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Abstract

Measuring the semantic similarity and relatedness of words is important for many
natural language processing tasks. Although distributional semantic models de-
signed for this task have many different parameters, such as vector similarity
measures, weighting schemes and dimensionality reduction techniques, there is
no truly comprehensive study simultaneously evaluating these parameters while
also analysing the differences in the findings for multiple languages.

We would like to address this gap with our systematic study by searching
for the best configuration in the creation and comparison of feature vectors in
distributional semantic models for English, Spanish and Hungarian separately,
and then comparing our findings across these languages.

During our extensive analysis we test a large number of possible settings for
all parameters, with more than a thousand novel variants in case of some of them.
As a result of this we were able to find such configurations that significantly out-

perform conventional configurations and achieve state-of-the-art results.
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CHAPTER 1

Introduction

For many natural language processing (NLP) problems, including information re-
trieval (Hliaoutakis et al., 2006), spelling correction (Budanitsky and Hirst, 2001)
and noun compound interpretation (Dob6 and Pulman, 2011) among many oth-
ers, it is crucial to determine the semantic similarity or semantic relatedness of
words. While relatedness takes a wide range of relations between words (includ-
ing similarity) into account, similarity only considers how much the concepts
denoted by the words are truly alike. Thus similarity entices relatedness, but not
vice versa. For example, the words "bicycle" and "motorbike" are similar, as both
denote 2-wheeled vehicles, and thus they are also related. On the other hand, the
words "postman" and "mail" are highly related, as usually mails are delivered by

postmen, and yet they are not similar, as they denote rather different concepts.
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Further, the words "furnace" and "voyage" are neither similar nor related. For
a detailed discussion about meaning, relatedness and similarity please refer to

Section

1.1 Motivation

Most models are based on the distributional hypothesis of meaning (Harris} 1954),
and thus calculate this similarity or relatedness using distributional data extracted
from large corpora. These models can be collectively called as distributional se-
mantic models (DSMs) (Baroni and Lencil, 2010; Baroni et al.,[2014). In these mod-
els first possible features are identified, usually in the form of context words,
and then a weight is assigned for each word-feature pair using complex meth-
ods, thus creating feature vectors for all words. The similarity or relatedness of
words are then calculated by comparing their feature vectors using vector sim-
ilarity measures. Although DSMs have many possible parameters, a truly com-
prehensive study of these parameters, also fully considering the dependencies
between them, is still missing and would be needed, as also suggested by [Levy
et al. (2015).

Most papers presenting DSMs focus on only one or two aspects of the prob-
lem, and take all the other parameters as granted with some standard setting.
For example, the majority of studies simply use cosine as vector similarity mea-
sure (e.g. Bruni et al., 2013} Baroni et al.,[2014; Speer et al., 2017 Salle et al., 2018)
and/or (positive) pointwise mutual information as weighting scheme (e.g. Islam!
and Inkpen), 2008; Hill et al., 2014b; Salle et al., 2018)) out of convention. And even

in case of the considered parameters, usually only a handful of possible settings
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are tested for. Further, there are also such parameters that are completely ignored
by most studies and have not been truly studied in the past, not even separately
(e.g. smoothing, vector normalization or minimum feature frequency). What'’s
more, as these parameters can influence each other greatly, evaluating them sep-
arately, one-by-one, would not even be sufficient, as that would not account for
the interaction between them.

There are a couple of studies that consider several parameters with multiple
possible settings, such as [Lapesa and Evert| (2014) and Kiela and Clark| (2014),
but even these are far from truly comprehensive, and do not fully test for the
interaction between the different parameters. So, although an extensive analy-
sis of the possible parameters and their combinations would be crucial, as also
suggested by (Levy et al., 2015), there has been no research to date that would
have evaluated these truly comprehensively. Moreover, despite the fact that the
best parameter settings for the parameters can differ for different languages, the
vast majority of papers consider DSMs for only one language (mostly English),
or consider multiple languages but without a real comparison of findings across

languages. In this thesis we would like to address these gaps.

1.2 Aims and objectives

DSMs have two distinct phases in general. In the first phase statistical informa-
tion (e.g. raw counts) is extracted from raw data (e.g. a large corpus of raw text),
in the form of statistical distributional data. In the second phase, feature vectors
are created from the extracted information for each word and these vectors are

then compared to each other to calculate the similarity or relatedness of words.
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In our study we take the distributional information extracted in the first phase
as already granted, and present a systematic study simultaneously testing all im-
portant aspects of the creation and comparison of feature vectors in DSMs, also

caring for the interaction between the different parameters.

We have chosen to only study the second phase of the DSMs, as the two phases
are relatively distinct and independent from each other, and testing for every sin-
gle possible combination of the parameter settings in the second phase is already
unfeasible due to the vast number of combinations. So instead of a full analy-
sis we already had to use a heuristic approach. Thus also trying to test for the
parameters of the first phase (e.g. source corpus, context type (window-based
or dependency-based) and context size) simultaneously would be unreasonable
and unmanageable, and is out of scope of this study. Therefore we have omitted

the examination of this phase completely, with one exception to this.

DSMs relying on information extracted from static corpora have two major
categories, based on the type of their first phase: count-vector-based (CVBM)
and predictive models (PM; also called word embeddings) (Baroni et al., 2014).
In order to get a more complete view and due to the huge popularity of predictive
models in recent years, in addition to using information extracted from a corpus
using a count-vector-based model, we have also done some experiments with in-
formation extracted by a predictive model in case of English. Further, later on we
also extended our analysis with a model based on semantic vectors constructed
from a knowledge graph. Our intuition was that there will be a single config-
uration that achieves the best results in case of all types of models. However,
please note that in the latter case only a part of the considered parameters could

be tested for due to the characteristics of such models. That is part of the reason
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why we have focused on count-vector-based DSMs more.

During our research we have identified altogether 10 important parameters
for the second phase of count-vector-based DSMs, such as vector similarity mea-
sures, weighting schemes, feature transformation functions, smoothing and di-
mensionality reduction techniques. However, only 4 of these parameters are
available when predictive or knowledge-graph-based semantic vectors are used
as input, as in case of such input the raw counts are not available any more, the
weighted vectors are already constructed and their dimensions are usually also
reduced.

In the course of our analysis we have simultaneously evaluated each parame-
ter with numerous settings in order to try to find the best possible configuration
(configuration) achieving the highest performance on standard test datasets. We
have done our extensive analysis for English, Spanish and Hungarian separately,
and then we have compared our findings for the different languages.

For some of the tested parameters a large number of possible settings were
tested, more than a thousand in some cases, resulting in trillions of possible com-
binations altogether. While of course also testing the conventionally used param-
eter settings, we also proposed numerous new variants in case of some parame-
ters. Further, we have tested a vast number of novel configurations, with some
of these new configurations considerably outperforming the standard configura-
tions that are conventionally used, and thus achieving state-of-the-art results.

First we have done our analysis for English and evaluated the results exten-
sively (Dob6 and Csirik| 2019a). Then we have repeated the same analysis, with
an increased number of settings for several parameters, for English, Spanish and

Hungarian, and compared the findings across the different languages (Dob6 and
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Csirikl, 2019Db).
For reproducibility and transparency, we plan to make our most important
data, code and results publicly available at:

https:/ /github.com/doboandras/dsm-parameter-analysis/.



CHAPTER 2

Background

2.1 Meaning

Even in ancient times some great thinkers started to deal with semantics, that
is the study of meaning, and philosophized about the definition of meaning.
Most notably, Plato’s Theaetetus (Burnyeat et al.,[1990) is devoted to the nature of
knowledge. His view, still central to semantics, was that one knows something if
they can account for its details (Kornai, [2019). Later on, Aristotle declared that the
meaning of things is a result of convention (Chernyak) 2017). Further, the semi-
otic triangle of symbol, referent and thought/reference (triangle of meaning) (see
Figure[2.1), published in|Ogden and Richards (1923), can be traced back as far as

Aristotle’s De Interpretatione (Ackrill, [1975).
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Figure 2.1. The semiotic triangle of symbol, referent and thought/reference (triangle of
meaning), taken from Ogden and Richards (1923).

THOUGHT OR REFERENCE

sYMBoL i :;:::z; Ui'o"“‘ o REFERENT -

The study of the field of semantics also continued through modern times, with
many principles and theories of meaning articulated by noted philosophers and
linguists alike. One of the most important of these, the principle of contextuality,
formulated by Frege| (1884), states that the meaning of words cannot be studied
in isolation, rather only in the context of a sentence. Another important concept,
the principle of compositionality (also called Frege’s principle), articulating that
the meaning of a complex expression is defined by its syntactic structure and the
meaning of its parts, is also widely credited to Frege (Kornai, 2019). However,
recently Pelletier| (2001) and Janssen (2001) argued that this was not explicitly
stated by Frege himself, and was actually a misinterpretation of Frege’s thoughts
to some extent. Further, this idea actually also appeared in many previous works,

even as early as Plato’s Theaetetus (Burnyeat et al., 1990).

Later on, Saussure| (1916) considered language as a system of signs express-
ing ideas, where a sign is a composition of a signifier (significant) and a signified
(signifié), and thought that the relation between these two components is of ar-

bitrary nature. Wundt (1920) believed that mental contents receive their mean-
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ing through their relation to other mental contents , which is usually referred to
as the principle of relational analysis or the context principle. Then, Katz and
Fodor| (1963) was convinced that word meaning is made up of a collection of se-
mantic markers and a distinguisher. In this theory the formal part of meaning is
defined by the semantic markers, determining the semantic properties of expres-
sions, while the unsystematic distinguisher disposes of the semantic residue.

There are many different, often contradictory perspectives in semantics. [Lan-
gacker| (2008) gives a very good overview of some of the possible different views
of meaning. According to the cognitive linguistic position, the meaning of an
expressions is in the mind of the speaker producing and understanding it. In
sharp contrast to this, there are some views that completely ignore the human
mind and body: the platonic view sees language as an abstract, unlocalizable en-
tity, while the objectivist perspective defines the meaning of an expressions with
those conditions under which it is true.

On the other hand, Langacker|(2008) himself sees the interactive view as more
reasonable. This perspective again takes humans into account, but views mean-
ing as dynamically changing through discourse and social interaction instead of
being fixed and predetermined in one’s mind. In this respect meaning is not
viewed as localized to one human mind any more, but rather as being distributed
in the speech community, in the context and in the surrounding world.

To take another different view, formal semantics treats natural languages the
same way as formal languages, and tries to define meaning by constructing pre-
cise mathematical models between expressions and real-world entities (Aronotf
and Rees-Miller, 2003).

To look at a more practice-oriented perspective, distributional semantics is
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based on the distributional hypothesis of meaning, which states that words oc-
curring in similar contexts tend to have similar meaning (Harris, 1954). Following
on this idea, Firth (1957) argued that one can get to know the meaning of a word
by recognizing in what contexts it occurs. Most currently used models of mean-
ing are actually based on this hypothesis in practice, and represent words with
vectors based on distributional (contextual) data.

There are also such perspectives that mix practice-oriented views with theo-
retical ones, trying to combine the advantages of both. One such recent approach
worth mentioning is that of the sparse overcomplete word vector representations
proposed by Faruqui et al. (2015). This combines the interpretable features from
the theory of lexical semantics with the (usually dense) word vectors from dis-
tributional models to come up with sparse (and optionally binary) word vectors,

resembling the interpretable features from lexical semantics.

2.2 Semantic similarity and relatedness

After defining a representation of meaning, it is possible to study the relations be-
tween the meanings of words. There are many types of relations that can exist be-
tween the meanings of two words, including hyponymy, hypernymy, synonymy
and antonymy, among many others (Brinton, 2000). Based on these relations, it
is possible to evaluate the strength of the semantic relationship (association) be-
tween words. Semantic relatedness takes any relation between the words into
account (including semantic similarity), thus assessing how close the concepts
denoted by the words are to each other with respect to any type of relation. On

the other hand, semantic similarity is more specific, and is only concerned about
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how much the concepts denoted by the words are truly alike, thus only taking
the subsumption ("is a") relation into account (Harispe et al., 2015; Banjade et al.,
2015). For better understanding of these two notions, a couple of examples were

presented in the first paragraph of Section

Based on the different views and definitions of meaning, one can define sim-
ilarity multiple ways. If the meaning of words is believed to be located in the
mind, then one could represent concepts with points in a mental space. Thus, in
the mental distance approach similarity between words can be defined as some
kind of distance in this mental space (Shepard, [1962). On the other hand, in those
views, where concepts are represented with the help of lists of features, one could
compare the meaning of words by analyzing the commonalities and differences
in the list of features of the words’ concepts (featural approach) (Tversky, 1977).
There are also such approaches that could be applied to any type mental represen-
tation. For example, in the transformational approach any mental representation
can be transformed into another one, and the similarity of words can be based
on the transformational steps needed to transform the concept of one word to

another (Hahn et al., 2003).

On the other hand, as stated before, most current models of meaning used in
practice are based on the distributional hypothesis (Harris, 1954). In these distri-
butional semantic models (DSMs), words are considered similar if they occur in

similar contexts, based on the definition of the hypothesis itself.
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2.3 Distributional semantic models

As determining the semantic similarity and relatedness of words can be impor-
tant for many NLP problems, research into methods automatically determining
this have started decades ago. Therefore there already exist a vast number of
systems for this task, and one can distinguish many different types among them.
The most logical and usual way to categorize these systems is based on the type

and usage method of input data employed in these systems.

Most current DSMs rely solely on linguistic data, as one would expect. They
usually take large corpora as input, from which they extract statistical informa-

tion, but there are also numerous systems making use of other linguistic input.

Static corpora are widely used as input due to their easy usage and wide avail-
ability. As for DSMs usually simple raw text is used as input, so manual anno-
tation of the text is not needed. This makes it is easy to generate or acquire such
input data for a wide range of languages and topics. Hence, DSMs using such
input can usually be easily adapted to different languages and domains. As we
have already discussed before, there are two main categories of methods based
on information extracted from static corpora: count-vector-based and predictive

models.

A typical count-vector-based models is that of Pennington et al.| (2014), who
create word vectors by combining global matrix factorization with local con-
text window method, and then training only on nonzero elements in the co-
occurrence matrix. Levy et al.|(2015) improve previous count-vector-based mod-
els with ideas taken from predictive models, thus improving their performance

significantly. With this they show that contrary to previous belief, count-vector-
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based models can perform as well as predictive models with the right system

design choices and hyper-parameter optimizations.

losif et al| (2016) improve previous state-of-the-art results by presenting a
novel, cognitively motivated type of DSMs, motivated by the dual-processing
cognitive perspective in short-term human memory. Salle et al.| (2016a), Salle
et al. (2016b) and Salle et al.|(2018) propose a model of distributed word represen-
tations by performing explicit, stochastic factorization of the positive pointwise
mutual information matrix, and then present several enhancements to their orig-
inal system. We have found their final results to be the current state-of-the-art for

calculating semantic relatedness among the count-vector-based models.

One of the most well known examples of predictive models are those of Mikolov
et al.|(2013a) and Mikolov et al. (2013b). Both the continuous bag-of-words (CBOW)
and continuous skip-gram (Skip-gram) learning algorithms for these models are
publicly available in the word2vec toolkit!, which has become very popular and
has been used in numerous systems since its publication. For example, Baroni
et al. (2014) perform an extensive comparison of CBOW predictive models with
traditional count-vector-based models based on Collobert and Weston| (2008) and
Baroni and Lenci (2010), and found their predictive models to perform consis-
tently better. Similarly, De Deyne et al.|(2017) also use the CBOW approach with
settings based on previous work of others to achieve close to state-of-the-art re-

sults.

There are also many models that combine multiple input data into a sin-

gle model, using different techniques for this combination, ranging from sim-

https:/ /code.google.com/archive /p/word2vec/.
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ple methods to complex machine learning techniques. [Yin and Schiitze| (2016)
propose to learn metaembeddings by combining multiple embedding sets in an
ensemble approach, thus increasing vocabulary coverage and achieving better
performance than by using the embedding sets individually. Similarly to this,
Christopoulou et al.| (2018) also propose a mixture of multiple models. However,
they propose to create multiple topic-specific DSMs based on topic-specific sub-
corpora, and then combine the scores of the different models for a word pair into

a single score, to achieve state-of-the-art results.

There are also many models, that beside or instead of corpora, take other
types of linguistic resources as input. Many of these make use of large lexical
databases (e.g the WordNet (Fellbaum, [1998)), knowledge graphs (e.g. the Con-
ceptNet (Speer et al., 2017)), concept lexicons (e.g. the 4lang concept lexicon (Ko-
rnai, 2010)), word association datasets (e.g. the Small World of Words project
word association dataset (De Deyne et al., 2017)), or other similar datasets. These
datasets are usually mostly or completely hand-crafted, often by experts, there-
fore they have very high quality. On the other hand they are rather expensive to
create, have limited coverage and they are costly to update as languages evolve.
Further, methods based on such datasets cannot easily be adapted to other lan-
guages or domains without having similar datasets for the other languages and
domains too.

Recski et al.| (2016), for example, beside word embeddings, also make use of
the WordNet and the 4lang concept lexicon, to achieve state-of-the-art word sim-
ilarity results. Lee et al.|(2016) and Rothe and Schiitze (2017) also combine word
embeddings with the WordNet to achieve rather good results on word related-

ness tasks. De Deyne et al. (2017) use a spreading activation approach and per-
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form a random walk on their Small World of Words project word association
dataset to achieve very good word relatedness results. Finally, (Speer et al., 2017)
combine word embeddings with their ConceptNet knowledge graph to achieve

overall state-of-the-art word relatedness performance.

Other models also take advantage of the vast amount of text present on the
World Wide Web, and exploit these data by issuing web search queries on com-
mercial search engines. These models have the advantage of having access to
huge amount of text, however, have many disadvantages due to numerous limi-
tations and drawbacks posed by commercial search engines (Nakov,2007; Kilgar-
riff, 2007). For example, Kulkarni and Caragea| (2009) create concept clouds for
words, and then compares these concept clouds to determine the relatedness of
words. For both parts they issue web search queries. Yih and Arbor (2012) pro-
pose a combination of heterogeneous vector space models, also including ones
based on web search results. On the other hand, losif and Potamianos (2015) pro-
pose the use of web search engines in a rather unconventional way: they issue
targeted web queries to create a corpus, which then can be used as input for their

model.

Further, there are also such models that employ other types of input beside
linguistic data, such as images. For example, Bruni et al.| (2013) present a novel
approach by using images to create "visual words", and using these alongside
linguistic input in their model. Lazaridou et al. (2015) also make use of visual in-
formation and combine it with a Skip-gram model. Collell et al.| (2017) present a
language-to-vision mapping, and uses the output visual predictions of this map-
ping in their multimodal embeddings model to achieve rather good word relat-

edness performance.
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Although even some early DSMs have experimented with trying multiple set-
tings for one or more parameters, such as vector similarity measures (Jones and
Furnas| (1987), even in most of the current state-of-the-art systems, both those only
using distributional linguistic data and those making use of other types of data
too, as well as either count-vector-based, predictive or knowledge-graph-based
models, actually only one similarity measure (predominantly cosine similarity)
was tested (e.g.|Yih and Arbor, 2012} Bruni et al., 2013; Baroni et al., 2014; Hill
et al., 2014a Pennington et al., 2014; Wieting et al., 2016} Faruqui and Dyer, 2015;
Lazaridou et al., 2015; Banjade et al., 2015; Levy et al., 2015; losif et al.,[2016; Salle
et al., 2016a; Rothe and Schiitze, 2017} |Collell et al., 2017} |De Deyne et al., 2017}
Speer et al., 2017 Salle et al., 2018; Christopoulou et al., 2018; Vakulenko) 2018)).
Further, most count-vector-based DSMs only test for one weighting scheme (e.g.
Islam and Inkpen, 2008; Yih and Arbor, 2012; Bruni et al., 2013; Hill et al., 2014b;
Levy et al., 2015; losif et al., 2016; Salle et al.,|2016a|, 2018), mainly based on point-
wise mutual information (PMI) (Church and Hanks, 1990) in almost all cases.
Moreover, many of the other possible parameters, such as feature transforma-
tion, smoothing, dimensionality reduction or filtering stop words, have been

completely neglected in the vast majority of studies.

Of course there are also a couple of studies that try to examine one or more of
the parameters of DSMs in detail. Some of them focus solely on vector similar-
ity measures, neglecting all other aspects of the systems, with Jones and Furnas
(1987) and |Weeds| (2003) testing several different settings. On the other hand,
instead of vector similarity measures, Evert| (2005) and Pecinal (2010) evaluate
different weighting schemes extensively. There are also studies with respect to

vector comparison methods, outside the domain of NLP (either general studies
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or from some other domain) that deal with either vector similarity measures (e.g.
Cha, 2007; |Deza and Deza, |2016) or vector weighting schemes (e.g. Zhang et al.,

2011) extensively, without considering any other aspects of vector comparison.

A handful of studies, such as/Curran|(2004), Lapesa and Evert (2014) and Kiela
and Clark| (2014), beside considering multiple vector similarity and weighting
scheme settings, also take other parameters into account, like feature transforma-
tion or dimensionality reduction, considering a few of the possible settings for
them. These more complex studies sometimes also mix the parameters of the in-
formation extraction (first phase of DSMs) with those of the creation and compar-
ison of feature vectors (second phase of DSMs) and thus also include parameters
like source corpus, context type and context size. But even these complex studies
usually neglect many other important aspects of the problem, do not account for
the interaction between the different parameters sufficiently, and/or only test for
a handful of different settings for each parameter. So evaluating all the possible
parameters together and testing their possible combinations extensively would
be crucial, but has not been addressed sufficiently yet.

Moreover, most models were only tested for English and neglect any other
languages despite the fact that DSMs might work differently across multiple lan-
guages. Of course, there are several studies in which results were presented for
languages other than English, including Spanish (Hassan and Mihalcea, 2009;
Moldovan et al., 2015; Camacho-Collados et al., 2017) and Hungarian (Dob6 and
Csirik} 2012; Novak and Novak, |[2018). However, even those that include multiple
languages usually only present some test results for the different languages sep-
arately, without any real analysis of the differences in the findings between the

languages. Furthermore, for Hungarian there did not previously exist any stan-
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dard evaluation datasets. For example, the models of Novak and Novak! (2018)
were evaluated manually by experts. Therefore, to be able to have a reproducible
and standardized evaluation method, we have created Hungarian test datasets
in Dob6 and Csirik (2012) and in [Dob6 and Csirik| (2019b)), and evaluated our
models on these. For reproducibility and transparency, we have included the

Hungarian test datasets in Appendix|C}



CHAPTER 3

Data and evaluation methods

3.1 Data

We focused on the second phase of DSMs, so our analysis took information ex-
tracted from a corpus as granted. As already stated above, we wanted to focus
our attention mostly on count-vector-based models, but also wanted to experi-
ment with predictive and knowledge-graph-based models a little. A vast number
of configurations needed to be tested, as detailed in the next chapter, therefore we
had to choose a relatively small corpus for information extraction in case of the
count-vector-based models. Finally, for English we have chosen the British Na-
tional Corpus (BNC; (BNC Consortium) 2001)), a rather small (about 100 million

words) but balanced corpora, from which the information was extracted by the
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bag-of-words method presented in |Dob6 and Csirik! (2012) and Dob6 and Csirik
(2013).

This information extraction method finds each occurrence of the selected word
in the used corpora, then includes every word in a window of 3 words within
that occurrence in the feature vector. However, it is different from regular bag-of-
words approaches, since it counts the occurrences of close words multiple times.
Specifically, the frequency this method assigns to a feature word is based on the
distance of the observed word and the feature word. Several different techniques
were tested, and the best was found to be using frequencies that scale quadrati-
cally with the distance (with a window size of 3, frequency 9 is assigned to dis-

tance 1, frequency 4 to distance 2 and frequency 1 to distance 3).

Here the extracted raw counts were used, which will be referenced as Dobd
and Csirik’s counts on the BNC (DcBnc) in the rest of the thesis. As this extraction
method extracts information for nouns, verbs, adjectives and adverbs separately,
our model had to guess the part-of-speech of the words in the used datasets be-
fore comparing them. We have used the original method presented in Dob6 and
Csirik! (2012) and Dob6 and Csirik| (2013) to guess the part-of-speech (POS) of in-
put words when creating their feature vectors. The POS of words in a question
can be inferred from the other words contained in the same question. For our
methods, we assumed that each input word is a verb, noun, adjective or adverb
and each question contains words of the same POS. For a question the part-of-

speech maximizing the following formula was chosen:

pos = argmaxy [ | 1n(1.0001 + fu,p) (3.1)

weq
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where p can take any of the four possible POSs, g denotes the question, w runs

through the words of g and fy,, is the frequency of w having part-of-speech p.

For Spanish and Hungarian, we have chosen the similarly sized Spanish Wi-
kicorpus (Reese et al,2010) (EsWiki, about 110 million words) and the 23.01.2012
dump of the Hungarian Wikipedia (HuWiki; about 65 million words), respec-

tively, and employed the same information extraction method.

For the predictive model, the size of the corpus was much less relevant with
respect to the feasibility of our analysis, as much fewer parameters were tested,
and the number of dimensions of the feature vectors was also small. We have de-
cided on the most widely used dataset, the Google News corpus (GNC) of around
100 billion words, from which feature vectors for words were created by Mikolov
et al.| (2013b). These 300-feature-long word vectors contain real weights for all
features, and the vectors are already L, normalized.! These semantic vectors will

be referenced as Mikolov et al.’s vectors (Mv) from now on.

In case of the knowledge-graph-based models, we have decided to experiment
with the state-of-the-art model of [Speer et al.|(2017) (Sv), which is based on the

ConceptNet.

For some final tests we have also used the text of the 26.05.2011 dump of
the English Wikipedia (Dob6 and Csirik| 2013)) (Ew; about 1.2 billion words), the
ukWaC corpus (Baroni et al., 2009) (about 2 billion words), raw counts obtained
using the information extraction method of [Levy et al. (2015)? (Lc) and of Salle

et al| (2016a)° (Ec), as well as the semantic vectors of Baroni et al. (2014) (Bv),

IThe word vectors are publicly available at https:/ /code.google.com/archive /p/word2vec/.
Zhttps:/ /bitbucket.org/omerlevy /hyperwords/
3ht’q:)s: / / github.com/alexandres/lexvec/
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Pennington et al. (2014) (Pv) and Salle et al.| (2018) (Ev).

3.2 Evaluation

To be able to compare the performance of the different configurations in En-
glish, we have primarily chosen to employ the MEN dataset (Bruni et al., 2013),
whose test part (MT) was used as a test set and whose development part was
split into two equal chunks randomly to get two development sets (MD1 and
MD?2). Moreover, to present a comprehensive evaluation, we have decided to
also test our measures on all the other commonly used datasets, namely the
RubensteinGoodenough-65 (RG; (Rubenstein and Goodenough,|1965)), the Miller-
Charles-28 (MC; (Resnik, 1995)), the WordSim-353 (WS; (Finkelstein et al., 2002)),
the SimLex-999 (SL; (Hill et al., 2015)) and the TOEFL (TO; (Landauer and Du-
mais, (1997)) datasets too. However, the MC, RG, WS and TO datasets were mostly
included because of their wide use in previous decades. As their size is relatively
small and the results on them are rather unreliable, as also noted by Camacho-
Collados et al.| (2017), conclusions based on these have to be taken cautiously. As
some researchers have used the full MEN dataset (MF) for testing, we have also
evaluated our best methods on this for comparability with the results of others.
However, please note that our results are not fully reliable on this dataset, as two-
thirds of it has already been used in the process of determining the best possible
configurations.

In case of Spanish and Hungarian, we have made use of the Spanish WordSimi-
larity-353 (WSEs; (Hassan and Mihalcea, [2009)), the Moldovan (MOEs; (Moldovan
etal.,2015)) and the Spanish Rubenstein Goodenough (RGEs; (Camacho-Collados
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et al} 2015)) datasets for Spanish, and parts of the Hungarian version of the
TOEFL (TOHul and TOHu2; (Dob6 and Csirik|, 2012)) and Rubenstein Goode-
nough data-sets for Hungarian (RGHu; |Dob¢6 and Csirik| (2019b))). The last was
constructed the same way as the Hungarian TOEFL and Miller Charles datasets in
Dob¢ and Csirik! (2012). For reproducibility and transparency, we have included
the Hungarian test datasets in Appendix|C]

However, we have to note that all of the used Spanish and Hungarian datasets
are rather small and except for the Moldovan dataset just translated from English
datasets, which can distort them. The Hungarian datasets are especially small,
and the type of the TOEFL dataset also makes the results on it even less reli-
able compared to the other datasets. However, due to the lack of truly suitable
resources, we had to settle for these.

The TO, TOHul and TOHu2 datasets include questions, the task being the
selection of the most similar word from the four answers to the question word.
Here the accuracy (A) of the models in case of the similarity questions can be used
for evaluation purposes.

All other datasets include word pairs with gold standard scores (the last one
for similarity, the other ones for relatedness) assigned to them by human anno-
tators. For such datasets two standard evaluation techniques are widely used,
namely calculating the Pearson product-moment correlation coefficient (P) and
the Spearman’s rank correlation coefficient (S) between the gold standard scores
and the scores returned by the evaluated model. Some previous studies report
both, with others only one or the other, with a significant preference for the S.
Because we think that both of them are important and meaningful, especially as

during our tests we have experienced that many models achieving either high
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P or high S score performed terribly with respect to the other score, we have de-
cided to use both during our analysis. Further, to be able to take both of them into
account in a single measure, we have created a modified harmonic mean measure
of the two coefficients, as follows:

2xPxS§S

The original version of the harmonic mean of P and S has been previously
used by |Aouicha et al.| (2016) too for the same reason. However, without our
modification it can result in very high scores if the magnitude of either P or S is
just a little larger than the other and they have different signs, which property
is very undesirable. As opposed to this, our version can also handle negative
arguments properly, returns a negative score in all cases where P and S have
different signs, and keeps the codomain [-1,1] of P and S.

Further, during the first part of our analysis the best performing parameter
settings had to be selected based on multiple runs for each setting. In this process

we have employed the following measures:

e MaxP, MaxS and MaxH, for the maximum of P, S and H measures achieved

during the multiple runs of the given parameter setting, respectively

o AvgP, AvgS and AvgH, for the average of P, S and H measures achieved

during the multiple runs of the given parameter setting, respectively

e T10P, T10S and T10H, for the proportion of the runs of the given parameter
setting with performance in the top 10%, out of all runs of all considered

settings of that parameter, based on the P, S and H measures, respectively
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However, we have only reported the MaxS and MaxH scores in the rest of the
thesis for easier readability.
Due to the large number of abbreviations used in this thesis, we have decided

to summarize them at the beginning of this thesis to make the reading easier.
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Data and evaluation methods



CHAPTER 4

The general description of our analysis

4.1 The heuristic approach

The task was to try to find the best possible configuration, considering every
possible setting of all the considered parameters (10 parameters in case of count-
vector-based DSMs and 4 in case of predictive and knowledge-graph-based DSMs).
However, as the number of possible combinations are in the magnitude of tril-
lions in case of count-vector-based DSMs, it would have been unfeasible to test
every single combination one-by-one with our limited resources. Instead of this
full analysis, we chose a heuristic approach to search for the best configuration,
which consisted of two phases.

Prior to the first step a basic set of a handful of parameter settings (BSS) was
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created for each parameter in such a way, so that the selected settings in each set
should achieve good performance on some preliminary tests, while they should
be as different from each other as possible and their collection should give as
good a representation of the set of all settings of the given parameter as possible.
Further, the most commonly used settings were also always selected in case of

each parameter.

In the first phase, each parameter was tested separately on the first develop-
ment dataset (MD1), in order to select a candidate list of settings of the given
parameter for the second phase. For this selection process, in case of each pa-
rameter, all such configurations were tried, where the settings came from all the
possible settings in case of the tested parameter, and from the basic settings set in
case of the other parameters. This reduced the number of possible combinations
exponentially and thus (by restricting the number of settings for the other pa-
rameters) made it possible to test all the possible settings of the given parameter.
Based on the tests, such (preferably diverse) settings were selected for the second
phase that seemed to be the most promising and most likely to be part of the ulti-
mate best configuration. This selection was done based on the 9 measures (Max*,
Avg*, T10%) introduced for this task in Section3.2] To be able to select as many dif-
ferent types of measures, we have tried to avoid selecting too many very similar
measures into the second phase, and rather selected diverse measures. Further,
some conventionally used settings from the past decades were also included in
the second phase irrespective of their performance, to make comparison with

conventional configurations in general use easier.

After this, in the second phase, tests with all combinations of the selected

settings for all parameters were conducted on the second development dataset
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(MD2). In case of count-vector-based DSMs this was done instead of a full anal-
ysis, as that would have been unfeasible due to the vast number of combina-
tions. In case of predictive and knowledge-graph-based DSMs only 4 out of the
10 parameters could be tested due to the characteristics of such models, so there
were much less possible configurations than in case of count-vector-based DSMs.
This made a full analysis of all possible configurations also feasible in Dob6 and
Csirik| (2019a), when the number of tested settings for these 4 parameters were
still considerably lower than now. We have decided to also do this then beside
the heuristic analysis in the hope of being able to further validate both our idea
of the heuristic method for selecting the best configuration and our results (see
Section[5.2.3).

That configuration was selected as best, which achieved the best H value
on the MD2 dataset. The selected best measure was then evaluated on all test
datasets.

The idea behind our heuristic approach was that hopefully the ultimate best
configuration is composed of such parameter settings that also seem to be promis-
ing in general, and when tested separately, thus achieving good performance in
the first phase too. This heuristic approach limits the number of needed runs ex-
ponentially compared to the full test of all possible settings for every parameter,
while hopefully resulting in the same or at least very similar outcome.

First we have done this two-step heuristic analysis for English and evaluated
the results extensively (Dob6 and Csirik, 2019a). Then we have repeated the same
analysis, with an increased number of settings for several parameters, for En-
glish, Spanish and Hungarian, and compared the findings across the different

languages (Dob6 and Csirik, 2019b).
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4.2 The tested parameters

During our research, we have identified 10 parameters as possibly important in
the creation and comparison of feature vectors in DSMs. In this section we will
give a detailed introduction to these parameters as well as to their possible set-
tings, with their abbreviation and number of possible settings tested for them in
parentheses after their name. In case of predictive and knowledge-graph-based
models, only 4 out of the 10 parameters could be tested due to the characteristics
of such models. These are marked with * after their name. Further, in case of 2 of
these 4 parameters, there were some settings that had to be discarded for similar

reasons.

Although presenting the definition of all the settings for the semantic similar-
ity and weighing scheme parameters would be impossible here due to their large
number, we have included the most important formulas in Appendices [A| and
Further, for reproducibility and transparency, we plan to make the list of all
the tested settings for these parameters, together with their respective formula,

references and achieved results publicly available at:

https:/ /github.com/doboandras/dsm-parameter-analysis/.

421 Vector similarity measures* (VecSim; 1221)

There are two general methods for comparing vectors: calculating their similar-
ity or the difference between them. In order to be able to evaluate all measures
consistently, all distance measures have been converted to similarity measures as

follows:
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1

s(uv) =17 1d(u,0)]

(4.1)

The same conversion has also been used by [Kiela and Clark| (2014), and its
inverse (similarity to distance conversion) by Deza and Deza| (2016)), but both of
them without the absolute signs.

Vector similarity measures are then used for the comparison of the feature
vectors of words, to produce the (final) similarity score of the words. They are an
essential part of DSMs, and have been evaluated in many previous studies (e.g.
Weeds, 2003} |Curran, 2004; Lapesa and Evert, 2014; Kiela and Clark, 2014), as also
noted in Chapter

Many of the similarity measures have both a numerical and a binary variant.
To make things easier we have decided not to explicitly implement any binary
versions. Instead of explicitly implementing these binary variants too, we have
implemented a binary weighting scheme, called identity. Using this weighting
scheme essentially converts the numerical similarity measures to binary ones.
This has greatly reduced the number of similarity measures that had to be explic-
itly implemented, while implicitly also testing them.

Altogether 1221 variants have been tested, which include:

e simple measures based on the inner product (e.g. cosine similarity (Jones

and Furnas, 1987) and harmonic mean (Chal, 2007)),
e measures of correlation (e.g. Pearson correlation (Jones and Furnas, 1987)),

o statistical coefficients (e.g. Dice coefficent (Kiela and Clark, 2014) and Jac-

card index (Curran, 2004)),
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e measures of Minkowski distance and others related to this (e.g. L; distance

(Cha, 2007) and Sorensen distance (Deza and Deza, 2016)),

e measures designed for comparing probability distributions (e.g Jensen-Sha-

nnon divergence (Cha, 2007)),
e measures of statistical hypothesis testing (e.g. x? test (Cha, 2007)),
e and their many-many variants,
e as well as numerous new measures.

Actually, more than 90% of these were new measures proposed by us, with
most of them based on some commonly used measure. Our idea was that the
measures we used as basis are rather simple, but they still perform quite well. So
we thought that adding some further sophistication to them might improve on
the already good results. The measures used as basis include the inner product
(InnerProd) (Jones and Furnas) 1987), the cosine similarity (Cos) (Jones and Fur-
nas, 1987), the Pearson correlation (Pears) (Jones and Furnas, 1987), the Minkowski
(Lp) distances (Chaj 2007), the Penrose shape distance (PenroseShape) (Deza and
Deza, 2016), the Maryland Bridge similarity (Mb) (Deza and Deza| 2016), and
Lin’s similarity measure (Lin) (Lin, 1998a), among others. These were usually
modified using some weighting or transformation function inside or outside the
summation in them, or by trying out different versions for their normalization
factors.

There are also a large number of new variants combining the features of al-
ready existing versions of Cosine similarity and alike measures, such as the Pear-

son (Pears) (Jones and Furnas, 1987), the Adjusted cosine (AdjCos) (Shalaby and
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Zadrozny, 2016), the Maryland Bridge (Mb) (Deza and Deza, 2016) and the PE-
Mod (Pascual and Fujita, 2017) measures. For some other new measures the intu-
ition came from other fields, such as from signal processing (Scharf and Demeure,
1991) for the sum of the ratio of signal and noise (SRSN) or from statistics (Won-
nacott and Wonnacott, [1990) for the standard deviation-based (STDLike) mea-
sure. The number of possible settings of this parameter have been significantly

increased since Dob6 and Csirik (2019a) with numerous novel variants.

The different modification techniques and variants, together with their for-
mula, can be observed in Appendix |Al Further, we plan to release the list of all
tested settings in great detail at: https:/ /github.com/doboandras/dsm-parameter-
analysis/. Please note that some of the measures included in our analysis are
not exact reproductions of the measures in the cited papers, rather they are only
based on the cited measures and have been slightly adapted to be in harmony
with our other measures. Further, many measures presented in this thesis are
known by more than one names (e.g. Fidelity similarity is also called the sum
of geometric means, Bhattacharyya coefficient and Hellinger affinity Cha|(2007)).
Moreover, most measures also have other variants with whom they only have
very slight difference (e.g. constant multiplication, as in case of the Jensen-Shannon
and Tepsoe divergence Chal (2007)). However, these variants have the same or
very similar results in most configurations, so generally it does not make much
of a difference which one is used. Due to space and time limitations, it was not
possible to list all names or test for all slight variants for the presented measures
within this thesis, so in most such cases only the most used name and variant is
reported. Furthermore, please note that a couple of measures could not be tested

in case of predictive and knowledge-graph-based models due to the characteris-
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tics of these models.
The following measures were selected into the basic settings set:

Cos, AdjCos, Overlap, HarmMeanMod, L;

422 Weighting schemes (Weight; 2907)

Each word (w) is represented by a vector containing features, where each feature
consists of a relation (r) and a feature word (w’). These feature vectors are created
with the help of (co-occurrence) data extracted from a large corpus. However,
the extracted raw frequencies alone are not completely suitable for representing
the meaning of words, as most words usually occur with such common words
as “is” and “the’ (usually denoted as stop-words)” the most frequently, which are
not really indicative of the meaning of the words (Jurafsky and Martin, 2009).
Therefore it is useful to employ some weighting scheme inside the vectors to
determine the strength of association between words and features, and hence the
relevance of the features for the words. Similarly to vector similarity measures,
they also form a very important part of DSMs, and have also been studied in
many previous research (e.g. Curran, 2004; Evert, 2005; |[Lapesa and Evert, [2014;
Kiela and Clark| 2014), as also noted in Chapter

Altogether 2907 variants have been tested, which include:

e simple measures based on word-feature co-occurrence frequencies (e.g. fre-

quecy (Curran, 2004), conditional probability (Jurafsky and Martin, 2009)),

e variants of TF/IDF and similar measures (e.g. TF/IDF (Curran, 2004) and
TF/ICF (Reed et al., 2006)),
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e measures based on pointwise mutual information (e.g. PMI (Church and

Hanks, 1990), NPMI (Harispe et al., 2015) and LPMI (Evert, 2005)),

e other complex information theoretic and statistical measures (e.g. t-test

(Curran, 2004) and odds ratio (Evert, 2005)),

e inter-rater reliability measures (e.g. Scott’s pi (Scott, 1955) and Cohen’s

kappa (Cohen, 1960))
e and their many-many variants,
e as well as numerous new measures.

Again, more than 90% of these measures were new ones proposed by us. Our
intuition for almost all of these were very similar as in case of the vector similarity
measures (see Section[4.2.1)), namely that we have extended some simple, conven-
tionally used measure that already had a good performance. Again, our modi-
fications included different weighting and transformation functions and normal-
ization factors employed inside them, among others. The modified measures
include numerous new variants of pointwise mutual information (Pmi) (Church
and Hanks, [1990), conditional probability (CondProb) (Juratsky and Martin, 2009),
Rapp’s measure (Rapp) (Rapp,|2003) and Lin’s weighting scheme (Lin) (Lin,|1998a),
among others, as well as such weighting schemes that are the combination of ex-
isting schemes.

There are also quite a few new variants combining the features of already ex-
isting versions of PMI weighting, such as the PMI, (PmiAl) (Levy et al., 2015), the
normalised PMI (NPmi) (Harispe et al., 2015), the shifted PMI (SPmi) (Weir et al.,
2016), the PMI with a discounting factor (PmiWdf) (Pantel and Lin, 2002) and the
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Unigram subtuples (Unis) (Pecinaj 2010) measures. The number of possible set-
tings of this parameter have been significantly increased since Dob6 and Csirik
(2019a) with numerous novel variants.

The different modification techniques and variants, together with their for-
mula, can be observed in Appendix Bl Further, we plan to release the list of all
tested settings in great detail at: https:/ /github.com/doboandras/dsm-parameter-
analysis/. Please note that, similarly as in case of the vector similarity measures,
some of the presented weighting schemes are not exact reproductions of the cited
ones, rather they have been slightly adapted to be in harmony with our other
schemes. Further, it was not possible to list all names or test for all slight vari-
ants for the presented measures within this thesis, as noted in case of the vector
similarity measures too.

The following measures were selected into the basic settings set:

PMI, NPM]I, TTest-2, OddsRatio-3, PoissonStirlingLh

42.3 Feature transformation techniques* (FeatTransf; 22)

Feature transformations are functions called on either the feature counts in the
word vectors extracted from the corpora or on the weights of the features. They
can be useful for example to reduce the skewness of feature scores (Lapesa and
Evert, 2014). There were 4 major categories of settings tried, all of which were

tested with several different transformation functions:
e no feature transformation (NoTransf),

e transformation of feature counts (this version could not be tested in case of

predictive and knowledge-graph-based models due to the characteristics of
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these models) (Freq),

e transformation of feature weights before possible smoothing and normal-

ization (Weight BefNorm),

e and transformation of feature weights after possible smoothing and nor-

malization (Weight AftNorm).

7 different transformation functions were tested for these. All transformation
functions were designed to be interpreted on positive, zero and negative values
too, and to only impact the magnitude of their argument, while keeping their

sign:

i () = sgn (x) x loga (x| +1)
foar (x) = sgn (x) x /|

Foquane (x) = sgn (x) x

feubie (x) = 2° 4.2)
g () = 77— -

frups (x) = 1=

fRank (x) = valueToRank (x)

While the base of most above functions are generally used for transforma-
tions, the idea of the P1D2 function came from Melamud et al.| (2015), and that
of the Rank based on Santus et al. (2016). Further, to our best knowledge, the
idea of trying out the feature transformations at different steps of the DSMs (i.e.
on unsmoothed frequencies, unsmoothed weights and normalized weights) is

novel, the Square (Sq) and Cubic (Cu) functions have not been tried as feature
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transformation functions by other authors in DSMs, and others did not define the
transformation functions in such a way that they are interpreted on negative and
zero values too.

Altogether 22 variants have been tested, and the following measures were
selected into the basic settings set:

NoTransf, "Weight AftNorm Lb"

424 Dimensionality reduction techniques (DimRed; 21)

Dimensionality reduction can be used to reduce the number of features in the
feature vectors. This can both improve the results and greatly reduce the time and
space complexity of vector comparison (Landauer and Dumais, 1997;|Lapesa and
Evert, 2014). There were 4 major types of dimensionality reduction techniques

tried, with several different dimensionality parameters in case of each:
e no dimensionality reduction (NoDimRed)

e the dimensionality reduction technique introduced by Islam and Inkpen
(2008) (IslamInkpen; please note that we slightly changed the computation
of the used dimensions for the vectors based on the parameter of this tech-
nique compared to Dob6 and Csirik| (2019a) to become fully consistent with

Islam and Inkpen (2008)),

e ineach vector retaining only the features with the n highest weight (inspired

by the method of [slam and Inkpen|(2008)) (TopNFeat),

e singular value decomposition (Landauer and Dumais, [1997; Rapp, 2003}

Bullinaria and Levy, 2012) (SVD) (Please note that before the SVD, an L2
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normalization was always performed, as we experienced that this step greatly

enhances the results).

We have to note that when testing dimensionality reduction, we usually did
a smaller number of runs than in other cases due to the rather large computa-
tional requirements of SVD and our limited resources. Further, we had to put a
limit on the number of word vectors included in the SVD, and in case of Spanish
we also had to set MinWFFreq to 3 instead of NoLimit when using SVD, due to
the too large word-feature matrix otherwise, which would have made running
SVD unmanageable. Altogether 21 variants have been tested, and the following
measures were selected into the basic settings set:

NoDimRed, "IslamInkpen 0.1"

4.2.5 Smoothing techniques (Smooth; 5)

Smoothing in general can be used to reduce the noise and randomness in data,
and is especially useful in case of problems with data points having zero value
or probability (Jurafsky and Martin, 2009). During smoothing, the value of data
points is slightly decreased in case of higher values while slightly increased in
case of lower values, to reach a smoother distribution. While they are popular in
many NLP applications, they have been ignored in most DSMs, with few excep-
tions (e.g. Dinu, 2011).

One of the most widely used group of smoothing methods in general are of
the type absolute discounting (Ney and Essen,|1991), that are simple but still very
powerful and efficient methods. The Kneser-Ney smoothing (KNS) (Kneser and

Ney, 1995b), and its multi-discount variant, the Modified Kneser-Ney smoothing
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(MKNS) (Chen and Goodman), 1999a) are widely considered to be one of the best
smoothing algorithms since a long time (Chen and Goodman, 1999a; Goodman,
2001} Zhang and Chiang), [2014).

Although the probability of atomic events changes during smoothing as a nec-
essary consequence, the marginal probabilities do not necessarily need to change,
where the marginal probabilities are the probabilities obtained by summing out

the probabilities of an event with respect to other events:

P(Y)=)_ P(Y,z) (4.3)

z€Z
One of the key motivations when developing the KNS was that it should pre-
serve the marginal distributions of the original model, meaning that the obtained
model satisfies the following equation:
_clw) ) p(wilwi-1) p (wi-1) (4.4)
Zw,- ¢ (wl)

Wi—1

This is very advantageous in many cases, and under certain assumptions, an
optimal model can only be obtained by satisfying this property, as discussed
by Goodman in the extended version of his paper (Goodman, 2001). Hence
Goodman comes to the conclusion that under these assumptions any smoothing
method not preserving the original marginals can be improved by modifying it
to preserve them. Despite this fact, many frequently used smoothing techniques,
including the MKNS, do not satisfy this property: when (Chen and Goodman
(1999a) refined the original KNS by introducing three discount parameters in-
stead of just one, they did not adjust the lower-order distributions according to

this change, which resulted in the loss of the original marginals in the smoothed
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model.

Therefore I have devised such a novel smoothing method based on the MKNS,
that keeps all the advantages of both the KNS and the MKNS, while also pre-
serving the original marginal distributions (Dobd, 2018). The final form for this
new smoothing technique, called Multi-D Kneser-Ney Smoothing Preserving the
Original Marginal Distributions (MDKNSPOMD), for a bigram language model

is as follows:

¢ (w;_qw;) — D (c (wj_qw;)) n

PMDKNSPOMD (w; \ wi—l) =
Yo, € (Wi1w;) 4.5)

YMDKNSPOMD (Wi—1) PMDKNSPOMD (W;)

D1 Ny (wi,l.) + DyN»p (wi,l.)
Yoo, € (wi—1w;)

YMDKNSPOMD (Wi—1) = 1

4.6
D34 N3+ (wi-1.) (*.6)
Yoo, € (Wi—qw;)
D1Nj (-w;) + DaNp («w;) 4+ D3 N3y («w;
pumprNspoMD (W) = — 1 () + DaNa (i) F Da Nay () (4.7)

DiNj (..) + DaNa (..) + D3 N3y (..)

We have to note that when testing the various smoothing options, we usually
did a smaller number of runs than in other cases due to the rather large com-
putational requirements of smoothing and our limited resources. Altogether 5

variants of smoothing techniques have been tried:
e no smoothing (NoSmooth)
e Kneser-Ney smoothing (Kneser and Ney, |1995a) on weights (Weight KNS),

e Kneser-Ney smoothing (Kneser and Ney,|1995a) on raw counts (Freq KNS),
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e Modified Kneser-Ney smoothing (Chen and Goodman), 1999b) on raw counts
(Freq MKNS),

e Multi-D Kneser-Ney Smoothing Preserving the Original Marginal Distribu-
tions (Dob¢, 2018) on raw counts (Freq MDKNSPOMD),

To our best knowledge none of the smoothing variants used in our analysis
have ever been tried in DSMs, and we are also the first to try smoothing at mul-
tiple points in DSMs. The smoothing parameters used in all versions are the es-
timates of the optimal parameters determined by the method described in Chen
and Goodman! (1999b), calculated on the BNC. The following measures were se-
lected into the basic settings set:

NoSmooth

4.2.6 Vector normalization methods* (VecNorm; 3)

Although there are such distance and similarity measures that are independent
of vector magnitudes (e.g. cosine similarity), most measures are not so. There-
fore normalizing the vectors before comparing them makes sense. This aspect of
DSMs has also only been considered in few studies (e.g. Jones and Furnas, 1987}
Yin and Schiitze, [2016).

The most common way for normalization is by their L, norm. However, as
it will be seen, there are many similarity measures originally developed for com-
paring probability distributions. These measures assume such vectors as input,
whose values are non-negative (or even positive) and sum up to 1. To be as con-
sistent with the theoretical background of these measures as possible, we have

also evaluated the L normalization of the vectors.
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In case of the word vectors provided by Mikolov et al.| (2013b), the vectors
were already L, normalized, so there the unnormalized version (NN) could not
be tried. Further, please note that in many cases the feature vectors also include
negative and zero weights (e.g. due to the weighting scheme used, and also in
case of the Mv (Mikolov et al., 2013b)), so despite using the L; normalization,
their elements very rarely sum up to 1, and thus they are still not fully adequate
for measures coming from probability theory.

Altogether the above 3 variants (NN, L1, L) have been tested, and the follow-
ing measures were selected into the basic settings set:

L2/ Ll

4.2.7 Filtering stop-words (StopW; 2)

Stop-words are such very frequently used words, whose usage as context words
are very uninformative and not useful in most cases (as also noted in Section
4.2.2). Therefore stop-words have usually been filtered not just in DSMs, but also
in many other NLP applications since a very long time (Manning and Schiitze,
1999). While they can prove to be very useful (Huang et al.,[2012), others conclude
that removing these words in DSMs does not improve performance (Bullinaria
and Levy, 2012), probably due to the used weighting schemes already assigning a
very low weight to them, essentially already filtering them out almost completely
(Kiela and Clark, 2014).

Both possibilities (True, False) have been tested, using the Stopwords ISO col-

lection!, with the following measures in the basic settings set:

https:/ / github.com/stopwords-iso/
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False

4.2.8 Minimum limits on word-feature tuple frequencies

(MinWFFregq; 6)

As pointwise mutual information (PMI) becomes unstable in case of small co-
occurrence frequencies, it is better to only consider such word-feature pairs whose
frequency is above a given threshold in case of this weighting scheme (Church
and Hanks) [1990). Based on these findings, this feature might also be useful in
case of other weighting schemes too, so it seemed interesting to test this as a gen-
eral option, and not just in case of PMI weighting.

Altogether 6 variants have been tested, and the following measures were se-
lected into the basic settings set:

NoLimit

429 Minimum limits on word-feature tuple weights*

(MinWFWeight; 26)

Negative PMI values can also be unreliable, and thus several researchers suggest
to discard these (Dagan et al., 1995; Bullinaria and Levy, 2007). Similarly to the
minimum limit on word-feature tuple frequencies, this option might be useful in
case of other weighting schemes too, so we also tested this generally, not just in
case of PMI weighting.

We have tried two variants. In the first version (Limit) a weight is replaced

with the limit if it is below it:



4.2. The tested parameters 45

w if w> minValue
Limit(w, minValue) = (4.8)
minValue otherwise

In the second version (Zero) a weight is replaced with zero if it is below the
limit:

w if w> minValue
Zero(w, minValue) = (4.9)

0 otherwise

Several limit values have been tested for both versions. Previous studies usu-
ally used either the NoLimit option or an option that is equivalent to our "Zero
0" (and "Limit 0") version. Our motivation for testing negative parameters with
the Limit version was that the "Zero 0" option seems to be a bit too strict, and
results in the same zero score for both an original score of zero and an original
score with negative sign and large magnitude. The Limit variant with a negative
parameter does almost the same, but keeps the sign of negative values while re-
stricting their magnitude. On the other hand, the Zero version with a positive
parameter filters out the unimportant features with low weight for each word,
essentially doing something similar to dimensionality reduction or stop word fil-
tering. It seemed logical to also test parameter values with the opposite sign in
case of both versions, and with several different magnitudes of the parameter. To
our best knowledge, no one has ever tested the Limit or Zero options in DSMs,
nor thresholds other than 0.

The number of possible settings of this parameter have been significantly in-
creased since|Dob6 and Csirik|(2019a) with numerous novel variants. The follow-

ing measures were selected into the basic settings set:
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NoLimit, "Zero 0"

4210 Minimum limits on feature frequencies (MinFFreq; 14)

Based on the ideas of the above two parameters, we have thought that it could
be interesting to also test whether discarding features that are very infrequent on
the whole (having a total frequency of or below a given limit) would improve the
results of DSMs or not. Although mainly due to computational efficiency reasons,
this technique has already been employed by others too (e.g.|Levy et al.,2015).

Altogether 14 variants have been tested, and the following measures were
selected into the basic settings set:

NoLimit
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Semantic similarity of English words

5.1 The first phase of the heuristic approach

In this phase the most promising parameter settings had to be selected for each
parameter based on multiple runs for each setting on the MD1 development
dataset. In the following subsections, the detailed performance of the different
settings are presented and evaluated for each parameter. The settings for the sec-
ond phase are selected based on the results achieved during the multiple runs of
the settings, using the 9 measures presented in Section[3.2} As already mentioned
before, the number of possible settings of several parameters have been signifi-
cantly increased since Dob6 and Csirik| (2019a) with numerous novel variants.

Singular value decomposition for dimensionality reduction has very large



48 5. Semantic similarity of English words

time and space complexity, therefore, due to our limited resources, when test-
ing SVD in the second phase using the DcBnc, only a reduced settings set was
used in case of each parameter.

In case of each figure presenting the results, those measures marked with an *
were selected to be included in the second phase, with those marked with ** also
being part of the reduced settings set. In case of those parameters, where a very
large number of settings were tested for, the results for only a small proportion
of settings can be shown here due to space limitations, but the full results are
planned to be made publicly available at:

https:/ /github.com/doboandras/dsm-parameter-analysis/.

5.1.1 Results using the counts of Dob¢ and Csirikl (2013) on the
BNC

5.1.1.1 Vector similarity measures

Analyzing the results (see Figure it can be seen that most measures based
on the inner product, also including variants of the cosine similarity, correlation
measures and statistical coefficients, as well as measures proposed by Lin (Lin,
1998a), and the variants of these, generally performed well. On the other hand,
distance-based measures, such as the Minkowski distances (L;) or the Canberra
distance, achieved relatively low H scores, mostly due to their low Pearson corre-
lation scores. Measures designed for comparing probability distributions and for
statistical hypothesis testing mostly also performed poorly. A large proportion of
the best measures are combinations of multiple measures and modified variants

of some existing measures, proposed by us.
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The best measures achieved an H score above 0.7, from which altogether 13
(out of 1221) measures were selected to the second phase, and 5 were also selected

into the reduced settings set.

Figure 5.1. First-phase performance of vector similarity measures using the DcBnc.
0.80
0.70
0.60
0.50
0.40

0.30

0.00 |
[T AR N A PR S (g N L D H & ¥ O O O
> . 2 2 oV N
“)\9 N ob'q/ 6&“0% b\('osq N ayb{? a)b{? bﬁ’\'/ ob'(o Q‘<®°(JO‘§9 Qoa’b q§$ V‘\Q‘<® ob’b 06"0 F & <@ & Sl
% A . . &
TN FF S PR FFF S K
FLHFS TFPELFFT e ¢ &
b\(J b&/ ‘OV QQ”D @\0?‘ Q/’b@ 6\(9 b\(z @‘OV
F & & € P
S & P N @
2 B R & B
@ F & &
MaxS ® MaxH

5.1.1.2 Weighting schemes

The best results (see Figure were clearly achieved by variants of the point-
wise mutual information. Beside these, some other complex information the-
oretic and statistical measures also scored high, while inter-rater reliability mea-
sures generally performed a little worse. Simple measures based on word-feature
co-occurrence frequencies generally achieved relatively low H scores. A large
proportion of the best measures are new ones proposed by us.

Similarly as in case of the vector similarity measures, the highest H scores are
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close to 0.7. Altogether 13 (out of 2907) measures were selected to the second
phase, from which 5 were also selected into the reduced settings set.

Figure 5.2. First-phase performance of weighting schemes using the DcBnc.

0.80

0.70
0.60
0.50
0.40
0.30
0.20
0.10
0.00
* * Lk

(Y * * X Yoo ‘ 2\ N $ >
* ] N S o o & SFCIP N2
N FFed LSS FLEESS S SR A AN N NP I R P
LS FTF TS TSI T FF ST FFF <
FFEITL I ITEFITIEIT L o & @ &Y
NS S FC L E ST S 5 P o
K kP KL o, & AT NS B\ NP
N/ DN/ &/ \50\ N/ QY\ (Q\ N ('\\"/ ] &\/
. &
& Q@v‘§>¢ & T8 0&‘? N <€
& < &
Q
MaxS ®m MaxH

5.1.1.3 Feature transformation

The results (see Figure are rather mixed in case of this parameter. Settings
with all 4 major feature transformation categories have achieved good results,
although with different transformation functions in case of each. Further, a clear
ranking cannot be determined in case of the different transformation functions
based on their results either. Altogether 4 (out of 22) settings were selected to the

second phase, from which 2 were also selected into the reduced settings set.
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Figure 5.3. First-phase performance of feature transformation techniques using the

DcBnc.
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5.1.1.4 Dimensionality reduction

The results (see Figure show that the best results were achieved by singular

value decomposition with different dimensionality parameters, followed by the

technique of Islam and Inkpen (2008). Please note that we slightly changed the

computation of the used dimensions for the vectors based on the parameter of

this technique compared to [Dob6 and Csirik| (2019a) to become fully consistent

with Islam and Inkpen| (2008). Altogether 3 (out of 21) settings were selected to

the second phase (2 for the normal set and 1 for the reduced set).
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Figure 5.4. First-phase performance of dimensionality reduction techniques using the

DcBnc.
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51.1.5 Smoothing

Smoothing seems to considerably worsen the results of DSMs (see Figure [5.5),
while posing significant extra time and space complexity burden on them. There-
fore only the no smoothing setting (out of 5) was selected for the next phase (also

included in the reduced settings set).

5.1.1.6 Vector normalization

As many vector similarity measures are independent of vector normalization,
many configurations achieve the same results irrespective of which normalization
technique is used. The best configuration from the basic set is also achieved by

a measure independent of vector normalization, therefore the best scores of all 3
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Figure 5.5. First-phase performance of smoothing techniques using the DcBnc.
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techniques are the same (see Figure [5.6). All of them were selected for the next

phase, with the no normalization option omitted from the reduced settings set.

5.1.1.7 Filtering stop-words

As both filtering and not filtering stop-words seem to achieve good results (see
Figure [5.7), both options were selected for the next phase, with only the False
option included in the reduced settings set. The reason why filtering or not fil-
tering these words does not have a huge impact on performance is probably due

to the fact that using a proper weighting scheme already devaluates these words

so much as if they were almost completely filtered out (Kiela and Clark), 2014), as

already noted before.
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Figure 5.6. First-phase performance of vector normalization techniques using the DcBnc.
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5.1.1.8 Minimum limits on word-feature tuple frequencies

As employing minimum limits on word-feature tuple frequencies seems to de-
teriorate performance (see Figure [5.8), only the no limit option (out of 6) was

selected for the second phase (also included in the reduced settings set).

5.1.1.9 Minimum limits on word-feature tuple weights

The results for word-feature tuple weights are somewhat mixed, but the Zero
option having a small positive parameter seems to be slightly superior to the
other settings (see Figure[5.9). Altogether 5 (out of 26) settings were selected to

the second phase, from which 3 were also selected into the reduced settings set.
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Figure 5.7. First-phase performance achieved by filtering and not filtering stop-words
using the DcBnc.
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5.1.1.10 Minimum limits on feature frequencies

As setting no limit on feature frequencies seems to achieve the best results (see
Figure [5.10), only this option (out of 14) was selected for the next phase (also

included in the reduced settings set).

5.1.2 Results using the semantic vectors of Mikolov et al./ (2013b)

5.1.2.1 Vector similarity measures

These measures show very similar results using the Mv (see Figure5.11)), as using
the DcBnc (see Figure 5.1). Measures based on the inner product, also including
variants of the cosine similarity, correlation measures and statistical coefficients,

achieved the highest H scores. Further, distance-based measures and measures
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Figure 5.8. First-phase performance achieved by setting minimum limits on word-feature
tuple frequencies using the DcBnc.
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designed for comparing probability distributions and for statistical hypothesis
testing performed poorly most of the time. Again, some of our newly proposed

measures achieved the highest scores.

The best measures achieved an H score around 0.75, from which altogether 16

(out of 1221) measures were selected for the second phase.

5.1.2.2 Feature transformation

The results (see Figure 5.12) are rather mixed in case of this parameter using the
Mv too, but resemble the results using the DcBnc more or less (see Figure [5.3).
Altogether 6 (out of 15, as some of the settings could not be tested with this corpus

(see Section ) settings were selected to the second phase.
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Figure 5.9. First-phase performance achieved by setting minimum limits on word-feature
tuple weights using the DcBnc.
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5.1.2.3 Vector normalization

As noted before, many vector similarity measures are independent of vector nor-
malization, so they achieve the same results irrespective of which normalization
technique is used. The best configuration from the basic set is achieved by such
a measure here too, similarly as it was in case of the DcBnc, therefore the best
scores of both techniques (the NN option could not be tested with the vectors of
Mikolov et al| (2013b) (see Section [4.2)) are the same (see Figure 5.13). Both of

them were selected for the next phase.
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Figure 5.10. First-phase performance achieved by the setting minimum limits on feature
frequencies using the DcBnc.
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5.1.2.4 Minimum limits on word-feature tuple weights

Setting no limit or a negative limit with larger magnitude in case of either the
Zero or the Limit option achieved the best results in case of word-feature tuple
weights by far (see Figure[5.14). Altogether 8 (out of 26) settings were selected to

the second phase.

5.2 The second phase of the heuristic approach

The purpose of this phase was to determine what the best possible configuration
is in case of count-vector-based (using the DcBnc) and predictive (using the Mv)

DSMs by testing all combinations of the selected settings for all parameters. A
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Figure 5.11. First-phase performance of vector similarity measures using the Mv.
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dataset distinct from the one used in the first phase, namely the MD2 develop-

ment dataset, was used for evaluation.

As a full test of all possible configurations would have been unfeasible in case
of count-vector-based DSMs (see Section [4.1)), only a heuristic analysis with the

parameter settings selected in the first phase was performed. In case of predictive

DSMs, a full analysis was also feasible in |Dob6 and Csirik (2019a), when the

number of tested settings for these 4 parameters were still considerably lower
than now. Therefore beside the heuristic analysis, a full analysis was also done at

that time to validate the results (see Section|5.2.3).
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Figure 5.12. First-phase performance of feature transformation techniques using the Mv.
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52.1 Results using the counts of Dob6 and Csirik| (2013) on the

BNC

With the settings of the 10 parameters selected in the first phase, altogether 40860
configurations were tested (in case of the singular value decomposition settings
for dimensionality reduction, only a reduced set of settings were used, as already
noted in Section[£.2). A very small proportion of these, together with their per-
formance, are presented in Table The configuration with the best results is
noted as BestCvbmDcBnc2. We have to note that there were actually two distinct
configurations with the same best score, and they were only different in their
DimRed parameter setting. We have chosen the one with the "IslamInkpen 0.05"
setting as best (BestCvbmDcBnc2), as that setting achieved better performance in

the first phase than the "NoDimRed" setting in the other configuration.
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Figure 5.13. First-phase performance of vector normalization techniques using the Mv.
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As already mentioned before, the number of possible settings of several pa-

rameters have been significantly increased since [Dob6 and Csirik| (2019a)) with

numerous novel variants. The results of the best found count-vector-based con-
tiguration with those reduced number of settings for several parameters will also

be included in the rest of the thesis (BestCvbmDcBnc).

Further we also wanted to include the results achieved with the selected best
configuration in case of predictive DSMs (see Table , run on the DcBng, in
Table However, as only 4 out of 10 parameters could be used in case of
predictive DSMs, the hypothetical best configuration of the 10 parameters were
produced by changing the settings of these 4 parameters in the best method on
count-vector-based DSMs to the settings of the best method on predictive DSMs,

leaving the other 6 parameter settings unchanged (as they were in the best con-
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Figure 5.14. First-phase performance achieved by setting minimum limits on word-
feature tuple weights using the Mv.
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tiguration on count-vector-based DSMs). This hypothetical best configuration is

noted as BestPmMv2OnCvbm.

Although presenting the definition of all settings for every parameter would
be impossible within this thesis due to their large number, as also noted before,

below we define a couple of them to help interpreting our most important results.

The vector similarity measures used in BestCvbmDcBnc2 is a combination of

the Pearson (Pears) (Jones and Furnas| [1987), Maryland Bridge (Mb)
(2016) and Adjusted cosine (AdjCos) Shalaby and Zadrozny| (2016) mea-

sures, with some additional transformations:
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Table 5.1. Second-phase performance of a selection of configurations using the DcBnc.

Abbrev Parameter settings P S H
VecSim Weight FeatTransf
PearsMbAdjCosMod-3.Lb PmiAl-Tc3Tw0S2P0 NoTransf
BestCvbmDcBnc2 DimRed] Smooth |VecNorm|StopW |MinWFFreq | MinWFWeight | MinFFreq 0.72 071 0.71
IslamInkpen 0.05 | NoSmooth L false | NoLimit Zero 0 NoLimit
VecSim Weight FeatTransf
} PearsMbAdjCosMod-3.Lb PmiAl-Te3Tw0S2P0 NoTransf 0.72 0.71 0.71
DimRed Smooth |VecNorm |StopW|MinWFFreq | MinWFWeight| MinFFreq| . :
NoDimRed NoSmooth L1 false NoLimit Zero 0 NoLimit
VecSim Weight FeatTransf
B PearsMbAdjCosMod-3.Lb PmiAl-Tc3Tw0S2P0 NoTransf 0.72 0.71 0.71
DimRed Smooth |VecNorm|StopW |MinWFFreq |MinWFWeight | MinFFreq | . '
NoDimRed NoSmooth L1 false NoLimit Zero -0.05 NoLimit
VecSim Weight FeatTransf
; PearsMbAdjCosMod-3.Lb PmiAl-Tc3Tw0S2P0 NoTransf 0.72 0.71 0.71
DimRed Smooth |VecNorm |StopW|MinWFFreq | MinWFWeight|MinFFreq| : ’
IslamInkpen 0.05 | NoSmooth Ly false NoLimit Zero -0.05 NoLimit
VecSim Weight FeatTransf
R PearsMbAdjCosMod-4.Lb PmiAl-Tc3Tw0S2P0 NoTransf 072 0.71 0.71
DimRed Smooth |VecNorm|StopW |MinWFFreq|MinWFWeight | MinFFreq| . :
NoDimRed NoSmooth L1 false NoLimit Zero -0.05 NoLimit
VecSim Weight FeatTransf
R PearsMbAdjCosMod-4.Lb PmiAl-Tc3Tw0S2P0 NoTransf 0.72 0.71 0.71
DimRed Smooth |VecNorm |StopW|MinWFFreq | MinWFWeight|MinFFreq| : ’
IslamInkpen 0.05 | NoSmooth Ly false | NoLimit Zero 0 NoLimit
VecSim Weight FeatTransf
: PearsMbAdjCosMod-4.Lb PmiAl-Te3Tw0S2P0 NoTransf 0.72 071 0.71
DimRed Smooth |VecNorm|StopW |MinWFFreq |MinWFWeight | MinFFreq | . :
NoDimRed NoSmooth L1 false NoLimit Zero 0 NoLimit
VecSim Weight FeatTransf
R PearsMbAdjCosMod-3.Lb PmiAl-Tc3Tw0S2P0 NoTransf 0.72 0.71 0.71
DimRed Smooth |VecNorm|StopW |MinWFFreq |MinWFWeight | MinFFreq | . '
IslamInkpen 0.05 | NoSmooth L false | NoLimit Zero 0.05 NoLimit
VecSim Weight FeatTransf
; PearsMbAdjCosMod-3.Lb PmiAl-Te3Tw0S2P0 NoTransf 0.72 0.71 0.71
DimRed Smooth |VecNorm |StopW|MinWFFreq | MinWFWeight| MinFFreq| ) :
NoDimRed NoSmooth L1 false NoLimit Zero 0.05 NoLimit
VecSim Weight FeatTransf
B PearsMbAdjCosMod-4.Lb PmiAl-Tc3Tw0S2P0 NoTransf 072 0.71 0.71
DimRed Smooth |VecNorm|StopW |MinWFFreq|MinWFWeight | MinFFreq | . '
IslamInkpen 0.05 | NoSmooth Ly false | NoLimit Zero -0.05 NoLimit
VecSim Weight FeatTransf
} Cos PmiAl-Tc3Tw0S2P0 Weight AftNorm Lb 0.68 0.70 0.69
DimRed Smooth |VecNorm |StopW|MinWFFreq | MinWFWeight|MinFFreq| : ’
SVD 200 NoSmooth L, ‘ false NoLimit Zero 0 NoLimit
VecSim Weight FeatTransf
Cos WPmi-7 Weight AftNorm Lb
BestCvbmDcBne DimRed Smooth |VecNorm|StopW |MinWFFreq MinWFgWeight MinFFreq 0.66 0.69 0.68
SVD 200 ‘ NoSmooth Ly ‘ false NoLimit Zero 0 NoLimit
VecSim Weight FeatTransf
MbAdjCosLogProd PmiAl-Te3Tw0S2P0 Weight BefNorm Lb
BestPmMv20nCvbm DimRe]d gSmooth VecNorm | StopW | MinWFFreq MinW1§Weight MinFFreq 0-50 0.65 0.57
IslamInkpen 0.05 | NoSmooth Ly false NoLimit Limit -0.2 NoLimit
VecSim Weight FeatTransf
. Cos Pmi NoTransf
Cos-PPmi DimRed Smooth |VecNorm |StopW|MinWFFreq | MinWFWeight | MinFFreq 0.44 0.63 0.52
NoDimRed ‘NoSmooth NN false NoLimit Zero 0 NoLimit
VecSim Weight FeatTransf
. Cos Pmi NoTransf
Cos-Pmi DimRed Smooth |VecNorm|StopW |MinWFFreq | MinWFWeight | MinFFreq 043 0.58 049
NoDimRed ‘NoSmooth NN false | NoLimit NoLimit NoLimit
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1, d>01
PearsMbAdjCosMod-3.Lb(u,v) =

d
01 d<0.1

B Yiisgn(u; — i) x Ib(Ju; — it| + 1) x sgn(v; — ) x 1b(|v; — 3| + 1)
=05 ( Ibino (T, (1b(u; — ] + 1))%) T 6D

®sgn(u; — i) X Ib(ju; — | +1) x sgn(v; — 9) x Ib(|v; — 3| + 1)
Ibinv (Y1, (1b(|v; — 3| +1))?)

Ibinv(x) = min(max(sgn(x) x (21 — 1), —2100),2100)

Further, the weighting scheme used in BestCvbmDcBnc2 is a combination of
PMI, (PmiAl) Levy et al. (2015), PMI with Laplace smoothing (PmiW]ls) Turney
and Pantel (2010) and Unisubtuples (Unis) Pecina (2010):

1, % f! 1 1 1 1
PmiAl-Te3Tw0S2P =Ib | —m | =3 \/ b e d
miAl-Tc3Tw0S2P0(x,y) = 1b <f3/c>< §0'75> 3.29 X g+b+C+d

a:fa/cy/ b:fz/c_fa/cy/ C:f]:/_falcyr d:n/_fa/c_fy/+fa/cy

v
5.2
fo=fot 1 fi=fy 1, fly = fag+1, 0 =n41, n = (Zfi0~75>+1 (5:2)
i=1

fx, fy: word frequencies,  f,,: xy tuple frequency

n: total number of words in the corpus, |V/|: size of the vocabulary

One should be able to have enough understanding of the settings of the other

parameters in BestCvbmDcBnc2 from the information provided in Section
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5.2.2 Results using the semantic vectors of Mikolov et al.| (2013b)

With the settings of the 4 parameters selected in the first phase, altogether 1632
configurations were tested. A small proportion of these together with their per-
formance are presented in Table The configuration with the best results is

noted as BestPmMv?2.

As already mentioned before, the number of possible settings of several pa-
rameters have been significantly increased since Dob¢6 and Csirik| (2019a) with
numerous novel variants. The results of the best found predictive configuration
with those reduced number of settings for several parameters will also be in-

cluded in the rest of the thesis (BestPmMyv).

Please note that although we were able to find a better configuration with our
extended settings set for several parameters than the one presented in Dob6 and
Csirik| (2019a), meaning that BestPmMv2 performs better that BestPmMy, the ac-
tual scores of these models presented here are actually lower than the best scores
presented in |Dob6 and Csirik| (2019a). This is due to a technical change in the
evaluation process: previously we accepted our models to return non-zero simi-
larity scores when at least one of the compared words had a zero lengths feature
vector. Now we do not allow this, as we think that it seems theoretically more
correct this way. However, some of the test words in the MD2 dataset are out of
vocabulary in case of the Mv dataset as that dataset contains each word only with
its American spelling, and the MD2 dataset contains words with both American
and British spelling. Because of these out-of-vocabulary words the scores of ev-
ery configuration are lower now, then as in Dob6 and Csirik|(2019a). This change

only affects the ranking of the configurations in very rare cases, and only in a
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Table 5.2. Performance of a selection of configurations from the heuristic analysis in the
second phase using the Mv.

Abbrev VecSim FeatTransf VecNorm | MinWFWeight | P S H

BestPmMv2 MbAdjCosLogProd Weight BefNorm Lb L, Limit -0.2 072 072 0.72
- MbAdjCosLogProd Weight AftNorm Lb L, Limit -0.2 072 072 0.72
- MbAdjCosLogProd Weight BefNorm Lb L Limit -0.2 072 0.72 0.72
- MbAdjCosLogProd Weight AftNorm Sigm | Ly Limit -0.2 071 072 0.72
- MbAdjCosLogProd NoTransf Ly Limit -0.2 071 072 0.72
- MbAdjCosLogProd Weight AftNorm Sigm | L, Limit -0.2 071 072 0.72
- MbAdjCosLogProd Weight BefNorm Sigm | L, Limit -0.2 071 072 0.72
- MbAdjCosLogProd Weight BefNorm Sigm | L; Limit -0.2 071 072 0.72
- MbAdjCosLogProd NoTransf L, Limit -0.2 071 072 0.72
- MbAdjCosLogProd Weight AftNorm Lb L, Limit -0.2 071 072 0.72
- MbAdjCosLogProd Weight BefNorm Lb L, Zero -0.5 0.72 072 0.72
- MbAdjCosLogProd Weight BefNorm Lb L, Limit -0.5 072 072 0.72
- MbAdjCosLogProd Weight BefNorm Lb L, NoLimit 072 072 0.72
Cos Cos NoTransf L, NoLimit 071 0.72 0.71
BestPmMv SmoothCos Weight AftNorm Sigm | L, NoLimit 0.68 0.72 0.70
Cos-Zero0 Cos NoTransf L, Zero 0 0.60 0.69 0.64
BestCvbmDcBnc20nPm | PearsMbAdjCosMod-3.Lb | NoTransf Ly Zero 0 0.38 047 042

minor way, and it does not have any effect on which configuration was found
best.

The results achieved with the selected best configuration in case of count-
vector-based DSMs (BestCvbmDcBnc2; see Table please note that only 4 out
of the 10 parameters could be used here), run on information extracted from My,

are also included in Table and is noted as BestCvbmDcBnc2OnPm.

5.2.3 Verification of the heuristic approach

To verify our heuristic approach and its results, we have done a full analysis us-
ing the Mv with that of the heuristic analysis in Dob6 and Csirik| (2019a), and we
have discovered that the best 26 configurations were the same using both anal-
yses, which has highly exceeded our expectations. Unfortunately we were not
able to repeat this full analysis now, as since then we have constructed many new
settings for the tested parameters, which increased the number of possible config-

urations to a level that made performing a full analysis unmanageable. However,
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we think that if we were able to do it, then we would come to the same conclu-
sions as in Dob6 and Csirik| (2019a).

Further, later on we have done numerous tests with our found best config-
urations in such a way that they were tested using several different input data
types, both in case of CVBM and PM configurations. The result of a number of
these tests will later be displayed in[5.3] where one can see that all CVBM and PM
configurations performed well when using any input data that was of the same
type as the original input data used to create the configuration.

Both these results give us a very strong verification that the idea behind our
heuristic approach was good, and that its results are reliable. Moreover, it also
supports our assumption that a configuration working well on given input data

also works well on other input data of the same type.

5.3 Evaluation and discussion of results for English

In this section we evaluate the results of our best configurations for count-vector-
based, predictive and knowledge-graph-based models, determined using our heu-
ristic approach, with the help of multiple input data sources and multiple test

datasets.

5.3.1 Evaluation of our best configurations on the MD2

development dataset

Our results on the MD2 dataset (see Tables [5.1] and show that the BestCvb-

mDcBnc2 and the BestPmMv2 configurations, both incorporating novel parame-
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ter settings, significantly outperform conventional variants (e.g. simple methods
with cosine similarity and positive pointwise mutual information).

Although the parameter settings of the BestCvbmDcBnc2 and BestPmMv2
configurations resemble each other to some extent, their 4 mutual parameters do
not have the exact same settings. Further, the two mixed configurations (BestCvb-
mDcBnc20nPm and BestPmMv2OnCvbm) perform significantly worse than the
BestCvbmDcBnc2 and BestPmMv2. Out of the BestCvbmDcBnc2 and BestPmMv2
variants the latter achieved slightly better results.

Although all of our best configurations were selected based on a heuristic ap-
proach, in Section we were able to verify that our idea behind this approach
is good and that its results are sound and reliable. Further, we have also validated
our assumption that the same parameters configuration can be successfully used

in case different data sources of the same type are used as input.

5.3.2 Evaluation of our best configurations on the MT dataset,

using multiple sources as input

All 4 of our previously inspected configurations, as well as the best configurations
found in [Dob6 and Csirik (2019a), have also been tested on the MT test dataset
(see Table5.3). We have evaluated the same configurations using multiple input
data sources (i.e. different extracted raw counts or different semantic vectors) in
each case.

Similarly as in case of the result on the MD2 dataset (second phase), the results
of the BestPmMv2UsingMv model are slightly superior to that of the BestCvb-

mDcBnc2UsingDcBne model. Further, as anticipated, the mixed models using



5.3. Evaluation and discussion of results for English 69

Table 5.3. Performance of our best models on the MT dataset. The methods are grouped
into 3 categories based on the type of input data used.

Input data | Configuration | P S H
CVBMs using solely distributional linguistic data
BestPmMv20OnCvbm | 0.51 0.64 0.57
DcBnc BestCvbmDcBnc 0.67 0.69 0.68

BestCvbmDcBnc2 071 0.71 0.71
BestCvbmDcBncMF20 | 0.70 0.73 0.71

DeEw BestCvbmDcBne2MF20 | 0.74 0.73 0.73
DeUkwac BestCvbmDcBncMF100 | 0.76 0.77 0.76
BestCvbmDcBnc2MF100 | 0.74 0.75 0.75
LeBne BestCvbmDcBnc 0.65 0.69 0.67
BestCvbmDcBnc2 0.61 0.61 0.61
LeBw BestCvbmDcBncMF20 | 0.71 0.75 0.73
BestCvbmDcBnc2MF20 | 0.71 0.71 0.71
LeUkwac BestCvbmDcBncMF100 | 0.75 0.77 0.76
BestCvbmDcBnc2MF100 | 0.75 0.74 0.74
EcBne BestCvbmDcBnc 0.72 074 0.73
BestCvbmDcBnc2 0.67 0.67 0.67
EcEw BestCvbmDcBncMF20 | 0.74 0.78 0.76
BestCvbmDcBnc2MF20 | 0.72 0.72 0.72
BestCvbmDcBncMF100 | 0.78 0.79 0.78

EcUkwac

BestCvbmDcBnc2MF100 | 0.73 0.74 0.73
PMs using solely distributional linguistic data
BestCvbmDcBnc20OnPm | 0.33 0.40 0.36

Mv BestPmMv 070 0.73 0.71
BestPmMv2 073 0.73 0.73

Bv BestPmMv 0.78 0.80 0.79
BestPmMv2 079 0.79 0.79

Other types of models

BestPmMv 0.85 0.87 0.86

Sy BestPmMv2 0.85 0.85 0.85
BestSv 0.85 0.87 0.86

BestSv2 0.87 0.87 0.87

both the DcBnc and the Mv as input (BestPmMv2OnCvbmUsingDcBnc and Best-
CvbmDcBnc20nPmUsingMv) achieved worse results than the non-mixed model

using the same input data (BestCvbmDcBnc2UsingDcBnc and BestPmMv2UsingMy,
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respectively) in all cases. On the other hand all count-vector-based and predic-
tive configurations performed well on all input data of the same type, as already
discussed in Section

As the vectors in Sv are not predictive vectors, as opposed to the other used
semantic vectors, but are rather constructed from a knowledge graph, it was an-
ticipated that they might behave differently than the other vectors. Therefore, in
the end, we have decided to run the same two-phase heuristic analysis using the
Sv as we have done using the Mv. As a result of this, we have got the follow-
ing parameter settings to perform best on these vectors, using the MD2 dataset

(BestSv2):

the LMo0d-9.1.Cu similarity measure

P1D2 feature transformation of the weights before normalization

L, vector normalization

the "Limit -0.2" option on word-feature tuple weights

The results of the best found configuration using Sv as input with the reduced
number of settings for several parameters tested in Dob6 and Csirik| (2019a) will
also be included in the rest of the thesis (BestSv). The BestSv2 configuration
achieved the highest scores on the MT dataset, using the Sv as underlying data.
The H score of this model is also bit higher than that of the BestPmMv2UsingSv
model, which was expected as in case of the former the parameters were opti-
mized on the same input that was used as underlying data source for the model.

When comparing our new best CVBM configuration (BestCvbmDcBnc2) to

that presented in Dob6 and Csirik (2019a) (BestCvbmDcBnc), we can usually see
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an improvement when using the Dc information extraction method, but a de-
cline in case of using the Lc and Ec extraction methods. This suggests us that the
BestCvbmDcBnc configuration is a more general one that performs well for any
type of CVBM input data. Our new one still performs decently in case of any
CVBM input, however, it seems to be somewhat specialized for the Dc informa-
tion extraction method. Based on this both our old and new configurations can
be useful in the future, for different types of input, and it is worth continuing the
experiments with both. In case of the PM models, the new configuration (BestP-
mMv?2) seems to be slightly better than the previous version (BestPmMyv). When
looking at the results of these configurations using the Sv as underlying data, the

opposite seems to be true.

When using the Ew and the ukWaC as underlying corpus with the BestCvb-
mDcBnc and BestCvbmDcBnc2 configurations, we had to limit the words and
features to those having a minimum frequency of 20 and 100 (noted as MF20 and
MF100 in the model names), respectively, due to computational reasons. Based on
the result presented in Section and also verified by additional tests, such
limitations have a negative impact on the results. Despite this negative effect, it
is clear that the larger the used corpus is the better the results are, having the in-
formation extracted with either the D¢, Lc or Ec method. We were not able to do
the same comparison in case of PMs as input, as all models were produced using
different input data, but most likely we would have come to the same conclusion
as in case of CVBM:s.

In Dob6 and Csirik (2019a) we have noted that when using raw counts as
input with the same underlying corpus in all cases, then the models using the in-

formation extraction method of Salle et al. (2016a) produce better results than the
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ones using the method of Levy et al.|(2015), which in turn mostly produce better
results than the ones using the method of Dob6 and Csirik| (2013). As beside the
used information extraction method all other properties of the compared models
are the same, this implies that the data extraction method of Salle et al.| (2016a)
is superior to that of Levy et al. (2015), which is in turn superior to that of [Dobd
and Csirik! (2013). This does not seem to hold with respect to the new BestCvb-
mDcBnc2 configuration, but the BestCvbmDcBnc2 seems to be a bit specialized
to the Dc information extraction method, so it might mostly be due to that.

In case of semantic vectors as input, using the Sv semantic vectors as input
produces the best results, followed by the models using Bv and My, in that order,
which is in line with the original results presented for those models (see Table
5.4).

As our best models achieved very similar results on all development and test
datasets as well as using different input data, we can conclude that there was no

overfitting.

5.3.3 Comparison of our best results with the state-of-the-art

Beside the MT dataset, we have also run our best models on several other test
datasets, and compared our results to that of state-of-the-art models in Table
In our view the best evaluation metric is the H score, as it takes both the similarity
scores and the rankings returned by the models into account. Unfortunately, in
case of most methods from other studies, only the P or the S value was reported.
In such cases it was not possible to determine the H score for the method, and

thus it was only possible to compare these results with ours using the reported
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scores, and not the H score.

Table 5.4. Performance of our best models and some state-of-the-art systems on the test
datasets, evaluated on the test datasets with the help of the Pearson (P) and Spearman (S)
correlation coefficients, as well as the H scores calculated from them. Please note that the
results on the RG, MC, WC and TO datasets are rather unreliable, so conclusions based on
them should be taken cautiously, as also noted in Section The results for the models
marked with * come from reproductions of the given model by us, to be able to report
all scores for those models. (In case of the model of [Yin and Schiitze| (2016) this was also
necessary as the results reported in the original article were produced using only those
words that were in the vocabulary of their model, and not on the full test datasets.)

Test dataset | MT | MF | RG | MC | WS | SL |
S H|P s H|P s H|P S H|P S H|P S HJ|A

Evaluation measure | P
Count-vector-based models using solely distributional linguistic data
Kiela and Clark|(2014) - - - - 071 - - 074 - - 065 - - 058 - - - - |083
Baroni et al.|(2014) - 072 - - - - 070 - - - - - 062 - - - 0.76
De Deyne et al.|(2017) - - - - 075 - - 078 - - - - - - - - 037 - -
Tosif et al.|(2016) - 076 - 076 - - - - - - - - 070 - - - -
Salle et al.|(2016a) - - - 076 - - 079 - - 082 - - - - 034 - -
Levy et al.|(2015) - - - - 078 - - - - - - - - - - - 043 - -
Pennington et al.|(2014}" 0.80 0.80 0.80|0.80 0.80 0.80 (0.77 0.77 077 |0.81 0.83 082|070 071 071|043 041 042|090
Salle et al.|(2018) 0.81 081 0.81|0.80 081 0.81]079 076 078|082 0.82 082|070 0.73 072|043 042 042 |0.80
BestCvbmDcBncUsingDcBnc 0.67 0.69 0.68 | 0.67 0.70 0.69 | 0.80 0.81 0.81|0.80 0.81 0.81|056 057 0.56|0.37 037 037 |0.78
BestCvbmDcBnc2UsingDcBne 071 071 071|071 0.70 0.70|0.74 073 0.73 |0.83 0.85 0.84 | 0.58 0.58 0.58 | 0.40 0.39 0.40 | 0.81
BestCvbmDcBncMF100UsingEcUkwac | 0.78 0.79 0.78 | 0.77 0.78 0.78 | 0.77 0.78 0.77 | 0.69 0.69 0.69 | 0.54 0.56 0.55|0.34 0.34 0.34 | 0.81
BestCvbmDcBnc2MF100UsingEcUkwac | 0.73 0.74 0.73 | 0.72 0.74 0.73 | 0.60 0.65 0.62|0.56 0.58 0.57 |0.58 0.58 0.58 | 0.36 0.34 0.35]0.70
Predictive models using solely distributional linguistic data
Wieting et al.|(2016) - - - - - - - - - - - - - 058 - - 071 - -
Hill et al.|(2014a} - 063 - - - - - - - - - - - 057 - - 052 - 0.93
Yin and Schiitze|(2016)" 074 073 073|073 072 072079 0.79 0.79 | 0.86 0.88 0.87 | 0.65 0.67 0.66 | 0.48 0.47 0.47 | 0.88
Tosif et al.|(2016) - 074 - - 075 - - - - - - - - 068 - - - - -
De Deyne et al.|(2017) - - - - 079 - - 08 - - - - - - - - 043 - -
Baroni et al.|(2014)" 078 0.80 0.79|0.78 0.80 0.79|0.83 084 0.84 084 084 0.84|068 073 071|046 046 0.46 |0.89
Christopoulou et al.|(2018) - 084 - - - - - - - - - - - 073 - - - - -
“BestPmMvUsingMv- 070 073 071|070 0.73 0.71[0.77 0.76 077 [0.81 0.82 0.81[0.63 0.68 0.65|045 044 044|088
BestPmMv2UsingMv 073 073 073|073 0.73 0.73]0.77 076 076 |0.81 0.81 0.81 |0.65 0.68 0.67|0.46 044 045 |0.88
BestPmMvUsingBv 0.78 0.80 0.79 |0.78 0.80 0.79 | 0.83 0.84 084 |0.84 0.84 084|068 073 071|046 046 0.46 | 0.90
BestPmMv2UsingBv 079 079 0.79]0.78 0.79 079|084 084 084|084 082 0.83|070 0.73 0.71 | 047 046 0.46 | 0.90
Other types of models
Faruqui and Dyer|(2015) - - - - - - - 067 - - - - 0.45 - 058 - -
Banjade et al.|(2015) - - - - - - - - - - - - - - 1065 0.64 065| -
Mrksic et al.|(2017} - - - - - - - - - - - - - - - 075 - -
Recski et al.|(2016) - - - - - - - - - - - - - - - 076 - -
Vuli¢ et al.[(2017) - - - - - - - - - - 076 - 078 - -
Yih and Arbor|(2012) - - - - 08 - - - - 0.81 - - - -
Lazaridou et al.|(2015) - 075 - - - - - - - - - - - - 037 - -
Rothe and Schiitze|(2017) - - - - 078 - - 083 - - 08 - 0.69 - 047 - -
Bruni et al.|(2013) - 0.78 - - - - - - - - - - - 0.72 - - - - -
Collell et al.|(2017} - - - - 081 - - - - - - - - 069 - 041 - -
Lee et al.[(2016) - - - - 083 - - 092 - - - - 079 - - - - -
De Deyne et al.|(2017) - - - - 087 - - 095 - - - - - - - - 068 - -
Speer et al.|(2017) 085 0.87 0.86|0.85 0.86 0.85|0.90 090 0.90 087 089 0.88|0.76 0.82 0.79|0.63 0.62 0.62 | 0.99
" BestPmMvUsingSv 085 087 086|085 0.86 085|090 090 090|087 0.89 088|076 082 0.79[0.63 0.62 0.62 | 0.99
BestPmMv2UsingSv 0.85 0.85 0.85|0.85 0.85 0.85|0.89 0.86 088|086 0.86 0.86|0.77 0.82 0.80|0.64 0.62 0.63 |0.99
BestSvUsingSv 0.85 0.87 0.86|0.85 0.86 0.85|0.89 090 090|087 0.89 088|035 0.82 049|053 0.62 0.57 |0.99
BestSv2UsingSv 0.87 0.87 0.87|0.86 0.86 086|091 090 091|089 0.89 0.89|028 0.80 041|048 0.62 0.54|0.99

As expected from the results presented in Table the scores of the BestSv2
configuration using the Sv as input are the highest in case of most test datasets.
However, it was interesting to see the significant drop in the P and thus the H

score of the former two when tested on the WS dataset, for which we do not
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yet have a good explanation. Further, this configuration has mixed results when
tested using predictive semantic vectors as input, which further shows that these
vectors are different from predictive vectors. On the other hand, our best predic-
tive configuration (BestPmMv2) performs rather well using the Sv as input vec-
tors too, although mostly slightly underperforming BestSv2, which was expected
as in case of the BestSv2 the parameters were optimized on the same input that
was used as underlying data source for the model.

When comparing the results of our new and previous (Dob6 and Csirik, 2019a)
best CVBM and PM models, the same conclusions mostly seem to hold in case of
all test datasets, as we have concluded from Table 5.3|for the MT dataset.

While all other datasets are based on relatedness, the SL dataset contains sim-
ilarity scores, as also noted in Section Most of our models achieve much
lower scores on this dataset than on the other test datasets. However, all our con-
tigurations using count-vector-based or predictive input data have a rather low
performance on this dataset, while the same configurations using the knowledge-
graph-based Sv as input usually achieve considerably better results. So the usu-
ally lower results on the SL dataset seems to mostly depend on the input data
used, and not the chosen configuration.

Our best model overall (BestSv2UsingSv) achieved better results than any pre-
vious model on the most important test datasets. On the other hand, when con-
sidering only PMs, our best results are a little lower than that of Christopoulou
et al. (2018). However, as we were unable to acquire the model of Christopoulou
et al.| (2018), we had to use the semantic vectors of the second best PM (at least
according to our knowledge) as input, namely that of Baroni et al| (2014). We

were able to achieve basically the same results with our best predictive configu-
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ration on the Bv vectors as Baroni et al.| (2014) with their original configurations.
However, our results are not directly comparable with that of Christopoulou et al.
(2018) due to the differences in the used input data.

Further, when only looking at CVBMs, our best results are also a little lower
than previous state-of-the-art. However, the underlying corpora used in the pre-
vious state-of-the-art model is approximately 30 times as large as the one used
in our best models. Unfortunately, it would have been unmanageable to test our
configurations (not to mention running our whole heuristic analysis) with such
large corpora with the resources available to us. As the size of the used corpus
has a large impact on the results, as it could also be seen in Table our best
configurations could only be reliably compared to that of others if the used input
data was also the same, which is not true here.

So, it is not possible to reliably compare our best configurations with previ-
ous state-of-the-art configurations based on the results reported in Table |5.4] in
case of PMs and CVBMs. Thus, these can only be viewed as supplementary re-
sults, while conclusions should not be taken from them. Therefore, in order to be
able to present a reliable comparison, we have done tests with multiple state-of-
the-art configurations in such a way that the same input data was used for both
those configurations and for our ones too (see Table5.5). For this, we have used
state-of-the-art count-vector-based methods to extract information from different
corpora, and ran tests using these as input, as well as testing on some state-of-
the-art semantic vectors.

In those cases where count-vector-based extracted information was used as
input (Lc* and Ec*), all 10 of our inspected parameters could be tested. Where

directly the obtained semantic vectors were used as input (Ev, Bv, Pv, Sv), only
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4 of the 10 considered parameters could be tested as the other parameters could
have only been used during the construction of the vectors, which was already
done. In case of CVBM semantic vectors (Pv and Ev), this unfortunately reduced
the number of parameters that could be tested from 10 to 4. In case of the other
semantic vectors it did not result in any disadvantages, as in case of such models
we could only have used the same 4 parameters by default anyway.

In case of semantic vectors used as input, our best results were always at least
as good as that of the original configuration (OSC) proposed by the authors for
the given model, with a slight advantage in a couple of cases. On the other hand,
when using the count-vector-based information extracted from different corpora,
we achieved better results than the OSC proposed both by Levy et al. (2015) and
by Salle et al. (2016a) in their state-of-the-art model in case of all input data, with
a considerable margin in most cases. During these tests too, using larger input

corpora clearly improved the results.

5.3.4 Discussion of results for English

During our heuristic approach we were able to find such novel configurations
using the counts of Dob6 and Csirik (2013) on the British National Corpus, the
predictive semantic vectors of Mikolov et al| (2013b) and the semantic vectors
of Speer et al.| (2017) constructed from a knowledge graph, incorporating novel
parameter settings in all three, that significantly outperform conventional config-
urations.

Out of the best models found for the different input data, the one using the

semantic vectors of Speer et al.|(2017) achieves considerably better results than
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Table 5.5. Comparison of our best configurations with state-of-the-art models, with the
original configuration (OSC) proposed by the authors for those models, using the same

input data for the OSCs and for our best configurations, evaluated on the MT dataset.

Input data | Configuration # of tested parameters | P S H
CVBMs using solely distributional linguistic data
0osC - 0.61 0.64 0.63
LeBne Cos-PPmi - 0.52 057 055
BestCvbmDcBnc 10 0.65 079 0.67
BestCvbmDcBnc2 10 061 0.61 0.61
OsC - 0.69 073 0.71
LeEw Cos-PPmi - 0.60 0.69 0.64
BestCvbmDcBncMF20 10 071 075 0.73
BestCvbmDcBnc2MF20 10 071 071 071
OsC - 072 073 073
LeUkwac Cos-PPmi - 0.62 0.70 0.66
BestCvbmDcBncMF100 10 075 077 0.76
BestCvbmDcBnc2MF100 10 075 074 074
0OSsC - 0.59 058 0.58
EcBnc Cos-PPmi - 0.56 0.58 0.57
BestCvbmDcBnc 10 072 074 0.73
BestCvbmDcBnc2 10 0.67 0.67 0.67
OsC - 0.62 0.62 0.62
EcEw Cos-PPmi - 0.60 0.66 0.63
BestCvbmDcBncMF20 10 074 0.78 0.76
BestCvbmDcBnc2MF20 10 072 072 072
OsC - 076 0.77 0.77
EcUkwac Cos-PPmi - 0.61 0.63 0.62
BestCvbmDcBncMF100 10 078 079 078
BestCvbmDcBnc2MF100 10 073 074 0.73
OSC (Cos) - 0.80 0.80 0.80
Py Cos-Zero0 - 073 074 0.74
BestPmMv 4 0.80 0.80 0.80
BestPmMv2 4 082 0.82 0.82
OSC (Cos) - 0.81 0.81 0.81
Ev Cos-Zero0 - 077 078 0.78
BestPmMv 4 0.81 0.81 0.81
BestPmMv2 4 079 079 0.79
PMs using solely distributional linguistic data
OSC (Cos) - 0.78 0.80 0.79
By Cos-Zero0 - 074 076 0.75
BestPmMv 4 0.78 0.80 0.79
BestPmMv2 4 079 079 0.79
Other types of models
OSC (Cos) - 0.85 0.87 0.86
Cos-Zero0 - 082 0.83 0.82
Sy BestPmMv 4 0.85 0.87 0.86
BestPmMv2 4 0.85 0.85 0.85
BestSv 4 0.85 0.87 0.86
BestSv2 4 0.87 0.87 0.87
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the other two, and our best predictive model has only slightly higher scores than
our best count-vector-based model. It is clear from our results that different pa-
rameter settings have to be used in case of different types of input. When looking
at our count-vector-based model compared to the other two models, then most
likely this is partially due to the fact that the settings of the different parameters
influence each other, and in case of using semantic vectors as input only 4 of the
10 parameters could be used. On the other hand, a configuration working well
using a given count-vector-based or predictive input also works well using other
input of the same type.

It is clear from the results that most of our models are much less suitable to de-
termine the similarity of two words, than they are to determine their relatedness.
However, we could conclude from the experiments that this mostly depends on
the input data, and not the used configuration, meaning that with input data tai-
lored for similarity our best configurations would be most likely successful in
determining the similarity of words.

It is easy to see that using a larger corpus as input for count-vector-based mod-
els produces considerably better results, despite having to reduce the number of
words and features used due to computational reasons. This is most likely true
for predictive models too.

Our best model overall, having the BestSv2 configuration and using the Sv
vectors constructed from a knowledge graph as input, achieved state-of-the-art
results surpassing all previous models on the most important test datasets. On
the other hand, when considering only CVBMs and PMs, our best results are a
little lower than previous state-of-the-art. However, it would have been unman-

ageable to test our configurations (not to mention running our whole heuristic
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analysis) with such large corpora as used in the previous state-of-the-art CVBM
model with the resources available to us. Further, we were not able to acquire the
model of Christopoulou et al.| (2018) to try their semantic vectors as input.

Unfortunately, different configurations can only be reliably compared to each
other if the used input data is the same for all of them. Therefore, our most
important tests were those where we used the same input data for state-of-the-
art configurations and for our newly proposed configurations too. During these
tests, with any set of semantic vectors as input, our best results were always at
least as good as that of the state-of-the-art original configuration proposed by the
authors of the given model, with a slight advantage in a couple of cases, even
though in these cases only 4 of our 10 examined parameters could be tested.

Moreover, with our novel combination of the settings of the 10 parameters
tested when extracted information of state-of-the-art count-vector-based models
were used, we could clearly outperform the original configurations in case of all
input data, with a considerable margin in most cases. These reflect our previous
results and intuition, as experienced during our heuristic analysis.

Based on these results we believe that our best CVBM and PM configurations
could also achieve absolute state-of-the-art results in their category if they were
used with the same input data as previous state-of-the-art models. Unfortunately,
testing these was not possible within this research.

The best configurations found in the second phase of our heuristic approach
are not simply the combinations of the best parameter settings found during the
first phase, when the parameters were tested one by one. Moreover, by including
further possible settings for several parameters in our analysis in Dob6 and Csirik

(2019b) compared to Dob6 and Csirik (2019a), several parameter settings in our
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newly found best configuration are considerably different compared to the best
configuration found in |Dobé and Csirik (2019a). These clearly show that our
intuition was correct that the settings of the different parameters are dependent
on each other, and instead of testing the parameters separately they need to be
tested together, also considering the interactions between them.

To sum up, the main findings of our analysis are that

e we could outperform previous state-of-the-art results when using raw counts

as input and thus all 10 parameters could be optimized,

e we were able to find such configurations that perform at least as well, with
a slight superiority in a couple of cases, as previous state-of-the-art models,
when using semantic vectors as input and thus only 4 out of 10 parameters

could be optimized,

e our best model, BestSv2UsingSv, based on semantic vectors constructed
from a knowledge graph, achieves absolute state-of-the-art results com-

pared to all previous models of any type on the most important test datasets.



CHAPTER 6

Comparison of our findings for English,

Spanish and Hungarian

To be able to compare our findings for the different languages, we have done the
same extensive analysis for Spanish and Hungarian as for English (described in
Section [4.1]in detail, and compared the findings of these. For reproducibility and
transparency, we plan to make our most important data, code and results with

respect to all languages publicly available at:

https:/ /github.com/doboandras/dsm-parameter-analysis/.
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6.1 Results of the first phase

As also described in Section during the first phase of our analysis multiple
runs were done for each setting of every parameter, and the most promising ones
in case of each parameter were selected to be included in the second phase. In
case of English, we used half of the development part of the MEN dataset for eval-
uation, while for Spanish the Spanish WordSimilarity-353 dataset and for Hun-
garian half of the Hungarian TOEFL dataset was employed. The top 5 performing

settings for each parameter are listed in Table|6.1/in case of each language.

6.2 Results of the second phase

In the second phase all possible combinations of the selected settings of each pa-
rameter were tested in case of all three languages, in order to find the best con-
tiguration for all languages, as also described in Section This meant testing
40860, 44544 and 28576 configurations for English, Spanish and Hungarian, re-
spectively. The second half of the development part of the MEN dataset was
used for testing in case of English, while the Moldovan dataset and the second
part of the Hungarian TOEFL dataset were used for Spanish and Hungarian, re-

spectively. A selection of the second phase results for the three languages are

presented in Tables and [6.3] respectively.
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6.3 Results on the test datasets

The best configuration for English was tested on the test part of the MEN dataset
(MT), and the best configurations for Spanish and Hungarian were tested on the
respective version of the Rubenstein-Goodenough dataset (RG) to give us the
final results. The best configuration of each language was also evaluated on the

datasets of the other languages, to provide us a way of comparison. The results

of these test can be found in Table

6.4 Evaluation and discussion

In this section we evaluate our results presented in the previous sections. Please
note that the scores are not fully comparable across languages, even when con-
sidering the same datasets on different languages, as except for the Moldovan
dataset all of the used Spanish and Hungarian datasets were constructed by trans-
lating the English versions, and thus the results on them can be distorted and
less reliable than on their English counterparts. Furthermore, the Spanish and
Hungarian datasets, especially the latter ones, are rather small, which also makes
them less reliable than the English ones.

As there are many differences in the syntax and morphology of the different
languages, we anticipated from the beginning that there will be at least some
small differences in our findings for the different languages. However, our intu-
ition was that our findings for the different languages will be subtle, and we will
be able to find good and rather language-independent configurations. As English

and Spanish belong to the family of Indo-European languages, while Hungarian
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does not, we expected that the results for English and Spanish will be similar due
to this. Further, as both Spanish and Hungarian have very rich morphology, we
expected that there will also be a higher similarity between our results for Span-
ish and Hungarian because of this. We anticipated that the least similarities will
be between English and Hungarian, as these languages are the least similar to

each other.

In the first phase of our analysis we could observe that some of the param-
eters worked exactly the same way or very similarly across languages. These
parameters were the weighting scheme, feature transformation, vector normal-
ization and minimum limits on word-feature frequencies. These findings are in
line with our initial intuitions. Dimensionality reduction seemed to be similar
for English and Spanish, while a bit different for Hungarian. Smoothing seemed
to perform similarly for Spanish and Hungarian, while differently for English.
Minimum limits on word-feature weights seem to behave a bit differently for all
three languages. However, it was interesting to see that the results for vector sim-
ilarity measures, stop-word filtering and minimum limits on feature frequencies
were rather similar for English and Hungarian, but different for Spanish, which

is contrary to what we anticipated.

In the second phase, although there were similarities in the found best config-
urations across the different languages, one could also observe many differences.
Here too, the weighting schemes, feature transformation and minimum limits on
word-feature frequencies were mostly similar. Compared to the first phase vector
similarity, smoothing and minimum limits on feature frequencies were also alike
for all languages. The other parameters showed a different behavior for at least

one language compared to the others.
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As also noted in Section there were actually two distinct configurations
with the same best score for English, and they were only different in their DimRed
parameter setting. We have chosen the one with the "IslamInkpen 0.05" setting as
best English configuration, as that setting achieved better performance in the first
phase than the "NoDimRed" setting in the other configuration. Furthermore, for
Hungarian there were four configurations with the same best score. We have used
a similar approach in selecting the best version, as we have done in case of the
English version. However, as these different configurations with the same best
results have different settings in case of some parameters, one has to be careful
drawing conclusions from the best configurations of the different languages, and

thus any conclusions drawn from them should be taken with some reservations.

The final conclusions for the parameters are the following;:

e VecSim: for all languages measures based on cosine similarity achieve the

best results

e Weight: measures based on PMI dominate the top of the table by far in case

of all languages

e FeatTransf: no transformation and transforming the word-feature weights

after normalization preforms best for all languages

e DimRed: dimensionality reduction seems to help in most situations: while
in case of English the IslamInkpen version performed the best alongside no
dimensionality reduction, for Spanish and Hungarian SVD is superior to

these options
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Smooth: the no smoothing option clearly outperforms all others for all lan-

guages

VecNorm: for English the L option clearly seems to be the best, while for
Spanish and Hungarian the best configurations use either L; or L, normal-
ization, and most configurations achieve the same or very similar results

with either

StopW: stop-word filtering seems to improve the results to some extent in

case of Spanish, while it does not in case of English and Hungarian
MinWFFreq: no limit is by far superior to the other options for all languages

MinWFWeight: no limit seems to be the best option in case of Spanish and
Hungarian, while the Zero option with different parameters seems to excel

in case of English

MinFFreq: a low limit or no limit seems to be best in case of all languages (as
noted before, in case of SVD for Spanish we had to use a limit of 3 instead

of no limit for computational reasons)

As we anticipated, there were parameters where the results for Spanish and

Hungarian were similar, but different for English. However, it was interesting

that we did not find any parameters that were alike for English and Spanish,

but different for Hungarian. Further, to our surprise we found such a parame-

ter, where the results were similar for English and Hungarian, but different for

Spanish. These latter findings were in contrast to our initial intuition.

Although all Spanish scores in the second phase are much lower than the En-

glish and Hungarian ones, these are almost completely due to the dataset used,
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and do not mean that the found Spanish configurations are worse than their En-
glish and Hungarian counterparts, as it was noted in the beginning of this section
and can be seen from our results on the test datasets (see Table too. It simply
suggests that the dataset used for Spanish in this phase is considerably tougher
than the ones used for English and Hungarian.

It was interesting to see that in the cross-language experiments on the test
datasets the order of the best configurations of the different languages with re-
spect to their performance is different in case of the datasets of the three lan-
guages. The best English configuration was always superior to its Spanish coun-
terpart, but it has no absolute superiority over the best Hungarian configuration.
Further, there is also no clear ranking between the best Spanish and Hungarian
configurations. It was also interesting to see that in case of the Spanish dataset,
although the best Spanish configuration achieved rather good results, actually it
achieved the lowest score out of the three best configurations tested. It was the
same for the best Hungarian configuration on the Hungarian dataset too.

All in all, there seems to be no clear ranking between the best configurations
of the different languages, and all of them achieved good results on the datasets
of all languages. So, although we got different best configurations for the dif-
ferent languages, all of them seem to be rather language-independent. These
findings give us a strong intuition that our heuristic approach was good, and that
our found best configurations for all languages and their results are robust and
reliable.

The best configurations found in the second phase are not simply made up of
the best parameter settings in the first phase in case of Spanish and Hungarian

either. This further proves that our intuition was correct, and the parameters of
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DSMs need to be tested simultaneously, rather than separately.
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Table 6.1. The top 5 performing setting for each parameter in case of all 3 languages, in
descending order of H scores

P English Spanish Hungarian
arameter
Setting H Setting H Setting H

PearsMbAdjCosMod-3.Lb |0.71 | LinHindleRMod-7.1.2.Cu | 0.37 PearsMbMod-1.Lb 0.80
PearsMbAdjCosMod-4.Lb |0.71 | LinHindleRMod-6.1.2.Cu | 0.36 PearsMbMod-4.Lb 0.80
VecSim PearsMbAdjCosMod-2.Lb |0.71 | LinHindleRMod-1.1.2.Cu | 0.36 MbMod-6.Lb 0.80
PearsMbAdjCosMod-6.Lb | 0.71 | LinHindleRMod-7.1.2.5q |0.36 PearsMbMod-5.Lb 0.80
PearsMbAdjCosMod-6.Sigm | 0.71 | LinHindleRMod-3.1.2.5q |0.36 PearsMbMod-2.Lb 0.80
PmiAl-Te3Tw(0S2P4 0.70 |  PmiAlUnis-Tc4Tw3S2P2 | 0.38 PmiAl-Te4Tw2S1P1 0.85
PmiAl-Te3Tw0S2P0 0.70 | PmiAlUnis-Tc4Tw3S2P1 | 0.38 | PmiAlUnisAm-Tc0Tw3S2P1 | 0.85
Weight PmiAlUnis-Tc3Tw0S0P4 | 0.70 | PmiAlUnis-Tc4Tw2S1P1 | 0.38 | PmiAlUnisAm-Tc0Tw2S2P2 | 0.85
PmiAlUnis-Tc3Tw0S0PO 0.70 | PmiAlUnisAm-Tc4Tw3S2P5 | 0.38 PmiAl-Tc4Tw3S0P2 0.85
PmiAl-Te4Tw0S2P5 0.70 | PmiAlUnis-Tc4Tw2S1P2 | 0.38 | PmiAlUnisAm-Tc0Tw2S2P1 | 0.85
Weight AftNorm Lb 0.67 Weight AftNorm Lb 0.34 Weight AftNorm Sqrt 0.85
Freq Sq 0.67 Weight AftNorm Sigm 0.34 Weight BefNorm Sqrt 0.85
FeatTransf Weight BefNorm Sigm 0.67 NoTransf 0.34 Weight AftNorm Sigm | 0.80
Weight AftNorm Sigm 0.67 Weight BefNorm Lb 0.34 NoTransf 0.80
NoTransf 0.67 Weight BefNorm Sigm 0.34 Weight AftNorm Lb 0.80
SVD 200 0.70 SVD 100 0.37 IslamInkpen 0.025 0.80
SVD 100 0.70 SVD 200 0.36 IslamInkpen 0.25 0.80
DimRed SVD 300 0.69 SVD 500 0.35 SVD 200 0.80
SVD 500 0.68 SVD 300 0.34 IslamInkpen 0.005 0.78
IslamInkpen 0.05 0.67 IslamInkpen 0.01 0.34 IslamInkpen 0.01 0.78
NoSmooth 0.67 Freq KNS 0.34 Freq KNS 0.83
Weight KNS 0.65 Freq MDKNSPOMD 0.34 Freq MDKNSPOMD 0.80
Smooth Freq KNS 0.62 NoSmooth 0.34 NoSmooth 0.78
Freq MDKNSPOMD 0.62 Freq MKNS 0.33 Weight KNS 0.75
Freq MKNS 0.57 Weight KNS 0.31 Freq MKNS 0.73
L 0.67 L 0.34 L, 0.80
VecNorm Ly 0.67 Ly 0.34 NN 0.78
NN 0.67 NN 0.34 Ly 0.75
StopW false 0.67 true 0.34 false 0.80
true 0.67 false 0.34 true 0.75
NoLimit 0.67 NoLimit 0.34 NoLimit 0.80
2 0.60 2 0.30 3 0.68
MinWFFreq 3 0.57 3 0.29 2 0.63
5 0.54 7 0.28 5 0.58
7 0.49 5 0.27 7 0.55
Zero 0.05 0.68 Zero -0.2 0.34 Zero 0 0.80
Zero 0.1 0.68 Limit -0.1 0.34 Limit -0.02 0.80
MinWFWeight Zero -0.05 0.68 Limit -0.2 0.34 Zero -0.05 0.80
Limit -0.01 0.67 Limit -0.5 0.34 Limit -0.01 0.80
Zero 0.02 0.67 NoLimit 0.34 Zero -0.01 0.80
NoLimit 0.67 100 0.36 2 0.80
2 0.67 50 0.36 NoLimit 0.80
MinFFreq 3 0.67 30 0.35 3 0.80
5 0.67 20 0.35 20 0.80
7 0.67 15 0.35 15 0.80
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Table 6.2. Second-phase performance of a selection of configurations for Spanish on the
Moldovan dataset.

Abbrev Parameter settings P S H
VecSim Weight FeatTransf
- Cos Pmi-Tc1Tw3S2P0 Weight AftNorm Lb
BestCvbmDcEsWiki DimRed Smooth | VecNorm | StopW | MinWFFreq MinWF%Neight MinFFreq 043 044 0.44
SVD 100 NoSmooth L, ‘ true NoLimit NoLimit ‘ 3
VecSim Weight FeatTransf
; Cos PmiAl-Tc3Tw3S2P0 Weight AftNorm Lb 043 043 043
DimRed Smooth [ VecNorm | StopW | MinWFFreq | MinWFWeight | MinFFreq | ’ :
SVD 100 NoSmooth L, true NoLimit NoLimit ‘ 3
VecSim Weight FeatTransf
: Cos Pmi-Tc1Tw3S2P0 Weight AftNorm Lb 043 043 043
DimRed Smooth VecNorm | StopW [ MinWFFreq | MinWFWeight | MinFFreq | : .
SVD 100 NoSmooth Ly ‘ true NoLimit NoLimit ‘ 100
VecSim Weight FeatTransf
B Cos PmiAl-Tc3Tw3S2P0 Weight AftNorm Lb 043 043 043
DimRed Smooth VecNorm | StopW | MinWFFreq | MinWFWeight | MinFFreq | : .
SVD 100 NoSmooth L, ‘ false NoLimit NoLimit ‘ 3
VecSim Weight FeatTransf
R Cos Pmi-Tc1Tw3S2P0 Weight AftNorm Lb 043 043 043
DimRed Smooth | VecNorm | StopW | MinWFFreq | MinWFWeight | MinFFreq | : .
SVD 100 NoSmooth Ly ‘ true NoLimit NoLimit ‘ 3
VecSim Weight FeatTransf
_ PearsMbAdjCosMod-5.Lb NPmiAl-Tc4Tw4S0P0 Weight AftNorm Lb 040 039 039
DimRed Smooth VecNorm | StopW [ MinWFFreq | MinWFWeight | MinFFreq | i -
NoDimRed | NoSmooth NN ‘ true NoLimit Zero -0.2 ‘ NoLimit
VecSim Weight FeatTransf
. Cos Pmi NoTransf
Cos-Pmi DimRed | Smooth | VecNorm | StopW | MinWFFreq | MinWFWeight | MinFFreq | 04 0-34 034
NoDimRed | NoSmooth NN ‘ false NoLimit NoLimit ‘ NoLimit
VecSim Weight FeatTransf
. Cos Pmi NoTransf
Cos-PPmi DimRed Smooth VecNorm [ StopW [ MinWFFreq | MinWFWeight | MinFFreq 0.34 033 0.33
NoDimRed | NoSmooth NN ‘ false NoLimit Zero 0 ‘ NoLimit
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Table 6.3. Second-phase performance of a selection of configurations for Hungarian on
the second part of the Hungarian TOEFL dataset.

Abbrev Parameter settings A
VecSim Weight FeatTransf
. MbCosAm NPmiAlpha-Tc4Tw4S0P4 Weight AftNorm Sqrt
BestCvbmDcHuWiki DimRed Smooth | VecNorm | StopW | MinWFFreq | MinWFWeight | MinFFreq 0.65
SVD 200 | NoSmooth L, false NoLimit NoLimit 2
VecSim Weight FeatTransf
} MbCosAm NPmiAlpha-Tc4Tw4S0P4 Weight AftNorm Sqrt 0.65
DimRed Smooth | VecNorm | StopW | MinWFFreq | MinWFWeight | MinFFreq |
SVD 200 | NoSmooth Ly false NoLimit NoLimit 2
VecSim Weight FeatTransf
} Cos NPmiAlpha-Tc4Tw4S0P4 Weight AftNorm Sqrt 0.65
DimRed Smooth | VecNorm | StopW | MinWFFreq | MinWFWeight | MinFFreq |
SVD 200 | NoSmooth L, false NoLimit NoLimit 2
VecSim Weight FeatTransf
_ Cos NPmiAlpha-Tc4Tw4S0P4 Weight AftNorm Sqrt 0.65
DimRed Smooth | VecNorm | StopW | MinWFFreq | MinWFWeight | MinFFreq |
SVD 200 | NoSmooth L false NoLimit NoLimit 2
VecSim Weight FeatTransf
_ PearsMbMod-1.Lb NPmiAlpha-Tc4Tw4S0P4 Weight AftNorm Sqrt 0.63
DimRed Smooth | VecNorm | StopW | MinWFFreq | MinWFWeight | MinFFreq |
SVD 200 | NoSmooth Ly false NoLimit NoLimit 2
VecSim Weight FeatTransf
} PearsMbMod-1.Lb Unis-Tc4Tw4S0P1 Weight AftNorm Sqrt 0.60
DimRed Smooth | VecNorm | StopW | MinWFFreq | MinWFWeight | MinFFreq |
NoDimRed | NoSmooth L, false NoLimit NoLimit 2
VecSim Weight FeatTransf
Cos-PPmi Cos Pmi NoTransf 0.53
DimRed Smooth | VecNorm | StopW | MinWFFreq | MinWFWeight | MinFFreq
NoDimRed | NoSmooth NN false NoLimit Zero 0 NoLimit
VecSim Weight FeatTransf
Cos-Pmi Cos Pmi NoTransf 0.50
DimRed Smooth | VecNorm | StopW | MinWFFreq | MinWFWeight | MinFFreq |
NoDimRed | NoSmooth NN false NoLimit NoLimit NoLimit

Table 6.4. Results on the test datasets, in descending order of H scores

Lang | Test set | Input data Configuration P S H
DcBnc BestCvbmDcBnc2 [0.71 0.71 0.71
En MT | DcHuWiki | BestCvbmDcHuWiki | 0.67 0.68 0.67
DcEsWiki | BestCvbmDcEsWiki |0.63 0.63 0.63
DcHuWiki | BestCvbmDcHuWiki | 0.83 0.83 0.83
Es RG DcBnc BestCvbmDcBnc2 [0.82 0.80 0.81
DcEsWiki | BestCvbmDcEsWiki |0.80 0.79 0.80
DcBnc BestCvbmDcBnc2 |0.73 0.72 0.72
Hu RG DcEsWiki | BestCvbmDcEsWiki |0.65 0.61 0.63
DcHuWiki | BestCvbmDcHuWiki | 0.58 0.68 0.62
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Comparison of our findings for English, Spanish and Hungarian



CHAPTER [

Conclusions

In this thesis we have presented a very detailed and systematic analysis of the
possible parameters used during the creation and comparison of feature vectors
in distributional semantic models, for English, Spanish and Hungarian, filling
a serious research gap. We have identified 10 important parameters of count-
vector-based models and 4 relevant ones in case of using semantic vectors as
input, and tested numerous settings for all of them. Our analysis included novel
parameters and novel parameter settings, and tested all parameters simultane-
ously, thus also taking the possible interaction between the different parameters
into account. To our best knowledge, we are the first to do such a detailed anal-
ysis for these parameters, and also to do such an extensive comparison of them

across multiple languages.
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With our two-step heuristic approach we were searching for the best config-
urations for all three languages, and were able to find such novel ones, many
of them also incorporating novel parameter settings, that significantly outper-
formed conventional configurations. Although we have used a heuristic ap-
proach for the search due to the vast number of possible combinations, we have
been able to verify the validity of this approach and the reliability and soundness
of its results. Further, we have also verified that a configuration performing well

on given input data also works well on other input data of the same type.

In accordance with our intuition, there were several parameters that worked
very similarly in case of all three languages. We also found such parameters that
were alike for Spanish and Hungarian, and different for English, which we also
anticipated. However, it was interesting to see that there was such a parameter
that worked similarly for English and Hungarian, but not for Spanish, and we
did not find any parameters that worked similarly for the two Indo-European
languages, but differently for Hungarian. Although we have found that the very
best results are produced by different configurations for the different languages,
our cross-language tests showed that all of them work rather well for all lan-
guages. Based on this we think that we could find such configurations that are
rather language-independent, and give robust and reliable results.

To be able to compare our results with the previous state-of-the-art, we have
run such tests where the same data was used as input for both the previous state-
of-the-art configurations and our configurations. In case of using raw counts as
input and thus being able to optimize all 10 of our examined parameters, our best
configurations contained novel parameter settings and clearly outperformed pre-

vious state-of-the-art configurations, with a considerable margin in most cases.
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When using semantic vectors as input and thus only being able to optimize 4
out of 10 parameters, our best configurations, also incorporating novel param-
eter settings, performed at least as well as the previous state-of-the-art, with a
slight superiority in a couple of cases. Actually, our best model achieved abso-
lute state-of-the-art results compared to all previous models of any type on the
most important test datasets. Based on these results we think that our analysis
was successful, and we were able to present such new parameter settings and

new configurations that are superior to the previous state-of-the-art.

As it could be seen, the size of the input corpus, as well as the used infor-
mation extraction method greatly influences the results. Therefore we think that
doing an analysis similar to our current one for the information extraction phase
of DSMs would be a principal direction for future research. Further, in our opin-
ion it would be important to test our proposed new configurations using cor-
pora magnitudes larger than that we could use. It would be even better if our
whole heuristic analysis could also be repeated on these huge corpora. Further,
although our results seem rather robust and reliable for Spanish and Hungar-
ian too, it would be interesting to redo our analysis on larger and more reliable
Spanish and Hungarian datasets, when such datasets will become available in
the future.

We think that with this study we significantly contributed to the better under-
standing of the working and properties of DSMs. Although fully reliable conclu-
sions from our results can only be drawn with respect to DSMs, we think that
similar conclusions would hold for other systems based on vector space models
too. So in our view our results could also be useful (with some reservations) out-

side the scope of DSMs, in case of other NLP and non-NLP problems using vector
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space models too.



CHAPTER 8

Summary

8.1 Introduction

For many natural language processing (NLP) problems, including information re-
trieval (Hliaoutakis et al., 2006), spelling correction (Budanitsky and Hirst, 2001)
and noun compound interpretation (Dob6 and Pulman, 2011) among many oth-
ers, it is crucial to determine the semantic similarity or semantic relatedness of
words. While relatedness takes a wide range of relations between words (includ-
ing similarity) into account, similarity only considers how much the concepts
denoted by the words are truly alike. Thus similarity entices relatedness, but not
vice versa. For example, the words "bicycle" and "motorbike" are similar, as both

denote 2-wheeled vehicles, and thus they are also related. On the other hand, the



98 8.  Summary

words "postman" and "mail" are highly related, as usually mails are delivered by
postmen, and yet they are not similar, as they denote rather different concepts.

Further, the words "furnace" and "voyage" are neither similar nor related.

8.1.1 Motivation

Most models are based on the distributional hypothesis of meaning (Harris,(1954),
and thus calculate this similarity or relatedness using distributional data extracted
from large corpora. These models can be collectively called as distributional se-
mantic models (DSMs) (Baroni and Lenci, 2010; Baroni et al., 2014)). In these mod-
els first possible features are identified, usually in the form of context words,
and then a weight is assigned for each word-feature pair using complex meth-
ods, thus creating feature vectors for all words. The similarity or relatedness of
words are then calculated by comparing their feature vectors using vector sim-
ilarity measures. Although DSMs have many possible parameters, a truly com-
prehensive study of these parameters, also fully considering the dependencies
between them, is still missing and would be needed, as also suggested by |Levy
et al.| (2015).

Most papers presenting DSMs focus on only one or two aspects of the prob-
lem, and take all the other parameters as granted with some standard setting.
For example, the majority of studies simply use cosine as vector similarity mea-
sure (e.g. Bruni et al., 2013} Baroni et al.,[2014; Speer et al., 2017 Salle et al., 2018)
and/or (positive) pointwise mutual information as weighting scheme (e.g. Islam!
and Inkpen), 2008; Hill et al., 2014b; Salle et al., 2018)) out of convention. And even

in case of the considered parameters, usually only a handful of possible settings
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are tested for. Further, there are also such parameters that are completely ignored
by most studies and have not been truly studied in the past, not even separately
(e.g. smoothing, vector normalization or minimum feature frequency). What'’s
more, as these parameters can influence each other greatly, evaluating them sep-
arately, one-by-one, would not even be sufficient, as that would not account for

the interaction between them.

There are a couple of studies that consider several parameters with multiple
possible settings, such as Lapesa and Evert (2014) and Kiela and Clark (2014),
but even these are far from truly comprehensive, and do not fully test for the
interaction between the different parameters. So, although an extensive analy-
sis of the possible parameters and their combinations would be crucial, as also
suggested by (Levy et al., |2015), there has been no research to date that would
have evaluated these truly comprehensively. Moreover, despite the fact that the
best parameter settings for the parameters can differ for different languages, the
vast majority of papers consider DSMs for only one language (mostly English),
or consider multiple languages but without a real comparison of findings across

languages. In this thesis we would like to address these gaps.

8.1.2 Aims and objectives

DSMs have two distinct phases in general. In the first phase statistical informa-
tion (e.g. raw counts) is extracted from raw data (e.g. a large corpus of raw text),
in the form of statistical distributional data. In the second phase, feature vectors
are created from the extracted information for each word and these vectors are

then compared to each other to calculate the similarity or relatedness of words.
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In our study we take the distributional information extracted in the first phase
as already granted, and present a systematic study simultaneously testing all im-
portant aspects of the creation and comparison of feature vectors in DSMs, also

caring for the interaction between the different parameters.

We have chosen to only study the second phase of the DSMs, as the two phases
are relatively distinct and independent from each other, and testing for every sin-
gle possible combination of the parameter settings in the second phase is already
unfeasible due to the vast number of combinations. So instead of a full analy-
sis we already had to use a heuristic approach. Thus also trying to test for the
parameters of the first phase (e.g. source corpus, context type (window-based
or dependency-based) and context size) simultaneously would be unreasonable
and unmanageable, and is out of scope of this study. Therefore we have omitted

the examination of this phase completely, with one exception to this.

DSMs relying on information extracted from static corpora have two major
categories, based on the type of their first phase: count-vector-based (CVBM)
and predictive models (PM; also called word embeddings) (Baroni et al., 2014).
In order to get a more complete view and due to the huge popularity of predictive
models in recent years, in addition to using information extracted from a corpus
using a count-vector-based model, we have also done some experiments with in-
formation extracted by a predictive model in case of English. Further, later on we
also extended our analysis with a model based on semantic vectors constructed
from a knowledge graph. Our intuition was that there will be a single config-
uration that achieves the best results in case of all types of models. However,
please note that in the latter case only a part of the considered parameters could

be tested for due to the characteristics of such models. That is part of the reason
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why we have focused on count-vector-based DSMs more.

During our research we have identified altogether 10 important parameters
for the second phase of count-vector-based DSMs, such as vector similarity mea-
sures, weighting schemes, feature transformation functions, smoothing and di-
mensionality reduction techniques. However, only 4 of these parameters are
available when predictive or knowledge-graph-based semantic vectors are used
as input, as in case of such input the raw counts are not available any more, the
weighted vectors are already constructed and their dimensions are usually also
reduced.

In the course of our analysis we have simultaneously evaluated each parame-
ter with numerous settings in order to try to find the best possible configuration
(configuration) achieving the highest performance on standard test datasets. We
have done our extensive analysis for English, Spanish and Hungarian separately,
and then we have compared our findings for the different languages.

For some of the tested parameters a large number of possible settings were
tested, more than a thousand in some cases, resulting in trillions of possible com-
binations altogether. While of course also testing the conventionally used param-
eter settings, we also proposed numerous new variants in case of some parame-
ters. Further, we have tested a vast number of novel configurations, with some
of these new configurations considerably outperforming the standard configura-
tions that are conventionally used, and thus achieving state-of-the-art results.

First we have done our analysis for English and evaluated the results exten-
sively (Dob6 and Csirik| 2019a). Then we have repeated the same analysis, with
an increased number of settings for several parameters, for English, Spanish and

Hungarian, and compared the findings across the different languages (Dob6 and
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Csirikl, 2019Db).

8.2 Conclusions

In this thesis we have presented a very detailed and systematic analysis of the
possible parameters used during the creation and comparison of feature vectors
in distributional semantic models, for English, Spanish and Hungarian, filling
a serious research gap. We have identified 10 important parameters of count-
vector-based models and 4 relevant ones in case of using semantic vectors as
input, and tested numerous settings for all of them. Our analysis included novel
parameters and novel parameter settings, and tested all parameters simultane-
ously, thus also taking the possible interaction between the different parameters
into account. To our best knowledge, we are the first to do such a detailed anal-
ysis for these parameters, and also to do such an extensive comparison of them
across multiple languages.

With our two-step heuristic approach we were searching for the best config-
urations for all three languages, and were able to find such novel ones, many
of them also incorporating novel parameter settings, that significantly outper-
formed conventional configurations. Although we have used a heuristic ap-
proach for the search due to the vast number of possible configurations, we have
been able to verify the validity of this approach and the reliability and soundness
of its results. Further, we have also verified that a configuration performing well
on given input data also works well on other input data of the same type.

In accordance with our intuition, there were several parameters that worked

very similarly in case of all three languages. We also found such parameters that
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were alike for Spanish and Hungarian, and different for English, which we also
anticipated. However, it was interesting to see that there was such a parameter
that worked similarly for English and Hungarian, but not for Spanish, and we
did not find any parameters that worked similarly for the two Indo-European
languages, but differently for Hungarian. Although we have found that the very
best results are produced by different configurations for the different languages,
our cross-language tests showed that all of them work rather well for all lan-
guages. Based on this we think that we could find such configurations that are

rather language-independent, and give robust and reliable results.

To be able to compare our results with the previous state-of-the-art, we have
run such tests where the same data was used as input for both the previous state-
of-the-art configurations and our configurations. In case of using raw counts as
input and thus being able to optimize all 10 of our examined parameters, our best
configurations contained novel parameter settings and clearly outperformed pre-
vious state-of-the-art configurations, with a considerable margin in most cases.
When using semantic vectors as input and thus only being able to optimize 4
out of 10 parameters, our best configurations, also incorporating novel param-
eter settings, performed at least as well as the previous state-of-the-art, with a
slight superiority in a couple of cases. Actually, our best model achieved abso-
lute state-of-the-art results compared to all previous models of any type on the
most important test datasets. Based on these results we think that our analysis
was successful, and we were able to present such new parameter settings and

new configurations that are superior to the previous state-of-the-art.

As it could be seen, the size of the input corpus, as well as the used infor-

mation extraction method greatly influences the results. Therefore we think that
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doing an analysis similar to our current one for the information extraction phase
of DSMs would be a principal direction for future research. Further, in our opin-
ion it would be important to test our proposed new configurations using cor-
pora magnitudes larger than that we could use. It would be even better if our
whole heuristic analysis could also be repeated on these huge corpora. Further,
although our results seem rather robust and reliable for Spanish and Hungar-
ian too, it would be interesting to redo our analysis on larger and more reliable
Spanish and Hungarian datasets, when such datasets will become available in
the future.

We think that with this study we significantly contributed to the better under-
standing of the working and properties of DSMs. Although fully reliable conclu-
sions from our results can only be drawn with respect to DSMs, we think that
similar conclusions would hold for other systems based on vector space models
too. So in our view our results could also be useful (with some reservations) out-
side the scope of DSMs, in case of other NLP and non-NLP problems using vector

space models too.



9. fejezet

Osszefoglalas

9.1. Bevezetés

Szamos szamitdgépes nyelvészeti (NLP) problémahoz, tobbek kozott informécié
visszakereséshez (Hliaoutakis et al., 2006), helyesirds-javitashoz (Budanitsky and
Hirst, 2001) és Osszetett sz6 értelmezéshez (Dob6 and Pulman, 2011), fontos hogy
meg tudjuk hatdrozni szavak szemantikai hasonlésaganak vagy kapcsolatanak
mértékét. Mig a szemantikai kapcsolat szdmos, szavak kozott fenndll6 relaciot
(tobbek kozott a hasonldsagot is) szamitdsba vesz, addig a szemantikai hasonlé-
sdg csak a szavak altal jelolt fogalmak tényleges egyformasdgat veszi figyelembe.
Ezaltal a hasonl6sdgbol kovetkezik a kapcsolat, de ez forditva nem igaz. Példaul,
a "bicikli" és a "motorkerékpér" szavak hasonléak, mivel mindkett6 kétkereki jar-
miivet jeldl, igy kapcsolédnak is egymashoz. Ezzel szemben a "postéds" és a "levél"
szavak kozeli kapcsolatban 4llnak, mivel dltaldban a postas kézbesiti a leveleket,
de mégsem hasonlitanak egymadsra, mert meglehet6sen kiilonb6zé fogalmakat

jelolnek. Tovabb4, a "kemence" és a "hajout"” szavak egyéltalan nem hasonlitanak
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egymadsra és nem is kapcsolédnak egymashoz.

9.1.1. Motivaci6

A legtobb modell a jelentés eloszlasi hipotézisére (Harris, 1954) alapszik, és ez-
altal a szemantikai hasonlésdg vagy kapcsolat mértékét nagyméretii korpuszbol
kinyert eloszlési adatok alapjan szdmolja. Ezeket a modelleket gy{jténévvel el-
oszlas alapti szemantikai modelleknek (DSM) szokas nevezni (Baroni and Lenci,
2010; Baroni et al., 2014). Ezekben a modellekben el6szor a lehetséges tulajdon-
sdgok kertilnek megéllapitdsra, dltaldban szovegkornyezeti szavak formdjaban,
ami utdn a modellek stilyokat rendelnek minden szé-tulajdonsag parhoz komp-
lex modszerek segitségével, ezdltal tulajdonsdg-vektorokat készitve minden sz6-
hoz. A szavak szemantikai hasonlésdganak vagy kapcsolatdnak a mértékét ezt
kovetden a szavak tulajdonsdg-vektorainak az 0sszehasonlitdsaval szamitjak ki.
Habéar a DSM-ek szamos lehetséges paraméterrel rendelkeznek, e paraméterek
igazan atfogo elemzése, ami a paraméterek egymadstol valo fiiggését is figyelem-
be veszi, még hidnyzik és sziikséges lenne, mint ahogy azt |Levy et al.| (2015) is
sugallja.

A legtobb DSM-mel foglalkoz6 kutatds a problémanak csak egy vagy két as-
pektusara fokuszdl, és a modell tobbi paraméterét adottnak veszi valamilyen
standard bedllitassal. Példaul, a kutatdsok nagy része megszokdsbdl egyszeri-
en koszinuszt hasznal vektorhasonldsdgi mértékként (pl. Bruni et al.,|2013; Baro-
ni et al., 2014; Speer et al., 2017} Salle et al., 2018) és/vagy (pozitiv) pontonkénti
kolcsonos informdciét silyozasi sémaként (pl. Islam and Inkpen), 2008; Hill et al.,

2014b; Salle et al., 2018). Es még a figyelembe vett paraméterek esetén is ltala-
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ban csak néhdny lehetséges bedllitast tesztelnek. Tovabbd, vannak olyan para-
méterek is, amiket a legtobb tanulmény teljesen figyelmen kiviil hagy, és nem is
lettek még igazdn elemezve a multban, még kiilon-kiilon sem (pl. simitds, vektor-
normalizaci6 vagy a tulajdonsdgok gyakorisdgdra minimum limit). S6t mi tobb,
mivel ezek a paraméterek nagyban befolyadsolni tudjak egymast, a kiilon-kiilon,
egyenkénti elemzésiik nem is elegend, mivel az nem veszi figyelembe azok egy-
masra hatésat.

Van néhdny olyan kutatds ami tobb paramétert is tesztel tobbfajta lehetséges
beéllitassal, mint példaul [Lapesa and Evert (2014) és Kiela and Clark (2014), de
ezek is messze vannak attdl, hogy igazdn atfogé képet adjanak, és szintén nem
tesztelik teljes mértékben a kiilonféle paraméterek kozott fellépd kolcsonhata-
sokat. Tehat, habar fontos lenne a paramétereket és azok kombindcidjat részle-
tesen kielemezni, mint ahogy azt Levy et al. (2015) is megemliti, még mindig
nem létezik ezeknek igazan atfog6 tanulmdanya. Tovdbba, annak ellenére, hogy a
legjobb paraméter-beéllitdsok a kiilonféle nyelvek esetén kiilonbozbek lehetnek,
a tanulmanyok dont6 tobbsége altaldban pusztin egyetlen nyelvvel foglalkozik
(legtobbszor az angollal), vagy figyelembe vesz tobb nyelvet is, de a konklaziok
nyelvek kozotti részletes 0sszehasonlitdsa nélkiil. Ebben az értekezésben ezeket

a kutatasi hidnyokat szeretnénk betolteni.

9.1.2. Feladat és célkitiizés

A DSM-ek rendszerint két egymadstol kiilondll6 fazissal rendelkeznek. Az els6
tazisban statisztikai informaciot (pl. nyers gyakorisdgokat) nyernek ki nyers ada-

tokbdl (pl. egy nagyméretii nyers szoveges korpuszbol), statisztikai eloszlasi ada-
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tok forméjaban. A mésodik fazisban tulajdonsag-vektorokat készitenek a kinyert
informaciobdl minden sz6hoz, majd ezeket a vektorokat hasonlitjdk egymashoz
a szavak hasonl6sagi vagy kapcsolati mértékének a megéllapitdsdhoz. Mi a ku-
tatdsunk soran az els6 fazisban kinyert informdciét mar adottnak vessziik, és egy
szisztematikus, parhuzamos elemzését végezziik el a tulajdonsagvektorok készi-
tése és Osszehasonlitdsa soran hasznalt tulajdonsagoknak, mikozben a tulajdon-

sdgok egymadsra hatésat is figyelembe vessziik.

Azért dontottiink gy, hogy csak a DSM-ek masodik fazisat elemezziik, mi-
vel a két fazis egymdstol meglehet6sen kiilondllo és fliggetlen, és a masodik fazis
minden egyes lehetséges paraméter-érték kombindcidjanak tesztelése mar igy is
lehetetlen a lehetséges kombindcidk oridsi szdma miatt. Ezért egy teljes analizis
helyett mér igy is egy heurisztikus médszert kellett alkalmaztunk. Tehdt ezen
feliil még az elsd fazis kiilonféle paramétereit (pl. hasznalt korpusz, szovegkor-
nyezeti tipus (ablak-alapt vagy dependencia-alapti) és szovegkornyezeti méret)
is tesztelni ésszerfitlennek és megval6sithatatlannak t{int, és igy e kutatas hatoko-
rén kiviilre esett. Ezért ennek a fazisnak a vizsgélatat teljes egészében kihagytuk,

egy kivétellel.

A statikus korpuszokbdl kinyert informdciékon alapulé DSM-eknek két je-
lent8s csoportja van az els fazisuk alapjan: gyakorisdgi-vektor-alapt (CVBM)
és prediktiv modellek (PM; mas névvel szobedgyazasi modellek) (Baroni et al.,
2014). A prediktiv modellek elmult évekbeli nagy népszertisége miatt, tovabba
azért, hogy még teljesebb képet kapjunk, a gyakorisagi-vektor-alapti modellek 4l-
tal korpuszokbdl kinyert informdciék mellett elvégeztiink néhany kisérletet pre-
diktiv modellek altal kinyert informéacidkkal is az angol nyelv esetén. Tovabb4,

a késdbbiekben még kiegészitettiik az elemzésiinket egy olyan modellel is, ami
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tudas-grafbol kinyert szemantikai vektorokon alapszik. A megérzésiink az volt,
hogy lesz egy olyan konfigurdci6 ami a legjobb eredményt fogja elérni mindha-
rom tipust modell esetén. Azt azonban meg kell jegyezziik, hogy a prediktiv
modellek esetén a figyelembe vett paramétereknek csak egy részét lehetett tesz-
telni e modellek jellegzetességei miatt. Részben ezért is fokuszaltunk inkdbb a
gyakorisagi-vektor-alaptt modellekre.

A kutatdsunk sordn 0sszességében 10 fontos paramétert azonositottunk a gya-
korisagi-vektor-alaptt DSM-ek mésodik fazisdban, mint példdul a vektorhason-
16s4gi mértéket, a stilyozdsi sémat, a tulajdonsdg-transzformadciot, a simitast és a
dimenzid-csokkentést. Ezek koziil azonban Osszesen 4 érhet6 el prediktiv illet-
ve tudas-graf-alapt szemantikai vektorok haszndlata esetén, mivel ilyen inputok
hasznalatakor a nyers gyakorisdgok mar nem érhet&ek el, a stilyozott vektorok
maér elkésziiltek és dltaldban mér a dimenzid-csokkentés is végrehajtdsra keriilt
rajtuk.

Elemzésiink sordn e paramétereket parhuzamosan értékeltiik ki szdmos be-
allitassal annak érdekében, hogy megtalaljuk a legjobb konfigurécioét, amit a le-
het6 legmagasabb pontszamokat éri el a standard tesztadatbazisokon. Az atfogé
elemzésiinket angolra, spanyolra és magyarra kiilon-kiilon is megcsinaltuk, majd
a kiilonb6z6 nyelvek esetén levont konkltzidkat 6sszehasonlitottuk.

Néhany paraméterre nagy mennyiségti, akar tobb ezer lehetséges beéllitast is
teszteltiink, ami tobb millidrd lehetséges paraméter-bedllitadsi kombindciét ered-
ményezett. Amellett, hogy természetesen minden paraméter konvencionalisan
alkalmazott beallitasat is teszteltiik, szdmos Gj varianst javasoltunk mi is. To-
vabba, szamos 1j konfigurdciét teszteltiink, amik koziil némelyek az altaldnosan

hasznalt, standard konfigurdcidknal messze jobb eredményt érnek el, és az eddig
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ismert legjobb konfiguracioknal is jobb eredményeket érnek el.

Els6 korben az elemzésiinket angolra végeztiik el, és az eredményeket azon
elemeztiik ki részletesen (Dob6 and Csirik, 2019a)). Ezt kdvetSen megismételtiik
ugyanezt az elemzést, néhany paraméter esetén bdvitett beallitasi opcidkkal, an-

golra, spanyolra és magyarra is, és a kiilonb6z6 nyelvekre levont konklazidkat

Osszevetettiik egymadssal (Dob6 and Csirik, 2019b).

9.2. Konkluzidok

Az értekezésben az eloszlas alapti szemantikai modellek tulajdonsdgvektorainak
készitése és Osszehasonlitdsa sordn haszndlt paramétereknek egy nagyon rész-
letes és szisztematikus elemzését prezentaltuk angolra, spanyolra és magyarra,
amivel egy komoly kutatasi hianyt toltottiink be. Gyakorisagi-vektor-alapt mo-
dellek esetén 10, mig prediktiv és tudas-graf-alapt modellek esetén 4 fontos pa-
ramétert azonositottunk, és ezek mindegyikéhez szdmos beéllitast teszteltiink.
Az elemzésiink soran teszteltiink Gj paramétereket és 1ij paraméter-beéllitdsokat,
tovabbd minden paramétert parhuzamosan vizsgaltunk, ezéltal ezek esetleges
egymdsra hatasat is figyelembe véve. Tudomdsunk szerint mi voltunk az elstk,
akik e paraméterek ilyen részletes elemzését elvégezték, és szintén mi voltunk az
elsdk, akik a kiilonb6z6 nyelvek esetén levont konkltzidkat részletesen dsszeha-
sonlitottak.

A két1épéses heurisztikus médszeriink segitségével mindhdrom nyelvre meg-
kerestiik a legjobb konfiguraciét, ami soran olyan konfigurdcidkat talaltunk, amik
egy része 1j paraméter-bedllitdsokat is tartalmaz, amik lényegesen jobb ered-

ményt érnek el az altaldnosan hasznélt bedllitdsokndl. Habdar egy heurisztikus
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modszert haszndltunk a kereséshez a lehetséges konfigurdciok 6ridsi szdma mi-
att, igazolni tudtuk e moédszeriink helyességét és az altala adott eredmények
megbizhatdsdgat és helyességét. Tovabba igazolni tudtuk azt is, hogy egy adott
bemeneti adattipuson j6l m{ikodé konfigurdcié maésik azonos tipust bemenet

hasznalata esetén is jol m{ikodik.

A kezdeti sejtésiinknek megfelelen volt j6 néhany olyan paraméter, ami mind-
hdrom nyelv esetén nagyon hasonl6an mtikodott. Taldltunk olyan paramétereket
is, amik spanyolra és magyarra hasonléan m{ikddnek, de angolra masképp, ami
szintén varhato volt. Mindemellett meglepddve tapasztaltuk azt, hogy volt olyan
paraméter is, ami angolra és magyarra hasonléan miikodott, mig spanyolra mds-
hogyan, illetve nem taldltunk olyan paramétert, amit a két indoeurépai nyelvre
azonosan miikodott volna, de magyarra masképp. Habdr azt tapasztaltuk, hogy a
legjobb eredményt a kiilonb6z6 nyelvek esetén kiilonb6z6 konfigurdciéval lehet
elérni, a nyelvek kozotti tesztjeink megmutattak azt, hogy ezek mindegyike meg-
lehet6sen j6l mtikodik mindharom nyelv esetén. Ez alapjdn tigy gondoljuk, hogy
sikertilt olyan konfiguracidkat taldlni, melyek meglehet6sen nyelv-fiiggetlenek,

és robosztus és megbizhat6 eredményeket adnak.

Annak érdekében, hogy az eredményeinket 6ssze tudjuk hasonlitani az eddig
ismert legjobb moddszerek eredményeivel, olyan teszteket is futtattunk, amiben
azonos bemeneti adatokat hasznédltunk a jelenleg ismert legjobb konfiguracidk-
hoz és a mi konfiguraciéinkhoz is. Nyers frekvencidk bemenetként valé haszna-
lata esetén, amikor mind a 10 paramétert tudtunk vizsgélni, a legjobb konfigu-
racidink tartalmaztak Gj paraméter-beallitasokat és a eddigi legjobb konfiguraci-
6kndl egyértelmiien jobb eredményeket értek el, dltalaban szamottevéen maga-

sabb pontszamokkal. Szemantikus vektorok bemenetként val6 hasznélata esetén,
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amikor a 10-b&l csak 4 paramétert tudtunk vizsgdlni, a legjobb konfigurdciéink
legaldbb olyan jol teljesitettek, mint a eddigi legjobb konfiguraciok, és néhany
esetben kis folénnyel is rendelkeztek. Igazdbol a legjobb modelliink abszolut leg-
jobb eredményt ért el, minden eddigi modellnél jobban teljesitve a legfontosabb
tesztadathalmazokon. Ezek alapjan tigy gondoljuk, hogy az elemzésiink sikeres
volt, és sikertilt olyan Gj paraméter-beéllitdsokat és Gij konfiguracidkat bemutatni,
amik az eddig ismertnél jobb eredményeket tudnak elérni, és ezaltal ttlszarnyal-

jak az eddig ismert legjobb konfiguracidkat.

Ahogy a tesztek soran latszédott, a bemenetként hasznalt korpusz, illetve az
alkalmazott informécié-kinyerési moédszer nagyban befolyédsolja az eredménye-
ket. Ebbdl kifolydlag tigy gondoljuk, egy a mostanihoz hasonlé elemzés elvégzé-
beni kutatdsoknak. Tovabbd, véleményiink szerint fontos lenne az altalunk Gjon-
nan javasolt konfigurdciokat az altalunk hasznélt szoveges korpuszoknél nagy-
sagrendekkel nagyobbakon tesztelni. Ennél még jobb lenne, ha ezeken az 6ri-
asi korpuszokon a teljes elemzést meg lehetne ismételni. Ezen feliil, habar az
eredményeink meglehet6sen robosztusnak és megbizhaténak téinnek spanyolra
és magyarra is, érdekes lenne az elemzésiinket megismételni nagyobb és meg-
bizhatébb spanyol és magyar tesztadatbdzisokon is, amint ilyen adathalmazok
elérhetévé valnak.

Ugy gondoljuk, hogy e tanulmannyal nagyban hozzajarultunk a DSM-ek m-
kodésének és tulajdonsdgainak a megértéséhez. Habdr az eredményeinkbdl tel-
jesen megbizhat6 konkltzidkat csak DSM-ekre tekintettel tudunk levonni, Ggy
gondoljuk, hogy hasonlé konklizidk érvényesek lennének maés, szintén vektor-

tér modelleken alapulé rendszerek esetén is. Ezért tigy gondoljuk, hogy az ered-
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ményeink hasznosak lehetnek (némi fenntartassal) a DSM-ek targykorén kiviil is,
mas, vektor-tér modelleket alkalmaz6 szdmitogépes nyelvészeti vagy tetszdleges

egyéb probléma esetén is.
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APPENDIX A

A list of the most important vector similarity

measures tested

As most distance and similarity measures are not defined in case at least one of
the vectors to be compared are of zero length, in such cases we have always taken
the similarity score to be 0. Further, to reduce the unnecessary special cases in the
formulas, we have used the following two simplifications: § = 0 and 0 In(0) =

0.



130 A. Alist of the most important vector similarity measures tested

Definition Reference
Cos s(u,v) L1 i * 0 Jones and Furnas}(1987
no.2
Lisg uf \/ Lin1Y;
s(u, Cos(u,v) > A
)
AdjCos COS otherwise Shalaby and Zadrozny, 2016
=01
s(,0) 1, PFMod(u,v) > A
AdjCosPFMod M, otherwise
A=1
2
s(u,v) = i {r””k(ui)+rank(vf)’ ui # 0N vi #0
ApSyn =1 (0 otherwise Santus et al.| 2016
vectors are sorted and reduced
according to the original method
2
s(u,v) = i rak (ke W F 0N £ 0
=110, otherwise
ApSynP p=01 Santus et al.}|2018
vectors are sorted and reduced
according to the original method
AVgL1 Lyt Cha, 2007
ui —oi|
Canberra Cha} 2007
W= L
1 n
ChenCorr s(uo) ==Y & Chen}[2016
n = Ui+ 0 — Ui *0;
[l 4ol #0
ContraHMeanMod s(u,v) = Z |” [Hoil 7 ! based on (Chu and Hou) 2012
otherwzse
_ T 5))2
DFVMB d(u,v) \/ Z 1 (i — ) o + (0 =9)) inspired by StdLike
2 n
Dice-1 s(u,v *nz 1mm(u,, vi) Kiela and Clark| 2014
22 ul + Z(
Dice-1Mod s(u,v) = Ly i, © l) based on (Kiela and Clark) 2014
o1 |u1| + it il
Dice-2 s(u,0) = % Chal 2007
Limy Ui+ it o
Jaccard1 s(u,v) = M Kiela and Clark} 2014
ul + Zl 1 vl
Jaccard1Mod s(u,0) = = Zl 11 % 0 based on (Kiela and Clark/[2014
Y %|”1| + Xt [oil
Kulczynski s(u,v) = El#n(u,;}v{) Deza and Deza) 2016
Lig [ui —vi
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Definition Reference
2
Los d(u,v) (Z lu; — v,|2> Cha/ 2007
L d(u,v) = Z lu; — vj Chal 2007
1
n
L, d(u,v) (Z lu; — vy ) Cha, 2007
i=1 ]
n
Ls o) = (Y |ui— o Cha,[2007
i=1
Leo d(u,v) = m%lx |u; — i Cha| 2007
i=
n
Lorentzian =Y In(1+ |u; —vi) Cha} 2007
i=1
(u,0) = 4| Z i
MahalanobisMod (uv—v')z B ) based on (Deza and Deza/[2016
pi = m, (ui—it)* (v;—9) #0
0, otherwise
n .
Mb s(u, U) _ 1 Zi:l U; * v; Zz 1 U; * 0; Deza and Dezal 2016
2 nou? 2
i=1U; 1:1 v;
(1,0) 1, Mb(u,v) > A
s(u,v) =
MBAdjCos M, otherwise
A=0.1
(1,0) = 1, MBPFMod(u,v) > A
s(u,v
MBAdjCosPFMod %ﬂd(”), otherwise
A=1
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Definition Reference
MBAdJjCosAM s(u,0) = MO ) + ;dfcos(”'”)
MBAdjCosGM s(u,v) = \/Mb(u,v) * AdjCos(u,v)
. 2% Mb(u,v) x AdjCos(u,v)
MBAdjCosHM s(uw0) = Mb(u,v) + AdjCos(u,v)
MBAdjCosProd s(u,v) = Mb(u,v) * AdjCos(u,v)
MBAdjCosLogProd s(u,v) = t1p(Mb(u,v)) * t1,(AdjCos(u,v))
MBCosAM s(u,v) = Mb(u,0) + Cos(u,v) «;Cos(u,v)
MBCosGM s(u,v) = 1/ Mb(u,v) * Cos(u,v)
2% Mb(u,v) * Cos(u,v)
MBCosHM s(u,0) = Mb(u,v) + Cos(u,v)
MBCosProd s(u,v) = Mb(u,v) * Cos(u,v)
MBCosLogProd s(u,v) = tp(Mb(u,0)) * t,(Cos(u,v))
1 (Y jup*xo; Y& ui*v; 1 N* N*
MBPFMod s(uv) =5 | == =] *7*(lh<—>+lb<—))
() 2 < o u? 02 2 c(u) c(v)
Multiplicative d(u,0) = =1+ 1+ |u; — v Deza and Deza 2016|
i=1
o  S—
MultiplicativeMod1 d(u,0) = =1+ [T + |u; — v;)*? based on (Deza and Deza,
i=1
MultiplicativeMod2 d(u,0) = =1+ [ TIb(1 + |u; — i) based on (Deza and Deza
i=1
"y« v; — min(u;, v;) L o i
NCDMod1 du,o)=y - — —~ 71 inspired by (Cilibrasi and Vitanyi
(u,0) 1:21 max (g ) pired by y
Y u kv — YL min(u;, v;) - e .
NCDMod2 d(u,v) = T max (g, 07) inspired by (Cilibrasi and Vitanyi
n . . — . .
NGDMod d(u,0) =Y. max (ty (1), by (07)) — b (1t * 01) inspired by (Cilibrasi and Vitanyi

= tw(n) —min(ty(u;), tp(v;))
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NormCosMod

NormModSOCPMIMod

Overlap

Pears

PearsAdjCos

PearsAdjCosPFMod

PearsMB

PearsMBAdjCos

PearsMBAdjCosPFMod

PearsMBPFMod

(1,0) , CosHM(u,v) > A

s(u,v) = .
%M(”’U), otherwise

_ X sgn(ui * vi) x |u; x|

VI [P I [
A=001 =005

CosHM(u,v)

Hassan and Mihalcea|[2011

1, SocHM(u,v) > A
S(”l ‘U) = 3 SocHM(u,v)
A ’

b(x) = Ig(c(x))? * lb((sN) A=0125 y=1 56=03

vectors are sorted and reduced

according to the original method

otherwise
SocHM(u,v) = In <f}5:’u;’) + féz(’v;l) " 1)
b
flxy) = )(:X;) sgn(x) x |xl?, x>0 Ayi>0 based on (Hassan and Mihalcea
’ =0 otherwise

2011

Jones and Furnas} {1987
(= ) * (0~ 0) os

s(u,v) = = = Jones and Furnas
VI (i = 0)2x /Y (v — 0)?
(1) 1, Pears(u,v) > A
s(u,v) = )
%(”’v), otherwise
A=0.1
(1,0) 1, PearsPFMod(u,v) > A
s(u,0) =1 p )
leursPF//\\/[od(u,v)’ otherwise
A=1
_ 1 (Y (ui—a) x (0 —0) | Y (ui — 1) % (v; — D)
st = (B R
(1,0) 1, PearsMB(u,v) > A
s(u,0) = ]
71)8”“1\:{3(“’”) ,  otherwise
A=01

PearsMBPFMod(u,v) > A

1,
s(u, ‘()) =\ PearsMBPFMod(u,0) .
", otherwise
1

B 7( (= 1) ¢ (o= 9) | T (= )+ (o 4)) .
Lity (uj — )? Yiti(vi—9)2

(@) ()



134 A. Alist of the most important vector similarity measures tested
Definition Reference
T —
s(u,v) = nz’il(ul_ 2u) * (U;l ?) —
PearsPFMod VI (i — @)% /T (0 = 0)
; (lb(”)ﬂb(”))
2 (u) c(v)
PenroseShape \/ Y ((uj — @) — (0 — 0))? Deza and Deza| 2016
PSChi®Mod based on (Cha 2007)
il Ui %0
PseudoCos s(u,v) = o0———— ones and Furnas||1987
(u,2) = Y i g 0
Zz 1Ui % Ui (I
PseudoCosMod1 s(u,v) = o= ————— based on (Jones and Furnas)|{1987
» i 1|”i|*zi:1|vi|
—Ee R Y u; >0 AY 0 >0
PseudoCosMod2 |s(u,v) = \/ Ly uiey/T v ' Lo based on (Jones and Furnas||1987
otherwise
L1 Ui *
PseudoCosMod3 s(u v) = based on (Pones and Furnas|[1987
‘\/Z MRV W
. |H;
s(,0) = (1 —p) 3 p 10
i=1
RBO H= {f|”f #0 A vf # 0} Pilehvar and Navigli} 2015
Hy: set of overlapping dimensions between
the top d elements of u and v
n ﬁ v; #0
RényiDivMod, du0)=1b| Y Tl ™ based on (Rényi,|[1961
iz10, ©v=0
L, - n ﬁ ;0 # 0 . .
RényiDivMod,¢ d(u,v) =1b max Ovl 0 based on (Rényi}|1961
= , Ui =
Zz 1Pi
s(u,v
RoberstMod b MTE A basd on (Deza and Deza 2016
oberstMo asd on (Deza and Deza
- (ul+rz;);(fzzggb)t,,vl), w; 0 Av; #0
' 0, otherwise
n u2 + 02
RMS Z L ) ! Wonnacott and Wonnacott} 1990
i=1
. yr LU % 0;
Simpsonl s(u,v 1= Deza and Deza| 2016
P T A ) o)
Simpson2Mod s(u,v i=1 1y (i based on (ilabeen 2014
P 0 2) = i (S o]+ 1), 51y ([ + 1)
ik 0;) +0.1
SmoothCos s(u,v) (B Ui o) +0 2016

NG

u?)+0.12*\/( i= 1 1)+012

(‘Riedl
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Definition Reference
_fwo) | flou)
=56 )
foy) = "<2> {sgn(x,-) w4l x>0 Ay>0
SOCPMIMod =0 (N otherwise based on (Islam and Inkpen|[2008
b(x) = Ig(c(x))? * % Yy=3 pu=65
vectors are sorted and reduced
according to the original method
n e —
SorensenMod d(u,v) = M based on (Deza and Deza"2016|
i1 [uil + iy [oil
Spearman s(u,v) = Pears(ranks(u), ranks(v)) Deza and Deza“Z()lél
n . . i - 0))3
Spline s(u,0) = Z 1+ u; % 0; + u; x v min(u;, v;) — #(min(ui, v;))? + M Vapnik et al.)|1997;
i=1
n P — A L 0
StdLikel d(u,v) = \/):’=1 Vi mean(u,,v,z)rl o+ /o — mean(u, )] based on (Wonnacott and Wonnacott|/1990
n o C0:))? - )2
StdLike2 d(u,v) = \/Ele (o mean(u,,v,)z)n + (o1 = mean(u;, 01)) based on (Wonnacott and Wonnacott|{1990
" - AT - AT
StdLike2 d(u,v) = \/21:1 i mean(u,,vl)z\n o+ Joi = mean(u;, v,)| based on (Wonnacott and Wonnacott|{1990
n . v L v
StdLike2 d(u,0) = \/E:l 16 (|u; — mean(u;, v;)| +212+lh(\v, mean (u;, v;)| + 1) based on tWonnacott and Wonnacotth990
1 1
. :‘:1 1o Tuj—mean(u; o)) —05+ 1o i mean(u; o)) -05
StdLike2 d(u,v) = o based on (Wonnacott and Wonnacott|/1990
Tanimotol d(u,v) = Ky max(u;, vi) — min(u;, v;) (Cha 007I
’ L, Ligmax(u;,0)
TanimotolMod d(u,v) = Lo maic(u,', 0i) — min(u;, v;) based on (Cha/[2007,
Yity [max(u;, i)
VicSymChi?Mod1 based on (Cha) 2007
VicSymChi*Mod2 based on (Cha][2007
VicSymChi?Mod3 based on (Chal[2007
o(,0) = ):!.ﬂ(runk(u,') + rank(v;)) !
T [H| (5:y-1
WO Lin(2) Pilehvar et al.|[2013
H={fluf #0 Aoy # 0}
vectors are sorted according to the original method
u In (%), w*v;>0
d(u,v) = . v ) i i
ZKLMod (u0) f\; i {,y, % 0; <0 Hughes and Ramage|[2007
v=5
d0) = i u;*In (%ﬁ) +oixln (%), ujxv; >0
ZKLModSym T S luixy+oi%7, ujxv; <0 based on (Hughes and Ramage|2007}/Cha)|2007:
7=5
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Definition Reference
CosMod-1.x s(u,v) = Loy x(ti) * b(01)
VIR o
CosMod-2.x s(u,v) = i1 tx(u’) * txn(vl)
VL 1(tx * /i (£ (0:)?)
CosMod-3.x s(u,v) Eisy tx(u’) * t"(v’
R ) i (T (1 (002)
1 ; )
CosMod-4.x s(u,v) = e (B 1tx(ul)>x<tx(v,))
YEL T
ty 1( 1tx(uz)*tx(vl))
CosMod-5.x s(u,v =
( ) \/Zz } tx \/E tx 01)2
CosMod-6.x s(u,v) b (B tx(u’) - t"(vl))
\/t_ (X0 (te(u \/t_ (T, (£ ()2
_ _1 Y te(u )*t ( ) Yo te(u *fx(Uz
MbMod-1.x s(u,0) = 3 Y ul * Z? 1 v}
1 () w e (vi) X 1tx *tx(vz
MbMod-2.x s(u,v) = 2 < Z? 1(tx(”z) ) z 1 tx )
MbMod-3.x s(u,v) = 1 _11 1 t"( i) * tx (i) _11 1 b (1) * tx(v ))
tx (fx(uz)z)) = (Zl 1 tx vl 2))
MbMod-4.x |s 1 t_l (X t}f * 1 (05)) t_ (Ci 1t;c * t(0;))
2 Zl 1 T/l 2171 U
1 1(21 1tx *tx(vl)) t;1 (Zz 1tx( )*tx<vi))
MbMod-5.x |s(u,v) 2( 1 Y7 (b 1 Y ((0:)?) )
MbMod-6x |s(it0) = 1 (f (Eiy () tx< D) 4 O )  b5(2)
2 L (e (1)) b (X1 (£ (01)?))




Definition

Reference

AdeosMod—l.x

AdeosMod—Z.x

AdeosMod—3.x

AdeosMod-4.x

AdeosMod-S.x

AdeosMod-6.x

PFMod-1.x
PFMod-2.x
PFMod-3.x
PFMod-4.x
PFMod-5.x
PFMod-6.x

InnerProdW-1.x

InnerProdW-2.x
InnerProdW-3.x

InnerProdW-4.x

s(u,
s(u,
s(u,
s(u,
s(u,
s(u,

v)
v)
v)
v)
v)
v)

CosMod-l x(u,0)

CosMod-Z x(u,0)

CosMod-3 x(u,0)

g
g
e
o
e

CosMod-5 x(1,0)

CosMod -6.x(1,0)

= CosMod-1.x *
= CosMod-2.x
= CosMod-3.x
= CosMod-4.x *
= CosMod-5.x *

= CosMod-6.x *

s(u,v) = Z

i=1

i=

1
s(u,v) = t;! (

s(u,v) = t; ! (i

i=1

CosMod-1.x(u,v) > A
otherwise

CosMod-2.x(u,v) > A
otherwise

CosMod-3.x(u,v) > A
otherwise

CosMod-4.x(u,v) > A
otherwise

CosMod-5.x(u,v) > A
otherwise

CosMod-6.x(u,v) > A
otherwise

N* *
Ib o) +1b )
N* N*
Ib o) +1b )
N* N*
b ) +1b o)
N* N*
b o) +1b )
N* N*
Ib o) +1b ()
N* N*
Ib o) +1b o)
tr(u;) * tx(v;)
|ui| + |vi

tx(u

S(M,Z))Zi (u;) * tx(0;)

i=1

be(u7) * 1(0) )

|tx(ui)| + |tx(0;)]
=ty (ug) * t(0;)
|ui] + [l

b (ui) | + [ (0)]
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Definition Reference

PearsMod-1.x

PearsMod-2.x

PearsMod-3.x

PearsMod-4.x

PearsMod-5.x

PearsMod-6.x

PearsMBMod-1.x

PearsMBMod-2.x

PearsMBMod-3.x

PearsMBMod-4.x

PearsMBMod-5.x

PearsMBMod-6.x

i1 (i — 1) * £ (v; — 0)
u; — i) v; — 0)2
\/Ztlnl 1 tx(uz )_ u)\*{tzvl(vll(_ U) )
VI (e (ui — )2 % /L (e (v; — 9))2
Zl Lt (uy — 1) * by (v; — v)
JE( g~ 1)) o\ i (D (k01— 9))2)
s(u,0) = (ZZ b (g — 1) * tv(vl — 7))
' \/Z?:l(ui — )2 /L (0 - 0)?
£t (8 tx(u; — 1) * tx(v; — D))
\/):z 1) (tx(u; —11))? * \/Z Li(tx(0 —9))?
(Zn 1 b (uy — 1) * tx(vz 7))
\/tx (b= D)) w17 (T (o = 9))2)
Yia tx(u, — 1) * ty(v; — 0) Zl 1tx(u, — 1) x ty(v; — 0)
Yitq (u; — )2 (vi —0)?

o )
Yot (up — ) % b (v; — D) n Yty (u, )*tx(vlfﬁ))

s(u,v) =

s(u,v) =

s(u,v) =

s(u,v) =

[

—~

S
<

—~
I

[}

—~
S
<

—
|

iq (b (u; — 1))? 1 (tx(0; —0))?
Y tx(up — i) x tx(v; — ) " tx(ui — 1) * tx(v; — 0)
et (T (tx (uj — 10))?) (T (t (0 — 0))?)
Eiy bl — ) * b0 = 0)) | b0 (B b — 1) * ta (o
Z, 1( —i)? i (vi—9)?
— 1) % ty(v; — 7)) N (el O tx(u, i) * ty(v; 727))>
szl(tX(”i —i1))? w1 (tx(v; — 7))?
e (O b (g — ) % b (v — 0) 1 (D 1f (uj — 1) * tx(v; — 9))
(D (b (u — 1))?) e (T (v — 0))2)

s(u,

=
<

=
Il

/_\/\/\

NI = N~ N =

—~

=
-

—

/\AA
. ><\
—
L\ﬂ
A
—
=
]
F

NI NI= N =
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Reference

PearsMBAdjCosMod-1.x

PearsMBAdjCosMod-2.x

PearsMBAdjCosMod-3.x

PearsMBAdjCosMod-4.x

PearsMBAdjCosMod-5.x

PearsMBAdjCosMod-6.x

PearsMBAdjCosPFMod-1.x

PearsMBAdjCosPFMod-2.x

PearsMBAdjCosPFMod-3.x

PearsMBAdjCosPFMod-4.x

PearsMBAdjCosPFMod-5.x

PearsMBAdjCosPFMod-6.x

PmysMBMud 1.x(u v)

PeareMBMud 2.x(u v)

PmrsMBMud-S x(u U)

PeursMBMnd 6.x (1 v)

7))

1,
s(u,0) = {PearsMBMad—l.x(u,v)*(Ib(

A
A=01

7)o (E5))

1,
s(u,0) = {PmrsMBMad—Z.x(u,zv)*(Ib(

A
A=01

7)o ()

1,
S(Ll, U) = {PmrsMBMod-&x(u,v) (Ib(

A
A=01

n) ()

1,
s(u,v) = {PmrﬁMBMod-‘l.x(u,v) (Ib(

A
A=01

)+ ()

1,
s(u,v) = {PmrsMBMod—S.x(u,v) (Ib(

x
A=01

c(u]

1,
S(u’ v) = {PmrsMBMod-é.x(u,v) (Ib( N* )+1b( @ ))

A
A=01

PearsMBMod-1.x(u,v) > A
otherwise

PearsMBMod-2.x(u,v) > A
otherwise

PearsMBMod-3.x(u,v) > A
otherwise

PearsMBMod-4.x(u,v) > A
otherwise

PearsMBMod-5.x(u,v) > A
otherwise

PearsMBMod-6.x(u,v) > A
otherwise

PearsMBMod-1.x(u,v) * (lb ( N

c(u)

, otherwise

PearsMBMod-2.x(u,v) * (lb ( N

c(u)

, otherwise

PearsMBMod-3.x(u,v) * (lb ( N

, otherwise

PearsMBMod-4.x(u,v) * (lb ( N

, otherwise

PearsMBMod-5.x(u,v) (lb (EI(\;

, otherwise

, otherwise

PearsMBMod-6.x(u,v) (lb (C(u)) +1b (%)) >A



140 A. Alist of the most important vector similarity measures tested
Definition Reference
n . . 1 B
Cos s(u,v) = Liz1 i * 0 (Jones and Furnas}[1987)
Py uf \/ o7
n
t 7.
LW-1.1.x d(u,0) =Y m
i=1 i i
1 [ & e (Jup — i)
LW-1.2.x d(u,v) =t e
(u,0) = b <l_21 |ui| + [vi
n
t
LW-2.1.x o) =) (X(L|‘1+ |tvl|z)
i=1 X x l
te(|u; — v4])
LW-2.2.x d(u (Z T |+ T vl T
|tx tx vz
DTVW-1.1.x 1:21 Iull + Ivzl
DTVW-1.2.x d(u,v) =" Z (o o)
i—1 |”1| + |Uz|
| (u
DTVW-2.1.
X Au,0) = 2|tx |+|txv,
1 t
DTVW-2.2.x d(u,0) = t;! fx(
( ) * <E | | + |tx Ul
L t—l(\tx( — te(;)
DTVW-3.1.x d(u,v) =) = :
o) = L o
ot (e (ug) — (0
DTVW-3.2.x d(u,0) = t;! (Zt s Tﬁll |U,T(vl))
i=1 i i
=t (e (1) — te(01)])
DTVW-4.1.x d(u,v) = L
(42) = L = G + T o)
- bt (1t (ui) — te(3)])
DTVW-4.2.x d(u,0) = ;! U o
o) =5 (Zi ()] + a0
PenroseShapeMod-1.x d(u,0) = Y tx(|(u; — 1) — (vi —7)|)
i=1
n
PenroseShapeMod-2.x d(u,0) = Y |tx(u; — 1) — tx(v; — 0)|
i=1
n
PenroseShapeMod-3.x | d(u,v) = t;' | Y to(|(u; — 1) — (v; — 7)|)
i=1
n
PenroseShapeMod-4.x | d(u,v) = t; ! Y |t (uj — 1) — tx(v; — )|



Definition Reference

LMod-1.1.x

LMod-1.2.x

LMod-2.1.x

LMod-2.2.x

LMod-3.1.x

LMod-3.2.x

LMod-4.1.x

LMod-4.2.x

LMod-5.1.x

LMod-5.2.x

LMod-6.1.x

LMod-6.2.x

LMod-7.1.x

LMod-7.2.x

LMod-8.1.x

LMod-8.2.x

LMod-9.1.x

LMod-9.2.x

LMod-10.1.x

LMod-10.2.x

th |”1 1

d(u,v) =t; ]<2tA | — ZJ,’|)>
Y te(Jui — vi])

) \/anu \/Zn 1”

71 (Eiq tx(|ui — vi])

\/Zz lu1 *\/Zz 1 1

Yisg te(Jui — o)

_ \/anu +\/anU

o (Ei (i — vz\))

\/21 14 1+\/21 19 1

d(u,v) =

d(u,v) =

d(u,v) = it te(Jui —vif)

d(u,v)

d(u,

d(u,v) =

d(u,

d(u,

VU ()2 % /O e (0))
f_l(Zz 1 Ex([ui — vi]))
R )+ 5 (T (o)

v) = Yt tx(lui —wil)
VI b (i) + /L Ee(0:)?
f_l (S tx(Jui — vi]))
VE L b))+ B (T t(0)?)
Yi tx(|”z — i)
\/Z |tx( \/Z |tx Uz
ty 1(2::1tx(|u1 Ul‘ )

v) =

v) =
Vi (o It a)]) 4 /t (T [ (00)])

d(u,

v) =

Z" 1tx(|uz vil)

VI () + VI [ (o
ty 1(2 tx(|u1_vz‘))

wx (S e()]) + /8 (T e(00)])
d(u,v) = Zln 1tx(|”1 vz|)
i=1 z*zz 19 1
_ t;l (Eiq tx(lui —wi])
i ufx Ll 0
Z? 1tx(|”z |)
z 1”1 +E
_ t;1 (Eiq tx(lui — vl‘))
o) = Tl + Y 0f

d(u,v) =

d(u,v) _ Z?:l tx(|Mi—U1'|)

d(u,v) =

B Yy b () + iy te(0:)?
te (g b (Jui — i)
et (T b ()2) %t (T £e(07)?)

141



142 A. Alist of the most important vector similarity measures tested

Definition Reference
LMod-11.1.x d(u,v) = i 1t;(1§x(_|i_u’):n ?l“z(v)

i _ te ! (D t(Jui — oil))

LMod-11.2.x| d(u,0) = T b (1)) + (0, (o))
Zz ltx(|”1 UID
LMod-12.1.x d(u U) Zln 11|tx( )| *(‘Z? 1|t |()) )‘

_ _ tv (2171 tX Ui — 9

IMod122x] - d002) = 4o Treunl) » B (Tl [ o))
Z tl(|”z - Z’z‘)

LMod-13.1.x d(u,v) = Z? . \fx(uz)| N ST ER]
(2171 tx(\”z*UzD)

LMod-132.x| d(u,v) =

o 132x| dlun) = i el + 5T (5 @)
tx(ju; — v;

LMod-14.1.x d(u,0) = ): 1;xzu )(|”2,7jt‘j(vi)

i _ 2 (i —wi]))
LMod-14.2.x d(u,v) = (Zf e ))(fo (Z‘:;;:l o)

_ Zn,l Ex(|ui — v;
LMod-15.1.x d(u,v) = . tx(ui)Jer:l F(o)

_ ty 1( i= 1tX(‘uz_Uz|))
[Mod152x) - dlwv) = tzl <2? e >>+t;1 (s 12(00)
DTV-1.1.x Z\tx te (o)
DTV-1.2.x d(u,0) = t;* <Z|t )|>

1 [ (i) — tx(0i)]
DTV-2.1.x d(ll U) Zlnl 1 ‘tx( )| +Z;7:1 |tx(vi)‘
te (X _1‘tX(”i)_tX(Ui)|))
DTV-2.2. d(u,0) =
| AR = e \tx<u|,»>|(>+) = ((z%?ux(vim
_ Z?:l Ex(ui) — tx(0;
DIVS.1x o) = I el T3, o)
. b (g e () — £ (o))
PIVAZX | A00) = o re(un)l) = 7 (20 lre(or)])
tx tx (0;
DTV-4.1.x d(u,0) = Wi th 1(|u )(243\/2(0 )t|
X i=1 x
DTV-4.2.x t 1(21 1“ ( ) tx(vl)|))
\/txl(21ltxu )+\/tX 11
DTV-5.1.x d(u,0) = \/ZHEtllfx( )\/g(vzzl
x i=1 x
1 n
DTV-5.2.x _ B (C 1\tx(u) v(v1)|))
\/t;1 2 1tx 2) s/ (D (0
DTV-6.1.x l 1 |tx(ul) — tx(vl)|
\/z e +\/>:
DTV-6.2.x d(u,0) = = o (D Jte) — o )D

VI 2+ T v



Definition Reference
21 1|t1’ ) x( )‘
DTV-7.1.x
fl(Z’Llltx( u;) — tx(v)\)
DTV-7.2.x d(u,0) =
DTV-8.1.x d1,0) = 3 61 (1) — to(01)])
i=1
7 X (|t7€( )_tx(vi)‘)
DTV-9.1.x d(u,0) = Z" 11|tx( Lolsd i)
DTV-9.2.x d(u,v) = oy b (e () — te(0)]))
; R L]\tx<ui(>|\>(+t);l< é;l)r)xw,-m
Zn X tx _tx (%
T A0 = EE T )+ o)
DTV-10.2.x d(u,0) = iy b (e () — fx(vi)\))
; g (z%ntx_(ui)\)*t;l( k(o))
DTV-11.1.x d(u,0) = \/g : L(|tX(+ 3/2?( )\)
i= 1 i\ l
DTV-112x  |d(u, it (\fa(”)—fx(vz)\))
\/t 1 Zn tx 1)2 \/i’ 1(271 tx(vl) )
DTV-12.1.x d(u,0) = \/E 1’; 1(|fx( \)/;x( vi)l)
i=1 x
DTV-122x | d(u, 1fc 1(\fx(u)—tx(vz)\))
\/tli 1tx u;)?) * \/flz L te(0i)?)
Y b (e () — B (03)])
DTV-13.1.x d(u,v) =
VI 2+
DTV-14.1.x d(u,0) = ?\}Fi(lfx(u\)/—txi()
Y u?
LinMod-1.1.1.x (u,0) = Zlanztx u;, v;)

LinMod-1.1.2.x

LinMod-1.2.1.x

LinMod-1.2.2.x

LinMod-2.1.1.x

LinMod-2.1.2.x

LinMod-2.2.1.x

LinMod-2.2.2.x

LinMod-3.1.1.x

LinMod-3.1.2.x

LinMod-3.2.1.x

LinMod-3.2.2.x

n
(u,0) =t; 1<Zanzttu,, 1)

n

s(u,v) Z lagz (u;, v;)

s(u,v) = 7! (Zlagztx(ui, vi)>
i=1
Y lanzy, (u;,v;)
i [t (ua) | + 20y |8 (02)]
(L, lanztx(u,, D)
(D (b)) + 6 (S [t (o))
Yiq lagze, (wi, ;)

s(u,v) =

s(u,v) =

$(:0) = S ) + o (0]
s(u ZJ) t71 (Z llagztx(ullvl))
T >\>+t(1<z; ()
_ 21:1 lanz, (u;,v
$(49) = S o) Tl e (00)]
s(u,v) _ t;l (Z?:l llli’lfo(u,', Ui))

(0 (e (u) )+ 6 (S0 [t (o))
Yitq lagzy, (ui,v;)
Yo 1|tx( DI SR NCHI
ty 1( 1111th)(1/[1,1},))
(T e () ) %t (0 [ (o))

s(u,v) =

s(u,v) =

143



144 A. Alist of the most important vector similarity measures tested

Definition Reference
Yo lanzy (u;,0;)

VEL ()2 + VEL 1(0:)?
b (T lanzy, (”1/01))

() 4y (R ()
- - _ Yii 1lﬂgzt1(uuv)
LinMod-4.2.1.x s(u,v) = N BTN BN
ty 1(): 1lugzty(u,,v))
\/tx Y b (1)) i (D b (0)2)
Yy lanz[x (ui, v;)
u,v) =
(0) \/ i1 tx(”i)z*\/zzn:l tx(0;)
_1 (Zn 1lanzfr(”zrvz))

\/t "t (ug)? \/t (28 te(v:)?)
LinMod-5.2.1.x s(u,v) = = Liot lu(zgztx(ul,n vi) >
\/Zizll b ()2 % /L tx(0:)

t n ol
LinMod-5.2.2.x| s(u,v) = (Zl 1 ugztx(ul, vi))

)=
\/t;1 lltx \/tx ,1tx(z, 2)
LinMod-6.1.1.x s(u,) 11‘1"%(”1,

\/Z?1u+\/ Inlt

te (X lanzy, (u;,0;))

VI w02

Y lagzy (ui, vi)
VI + o o
t! (X, lagzy, (i, vi))
VEL U4+ ,”1 ;

Y lanzy, (u;,0;)
\/Zn L UF VB 10
t71 (T lanze, (w0

\ ?1” \/Zz 17’

Y l”gztx(”u l)

/Zn 11/[ %
H (B 1lﬂngx(un vi))

n 2
Yy u? i=1 Y

Yisg l””th (ui, v;)
i1 be(ui) + Xy £ (i)
te ! (Tfg lanzy, (u;, 01))
(S () + £ (D t(00)
. Y lagzy, (u,v;)
LinMod-8.2.1.x s(u,v) = : A
() = B ) + iy ()
te ! (S lagze, (ui, v;))
(O te(w) + 5 (D B (0)
. Y lanz, (uuvl)
LinMod-9.1.1.x s(u,v) = x
(00) = o ) = 0 (o)
by 1(2" 1 lanzy (u;, v;))

(D (i) * £t (T £e(07)

, Yo lagze, (uj,v;)
LinMod-9.2.1. ,0) =

inMod-9.21.x S(02) = S () Xy (o)
ty 1(2:1:1 lagztx(uu 1))

tet (T () * £ (T e(07)

LinMod-4.1.1.x s(u,v) =

LinMod-4.1.2.x|s(u, )

LinMod-4.2.2.x|s(u,v)

LinMod-5.1.1.x

LinMod-5.1.2.x| s(u,v)

LinMod-6.1.2.x s(u,v) =

LinMod-6.2.1.x s(u,v) =

LinMod-6.2.2.x s(u,v) =

LinMod-7.1.1.x s(u,v)

LinMod-7.1.2.x s(u,v) =

LinMod-7.2.1.x s(u,v)

LinMod-7.2.2.x s(u,v) =

LinMod-8.1.1.x s(u,v) =

LinMod-8.1.2x|  s(u,v) =

LinMod-82.2.x|  s(u,v) =

LinMod-9.1.2.x s(u,v) =

LinMod-9.2.2.x s(u,v) =




Definition Reference

LinHRMod-1.1.1.x

LinHRMod-1.1.2.x

LinHRMod-1.2.1.x

LinHRMod-1.2.2.x

LinHRMod-2.1.1.x

LinHRMod-2.1.2.x

LinHRMod-2.2.1.x

LinHRMod-2.2.2.x

LinHRMod-3.1.1.x

LinHRMod-3.1.2.x

LinHRMod-3.2.1.x

LinHRMod-3.2.2.x

LinHRMod-4.1.1.x

LinHRMod-4.1.2.x | s(u, v) =

LinHRMod-4.2.1.x

LinHRMod-4.2.2.x [s(u,v) =

LinHRMod-5.1.1.x

LinHRMod-5.1.2.x| s

LinHRMod-5.2.1.x

LinHRMod-5.2.2.x| s

n

s(u,v) =Y Imnzy, (u;,v;)

i=1

n
s u, v —t 1 <Z mnztx Uuj, v )
=1

n
s(u,v) = Elmngx(u,-,v,-)
i=1
' n
s(u,v) = t;1 Zlmgz,‘x(u,-,v,-)
i=1
" Imnzy (u;,0;)
s(u,v) = i=1 o
W) = B ) [+ L [0
S(u,0) = t ! (Liy Imnzy, (i, 0;))

T () ]) + £ (T [t (0)])
Yy Imgzy, (ui,vi)
iy [t (ua)| + Xy [te(0:)]
te ! (Tiy Imgze, (ui, 0;))
(D () ) + £ (S0 £ (0)])
Y, Imnze (u;,0;)
Yity [t (i) | = Zity [t (04)
b (T bmnzy, (i, 0;))
t! (T [t (ui)]) = t! (X [t (0)])
Yy Imgzy, (u;,vi)
i [Ex(ua) [+ T £ (vi)]
S( ) _ t;] ( ?:1 lmngx(uir '0,‘))
’ b (TP e () |) 5 5 (0 [ (00)])
Y Imnzy (u;,v;)
VI () + /T b (0:)?
to1 (O Imnze (u;,0;))

\/tlil zltx +\/t1 Ilt’f 2)
lmgztx(u,,v,)
) R R+ R
t l( 1 Imgz, (ui i)

)=

\/t.\Tl Iltx +\/t1 Iltx 2)
s(u,0) = 21:1 lmnztx(ul;lvl)

VI ()2 5 /D b (0:)?

t ! (g Imnzy, (u;,v))

¢ e (Tl b (1)) %1 (S e(21)2)
):l 1 Imgzy (u;, v;)
\/En tx ”1 2*\/):1 1tx
ty 1(21:1 lmgztx(u,,v,))

¢ B (T b (1)) %1 (S e(21)?)

s(u,v) =

s(u,v) =

s(u,v) =

s(u,v) =

s(u,v) =

s(u,v) =

s(u,v) =
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146 A. Alist of the most important vector similarity measures tested

Definition Reference

Yy Imnzg, (u, v;)

\/Z]”JF\/E];

t 1(21 11mnzh(”1/v ))

\/zl" 12+ /T,
1 lmgztx(u,,v,)
@" L2+ 0

I~ I
LinHRMod-6.2.2.x s(u,0) = (i Imgz, (i ’))
2
i

\/Zz 14 1+\/21 19

Yo Imnzy (u;,0;)

\/anu*\/ 12

ty ! ():zzl Imnzy, (un v;))

\/Z’? 1142*\/2’,1

i Imgzy, (ui, vi)

- \/):Z 1”1*\/21 10 1

LinHRMod-6.1.1.x

LinHRMod-6.1.2.x s(u,v) =

LinHRMod-6.2.1.x

LinHRMod-7.1.1.x

LinHRMod-7.1.2.x s(u,v) =

LinHRMod-7.2.1.x

1
LinHRMod-7.2.2.x s(u,0) = (L 1lmgz“(”””’))

\/Zz 14 z \/Zl 19 12
LinHRMod-8.1.1.x s(u,0) = — Zizt iz, (14, 0)

i1 bx(ui) + X tx(0i)
(S Imnzy, (ug,0;))
B (T 1tx( i)+t (T b (04))
LinHRMod-8.2.1.x $(1,0) = o %ftxl(l";gf*z(;’ l; ti)(v_)
1 1= 1
(S Imgze, (ui,v1))
< b () + (D b (0)
n .7y,
LinHRMod-9.1.1.x s(u,0) = "Zijt::(lf)njti(’f ’1 szi)
a? "
et (S Imnzy, (i, v;))
b (T b () * 8 (T £ (0))
n ,
LinHRMod-9.2.1.x s(u,0) = ,_11’;1(”’?:“2(”11’220)
1= 1
t;1 (Z?:l lngfx(ul,U,))
D b)) * b (D b (0))

LinHRMod-8.1.2.x|s(u,v) =

LinHRMod-8.2.2.x|s(u,v) =

LinHRMod-9.1.2.x| s(u,v) =

LinHRMod-9.2.2.x | s(u,0) =




APPENDIX B

A list of the most important weighting

schemes tested

To follow the notations of Curran! (2004), we denote word-feature pairs as (w,1,w’)
triplets. However, please note that dispite the style of our notations, our calcu-
lations and formulas rather follow Lin! (1998a), as we found them more intuitive.
Substituting any of the components with an * results in a set of triplets, where the
* takes the value of all the possible elements of the given type. Frequency counts
are denoted as f(w,r,w’), from which probabilities (p) are calculated as dividing
by f(*,1,*). Further, type frequencies (n) are calculated by counting the number of
elements in the set defined by the triplet, and the number of words and features

having positive type frequencies are denoted as N(,, ,) and N, ., respectively:



148 B. A list of the most important weighting schemes tested

f(w,r,*) warw
f(*,r,w) warw (B.1)
fle,r,%) =Y f(w,rw)

w,w’

AN f(w,r,a/)

plwrw) =%y

]
b ) = 0] (B.2)

N flxrw)

p(x,r,w') = Fle )
n(w,r, ) = |f(w,r,%)] (B.3)

n(xr,w') = |f(x,1,w)]
Niw,) = [(w,r)[n(w,r,%) > 0] (B.4)

Nirry = |(r, ") [n(x,7,0") >0

To avoid unnecessary special cases in the formulas, the following two simpli-
fications have been used in all measures: 8 = 0 and 0 % log(0) = 0. Further, to
make the formulas simpler, in case of some information theoretic measures the

standard contingency table notations are used Evert (2005):
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(B.5)

O =N — f(w,r,*%) — f(x,1,7")
+ f(w,r,w")

There are such weighting schemes that could return a non-zero weight even
if f(w,r,w") = 0 (for example due to the use of smoothing or the calculation
of the logarithm of this value). However, in most cases it would not be benefi-
cial to calculate and use these values (for example log(0) = —o0), so in case of
f(w,r,w’") = 0 we have always taken the corresponding weight to be 0 too.

There are possible suffixes to the weighting schemes that work the following

way:

TcO: No transformation on the counts

Tcl: the same transformation on the counts as in PmiAl

Tc2: the same transformation on the counts as in PmiDisc

Tc3: the same transformation on the counts as in PmiWls

Tc4: the same transformation on the counts as in Unis

TwO0: no transformation on the weights

Tw1: the same transformation on the weights as in WPmi9
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Tw2: the same transformation on the weights as in WPmil0

Tw3: the same transformation on the weights as in WPmi?7

Tw4: multiplication of the weights with the multiplier in WPmi7

SO:

S1:

S2:

PO:

P1:

P2:

P3:

P4:

P5:

no subtraction from the weights

the same subtraction from the weights as in SPmi
the same subtraction from the weights as in Unis
no multiplication of the weight

the same multiplication of the weight as in TfIdf2
the same multiplication of the weight as in TfIdf7
the same multiplication of the weight as in WPmi?7
the same multiplication of the weight as in PmiWdf

the same multiplication of the weight as in NPmi
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Definition Reference
flwrw) %)
0.5+0.5% max(f(*,r,*)) *1b n(x,r,w')
V/E (a1 % 1b (az))?
, .
ATC 4 =054 05% f(w,r,w') Kiela and Clark} 2014
max (f(x,7,%))
fx,1,%)
a = "2
n(x,r,w')
. N(O11 % Ogp — O1p % O27)?
Chi? Evert, 2008
(O11 + 012) (011 + 021) (012 + 022) (021 + On)
Chi’WYCC Evert, 2008
. 2% f(w,r,w')
Dice Curran, 2004
f(w,r, %)+ f(x,r,0)
Freq f(w,r,w") Jurafsky and Martin, 2009
GMean On Evert} 2005
it
+ f(w,r,w
Grefl 16 (14 n(er, ) Curran, 2004
/
Gref2 b :rfu(f;f L u;()) wr ) Curran, 2004
1 +2w f( *rw’) +1b fx )
Identity sgn (f(w,r,w')) Curran, 2004
O
accard Evert} 2005
J O11 + 012 + O
JointProb % Jurafsky and Martin, 2009
) 011 % Oy = O % Oy
Liddell Evert, 2005
(O11 + O21) * (O12 + O22)
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Definition Reference
i .
Linl _log W) (Lin| 1998a)
Newr)
Lin2 —logM (Kiela and Clark; 2014)
f(x,7,%)
Lin3 —log (f(w,r,w'")) * log(Nrw) (Kiela and Clark}2014)
(wr)

LogFreq Ib(1+ f(w,r,w'))
2o < L(C12, C],p) * L(Cz — C12,N — Cl,p) >
L(Clz, C1, pl) * L(C2 — 612,N — CerZ)
c1 = (w,r,%); co = f(x,1,0)
LogLHR ci2 = f(w,r,w'); N = f(x,7,%) (Evert}2005)
_ Co, _ C12., =12
PEN T T N

L(k,n,x) = xFs (1 —x)"*

LPMI1 Fw,r,w') *1b (;E;rri)) **f %‘j : Zg) (Evert, 2005)
f(w,r,w’)* fx, 7, %)% f(wrw’) roer ,
LPMI2 eyt <f(w S efer w,)> (Herger, 2014)

(b (f (w, r,0')) + )*lb( (*’*))

LTU — () (Reed et al.| 2006)

0.8+0.2x% R G
MinPMITTest1 min(PMI, TTest1) (Evert} 2005)
MinPMITTest2 min(PMI, TTest2) (Evert,2005)
MinSens min , (Evert} 2005)

(011 + O12° O11 + 021

Ib (f(*,r,*)*f(w,r,w’)

Fw,r*)xf(x,r,w')

NPMI NPMI, (Harispe et al.; 2015)

NPMI, = —1b (JM)
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Definition Reference
. (011 +0.5) % (022 + 0.5)
OddsRatiol (O1 7 05) * (Og £ 05) Lowe} 2001
p1*1b(p2)

B flw,r,w)

Okapil 0.5+ 0.5 % % + f(w,r,w) based on (Reed et al.}[2006
f(x, 1, %) —n(x,rw)+05
p2 = 7
f(w r,w') 4+ 0.5
n(x,r,w') ) ..
PLFFI Ib(1+ f(w,r,w')) xlog (1 log (f(*,*,*)>) basd on (Dob6 and Csirik} 2013
w,T,W
( et ) - Tt

Rapp f(w,r,f) v Rapp, 2003

1= f(* r,w')

Ib(1+ f(w,r,w') *—Eq*lb
Rappl Fw,r,w') based on Rapp

1= f(x,7, w’)
RelRisk1 811 : Eglz i 822; Sistrom and Garvan} 2004

12 11 21

RelRisk2 p21* (Or2 + Oz) Evert| 2005

O12 * (O11 + On)
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Deﬁnition Reference
/
PMI p (L) flonw ) Church and Hanks, (1990
w,7, %) x f(x, r w')
b (X, f (* 7, z) w,r,w')
PMIAlpha f(w, T, %) * f(* r,w' )« Levy et al.}[2015
x =0.75
(X fCor,)%) = f(w,r, w')
PMIAlphaWOLog flw,r,*)* f(x,1,w )« Zhang et al.} 2015
a =0.75
PMICurran Ib floe )+ flwyr,w) Curran) 2004
flw, =, %) = f(x,7,w)
” Flx,7,%) % (f(w,r,w') — disc)
PMIDisc flw,r,*)* f(x, 7,0 Lin|[1998b
disc = 0.95
PMI2 po (L) x flawnr, w)? Evert| 2005
f(w,r, =) * f(x,r,w)
5 Flx,1,%) % f(w,r,w')3
PMI Ib Flw,r, ) Flr, 1 0) Evert| 2005
PMIWDF; + Ib (f(*’r’ Wk (CAAD
PMIWDF S wyr, ) x fx 1, w) Pantel and Lin| 2002
PMIWDE: — f(w,r, w) mzn( (w,r,%), f(x,7,7"))
0 f w r,w') mm (w,r,*),f(*, w')) +1
PMIWLS lb( ;’rz 111 (( ,; ﬁ ) Turney and Pantel| 2010
PMTI*Chi? product of 2 weights
PMI*CondProb21 product of 2 weights
PMI*CondProb22 product of 2 weights
PMI*CondProb24 product of 2 weights
PMI*CondProb26 product of 2 weights
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Definition Reference
PMI Ib (;E;:’% ij;(é‘: : z;o (Church and Hanks|[1990)
PMI*Liddell product of 2 weights
PMI*Lin11 product of 2 weights
PMI*Lin12 product of 2 weights
PMI*Lin13 product of 2 weights
PMI*Lin14 product of 2 weights
PMI*Lin15 product of 2 weights
PMI*Lin16 product of 2 weights
PMI*LTU product of 2 weights
PMI*OddsRatio3 product of 2 weights
PMI*Okapil product of 2 weights
PMI*Rappl product of 2 weights
PMI*Rapp4 product of 2 weights
PMI*Rapp6 product of 2 weights
PMI*RelRisk1 product of 2 weights
PMI*RelRisk2 product of 2 weights
PMI*TFIDF1 product of 2 weights
PMI*Ttest1 product of 2 weights
PMI*Ttest2 product of 2 weights
x,7,%) % f(w,r,w
SPMI b <;Ew, r, >x<>) *];‘((*, r, w’%) — SPMly (Weir et al.; 2016)
SPMI; = Ib(SPMI;) SPMIy =5
SqLogLHR based on (Pecina,[2010)
TCombCost (Pecina,|2010)
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Definition Reference
7
PMI Ib (;EZ}"; i)) ij;((:‘j' :' Z ,% ) Church and Hanks}|{1990
TFICF1 b (f (w7, w')) « b | L7%) Kiela and Clark| 2014
flx,r,w")
TFICED b (1+ f(w,r, ') «1b (1 n J%) based on (Kiela and Clark] 2014
TFICF3 Ib (14 f(w,r,w')) * b (%) Reed et al.| 2006
h 7ty
TFIDF1 % Curran| 2004
7ty ,
TFIDF2 bt/ (ZIZ( e ) Curran| 2004
Ib (1 + n(*,;,w’))
TFIDF3 Flw,r,w')  1b (1 + %) Jurafsky and Martin, 2009
TFIDF4 Ib (f(w,r,w)) *1 %) Kiela and Clark, 2014
TFIDF5 Ib(1+ f(w,r,w)) b 1+ %) Kiela and Clark| 2014
N /
TTestl plw,r,w’) S(Uu; :';)) *pl, 1) Weeds and Weir} 2005
, f(,1,%) ,
TTest2 plw.r,w) = plw,r,x) x plt 1, w') Jurafsky and Martin/ 2009
Vp(w,r, %) * p(x,r,w)
f(w r, w/) _ flwr)sf(xrw’)
TTest3 ! (fr(w ) — Pecinal 2010
\/f w’r w (1, *) )
. 011 % 022 1 1 .
UniSubtuples | Ib (012 » O21) 3.29 \/m + @ ol + o Pecina}[2010
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Reference

pPMI

WPMI

WPMI10
WPMI4
ZTestl

ZTest2

ZTest3

PMIAlpha

PMIWDF

NPMI

Flx, 7, %) * f(w,r,w)
b (f(w,r,*) * f(x,r,w)

)

Flx,1,%) * f(w,r,w)
(1+

<ﬂm"“*ﬂ%nW)
Fl 1, %) * f(w,r ')\ 2
f(w,r, %) f(x,7,w')
Ib (1 +f(w,7’,wl)) « PMI
p(w,r,w') — p(w,r, ) * p(x,7,0)
f(;(/r,*) ) f( /)
/ w,r,x ) f(x,1,W0
@) = ey
%)
fw,ruf) - LennefCasd)

lb<(

fx,r,%)
f(w,r}.*(f;)“,g,r,w’) % (1 o f(w,r,*)*f(*,r,w’))

fCorp)?

i f(x, 1, 0)%) % f(w, r,w')
f(w,r, %) * f(x,1,w )~

a=0.75

/
PMIWDEF; * Ib (f(*’r’*) *flwnw

PMIWDF; =

)
f(w,r,*)* f(x,7,0")
f(w,r,w') min (f(w,r, %), f(x,7,w'))

o, r, )+ 1 min (f(w,r, %), f(x,7r,w)) +1

b (fehdie))

NPMI,

NPMI, = —Ib <%

Church and Hanks} {1990

Fung and McKeown/ 1997

based on WPMI

Weeds and Weir,[2005

Evert| 2005

Pecina} 2010

Levy et al.|2015

Pantel and Lin,[2002

Harispe et al.;[2015
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Definition Reference
7
i (LU ) f@r )N op , .
SPMI flw,r,*)* f(x,r,0) (Weir et al.}[2016)
SPMI; = Ib(SPMI,) SPMI, =5
. 011 x 022 1 1 1 1 . |
UniSubtuples Ib <m> —3.29 % \/ﬁ + o2 + o1 + on (Pecina)2010)
PMIAlpha
NPMIALPHA W
SPMIALPHA PMIAlpha — SPMI,
PMIALPHAWDF PMIAlpha x PMIWDF;
PMIAlpha — SPMI,
AR PMIALpha ~ PMIWDE
P ax )
NPMIALPHAWDE NPMI,
SPMIALPHAWDF (PMIAlpha — SPMI;) * PMIWDF;
NSPMIALPHAWDE (PMIAlpha — I\Slpj\\/l/ﬂd) « PMIWDF;
77
PMI — SPMI,
PMI -
> pMI » PMIWDE
* )
NPMIWDF ( ; NP ]\31 I
PMI — SPMI,) * PMIWDF;
PMIWDEF
NSPMIW NPMI,
SPMIWDF (PMI — SPMIy) * PMIWDF5
O11 * O224 1 1
b (om 021 — 329 \/011 +on2 "o, T o,
PMIALPHAUNISUBT ,
022, = Zf(*,r,i)”‘ = flw,r,%) = f(x,1,0)" + f(w,r,w)
i=1
021, = f(*,7,i)* — f(w,r,w') a=0.75
NPMIUNISUBT UniSubtuples
NPMI,
SPMIUNISUBT UniSubtuples — SPMIy
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Definition Reference
PMIWDFUNISUBT UniSubtuples x PMIWDF;
PMIALPHAUNISUBT
PMIALPHAUNISUBT
NPM UNISU NDMI,
SPMIALPHAUNISUBT PMIALPHAUNISUBT — SPMI,
PMIALPHAWDFUNISUBT PMIALPHAUNISUBT x PMIWDF;
NSPMIALPHAUNISUBT PMIALPHA%?}{/IS IUBT — SPMI
NPMIALPHAWDFUNISUBT PMIALPHA UII\\][ ;%ﬁT * PMIWDE;
n
SPMIALPHAWDFUNISUBT (PMIALPHAUNISUBT — SPMI;) x PMIWDF;
NSPMIALPHAWDFUNISUBT (PMIALPHAUNISLI{IIZ"VI—I SPMI;) * PMIWDF;
n
UNISUBT — SPM1I;
NSPMIUNISUBT - g] IP Ngn o
NPMIWDFUNISUBT UNISU N PRI IM 9
n
NSPMIWDFUNISUBT (UNISUBT — SPMI;) * PMIWDF;
NPMI,
SPMIWDFUNISUBT (UNISUBT — SPMI;) * PMIWDF;
PMIALPHAUNISUBTAM PMIALPHA2+ UNISUBT
PMIALPHAUNISUBTGM VPMIALPHA x UNISUBT
2+ PMIALPHA x UNISUBT
PMIALPHAUNISUBTHM PMIALPHA + UNISUBT
PMIALPHAUNISUBTPROD PMIALPHA « UNISUBT
PMIALPHAUNISUBTLOGPROD tiy(PMIALPHA) * t;;,(UNISUBT)
NPMIALPHAAM NPMI + Pé\/IIALPHA
NPMIALPHAGM VNPMI « PMIALPHA
2+ NPMI x« PMIALPHA
NPMIALPHAHM NPMI + PMIALPHA
NPMIALPHAPROD NPMI x PMIALPHA
NPMIALPHALOGPROD tiy(NPMI) * t;,(PMIALPHA)
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APPENDIX C

The used Hungarian datasets

C.1 Hungarian TOEFL dataset part 1

érkezés | eljovetel | letartoztatds | finanszirozas | stabilitas
évkonyv | krénikak | otthonok | nyomok | dalok

vezetés | hatalom | megfigyelés | szerelem | tudatossag
vita | veszekedés | hdbora | vélasztds | verseny

eltérések | kiillonbségek | sulyok | betétek | hullamhosszak
mod | médszer | fejadag | 6l | Oriilet

szindrnyalat | szin | ragyogas | kontraszt | illat

témdk | targyak | képzés | fizetések | elényok

szazalék | ardny | térfogat | minta | profit
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elrendezett | megtervezett | megmagyarazott | tanult | eldobott
épitett | konstrualt | el6terjesztett | finanszirozott | szervezett
kiagyalt | kieszelt | kitisztitott | kért | feltigyelt

elfogyasztott | megevett | nevelt | elfogott | ellatott
szertefoszlik | eloszlik | elszigetel | 4lcaz | lefényképez
forgalmaz | terjeszt | eliizletiesit | kutat | elismer

kiszamol | megold | felsorol | feloszt | kifejez

ad | szallit | lenytigoz | megvéd | tandcsol

vigyorog | mosolyog | edz | pihen | viccel

dvozolt | koszontott | itélt | emlékezett | cimzett

nagyobb | tekintélyesebb | alland6bb | kozelebbi | jobb
fesztelen | kozvetlen | megorokitett | félreértett | helytelen
koltséges | draga | szép | népszerti | bonyolult

lezser | nyugodt | hatdrmenti | unalmas | gazdasagi
képzeletbeli | fantdziadds | megszokott | nyilvanvalé | logikus
megvalosithaté | lehetséges | megengedett | igazsagos | nyilvanval6
hibéas | tokéletlen | apr6 | fényl6 | durva

hatuls6 | hats6 | gorbe | izmos | sz6ros

végtelen | korlatlan | viszonylagos | szokatlan | szerkezeti
hegyes | éles | hasznos | egyszer(i | hires

keskeny | vékony | tiszta | fagyos | mérgez6

veszedelmes | veszélyes | kotelezd | izgalmas | sértd

tomoren | roviden | er6teljesen | pozitivan | szabadon
allanddan | folyamatosan | azonnal | gyorsan | véletleniil

tigyesen | szakképzetten | megfontoltan | alkalmanként | humorosan
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roppantul | borzasztéan | helyénvaléan | egyediildlléan | kétségkiviil
lényegében | alapvetSen | talan | mohén | dtlagosan

gyorsan | sebesen | gyakran | valdjadban | ismételten

altaldnosan | nagyjabdl | leir6an | vitatottan | pontosan

kedvetleniil | kozonyosen | szokdsszertien | kétpartilag | rendhagydan

Osszevissza | véletlenszertien | veszélyesen | sfir(in | linearisan

C.2 Hungarian TOEFL dataset part 2

kitartas | tartossdg | képesség | nagylelkiiség | zavar

orvos | doktor | vegyész | gydgyszerész | apolond

feltételek | kikotések | kapcsolatok | hataskorok | értelmezések
gyOkerek | eredetek | szertartdsok | gyogymod | funkci6
tidvozlések | koszontések | informécié | ceremoéniak | kivaltsagok
hely | helyszin | éghajlat | szélesség | tenger

feladatok | tennivaldk | vasarlok | anyagok | boltok

nyugodtsag | békesség | kiméletlenség | kimeriiltség | boldogséag
csticspont | tetépont | befejezés | kezdet | hanyatlas

siettet | meggyorsit | megenged | meghataroz | elkisér

kiemel | kihangstlyoz | médosit | utanoz | visszaallit

kiszabott | kir6tt | hitt | kért | korreldlt

szerez | kap | nyomtat | kereskedik | kolcsonvesz

értékesitett | eladott | fagyasztott | édesitett | higitott

megoldott | elintézett | kozzétett | elfelejtett | megvizsgalt

bemutatott | demonstralt | publikalt | megismételt | elhalasztott
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elhelyezett | poziciondlt | forog | elszigetelt | kitirit

fenntartott | meghosszabbitott | finomitott | csokkentett | elemzett
befejez6dott | végzodott | bedllitott | elhalasztott | kiértékelt
elsédleges | f6 | legtobb | szamos | kivételes

termékeny | eredményes | komoly | hozzaérts | igéretes
kiemelkedd | kitin6 | kopott | antik | rejtélyes

leendd | potencidlis | bizonyos | megfontolt | kiemelked6

elismert | elfogadott | sikeres | dbrazolt | tidvozolt

kirivé | feltting | tiiskés | szérakoztatd | véletlen

magényos | egyediili | éber | nyugtalan | rettenthetetlen

elegendd | elég | minapi | élettani | értékes

mérsékelt | enyhe | hideg | rovid | szeles

egyforma | hasonl6é | kemény | dsszetett | éles

valdszinfitlen | esélytelen | baratsagtalan | kiillonb6z6 | népszertitlen
paratlan | egyediildllé | ismeretlen | elidegenitett | feltilmult
sietésen | sietve | agyaftrtan | szokasszertien | idérendben
normdlisan | altaldban | nehézkesen | maradandéan | idészakosan
gyakran | stirtin | feltétlentil | vegyileg | alig

kiilonosen | paratlanul | részben | hazafiasan | gyanakodva
els6sorban | f6ként | alkalmanként | 6vatosan | kovetkezetesen
lassan | fokozatosan | ritkdn | hatékonyan | folyamatosan
siirg6sen | kétségbeesetten | tipikusan | elképzelhetéen | probaképpen

verbdlisan | széban | nyiltan | megfelel6en | hosszadalmasan

vadul | dithosen | jellegzetesen | rejtélyesen | hirtelen
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C.3 Hungarian Rubenstein-Goodenough dataset
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elmegyodgyintézet
elmegyogyintézet
elmegyobgyintézet
elmegyogyintézet
alairas

alairas
személygépkocsi
személygépkocsi
személygépkocsi
madér

madar

madar

fia

fia

fia

baty

baty

auto

sirkert

sirkert

sirkert

part

part

part

kakas

fonal

fonal

daru

daru

péarna

péarna

étel

étel

sirkert

gyimolcs

bolondokhéza

pap
vizpart
kézjegy
auté
péarna
varazslé
kakas
daru
erdéség
srac
baromfi
bolcs
Srac

pap
utazés
temetd
foldhalom
erdség
erd6
hegy
vizpart
baromfi
mosoly
kotél
szerszam
baromfi
ékko
kisparna
gyimolcs

baromfi

0.79
0.19
3.04
0.39
0.06
3.59
3.92
0.97
0.11
2.63
2.63
1.24
3.82
0.44
0.96
241
2.74
1.55
3.88
1.69
1.18
0.85
1.26
3.60
3.68
0.02
3.41
2.37
1.41
0.45
3.84
2.69
1.09

C. The used Hungarian datasets
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erd6 temets 1.00
erdd erddség 3.65
gyimolcs kemence 0.05
kemence szerszam 1.37
kemence tfizhely 3.11
dragaké  ékko 3.94
iveg ékko 1.78
iveg biivész 0.44
iiveg ivépohar 3.45
temetd bolondokhéza 0.42
vigyor szerszam 0.18
vigyor STac 0.88
vigyor mosoly 3.46
hegy foldhalom 3.29
hegy erdéség 1.48
szerszam eszkoz 3.66
utazas ut 3.58
srac varazslé 0.99
btivész  jos 1.82
btivész varazslo 3.21
délido dél 3.94
pap jos 0.91
pap rabszolga 0.57
foldhalom vizpart 0.97
foldhalom ttizhely 0.14
dél kotél 0.04
jos boles 2.61
baromfi 1t 0.04
bolcs varazslé 2.46

jobbdgy  rabszolga 3.46
vizpart ut 1.22
vizpart  erd6ség 0.90
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