tion (e.g. raw counts) is extracted from raw data (e.g. a large corpus of raw text),

in the form of statistical distributional data. In the second phase, feature vectors

are created from the extracted information for each word and these vectors are

then compared to each other to calculate the similarity or relatedness of words.
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In our study we take the distributional information extracted in the first phase

as already granted, and present a systematic study simultaneously testing all im-

portant aspects of the creation and comparison of feature vectors in DSMs, also

caring for the interaction between the different parameters.

We have chosen to only study the second phase of the DSMs, as the two phases

are relatively distinct and independent from each other, and testing for every sin-

gle possible combination of the parameter settings in the second phase is already

unfeasible due to the vast number of combinations. So instead of a full analy-

sis we already had to use a heuristic approach. Thus also trying to test for the

parameters of the first phase (e.g. source corpus, context type (window-based

or dependency-based) and context size) simultaneously would be unreasonable

and unmanageable, and is out of scope of this study. Therefore we have omitted

the examination of this phase completely, with one exception to this.

DSMs relying on information extracted from static corpora have two major

categories, based on the type of their first phase: count-vector-based (CVBM)

and predictive models (PM; also called word embeddings) (Baroni et al., 2014).

In order to get a more complete view and due to the huge popularity of predictive

models in recent years, in addition to using information extracted from a corpus

using a count-vector-based model, we have also done some experiments with in-

formation extracted by a predictive model in case of English. Further, later on we

also extended our analysis with a model based on semantic vectors constructed

from a knowledge graph. Our intuition was that there will be a single config-

uration that achieves the best results in case of all types of models. However,

please note that in the latter case only a part of the considered parameters could

be tested for due to the characteristics of such models. That is part of the reason
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why we have focused on count-vector-based DSMs more.

During our research we have identified altogether 10 important parameters

for the second phase of count-vector-based DSMs, such as vector similarity mea-

sures, weighting schemes, feature transformation functions, smoothing and di-

mensionality reduction techniques. However, only 4 of these parameters are

available when predictive or knowledge-graph-based semantic vectors are used

as input, as in case of such input the raw counts are not available any more, the

weighted vectors are already constructed and their dimensions are usually also

reduced.

In the course of our analysis we have simultaneously evaluated each parame-

ter with numerous settings in order to try to find the best possible configuration

(configuration) achieving the highest performance on standard test datasets. We

have done our extensive analysis for English, Spanish and Hungarian separately,

and then we have compared our findings for the different languages.

For some of the tested parameters a large number of possible settings were

tested, more than a thousand in some cases, resulting in trillions of possible com-

binations altogether. While of course also testing the conventionally used param-

eter settings, we also proposed numerous new variants in case of some parame-

ters. Further, we have tested a vast number of novel configurations, with some

of these new configurations considerably outperforming the standard configura-

tions that are conventionally used, and thus achieving state-of-the-art results.

First we have done our analysis for English and evaluated the results exten-

sively (Dobó and Csirik, 2019a). Then we have repeated the same analysis, with

an increased number of settings for several parameters, for English, Spanish and

Hungarian, and compared the findings across the different languages (Dobó and
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Csirik, 2019b).

For reproducibility and transparency, we plan to make our most important

data, code and results publicly available at:

https://github.com/doboandras/dsm-parameter-analysis/.



CHAPTER 2

Background

2.1 Meaning

Even in ancient times some great thinkers started to deal with semantics, that

is the study of meaning, and philosophized about the definition of meaning.

Most notably, Plato’s Theaetetus (Burnyeat et al., 1990) is devoted to the nature of

knowledge. His view, still central to semantics, was that one knows something if

they can account for its details (Kornai, 2019). Later on, Aristotle declared that the

meaning of things is a result of convention (Chernyak, 2017). Further, the semi-

otic triangle of symbol, referent and thought/reference (triangle of meaning) (see

Figure 2.1), published in Ogden and Richards (1923), can be traced back as far as

Aristotle’s De Interpretatione (Ackrill, 1975).
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Figure 2.1. The semiotic triangle of symbol, referent and thought/reference (triangle of
meaning), taken from Ogden and Richards (1923).

The study of the field of semantics also continued through modern times, with

many principles and theories of meaning articulated by noted philosophers and

linguists alike. One of the most important of these, the principle of contextuality,

formulated by Frege (1884), states that the meaning of words cannot be studied

in isolation, rather only in the context of a sentence. Another important concept,

the principle of compositionality (also called Frege’s principle), articulating that

the meaning of a complex expression is defined by its syntactic structure and the

meaning of its parts, is also widely credited to Frege (Kornai, 2019). However,

recently Pelletier (2001) and Janssen (2001) argued that this was not explicitly

stated by Frege himself, and was actually a misinterpretation of Frege’s thoughts

to some extent. Further, this idea actually also appeared in many previous works,

even as early as Plato’s Theaetetus (Burnyeat et al., 1990).

Later on, Saussure (1916) considered language as a system of signs express-

ing ideas, where a sign is a composition of a signifier (significant) and a signified

(signifié), and thought that the relation between these two components is of ar-

bitrary nature. Wundt (1920) believed that mental contents receive their mean-
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ing through their relation to other mental contents , which is usually referred to

as the principle of relational analysis or the context principle. Then, Katz and

Fodor (1963) was convinced that word meaning is made up of a collection of se-

mantic markers and a distinguisher. In this theory the formal part of meaning is

defined by the semantic markers, determining the semantic properties of expres-

sions, while the unsystematic distinguisher disposes of the semantic residue.

There are many different, often contradictory perspectives in semantics. Lan-

gacker (2008) gives a very good overview of some of the possible different views

of meaning. According to the cognitive linguistic position, the meaning of an

expressions is in the mind of the speaker producing and understanding it. In

sharp contrast to this, there are some views that completely ignore the human

mind and body: the platonic view sees language as an abstract, unlocalizable en-

tity, while the objectivist perspective defines the meaning of an expressions with

those conditions under which it is true.

On the other hand, Langacker (2008) himself sees the interactive view as more

reasonable. This perspective again takes humans into account, but views mean-

ing as dynamically changing through discourse and social interaction instead of

being fixed and predetermined in one’s mind. In this respect meaning is not

viewed as localized to one human mind any more, but rather as being distributed

in the speech community, in the context and in the surrounding world.

To take another different view, formal semantics treats natural languages the

same way as formal languages, and tries to define meaning by constructing pre-

cise mathematical models between expressions and real-world entities (Aronoff

and Rees-Miller, 2003).

To look at a more practice-oriented perspective, distributional semantics is
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based on the distributional hypothesis of meaning, which states that words oc-

curring in similar contexts tend to have similar meaning (Harris, 1954). Following

on this idea, Firth (1957) argued that one can get to know the meaning of a word

by recognizing in what contexts it occurs. Most currently used models of mean-

ing are actually based on this hypothesis in practice, and represent words with

vectors based on distributional (contextual) data.

There are also such perspectives that mix practice-oriented views with theo-

retical ones, trying to combine the advantages of both. One such recent approach

worth mentioning is that of the sparse overcomplete word vector representations

proposed by Faruqui et al. (2015). This combines the interpretable features from

the theory of lexical semantics with the (usually dense) word vectors from dis-

tributional models to come up with sparse (and optionally binary) word vectors,

resembling the interpretable features from lexical semantics.

2.2 Semantic similarity and relatedness

After defining a representation of meaning, it is possible to study the relations be-

tween the meanings of words. There are many types of relations that can exist be-

tween the meanings of two words, including hyponymy, hypernymy, synonymy

and antonymy, among many others (Brinton, 2000). Based on these relations, it

is possible to evaluate the strength of the semantic relationship (association) be-

tween words. Semantic relatedness takes any relation between the words into

account (including semantic similarity), thus assessing how close the concepts

denoted by the words are to each other with respect to any type of relation. On

the other hand, semantic similarity is more specific, and is only concerned about



2.2. Semantic similarity and relatedness 11

how much the concepts denoted by the words are truly alike, thus only taking

the subsumption ("is a") relation into account (Harispe et al., 2015; Banjade et al.,

2015). For better understanding of these two notions, a couple of examples were

presented in the first paragraph of Section 1.

Based on the different views and definitions of meaning, one can define sim-

ilarity multiple ways. If the meaning of words is believed to be located in the

mind, then one could represent concepts with points in a mental space. Thus, in

the mental distance approach similarity between words can be defined as some

kind of distance in this mental space (Shepard, 1962). On the other hand, in those

views, where concepts are represented with the help of lists of features, one could

compare the meaning of words by analyzing the commonalities and differences

in the list of features of the words’ concepts (featural approach) (Tversky, 1977).

There are also such approaches that could be applied to any type mental represen-

tation. For example, in the transformational approach any mental representation

can be transformed into another one, and the similarity of words can be based

on the transformational steps needed to transform the concept of one word to

another (Hahn et al., 2003).

On the other hand, as stated before, most current models of meaning used in

practice are based on the distributional hypothesis (Harris, 1954). In these distri-

butional semantic models (DSMs), words are considered similar if they occur in

similar contexts, based on the definition of the hypothesis itself.
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2.3 Distributional semantic models

As determining the semantic similarity and relatedness of words can be impor-

tant for many NLP problems, research into methods automatically determining

this have started decades ago. Therefore there already exist a vast number of

systems for this task, and one can distinguish many different types among them.

The most logical and usual way to categorize these systems is based on the type

and usage method of input data employed in these systems.

Most current DSMs rely solely on linguistic data, as one would expect. They

usually take large corpora as input, from which they extract statistical informa-

tion, but there are also numerous systems making use of other linguistic input.

Static corpora are widely used as input due to their easy usage and wide avail-

ability. As for DSMs usually simple raw text is used as input, so manual anno-

tation of the text is not needed. This makes it is easy to generate or acquire such

input data for a wide range of languages and topics. Hence, DSMs using such

input can usually be easily adapted to different languages and domains. As we

have already discussed before, there are two main categories of methods based

on information extracted from static corpora: count-vector-based and predictive

models.

A typical count-vector-based models is that of Pennington et al. (2014), who

create word vectors by combining global matrix factorization with local con-

text window method, and then training only on nonzero elements in the co-

occurrence matrix. Levy et al. (2015) improve previous count-vector-based mod-

els with ideas taken from predictive models, thus improving their performance

significantly. With this they show that contrary to previous belief, count-vector-
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based models can perform as well as predictive models with the right system

design choices and hyper-parameter optimizations.

Iosif et al. (2016) improve previous state-of-the-art results by presenting a

novel, cognitively motivated type of DSMs, motivated by the dual-processing

cognitive perspective in short-term human memory. Salle et al. (2016a), Salle

et al. (2016b) and Salle et al. (2018) propose a model of distributed word represen-

tations by performing explicit, stochastic factorization of the positive pointwise

mutual information matrix, and then present several enhancements to their orig-

inal system. We have found their final results to be the current state-of-the-art for

calculating semantic relatedness among the count-vector-based models.

One of the most well known examples of predictive models are those of Mikolov

et al. (2013a) and Mikolov et al. (2013b). Both the continuous bag-of-words (CBOW)

and continuous skip-gram (Skip-gram) learning algorithms for these models are

publicly available in the word2vec toolkit1, which has become very popular and

has been used in numerous systems since its publication. For example, Baroni

et al. (2014) perform an extensive comparison of CBOW predictive models with

traditional count-vector-based models based on Collobert and Weston (2008) and

Baroni and Lenci (2010), and found their predictive models to perform consis-

tently better. Similarly, De Deyne et al. (2017) also use the CBOW approach with

settings based on previous work of others to achieve close to state-of-the-art re-

sults.

There are also many models that combine multiple input data into a sin-

gle model, using different techniques for this combination, ranging from sim-

1https://code.google.com/archive/p/word2vec/.
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ple methods to complex machine learning techniques. Yin and Schütze (2016)

propose to learn metaembeddings by combining multiple embedding sets in an

ensemble approach, thus increasing vocabulary coverage and achieving better

performance than by using the embedding sets individually. Similarly to this,

Christopoulou et al. (2018) also propose a mixture of multiple models. However,

they propose to create multiple topic-specific DSMs based on topic-specific sub-

corpora, and then combine the scores of the different models for a word pair into

a single score, to achieve state-of-the-art results.

There are also many models, that beside or instead of corpora, take other

types of linguistic resources as input. Many of these make use of large lexical

databases (e.g the WordNet (Fellbaum, 1998)), knowledge graphs (e.g. the Con-

ceptNet (Speer et al., 2017)), concept lexicons (e.g. the 4lang concept lexicon (Ko-

rnai, 2010)), word association datasets (e.g. the Small World of Words project

word association dataset (De Deyne et al., 2017)), or other similar datasets. These

datasets are usually mostly or completely hand-crafted, often by experts, there-

fore they have very high quality. On the other hand they are rather expensive to

create, have limited coverage and they are costly to update as languages evolve.

Further, methods based on such datasets cannot easily be adapted to other lan-

guages or domains without having similar datasets for the other languages and

domains too.

Recski et al. (2016), for example, beside word embeddings, also make use of

the WordNet and the 4lang concept lexicon, to achieve state-of-the-art word sim-

ilarity results. Lee et al. (2016) and Rothe and Schütze (2017) also combine word

embeddings with the WordNet to achieve rather good results on word related-

ness tasks. De Deyne et al. (2017) use a spreading activation approach and per-
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form a random walk on their Small World of Words project word association

dataset to achieve very good word relatedness results. Finally, (Speer et al., 2017)

combine word embeddings with their ConceptNet knowledge graph to achieve

overall state-of-the-art word relatedness performance.

Other models also take advantage of the vast amount of text present on the

World Wide Web, and exploit these data by issuing web search queries on com-

mercial search engines. These models have the advantage of having access to

huge amount of text, however, have many disadvantages due to numerous limi-

tations and drawbacks posed by commercial search engines (Nakov, 2007; Kilgar-

riff, 2007). For example, Kulkarni and Caragea (2009) create concept clouds for

words, and then compares these concept clouds to determine the relatedness of

words. For both parts they issue web search queries. Yih and Arbor (2012) pro-

pose a combination of heterogeneous vector space models, also including ones

based on web search results. On the other hand, Iosif and Potamianos (2015) pro-

pose the use of web search engines in a rather unconventional way: they issue

targeted web queries to create a corpus, which then can be used as input for their

model.

Further, there are also such models that employ other types of input beside

linguistic data, such as images. For example, Bruni et al. (2013) present a novel

approach by using images to create "visual words", and using these alongside

linguistic input in their model. Lazaridou et al. (2015) also make use of visual in-

formation and combine it with a Skip-gram model. Collell et al. (2017) present a

language-to-vision mapping, and uses the output visual predictions of this map-

ping in their multimodal embeddings model to achieve rather good word relat-

edness performance.
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Although even some early DSMs have experimented with trying multiple set-

tings for one or more parameters, such as vector similarity measures (Jones and

Furnas, 1987), even in most of the current state-of-the-art systems, both those only

using distributional linguistic data and those making use of other types of data

too, as well as either count-vector-based, predictive or knowledge-graph-based

models, actually only one similarity measure (predominantly cosine similarity)

was tested (e.g. Yih and Arbor, 2012; Bruni et al., 2013; Baroni et al., 2014; Hill

et al., 2014a; Pennington et al., 2014; Wieting et al., 2016; Faruqui and Dyer, 2015;

Lazaridou et al., 2015; Banjade et al., 2015; Levy et al., 2015; Iosif et al., 2016; Salle

et al., 2016a; Rothe and Schütze, 2017; Collell et al., 2017; De Deyne et al., 2017;

Speer et al., 2017; Salle et al., 2018; Christopoulou et al., 2018; Vakulenko, 2018).

Further, most count-vector-based DSMs only test for one weighting scheme (e.g.

Islam and Inkpen, 2008; Yih and Arbor, 2012; Bruni et al., 2013; Hill et al., 2014b;

Levy et al., 2015; Iosif et al., 2016; Salle et al., 2016a, 2018), mainly based on point-

wise mutual information (PMI) (Church and Hanks, 1990) in almost all cases.

Moreover, many of the other possible parameters, such as feature transforma-

tion, smoothing, dimensionality reduction or filtering stop words, have been

completely neglected in the vast majority of studies.

Of course there are also a couple of studies that try to examine one or more of

the parameters of DSMs in detail. Some of them focus solely on vector similar-

ity measures, neglecting all other aspects of the systems, with Jones and Furnas

(1987) and Weeds (2003) testing several different settings. On the other hand,

instead of vector similarity measures, Evert (2005) and Pecina (2010) evaluate

different weighting schemes extensively. There are also studies with respect to

vector comparison methods, outside the domain of NLP (either general studies
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or from some other domain) that deal with either vector similarity measures (e.g.

Cha, 2007; Deza and Deza, 2016) or vector weighting schemes (e.g. Zhang et al.,

2011) extensively, without considering any other aspects of vector comparison.

A handful of studies, such as Curran (2004), Lapesa and Evert (2014) and Kiela

and Clark (2014), beside considering multiple vector similarity and weighting

scheme settings, also take other parameters into account, like feature transforma-

tion or dimensionality reduction, considering a few of the possible settings for

them. These more complex studies sometimes also mix the parameters of the in-

formation extraction (first phase of DSMs) with those of the creation and compar-

ison of feature vectors (second phase of DSMs) and thus also include parameters

like source corpus, context type and context size. But even these complex studies

usually neglect many other important aspects of the problem, do not account for

the interaction between the different parameters sufficiently, and/or only test for

a handful of different settings for each parameter. So evaluating all the possible

parameters together and testing their possible combinations extensively would

be crucial, but has not been addressed sufficiently yet.

Moreover, most models were only tested for English and neglect any other

languages despite the fact that DSMs might work differently across multiple lan-

guages. Of course, there are several studies in which results were presented for

languages other than English, including Spanish (Hassan and Mihalcea, 2009;

Moldovan et al., 2015; Camacho-Collados et al., 2017) and Hungarian (Dobó and

Csirik, 2012; Novák and Novák, 2018). However, even those that include multiple

languages usually only present some test results for the different languages sep-

arately, without any real analysis of the differences in the findings between the

languages. Furthermore, for Hungarian there did not previously exist any stan-
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dard evaluation datasets. For example, the models of Novák and Novák (2018)

were evaluated manually by experts. Therefore, to be able to have a reproducible

and standardized evaluation method, we have created Hungarian test datasets

in Dobó and Csirik (2012) and in Dobó and Csirik (2019b), and evaluated our

models on these. For reproducibility and transparency, we have included the

Hungarian test datasets in Appendix C.



CHAPTER 3

Data and evaluation methods

3.1 Data

We focused on the second phase of DSMs, so our analysis took information ex-

tracted from a corpus as granted. As already stated above, we wanted to focus

our attention mostly on count-vector-based models, but also wanted to experi-

ment with predictive and knowledge-graph-based models a little. A vast number

of configurations needed to be tested, as detailed in the next chapter, therefore we

had to choose a relatively small corpus for information extraction in case of the

count-vector-based models. Finally, for English we have chosen the British Na-

tional Corpus (BNC; (BNC Consortium, 2001)), a rather small (about 100 million

words) but balanced corpora, from which the information was extracted by the
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bag-of-words method presented in Dobó and Csirik (2012) and Dobó and Csirik

(2013).

This information extraction method finds each occurrence of the selected word

in the used corpora, then includes every word in a window of 3 words within

that occurrence in the feature vector. However, it is different from regular bag-of-

words approaches, since it counts the occurrences of close words multiple times.

Specifically, the frequency this method assigns to a feature word is based on the

distance of the observed word and the feature word. Several different techniques

were tested, and the best was found to be using frequencies that scale quadrati-

cally with the distance (with a window size of 3, frequency 9 is assigned to dis-

tance 1, frequency 4 to distance 2 and frequency 1 to distance 3).

Here the extracted raw counts were used, which will be referenced as Dobó

and Csirik’s counts on the BNC (DcBnc) in the rest of the thesis. As this extraction

method extracts information for nouns, verbs, adjectives and adverbs separately,

our model had to guess the part-of-speech of the words in the used datasets be-

fore comparing them. We have used the original method presented in Dobó and

Csirik (2012) and Dobó and Csirik (2013) to guess the part-of-speech (POS) of in-

put words when creating their feature vectors. The POS of words in a question

can be inferred from the other words contained in the same question. For our

methods, we assumed that each input word is a verb, noun, adjective or adverb

and each question contains words of the same POS. For a question the part-of-

speech maximizing the following formula was chosen:

pos = argmaxp ∏
w∈q

ln(1.0001 + fw,p) (3.1)
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where p can take any of the four possible POSs, q denotes the question, w runs

through the words of q and fw,p is the frequency of w having part-of-speech p.

For Spanish and Hungarian, we have chosen the similarly sized Spanish Wi-

kicorpus (Reese et al., 2010) (EsWiki, about 110 million words) and the 23.01.2012

dump of the Hungarian Wikipedia (HuWiki; about 65 million words), respec-

tively, and employed the same information extraction method.

For the predictive model, the size of the corpus was much less relevant with

respect to the feasibility of our analysis, as much fewer parameters were tested,

and the number of dimensions of the feature vectors was also small. We have de-

cided on the most widely used dataset, the Google News corpus (GNC) of around

100 billion words, from which feature vectors for words were created by Mikolov

et al. (2013b). These 300-feature-long word vectors contain real weights for all

features, and the vectors are already L2 normalized.1 These semantic vectors will

be referenced as Mikolov et al.’s vectors (Mv) from now on.

In case of the knowledge-graph-based models, we have decided to experiment

with the state-of-the-art model of Speer et al. (2017) (Sv), which is based on the

ConceptNet.

For some final tests we have also used the text of the 26.05.2011 dump of

the English Wikipedia (Dobó and Csirik, 2013) (Ew; about 1.2 billion words), the

ukWaC corpus (Baroni et al., 2009) (about 2 billion words), raw counts obtained

using the information extraction method of Levy et al. (2015)2 (Lc) and of Salle

et al. (2016a)3 (Ec), as well as the semantic vectors of Baroni et al. (2014) (Bv),

1The word vectors are publicly available at https://code.google.com/archive/p/word2vec/.
2https://bitbucket.org/omerlevy/hyperwords/
3https://github.com/alexandres/lexvec/
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Pennington et al. (2014) (Pv) and Salle et al. (2018) (Ev).

3.2 Evaluation

To be able to compare the performance of the different configurations in En-

glish, we have primarily chosen to employ the MEN dataset (Bruni et al., 2013),

whose test part (MT) was used as a test set and whose development part was

split into two equal chunks randomly to get two development sets (MD1 and

MD2). Moreover, to present a comprehensive evaluation, we have decided to

also test our measures on all the other commonly used datasets, namely the

RubensteinGoodenough-65 (RG; (Rubenstein and Goodenough, 1965)), the Miller-

Charles-28 (MC; (Resnik, 1995)), the WordSim-353 (WS; (Finkelstein et al., 2002)),

the SimLex-999 (SL; (Hill et al., 2015)) and the TOEFL (TO; (Landauer and Du-

mais, 1997)) datasets too. However, the MC, RG, WS and TO datasets were mostly

included because of their wide use in previous decades. As their size is relatively

small and the results on them are rather unreliable, as also noted by Camacho-

Collados et al. (2017), conclusions based on these have to be taken cautiously. As

some researchers have used the full MEN dataset (MF) for testing, we have also

evaluated our best methods on this for comparability with the results of others.

However, please note that our results are not fully reliable on this dataset, as two-

thirds of it has already been used in the process of determining the best possible

configurations.

In case of Spanish and Hungarian, we have made use of the Spanish WordSimi-

larity-353 (WSEs; (Hassan and Mihalcea, 2009)), the Moldovan (MOEs; (Moldovan

et al., 2015)) and the Spanish Rubenstein Goodenough (RGEs; (Camacho-Collados
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et al., 2015)) datasets for Spanish, and parts of the Hungarian version of the

TOEFL (TOHu1 and TOHu2; (Dobó and Csirik, 2012)) and Rubenstein Goode-

nough data-sets for Hungarian (RGHu; Dobó and Csirik (2019b)). The last was

constructed the same way as the Hungarian TOEFL and Miller Charles datasets in

Dobó and Csirik (2012). For reproducibility and transparency, we have included

the Hungarian test datasets in Appendix C.

However, we have to note that all of the used Spanish and Hungarian datasets

are rather small and except for the Moldovan dataset just translated from English

datasets, which can distort them. The Hungarian datasets are especially small,

and the type of the TOEFL dataset also makes the results on it even less reli-

able compared to the other datasets. However, due to the lack of truly suitable

resources, we had to settle for these.

The TO, TOHu1 and TOHu2 datasets include questions, the task being the

selection of the most similar word from the four answers to the question word.

Here the accuracy (A) of the models in case of the similarity questions can be used

for evaluation purposes.

All other datasets include word pairs with gold standard scores (the last one

for similarity, the other ones for relatedness) assigned to them by human anno-

tators. For such datasets two standard evaluation techniques are widely used,

namely calculating the Pearson product-moment correlation coefficient (P) and

the Spearman’s rank correlation coefficient (S) between the gold standard scores

and the scores returned by the evaluated model. Some previous studies report

both, with others only one or the other, with a significant preference for the S.

Because we think that both of them are important and meaningful, especially as

during our tests we have experienced that many models achieving either high
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P or high S score performed terribly with respect to the other score, we have de-

cided to use both during our analysis. Further, to be able to take both of them into

account in a single measure, we have created a modified harmonic mean measure

of the two coefficients, as follows:

H(P, S) =
2× P× S
|P|+ |S| (3.2)

The original version of the harmonic mean of P and S has been previously

used by Aouicha et al. (2016) too for the same reason. However, without our

modification it can result in very high scores if the magnitude of either P or S is

just a little larger than the other and they have different signs, which property

is very undesirable. As opposed to this, our version can also handle negative

arguments properly, returns a negative score in all cases where P and S have

different signs, and keeps the codomain [-1,1] of P and S.

Further, during the first part of our analysis the best performing parameter

settings had to be selected based on multiple runs for each setting. In this process

we have employed the following measures:

• MaxP, MaxS and MaxH, for the maximum of P, S and H measures achieved

during the multiple runs of the given parameter setting, respectively

• AvgP, AvgS and AvgH, for the average of P, S and H measures achieved

during the multiple runs of the given parameter setting, respectively

• T10P, T10S and T10H, for the proportion of the runs of the given parameter

setting with performance in the top 10%, out of all runs of all considered

settings of that parameter, based on the P, S and H measures, respectively
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However, we have only reported the MaxS and MaxH scores in the rest of the

thesis for easier readability.

Due to the large number of abbreviations used in this thesis, we have decided

to summarize them at the beginning of this thesis to make the reading easier.
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CHAPTER 4

The general description of our analysis

4.1 The heuristic approach

The task was to try to find the best possible configuration, considering every

possible setting of all the considered parameters (10 parameters in case of count-

vector-based DSMs and 4 in case of predictive and knowledge-graph-based DSMs).

However, as the number of possible combinations are in the magnitude of tril-

lions in case of count-vector-based DSMs, it would have been unfeasible to test

every single combination one-by-one with our limited resources. Instead of this

full analysis, we chose a heuristic approach to search for the best configuration,

which consisted of two phases.

Prior to the first step a basic set of a handful of parameter settings (BSS) was
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created for each parameter in such a way, so that the selected settings in each set

should achieve good performance on some preliminary tests, while they should

be as different from each other as possible and their collection should give as

good a representation of the set of all settings of the given parameter as possible.

Further, the most commonly used settings were also always selected in case of

each parameter.

In the first phase, each parameter was tested separately on the first develop-

ment dataset (MD1), in order to select a candidate list of settings of the given

parameter for the second phase. For this selection process, in case of each pa-

rameter, all such configurations were tried, where the settings came from all the

possible settings in case of the tested parameter, and from the basic settings set in

case of the other parameters. This reduced the number of possible combinations

exponentially and thus (by restricting the number of settings for the other pa-

rameters) made it possible to test all the possible settings of the given parameter.

Based on the tests, such (preferably diverse) settings were selected for the second

phase that seemed to be the most promising and most likely to be part of the ulti-

mate best configuration. This selection was done based on the 9 measures (Max*,

Avg*, T10*) introduced for this task in Section 3.2. To be able to select as many dif-

ferent types of measures, we have tried to avoid selecting too many very similar

measures into the second phase, and rather selected diverse measures. Further,

some conventionally used settings from the past decades were also included in

the second phase irrespective of their performance, to make comparison with

conventional configurations in general use easier.

After this, in the second phase, tests with all combinations of the selected

settings for all parameters were conducted on the second development dataset
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(MD2). In case of count-vector-based DSMs this was done instead of a full anal-

ysis, as that would have been unfeasible due to the vast number of combina-

tions. In case of predictive and knowledge-graph-based DSMs only 4 out of the

10 parameters could be tested due to the characteristics of such models, so there

were much less possible configurations than in case of count-vector-based DSMs.

This made a full analysis of all possible configurations also feasible in Dobó and

Csirik (2019a), when the number of tested settings for these 4 parameters were

still considerably lower than now. We have decided to also do this then beside

the heuristic analysis in the hope of being able to further validate both our idea

of the heuristic method for selecting the best configuration and our results (see

Section 5.2.3).

That configuration was selected as best, which achieved the best H value

on the MD2 dataset. The selected best measure was then evaluated on all test

datasets.

The idea behind our heuristic approach was that hopefully the ultimate best

configuration is composed of such parameter settings that also seem to be promis-

ing in general, and when tested separately, thus achieving good performance in

the first phase too. This heuristic approach limits the number of needed runs ex-

ponentially compared to the full test of all possible settings for every parameter,

while hopefully resulting in the same or at least very similar outcome.

First we have done this two-step heuristic analysis for English and evaluated

the results extensively (Dobó and Csirik, 2019a). Then we have repeated the same

analysis, with an increased number of settings for several parameters, for En-

glish, Spanish and Hungarian, and compared the findings across the different

languages (Dobó and Csirik, 2019b).
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4.2 The tested parameters

During our research, we have identified 10 parameters as possibly important in

the creation and comparison of feature vectors in DSMs. In this section we will

give a detailed introduction to these parameters as well as to their possible set-

tings, with their abbreviation and number of possible settings tested for them in

parentheses after their name. In case of predictive and knowledge-graph-based

models, only 4 out of the 10 parameters could be tested due to the characteristics

of such models. These are marked with * after their name. Further, in case of 2 of

these 4 parameters, there were some settings that had to be discarded for similar

reasons.

Although presenting the definition of all the settings for the semantic similar-

ity and weighing scheme parameters would be impossible here due to their large

number, we have included the most important formulas in Appendices A and

B. Further, for reproducibility and transparency, we plan to make the list of all

the tested settings for these parameters, together with their respective formula,

references and achieved results publicly available at:

https://github.com/doboandras/dsm-parameter-analysis/.

4.2.1 Vector similarity measures* (VecSim; 1221)

There are two general methods for comparing vectors: calculating their similar-

ity or the difference between them. In order to be able to evaluate all measures

consistently, all distance measures have been converted to similarity measures as

follows:
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s(u, v) =
1

1 + |d(u, v)| (4.1)

The same conversion has also been used by Kiela and Clark (2014), and its

inverse (similarity to distance conversion) by Deza and Deza (2016), but both of

them without the absolute signs.

Vector similarity measures are then used for the comparison of the feature

vectors of words, to produce the (final) similarity score of the words. They are an

essential part of DSMs, and have been evaluated in many previous studies (e.g.

Weeds, 2003; Curran, 2004; Lapesa and Evert, 2014; Kiela and Clark, 2014), as also

noted in Chapter 2.

Many of the similarity measures have both a numerical and a binary variant.

To make things easier we have decided not to explicitly implement any binary

versions. Instead of explicitly implementing these binary variants too, we have

implemented a binary weighting scheme, called identity. Using this weighting

scheme essentially converts the numerical similarity measures to binary ones.

This has greatly reduced the number of similarity measures that had to be explic-

itly implemented, while implicitly also testing them.

Altogether 1221 variants have been tested, which include:

• simple measures based on the inner product (e.g. cosine similarity (Jones

and Furnas, 1987) and harmonic mean (Cha, 2007)),

• measures of correlation (e.g. Pearson correlation (Jones and Furnas, 1987)),

• statistical coefficients (e.g. Dice coefficent (Kiela and Clark, 2014) and Jac-

card index (Curran, 2004)),
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• measures of Minkowski distance and others related to this (e.g. L1 distance

(Cha, 2007) and Sorensen distance (Deza and Deza, 2016)),

• measures designed for comparing probability distributions (e.g Jensen-Sha-

nnon divergence (Cha, 2007)),

• measures of statistical hypothesis testing (e.g. χ2 test (Cha, 2007)),

• and their many-many variants,

• as well as numerous new measures.

Actually, more than 90% of these were new measures proposed by us, with

most of them based on some commonly used measure. Our idea was that the

measures we used as basis are rather simple, but they still perform quite well. So

we thought that adding some further sophistication to them might improve on

the already good results. The measures used as basis include the inner product

(InnerProd) (Jones and Furnas, 1987), the cosine similarity (Cos) (Jones and Fur-

nas, 1987), the Pearson correlation (Pears) (Jones and Furnas, 1987), the Minkowski

(Lp) distances (Cha, 2007), the Penrose shape distance (PenroseShape) (Deza and

Deza, 2016), the Maryland Bridge similarity (Mb) (Deza and Deza, 2016), and

Lin’s similarity measure (Lin) (Lin, 1998a), among others. These were usually

modified using some weighting or transformation function inside or outside the

summation in them, or by trying out different versions for their normalization

factors.

There are also a large number of new variants combining the features of al-

ready existing versions of Cosine similarity and alike measures, such as the Pear-

son (Pears) (Jones and Furnas, 1987), the Adjusted cosine (AdjCos) (Shalaby and
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Zadrozny, 2016), the Maryland Bridge (Mb) (Deza and Deza, 2016) and the PF-

Mod (Pascual and Fujita, 2017) measures. For some other new measures the intu-

ition came from other fields, such as from signal processing (Scharf and Demeure,

1991) for the sum of the ratio of signal and noise (SRSN) or from statistics (Won-

nacott and Wonnacott, 1990) for the standard deviation-based (STDLike) mea-

sure. The number of possible settings of this parameter have been significantly

increased since Dobó and Csirik (2019a) with numerous novel variants.

The different modification techniques and variants, together with their for-

mula, can be observed in Appendix A. Further, we plan to release the list of all

tested settings in great detail at: https://github.com/doboandras/dsm-parameter-

analysis/. Please note that some of the measures included in our analysis are

not exact reproductions of the measures in the cited papers, rather they are only

based on the cited measures and have been slightly adapted to be in harmony

with our other measures. Further, many measures presented in this thesis are

known by more than one names (e.g. Fidelity similarity is also called the sum

of geometric means, Bhattacharyya coefficient and Hellinger affinity Cha (2007)).

Moreover, most measures also have other variants with whom they only have

very slight difference (e.g. constant multiplication, as in case of the Jensen-Shannon

and Tøpsoe divergence Cha (2007)). However, these variants have the same or

very similar results in most configurations, so generally it does not make much

of a difference which one is used. Due to space and time limitations, it was not

possible to list all names or test for all slight variants for the presented measures

within this thesis, so in most such cases only the most used name and variant is

reported. Furthermore, please note that a couple of measures could not be tested

in case of predictive and knowledge-graph-based models due to the characteris-
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tics of these models.

The following measures were selected into the basic settings set:

Cos, AdjCos, Overlap, HarmMeanMod, L1

4.2.2 Weighting schemes (Weight; 2907)

Each word (w) is represented by a vector containing features, where each feature

consists of a relation (r) and a feature word (w’). These feature vectors are created

with the help of (co-occurrence) data extracted from a large corpus. However,

the extracted raw frequencies alone are not completely suitable for representing

the meaning of words, as most words usually occur with such common words

as “is” and “the’ (usually denoted as stop-words)’ the most frequently, which are

not really indicative of the meaning of the words (Jurafsky and Martin, 2009).

Therefore it is useful to employ some weighting scheme inside the vectors to

determine the strength of association between words and features, and hence the

relevance of the features for the words. Similarly to vector similarity measures,

they also form a very important part of DSMs, and have also been studied in

many previous research (e.g. Curran, 2004; Evert, 2005; Lapesa and Evert, 2014;

Kiela and Clark, 2014), as also noted in Chapter 2.

Altogether 2907 variants have been tested, which include:

• simple measures based on word-feature co-occurrence frequencies (e.g. fre-

quecy (Curran, 2004), conditional probability (Jurafsky and Martin, 2009)),

• variants of TF/IDF and similar measures (e.g. TF/IDF (Curran, 2004) and

TF/ICF (Reed et al., 2006)),
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• measures based on pointwise mutual information (e.g. PMI (Church and

Hanks, 1990), NPMI (Harispe et al., 2015) and LPMI (Evert, 2005)),

• other complex information theoretic and statistical measures (e.g. t-test

(Curran, 2004) and odds ratio (Evert, 2005)),

• inter-rater reliability measures (e.g. Scott’s pi (Scott, 1955) and Cohen’s

kappa (Cohen, 1960))

• and their many-many variants,

• as well as numerous new measures.

Again, more than 90% of these measures were new ones proposed by us. Our

intuition for almost all of these were very similar as in case of the vector similarity

measures (see Section 4.2.1), namely that we have extended some simple, conven-

tionally used measure that already had a good performance. Again, our modi-

fications included different weighting and transformation functions and normal-

ization factors employed inside them, among others. The modified measures

include numerous new variants of pointwise mutual information (Pmi) (Church

and Hanks, 1990), conditional probability (CondProb) (Jurafsky and Martin, 2009),

Rapp’s measure (Rapp) (Rapp, 2003) and Lin’s weighting scheme (Lin) (Lin, 1998a),

among others, as well as such weighting schemes that are the combination of ex-

isting schemes.

There are also quite a few new variants combining the features of already ex-

isting versions of PMI weighting, such as the PMIα (PmiAl) (Levy et al., 2015), the

normalised PMI (NPmi) (Harispe et al., 2015), the shifted PMI (SPmi) (Weir et al.,

2016), the PMI with a discounting factor (PmiWdf) (Pantel and Lin, 2002) and the
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Unigram subtuples (Unis) (Pecina, 2010) measures. The number of possible set-

tings of this parameter have been significantly increased since Dobó and Csirik

(2019a) with numerous novel variants.

The different modification techniques and variants, together with their for-

mula, can be observed in Appendix B. Further, we plan to release the list of all

tested settings in great detail at: https://github.com/doboandras/dsm-parameter-

analysis/. Please note that, similarly as in case of the vector similarity measures,

some of the presented weighting schemes are not exact reproductions of the cited

ones, rather they have been slightly adapted to be in harmony with our other

schemes. Further, it was not possible to list all names or test for all slight vari-

ants for the presented measures within this thesis, as noted in case of the vector

similarity measures too.

The following measures were selected into the basic settings set:

PMI, NPMI, TTest-2, OddsRatio-3, PoissonStirlingLh

4.2.3 Feature transformation techniques* (FeatTransf; 22)

Feature transformations are functions called on either the feature counts in the

word vectors extracted from the corpora or on the weights of the features. They

can be useful for example to reduce the skewness of feature scores (Lapesa and

Evert, 2014). There were 4 major categories of settings tried, all of which were

tested with several different transformation functions:

• no feature transformation (NoTransf),

• transformation of feature counts (this version could not be tested in case of

predictive and knowledge-graph-based models due to the characteristics of
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these models) (Freq),

• transformation of feature weights before possible smoothing and normal-

ization (Weight BefNorm),

• and transformation of feature weights after possible smoothing and nor-

malization (Weight AftNorm).

7 different transformation functions were tested for these. All transformation

functions were designed to be interpreted on positive, zero and negative values

too, and to only impact the magnitude of their argument, while keeping their

sign:

fLb (x) = sgn (x)× log2 (|x|+ 1)

fSqrt (x) = sgn (x)×
√
|x|

fSquare (x) = sgn (x)× x2

fCubic (x) = x3

fSigm (x) =
1

1 + e−x − 0.5

fP1D2 (x) =
x + 1

2

fRank (x) = valueToRank (x)

(4.2)

While the base of most above functions are generally used for transforma-

tions, the idea of the P1D2 function came from Melamud et al. (2015), and that

of the Rank based on Santus et al. (2016). Further, to our best knowledge, the

idea of trying out the feature transformations at different steps of the DSMs (i.e.

on unsmoothed frequencies, unsmoothed weights and normalized weights) is

novel, the Square (Sq) and Cubic (Cu) functions have not been tried as feature
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transformation functions by other authors in DSMs, and others did not define the

transformation functions in such a way that they are interpreted on negative and

zero values too.

Altogether 22 variants have been tested, and the following measures were

selected into the basic settings set:

NoTransf, "Weight AftNorm Lb"

4.2.4 Dimensionality reduction techniques (DimRed; 21)

Dimensionality reduction can be used to reduce the number of features in the

feature vectors. This can both improve the results and greatly reduce the time and

space complexity of vector comparison (Landauer and Dumais, 1997; Lapesa and

Evert, 2014). There were 4 major types of dimensionality reduction techniques

tried, with several different dimensionality parameters in case of each:

• no dimensionality reduction (NoDimRed)

• the dimensionality reduction technique introduced by Islam and Inkpen

(2008) (IslamInkpen; please note that we slightly changed the computation

of the used dimensions for the vectors based on the parameter of this tech-

nique compared to Dobó and Csirik (2019a) to become fully consistent with

Islam and Inkpen (2008)),

• in each vector retaining only the features with the n highest weight (inspired

by the method of Islam and Inkpen (2008)) (TopNFeat),

• singular value decomposition (Landauer and Dumais, 1997; Rapp, 2003;

Bullinaria and Levy, 2012) (SVD) (Please note that before the SVD, an L2
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normalization was always performed, as we experienced that this step greatly

enhances the results).

We have to note that when testing dimensionality reduction, we usually did

a smaller number of runs than in other cases due to the rather large computa-

tional requirements of SVD and our limited resources. Further, we had to put a

limit on the number of word vectors included in the SVD, and in case of Spanish

we also had to set MinWFFreq to 3 instead of NoLimit when using SVD, due to

the too large word-feature matrix otherwise, which would have made running

SVD unmanageable. Altogether 21 variants have been tested, and the following

measures were selected into the basic settings set:

NoDimRed, "IslamInkpen 0.1"

4.2.5 Smoothing techniques (Smooth; 5)

Smoothing in general can be used to reduce the noise and randomness in data,

and is especially useful in case of problems with data points having zero value

or probability (Jurafsky and Martin, 2009). During smoothing, the value of data

points is slightly decreased in case of higher values while slightly increased in

case of lower values, to reach a smoother distribution. While they are popular in

many NLP applications, they have been ignored in most DSMs, with few excep-

tions (e.g. Dinu, 2011).

One of the most widely used group of smoothing methods in general are of

the type absolute discounting (Ney and Essen, 1991), that are simple but still very

powerful and efficient methods. The Kneser-Ney smoothing (KNS) (Kneser and

Ney, 1995b), and its multi-discount variant, the Modified Kneser-Ney smoothing
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(MKNS) (Chen and Goodman, 1999a) are widely considered to be one of the best

smoothing algorithms since a long time (Chen and Goodman, 1999a; Goodman,

2001; Zhang and Chiang, 2014).

Although the probability of atomic events changes during smoothing as a nec-

essary consequence, the marginal probabilities do not necessarily need to change,

where the marginal probabilities are the probabilities obtained by summing out

the probabilities of an event with respect to other events:

P(Y) = ∑
z∈Z

P (Y, z) (4.3)

One of the key motivations when developing the KNS was that it should pre-

serve the marginal distributions of the original model, meaning that the obtained

model satisfies the following equation:

c (wi)

∑wi
c (wi)

= ∑
wi−1

p (wi|wi−1) p (wi−1) (4.4)

This is very advantageous in many cases, and under certain assumptions, an

optimal model can only be obtained by satisfying this property, as discussed

by Goodman in the extended version of his paper (Goodman, 2001). Hence

Goodman comes to the conclusion that under these assumptions any smoothing

method not preserving the original marginals can be improved by modifying it

to preserve them. Despite this fact, many frequently used smoothing techniques,

including the MKNS, do not satisfy this property: when Chen and Goodman

(1999a) refined the original KNS by introducing three discount parameters in-

stead of just one, they did not adjust the lower-order distributions according to

this change, which resulted in the loss of the original marginals in the smoothed
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model.

Therefore I have devised such a novel smoothing method based on the MKNS,

that keeps all the advantages of both the KNS and the MKNS, while also pre-

serving the original marginal distributions (Dobó, 2018). The final form for this

new smoothing technique, called Multi-D Kneser-Ney Smoothing Preserving the

Original Marginal Distributions (MDKNSPOMD), for a bigram language model

is as follows:

pMDKNSPOMD (wi|wi−1) =
c (wi−1wi)− D (c (wi−1wi))

∑wi
c (wi−1wi)

+

γMDKNSPOMD (wi−1) pMDKNSPOMD (wi)

(4.5)

γMDKNSPOMD (wi−1) =
D1N1 (wi−1.) + D2N2 (wi−1.)

∑wi
c (wi−1wi)

+

D3+N3+ (wi−1.)
∑wi

c (wi−1wi)

(4.6)

pMDKNSPOMD (wi) =
D1N1 (.wi) + D2N2 (.wi) + D3+N3+ (.wi)

D1N1 (..) + D2N2 (..) + D3+N3+ (..)
(4.7)

We have to note that when testing the various smoothing options, we usually

did a smaller number of runs than in other cases due to the rather large com-

putational requirements of smoothing and our limited resources. Altogether 5

variants of smoothing techniques have been tried:

• no smoothing (NoSmooth)

• Kneser-Ney smoothing (Kneser and Ney, 1995a) on weights (Weight KNS),

• Kneser-Ney smoothing (Kneser and Ney, 1995a) on raw counts (Freq KNS),
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• Modified Kneser-Ney smoothing (Chen and Goodman, 1999b) on raw counts

(Freq MKNS),

• Multi-D Kneser-Ney Smoothing Preserving the Original Marginal Distribu-

tions (Dobó, 2018) on raw counts (Freq MDKNSPOMD),

To our best knowledge none of the smoothing variants used in our analysis

have ever been tried in DSMs, and we are also the first to try smoothing at mul-

tiple points in DSMs. The smoothing parameters used in all versions are the es-

timates of the optimal parameters determined by the method described in Chen

and Goodman (1999b), calculated on the BNC. The following measures were se-

lected into the basic settings set:

NoSmooth

4.2.6 Vector normalization methods* (VecNorm; 3)

Although there are such distance and similarity measures that are independent

of vector magnitudes (e.g. cosine similarity), most measures are not so. There-

fore normalizing the vectors before comparing them makes sense. This aspect of

DSMs has also only been considered in few studies (e.g. Jones and Furnas, 1987;

Yin and Schütze, 2016).

The most common way for normalization is by their L2 norm. However, as

it will be seen, there are many similarity measures originally developed for com-

paring probability distributions. These measures assume such vectors as input,

whose values are non-negative (or even positive) and sum up to 1. To be as con-

sistent with the theoretical background of these measures as possible, we have

also evaluated the L1 normalization of the vectors.
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In case of the word vectors provided by Mikolov et al. (2013b), the vectors

were already L2 normalized, so there the unnormalized version (NN) could not

be tried. Further, please note that in many cases the feature vectors also include

negative and zero weights (e.g. due to the weighting scheme used, and also in

case of the Mv (Mikolov et al., 2013b)), so despite using the L1 normalization,

their elements very rarely sum up to 1, and thus they are still not fully adequate

for measures coming from probability theory.

Altogether the above 3 variants (NN, L1, L2) have been tested, and the follow-

ing measures were selected into the basic settings set:

L2, L1

4.2.7 Filtering stop-words (StopW; 2)

Stop-words are such very frequently used words, whose usage as context words

are very uninformative and not useful in most cases (as also noted in Section

4.2.2). Therefore stop-words have usually been filtered not just in DSMs, but also

in many other NLP applications since a very long time (Manning and Schütze,

1999). While they can prove to be very useful (Huang et al., 2012), others conclude

that removing these words in DSMs does not improve performance (Bullinaria

and Levy, 2012), probably due to the used weighting schemes already assigning a

very low weight to them, essentially already filtering them out almost completely

(Kiela and Clark, 2014).

Both possibilities (True, False) have been tested, using the Stopwords ISO col-

lection1, with the following measures in the basic settings set:

1https://github.com/stopwords-iso/
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False

4.2.8 Minimum limits on word-feature tuple frequencies

(MinWFFreq; 6)

As pointwise mutual information (PMI) becomes unstable in case of small co-

occurrence frequencies, it is better to only consider such word-feature pairs whose

frequency is above a given threshold in case of this weighting scheme (Church

and Hanks, 1990). Based on these findings, this feature might also be useful in

case of other weighting schemes too, so it seemed interesting to test this as a gen-

eral option, and not just in case of PMI weighting.

Altogether 6 variants have been tested, and the following measures were se-

lected into the basic settings set:

NoLimit

4.2.9 Minimum limits on word-feature tuple weights*

(MinWFWeight; 26)

Negative PMI values can also be unreliable, and thus several researchers suggest

to discard these (Dagan et al., 1995; Bullinaria and Levy, 2007). Similarly to the

minimum limit on word-feature tuple frequencies, this option might be useful in

case of other weighting schemes too, so we also tested this generally, not just in

case of PMI weighting.

We have tried two variants. In the first version (Limit) a weight is replaced

with the limit if it is below it:
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Limit(w, minValue) =


w i f w ≥ minValue

minValue otherwise
(4.8)

In the second version (Zero) a weight is replaced with zero if it is below the

limit:

Zero(w, minValue) =


w i f w ≥ minValue

0 otherwise
(4.9)

Several limit values have been tested for both versions. Previous studies usu-

ally used either the NoLimit option or an option that is equivalent to our "Zero

0" (and "Limit 0") version. Our motivation for testing negative parameters with

the Limit version was that the "Zero 0" option seems to be a bit too strict, and

results in the same zero score for both an original score of zero and an original

score with negative sign and large magnitude. The Limit variant with a negative

parameter does almost the same, but keeps the sign of negative values while re-

stricting their magnitude. On the other hand, the Zero version with a positive

parameter filters out the unimportant features with low weight for each word,

essentially doing something similar to dimensionality reduction or stop word fil-

tering. It seemed logical to also test parameter values with the opposite sign in

case of both versions, and with several different magnitudes of the parameter. To

our best knowledge, no one has ever tested the Limit or Zero options in DSMs,

nor thresholds other than 0.

The number of possible settings of this parameter have been significantly in-

creased since Dobó and Csirik (2019a) with numerous novel variants. The follow-

ing measures were selected into the basic settings set:
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NoLimit, "Zero 0"

4.2.10 Minimum limits on feature frequencies (MinFFreq; 14)

Based on the ideas of the above two parameters, we have thought that it could

be interesting to also test whether discarding features that are very infrequent on

the whole (having a total frequency of or below a given limit) would improve the

results of DSMs or not. Although mainly due to computational efficiency reasons,

this technique has already been employed by others too (e.g. Levy et al., 2015).

Altogether 14 variants have been tested, and the following measures were

selected into the basic settings set:

NoLimit



CHAPTER 5

Semantic similarity of English words

5.1 The first phase of the heuristic approach

In this phase the most promising parameter settings had to be selected for each

parameter based on multiple runs for each setting on the MD1 development

dataset. In the following subsections, the detailed performance of the different

settings are presented and evaluated for each parameter. The settings for the sec-

ond phase are selected based on the results achieved during the multiple runs of

the settings, using the 9 measures presented in Section 3.2. As already mentioned

before, the number of possible settings of several parameters have been signifi-

cantly increased since Dobó and Csirik (2019a) with numerous novel variants.

Singular value decomposition for dimensionality reduction has very large
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time and space complexity, therefore, due to our limited resources, when test-

ing SVD in the second phase using the DcBnc, only a reduced settings set was

used in case of each parameter.

In case of each figure presenting the results, those measures marked with an *

were selected to be included in the second phase, with those marked with ** also

being part of the reduced settings set. In case of those parameters, where a very

large number of settings were tested for, the results for only a small proportion

of settings can be shown here due to space limitations, but the full results are

planned to be made publicly available at:

https://github.com/doboandras/dsm-parameter-analysis/.

5.1.1 Results using the counts of Dobó and Csirik (2013) on the

BNC

5.1.1.1 Vector similarity measures

Analyzing the results (see Figure 5.1) it can be seen that most measures based

on the inner product, also including variants of the cosine similarity, correlation

measures and statistical coefficients, as well as measures proposed by Lin (Lin,

1998a), and the variants of these, generally performed well. On the other hand,

distance-based measures, such as the Minkowski distances (Lp) or the Canberra

distance, achieved relatively low H scores, mostly due to their low Pearson corre-

lation scores. Measures designed for comparing probability distributions and for

statistical hypothesis testing mostly also performed poorly. A large proportion of

the best measures are combinations of multiple measures and modified variants

of some existing measures, proposed by us.
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The best measures achieved an H score above 0.7, from which altogether 13

(out of 1221) measures were selected to the second phase, and 5 were also selected

into the reduced settings set.

Figure 5.1. First-phase performance of vector similarity measures using the DcBnc.

5.1.1.2 Weighting schemes

The best results (see Figure 5.2) were clearly achieved by variants of the point-

wise mutual information. Beside these, some other complex information the-

oretic and statistical measures also scored high, while inter-rater reliability mea-

sures generally performed a little worse. Simple measures based on word-feature

co-occurrence frequencies generally achieved relatively low H scores. A large

proportion of the best measures are new ones proposed by us.

Similarly as in case of the vector similarity measures, the highest H scores are
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close to 0.7. Altogether 13 (out of 2907) measures were selected to the second

phase, from which 5 were also selected into the reduced settings set.

Figure 5.2. First-phase performance of weighting schemes using the DcBnc.

5.1.1.3 Feature transformation

The results (see Figure 5.3) are rather mixed in case of this parameter. Settings

with all 4 major feature transformation categories have achieved good results,

although with different transformation functions in case of each. Further, a clear

ranking cannot be determined in case of the different transformation functions

based on their results either. Altogether 4 (out of 22) settings were selected to the

second phase, from which 2 were also selected into the reduced settings set.
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Figure 5.3. First-phase performance of feature transformation techniques using the
DcBnc.

5.1.1.4 Dimensionality reduction

The results (see Figure 5.4) show that the best results were achieved by singular

value decomposition with different dimensionality parameters, followed by the

technique of Islam and Inkpen (2008). Please note that we slightly changed the

computation of the used dimensions for the vectors based on the parameter of

this technique compared to Dobó and Csirik (2019a) to become fully consistent

with Islam and Inkpen (2008). Altogether 3 (out of 21) settings were selected to

the second phase (2 for the normal set and 1 for the reduced set).
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Figure 5.4. First-phase performance of dimensionality reduction techniques using the
DcBnc.

5.1.1.5 Smoothing

Smoothing seems to considerably worsen the results of DSMs (see Figure 5.5),

while posing significant extra time and space complexity burden on them. There-

fore only the no smoothing setting (out of 5) was selected for the next phase (also

included in the reduced settings set).

5.1.1.6 Vector normalization

As many vector similarity measures are independent of vector normalization,

many configurations achieve the same results irrespective of which normalization

technique is used. The best configuration from the basic set is also achieved by

a measure independent of vector normalization, therefore the best scores of all 3
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Figure 5.5. First-phase performance of smoothing techniques using the DcBnc.

techniques are the same (see Figure 5.6). All of them were selected for the next

phase, with the no normalization option omitted from the reduced settings set.

5.1.1.7 Filtering stop-words

As both filtering and not filtering stop-words seem to achieve good results (see

Figure 5.7), both options were selected for the next phase, with only the False

option included in the reduced settings set. The reason why filtering or not fil-

tering these words does not have a huge impact on performance is probably due

to the fact that using a proper weighting scheme already devaluates these words

so much as if they were almost completely filtered out (Kiela and Clark, 2014), as

already noted before.
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Figure 5.6. First-phase performance of vector normalization techniques using the DcBnc.

5.1.1.8 Minimum limits on word-feature tuple frequencies

As employing minimum limits on word-feature tuple frequencies seems to de-

teriorate performance (see Figure 5.8), only the no limit option (out of 6) was

selected for the second phase (also included in the reduced settings set).

5.1.1.9 Minimum limits on word-feature tuple weights

The results for word-feature tuple weights are somewhat mixed, but the Zero

option having a small positive parameter seems to be slightly superior to the

other settings (see Figure 5.9). Altogether 5 (out of 26) settings were selected to

the second phase, from which 3 were also selected into the reduced settings set.
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Figure 5.7. First-phase performance achieved by filtering and not filtering stop-words
using the DcBnc.

5.1.1.10 Minimum limits on feature frequencies

As setting no limit on feature frequencies seems to achieve the best results (see

Figure 5.10), only this option (out of 14) was selected for the next phase (also

included in the reduced settings set).

5.1.2 Results using the semantic vectors of Mikolov et al. (2013b)

5.1.2.1 Vector similarity measures

These measures show very similar results using the Mv (see Figure 5.11), as using

the DcBnc (see Figure 5.1). Measures based on the inner product, also including

variants of the cosine similarity, correlation measures and statistical coefficients,

achieved the highest H scores. Further, distance-based measures and measures
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Figure 5.8. First-phase performance achieved by setting minimum limits on word-feature
tuple frequencies using the DcBnc.

designed for comparing probability distributions and for statistical hypothesis

testing performed poorly most of the time. Again, some of our newly proposed

measures achieved the highest scores.

The best measures achieved an H score around 0.75, from which altogether 16

(out of 1221) measures were selected for the second phase.

5.1.2.2 Feature transformation

The results (see Figure 5.12) are rather mixed in case of this parameter using the

Mv too, but resemble the results using the DcBnc more or less (see Figure 5.3).

Altogether 6 (out of 15, as some of the settings could not be tested with this corpus

(see Section 4.2)) settings were selected to the second phase.



5.1. The first phase of the heuristic approach 57

Figure 5.9. First-phase performance achieved by setting minimum limits on word-feature
tuple weights using the DcBnc.

5.1.2.3 Vector normalization

As noted before, many vector similarity measures are independent of vector nor-

malization, so they achieve the same results irrespective of which normalization

technique is used. The best configuration from the basic set is achieved by such

a measure here too, similarly as it was in case of the DcBnc, therefore the best

scores of both techniques (the NN option could not be tested with the vectors of

Mikolov et al. (2013b) (see Section 4.2)) are the same (see Figure 5.13). Both of

them were selected for the next phase.
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Figure 5.10. First-phase performance achieved by the setting minimum limits on feature
frequencies using the DcBnc.

5.1.2.4 Minimum limits on word-feature tuple weights

Setting no limit or a negative limit with larger magnitude in case of either the

Zero or the Limit option achieved the best results in case of word-feature tuple

weights by far (see Figure 5.14). Altogether 8 (out of 26) settings were selected to

the second phase.

5.2 The second phase of the heuristic approach

The purpose of this phase was to determine what the best possible configuration

is in case of count-vector-based (using the DcBnc) and predictive (using the Mv)

DSMs by testing all combinations of the selected settings for all parameters. A
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Figure 5.11. First-phase performance of vector similarity measures using the Mv.

dataset distinct from the one used in the first phase, namely the MD2 develop-

ment dataset, was used for evaluation.

As a full test of all possible configurations would have been unfeasible in case

of count-vector-based DSMs (see Section 4.1), only a heuristic analysis with the

parameter settings selected in the first phase was performed. In case of predictive

DSMs, a full analysis was also feasible in Dobó and Csirik (2019a), when the

number of tested settings for these 4 parameters were still considerably lower

than now. Therefore beside the heuristic analysis, a full analysis was also done at

that time to validate the results (see Section 5.2.3).
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Figure 5.12. First-phase performance of feature transformation techniques using the Mv.

5.2.1 Results using the counts of Dobó and Csirik (2013) on the

BNC

With the settings of the 10 parameters selected in the first phase, altogether 40860

configurations were tested (in case of the singular value decomposition settings

for dimensionality reduction, only a reduced set of settings were used, as already

noted in Section 4.2). A very small proportion of these, together with their per-

formance, are presented in Table 5.1. The configuration with the best results is

noted as BestCvbmDcBnc2. We have to note that there were actually two distinct

configurations with the same best score, and they were only different in their

DimRed parameter setting. We have chosen the one with the "IslamInkpen 0.05"

setting as best (BestCvbmDcBnc2), as that setting achieved better performance in

the first phase than the "NoDimRed" setting in the other configuration.
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Figure 5.13. First-phase performance of vector normalization techniques using the Mv.

As already mentioned before, the number of possible settings of several pa-

rameters have been significantly increased since Dobó and Csirik (2019a) with

numerous novel variants. The results of the best found count-vector-based con-

figuration with those reduced number of settings for several parameters will also

be included in the rest of the thesis (BestCvbmDcBnc).

Further we also wanted to include the results achieved with the selected best

configuration in case of predictive DSMs (see Table 5.2), run on the DcBnc, in

Table 5.1. However, as only 4 out of 10 parameters could be used in case of

predictive DSMs, the hypothetical best configuration of the 10 parameters were

produced by changing the settings of these 4 parameters in the best method on

count-vector-based DSMs to the settings of the best method on predictive DSMs,

leaving the other 6 parameter settings unchanged (as they were in the best con-
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Figure 5.14. First-phase performance achieved by setting minimum limits on word-
feature tuple weights using the Mv.

figuration on count-vector-based DSMs). This hypothetical best configuration is

noted as BestPmMv2OnCvbm.

Although presenting the definition of all settings for every parameter would

be impossible within this thesis due to their large number, as also noted before,

below we define a couple of them to help interpreting our most important results.

The vector similarity measures used in BestCvbmDcBnc2 is a combination of

the Pearson (Pears) (Jones and Furnas, 1987), Maryland Bridge (Mb) Deza and

Deza (2016) and Adjusted cosine (AdjCos) Shalaby and Zadrozny (2016) mea-

sures, with some additional transformations:
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Table 5.1. Second-phase performance of a selection of configurations using the DcBnc.

Abbrev Parameter settings P S H

BestCvbmDcBnc2

VecSim Weight FeatTransf

0.72 0.71 0.71PearsMbAdjCosMod-3.Lb PmiAl-Tc3Tw0S2P0 NoTransf
DimRed Smooth VecNorm StopW MinWFFreq MinWFWeight MinFFreq

IslamInkpen 0.05 NoSmooth L1 false NoLimit Zero 0 NoLimit

-

VecSim Weight FeatTransf

0.72 0.71 0.71PearsMbAdjCosMod-3.Lb PmiAl-Tc3Tw0S2P0 NoTransf
DimRed Smooth VecNorm StopW MinWFFreq MinWFWeight MinFFreq

NoDimRed NoSmooth L1 false NoLimit Zero 0 NoLimit

-

VecSim Weight FeatTransf

0.72 0.71 0.71PearsMbAdjCosMod-3.Lb PmiAl-Tc3Tw0S2P0 NoTransf
DimRed Smooth VecNorm StopW MinWFFreq MinWFWeight MinFFreq

NoDimRed NoSmooth L1 false NoLimit Zero -0.05 NoLimit

-

VecSim Weight FeatTransf

0.72 0.71 0.71PearsMbAdjCosMod-3.Lb PmiAl-Tc3Tw0S2P0 NoTransf
DimRed Smooth VecNorm StopW MinWFFreq MinWFWeight MinFFreq

IslamInkpen 0.05 NoSmooth L1 false NoLimit Zero -0.05 NoLimit

-

VecSim Weight FeatTransf

0.72 0.71 0.71PearsMbAdjCosMod-4.Lb PmiAl-Tc3Tw0S2P0 NoTransf
DimRed Smooth VecNorm StopW MinWFFreq MinWFWeight MinFFreq

NoDimRed NoSmooth L1 false NoLimit Zero -0.05 NoLimit

-

VecSim Weight FeatTransf

0.72 0.71 0.71PearsMbAdjCosMod-4.Lb PmiAl-Tc3Tw0S2P0 NoTransf
DimRed Smooth VecNorm StopW MinWFFreq MinWFWeight MinFFreq

IslamInkpen 0.05 NoSmooth L1 false NoLimit Zero 0 NoLimit

-

VecSim Weight FeatTransf

0.72 0.71 0.71PearsMbAdjCosMod-4.Lb PmiAl-Tc3Tw0S2P0 NoTransf
DimRed Smooth VecNorm StopW MinWFFreq MinWFWeight MinFFreq

NoDimRed NoSmooth L1 false NoLimit Zero 0 NoLimit

-

VecSim Weight FeatTransf

0.72 0.71 0.71PearsMbAdjCosMod-3.Lb PmiAl-Tc3Tw0S2P0 NoTransf
DimRed Smooth VecNorm StopW MinWFFreq MinWFWeight MinFFreq

IslamInkpen 0.05 NoSmooth L1 false NoLimit Zero 0.05 NoLimit

-

VecSim Weight FeatTransf

0.72 0.71 0.71PearsMbAdjCosMod-3.Lb PmiAl-Tc3Tw0S2P0 NoTransf
DimRed Smooth VecNorm StopW MinWFFreq MinWFWeight MinFFreq

NoDimRed NoSmooth L1 false NoLimit Zero 0.05 NoLimit

-

VecSim Weight FeatTransf

0.72 0.71 0.71PearsMbAdjCosMod-4.Lb PmiAl-Tc3Tw0S2P0 NoTransf
DimRed Smooth VecNorm StopW MinWFFreq MinWFWeight MinFFreq

IslamInkpen 0.05 NoSmooth L1 false NoLimit Zero -0.05 NoLimit

-

VecSim Weight FeatTransf

0.68 0.70 0.69Cos PmiAl-Tc3Tw0S2P0 Weight AftNorm Lb
DimRed Smooth VecNorm StopW MinWFFreq MinWFWeight MinFFreq
SVD 200 NoSmooth L2 false NoLimit Zero 0 NoLimit

BestCvbmDcBnc

VecSim Weight FeatTransf

0.66 0.69 0.68Cos WPmi-7 Weight AftNorm Lb
DimRed Smooth VecNorm StopW MinWFFreq MinWFWeight MinFFreq
SVD 200 NoSmooth L2 false NoLimit Zero 0 NoLimit

BestPmMv2OnCvbm

VecSim Weight FeatTransf

0.50 0.65 0.57MbAdjCosLogProd PmiAl-Tc3Tw0S2P0 Weight BefNorm Lb
DimRed Smooth VecNorm StopW MinWFFreq MinWFWeight MinFFreq

IslamInkpen 0.05 NoSmooth L2 false NoLimit Limit -0.2 NoLimit

Cos-PPmi

VecSim Weight FeatTransf

0.44 0.63 0.52Cos Pmi NoTransf
DimRed Smooth VecNorm StopW MinWFFreq MinWFWeight MinFFreq

NoDimRed NoSmooth NN false NoLimit Zero 0 NoLimit

Cos-Pmi

VecSim Weight FeatTransf

0.43 0.58 0.49Cos Pmi NoTransf
DimRed Smooth VecNorm StopW MinWFFreq MinWFWeight MinFFreq

NoDimRed NoSmooth NN false NoLimit NoLimit NoLimit
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PearsMbAdjCosMod-3.Lb(u, v) =


1, d ≥ 0.1

d
0.1 , d < 0.1

d = 0.5×
(

∑n
i=1 sgn(ui − ū)× lb(|ui − ū|+ 1)× sgn(vi − v̄)× lb(|vi − v̄|+ 1)

lbinv (∑n
i=1(lb(|ui − ū|+ 1))2)

+

∑n
i=1 sgn(ui − ū)× lb(|ui − ū|+ 1)× sgn(vi − v̄)× lb(|vi − v̄|+ 1)

lbinv (∑n
i=1(lb(|vi − v̄|+ 1))2)

)

lbinv(x) = min(max(sgn(x)× (2|x| − 1),−2100), 2100)

(5.1)

Further, the weighting scheme used in BestCvbmDcBnc2 is a combination of

PMIα (PmiAl) Levy et al. (2015), PMI with Laplace smoothing (PmiWls) Turney

and Pantel (2010) and Unisubtuples (Unis) Pecina (2010):

PmiAl-Tc3Tw0S2P0(x, y) = lb

(
n′α × f ′xy

f ′x × f ′0.75
y

)
− 3.29×

√
1
a
+

1
b
+

1
c
+

1
d

a = f ′xy, b = f ′x − f ′xy, c = f ′y − f ′xy, d = n′ − f ′x − f ′y + f ′xy

f ′x = fx + 1, f ′y = fy + 1, f ′xy = fxy + 1, n′ = n + 1, n′α =

(
|V|

∑
i=1

f 0.75
i

)
+ 1

fx, fy: word frequencies, fx,y: xy tuple frequency

n: total number of words in the corpus, |V|: size of the vocabulary

(5.2)

One should be able to have enough understanding of the settings of the other

parameters in BestCvbmDcBnc2 from the information provided in Section 4.2.



5.2. The second phase of the heuristic approach 65

5.2.2 Results using the semantic vectors of Mikolov et al. (2013b)

With the settings of the 4 parameters selected in the first phase, altogether 1632

configurations were tested. A small proportion of these together with their per-

formance are presented in Table 5.2. The configuration with the best results is

noted as BestPmMv2.

As already mentioned before, the number of possible settings of several pa-

rameters have been significantly increased since Dobó and Csirik (2019a) with

numerous novel variants. The results of the best found predictive configuration

with those reduced number of settings for several parameters will also be in-

cluded in the rest of the thesis (BestPmMv).

Please note that although we were able to find a better configuration with our

extended settings set for several parameters than the one presented in Dobó and

Csirik (2019a), meaning that BestPmMv2 performs better that BestPmMv, the ac-

tual scores of these models presented here are actually lower than the best scores

presented in Dobó and Csirik (2019a). This is due to a technical change in the

evaluation process: previously we accepted our models to return non-zero simi-

larity scores when at least one of the compared words had a zero lengths feature

vector. Now we do not allow this, as we think that it seems theoretically more

correct this way. However, some of the test words in the MD2 dataset are out of

vocabulary in case of the Mv dataset as that dataset contains each word only with

its American spelling, and the MD2 dataset contains words with both American

and British spelling. Because of these out-of-vocabulary words the scores of ev-

ery configuration are lower now, then as in Dobó and Csirik (2019a). This change

only affects the ranking of the configurations in very rare cases, and only in a
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Table 5.2. Performance of a selection of configurations from the heuristic analysis in the
second phase using the Mv.

Abbrev VecSim FeatTransf VecNorm MinWFWeight P S H
BestPmMv2 MbAdjCosLogProd Weight BefNorm Lb L2 Limit -0.2 0.72 0.72 0.72
- MbAdjCosLogProd Weight AftNorm Lb L2 Limit -0.2 0.72 0.72 0.72
- MbAdjCosLogProd Weight BefNorm Lb L1 Limit -0.2 0.72 0.72 0.72
- MbAdjCosLogProd Weight AftNorm Sigm L1 Limit -0.2 0.71 0.72 0.72
- MbAdjCosLogProd NoTransf L1 Limit -0.2 0.71 0.72 0.72
- MbAdjCosLogProd Weight AftNorm Sigm L2 Limit -0.2 0.71 0.72 0.72
- MbAdjCosLogProd Weight BefNorm Sigm L2 Limit -0.2 0.71 0.72 0.72
- MbAdjCosLogProd Weight BefNorm Sigm L1 Limit -0.2 0.71 0.72 0.72
- MbAdjCosLogProd NoTransf L2 Limit -0.2 0.71 0.72 0.72
- MbAdjCosLogProd Weight AftNorm Lb L1 Limit -0.2 0.71 0.72 0.72
- MbAdjCosLogProd Weight BefNorm Lb L2 Zero -0.5 0.72 0.72 0.72
- MbAdjCosLogProd Weight BefNorm Lb L2 Limit -0.5 0.72 0.72 0.72
- MbAdjCosLogProd Weight BefNorm Lb L2 NoLimit 0.72 0.72 0.72
Cos Cos NoTransf L2 NoLimit 0.71 0.72 0.71
BestPmMv SmoothCos Weight AftNorm Sigm L2 NoLimit 0.68 0.72 0.70
Cos-Zero0 Cos NoTransf L2 Zero 0 0.60 0.69 0.64
BestCvbmDcBnc2OnPm PearsMbAdjCosMod-3.Lb NoTransf L1 Zero 0 0.38 0.47 0.42

minor way, and it does not have any effect on which configuration was found

best.

The results achieved with the selected best configuration in case of count-

vector-based DSMs (BestCvbmDcBnc2; see Table 5.1; please note that only 4 out

of the 10 parameters could be used here), run on information extracted from Mv,

are also included in Table 5.2, and is noted as BestCvbmDcBnc2OnPm.

5.2.3 Verification of the heuristic approach

To verify our heuristic approach and its results, we have done a full analysis us-

ing the Mv with that of the heuristic analysis in Dobó and Csirik (2019a), and we

have discovered that the best 26 configurations were the same using both anal-

yses, which has highly exceeded our expectations. Unfortunately we were not

able to repeat this full analysis now, as since then we have constructed many new

settings for the tested parameters, which increased the number of possible config-

urations to a level that made performing a full analysis unmanageable. However,
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we think that if we were able to do it, then we would come to the same conclu-

sions as in Dobó and Csirik (2019a).

Further, later on we have done numerous tests with our found best config-

urations in such a way that they were tested using several different input data

types, both in case of CVBM and PM configurations. The result of a number of

these tests will later be displayed in 5.3, where one can see that all CVBM and PM

configurations performed well when using any input data that was of the same

type as the original input data used to create the configuration.

Both these results give us a very strong verification that the idea behind our

heuristic approach was good, and that its results are reliable. Moreover, it also

supports our assumption that a configuration working well on given input data

also works well on other input data of the same type.

5.3 Evaluation and discussion of results for English

In this section we evaluate the results of our best configurations for count-vector-

based, predictive and knowledge-graph-based models, determined using our heu-

ristic approach, with the help of multiple input data sources and multiple test

datasets.

5.3.1 Evaluation of our best configurations on the MD2

development dataset

Our results on the MD2 dataset (see Tables 5.1 and 5.2) show that the BestCvb-

mDcBnc2 and the BestPmMv2 configurations, both incorporating novel parame-
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ter settings, significantly outperform conventional variants (e.g. simple methods

with cosine similarity and positive pointwise mutual information).

Although the parameter settings of the BestCvbmDcBnc2 and BestPmMv2

configurations resemble each other to some extent, their 4 mutual parameters do

not have the exact same settings. Further, the two mixed configurations (BestCvb-

mDcBnc2OnPm and BestPmMv2OnCvbm) perform significantly worse than the

BestCvbmDcBnc2 and BestPmMv2. Out of the BestCvbmDcBnc2 and BestPmMv2

variants the latter achieved slightly better results.

Although all of our best configurations were selected based on a heuristic ap-

proach, in Section 5.2.3 we were able to verify that our idea behind this approach

is good and that its results are sound and reliable. Further, we have also validated

our assumption that the same parameters configuration can be successfully used

in case different data sources of the same type are used as input.

5.3.2 Evaluation of our best configurations on the MT dataset,

using multiple sources as input

All 4 of our previously inspected configurations, as well as the best configurations

found in Dobó and Csirik (2019a), have also been tested on the MT test dataset

(see Table 5.3). We have evaluated the same configurations using multiple input

data sources (i.e. different extracted raw counts or different semantic vectors) in

each case.

Similarly as in case of the result on the MD2 dataset (second phase), the results

of the BestPmMv2UsingMv model are slightly superior to that of the BestCvb-

mDcBnc2UsingDcBnc model. Further, as anticipated, the mixed models using
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Table 5.3. Performance of our best models on the MT dataset. The methods are grouped
into 3 categories based on the type of input data used.

Input data Configuration P S H
CVBMs using solely distributional linguistic data

DcBnc
BestPmMv2OnCvbm 0.51 0.64 0.57

BestCvbmDcBnc 0.67 0.69 0.68
BestCvbmDcBnc2 0.71 0.71 0.71

DcEw BestCvbmDcBncMF20 0.70 0.73 0.71
BestCvbmDcBnc2MF20 0.74 0.73 0.73

DcUkwac BestCvbmDcBncMF100 0.76 0.77 0.76
BestCvbmDcBnc2MF100 0.74 0.75 0.75

LcBnc BestCvbmDcBnc 0.65 0.69 0.67
BestCvbmDcBnc2 0.61 0.61 0.61

LcEw BestCvbmDcBncMF20 0.71 0.75 0.73
BestCvbmDcBnc2MF20 0.71 0.71 0.71

LcUkwac BestCvbmDcBncMF100 0.75 0.77 0.76
BestCvbmDcBnc2MF100 0.75 0.74 0.74

EcBnc BestCvbmDcBnc 0.72 0.74 0.73
BestCvbmDcBnc2 0.67 0.67 0.67

EcEw BestCvbmDcBncMF20 0.74 0.78 0.76
BestCvbmDcBnc2MF20 0.72 0.72 0.72

EcUkwac BestCvbmDcBncMF100 0.78 0.79 0.78
BestCvbmDcBnc2MF100 0.73 0.74 0.73

PMs using solely distributional linguistic data

Mv
BestCvbmDcBnc2OnPm 0.33 0.40 0.36

BestPmMv 0.70 0.73 0.71
BestPmMv2 0.73 0.73 0.73

Bv BestPmMv 0.78 0.80 0.79
BestPmMv2 0.79 0.79 0.79

Other types of models

Sv

BestPmMv 0.85 0.87 0.86
BestPmMv2 0.85 0.85 0.85

BestSv 0.85 0.87 0.86
BestSv2 0.87 0.87 0.87

both the DcBnc and the Mv as input (BestPmMv2OnCvbmUsingDcBnc and Best-

CvbmDcBnc2OnPmUsingMv) achieved worse results than the non-mixed model

using the same input data (BestCvbmDcBnc2UsingDcBnc and BestPmMv2UsingMv,
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respectively) in all cases. On the other hand all count-vector-based and predic-

tive configurations performed well on all input data of the same type, as already

discussed in Section 5.2.3.

As the vectors in Sv are not predictive vectors, as opposed to the other used

semantic vectors, but are rather constructed from a knowledge graph, it was an-

ticipated that they might behave differently than the other vectors. Therefore, in

the end, we have decided to run the same two-phase heuristic analysis using the

Sv as we have done using the Mv. As a result of this, we have got the follow-

ing parameter settings to perform best on these vectors, using the MD2 dataset

(BestSv2):

• the LMod-9.1.Cu similarity measure

• P1D2 feature transformation of the weights before normalization

• L2 vector normalization

• the "Limit -0.2" option on word-feature tuple weights

The results of the best found configuration using Sv as input with the reduced

number of settings for several parameters tested in Dobó and Csirik (2019a) will

also be included in the rest of the thesis (BestSv). The BestSv2 configuration

achieved the highest scores on the MT dataset, using the Sv as underlying data.

The H score of this model is also bit higher than that of the BestPmMv2UsingSv

model, which was expected as in case of the former the parameters were opti-

mized on the same input that was used as underlying data source for the model.

When comparing our new best CVBM configuration (BestCvbmDcBnc2) to

that presented in Dobó and Csirik (2019a) (BestCvbmDcBnc), we can usually see
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an improvement when using the Dc information extraction method, but a de-

cline in case of using the Lc and Ec extraction methods. This suggests us that the

BestCvbmDcBnc configuration is a more general one that performs well for any

type of CVBM input data. Our new one still performs decently in case of any

CVBM input, however, it seems to be somewhat specialized for the Dc informa-

tion extraction method. Based on this both our old and new configurations can

be useful in the future, for different types of input, and it is worth continuing the

experiments with both. In case of the PM models, the new configuration (BestP-

mMv2) seems to be slightly better than the previous version (BestPmMv). When

looking at the results of these configurations using the Sv as underlying data, the

opposite seems to be true.

When using the Ew and the ukWaC as underlying corpus with the BestCvb-

mDcBnc and BestCvbmDcBnc2 configurations, we had to limit the words and

features to those having a minimum frequency of 20 and 100 (noted as MF20 and

MF100 in the model names), respectively, due to computational reasons. Based on

the result presented in Section 5.1.1.10 and also verified by additional tests, such

limitations have a negative impact on the results. Despite this negative effect, it

is clear that the larger the used corpus is the better the results are, having the in-

formation extracted with either the Dc, Lc or Ec method. We were not able to do

the same comparison in case of PMs as input, as all models were produced using

different input data, but most likely we would have come to the same conclusion

as in case of CVBMs.

In Dobó and Csirik (2019a) we have noted that when using raw counts as

input with the same underlying corpus in all cases, then the models using the in-

formation extraction method of Salle et al. (2016a) produce better results than the
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ones using the method of Levy et al. (2015), which in turn mostly produce better

results than the ones using the method of Dobó and Csirik (2013). As beside the

used information extraction method all other properties of the compared models

are the same, this implies that the data extraction method of Salle et al. (2016a)

is superior to that of Levy et al. (2015), which is in turn superior to that of Dobó

and Csirik (2013). This does not seem to hold with respect to the new BestCvb-

mDcBnc2 configuration, but the BestCvbmDcBnc2 seems to be a bit specialized

to the Dc information extraction method, so it might mostly be due to that.

In case of semantic vectors as input, using the Sv semantic vectors as input

produces the best results, followed by the models using Bv and Mv, in that order,

which is in line with the original results presented for those models (see Table

5.4).

As our best models achieved very similar results on all development and test

datasets as well as using different input data, we can conclude that there was no

overfitting.

5.3.3 Comparison of our best results with the state-of-the-art

Beside the MT dataset, we have also run our best models on several other test

datasets, and compared our results to that of state-of-the-art models in Table 5.4.

In our view the best evaluation metric is the H score, as it takes both the similarity

scores and the rankings returned by the models into account. Unfortunately, in

case of most methods from other studies, only the P or the S value was reported.

In such cases it was not possible to determine the H score for the method, and

thus it was only possible to compare these results with ours using the reported
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scores, and not the H score.

Table 5.4. Performance of our best models and some state-of-the-art systems on the test
datasets, evaluated on the test datasets with the help of the Pearson (P) and Spearman (S)
correlation coefficients, as well as the H scores calculated from them. Please note that the
results on the RG, MC, WC and TO datasets are rather unreliable, so conclusions based on
them should be taken cautiously, as also noted in Section 3.2. The results for the models
marked with * come from reproductions of the given model by us, to be able to report
all scores for those models. (In case of the model of Yin and Schütze (2016) this was also
necessary as the results reported in the original article were produced using only those
words that were in the vocabulary of their model, and not on the full test datasets.)

Test dataset MT MF RG MC WS SL TO
Evaluation measure P S H P S H P S H P S H P S H P S H A

Count-vector-based models using solely distributional linguistic data
Kiela and Clark (2014) - - - - 0.71 - - 0.74 - - 0.65 - - 0.58 - - - - 0.83
Baroni et al. (2014) - 0.72 - - - - 0.70 - - - - - - 0.62 - - - - 0.76
De Deyne et al. (2017) - - - - 0.75 - - 0.78 - - - - - - - - 0.37 - -
Iosif et al. (2016) - 0.76 - - 0.76 - - - - - - - - 0.70 - - - - -
Salle et al. (2016a) - - - - 0.76 - - 0.79 - - 0.82 - - - - - 0.34 - -
Levy et al. (2015) - - - - 0.78 - - - - - - - - - - - 0.43 - -
Pennington et al. (2014)* 0.80 0.80 0.80 0.80 0.80 0.80 0.77 0.77 0.77 0.81 0.83 0.82 0.70 0.71 0.71 0.43 0.41 0.42 0.90
Salle et al. (2018)* 0.81 0.81 0.81 0.80 0.81 0.81 0.79 0.76 0.78 0.82 0.82 0.82 0.70 0.73 0.72 0.43 0.42 0.42 0.80
BestCvbmDcBncUsingDcBnc 0.67 0.69 0.68 0.67 0.70 0.69 0.80 0.81 0.81 0.80 0.81 0.81 0.56 0.57 0.56 0.37 0.37 0.37 0.78
BestCvbmDcBnc2UsingDcBnc 0.71 0.71 0.71 0.71 0.70 0.70 0.74 0.73 0.73 0.83 0.85 0.84 0.58 0.58 0.58 0.40 0.39 0.40 0.81
BestCvbmDcBncMF100UsingEcUkwac 0.78 0.79 0.78 0.77 0.78 0.78 0.77 0.78 0.77 0.69 0.69 0.69 0.54 0.56 0.55 0.34 0.34 0.34 0.81
BestCvbmDcBnc2MF100UsingEcUkwac 0.73 0.74 0.73 0.72 0.74 0.73 0.60 0.65 0.62 0.56 0.58 0.57 0.58 0.58 0.58 0.36 0.34 0.35 0.70

Predictive models using solely distributional linguistic data
Wieting et al. (2016) - - - - - - - - - - - - - 0.58 - - 0.71 - -
Hill et al. (2014a) - 0.63 - - - - - - - - - - - 0.57 - - 0.52 - 0.93
Yin and Schütze (2016)* 0.74 0.73 0.73 0.73 0.72 0.72 0.79 0.79 0.79 0.86 0.88 0.87 0.65 0.67 0.66 0.48 0.47 0.47 0.88
Iosif et al. (2016) - 0.74 - - 0.75 - - - - - - - - 0.68 - - - - -
De Deyne et al. (2017) - - - - 0.79 - - 0.83 - - - - - - - - 0.43 - -
Baroni et al. (2014)* 0.78 0.80 0.79 0.78 0.80 0.79 0.83 0.84 0.84 0.84 0.84 0.84 0.68 0.73 0.71 0.46 0.46 0.46 0.89
Christopoulou et al. (2018) - 0.84 - - - - - - - - - - - 0.73 - - - - -
BestPmMvUsingMv 0.70 0.73 0.71 0.70 0.73 0.71 0.77 0.76 0.77 0.81 0.82 0.81 0.63 0.68 0.65 0.45 0.44 0.44 0.88
BestPmMv2UsingMv 0.73 0.73 0.73 0.73 0.73 0.73 0.77 0.76 0.76 0.81 0.81 0.81 0.65 0.68 0.67 0.46 0.44 0.45 0.88
BestPmMvUsingBv 0.78 0.80 0.79 0.78 0.80 0.79 0.83 0.84 0.84 0.84 0.84 0.84 0.68 0.73 0.71 0.46 0.46 0.46 0.90
BestPmMv2UsingBv 0.79 0.79 0.79 0.78 0.79 0.79 0.84 0.84 0.84 0.84 0.82 0.83 0.70 0.73 0.71 0.47 0.46 0.46 0.90

Other types of models
Faruqui and Dyer (2015) - - - - - - - 0.67 - - - - - 0.45 - - 0.58 - -
Banjade et al. (2015) - - - - - - - - - - - - - - - 0.65 0.64 0.65 -
Mrkšić et al. (2017) - - - - - - - - - - - - - - - - 0.75 - -
Recski et al. (2016) - - - - - - - - - - - - - - - - 0.76 - -
Vulić et al. (2017) - - - - - - - - - - - - - 0.76 - - 0.78 - -
Yih and Arbor (2012) - - - - - - - 0.89 - - - - - 0.81 - - - - -
Lazaridou et al. (2015) - 0.75 - - - - - - - - - - - - - - 0.37 - -
Rothe and Schütze (2017) - - - - 0.78 - - 0.83 - - 0.85 - - 0.69 - - 0.47 - -
Bruni et al. (2013) - 0.78 - - - - - - - - - - - 0.72 - - - - -
Collell et al. (2017) - - - - 0.81 - - - - - - - - 0.69 - - 0.41 - -
Lee et al. (2016) - - - - 0.83 - - 0.92 - - - - - 0.79 - - - - -
De Deyne et al. (2017) - - - - 0.87 - - 0.95 - - - - - - - - 0.68 - -
Speer et al. (2017)* 0.85 0.87 0.86 0.85 0.86 0.85 0.90 0.90 0.90 0.87 0.89 0.88 0.76 0.82 0.79 0.63 0.62 0.62 0.99
BestPmMvUsingSv 0.85 0.87 0.86 0.85 0.86 0.85 0.90 0.90 0.90 0.87 0.89 0.88 0.76 0.82 0.79 0.63 0.62 0.62 0.99
BestPmMv2UsingSv 0.85 0.85 0.85 0.85 0.85 0.85 0.89 0.86 0.88 0.86 0.86 0.86 0.77 0.82 0.80 0.64 0.62 0.63 0.99
BestSvUsingSv 0.85 0.87 0.86 0.85 0.86 0.85 0.89 0.90 0.90 0.87 0.89 0.88 0.35 0.82 0.49 0.53 0.62 0.57 0.99
BestSv2UsingSv 0.87 0.87 0.87 0.86 0.86 0.86 0.91 0.90 0.91 0.89 0.89 0.89 0.28 0.80 0.41 0.48 0.62 0.54 0.99

As expected from the results presented in Table 5.3, the scores of the BestSv2

configuration using the Sv as input are the highest in case of most test datasets.

However, it was interesting to see the significant drop in the P and thus the H

score of the former two when tested on the WS dataset, for which we do not
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yet have a good explanation. Further, this configuration has mixed results when

tested using predictive semantic vectors as input, which further shows that these

vectors are different from predictive vectors. On the other hand, our best predic-

tive configuration (BestPmMv2) performs rather well using the Sv as input vec-

tors too, although mostly slightly underperforming BestSv2, which was expected

as in case of the BestSv2 the parameters were optimized on the same input that

was used as underlying data source for the model.

When comparing the results of our new and previous (Dobó and Csirik, 2019a)

best CVBM and PM models, the same conclusions mostly seem to hold in case of

all test datasets, as we have concluded from Table 5.3 for the MT dataset.

While all other datasets are based on relatedness, the SL dataset contains sim-

ilarity scores, as also noted in Section 3.1. Most of our models achieve much

lower scores on this dataset than on the other test datasets. However, all our con-

figurations using count-vector-based or predictive input data have a rather low

performance on this dataset, while the same configurations using the knowledge-

graph-based Sv as input usually achieve considerably better results. So the usu-

ally lower results on the SL dataset seems to mostly depend on the input data

used, and not the chosen configuration.

Our best model overall (BestSv2UsingSv) achieved better results than any pre-

vious model on the most important test datasets. On the other hand, when con-

sidering only PMs, our best results are a little lower than that of Christopoulou

et al. (2018). However, as we were unable to acquire the model of Christopoulou

et al. (2018), we had to use the semantic vectors of the second best PM (at least

according to our knowledge) as input, namely that of Baroni et al. (2014). We

were able to achieve basically the same results with our best predictive configu-
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ration on the Bv vectors as Baroni et al. (2014) with their original configurations.

However, our results are not directly comparable with that of Christopoulou et al.

(2018) due to the differences in the used input data.

Further, when only looking at CVBMs, our best results are also a little lower

than previous state-of-the-art. However, the underlying corpora used in the pre-

vious state-of-the-art model is approximately 30 times as large as the one used

in our best models. Unfortunately, it would have been unmanageable to test our

configurations (not to mention running our whole heuristic analysis) with such

large corpora with the resources available to us. As the size of the used corpus

has a large impact on the results, as it could also be seen in Table 5.3, our best

configurations could only be reliably compared to that of others if the used input

data was also the same, which is not true here.

So, it is not possible to reliably compare our best configurations with previ-

ous state-of-the-art configurations based on the results reported in Table 5.4 in

case of PMs and CVBMs. Thus, these can only be viewed as supplementary re-

sults, while conclusions should not be taken from them. Therefore, in order to be

able to present a reliable comparison, we have done tests with multiple state-of-

the-art configurations in such a way that the same input data was used for both

those configurations and for our ones too (see Table 5.5). For this, we have used

state-of-the-art count-vector-based methods to extract information from different

corpora, and ran tests using these as input, as well as testing on some state-of-

the-art semantic vectors.

In those cases where count-vector-based extracted information was used as

input (Lc* and Ec*), all 10 of our inspected parameters could be tested. Where

directly the obtained semantic vectors were used as input (Ev, Bv, Pv, Sv), only
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4 of the 10 considered parameters could be tested as the other parameters could

have only been used during the construction of the vectors, which was already

done. In case of CVBM semantic vectors (Pv and Ev), this unfortunately reduced

the number of parameters that could be tested from 10 to 4. In case of the other

semantic vectors it did not result in any disadvantages, as in case of such models

we could only have used the same 4 parameters by default anyway.

In case of semantic vectors used as input, our best results were always at least

as good as that of the original configuration (OSC) proposed by the authors for

the given model, with a slight advantage in a couple of cases. On the other hand,

when using the count-vector-based information extracted from different corpora,

we achieved better results than the OSC proposed both by Levy et al. (2015) and

by Salle et al. (2016a) in their state-of-the-art model in case of all input data, with

a considerable margin in most cases. During these tests too, using larger input

corpora clearly improved the results.

5.3.4 Discussion of results for English

During our heuristic approach we were able to find such novel configurations

using the counts of Dobó and Csirik (2013) on the British National Corpus, the

predictive semantic vectors of Mikolov et al. (2013b) and the semantic vectors

of Speer et al. (2017) constructed from a knowledge graph, incorporating novel

parameter settings in all three, that significantly outperform conventional config-

urations.

Out of the best models found for the different input data, the one using the

semantic vectors of Speer et al. (2017) achieves considerably better results than
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Table 5.5. Comparison of our best configurations with state-of-the-art models, with the
original configuration (OSC) proposed by the authors for those models, using the same
input data for the OSCs and for our best configurations, evaluated on the MT dataset.

Input data Configuration # of tested parameters P S H
CVBMs using solely distributional linguistic data

LcBnc

OSC - 0.61 0.64 0.63
Cos-PPmi - 0.52 0.57 0.55

BestCvbmDcBnc 10 0.65 0.79 0.67
BestCvbmDcBnc2 10 0.61 0.61 0.61

LcEw

OSC - 0.69 0.73 0.71
Cos-PPmi - 0.60 0.69 0.64

BestCvbmDcBncMF20 10 0.71 0.75 0.73
BestCvbmDcBnc2MF20 10 0.71 0.71 0.71

LcUkwac

OSC - 0.72 0.73 0.73
Cos-PPmi - 0.62 0.70 0.66

BestCvbmDcBncMF100 10 0.75 0.77 0.76
BestCvbmDcBnc2MF100 10 0.75 0.74 0.74

EcBnc

OSC - 0.59 0.58 0.58
Cos-PPmi - 0.56 0.58 0.57

BestCvbmDcBnc 10 0.72 0.74 0.73
BestCvbmDcBnc2 10 0.67 0.67 0.67

EcEw

OSC - 0.62 0.62 0.62
Cos-PPmi - 0.60 0.66 0.63

BestCvbmDcBncMF20 10 0.74 0.78 0.76
BestCvbmDcBnc2MF20 10 0.72 0.72 0.72

EcUkwac

OSC - 0.76 0.77 0.77
Cos-PPmi - 0.61 0.63 0.62

BestCvbmDcBncMF100 10 0.78 0.79 0.78
BestCvbmDcBnc2MF100 10 0.73 0.74 0.73

Pv

OSC (Cos) - 0.80 0.80 0.80
Cos-Zero0 - 0.73 0.74 0.74
BestPmMv 4 0.80 0.80 0.80
BestPmMv2 4 0.82 0.82 0.82

Ev

OSC (Cos) - 0.81 0.81 0.81
Cos-Zero0 - 0.77 0.78 0.78
BestPmMv 4 0.81 0.81 0.81
BestPmMv2 4 0.79 0.79 0.79

PMs using solely distributional linguistic data

Bv

OSC (Cos) - 0.78 0.80 0.79
Cos-Zero0 - 0.74 0.76 0.75
BestPmMv 4 0.78 0.80 0.79
BestPmMv2 4 0.79 0.79 0.79

Other types of models

Sv

OSC (Cos) - 0.85 0.87 0.86
Cos-Zero0 - 0.82 0.83 0.82
BestPmMv 4 0.85 0.87 0.86
BestPmMv2 4 0.85 0.85 0.85

BestSv 4 0.85 0.87 0.86
BestSv2 4 0.87 0.87 0.87
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the other two, and our best predictive model has only slightly higher scores than

our best count-vector-based model. It is clear from our results that different pa-

rameter settings have to be used in case of different types of input. When looking

at our count-vector-based model compared to the other two models, then most

likely this is partially due to the fact that the settings of the different parameters

influence each other, and in case of using semantic vectors as input only 4 of the

10 parameters could be used. On the other hand, a configuration working well

using a given count-vector-based or predictive input also works well using other

input of the same type.

It is clear from the results that most of our models are much less suitable to de-

termine the similarity of two words, than they are to determine their relatedness.

However, we could conclude from the experiments that this mostly depends on

the input data, and not the used configuration, meaning that with input data tai-

lored for similarity our best configurations would be most likely successful in

determining the similarity of words.

It is easy to see that using a larger corpus as input for count-vector-based mod-

els produces considerably better results, despite having to reduce the number of

words and features used due to computational reasons. This is most likely true

for predictive models too.

Our best model overall, having the BestSv2 configuration and using the Sv

vectors constructed from a knowledge graph as input, achieved state-of-the-art

results surpassing all previous models on the most important test datasets. On

the other hand, when considering only CVBMs and PMs, our best results are a

little lower than previous state-of-the-art. However, it would have been unman-

ageable to test our configurations (not to mention running our whole heuristic
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analysis) with such large corpora as used in the previous state-of-the-art CVBM

model with the resources available to us. Further, we were not able to acquire the

model of Christopoulou et al. (2018) to try their semantic vectors as input.

Unfortunately, different configurations can only be reliably compared to each

other if the used input data is the same for all of them. Therefore, our most

important tests were those where we used the same input data for state-of-the-

art configurations and for our newly proposed configurations too. During these

tests, with any set of semantic vectors as input, our best results were always at

least as good as that of the state-of-the-art original configuration proposed by the

authors of the given model, with a slight advantage in a couple of cases, even

though in these cases only 4 of our 10 examined parameters could be tested.

Moreover, with our novel combination of the settings of the 10 parameters

tested when extracted information of state-of-the-art count-vector-based models

were used, we could clearly outperform the original configurations in case of all

input data, with a considerable margin in most cases. These reflect our previous

results and intuition, as experienced during our heuristic analysis.

Based on these results we believe that our best CVBM and PM configurations

could also achieve absolute state-of-the-art results in their category if they were

used with the same input data as previous state-of-the-art models. Unfortunately,

testing these was not possible within this research.

The best configurations found in the second phase of our heuristic approach

are not simply the combinations of the best parameter settings found during the

first phase, when the parameters were tested one by one. Moreover, by including

further possible settings for several parameters in our analysis in Dobó and Csirik

(2019b) compared to Dobó and Csirik (2019a), several parameter settings in our
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newly found best configuration are considerably different compared to the best

configuration found in Dobó and Csirik (2019a). These clearly show that our

intuition was correct that the settings of the different parameters are dependent

on each other, and instead of testing the parameters separately they need to be

tested together, also considering the interactions between them.

To sum up, the main findings of our analysis are that

• we could outperform previous state-of-the-art results when using raw counts

as input and thus all 10 parameters could be optimized,

• we were able to find such configurations that perform at least as well, with

a slight superiority in a couple of cases, as previous state-of-the-art models,

when using semantic vectors as input and thus only 4 out of 10 parameters

could be optimized,

• our best model, BestSv2UsingSv, based on semantic vectors constructed

from a knowledge graph, achieves absolute state-of-the-art results com-

pared to all previous models of any type on the most important test datasets.



CHAPTER 6

Comparison of our findings for English,

Spanish and Hungarian

To be able to compare our findings for the different languages, we have done the

same extensive analysis for Spanish and Hungarian as for English (described in

Section 4.1 in detail, and compared the findings of these. For reproducibility and

transparency, we plan to make our most important data, code and results with

respect to all languages publicly available at:

https://github.com/doboandras/dsm-parameter-analysis/.
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6.1 Results of the first phase

As also described in Section 5.1, during the first phase of our analysis multiple

runs were done for each setting of every parameter, and the most promising ones

in case of each parameter were selected to be included in the second phase. In

case of English, we used half of the development part of the MEN dataset for eval-

uation, while for Spanish the Spanish WordSimilarity-353 dataset and for Hun-

garian half of the Hungarian TOEFL dataset was employed. The top 5 performing

settings for each parameter are listed in Table 6.1 in case of each language.

6.2 Results of the second phase

In the second phase all possible combinations of the selected settings of each pa-

rameter were tested in case of all three languages, in order to find the best con-

figuration for all languages, as also described in Section 5.2. This meant testing

40860, 44544 and 28576 configurations for English, Spanish and Hungarian, re-

spectively. The second half of the development part of the MEN dataset was

used for testing in case of English, while the Moldovan dataset and the second

part of the Hungarian TOEFL dataset were used for Spanish and Hungarian, re-

spectively. A selection of the second phase results for the three languages are

presented in Tables 5.1, 6.2 and 6.3, respectively.
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6.3 Results on the test datasets

The best configuration for English was tested on the test part of the MEN dataset

(MT), and the best configurations for Spanish and Hungarian were tested on the

respective version of the Rubenstein-Goodenough dataset (RG) to give us the

final results. The best configuration of each language was also evaluated on the

datasets of the other languages, to provide us a way of comparison. The results

of these test can be found in Table 6.4.

6.4 Evaluation and discussion

In this section we evaluate our results presented in the previous sections. Please

note that the scores are not fully comparable across languages, even when con-

sidering the same datasets on different languages, as except for the Moldovan

dataset all of the used Spanish and Hungarian datasets were constructed by trans-

lating the English versions, and thus the results on them can be distorted and

less reliable than on their English counterparts. Furthermore, the Spanish and

Hungarian datasets, especially the latter ones, are rather small, which also makes

them less reliable than the English ones.

As there are many differences in the syntax and morphology of the different

languages, we anticipated from the beginning that there will be at least some

small differences in our findings for the different languages. However, our intu-

ition was that our findings for the different languages will be subtle, and we will

be able to find good and rather language-independent configurations. As English

and Spanish belong to the family of Indo-European languages, while Hungarian
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does not, we expected that the results for English and Spanish will be similar due

to this. Further, as both Spanish and Hungarian have very rich morphology, we

expected that there will also be a higher similarity between our results for Span-

ish and Hungarian because of this. We anticipated that the least similarities will

be between English and Hungarian, as these languages are the least similar to

each other.

In the first phase of our analysis we could observe that some of the param-

eters worked exactly the same way or very similarly across languages. These

parameters were the weighting scheme, feature transformation, vector normal-

ization and minimum limits on word-feature frequencies. These findings are in

line with our initial intuitions. Dimensionality reduction seemed to be similar

for English and Spanish, while a bit different for Hungarian. Smoothing seemed

to perform similarly for Spanish and Hungarian, while differently for English.

Minimum limits on word-feature weights seem to behave a bit differently for all

three languages. However, it was interesting to see that the results for vector sim-

ilarity measures, stop-word filtering and minimum limits on feature frequencies

were rather similar for English and Hungarian, but different for Spanish, which

is contrary to what we anticipated.

In the second phase, although there were similarities in the found best config-

urations across the different languages, one could also observe many differences.

Here too, the weighting schemes, feature transformation and minimum limits on

word-feature frequencies were mostly similar. Compared to the first phase vector

similarity, smoothing and minimum limits on feature frequencies were also alike

for all languages. The other parameters showed a different behavior for at least

one language compared to the others.
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As also noted in Section 5.2.1, there were actually two distinct configurations

with the same best score for English, and they were only different in their DimRed

parameter setting. We have chosen the one with the "IslamInkpen 0.05" setting as

best English configuration, as that setting achieved better performance in the first

phase than the "NoDimRed" setting in the other configuration. Furthermore, for

Hungarian there were four configurations with the same best score. We have used

a similar approach in selecting the best version, as we have done in case of the

English version. However, as these different configurations with the same best

results have different settings in case of some parameters, one has to be careful

drawing conclusions from the best configurations of the different languages, and

thus any conclusions drawn from them should be taken with some reservations.

The final conclusions for the parameters are the following:

• VecSim: for all languages measures based on cosine similarity achieve the

best results

• Weight: measures based on PMI dominate the top of the table by far in case

of all languages

• FeatTransf: no transformation and transforming the word-feature weights

after normalization preforms best for all languages

• DimRed: dimensionality reduction seems to help in most situations: while

in case of English the IslamInkpen version performed the best alongside no

dimensionality reduction, for Spanish and Hungarian SVD is superior to

these options
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• Smooth: the no smoothing option clearly outperforms all others for all lan-

guages

• VecNorm: for English the L1 option clearly seems to be the best, while for

Spanish and Hungarian the best configurations use either L1 or L2 normal-

ization, and most configurations achieve the same or very similar results

with either

• StopW: stop-word filtering seems to improve the results to some extent in

case of Spanish, while it does not in case of English and Hungarian

• MinWFFreq: no limit is by far superior to the other options for all languages

• MinWFWeight: no limit seems to be the best option in case of Spanish and

Hungarian, while the Zero option with different parameters seems to excel

in case of English

• MinFFreq: a low limit or no limit seems to be best in case of all languages (as

noted before, in case of SVD for Spanish we had to use a limit of 3 instead

of no limit for computational reasons)

As we anticipated, there were parameters where the results for Spanish and

Hungarian were similar, but different for English. However, it was interesting

that we did not find any parameters that were alike for English and Spanish,

but different for Hungarian. Further, to our surprise we found such a parame-

ter, where the results were similar for English and Hungarian, but different for

Spanish. These latter findings were in contrast to our initial intuition.

Although all Spanish scores in the second phase are much lower than the En-

glish and Hungarian ones, these are almost completely due to the dataset used,
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and do not mean that the found Spanish configurations are worse than their En-

glish and Hungarian counterparts, as it was noted in the beginning of this section

and can be seen from our results on the test datasets (see Table 6.4) too. It simply

suggests that the dataset used for Spanish in this phase is considerably tougher

than the ones used for English and Hungarian.

It was interesting to see that in the cross-language experiments on the test

datasets the order of the best configurations of the different languages with re-

spect to their performance is different in case of the datasets of the three lan-

guages. The best English configuration was always superior to its Spanish coun-

terpart, but it has no absolute superiority over the best Hungarian configuration.

Further, there is also no clear ranking between the best Spanish and Hungarian

configurations. It was also interesting to see that in case of the Spanish dataset,

although the best Spanish configuration achieved rather good results, actually it

achieved the lowest score out of the three best configurations tested. It was the

same for the best Hungarian configuration on the Hungarian dataset too.

All in all, there seems to be no clear ranking between the best configurations

of the different languages, and all of them achieved good results on the datasets

of all languages. So, although we got different best configurations for the dif-

ferent languages, all of them seem to be rather language-independent. These

findings give us a strong intuition that our heuristic approach was good, and that

our found best configurations for all languages and their results are robust and

reliable.

The best configurations found in the second phase are not simply made up of

the best parameter settings in the first phase in case of Spanish and Hungarian

either. This further proves that our intuition was correct, and the parameters of
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DSMs need to be tested simultaneously, rather than separately.
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Table 6.1. The top 5 performing setting for each parameter in case of all 3 languages, in
descending order of H scores

Parameter English Spanish Hungarian
Setting H Setting H Setting H

VecSim

PearsMbAdjCosMod-3.Lb 0.71 LinHindleRMod-7.1.2.Cu 0.37 PearsMbMod-1.Lb 0.80
PearsMbAdjCosMod-4.Lb 0.71 LinHindleRMod-6.1.2.Cu 0.36 PearsMbMod-4.Lb 0.80
PearsMbAdjCosMod-2.Lb 0.71 LinHindleRMod-1.1.2.Cu 0.36 MbMod-6.Lb 0.80
PearsMbAdjCosMod-6.Lb 0.71 LinHindleRMod-7.1.2.Sq 0.36 PearsMbMod-5.Lb 0.80

PearsMbAdjCosMod-6.Sigm 0.71 LinHindleRMod-3.1.2.Sq 0.36 PearsMbMod-2.Lb 0.80

Weight

PmiAl-Tc3Tw0S2P4 0.70 PmiAlUnis-Tc4Tw3S2P2 0.38 PmiAl-Tc4Tw2S1P1 0.85
PmiAl-Tc3Tw0S2P0 0.70 PmiAlUnis-Tc4Tw3S2P1 0.38 PmiAlUnisAm-Tc0Tw3S2P1 0.85

PmiAlUnis-Tc3Tw0S0P4 0.70 PmiAlUnis-Tc4Tw2S1P1 0.38 PmiAlUnisAm-Tc0Tw2S2P2 0.85
PmiAlUnis-Tc3Tw0S0P0 0.70 PmiAlUnisAm-Tc4Tw3S2P5 0.38 PmiAl-Tc4Tw3S0P2 0.85

PmiAl-Tc4Tw0S2P5 0.70 PmiAlUnis-Tc4Tw2S1P2 0.38 PmiAlUnisAm-Tc0Tw2S2P1 0.85

FeatTransf

Weight AftNorm Lb 0.67 Weight AftNorm Lb 0.34 Weight AftNorm Sqrt 0.85
Freq Sq 0.67 Weight AftNorm Sigm 0.34 Weight BefNorm Sqrt 0.85

Weight BefNorm Sigm 0.67 NoTransf 0.34 Weight AftNorm Sigm 0.80
Weight AftNorm Sigm 0.67 Weight BefNorm Lb 0.34 NoTransf 0.80

NoTransf 0.67 Weight BefNorm Sigm 0.34 Weight AftNorm Lb 0.80

DimRed

SVD 200 0.70 SVD 100 0.37 IslamInkpen 0.025 0.80
SVD 100 0.70 SVD 200 0.36 IslamInkpen 0.25 0.80
SVD 300 0.69 SVD 500 0.35 SVD 200 0.80
SVD 500 0.68 SVD 300 0.34 IslamInkpen 0.005 0.78

IslamInkpen 0.05 0.67 IslamInkpen 0.01 0.34 IslamInkpen 0.01 0.78

Smooth

NoSmooth 0.67 Freq KNS 0.34 Freq KNS 0.83
Weight KNS 0.65 Freq MDKNSPOMD 0.34 Freq MDKNSPOMD 0.80

Freq KNS 0.62 NoSmooth 0.34 NoSmooth 0.78
Freq MDKNSPOMD 0.62 Freq MKNS 0.33 Weight KNS 0.75

Freq MKNS 0.57 Weight KNS 0.31 Freq MKNS 0.73

VecNorm
L2 0.67 L2 0.34 L2 0.80
L1 0.67 L1 0.34 NN 0.78

NN 0.67 NN 0.34 L1 0.75

StopW false 0.67 true 0.34 false 0.80
true 0.67 false 0.34 true 0.75

MinWFFreq

NoLimit 0.67 NoLimit 0.34 NoLimit 0.80
2 0.60 2 0.30 3 0.68
3 0.57 3 0.29 2 0.63
5 0.54 7 0.28 5 0.58
7 0.49 5 0.27 7 0.55

MinWFWeight

Zero 0.05 0.68 Zero -0.2 0.34 Zero 0 0.80
Zero 0.1 0.68 Limit -0.1 0.34 Limit -0.02 0.80

Zero -0.05 0.68 Limit -0.2 0.34 Zero -0.05 0.80
Limit -0.01 0.67 Limit -0.5 0.34 Limit -0.01 0.80
Zero 0.02 0.67 NoLimit 0.34 Zero -0.01 0.80

MinFFreq

NoLimit 0.67 100 0.36 2 0.80
2 0.67 50 0.36 NoLimit 0.80
3 0.67 30 0.35 3 0.80
5 0.67 20 0.35 20 0.80
7 0.67 15 0.35 15 0.80
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Table 6.2. Second-phase performance of a selection of configurations for Spanish on the
Moldovan dataset.

Abbrev Parameter settings P S H

BestCvbmDcEsWiki

VecSim Weight FeatTransf

0.43 0.44 0.44Cos Pmi-Tc1Tw3S2P0 Weight AftNorm Lb
DimRed Smooth VecNorm StopW MinWFFreq MinWFWeight MinFFreq
SVD 100 NoSmooth L2 true NoLimit NoLimit 3

-

VecSim Weight FeatTransf

0.43 0.43 0.43Cos PmiAl-Tc3Tw3S2P0 Weight AftNorm Lb
DimRed Smooth VecNorm StopW MinWFFreq MinWFWeight MinFFreq
SVD 100 NoSmooth L2 true NoLimit NoLimit 3

-

VecSim Weight FeatTransf

0.43 0.43 0.43Cos Pmi-Tc1Tw3S2P0 Weight AftNorm Lb
DimRed Smooth VecNorm StopW MinWFFreq MinWFWeight MinFFreq
SVD 100 NoSmooth L2 true NoLimit NoLimit 100

-

VecSim Weight FeatTransf

0.43 0.43 0.43Cos PmiAl-Tc3Tw3S2P0 Weight AftNorm Lb
DimRed Smooth VecNorm StopW MinWFFreq MinWFWeight MinFFreq
SVD 100 NoSmooth L2 false NoLimit NoLimit 3

-

VecSim Weight FeatTransf

0.43 0.43 0.43Cos Pmi-Tc1Tw3S2P0 Weight AftNorm Lb
DimRed Smooth VecNorm StopW MinWFFreq MinWFWeight MinFFreq
SVD 100 NoSmooth L1 true NoLimit NoLimit 3

-

VecSim Weight FeatTransf

0.40 0.39 0.39PearsMbAdjCosMod-5.Lb NPmiAl-Tc4Tw4S0P0 Weight AftNorm Lb
DimRed Smooth VecNorm StopW MinWFFreq MinWFWeight MinFFreq

NoDimRed NoSmooth NN true NoLimit Zero -0.2 NoLimit

Cos-Pmi

VecSim Weight FeatTransf

0.34 0.34 0.34Cos Pmi NoTransf
DimRed Smooth VecNorm StopW MinWFFreq MinWFWeight MinFFreq

NoDimRed NoSmooth NN false NoLimit NoLimit NoLimit

Cos-PPmi

VecSim Weight FeatTransf

0.34 0.33 0.33Cos Pmi NoTransf
DimRed Smooth VecNorm StopW MinWFFreq MinWFWeight MinFFreq

NoDimRed NoSmooth NN false NoLimit Zero 0 NoLimit
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Table 6.3. Second-phase performance of a selection of configurations for Hungarian on
the second part of the Hungarian TOEFL dataset.

Abbrev Parameter settings A

BestCvbmDcHuWiki

VecSim Weight FeatTransf

0.65MbCosAm NPmiAlpha-Tc4Tw4S0P4 Weight AftNorm Sqrt
DimRed Smooth VecNorm StopW MinWFFreq MinWFWeight MinFFreq
SVD 200 NoSmooth L2 false NoLimit NoLimit 2

-

VecSim Weight FeatTransf

0.65MbCosAm NPmiAlpha-Tc4Tw4S0P4 Weight AftNorm Sqrt
DimRed Smooth VecNorm StopW MinWFFreq MinWFWeight MinFFreq
SVD 200 NoSmooth L1 false NoLimit NoLimit 2

-

VecSim Weight FeatTransf

0.65Cos NPmiAlpha-Tc4Tw4S0P4 Weight AftNorm Sqrt
DimRed Smooth VecNorm StopW MinWFFreq MinWFWeight MinFFreq
SVD 200 NoSmooth L2 false NoLimit NoLimit 2

-

VecSim Weight FeatTransf

0.65Cos NPmiAlpha-Tc4Tw4S0P4 Weight AftNorm Sqrt
DimRed Smooth VecNorm StopW MinWFFreq MinWFWeight MinFFreq
SVD 200 NoSmooth L1 false NoLimit NoLimit 2

-

VecSim Weight FeatTransf

0.63PearsMbMod-1.Lb NPmiAlpha-Tc4Tw4S0P4 Weight AftNorm Sqrt
DimRed Smooth VecNorm StopW MinWFFreq MinWFWeight MinFFreq
SVD 200 NoSmooth L2 false NoLimit NoLimit 2

-

VecSim Weight FeatTransf

0.60PearsMbMod-1.Lb Unis-Tc4Tw4S0P1 Weight AftNorm Sqrt
DimRed Smooth VecNorm StopW MinWFFreq MinWFWeight MinFFreq

NoDimRed NoSmooth L2 false NoLimit NoLimit 2

Cos-PPmi

VecSim Weight FeatTransf

0.53Cos Pmi NoTransf
DimRed Smooth VecNorm StopW MinWFFreq MinWFWeight MinFFreq

NoDimRed NoSmooth NN false NoLimit Zero 0 NoLimit

Cos-Pmi

VecSim Weight FeatTransf

0.50Cos Pmi NoTransf
DimRed Smooth VecNorm StopW MinWFFreq MinWFWeight MinFFreq

NoDimRed NoSmooth NN false NoLimit NoLimit NoLimit

Table 6.4. Results on the test datasets, in descending order of H scores

Lang Test set Input data Configuration P S H

En MT
DcBnc BestCvbmDcBnc2 0.71 0.71 0.71

DcHuWiki BestCvbmDcHuWiki 0.67 0.68 0.67
DcEsWiki BestCvbmDcEsWiki 0.63 0.63 0.63

Es RG
DcHuWiki BestCvbmDcHuWiki 0.83 0.83 0.83

DcBnc BestCvbmDcBnc2 0.82 0.80 0.81
DcEsWiki BestCvbmDcEsWiki 0.80 0.79 0.80

Hu RG
DcBnc BestCvbmDcBnc2 0.73 0.72 0.72

DcEsWiki BestCvbmDcEsWiki 0.65 0.61 0.63
DcHuWiki BestCvbmDcHuWiki 0.58 0.68 0.62
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CHAPTER 7

Conclusions

In this thesis we have presented a very detailed and systematic analysis of the

possible parameters used during the creation and comparison of feature vectors

in distributional semantic models, for English, Spanish and Hungarian, filling

a serious research gap. We have identified 10 important parameters of count-

vector-based models and 4 relevant ones in case of using semantic vectors as

input, and tested numerous settings for all of them. Our analysis included novel

parameters and novel parameter settings, and tested all parameters simultane-

ously, thus also taking the possible interaction between the different parameters

into account. To our best knowledge, we are the first to do such a detailed anal-

ysis for these parameters, and also to do such an extensive comparison of them

across multiple languages.
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With our two-step heuristic approach we were searching for the best config-

urations for all three languages, and were able to find such novel ones, many

of them also incorporating novel parameter settings, that significantly outper-

formed conventional configurations. Although we have used a heuristic ap-

proach for the search due to the vast number of possible combinations, we have

been able to verify the validity of this approach and the reliability and soundness

of its results. Further, we have also verified that a configuration performing well

on given input data also works well on other input data of the same type.

In accordance with our intuition, there were several parameters that worked

very similarly in case of all three languages. We also found such parameters that

were alike for Spanish and Hungarian, and different for English, which we also

anticipated. However, it was interesting to see that there was such a parameter

that worked similarly for English and Hungarian, but not for Spanish, and we

did not find any parameters that worked similarly for the two Indo-European

languages, but differently for Hungarian. Although we have found that the very

best results are produced by different configurations for the different languages,

our cross-language tests showed that all of them work rather well for all lan-

guages. Based on this we think that we could find such configurations that are

rather language-independent, and give robust and reliable results.

To be able to compare our results with the previous state-of-the-art, we have

run such tests where the same data was used as input for both the previous state-

of-the-art configurations and our configurations. In case of using raw counts as

input and thus being able to optimize all 10 of our examined parameters, our best

configurations contained novel parameter settings and clearly outperformed pre-

vious state-of-the-art configurations, with a considerable margin in most cases.
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When using semantic vectors as input and thus only being able to optimize 4

out of 10 parameters, our best configurations, also incorporating novel param-

eter settings, performed at least as well as the previous state-of-the-art, with a

slight superiority in a couple of cases. Actually, our best model achieved abso-

lute state-of-the-art results compared to all previous models of any type on the

most important test datasets. Based on these results we think that our analysis

was successful, and we were able to present such new parameter settings and

new configurations that are superior to the previous state-of-the-art.

As it could be seen, the size of the input corpus, as well as the used infor-

mation extraction method greatly influences the results. Therefore we think that

doing an analysis similar to our current one for the information extraction phase

of DSMs would be a principal direction for future research. Further, in our opin-

ion it would be important to test our proposed new configurations using cor-

pora magnitudes larger than that we could use. It would be even better if our

whole heuristic analysis could also be repeated on these huge corpora. Further,

although our results seem rather robust and reliable for Spanish and Hungar-

ian too, it would be interesting to redo our analysis on larger and more reliable

Spanish and Hungarian datasets, when such datasets will become available in

the future.

We think that with this study we significantly contributed to the better under-

standing of the working and properties of DSMs. Although fully reliable conclu-

sions from our results can only be drawn with respect to DSMs, we think that

similar conclusions would hold for other systems based on vector space models

too. So in our view our results could also be useful (with some reservations) out-

side the scope of DSMs, in case of other NLP and non-NLP problems using vector
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space models too.



CHAPTER 8

Summary

8.1 Introduction

For many natural language processing (NLP) problems, including information re-

trieval (Hliaoutakis et al., 2006), spelling correction (Budanitsky and Hirst, 2001)

and noun compound interpretation (Dobó and Pulman, 2011) among many oth-

ers, it is crucial to determine the semantic similarity or semantic relatedness of

words. While relatedness takes a wide range of relations between words (includ-

ing similarity) into account, similarity only considers how much the concepts

denoted by the words are truly alike. Thus similarity entices relatedness, but not

vice versa. For example, the words "bicycle" and "motorbike" are similar, as both

denote 2-wheeled vehicles, and thus they are also related. On the other hand, the
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words "postman" and "mail" are highly related, as usually mails are delivered by

postmen, and yet they are not similar, as they denote rather different concepts.

Further, the words "furnace" and "voyage" are neither similar nor related.

8.1.1 Motivation

Most models are based on the distributional hypothesis of meaning (Harris, 1954),

and thus calculate this similarity or relatedness using distributional data extracted

from large corpora. These models can be collectively called as distributional se-

mantic models (DSMs) (Baroni and Lenci, 2010; Baroni et al., 2014). In these mod-

els first possible features are identified, usually in the form of context words,

and then a weight is assigned for each word-feature pair using complex meth-

ods, thus creating feature vectors for all words. The similarity or relatedness of

words are then calculated by comparing their feature vectors using vector sim-

ilarity measures. Although DSMs have many possible parameters, a truly com-

prehensive study of these parameters, also fully considering the dependencies

between them, is still missing and would be needed, as also suggested by Levy

et al. (2015).

Most papers presenting DSMs focus on only one or two aspects of the prob-

lem, and take all the other parameters as granted with some standard setting.

For example, the majority of studies simply use cosine as vector similarity mea-

sure (e.g. Bruni et al., 2013; Baroni et al., 2014; Speer et al., 2017; Salle et al., 2018)

and/or (positive) pointwise mutual information as weighting scheme (e.g. Islam

and Inkpen, 2008; Hill et al., 2014b; Salle et al., 2018) out of convention. And even

in case of the considered parameters, usually only a handful of possible settings
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are tested for. Further, there are also such parameters that are completely ignored

by most studies and have not been truly studied in the past, not even separately

(e.g. smoothing, vector normalization or minimum feature frequency). What’s

more, as these parameters can influence each other greatly, evaluating them sep-

arately, one-by-one, would not even be sufficient, as that would not account for

the interaction between them.

There are a couple of studies that consider several parameters with multiple

possible settings, such as Lapesa and Evert (2014) and Kiela and Clark (2014),

but even these are far from truly comprehensive, and do not fully test for the

interaction between the different parameters. So, although an extensive analy-

sis of the possible parameters and their combinations would be crucial, as also

suggested by (Levy et al., 2015), there has been no research to date that would

have evaluated these truly comprehensively. Moreover, despite the fact that the

best parameter settings for the parameters can differ for different languages, the

vast majority of papers consider DSMs for only one language (mostly English),

or consider multiple languages but without a real comparison of findings across

languages. In this thesis we would like to address these gaps.

8.1.2 Aims and objectives

DSMs have two distinct phases in general. In the first phase statistical informa-

tion (e.g. raw counts) is extracted from raw data (e.g. a large corpus of raw text),

in the form of statistical distributional data. In the second phase, feature vectors

are created from the extracted information for each word and these vectors are

then compared to each other to calculate the similarity or relatedness of words.
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In our study we take the distributional information extracted in the first phase

as already granted, and present a systematic study simultaneously testing all im-

portant aspects of the creation and comparison of feature vectors in DSMs, also

caring for the interaction between the different parameters.

We have chosen to only study the second phase of the DSMs, as the two phases

are relatively distinct and independent from each other, and testing for every sin-

gle possible combination of the parameter settings in the second phase is already

unfeasible due to the vast number of combinations. So instead of a full analy-

sis we already had to use a heuristic approach. Thus also trying to test for the

parameters of the first phase (e.g. source corpus, context type (window-based

or dependency-based) and context size) simultaneously would be unreasonable

and unmanageable, and is out of scope of this study. Therefore we have omitted

the examination of this phase completely, with one exception to this.

DSMs relying on information extracted from static corpora have two major

categories, based on the type of their first phase: count-vector-based (CVBM)

and predictive models (PM; also called word embeddings) (Baroni et al., 2014).

In order to get a more complete view and due to the huge popularity of predictive

models in recent years, in addition to using information extracted from a corpus

using a count-vector-based model, we have also done some experiments with in-

formation extracted by a predictive model in case of English. Further, later on we

also extended our analysis with a model based on semantic vectors constructed

from a knowledge graph. Our intuition was that there will be a single config-

uration that achieves the best results in case of all types of models. However,

please note that in the latter case only a part of the considered parameters could

be tested for due to the characteristics of such models. That is part of the reason
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why we have focused on count-vector-based DSMs more.

During our research we have identified altogether 10 important parameters

for the second phase of count-vector-based DSMs, such as vector similarity mea-

sures, weighting schemes, feature transformation functions, smoothing and di-

mensionality reduction techniques. However, only 4 of these parameters are

available when predictive or knowledge-graph-based semantic vectors are used

as input, as in case of such input the raw counts are not available any more, the

weighted vectors are already constructed and their dimensions are usually also

reduced.

In the course of our analysis we have simultaneously evaluated each parame-

ter with numerous settings in order to try to find the best possible configuration

(configuration) achieving the highest performance on standard test datasets. We

have done our extensive analysis for English, Spanish and Hungarian separately,

and then we have compared our findings for the different languages.

For some of the tested parameters a large number of possible settings were

tested, more than a thousand in some cases, resulting in trillions of possible com-

binations altogether. While of course also testing the conventionally used param-

eter settings, we also proposed numerous new variants in case of some parame-

ters. Further, we have tested a vast number of novel configurations, with some

of these new configurations considerably outperforming the standard configura-

tions that are conventionally used, and thus achieving state-of-the-art results.

First we have done our analysis for English and evaluated the results exten-

sively (Dobó and Csirik, 2019a). Then we have repeated the same analysis, with

an increased number of settings for several parameters, for English, Spanish and

Hungarian, and compared the findings across the different languages (Dobó and
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Csirik, 2019b).

8.2 Conclusions

In this thesis we have presented a very detailed and systematic analysis of the

possible parameters used during the creation and comparison of feature vectors

in distributional semantic models, for English, Spanish and Hungarian, filling

a serious research gap. We have identified 10 important parameters of count-

vector-based models and 4 relevant ones in case of using semantic vectors as

input, and tested numerous settings for all of them. Our analysis included novel

parameters and novel parameter settings, and tested all parameters simultane-

ously, thus also taking the possible interaction between the different parameters

into account. To our best knowledge, we are the first to do such a detailed anal-

ysis for these parameters, and also to do such an extensive comparison of them

across multiple languages.

With our two-step heuristic approach we were searching for the best config-

urations for all three languages, and were able to find such novel ones, many

of them also incorporating novel parameter settings, that significantly outper-

formed conventional configurations. Although we have used a heuristic ap-

proach for the search due to the vast number of possible configurations, we have

been able to verify the validity of this approach and the reliability and soundness

of its results. Further, we have also verified that a configuration performing well

on given input data also works well on other input data of the same type.

In accordance with our intuition, there were several parameters that worked

very similarly in case of all three languages. We also found such parameters that
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were alike for Spanish and Hungarian, and different for English, which we also

anticipated. However, it was interesting to see that there was such a parameter

that worked similarly for English and Hungarian, but not for Spanish, and we

did not find any parameters that worked similarly for the two Indo-European

languages, but differently for Hungarian. Although we have found that the very

best results are produced by different configurations for the different languages,

our cross-language tests showed that all of them work rather well for all lan-

guages. Based on this we think that we could find such configurations that are

rather language-independent, and give robust and reliable results.

To be able to compare our results with the previous state-of-the-art, we have

run such tests where the same data was used as input for both the previous state-

of-the-art configurations and our configurations. In case of using raw counts as

input and thus being able to optimize all 10 of our examined parameters, our best

configurations contained novel parameter settings and clearly outperformed pre-

vious state-of-the-art configurations, with a considerable margin in most cases.

When using semantic vectors as input and thus only being able to optimize 4

out of 10 parameters, our best configurations, also incorporating novel param-

eter settings, performed at least as well as the previous state-of-the-art, with a

slight superiority in a couple of cases. Actually, our best model achieved abso-

lute state-of-the-art results compared to all previous models of any type on the

most important test datasets. Based on these results we think that our analysis

was successful, and we were able to present such new parameter settings and

new configurations that are superior to the previous state-of-the-art.

As it could be seen, the size of the input corpus, as well as the used infor-

mation extraction method greatly influences the results. Therefore we think that
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doing an analysis similar to our current one for the information extraction phase

of DSMs would be a principal direction for future research. Further, in our opin-

ion it would be important to test our proposed new configurations using cor-

pora magnitudes larger than that we could use. It would be even better if our

whole heuristic analysis could also be repeated on these huge corpora. Further,

although our results seem rather robust and reliable for Spanish and Hungar-

ian too, it would be interesting to redo our analysis on larger and more reliable

Spanish and Hungarian datasets, when such datasets will become available in

the future.

We think that with this study we significantly contributed to the better under-

standing of the working and properties of DSMs. Although fully reliable conclu-

sions from our results can only be drawn with respect to DSMs, we think that

similar conclusions would hold for other systems based on vector space models

too. So in our view our results could also be useful (with some reservations) out-

side the scope of DSMs, in case of other NLP and non-NLP problems using vector

space models too.



9. fejezet

Összefoglalás

9.1. Bevezetés

Számos számítógépes nyelvészeti (NLP) problémához, többek között információ

visszakereséshez (Hliaoutakis et al., 2006), helyesírás-javításhoz (Budanitsky and

Hirst, 2001) és összetett szó értelmezéshez (Dobó and Pulman, 2011), fontos hogy

meg tudjuk határozni szavak szemantikai hasonlóságának vagy kapcsolatának

mértékét. Míg a szemantikai kapcsolat számos, szavak között fennálló relációt

(többek között a hasonlóságot is) számításba vesz, addig a szemantikai hasonló-

ság csak a szavak által jelölt fogalmak tényleges egyformaságát veszi figyelembe.

Ezáltal a hasonlóságból következik a kapcsolat, de ez fordítva nem igaz. Például,

a "bicikli" és a "motorkerékpár" szavak hasonlóak, mivel mindkettő kétkerekű jár-

művet jelöl, így kapcsolódnak is egymáshoz. Ezzel szemben a "postás" és a "levél"

szavak közeli kapcsolatban állnak, mivel általában a postás kézbesíti a leveleket,

de mégsem hasonlítanak egymásra, mert meglehetősen különböző fogalmakat

jelölnek. Továbbá, a "kemence" és a "hajóút" szavak egyáltalán nem hasonlítanak



106 9. Összefoglalás

egymásra és nem is kapcsolódnak egymáshoz.

9.1.1. Motiváció

A legtöbb modell a jelentés eloszlási hipotézisére (Harris, 1954) alapszik, és ez-

által a szemantikai hasonlóság vagy kapcsolat mértékét nagyméretű korpuszból

kinyert eloszlási adatok alapján számolja. Ezeket a modelleket gyűjtőnévvel el-

oszlás alapú szemantikai modelleknek (DSM) szokás nevezni (Baroni and Lenci,

2010; Baroni et al., 2014). Ezekben a modellekben először a lehetséges tulajdon-

ságok kerülnek megállapításra, általában szövegkörnyezeti szavak formájában,

ami után a modellek súlyokat rendelnek minden szó-tulajdonság párhoz komp-

lex módszerek segítségével, ezáltal tulajdonság-vektorokat készítve minden szó-

hoz. A szavak szemantikai hasonlóságának vagy kapcsolatának a mértékét ezt

követően a szavak tulajdonság-vektorainak az összehasonlításával számítják ki.

Habár a DSM-ek számos lehetséges paraméterrel rendelkeznek, e paraméterek

igazán átfogó elemzése, ami a paraméterek egymástól való függését is figyelem-

be veszi, még hiányzik és szükséges lenne, mint ahogy azt Levy et al. (2015) is

sugallja.

A legtöbb DSM-mel foglalkozó kutatás a problémának csak egy vagy két as-

pektusára fókuszál, és a modell többi paraméterét adottnak veszi valamilyen

standard beállítással. Például, a kutatások nagy része megszokásból egyszerű-

en koszinuszt használ vektorhasonlósági mértékként (pl. Bruni et al., 2013; Baro-

ni et al., 2014; Speer et al., 2017; Salle et al., 2018) és/vagy (pozitív) pontonkénti

kölcsönös információt súlyozási sémaként (pl. Islam and Inkpen, 2008; Hill et al.,

2014b; Salle et al., 2018). És még a figyelembe vett paraméterek esetén is általá-
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ban csak néhány lehetséges beállítást tesztelnek. Továbbá, vannak olyan para-

méterek is, amiket a legtöbb tanulmány teljesen figyelmen kívül hagy, és nem is

lettek még igazán elemezve a múltban, még külön-külön sem (pl. simítás, vektor-

normalizáció vagy a tulajdonságok gyakoriságára minimum limit). Sőt mi több,

mivel ezek a paraméterek nagyban befolyásolni tudják egymást, a külön-külön,

egyenkénti elemzésük nem is elegendő, mivel az nem veszi figyelembe azok egy-

másra hatását.

Van néhány olyan kutatás ami több paramétert is tesztel többfajta lehetséges

beállítással, mint például Lapesa and Evert (2014) és Kiela and Clark (2014), de

ezek is messze vannak attól, hogy igazán átfogó képet adjanak, és szintén nem

tesztelik teljes mértékben a különféle paraméterek között fellépő kölcsönhatá-

sokat. Tehát, habár fontos lenne a paramétereket és azok kombinációját részle-

tesen kielemezni, mint ahogy azt Levy et al. (2015) is megemlíti, még mindig

nem létezik ezeknek igazán átfogó tanulmánya. Továbbá, annak ellenére, hogy a

legjobb paraméter-beállítások a különféle nyelvek esetén különbözőek lehetnek,

a tanulmányok döntő többsége általában pusztán egyetlen nyelvvel foglalkozik

(legtöbbször az angollal), vagy figyelembe vesz több nyelvet is, de a konklúziók

nyelvek közötti részletes összehasonlítása nélkül. Ebben az értekezésben ezeket

a kutatási hiányokat szeretnénk betölteni.

9.1.2. Feladat és célkitűzés

A DSM-ek rendszerint két egymástól különálló fázissal rendelkeznek. Az első

fázisban statisztikai információt (pl. nyers gyakoriságokat) nyernek ki nyers ada-

tokból (pl. egy nagyméretű nyers szöveges korpuszból), statisztikai eloszlási ada-
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tok formájában. A második fázisban tulajdonság-vektorokat készítenek a kinyert

információból minden szóhoz, majd ezeket a vektorokat hasonlítják egymáshoz

a szavak hasonlósági vagy kapcsolati mértékének a megállapításához. Mi a ku-

tatásunk során az első fázisban kinyert információt már adottnak vesszük, és egy

szisztematikus, párhuzamos elemzését végezzük el a tulajdonságvektorok készí-

tése és összehasonlítása során használt tulajdonságoknak, miközben a tulajdon-

ságok egymásra hatását is figyelembe vesszük.

Azért döntöttünk úgy, hogy csak a DSM-ek második fázisát elemezzük, mi-

vel a két fázis egymástól meglehetősen különálló és független, és a második fázis

minden egyes lehetséges paraméter-érték kombinációjának tesztelése már így is

lehetetlen a lehetséges kombinációk óriási száma miatt. Ezért egy teljes analízis

helyett már így is egy heurisztikus módszert kellett alkalmaztunk. Tehát ezen

felül még az első fázis különféle paramétereit (pl. használt korpusz, szövegkör-

nyezeti típus (ablak-alapú vagy dependencia-alapú) és szövegkörnyezeti méret)

is tesztelni ésszerűtlennek és megvalósíthatatlannak tűnt, és így e kutatás hatókö-

rén kívülre esett. Ezért ennek a fázisnak a vizsgálatát teljes egészében kihagytuk,

egy kivétellel.

A statikus korpuszokból kinyert információkon alapuló DSM-eknek két je-

lentős csoportja van az első fázisuk alapján: gyakorisági-vektor-alapú (CVBM)

és prediktív modellek (PM; más névvel szóbeágyazási modellek) (Baroni et al.,

2014). A prediktív modellek elmúlt évekbeli nagy népszerűsége miatt, továbbá

azért, hogy még teljesebb képet kapjunk, a gyakorisági-vektor-alapú modellek ál-

tal korpuszokból kinyert információk mellett elvégeztünk néhány kísérletet pre-

diktív modellek által kinyert információkkal is az angol nyelv esetén. Továbbá,

a későbbiekben még kiegészítettük az elemzésünket egy olyan modellel is, ami
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tudás-gráfból kinyert szemantikai vektorokon alapszik. A megérzésünk az volt,

hogy lesz egy olyan konfiguráció ami a legjobb eredményt fogja elérni mindhá-

rom típusú modell esetén. Azt azonban meg kell jegyezzük, hogy a prediktív

modellek esetén a figyelembe vett paramétereknek csak egy részét lehetett tesz-

telni e modellek jellegzetességei miatt. Részben ezért is fókuszáltunk inkább a

gyakorisági-vektor-alapú modellekre.

A kutatásunk során összességében 10 fontos paramétert azonosítottunk a gya-

korisági-vektor-alapú DSM-ek második fázisában, mint például a vektorhason-

lósági mértéket, a súlyozási sémát, a tulajdonság-transzformációt, a simítást és a

dimenzió-csökkentést. Ezek közül azonban összesen 4 érhető el prediktív illet-

ve tudás-gráf-alapú szemantikai vektorok használata esetén, mivel ilyen inputok

használatakor a nyers gyakoriságok már nem érhetőek el, a súlyozott vektorok

már elkészültek és általában már a dimenzió-csökkentés is végrehajtásra került

rajtuk.

Elemzésünk során e paramétereket párhuzamosan értékeltük ki számos be-

állítással annak érdekében, hogy megtaláljuk a legjobb konfigurációt, amit a le-

hető legmagasabb pontszámokat éri el a standard tesztadatbázisokon. Az átfogó

elemzésünket angolra, spanyolra és magyarra külön-külön is megcsináltuk, majd

a különböző nyelvek esetén levont konklúziókat összehasonlítottuk.

Néhány paraméterre nagy mennyiségű, akár több ezer lehetséges beállítást is

teszteltünk, ami több milliárd lehetséges paraméter-beállítási kombinációt ered-

ményezett. Amellett, hogy természetesen minden paraméter konvencionálisan

alkalmazott beállítását is teszteltük, számos új variánst javasoltunk mi is. To-

vábbá, számos új konfigurációt teszteltünk, amik közül némelyek az általánosan

használt, standard konfigurációknál messze jobb eredményt érnek el, és az eddig
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ismert legjobb konfigurációknál is jobb eredményeket érnek el.

Első körben az elemzésünket angolra végeztük el, és az eredményeket azon

elemeztük ki részletesen (Dobó and Csirik, 2019a). Ezt követően megismételtük

ugyanezt az elemzést, néhány paraméter esetén bővített beállítási opciókkal, an-

golra, spanyolra és magyarra is, és a különböző nyelvekre levont konklúziókat

összevetettük egymással (Dobó and Csirik, 2019b).

9.2. Konklúziók

Az értekezésben az eloszlás alapú szemantikai modellek tulajdonságvektorainak

készítése és összehasonlítása során használt paramétereknek egy nagyon rész-

letes és szisztematikus elemzését prezentáltuk angolra, spanyolra és magyarra,

amivel egy komoly kutatási hiányt töltöttünk be. Gyakorisági-vektor-alapú mo-

dellek esetén 10, míg prediktív és tudás-gráf-alapú modellek esetén 4 fontos pa-

ramétert azonosítottunk, és ezek mindegyikéhez számos beállítást teszteltünk.

Az elemzésünk során teszteltünk új paramétereket és új paraméter-beállításokat,

továbbá minden paramétert párhuzamosan vizsgáltunk, ezáltal ezek esetleges

egymásra hatását is figyelembe véve. Tudomásunk szerint mi voltunk az elsők,

akik e paraméterek ilyen részletes elemzését elvégezték, és szintén mi voltunk az

elsők, akik a különböző nyelvek esetén levont konklúziókat részletesen összeha-

sonlították.

A két lépéses heurisztikus módszerünk segítségével mindhárom nyelvre meg-

kerestük a legjobb konfigurációt, ami során olyan konfigurációkat találtunk, amik

egy része új paraméter-beállításokat is tartalmaz, amik lényegesen jobb ered-

ményt érnek el az általánosan használt beállításoknál. Habár egy heurisztikus
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módszert használtunk a kereséshez a lehetséges konfigurációk óriási száma mi-

att, igazolni tudtuk e módszerünk helyességét és az általa adott eredmények

megbízhatóságát és helyességét. Továbbá igazolni tudtuk azt is, hogy egy adott

bemeneti adattípuson jól működő konfiguráció másik azonos típusú bemenet

használata esetén is jól működik.

A kezdeti sejtésünknek megfelelően volt jó néhány olyan paraméter, ami mind-

három nyelv esetén nagyon hasonlóan működött. Találtunk olyan paramétereket

is, amik spanyolra és magyarra hasonlóan működnek, de angolra másképp, ami

szintén várható volt. Mindemellett meglepődve tapasztaltuk azt, hogy volt olyan

paraméter is, ami angolra és magyarra hasonlóan működött, míg spanyolra más-

hogyan, illetve nem találtunk olyan paramétert, amit a két indoeurópai nyelvre

azonosan működött volna, de magyarra másképp. Habár azt tapasztaltuk, hogy a

legjobb eredményt a különböző nyelvek esetén különböző konfigurációval lehet

elérni, a nyelvek közötti tesztjeink megmutatták azt, hogy ezek mindegyike meg-

lehetősen jól működik mindhárom nyelv esetén. Ez alapján úgy gondoljuk, hogy

sikerült olyan konfigurációkat találni, melyek meglehetősen nyelv-függetlenek,

és robosztus és megbízható eredményeket adnak.

Annak érdekében, hogy az eredményeinket össze tudjuk hasonlítani az eddig

ismert legjobb módszerek eredményeivel, olyan teszteket is futtattunk, amiben

azonos bemeneti adatokat használtunk a jelenleg ismert legjobb konfigurációk-

hoz és a mi konfigurációinkhoz is. Nyers frekvenciák bemenetként való haszná-

lata esetén, amikor mind a 10 paramétert tudtunk vizsgálni, a legjobb konfigu-

rációink tartalmaztak új paraméter-beállításokat és a eddigi legjobb konfiguráci-

óknál egyértelműen jobb eredményeket értek el, általában számottevően maga-

sabb pontszámokkal. Szemantikus vektorok bemenetként való használata esetén,
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amikor a 10-ből csak 4 paramétert tudtunk vizsgálni, a legjobb konfigurációink

legalább olyan jól teljesítettek, mint a eddigi legjobb konfigurációk, és néhány

esetben kis fölénnyel is rendelkeztek. Igazából a legjobb modellünk abszolút leg-

jobb eredményt ért el, minden eddigi modellnél jobban teljesítve a legfontosabb

tesztadathalmazokon. Ezek alapján úgy gondoljuk, hogy az elemzésünk sikeres

volt, és sikerült olyan új paraméter-beállításokat és új konfigurációkat bemutatni,

amik az eddig ismertnél jobb eredményeket tudnak elérni, és ezáltal túlszárnyal-

ják az eddig ismert legjobb konfigurációkat.

Ahogy a tesztek során látszódott, a bemenetként használt korpusz, illetve az

alkalmazott információ-kinyerési módszer nagyban befolyásolja az eredménye-

ket. Ebből kifolyólag úgy gondoljuk, egy a mostanihoz hasonló elemzés elvégzé-

se a DSM-ek információkinyerési fázisán kulcsfontosságú iránya lehetne a jövő-

beni kutatásoknak. Továbbá, véleményünk szerint fontos lenne az általunk újon-

nan javasolt konfigurációkat az általunk használt szöveges korpuszoknál nagy-

ságrendekkel nagyobbakon tesztelni. Ennél még jobb lenne, ha ezeken az óri-

ási korpuszokon a teljes elemzést meg lehetne ismételni. Ezen felül, habár az

eredményeink meglehetősen robosztusnak és megbízhatónak tűnnek spanyolra

és magyarra is, érdekes lenne az elemzésünket megismételni nagyobb és meg-

bízhatóbb spanyol és magyar tesztadatbázisokon is, amint ilyen adathalmazok

elérhetővé válnak.

Úgy gondoljuk, hogy e tanulmánnyal nagyban hozzájárultunk a DSM-ek mű-

ködésének és tulajdonságainak a megértéséhez. Habár az eredményeinkből tel-

jesen megbízható konklúziókat csak DSM-ekre tekintettel tudunk levonni, úgy

gondoljuk, hogy hasonló konklúziók érvényesek lennének más, szintén vektor-

tér modelleken alapuló rendszerek esetén is. Ezért úgy gondoljuk, hogy az ered-
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ményeink hasznosak lehetnek (némi fenntartással) a DSM-ek tárgykörén kívül is,

más, vektor-tér modelleket alkalmazó számítógépes nyelvészeti vagy tetszőleges

egyéb probléma esetén is.
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APPENDIX A

A list of the most important vector similarity

measures tested

As most distance and similarity measures are not defined in case at least one of

the vectors to be compared are of zero length, in such cases we have always taken

the similarity score to be 0. Further, to reduce the unnecessary special cases in the

formulas, we have used the following two simplifications: 0
0 = 0 and 0 ∗ ln(0) =

0.
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Definition Reference

Cos s(u, v) = ∑n
i=1 ui ∗ vi√

∑n
i=1 u2

i ∗
√

∑n
i=1 v2

i

(Jones and Furnas, 1987)

AdjCos
s(u, v) =

{
1, Cos(u, v) ≥ λ
Cos(u,v)

λ , otherwise
λ = 0.1

(Shalaby and Zadrozny, 2016)

AdjCosPFMod
s(u, v) =

{
1, PFMod(u, v) ≥ λ
PFMod(u,v)

λ , otherwise
λ = 1

ApSyn
s(u, v) =

n

∑
i=1

{
2

rank(ui)+rank(vi)
, ui 6= 0∧ vi 6= 0

0, otherwise
vectors are sorted and reduced
according to the original method

(Santus et al., 2016)

ApSynP

s(u, v) =
n

∑
i=1

{
2

rank(ui)
p+rank(vi)

p , ui 6= 0∧ vi 6= 0

0, otherwise
p = 0.1

vectors are sorted and reduced
according to the original method

(Santus et al., 2018)

AvgL1LInf (Cha, 2007)

Canberra d(u, v) =
n

∑
i=1

|ui − vi|
|ui|+ |vi|

(Cha, 2007)

ChenCorr s(u, v) =
1
n

n

∑
i=1

ui ∗ vi

ui + vi − ui ∗ vi
(Chen, 2016)

ContraHMeanMod s(u, v) =
n

∑
i=1

{
u2

i +v2
i

|ui|+|vi|
, |ui|+ |vi| 6= 0

0, otherwise
based on (Chu and Hou, 2012)

DFVMB d(u, v) =

√
∑n

i=1((ui − ū)2 + (vi − v̄))2

2 ∗ n
inspired by StdLike

Dice-1 s(u, v) =
2 ∗∑n

i=1 min(ui, vi)

∑n
i=1 ui + ∑n

i=1 vi
(Kiela and Clark, 2014)

Dice-1Mod s(u, v) =
2 ∗∑n

i=1 min(ui, vi)

∑n
i=1 |ui|+ ∑n

i=1 |vi|
based on (Kiela and Clark, 2014)

Dice-2 s(u, v) =
2 ∗∑n

i=1 ui ∗ vi

∑n
i=1 u2

i + ∑n
i=1 v2

i
(Cha, 2007)

Jaccard1 s(u, v) = ∑n
i=1 ui ∗ vi

∑n
i=1 ui + ∑n

i=1 vi
(Kiela and Clark, 2014)

Jaccard1Mod s(u, v) = ∑n
i=1 ui ∗ vi

∑n
i=1 |ui|+ ∑n

i=1 |vi|
based on (Kiela and Clark, 2014)

Kulczynski s(u, v) = ∑n
i=1 min(ui, vi)

∑n
i=1 |ui − vi|

(Deza and Deza, 2016)
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Definition Reference

L0.5 d(u, v) =

(
n

∑
i=1
|ui − vi|

1
2

)2

(Cha, 2007)

L1 d(u, v) =
n

∑
i=1
|ui − vi| (Cha, 2007)

L2 d(u, v) =

(
n

∑
i=1
|ui − vi|2

) 1
2

(Cha, 2007)

L3 d(u, v) =

(
n

∑
i=1
|ui − vi|3

) 1
3

(Cha, 2007)

L∞ d(u, v) =
n

max
i=1
|ui − vi| (Cha, 2007)

Lorentzian d(u, v) =
n

∑
i=1

ln(1 + |ui − vi|) (Cha, 2007)

MahalanobisMod

d(u, v) =

√
n

∑
i=1

pi

pi =

{
(ui−vi)

2

|(ui−ū)∗(vi−v̄)| , (ui − ū) ∗ (vi − v̄) 6= 0

0, otherwise

based on (Deza and Deza, 2016)

Mb s(u, v) =
1
2

(
∑n

i=1 ui ∗ vi

∑n
i=1 u2

i
+

∑n
i=1 ui ∗ vi

∑n
i=1 v2

i

)
(Deza and Deza, 2016)

MBAdjCos
s(u, v) =

{
1, Mb(u, v) ≥ λ
Mb(u,v)

λ , otherwise
λ = 0.1

MBAdjCosPFMod
s(u, v) =

{
1, MBPFMod(u, v) ≥ λ
MBPFMod(u,v)

λ , otherwise
λ = 1
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Definition Reference

MBAdjCosAM s(u, v) =
Mb(u, v) + AdjCos(u, v)

2
MBAdjCosGM s(u, v) =

√
Mb(u, v) ∗ AdjCos(u, v)

MBAdjCosHM s(u, v) =
2 ∗Mb(u, v) ∗ AdjCos(u, v)

Mb(u, v) + AdjCos(u, v)
MBAdjCosProd s(u, v) = Mb(u, v) ∗ AdjCos(u, v)

MBAdjCosLogProd s(u, v) = tlb(Mb(u, v)) ∗ tlb(AdjCos(u, v))

MBCosAM s(u, v) =
Mb(u, v) + Cos(u, v)

2
MBCosGM s(u, v) =

√
Mb(u, v) ∗ Cos(u, v)

MBCosHM s(u, v) =
2 ∗Mb(u, v) ∗ Cos(u, v)

Mb(u, v) + Cos(u, v)
MBCosProd s(u, v) = Mb(u, v) ∗ Cos(u, v)

MBCosLogProd s(u, v) = tlb(Mb(u, v)) ∗ tlb(Cos(u, v))

MBPFMod s(u, v) =
1
2

(
∑n

i=1 ui ∗ vi

∑n
i=1 u2

i
+

∑n
i=1 ui ∗ vi

∑n
i=1 v2

i

)
∗ 1

2
∗
(

lb
(

N∗

c(u)

)
+ lb

(
N∗

c(v)

))
Multiplicative d(u, v) = −1 +

n

∏
i=1

1 + |ui − vi| (Deza and Deza, 2016)

MultiplicativeMod1 d(u, v) = −1 +
n

∏
i=1

(1 + |ui − vi|)0.1 based on (Deza and Deza, 2016)

MultiplicativeMod2 d(u, v) = −1 +
n

∏
i=1

lb(1 + |ui − vi|) based on (Deza and Deza, 2016)

NCDMod1 d(u, v) =
n

∑
i=1

ui ∗ vi −min(ui, vi)

max(ui, vi)
inspired by (Cilibrasi and Vitányi, 2007)

NCDMod2 d(u, v) = ∑n
i=1 ui ∗ vi −∑n

i=1 min(ui, vi)

∑n
i=1 max(ui, vi)

inspired by (Cilibrasi and Vitányi, 2007)

NGDMod d(u, v) =
n

∑
i=1

max(tlb(ui), tlb(vi))− tlb(ui ∗ vi)

tlb(n)−min(tlb(ui), tlb(vi))
inspired by (Cilibrasi and Vitányi, 2007)
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Definition Reference

NormCosMod

s(u, v) =

{
1, CosHM(u, v) ≥ λ
CosHM(u,v)

λ , otherwise

CosHM(u, v) = ∑n
i=1 sgn(ui ∗ vi) ∗ |ui ∗ vi|γ√
∑n

i=1 |ui|2γ ∗
√

∑n
i=1 |vi|2γ

λ = 0.01 γ = 0.05

(Hassan and Mihalcea, 2011)

NormModSOCPMIMod

s(u, v) =

{
1, SocHM(u, v) ≥ λ
SocHM(u,v)

λ , otherwise

SocHM(u, v) = ln
(

f (u, v)
b(u)

+
f (v, u)
b(v)

+ 1
)

f (x, y) =
b(x)

∑
i=1

{
sgn(xi) ∗ |xi|γ, xi > 0 ∧ yi > 0
0, otherwise

b(x) = lg(c(x))2 ∗ lb(N)

δ
λ = 0.125 γ = 1 δ = 0.3

vectors are sorted and reduced
according to the original method

based on (Hassan and Mihalcea, 2011)

Overlap (Jones and Furnas, 1987)

Pears s(u, v) = ∑n
i=1(ui − ū) ∗ (vi − v̄)√

∑n
i=1(ui − ū)2 ∗

√
∑n

i=1(vi − v̄)2
(Jones and Furnas, 1987)

PearsAdjCos
s(u, v) =

{
1, Pears(u, v) ≥ λ
Pears(u,v)

λ , otherwise
λ = 0.1

PearsAdjCosPFMod
s(u, v) =

{
1, PearsPFMod(u, v) ≥ λ
PearsPFMod(u,v)

λ , otherwise
λ = 1

PearsMB s(u, v) =
1
2

(
∑n

i=1(ui − ū) ∗ (vi − v̄)
∑n

i=1(ui − ū)2 +
∑n

i=1(ui − ū) ∗ (vi − v̄)
∑n

i=1(vi − v̄)2

)

PearsMBAdjCos
s(u, v) =

{
1, PearsMB(u, v) ≥ λ
PearsMB(u,v)

λ , otherwise
λ = 0.1

PearsMBAdjCosPFMod
s(u, v) =

{
1, PearsMBPFMod(u, v) ≥ λ
PearsMBPFMod(u,v)

λ , otherwise
λ = 1

PearsMBPFMod
s(u, v) =

1
2

(
∑n

i=1(ui − ū) ∗ (vi − v̄)
∑n

i=1(ui − ū)2 +
∑n

i=1(ui − ū) ∗ (vi − v̄)
∑n

i=1(vi − v̄)2

)
∗

1
2
∗
(

lb
(

N∗

c(u)

)
+ lb

(
N∗

c(v)

))
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Definition Reference

PearsPFMod
s(u, v) = ∑n

i=1(ui − ū) ∗ (vi − v̄)√
∑n

i=1(ui − ū)2 ∗
√

∑n
i=1(vi − v̄)2

∗

1
2
∗
(

lb
(

N∗

c(u)

)
+ lb

(
N∗

c(v)

))
PenroseShape d(u, v) =

√
n

∑
i=1

((ui − ū)− (vi − v̄))2 (Deza and Deza, 2016)

PSChi2Mod based on (Cha, 2007)

PseudoCos s(u, v) = ∑n
i=1 ui ∗ vi

∑n
i=1 ui ∗∑n

i=1 vi
(Jones and Furnas, 1987)

PseudoCosMod1 s(u, v) = ∑n
i=1 ui ∗ vi

∑n
i=1 |ui| ∗∑n

i=1 |vi|
based on (Jones and Furnas, 1987)

PseudoCosMod2 s(u, v) =


∑n

i=1 ui∗vi√
∑n

i=1 ui∗
√

∑n
i=1 vi

, ∑n
i=1 ui > 0 ∧∑n

i=1 vi > 0

0, otherwise
based on (Jones and Furnas, 1987)

PseudoCosMod3 s(u, v) = ∑n
i=1 ui ∗ vi√

∑n
i=1 |ui| ∗

√
∑n

i=1 |vi|
based on (Jones and Furnas, 1987)

RBO

s(u, v) = (1− p)
|H|

∑
i=1

pi−1 |Hi|
i

H = { f |u f 6= 0 ∧ v f 6= 0}
Hd: set of overlapping dimensions between

the top d elements of u and v

(Pilehvar and Navigli, 2015)

RényiDivMod2 d(u, v) = lb

(
n

∑
i=1

{
u2

i
|vi|

, vi 6= 0

0, vi = 0

)
based on (Rényi, 1961)

RényiDivModInf d(u, v) = lb

(
n

max
i=1

{∣∣∣ui
vi

∣∣∣ , vi 6= 0

0, vi = 0

)
based on (Rényi, 1961)

RoberstMod

s(u, v) = ∑n
i=1 pi

∑n
i=1 |ui|+ ∑n

i=1 |vi|

pi =

{
(ui+vi)∗min(ui,vi)

max(ui,vi)
, ui 6= 0 ∧ vi 6= 0

0, otherwise

basd on (Deza and Deza, 2016)

RMS
n

∑
i=1

√
u2

i + v2
i

2
(Wonnacott and Wonnacott, 1990)

Simpson1 s(u, v) = ∑n
i=1 ui ∗ vi

min (∑n
i=1 |ui|, ∑n

i=1 |vi|)
(Deza and Deza, 2016)

Simpson2Mod s(u, v) = ∑n
i=1 tlb(ui ∗ vi)

min (∑n
i=1 lb(|ui|+ 1), ∑n

i=1 lb(|vi|+ 1))
based on (Jabeen, 2014)

SmoothCos s(u, v) =
(∑n

i=1 ui ∗ vi) + 0.12√(
∑n

i=1 u2
i
)
+ 0.12 ∗

√(
∑n

i=1 v2
i
)
+ 0.12

(Riedl, 2016)
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Definition Reference

SOCPMIMod

s(u, v) =
f (u, v)
b(u)

+
f (v, u)
b(v)

f (x, y) =
b(x)

∑
i=1

{
sgn(xi) ∗ |xi|γ, xi > 0 ∧ yi > 0
0, otherwise

b(x) = lg(c(x))2 ∗ lb(N)

µ
γ = 3 µ = 6.5

vectors are sorted and reduced
according to the original method

based on (Islam and Inkpen, 2008)

SorensenMod d(u, v) = ∑n
i=1 |ui − vi|

∑n
i=1 |ui|+ ∑n

i=1 |vi|
based on (Deza and Deza, 2016)

Spearman s(u, v) = Pears(ranks(u), ranks(v)) (Deza and Deza, 2016)

Spline s(u, v) =
n

∑
i=1

1 + ui ∗ vi + ui ∗ vi ∗min(ui, vi)−
ui + vi

2
(min(ui, vi))

2 +
(min(ui, vi))

3

3
(Vapnik et al., 1997)

StdLike1 d(u, v) =

√
∑n

i=1

√
|ui −mean(ui, vi)|+

√
|vi −mean(ui, vi)|

2n
based on (Wonnacott and Wonnacott, 1990)

StdLike2 d(u, v) =

√
∑n

i=1 (ui −mean(ui, vi))
2 + (vi −mean(ui, vi))

2

2n
based on (Wonnacott and Wonnacott, 1990)

StdLike2 d(u, v) =

√
∑n

i=1 |ui −mean(ui, vi)|3 + |vi −mean(ui, vi)|3

2n
based on (Wonnacott and Wonnacott, 1990)

StdLike2 d(u, v) =

√
∑n

i=1 lb (|ui −mean(ui, vi)|+ 1) + lb (|vi −mean(ui, vi)|+ 1)
2n

based on (Wonnacott and Wonnacott, 1990)

StdLike2 d(u, v) =

√
∑n

i=1
1

1+e−|ui−mean(ui ,vi)|
− 0.5 + 1

1+e−|vi−mean(ui ,vi)|
− 0.5

2n
based on (Wonnacott and Wonnacott, 1990)

Tanimoto1 d(u, v) = ∑n
i=1 max(ui, vi)−min(ui, vi)

∑n
i=1 max(ui, vi)

(Cha, 2007)

Tanimoto1Mod d(u, v) = ∑n
i=1 max(ui, vi)−min(ui, vi)

∑n
i=1 |max(ui, vi)|

based on (Cha, 2007)

VicSymChi2Mod1 based on (Cha, 2007)

VicSymChi2Mod2 based on (Cha, 2007)

VicSymChi2Mod3 based on (Cha, 2007)

WO
s(u, v) =

∑|H|i=1(rank(ui) + rank(vi))
−1

∑|H|i=1(2i)−1

H = { f |u f 6= 0 ∧ v f 6= 0}
vectors are sorted according to the original method

(Pilehvar et al., 2013)

ZKLMod
d(u, v) =

n

∑
i=1

ui ∗
{

ln
(

ui
vi

)
, ui ∗ vi > 0

γ, ui ∗ vi ≤ 0
γ = 5

(Hughes and Ramage, 2007)

ZKLModSym
d(u, v) =

n

∑
i=1

{
ui ∗ ln

(
ui
vi

)
+ vi ∗ ln

(
vi
ui

)
, ui ∗ vi > 0

ui ∗ γ + vi ∗ γ, ui ∗ vi ≤ 0
γ = 5

based on (Hughes and Ramage, 2007; Cha, 2007)
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Definition Reference

CosMod-1.x s(u, v) = ∑n
i=1 tx(ui) ∗ tx(vi)√

∑n
i=1 u2

i ∗
√

∑n
i=1 v2

i

CosMod-2.x s(u, v) = ∑n
i=1 tx(ui) ∗ tx(vi)√

∑n
i=1(tx(ui)2) ∗

√
∑n

i=1(tx(vi)2)

CosMod-3.x s(u, v) = ∑n
i=1 tx(ui) ∗ tx(vi)√

t−1
x (∑n

i=1(tx(ui)2)) ∗
√

t−1
x (∑n

i=1(tx(vi)2))

CosMod-4.x s(u, v) =
t−1
x (∑n

i=1 tx(ui) ∗ tx(vi))√
∑n

i=1 u2
i ∗
√

∑n
i=1 v2

i

CosMod-5.x s(u, v) =
t−1
x (∑n

i=1 tx(ui) ∗ tx(vi))√
∑n

i=1(tx(ui)2) ∗
√

∑n
i=1(tx(vi)2)

CosMod-6.x s(u, v) =
t−1
x (∑n

i=1 tx(ui) ∗ tx(vi))√
t−1
x (∑n

i=1(tx(ui)2)) ∗
√

t−1
x (∑n

i=1(tx(vi)2))

MbMod-1.x s(u, v) =
1
2

(
∑n

i=1 tx(ui) ∗ tx(vi)

∑n
i=1 u2

i
+

∑n
i=1 tx(ui) ∗ tx(vi)

∑n
i=1 v2

i

)
MbMod-2.x s(u, v) =

1
2

(
∑n

i=1 tx(ui) ∗ tx(vi)

∑n
i=1(tx(ui)2)

+
∑n

i=1 tx(ui) ∗ tx(vi)

∑n
i=1(tx(vi)2)

)
MbMod-3.x s(u, v) =

1
2

(
∑n

i=1 tx(ui) ∗ tx(vi)

t−1
x (∑n

i=1(tx(ui)2))
+

∑n
i=1 tx(ui) ∗ tx(vi)

t−1
x (∑n

i=1(tx(vi)2))

)

MbMod-4.x s(u, v) =
1
2

(
t−1
x (∑n

i=1 tx(ui) ∗ tx(vi))

∑n
i=1 u2

i
+

t−1
x (∑n

i=1 tx(ui) ∗ tx(vi))

∑n
i=1 v2

i

)
MbMod-5.x s(u, v) =

1
2

(
t−1
x (∑n

i=1 tx(ui) ∗ tx(vi))

∑n
i=1(tx(ui)2)

+
t−1
x (∑n

i=1 tx(ui) ∗ tx(vi))

∑n
i=1(tx(vi)2)

)
MbMod-6.x s(u, v) =

1
2

(
t−1
x (∑n

i=1 tx(ui) ∗ tx(vi))

t−1
x (∑n

i=1(tx(ui)2))
+

t−1
x (∑n

i=1 tx(ui) ∗ tx(vi))

t−1
x (∑n

i=1(tx(vi)2))

)
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Definition Reference

AdjCosMod-1.x
s(u, v) =

{
1, CosMod-1.x(u, v) ≥ λ
CosMod-1.x(u,v)

λ , otherwise
λ = 0.1

AdjCosMod-2.x
s(u, v) =

{
1, CosMod-2.x(u, v) ≥ λ
CosMod-2.x(u,v)

λ , otherwise
λ = 0.1

AdjCosMod-3.x
s(u, v) =

{
1, CosMod-3.x(u, v) ≥ λ
CosMod-3.x(u,v)

λ , otherwise
λ = 0.1

AdjCosMod-4.x
s(u, v) =

{
1, CosMod-4.x(u, v) ≥ λ
CosMod-4.x(u,v)

λ , otherwise
λ = 0.1

AdjCosMod-5.x
s(u, v) =

{
1, CosMod-5.x(u, v) ≥ λ
CosMod-5.x(u,v)

λ , otherwise
λ = 0.1

AdjCosMod-6.x
s(u, v) =

{
1, CosMod-6.x(u, v) ≥ λ
CosMod-6.x(u,v)

λ , otherwise
λ = 0.1

PFMod-1.x s(u, v) = CosMod-1.x ∗
(

lb
(

N∗

c(u)

)
+ lb

(
N∗

c(v)

))
PFMod-2.x s(u, v) = CosMod-2.x ∗

(
lb
(

N∗

c(u)

)
+ lb

(
N∗

c(v)

))
PFMod-3.x s(u, v) = CosMod-3.x ∗

(
lb
(

N∗

c(u)

)
+ lb

(
N∗

c(v)

))
PFMod-4.x s(u, v) = CosMod-4.x ∗

(
lb
(

N∗

c(u)

)
+ lb

(
N∗

c(v)

))
PFMod-5.x s(u, v) = CosMod-5.x ∗

(
lb
(

N∗

c(u)

)
+ lb

(
N∗

c(v)

))
PFMod-6.x s(u, v) = CosMod-6.x ∗

(
lb
(

N∗

c(u)

)
+ lb

(
N∗

c(v)

))
InnerProdW-1.x s(u, v) =

n

∑
i=1

tx(ui) ∗ tx(vi)

|ui|+ |vi|

InnerProdW-2.x s(u, v) =
n

∑
i=1

tx(ui) ∗ tx(vi)

|tx(ui)|+ |tx(vi)|

InnerProdW-3.x s(u, v) = t−1
x

(
n

∑
i=1

tx(ui) ∗ tx(vi)

|ui|+ |vi|

)

InnerProdW-4.x s(u, v) = t−1
x

(
n

∑
i=1

tx(ui) ∗ tx(vi)

|tx(ui)|+ |tx(vi)|

)
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Definition Reference

PearsMod-1.x s(u, v) = ∑n
i=1 tx(ui − ū) ∗ tx(vi − v̄)√

∑n
i=1(ui − ū)2 ∗

√
∑n

i=1(vi − v̄)2

PearsMod-2.x s(u, v) = ∑n
i=1 tx(ui − ū) ∗ tx(vi − v̄)√

∑n
i=1(tx(ui − ū))2 ∗

√
∑n

i=1(tx(vi − v̄))2

PearsMod-3.x s(u, v) = ∑n
i=1 tx(ui − ū) ∗ tx(vi − v̄)√

t−1
x (∑n

i=1(tx(ui − ū))2) ∗
√

t−1
x (∑n

i=1(tx(vi − v̄))2)

PearsMod-4.x s(u, v) =
t−1
x (∑n

i=1 tx(ui − ū) ∗ tx(vi − v̄))√
∑n

i=1(ui − ū)2 ∗
√

∑n
i=1(vi − v̄)2

PearsMod-5.x s(u, v) =
t−1
x (∑n

i=1 tx(ui − ū) ∗ tx(vi − v̄))√
∑n

i=1(tx(ui − ū))2 ∗
√

∑n
i=1(tx(vi − v̄))2

PearsMod-6.x s(u, v) =
t−1
x (∑n

i=1 tx(ui − ū) ∗ tx(vi − v̄))√
t−1
x (∑n

i=1(tx(ui − ū))2) ∗
√

t−1
x (∑n

i=1(tx(vi − v̄))2)

PearsMBMod-1.x s(u, v) =
1
2

(
∑n

i=1 tx(ui − ū) ∗ tx(vi − v̄)
∑n

i=1(ui − ū)2 +
∑n

i=1 tx(ui − ū) ∗ tx(vi − v̄)
∑n

i=1(vi − v̄)2

)
PearsMBMod-2.x s(u, v) =

1
2

(
∑n

i=1 tx(ui − ū) ∗ tx(vi − v̄)
∑n

i=1(tx(ui − ū))2 +
∑n

i=1 tx(ui − ū) ∗ tx(vi − v̄)
∑n

i=1(tx(vi − v̄))2

)
PearsMBMod-3.x s(u, v) =

1
2

(
∑n

i=1 tx(ui − ū) ∗ tx(vi − v̄)
t−1
x (∑n

i=1(tx(ui − ū))2)
+

∑n
i=1 tx(ui − ū) ∗ tx(vi − v̄)
t−1
x (∑n

i=1(tx(vi − v̄))2)

)
PearsMBMod-4.x s(u, v) =

1
2

(
t−1
x (∑n

i=1 tx(ui − ū) ∗ tx(vi − v̄))
∑n

i=1(ui − ū)2 +
t−1
x (∑n

i=1 tx(ui − ū) ∗ tx(vi − v̄))
∑n

i=1(vi − v̄)2

)
PearsMBMod-5.x s(u, v) =

1
2

(
t−1
x (∑n

i=1 tx(ui − ū) ∗ tx(vi − v̄))
∑n

i=1(tx(ui − ū))2 +
t−1
x (∑n

i=1 tx(ui − ū) ∗ tx(vi − v̄))
∑n

i=1(tx(vi − v̄))2

)
PearsMBMod-6.x s(u, v) =

1
2

(
t−1
x (∑n

i=1 tx(ui − ū) ∗ tx(vi − v̄))
t−1
x (∑n

i=1(tx(ui − ū))2)
+

t−1
x (∑n

i=1 tx(ui − ū) ∗ tx(vi − v̄))
t−1
x (∑n

i=1(tx(vi − v̄))2)

)
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Definition Reference

PearsMBAdjCosMod-1.x
s(u, v) =

{
1, PearsMBMod-1.x(u, v) ≥ λ
PearsMBMod-1.x(u,v)

λ , otherwise
λ = 0.1

PearsMBAdjCosMod-2.x
s(u, v) =

{
1, PearsMBMod-2.x(u, v) ≥ λ
PearsMBMod-2.x(u,v)

λ , otherwise
λ = 0.1

PearsMBAdjCosMod-3.x
s(u, v) =

{
1, PearsMBMod-3.x(u, v) ≥ λ
PearsMBMod-3.x(u,v)

λ , otherwise
λ = 0.1

PearsMBAdjCosMod-4.x
s(u, v) =

{
1, PearsMBMod-4.x(u, v) ≥ λ
PearsMBMod-4.x(u,v)

λ , otherwise
λ = 0.1

PearsMBAdjCosMod-5.x
s(u, v) =

{
1, PearsMBMod-5.x(u, v) ≥ λ
PearsMBMod-5.x(u,v)

λ , otherwise
λ = 0.1

PearsMBAdjCosMod-6.x
s(u, v) =

{
1, PearsMBMod-6.x(u, v) ≥ λ
PearsMBMod-6.x(u,v)

λ , otherwise
λ = 0.1

PearsMBAdjCosPFMod-1.x
s(u, v) =

1, PearsMBMod-1.x(u, v) ∗
(

lb
(

N∗
c(u)

)
+ lb

(
N∗

c(v)

))
≥ λ

PearsMBMod-1.x(u,v)∗
(

lb
(

N∗
c(u)

)
+lb

(
N∗
c(v)

))
λ , otherwise

λ = 0.1

PearsMBAdjCosPFMod-2.x
s(u, v) =

1, PearsMBMod-2.x(u, v) ∗
(

lb
(

N∗
c(u)

)
+ lb

(
N∗

c(v)

))
≥ λ

PearsMBMod-2.x(u,v)∗
(

lb
(

N∗
c(u)

)
+lb

(
N∗
c(v)

))
λ , otherwise

λ = 0.1

PearsMBAdjCosPFMod-3.x
s(u, v) =

1, PearsMBMod-3.x(u, v) ∗
(

lb
(

N∗
c(u)

)
+ lb

(
N∗

c(v)

))
≥ λ

PearsMBMod-3.x(u,v)∗
(

lb
(

N∗
c(u)

)
+lb

(
N∗
c(v)

))
λ , otherwise

λ = 0.1

PearsMBAdjCosPFMod-4.x
s(u, v) =

1, PearsMBMod-4.x(u, v) ∗
(

lb
(

N∗
c(u)

)
+ lb

(
N∗

c(v)

))
≥ λ

PearsMBMod-4.x(u,v)∗
(

lb
(

N∗
c(u)

)
+lb

(
N∗
c(v)

))
λ , otherwise

λ = 0.1

PearsMBAdjCosPFMod-5.x
s(u, v) =

1, PearsMBMod-5.x(u, v) ∗
(

lb
(

N∗
c(u)

)
+ lb

(
N∗

c(v)

))
≥ λ

PearsMBMod-5.x(u,v)∗
(

lb
(

N∗
c(u)

)
+lb

(
N∗
c(v)

))
λ , otherwise

λ = 0.1

PearsMBAdjCosPFMod-6.x
s(u, v) =

1, PearsMBMod-6.x(u, v) ∗
(

lb
(

N∗
c(u)

)
+ lb

(
N∗

c(v)

))
≥ λ

PearsMBMod-6.x(u,v)∗
(

lb
(

N∗
c(u)

)
+lb

(
N∗
c(v)

))
λ , otherwise

λ = 0.1



140 A. A list of the most important vector similarity measures tested

Definition Reference

Cos s(u, v) = ∑n
i=1 ui ∗ vi√

∑n
i=1 u2

i ∗
√

∑n
i=1 v2

i

(Jones and Furnas, 1987)

LW-1.1.x d(u, v) =
n

∑
i=1

tx(|ui − vi|)
|ui|+ |vi|

LW-1.2.x d(u, v) = t−1
x

(
n

∑
i=1

tx(|ui − vi|)
|ui|+ |vi|

)
LW-2.1.x d(u, v) =

n

∑
i=1

tx(|ui − vi|)
|tx(ui)|+ |tx(vi)|

LW-2.2.x d(u, v) = t−1
x

(
n

∑
i=1

tx(|ui − vi|)
|tx(ui)|+ |tx(vi)|

)
DTVW-1.1.x d(u, v) =

n

∑
i=1

|tx(ui)− tx(vi)|
|ui|+ |vi|

DTVW-1.2.x d(u, v) = t−1
x

(
n

∑
i=1

|tx(ui)− tx(vi)|
|ui|+ |vi|

)
DTVW-2.1.x d(u, v) =

n

∑
i=1

|tx(ui)− tx(vi)|
|tx(ui)|+ |tx(vi)|

DTVW-2.2.x d(u, v) = t−1
x

(
n

∑
i=1

|tx(ui)− tx(vi)|
|tx(ui)|+ |tx(vi)|

)
DTVW-3.1.x d(u, v) =

n

∑
i=1

t−1
x (|tx(ui)− tx(vi)|)

|ui|+ |vi|

DTVW-3.2.x d(u, v) = t−1
x

(
n

∑
i=1

t−1
x (|tx(ui)− tx(vi)|)

|ui|+ |vi|

)
DTVW-4.1.x d(u, v) =

n

∑
i=1

t−1
x (|tx(ui)− tx(vi)|)
|tx(ui)|+ |tx(vi)|

DTVW-4.2.x d(u, v) = t−1
x

(
n

∑
i=1

t−1
x (|tx(ui)− tx(vi)|)
|tx(ui)|+ |tx(vi)|

)
PenroseShapeMod-1.x d(u, v) =

n

∑
i=1

tx(|(ui − ū)− (vi − v̄)|)

PenroseShapeMod-2.x d(u, v) =
n

∑
i=1
|tx(ui − ū)− tx(vi − v̄)|

PenroseShapeMod-3.x d(u, v) = t−1
x

(
n

∑
i=1

tx(|(ui − ū)− (vi − v̄)|)
)

PenroseShapeMod-4.x d(u, v) = t−1
x

(
n

∑
i=1
|tx(ui − ū)− tx(vi − v̄)|

)
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Definition Reference

LMod-1.1.x d(u, v) =
n

∑
i=1

tx(|ui − vi|)

LMod-1.2.x d(u, v) = t−1
x

(
n

∑
i=1

tx(|ui − vi|)
)

LMod-2.1.x d(u, v) = ∑n
i=1 tx(|ui − vi|)√

∑n
i=1 u2

i ∗
√

∑n
i=1 v2

i

LMod-2.2.x d(u, v) =
t−1
x (∑n

i=1 tx(|ui − vi|))√
∑n

i=1 u2
i ∗
√

∑n
i=1 v2

i

LMod-3.1.x d(u, v) = ∑n
i=1 tx(|ui − vi|)√

∑n
i=1 u2

i +
√

∑n
i=1 v2

i

LMod-3.2.x d(u, v) =
t−1
x (∑n

i=1 tx(|ui − vi|))√
∑n

i=1 u2
i +

√
∑n

i=1 v2
i

LMod-4.1.x d(u, v) = ∑n
i=1 tx(|ui − vi|)√

∑n
i=1 tx(ui)2 ∗

√
∑n

i=1 tx(vi)2

LMod-4.2.x d(u, v) =
t−1
x (∑n

i=1 tx(|ui − vi|))√
t−1
x (∑n

i=1 tx(ui)2) ∗
√

t−1
x (∑n

i=1 tx(vi)2)

LMod-5.1.x d(u, v) = ∑n
i=1 tx(|ui − vi|)√

∑n
i=1 tx(ui)2 +

√
∑n

i=1 tx(vi)2

LMod-5.2.x d(u, v) =
t−1
x (∑n

i=1 tx(|ui − vi|))√
t−1
x (∑n

i=1 tx(ui)2) +
√

t−1
x (∑n

i=1 tx(vi)2)

LMod-6.1.x d(u, v) = ∑n
i=1 tx(|ui − vi|)√

∑n
i=1 |tx(ui)| ∗

√
∑n

i=1 |tx(vi)|

LMod-6.2.x d(u, v) =
t−1
x (∑n

i=1 tx(|ui − vi|))√
t−1
x (∑n

i=1 |tx(ui)|) ∗
√

t−1
x (∑n

i=1 |tx(vi)|)

LMod-7.1.x d(u, v) = ∑n
i=1 tx(|ui − vi|)√

∑n
i=1 |tx(ui)|+

√
∑n

i=1 |tx(vi)|

LMod-7.2.x d(u, v) =
t−1
x (∑n

i=1 tx(|ui − vi|))√
t−1
x (∑n

i=1 |tx(ui)|) +
√

t−1
x (∑n

i=1 |tx(vi)|)

LMod-8.1.x d(u, v) = ∑n
i=1 tx(|ui − vi|)

∑n
i=1 u2

i ∗∑n
i=1 v2

i

LMod-8.2.x d(u, v) =
t−1
x (∑n

i=1 tx(|ui − vi|))
∑n

i=1 u2
i ∗∑n

i=1 v2
i

LMod-9.1.x d(u, v) = ∑n
i=1 tx(|ui − vi|)

∑n
i=1 u2

i + ∑n
i=1 v2

i

LMod-9.2.x d(u, v) =
t−1
x (∑n

i=1 tx(|ui − vi|))
∑n

i=1 u2
i + ∑n

i=1 v2
i

LMod-10.1.x d(u, v) = ∑n
i=1 tx(|ui − vi|)

∑n
i=1 tx(ui)2 ∗∑n

i=1 tx(vi)2

LMod-10.2.x d(u, v) =
t−1
x (∑n

i=1 tx(|ui − vi|))
t−1
x (∑n

i=1 tx(ui)2) ∗ t−1
x (∑n

i=1 tx(vi)2)
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Definition Reference

LMod-11.1.x d(u, v) = ∑n
i=1 tx(|ui − vi|)

∑n
i=1 tx(ui)2 + ∑n

i=1 tx(vi)2

LMod-11.2.x d(u, v) =
t−1
x (∑n

i=1 tx(|ui − vi|))
t−1
x (∑n

i=1 tx(ui)2) + t−1
x (∑n

i=1 tx(vi)2)

LMod-12.1.x d(u, v) = ∑n
i=1 tx(|ui − vi|)

∑n
i=1 |tx(ui)| ∗∑n

i=1 |tx(vi)|

LMod-12.2.x d(u, v) =
t−1
x (∑n

i=1 tx(|ui − vi|))
t−1
x (∑n

i=1 |tx(ui)|) ∗ t−1
x (∑n

i=1 |tx(vi)|)

LMod-13.1.x d(u, v) = ∑n
i=1 tx(|ui − vi|)

∑n
i=1 |tx(ui)|+ ∑n

i=1 |tx(vi)|

LMod-13.2.x d(u, v) =
t−1
x (∑n

i=1 tx(|ui − vi|))
t−1
x (∑n

i=1 |tx(ui)|) + t−1
x (∑n

i=1 |tx(vi)|)

LMod-14.1.x d(u, v) = ∑n
i=1 tx(|ui − vi|)

∑n
i=1 tx(ui) ∗∑n

i=1 tx(vi)

LMod-14.2.x d(u, v) =
t−1
x (∑n

i=1 tx(|ui − vi|))
t−1
x (∑n

i=1 tx(ui)) ∗ t−1
x (∑n

i=1 tx(vi))

LMod-15.1.x d(u, v) = ∑n
i=1 tx(|ui − vi|)

∑n
i=1 tx(ui) + ∑n

i=1 tx(vi)

LMod-15.2.x d(u, v) =
t−1
x (∑n

i=1 tx(|ui − vi|))
t−1
x (∑n

i=1 tx(ui)) + t−1
x (∑n

i=1 tx(vi))

DTV-1.1.x d(u, v) =
n

∑
i=1
|tx(ui)− tx(vi)|

DTV-1.2.x d(u, v) = t−1
x

(
n

∑
i=1
|tx(ui)− tx(vi)|

)
DTV-2.1.x d(u, v) = ∑n

i=1 |tx(ui)− tx(vi)|
∑n

i=1 |tx(ui)|+ ∑n
i=1 |tx(vi)|

DTV-2.2.x d(u, v) =
t−1
x (∑n

i=1 |tx(ui)− tx(vi)|))
t−1
x (∑n

i=1 |tx(ui)|) + t−1
x (∑n

i=1 |tx(vi)|)

DTV-3.1.x d(u, v) = ∑n
i=1 |tx(ui)− tx(vi)|

∑n
i=1 |tx(ui)| ∗∑n

i=1 |tx(vi)|

DTV-3.2.x d(u, v) =
t−1
x (∑n

i=1 |tx(ui)− tx(vi)|))
t−1
x (∑n

i=1 |tx(ui)|) ∗ t−1
x (∑n

i=1 |tx(vi)|)

DTV-4.1.x d(u, v) = ∑n
i=1 |tx(ui)− tx(vi)|√

∑n
i=1 tx(ui)2 +

√
∑n

i=1 tx(vi)2

DTV-4.2.x d(u, v) =
t−1
x (∑n

i=1 |tx(ui)− tx(vi)|))√
t−1
x (∑n

i=1 tx(ui)2) +
√

t−1
x (∑n

i=1 tx(vi)2)

DTV-5.1.x d(u, v) = ∑n
i=1 |tx(ui)− tx(vi)|√

∑n
i=1 tx(ui)2 ∗

√
∑n

i=1 tx(vi)2

DTV-5.2.x d(u, v) =
t−1
x (∑n

i=1 |tx(ui)− tx(vi)|))√
t−1
x (∑n

i=1 tx(ui)2) ∗
√

t−1
x (∑n

i=1 tx(vi)2)

DTV-6.1.x d(u, v) = ∑n
i=1 |tx(ui)− tx(vi)|√
∑n

i=1 u2
i +

√
∑n

i=1 v2
i

DTV-6.2.x d(u, v) =
t−1
x (∑n

i=1 |tx(ui)− tx(vi)|)√
∑n

i=1 u2
i +

√
∑n

i=1 v2
i
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Definition Reference

DTV-7.1.x d(u, v) = ∑n
i=1 |tx(ui)− tx(vi)|√
∑n

i=1 u2
i ∗
√

∑n
i=1 v2

i

DTV-7.2.x d(u, v) =
t−1
x (∑n

i=1 |tx(ui)− tx(vi)|)√
∑n

i=1 u2
i ∗
√

∑n
i=1 v2

i

DTV-8.1.x d(u, v) =
n

∑
i=1

t−1
x (|tx(ui)− tx(vi)|)

DTV-9.1.x d(u, v) = ∑n
i=1 t−1

x (|tx(ui)− tx(vi)|)
∑n

i=1 |tx(ui)|+ ∑n
i=1 |tx(vi)|

DTV-9.2.x d(u, v) = ∑n
i=1 t−1

x (|tx(ui)− tx(vi)|))
t−1
x (∑n

i=1 |tx(ui)|) + t−1
x (∑n

i=1 |tx(vi)|)

DTV-10.1.x d(u, v) = ∑n
i=1 t−1

x (|tx(ui)− tx(vi)|)
∑n

i=1 |tx(ui)| ∗∑n
i=1 |tx(vi)|

DTV-10.2.x d(u, v) = ∑n
i=1 t−1

x (|tx(ui)− tx(vi)|))
t−1
x (∑n

i=1 |tx(ui)|) ∗ t−1
x (∑n

i=1 |tx(vi)|)

DTV-11.1.x d(u, v) = ∑n
i=1 t−1

x (|tx(ui)− tx(vi)|)√
∑n

i=1 tx(ui)2 +
√

∑n
i=1 tx(vi)2

DTV-11.2.x d(u, v) = ∑n
i=1 t−1

x (|tx(ui)− tx(vi)|))√
t−1
x (∑n

i=1 tx(ui)2) +
√

t−1
x (∑n

i=1 tx(vi)2)

DTV-12.1.x d(u, v) = ∑n
i=1 t−1

x (|tx(ui)− tx(vi)|)√
∑n

i=1 tx(ui)2 ∗
√

∑n
i=1 tx(vi)2

DTV-12.2.x d(u, v) = ∑n
i=1 t−1

x (|tx(ui)− tx(vi)|))√
t−1
x (∑n

i=1 tx(ui)2) ∗
√

t−1
x (∑n

i=1 tx(vi)2)

DTV-13.1.x d(u, v) = ∑n
i=1 t−1

x (|tx(ui)− tx(vi)|)√
∑n

i=1 u2
i +

√
∑n

i=1 v2
i

DTV-14.1.x d(u, v) = ∑n
i=1 t−1

x (|tx(ui)− tx(vi)|)√
∑n

i=1 u2
i ∗
√

∑n
i=1 v2

i

LinMod-1.1.1.x s(u, v) =
n

∑
i=1

lanztx(ui, vi)

LinMod-1.1.2.x s(u, v) = t−1
x

(
n

∑
i=1

lanztx(ui, vi)

)
LinMod-1.2.1.x s(u, v) =

n

∑
i=1

lagztx(ui, vi)

LinMod-1.2.2.x s(u, v) = t−1
x

(
n

∑
i=1

lagztx(ui, vi)

)
LinMod-2.1.1.x s(u, v) = ∑n

i=1 lanztx(ui, vi)

∑n
i=1 |tx(ui)|+ ∑n

i=1 |tx(vi)|

LinMod-2.1.2.x s(u, v) =
t−1
x (∑n

i=1 lanztx(ui, vi))

t−1
x (∑n

i=1 |tx(ui)|) + t−1
x (∑n

i=1 |tx(vi)|)

LinMod-2.2.1.x s(u, v) = ∑n
i=1 lagztx(ui, vi)

∑n
i=1 |tx(ui)|+ ∑n

i=1 |tx(vi)|

LinMod-2.2.2.x s(u, v) =
t−1
x (∑n

i=1 lagztx(ui, vi))

t−1
x (∑n

i=1 |tx(ui)|) + t−1
x (∑n

i=1 |tx(vi)|)

LinMod-3.1.1.x s(u, v) = ∑n
i=1 lanztx(ui, vi)

∑n
i=1 |tx(ui)| ∗∑n

i=1 |tx(vi)|

LinMod-3.1.2.x s(u, v) =
t−1
x (∑n

i=1 lanztx(ui, vi))

t−1
x (∑n

i=1 |tx(ui)|) ∗ t−1
x (∑n

i=1 |tx(vi)|)

LinMod-3.2.1.x s(u, v) = ∑n
i=1 lagztx(ui, vi)

∑n
i=1 |tx(ui)| ∗∑n

i=1 |tx(vi)|

LinMod-3.2.2.x s(u, v) =
t−1
x (∑n

i=1 lagztx(ui, vi))

t−1
x (∑n

i=1 |tx(ui)|) ∗ t−1
x (∑n

i=1 |tx(vi)|)
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Definition Reference

LinMod-4.1.1.x s(u, v) = ∑n
i=1 lanztx(ui, vi)√

∑n
i=1 tx(ui)2 +

√
∑n

i=1 tx(vi)2

LinMod-4.1.2.x s(u, v) =
t−1
x (∑n

i=1 lanztx(ui, vi))√
t−1
x (∑n

i=1 tx(ui)2) +
√

t−1
x (∑n

i=1 tx(vi)2)

LinMod-4.2.1.x s(u, v) = ∑n
i=1 lagztx(ui, vi)√

∑n
i=1 tx(ui)2 +

√
∑n

i=1 tx(vi)2

LinMod-4.2.2.x s(u, v) =
t−1
x (∑n

i=1 lagztx(ui, vi))√
t−1
x (∑n

i=1 tx(ui)2) +
√

t−1
x (∑n

i=1 tx(vi)2)

LinMod-5.1.1.x s(u, v) = ∑n
i=1 lanztx(ui, vi)√

∑n
i=1 tx(ui)2 ∗

√
∑n

i=1 tx(vi)2

LinMod-5.1.2.x s(u, v) =
t−1
x (∑n

i=1 lanztx(ui, vi))√
t−1
x (∑n

i=1 tx(ui)2) ∗
√

t−1
x (∑n

i=1 tx(vi)2)

LinMod-5.2.1.x s(u, v) = ∑n
i=1 lagztx(ui, vi)√

∑n
i=1 tx(ui)2 ∗

√
∑n

i=1 tx(vi)2

LinMod-5.2.2.x s(u, v) =
t−1
x (∑n

i=1 lagztx(ui, vi))√
t−1
x (∑n

i=1 tx(ui)2) ∗
√

t−1
x (∑n

i=1 tx(vi)2)

LinMod-6.1.1.x s(u, v) = ∑n
i=1 lanztx(ui, vi)√

∑n
i=1 u2

i +
√

∑n
i=1 v2

i

LinMod-6.1.2.x s(u, v) =
t−1
x (∑n

i=1 lanztx(ui, vi))√
∑n

i=1 u2
i +

√
∑n

i=1 v2
i

LinMod-6.2.1.x s(u, v) = ∑n
i=1 lagztx(ui, vi)√

∑n
i=1 u2

i +
√

∑n
i=1 v2

i

LinMod-6.2.2.x s(u, v) =
t−1
x (∑n

i=1 lagztx(ui, vi))√
∑n

i=1 u2
i +

√
∑n

i=1 v2
i

LinMod-7.1.1.x s(u, v) = ∑n
i=1 lanztx(ui, vi)√

∑n
i=1 u2

i ∗
√

∑n
i=1 v2

i

LinMod-7.1.2.x s(u, v) =
t−1
x (∑n

i=1 lanztx(ui, vi))√
∑n

i=1 u2
i ∗
√

∑n
i=1 v2

i

LinMod-7.2.1.x s(u, v) = ∑n
i=1 lagztx(ui, vi)√

∑n
i=1 u2

i ∗
√

∑n
i=1 v2

i

LinMod-7.2.2.x s(u, v) =
t−1
x (∑n

i=1 lagztx(ui, vi))√
∑n

i=1 u2
i ∗
√

∑n
i=1 v2

i

LinMod-8.1.1.x s(u, v) = ∑n
i=1 lanztx(ui, vi)

∑n
i=1 tx(ui) + ∑n

i=1 tx(vi)

LinMod-8.1.2.x s(u, v) =
t−1
x (∑n

i=1 lanztx(ui, vi))

t−1
x (∑n

i=1 tx(ui)) + t−1
x (∑n

i=1 tx(vi))

LinMod-8.2.1.x s(u, v) = ∑n
i=1 lagztx(ui, vi)

∑n
i=1 tx(ui) + ∑n

i=1 tx(vi)

LinMod-8.2.2.x s(u, v) =
t−1
x (∑n

i=1 lagztx(ui, vi))

t−1
x (∑n

i=1 tx(ui)) + t−1
x (∑n

i=1 tx(vi))

LinMod-9.1.1.x s(u, v) = ∑n
i=1 lanztx(ui, vi)

∑n
i=1 tx(ui) ∗∑n

i=1 tx(vi)

LinMod-9.1.2.x s(u, v) =
t−1
x (∑n

i=1 lanztx(ui, vi))

t−1
x (∑n

i=1 tx(ui)) ∗ t−1
x (∑n

i=1 tx(vi))

LinMod-9.2.1.x s(u, v) = ∑n
i=1 lagztx(ui, vi)

∑n
i=1 tx(ui) ∗∑n

i=1 tx(vi)

LinMod-9.2.2.x s(u, v) =
t−1
x (∑n

i=1 lagztx(ui, vi))

t−1
x (∑n

i=1 tx(ui)) ∗ t−1
x (∑n

i=1 tx(vi))



145

Definition Reference

LinHRMod-1.1.1.x s(u, v) =
n

∑
i=1

lmnztx(ui, vi)

LinHRMod-1.1.2.x s(u, v) = t−1
x

(
n

∑
i=1

lmnztx(ui, vi)

)
LinHRMod-1.2.1.x s(u, v) =

n

∑
i=1

lmgztx(ui, vi)

LinHRMod-1.2.2.x s(u, v) = t−1
x

(
n

∑
i=1

lmgztx(ui, vi)

)
LinHRMod-2.1.1.x s(u, v) = ∑n

i=1 lmnztx(ui, vi)

∑n
i=1 |tx(ui)|+ ∑n

i=1 |tx(vi)|

LinHRMod-2.1.2.x s(u, v) =
t−1
x (∑n

i=1 lmnztx(ui, vi))

t−1
x (∑n

i=1 |tx(ui)|) + t−1
x (∑n

i=1 |tx(vi)|)

LinHRMod-2.2.1.x s(u, v) = ∑n
i=1 lmgztx(ui, vi)

∑n
i=1 |tx(ui)|+ ∑n

i=1 |tx(vi)|

LinHRMod-2.2.2.x s(u, v) =
t−1
x (∑n

i=1 lmgztx(ui, vi))

t−1
x (∑n

i=1 |tx(ui)|) + t−1
x (∑n

i=1 |tx(vi)|)

LinHRMod-3.1.1.x s(u, v) = ∑n
i=1 lmnztx(ui, vi)

∑n
i=1 |tx(ui)| ∗∑n

i=1 |tx(vi)|

LinHRMod-3.1.2.x s(u, v) =
t−1
x (∑n

i=1 lmnztx(ui, vi))

t−1
x (∑n

i=1 |tx(ui)|) ∗ t−1
x (∑n

i=1 |tx(vi)|)

LinHRMod-3.2.1.x s(u, v) = ∑n
i=1 lmgztx(ui, vi)

∑n
i=1 |tx(ui)| ∗∑n

i=1 |tx(vi)|

LinHRMod-3.2.2.x s(u, v) =
t−1
x (∑n

i=1 lmgztx(ui, vi))

t−1
x (∑n

i=1 |tx(ui)|) ∗ t−1
x (∑n

i=1 |tx(vi)|)

LinHRMod-4.1.1.x s(u, v) = ∑n
i=1 lmnztx(ui, vi)√

∑n
i=1 tx(ui)2 +

√
∑n

i=1 tx(vi)2

LinHRMod-4.1.2.x s(u, v) =
t−1
x (∑n

i=1 lmnztx(ui, vi))√
t−1
x (∑n

i=1 tx(ui)2) +
√

t−1
x (∑n

i=1 tx(vi)2)

LinHRMod-4.2.1.x s(u, v) = ∑n
i=1 lmgztx(ui, vi)√

∑n
i=1 tx(ui)2 +

√
∑n

i=1 tx(vi)2

LinHRMod-4.2.2.x s(u, v) =
t−1
x (∑n

i=1 lmgztx(ui, vi))√
t−1
x (∑n

i=1 tx(ui)2) +
√

t−1
x (∑n

i=1 tx(vi)2)

LinHRMod-5.1.1.x s(u, v) = ∑n
i=1 lmnztx(ui, vi)√

∑n
i=1 tx(ui)2 ∗

√
∑n

i=1 tx(vi)2

LinHRMod-5.1.2.x s(u, v) =
t−1
x (∑n

i=1 lmnztx(ui, vi))√
t−1
x (∑n

i=1 tx(ui)2) ∗
√

t−1
x (∑n

i=1 tx(vi)2)

LinHRMod-5.2.1.x s(u, v) = ∑n
i=1 lmgztx(ui, vi)√

∑n
i=1 tx(ui)2 ∗

√
∑n

i=1 tx(vi)2

LinHRMod-5.2.2.x s(u, v) =
t−1
x (∑n

i=1 lmgztx(ui, vi))√
t−1
x (∑n

i=1 tx(ui)2) ∗
√

t−1
x (∑n

i=1 tx(vi)2)
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Definition Reference

LinHRMod-6.1.1.x s(u, v) = ∑n
i=1 lmnztx(ui, vi)√

∑n
i=1 u2

i +
√

∑n
i=1 v2

i

LinHRMod-6.1.2.x s(u, v) =
t−1
x (∑n

i=1 lmnztx(ui, vi))√
∑n

i=1 u2
i +

√
∑n

i=1 v2
i

LinHRMod-6.2.1.x s(u, v) = ∑n
i=1 lmgztx(ui, vi)√

∑n
i=1 u2

i +
√

∑n
i=1 v2

i

LinHRMod-6.2.2.x s(u, v) =
t−1
x (∑n

i=1 lmgztx(ui, vi))√
∑n

i=1 u2
i +

√
∑n

i=1 v2
i

LinHRMod-7.1.1.x s(u, v) = ∑n
i=1 lmnztx(ui, vi)√

∑n
i=1 u2

i ∗
√

∑n
i=1 v2

i

LinHRMod-7.1.2.x s(u, v) =
t−1
x (∑n

i=1 lmnztx(ui, vi))√
∑n

i=1 u2
i ∗
√

∑n
i=1 v2

i

LinHRMod-7.2.1.x s(u, v) = ∑n
i=1 lmgztx(ui, vi)√

∑n
i=1 u2

i ∗
√

∑n
i=1 v2

i

LinHRMod-7.2.2.x s(u, v) =
t−1
x (∑n

i=1 lmgztx(ui, vi))√
∑n

i=1 u2
i ∗
√

∑n
i=1 v2

i

LinHRMod-8.1.1.x s(u, v) = ∑n
i=1 lmnztx(ui, vi)

∑n
i=1 tx(ui) + ∑n

i=1 tx(vi)

LinHRMod-8.1.2.x s(u, v) =
t−1
x (∑n

i=1 lmnztx(ui, vi))

t−1
x (∑n

i=1 tx(ui)) + t−1
x (∑n

i=1 tx(vi))

LinHRMod-8.2.1.x s(u, v) = ∑n
i=1 lmgztx(ui, vi)

∑n
i=1 tx(ui) + ∑n

i=1 tx(vi)

LinHRMod-8.2.2.x s(u, v) =
t−1
x (∑n

i=1 lmgztx(ui, vi))

t−1
x (∑n

i=1 tx(ui)) + t−1
x (∑n

i=1 tx(vi))

LinHRMod-9.1.1.x s(u, v) = ∑n
i=1 lmnztx(ui, vi)

∑n
i=1 tx(ui) ∗∑n

i=1 tx(vi)

LinHRMod-9.1.2.x s(u, v) =
t−1
x (∑n

i=1 lmnztx(ui, vi))

t−1
x (∑n

i=1 tx(ui)) ∗ t−1
x (∑n

i=1 tx(vi))

LinHRMod-9.2.1.x s(u, v) = ∑n
i=1 lmgztx(ui, vi)

∑n
i=1 tx(ui) ∗∑n

i=1 tx(vi)

LinHRMod-9.2.2.x s(u, v) =
t−1
x (∑n

i=1 lmgztx(ui, vi))

t−1
x (∑n

i=1 tx(ui)) ∗ t−1
x (∑n

i=1 tx(vi))



APPENDIX B

A list of the most important weighting

schemes tested

To follow the notations of Curran (2004), we denote word-feature pairs as (w,r,w’)

triplets. However, please note that dispite the style of our notations, our calcu-

lations and formulas rather follow Lin (1998a), as we found them more intuitive.

Substituting any of the components with an * results in a set of triplets, where the

* takes the value of all the possible elements of the given type. Frequency counts

are denoted as f(w,r,w’), from which probabilities (p) are calculated as dividing

by f(*,r,*). Further, type frequencies (n) are calculated by counting the number of

elements in the set defined by the triplet, and the number of words and features

having positive type frequencies are denoted as N(w,r) and N(r,w′), respectively:
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f (w, r, ∗) = ∑
w′

f (w, r, w′)

f (∗, r, w′) = ∑
w

f (w, r, w′)

f (∗, r, ∗) = ∑
w,w′

f (w, r, w′)

(B.1)

p(w, r, w′) =
f (w, r, w′)
f (∗, r, ∗)

p(w, r, ∗) = f (w, r, ∗)
f (∗, r, ∗)

p(∗, r, w′) =
f (∗, r, w′)
f (∗, r, ∗)

(B.2)

n(w, r, ∗) = | f (w, r, ∗)|

n(∗, r, w′) = | f (∗, r, w′)|
(B.3)

N(w,r) = |(w, r)|n(w, r, ∗) > 0|

N(r,w′) = |(r, w′)|n(∗, r, w′) > 0|
(B.4)

To avoid unnecessary special cases in the formulas, the following two simpli-

fications have been used in all measures: 0
0 = 0 and 0 ∗ log(0) = 0. Further, to

make the formulas simpler, in case of some information theoretic measures the

standard contingency table notations are used Evert (2005):
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N = f (∗, r, ∗)

O11 = f (w, r, w′)

O12 = f (w, r, ∗)− f (w, r, w′)

O21 = f (∗, r, w′)− f (w, r, w′)

O22 = N − f (w, r, ∗)− f (∗, r, w′)

+ f (w, r, w′)

(B.5)

There are such weighting schemes that could return a non-zero weight even

if f (w, r, w′) = 0 (for example due to the use of smoothing or the calculation

of the logarithm of this value). However, in most cases it would not be benefi-

cial to calculate and use these values (for example log(0) = −∞), so in case of

f (w, r, w′) = 0 we have always taken the corresponding weight to be 0 too.

There are possible suffixes to the weighting schemes that work the following

way:

• Tc0: No transformation on the counts

• Tc1: the same transformation on the counts as in PmiAl

• Tc2: the same transformation on the counts as in PmiDisc

• Tc3: the same transformation on the counts as in PmiWls

• Tc4: the same transformation on the counts as in Unis

• Tw0: no transformation on the weights

• Tw1: the same transformation on the weights as in WPmi9
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• Tw2: the same transformation on the weights as in WPmi10

• Tw3: the same transformation on the weights as in WPmi7

• Tw4: multiplication of the weights with the multiplier in WPmi7

• S0: no subtraction from the weights

• S1: the same subtraction from the weights as in SPmi

• S2: the same subtraction from the weights as in Unis

• P0: no multiplication of the weight

• P1: the same multiplication of the weight as in TfIdf2

• P2: the same multiplication of the weight as in TfIdf7

• P3: the same multiplication of the weight as in WPmi7

• P4: the same multiplication of the weight as in PmiWdf

• P5: the same multiplication of the weight as in NPmi
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Definition Reference

ATC

0.5 + 0.5 ∗ f (w,r,w′)
max( f (∗,r,∗)) ∗ lb f (∗,r,∗)

n(∗,r,w′)√
∑w (a1 ∗ lb (a2))

2

a1 = 0.5 + 0.5 ∗ f (w, r, w′)
max ( f (∗, r, ∗))

a2 =
f (∗, r, ∗)

n(∗, r, w′)

(Kiela and Clark, 2014)

Chi2
N(O11 ∗O22 −O12 ∗O21)

2

(O11 + O12)(O11 + O21)(O12 + O22)(O21 + O22)
(Evert, 2008)

Chi2WYCC (Evert, 2008)

Dice
2 ∗ f (w, r, w′)

f (w, r, ∗) + f (∗, r, w′)
(Curran, 2004)

Freq f (w, r, w′) (Jurafsky and Martin, 2009)

GMean
O11√

O11 + O12 ∗ (O12 + O22)
(Evert, 2005)

Gref1
lb (1 + f (w, r, w′))
lb (1 + n(∗, r, w′))

(Curran, 2004)

Gref2
lb (1 + f (w, r, w′))

1 + ∑w
f (w,r,w′)
f (∗,r,w′) ∗ lb f (w,r,w′)

f (∗,r,w′)

(Curran, 2004)

Identity sgn
(

f (w, r, w′)
)

(Curran, 2004)

Jaccard
O11

O11 + O12 + O21
(Evert, 2005)

JointProb
f (w, r, w′)
f (∗, r, ∗) (Jurafsky and Martin, 2009)

Liddell
O11 ∗O22 −O12 ∗O21

(O11 + O21) ∗ (O12 + O22)
(Evert, 2005)
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Definition Reference

Lin1 −log
n(∗, r, w′)

N(w,r)
(Lin, 1998a)

Lin2 −log
n(∗, r, w′)
f (∗, r, ∗) (Kiela and Clark, 2014)

Lin3 −log
(

f (w, r, w′)
)
∗ log

n(∗, r, w′)
N(w,r)

(Kiela and Clark, 2014)

LogFreq lb
(
1 + f (w, r, w′)

)

LogLHR

− 2log
(

L(c12, c1, p) ∗ L(c2 − c12, N − c1, p)
L(c12, c1, p1) ∗ L(c2 − c12, N − c1, p2)

)
c1 = (w, r, ∗); c2 = f (∗, r, w′)
c12 = f (w, r, w′); N = f (∗, r, ∗)

p =
c2

N
; p1 =

c12

c1
; p2 =

c2 − c12

N − c1

L(k, n, x) = xk ∗ (1− x)n−k

(Evert, 2005)

LPMI1 f (w, r, w′) ∗ lb
(

f (∗, r, ∗) ∗ f (w, r, w′)
f (w, r, ∗) ∗ f (∗, r, w′)

)
(Evert, 2005)

LPMI2
f (w, r, w′)
f (∗, r, ∗) ∗ lb

(
f (∗, r, ∗) ∗ f (w, r, w′)
f (w, r, ∗) ∗ f (∗, r, w′)

)
(Herger, 2014)

LTU
(lb ( f (w, r, w′)) + 1) ∗ lb

(
f (∗,r,∗)

n(∗,r,w′)

)
0.8 + 0.2 ∗ f (∗,r,w′)

avg( f (∗,r,w′))

(Reed et al., 2006)

MinPMITTest1 min(PMI, TTest1) (Evert, 2005)

MinPMITTest2 min(PMI, TTest2) (Evert, 2005)

MinSens min
(

O11

O11 + O12
,

O11

O11 + O21

)
(Evert, 2005)

NPMI

lb
(

f (∗,r,∗)∗ f (w,r,w′)
f (w,r,∗)∗ f (∗,r,w′)

)
NPMIn

NPMIn = −lb
(

f (w, r, w′)
f (∗, r, ∗)

) (Harispe et al., 2015)
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Definition Reference

OddsRatio1 log
(O11 + 0.5) ∗ (O22 + 0.5)
(O12 + 0.5) ∗ (O21 + 0.5)

(Lowe, 2001)

Okapi1

p1 ∗ lb(p2)

p1 =
f (w, r, w′)

0.5 + 0.5 ∗ f (∗,r,w′)
avg( f (∗,r,w′)) + f (w, r, w′)

p2 =
f (∗, r, ∗)− n(∗, r, w′) + 0.5

f (w, r, w′) + 0.5

based on (Reed et al., 2006)

PLFFI lb
(
1 + f (w, r, w′)

)
∗ log

(
1− log

(
n(∗, r, w′)
f (∗, ∗, ∗)

))
basd on (Dobó and Csirik, 2013)

Rapp
lb
(

1 +
f (w, r, w′)
f (∗, r, w′)

)
∗ −∑

w
q ∗ lb (q)

q =
f (w, r, w′)
f (∗, r, w′)

(Rapp, 2003)

Rapp1

lb
(
1 + f (w, r, w′)

)
∗ −∑

w
q ∗ lb (q)

q =
f (w, r, w′)
f (∗, r, w′)

based on Rapp

RelRisk1
O11 ∗ (O12 + O22)

O12 ∗ (O11 + O21)
(Sistrom and Garvan, 2004)

RelRisk2 lb
O11 ∗ (O12 + O22)

O12 ∗ (O11 + O21)
(Evert, 2005)
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Definition Reference

PMI lb
(

f (∗, r, ∗) ∗ f (w, r, w′)
f (w, r, ∗) ∗ f (∗, r, w′)

)
(Church and Hanks, 1990)

PMIAlpha
lb
(
(∑n

i=1 f (∗, r, i)α) ∗ f (w, r, w′)
f (w, r, ∗) ∗ f (∗, r, w′)α

)
α = 0.75

(Levy et al., 2015)

PMIAlphaWOLog
(∑n

i=1 f (∗, r, i)α) ∗ f (w, r, w′)
f (w, r, ∗) ∗ f (∗, r, w′)α

α = 0.75
(Zhang et al., 2015)

PMICurran lb
(

f (∗, ∗, ∗) ∗ f (w, r, w′)
f (w, ∗, ∗) ∗ f (∗, r, w′)

)
(Curran, 2004)

PMIDisc
lb
(

f (∗, r, ∗) ∗ ( f (w, r, w′)− disc)
f (w, r, ∗) ∗ f (∗, r, w′)

)
disc = 0.95

(Lin, 1998b)

PMI2 lb
(

f (∗, r, ∗) ∗ f (w, r, w′)2

f (w, r, ∗) ∗ f (∗, r, w′)

)
(Evert, 2005)

PMI3 lb
(

f (∗, r, ∗) ∗ f (w, r, w′)3

f (w, r, ∗) ∗ f (∗, r, w′)

)
(Evert, 2005)

PMIWDF
PMIWDFδ ∗ lb

(
f (∗, r, ∗) ∗ f (w, r, w′)
f (w, r, ∗) ∗ f (∗, r, w′)

)
PMIWDFδ =

f (w, r, w′)
f (w, r, w′) + 1

∗ min ( f (w, r, ∗), f (∗, r, w′))
min ( f (w, r, ∗), f (∗, r, w′)) + 1

(Pantel and Lin, 2002)

PMIWLS lb
(
( f (∗, r, ∗) + 1) ∗ ( f (w, r, w′) + 1)
( f (w, r, ∗) + 1) ∗ ( f (∗, r, w′) + 1)

)
(Turney and Pantel, 2010)

PMI*Chi2 product of 2 weights

PMI*CondProb21 product of 2 weights

PMI*CondProb22 product of 2 weights

PMI*CondProb24 product of 2 weights

PMI*CondProb26 product of 2 weights
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Definition Reference

PMI lb
(

f (∗, r, ∗) ∗ f (w, r, w′)
f (w, r, ∗) ∗ f (∗, r, w′)

)
(Church and Hanks, 1990)

PMI*Liddell product of 2 weights

PMI*Lin11 product of 2 weights

PMI*Lin12 product of 2 weights

PMI*Lin13 product of 2 weights

PMI*Lin14 product of 2 weights

PMI*Lin15 product of 2 weights

PMI*Lin16 product of 2 weights

PMI*LTU product of 2 weights

PMI*OddsRatio3 product of 2 weights

PMI*Okapi1 product of 2 weights

PMI*Rapp1 product of 2 weights

PMI*Rapp4 product of 2 weights

PMI*Rapp6 product of 2 weights

PMI*RelRisk1 product of 2 weights

PMI*RelRisk2 product of 2 weights

PMI*TFIDF1 product of 2 weights

PMI*Ttest1 product of 2 weights

PMI*Ttest2 product of 2 weights

SPMI
lb
(

f (∗, r, ∗) ∗ f (w, r, w′)
f (w, r, ∗) ∗ f (∗, r, w′)

)
− SPMId

SPMId = lb(SPMIk) SPMIk = 5
(Weir et al., 2016)

SqLogLHR based on (Pecina, 2010)

TCombCost (Pecina, 2010)
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Definition Reference

PMI lb
(

f (∗, r, ∗) ∗ f (w, r, w′)
f (w, r, ∗) ∗ f (∗, r, w′)

)
(Church and Hanks, 1990)

TFICF1 lb
(

f (w, r, w′)
)
∗ lb

(
f (∗, r, ∗)
f (∗, r, w′)

)
(Kiela and Clark, 2014)

TFICF2 lb
(
1 + f (w, r, w′)

)
∗ lb

(
1 +

f (∗, r, ∗)
f (∗, r, w′)

)
based on (Kiela and Clark, 2014)

TFICF3 lb
(
1 + f (w, r, w′)

)
∗ lb

(
1 + f (∗, r, ∗)
1 + f (∗, r, w′)

)
(Reed et al., 2006)

TFIDF1
f (w, r, w′)
n(∗, r, w′)

(Curran, 2004)

TFIDF2
lb (1 + f (w, r, w′))

lb
(

1 +
N(r,w′)

n(∗,r,w′)

) (Curran, 2004)

TFIDF3 f (w, r, w′) ∗ lb
(

1 +
f (∗, r, ∗)
f (∗, r, w′)

)
(Jurafsky and Martin, 2009)

TFIDF4 lb
(

f (w, r, w′)
)
∗ lb

(
f (∗, r, ∗)

n(∗, r, w′)

)
(Kiela and Clark, 2014)

TFIDF5 lb
(
1 + f (w, r, w′)

)
∗ lb

(
1 +

f (∗, r, ∗)
n(∗, r, w′)

)
(Kiela and Clark, 2014)

TTest1
p(w, r, w′)− p(w, r, ∗) ∗ p(∗, r, w′)√

p(w,r,w′)
f (∗,r,∗)

(Weeds and Weir, 2005)

TTest2
p(w, r, w′)− p(w, r, ∗) ∗ p(∗, r, w′)√

p(w, r, ∗) ∗ p(∗, r, w′)
(Jurafsky and Martin, 2009)

TTest3
f (w, r, w′)− f (w,r,∗)∗ f (∗,r,w′)

f (∗,r,∗)√
f (w, r, w′) ∗ (1− f (w,r,w′)

f (∗,r,∗) )
(Pecina, 2010)

UniSubtuples lb
(

O11 ∗O22
O12 ∗O21

)
− 3.29 ∗

√
1

O11
+

1
O12

+
1

O21
+

1
O22

(Pecina, 2010)
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Definition Reference

PMI lb
(

f (∗, r, ∗) ∗ f (w, r, w′)
f (w, r, ∗) ∗ f (∗, r, w′)

)
(Church and Hanks, 1990)

WPMI
f (w, r, w′)
f (∗, r, ∗) ∗ lb

(
f (∗, r, ∗) ∗ f (w, r, w′)
f (w, r, ∗) ∗ f (∗, r, w′)

)
(Fung and McKeown, 1997)

WPMI10 lb
(

1 +
f (∗, r, ∗) ∗ f (w, r, w′)
f (w, r, ∗) ∗ f (∗, r, w′)

)2

based on WPMI

WPMI4 lb
(
1 + f (w, r, w′)

)
∗ PMI

ZTest1
p(w, r, w′)− p(w, r, ∗) ∗ p(∗, r, w′)√

p(w,r,∗)∗p(∗,r,w′)
f (∗,r,∗)

(Weeds and Weir, 2005)

ZTest2
f (w, r, w′)− f (w,r,∗)∗ f (∗,r,w′)

f (∗,r,∗)√
f (w,r,∗)∗ f (∗,r,w′)

f (∗,r,∗)

(Evert, 2005)

ZTest3
f (w, r, w′)− f (w,r,∗)∗ f (∗,r,w′)

f (∗,r,∗)√
f (w,r,∗)∗ f (∗,r,w′)

f (∗,r,∗) ∗ (1− f (w,r,∗)∗ f (∗,r,w′)
f (∗,r,∗)2 )

(Pecina, 2010)

PMIAlpha
lb
(
(∑n

i=1 f (∗, r, i)α) ∗ f (w, r, w′)
f (w, r, ∗) ∗ f (∗, r, w′)α

)
α = 0.75

(Levy et al., 2015)

PMIWDF
PMIWDFδ ∗ lb

(
f (∗, r, ∗) ∗ f (w, r, w′)
f (w, r, ∗) ∗ f (∗, r, w′)

)
PMIWDFδ =

f (w, r, w′)
f (w, r, w′) + 1

∗ min ( f (w, r, ∗), f (∗, r, w′))
min ( f (w, r, ∗), f (∗, r, w′)) + 1

(Pantel and Lin, 2002)

NPMI

lb
(

f (∗,r,∗)∗ f (w,r,w′)
f (w,r,∗)∗ f (∗,r,w′)

)
NPMIn

NPMIn = −lb
(

f (w, r, w′)
f (∗, r, ∗)

) (Harispe et al., 2015)
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Definition Reference

SPMI
lb
(

f (∗, r, ∗) ∗ f (w, r, w′)
f (w, r, ∗) ∗ f (∗, r, w′)

)
− SPMId

SPMId = lb(SPMIk) SPMIk = 5
(Weir et al., 2016)

UniSubtuples lb
(

O11 ∗O22
O12 ∗O21

)
− 3.29 ∗

√
1

O11
+

1
O12

+
1

O21
+

1
O22

(Pecina, 2010)

NPMIALPHA
PMIAlpha

NPMIn
SPMIALPHA PMIAlpha− SPMId

PMIALPHAWDF PMIAlpha ∗ PMIWDFδ

NSPMIALPHA
PMIAlpha− SPMId

NPMIn

NPMIALPHAWDF
PMIAlpha ∗ PMIWDFδ

NPMIn
SPMIALPHAWDF (PMIAlpha− SPMId) ∗ PMIWDFδ

NSPMIALPHAWDF
(PMIAlpha− SPMId) ∗ PMIWDFδ

NPMIn

NSPMI
PMI − SPMId

NPMIn

NPMIWDF
PMI ∗ PMIWDFδ

NPMIn

NSPMIWDF
(PMI − SPMId) ∗ PMIWDFδ

NPMIn
SPMIWDF (PMI − SPMId) ∗ PMIWDFδ

PMIALPHAUNISUBT

lb
(

O11 ∗O22α

O12 ∗O21α

)
− 3.29 ∗

√
1

O11
+

1
O12

+
1

O21α
+

1
O22α

O22α =

(
n

∑
i=1

f (∗, r, i)α

)
− f (w, r, ∗)− f (∗, r, i)α + f (w, r, w′)

O21α = f (∗, r, i)α − f (w, r, w′) α = 0.75

NPMIUNISUBT
UniSubtuples

NPMIn
SPMIUNISUBT UniSubtuples− SPMId
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Definition Reference

PMIWDFUNISUBT UniSubtuples ∗ PMIWDFδ

NPMIALPHAUNISUBT
PMIALPHAUNISUBT

NPMIn
SPMIALPHAUNISUBT PMIALPHAUNISUBT − SPMId

PMIALPHAWDFUNISUBT PMIALPHAUNISUBT ∗ PMIWDFδ

NSPMIALPHAUNISUBT
PMIALPHAUNISUBT − SPMId

NPMIn

NPMIALPHAWDFUNISUBT
PMIALPHAUNISUBT ∗ PMIWDFδ

NPMIn
SPMIALPHAWDFUNISUBT (PMIALPHAUNISUBT − SPMId) ∗ PMIWDFδ

NSPMIALPHAWDFUNISUBT
(PMIALPHAUNISUBT − SPMId) ∗ PMIWDFδ

NPMIn

NSPMIUNISUBT
UNISUBT − SPMId

NPMIn

NPMIWDFUNISUBT
UNISUBT ∗ PMIWDFδ

NPMIn

NSPMIWDFUNISUBT
(UNISUBT − SPMId) ∗ PMIWDFδ

NPMIn
SPMIWDFUNISUBT (UNISUBT − SPMId) ∗ PMIWDFδ

PMIALPHAUNISUBTAM
PMIALPHA + UNISUBT

2
PMIALPHAUNISUBTGM

√
PMIALPHA ∗UNISUBT

PMIALPHAUNISUBTHM
2 ∗ PMIALPHA ∗UNISUBT

PMIALPHA + UNISUBT
PMIALPHAUNISUBTPROD PMIALPHA ∗UNISUBT

PMIALPHAUNISUBTLOGPROD tlb(PMIALPHA) ∗ tlb(UNISUBT)

NPMIALPHAAM
NPMI + PMIALPHA

2
NPMIALPHAGM

√
NPMI ∗ PMIALPHA

NPMIALPHAHM
2 ∗ NPMI ∗ PMIALPHA

NPMI + PMIALPHA
NPMIALPHAPROD NPMI ∗ PMIALPHA

NPMIALPHALOGPROD tlb(NPMI) ∗ tlb(PMIALPHA)
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APPENDIX C

The used Hungarian datasets

C.1 Hungarian TOEFL dataset part 1

érkezés | eljövetel | letartóztatás | finanszírozás | stabilitás

évkönyv | krónikák | otthonok | nyomok | dalok

vezetés | hatalom | megfigyelés | szerelem | tudatosság

vita | veszekedés | háború | választás | verseny

eltérések | különbségek | súlyok | betétek | hullámhosszak

mód | módszer | fejadag | öl | őrület

színárnyalat | szín | ragyogás | kontraszt | illat

témák | tárgyak | képzés | fizetések | előnyök

százalék | arány | térfogat | minta | profit



162 C. The used Hungarian datasets

elrendezett | megtervezett | megmagyarázott | tanult | eldobott

épített | konstruált | előterjesztett | finanszírozott | szervezett

kiagyalt | kieszelt | kitisztított | kért | felügyelt

elfogyasztott | megevett | nevelt | elfogott | ellátott

szertefoszlik | eloszlik | elszigetel | álcáz | lefényképez

forgalmaz | terjeszt | elüzletiesít | kutat | elismer

kiszámol | megold | felsorol | feloszt | kifejez

ad | szállít | lenyűgöz | megvéd | tanácsol

vigyorog | mosolyog | edz | pihen | viccel

üdvözölt | köszöntött | ítélt | emlékezett | címzett

nagyobb | tekintélyesebb | állandóbb | közelebbi | jobb

fesztelen | közvetlen | megörökített | félreértett | helytelen

költséges | drága | szép | népszerű | bonyolult

lezser | nyugodt | határmenti | unalmas | gazdasági

képzeletbeli | fantáziadús | megszokott | nyilvánvaló | logikus

megvalósítható | lehetséges | megengedett | igazságos | nyilvánvaló

hibás | tökéletlen | apró | fénylő | durva

hátulsó | hátsó | görbe | izmos | szőrös

végtelen | korlátlan | viszonylagos | szokatlan | szerkezeti

hegyes | éles | hasznos | egyszerű | híres

keskeny | vékony | tiszta | fagyos | mérgező

veszedelmes | veszélyes | kötelező | izgalmas | sértő

tömören | röviden | erőteljesen | pozitívan | szabadon

állandóan | folyamatosan | azonnal | gyorsan | véletlenül

ügyesen | szakképzetten | megfontoltan | alkalmanként | humorosan



C.2. Hungarian TOEFL dataset part 2 163

roppantul | borzasztóan | helyénvalóan | egyedülállóan | kétségkívül

lényegében | alapvetően | talán | mohón | átlagosan

gyorsan | sebesen | gyakran | valójában | ismételten

általánosan | nagyjából | leíróan | vitatottan | pontosan

kedvetlenül | közönyösen | szokásszerűen | kétpártilag | rendhagyóan

összevissza | véletlenszerűen | veszélyesen | sűrűn | lineárisan

C.2 Hungarian TOEFL dataset part 2

kitartás | tartósság | képesség | nagylelkűség | zavar

orvos | doktor | vegyész | gyógyszerész | ápolónő

feltételek | kikötések | kapcsolatok | hatáskörök | értelmezések

gyökerek | eredetek | szertartások | gyógymód | funkció

üdvözlések | köszöntések | információ | ceremóniák | kiváltságok

hely | helyszín | éghajlat | szélesség | tenger

feladatok | tennivalók | vásárlók | anyagok | boltok

nyugodtság | békesség | kíméletlenség | kimerültség | boldogság

csúcspont | tetőpont | befejezés | kezdet | hanyatlás

siettet | meggyorsít | megenged | meghatároz | elkísér

kiemel | kihangsúlyoz | módosít | utánoz | visszaállít

kiszabott | kirótt | hitt | kért | korrelált

szerez | kap | nyomtat | kereskedik | kölcsönvesz

értékesített | eladott | fagyasztott | édesített | hígított

megoldott | elintézett | közzétett | elfelejtett | megvizsgált

bemutatott | demonstrált | publikált | megismételt | elhalasztott
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elhelyezett | pozícionált | forog | elszigetelt | kiürít

fenntartott | meghosszabbított | finomított | csökkentett | elemzett

befejeződött | végződött | beállított | elhalasztott | kiértékelt

elsődleges | fő | legtöbb | számos | kivételes

termékeny | eredményes | komoly | hozzáértő | ígéretes

kiemelkedő | kitűnő | kopott | antik | rejtélyes

leendő | potenciális | bizonyos | megfontolt | kiemelkedő

elismert | elfogadott | sikeres | ábrázolt | üdvözölt

kirívó | feltűnő | tüskés | szórakoztató | véletlen

magányos | egyedüli | éber | nyugtalan | rettenthetetlen

elegendő | elég | minapi | élettani | értékes

mérsékelt | enyhe | hideg | rövid | szeles

egyforma | hasonló | kemény | összetett | éles

valószínűtlen | esélytelen | barátságtalan | különböző | népszerűtlen

páratlan | egyedülálló | ismeretlen | elidegenített | felülmúlt

sietősen | sietve | agyafúrtan | szokásszerűen | időrendben

normálisan | általában | nehézkesen | maradandóan | időszakosan

gyakran | sűrűn | feltétlenül | vegyileg | alig

különösen | páratlanul | részben | hazafiasan | gyanakodva

elsősorban | főként | alkalmanként | óvatosan | következetesen

lassan | fokozatosan | ritkán | hatékonyan | folyamatosan

sürgősen | kétségbeesetten | tipikusan | elképzelhetően | próbaképpen

verbálisan | szóban | nyíltan | megfelelően | hosszadalmasan

vadul | dühösen | jellegzetesen | rejtélyesen | hirtelen
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elmegyógyintézet sírkert 0.79

elmegyógyintézet gyümölcs 0.19

elmegyógyintézet bolondokháza 3.04

elmegyógyintézet pap 0.39

aláírás vízpart 0.06

aláírás kézjegy 3.59

személygépkocsi autó 3.92

személygépkocsi párna 0.97

személygépkocsi varázsló 0.11

madár kakas 2.63

madár daru 2.63

madár erdőség 1.24

fiú srác 3.82

fiú baromfi 0.44

fiú bölcs 0.96

báty srác 2.41

báty pap 2.74

autó utazás 1.55

sírkert temető 3.88

sírkert földhalom 1.69

sírkert erdőség 1.18

part erdő 0.85

part hegy 1.26

part vízpart 3.60

kakas baromfi 3.68

fonal mosoly 0.02

fonal kötél 3.41

daru szerszám 2.37

daru baromfi 1.41

párna ékkő 0.45

párna kispárna 3.84

étel gyümölcs 2.69

étel baromfi 1.09
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erdő temető 1.00

erdő erdőség 3.65

gyümölcs kemence 0.05

kemence szerszám 1.37

kemence tűzhely 3.11

drágakő ékkő 3.94

üveg ékkő 1.78

üveg bűvész 0.44

üveg ivópohár 3.45

temető bolondokháza 0.42

vigyor szerszám 0.18

vigyor srác 0.88

vigyor mosoly 3.46

hegy földhalom 3.29

hegy erdőség 1.48

szerszám eszköz 3.66

utazás út 3.58

srác varázsló 0.99

bűvész jós 1.82

bűvész varázsló 3.21

délidő dél 3.94

pap jós 0.91

pap rabszolga 0.57

földhalom vízpart 0.97

földhalom tűzhely 0.14

dél kötél 0.04

jós bölcs 2.61

baromfi út 0.04

bölcs varázsló 2.46

jobbágy rabszolga 3.46

vízpart út 1.22

vízpart erdőség 0.90
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