
Strategic Reasoning in Game Theory

Vadim Malvone

Università degli studi di Napoli “Federico II”
Dipartimento di Matematica e Applicazioni “R. Caccioppoli”

Dottorato in Scienze Matematiche e Informatiche
Ciclo XXX

A thesis submitted in fulfillment of the degree of
Doctor in Compute Science

Submission: December 11, 2017
Defense: Napoli, February -, 2018

Revised version: December 11, 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Università degli Studi di Napoli Federico Il Open Archive

https://core.ac.uk/display/196237489?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

© Copyright 2017
by

Vadim Malvone

Supervisor: Prof. Aniello Murano

Contents

I Reachability Games 1

1 Additional Winning Strategies in Reachability Games 3
1.1 Introduction . 4

1.2 Preliminaries . 6

1.3 Case Studies . 7

1.3.1 Cop and Robber Game. 7

1.3.2 Escape Game. 8

1.4 The Game Model . 9

1.5 Searching for Additional Winning Strategies 11

1.6 Games with Imperfect Information . 14

1.7 Looking for Additional Winning Strategies in 2TRGI 17

1.7.1 Solution 2TRGI . 18

1.7.2 Additional Winning Strategies for 2TRGI 19

1.8 Conclusion and Future Work . 21

2 Hiding actions in Multi-Player Games 22
2.1 Introduction . 23

2.2 Game Definition . 25

2.3 Does the imperfect information matter? 30

2.4 Automata-Theoretic Solution . 33

2.4.1 Automata Theory . 33

2.4.2 Solution for 2CRGI . 34

2.4.3 Solution for CRGI . 35

2.5 Conclusion . 37

II Counting Strategies 39

3 Reasoning about Graded Strategy Quantifiers 41
3.1 Introduction . 42

3.2 Graded Strategy Logic . 44

3.2.1 Model . 44

3.2.2 Syntax . 48

3.2.3 Semantics . 50

3.2.4 Results . 52

CONTENTS CONTENTS

3.3 Strategy Equivalence . 53

3.3.1 Elementary Requirements . 54

3.3.2 Play Requirement . 54

3.3.3 Strategy Requirements . 55

3.4 From Concurrent To Turn-Based Games 57

3.4.1 Normalization . 59

3.4.2 Minimization . 60

3.4.3 Conversion . 61

3.5 Determinacy . 65

3.6 Model Checking . 72

3.7 Discussion . 77

4 Graded Modalities in Strategy Logic 79
4.1 Introduction . 80

4.2 Graded Strategy Logic . 82

4.2.1 Syntax . 83

4.2.2 Models . 85

4.2.3 Semantics . 85

4.2.4 Fragments of GRADEDSL . 87

4.3 Model-checking GRADEDSL . 89

4.3.1 From Logic to Automata . 91

4.3.2 Decidability and Complexity of Model Checking 93

4.4 Analysing Games using GRADEDSL . 96

4.4.1 Strategic Form and Infinitely Repeated Games 96

4.4.2 Quasi-Quantitative Games and Objective-LTL Games 96

4.4.3 Example: The Prisoner’s Dilemma (PD) 97

4.4.4 Illustrating GRADEDSL: uniqueness of solutions 99

4.5 Conclusion . 102

III Strategies and their complexity 104

5 Reasoning about Natural Strategic Ability 106
5.1 Introduction . 107

5.2 A Logic for Natural Ability . 108

5.2.1 Syntax . 109

5.2.2 Concurrent Game Structures . 109

5.2.3 Strategies and Their Complexity 110

5.2.4 Semantics of NatATL . 111

ii

Contents CONTENTS

5.3 Model Checking for Natural Memoryless Strategies 112
5.3.1 Model Checking for Small Strategies 112
5.3.2 Model Checking: General Case 112

5.4 A Logic for Natural Strategic Ability of Agents with Memory 118
5.4.1 Natural Recall . 118
5.4.2 NatATL for Strategies with Recall 119
5.4.3 Relation to Natural Memoryless Strategies 119

5.5 Model Checking for Natural Strategies with Recall 121
5.5.1 Model Checking for Small Strategies 122
5.5.2 Model Checking: General Case 123

5.6 Summary and Future Work . 124

iii

Abstract

Game theory in AI is a powerful mathematical framework largely applied in the last three
decades for the strategic reasoning in multi-agent systems. Seminal works along this line
started with turn-based two-player games (under perfect and imperfect information) to check
the correctness of a system against an unpredictable environment. Then, large effort has been
devoted to extend those works to the multi-agent setting and, specifically, to efficiently rea-
soning about important solution concepts such as Nash Equilibria and the like. Breakthrough
contributions along this direction concern the introduction of logics for the strategic reasoning
such as Alternating-time Temporal Logic (ATL), Strategy Logic (SL), and their extensions.

Two-player games and logics for the strategic reasoning are nowadays very active areas
of research. In this thesis we significantly advance the work along both these two lines of
research by providing fresh studies and results of practical application.

We start with two-player reachability games and first investigate the problem of checking
whether a designed player has more than a winning strategy to reach a target. We investigate
this question under both perfect and imperfect information. We provide an automata-based
solution that requires linear-time, in the perfect information setting, and exponential-time,
in the imperfect one. In both cases, the results are tight. Then, we move to multi-player
concurrent games and study the following specific setting: (i) Player0’s objective is to
reach a target W , and (ii) the opponents are trying to stop this but have partial observation
about Player0’s actions. We study the problem of deciding whether the opponents can
prevent Player0 to reach W . We show, using an automata-theoretic approach that, assuming
the opponents have the same partial observation and play under uniformity, the problem
is in EXPTIME. We recall that, in general, multi-player reachability games with imperfect
information are undecidable.

Then, we move to the more expressive framework of logics for the strategic reasoning.
We first introduce and study two graded extensions of SL, namely GSL and GRADEDSL.
By the former, we define a graded version over single strategy variables, i.e. ”there exist
at least g different strategies”, where the strategies are counted semantically. We study the
model checking-problem for GSL and show that for its fragment called vanilla GSL[1G] the
problem is PTIME-complete. By GRADEDSL, we consider a graded version over tuple of
strategy variables and use a syntactic counting over strategies. By means of GRADEDSL we
show how to count the number of different strategy profiles that are Nash equilibria (NE).
By analyzing the structure of the specific formulas involved, we conclude that the important
problem of checking for the existence of a unique NE can be solved in 2EXPTIME, which
is not harder than merely checking for the existence of such an equilibrium. Finally, we
adopt the view of bounded rationality, and look only at ”simple” strategies in specifications of

Contents Abstract

agents’ abilities. We formally define what ”simple” means, and propose a variant of plain
ATL, namely NatATL, that takes only such strategies into account. We study the model
checking problem for the resulting semantics of ability and obtain tight results. The positive
results achieved with NatATL encourage for the investigation of simple strategies over more
powerful logics, including SL.

v

Introduction

Game theory [WJ95] in AI is a powerful mathematical framework to reason about reactive
systems [HP85]. These systems are characterized by an ongoing interaction between two or
more entities, modeled as players, and the behavior of the entire system deeply relies on this
interaction [HP85]. Game theory has been largely investigated in a number of different fields.
In economics, it is used to deal with solution concepts such as Nash Equilibrium [Mye91]. In
biology, it is used to reason about the phenotypic evolution [Smi82]. In computer science, it is
applied to solve problems in robotics, multi-agent system verification and planning [KVW01,
JM14, Woo02].

In the basic setting, a (finite) game consists of two players, conventionally named Player0

and Player1, playing a finite number of times, in a turn-based manner, i.e., the moves of the
players are interleaved. Technically, the configurations (states) of the game are partitioned
between Player0 and Player1 and a player moves in a state whenever he owns it. Solving a
two-player game amounts to check whether Player0 has a winning strategy. That is, to check
whether he can take a sequence of move actions (a strategy) that allows him to satisfy the
game objective, no matter how his opponent plays.

Depending on the visibility the players have over the game, we distinguish between
perfect and imperfect information games [Rei84]. The former corresponds to a very basic
setting in which every player has full knowledge about the game arena and the moves
taken by the other players. However, such a game model has rare applications in real-life
scenarios where it is common to have situations in which a player has to come to a decision
without having all relevant information at hand. In computer science this situation occurs for
example when some variables of a system are internal/private and not visible to an external
environment [KV97, BCJK15]. For instance, consider an ATM and a customer player aiming
to withdraw some money. At a certain point, the controller player internally decides the
denominations of the bills to delivery to the customer player and this is revealed only at the
end of the interaction between the two actors, that is when the game ends.

In game models for AI, the imperfect information is usually modeled by setting an
indistinguishability relation over the states of the arena [KV97, Rei84, PR90]. In this case,
during a play, it may happen that some players cannot tell precisely in which state they are,
but rather they observe a set of states. Therefore these players cannot base their strategy on
the exact current situation. This means that over indistinguishable sets they can only use the
same move or, similarly, that some perfect information moves are not valid anymore. This
constraint deeply impacts on the problem of deciding who wins the game. Indeed, it is well
known that multi-player games of imperfect information are computationally hard and, in
some cases they become non-elementary or even undecidable [PR89, Rei84].

Contents Introduction

An important application of game theory in computer science and, more recently, in AI,
concerns formal-system verification [CE81, CGP02, KVW00, QS82]. In particular, game
theory has come to the fore as a powerful tool for the verification of reactive systems and
embedded systems. This story of success goes back to late seventies with the introduction
of the model checking technique [CE81, QS82] by Clarke, Emerson, Sifakis, and Quielle for
which the first three authors received the prestigious Turing award prize. The idea of model
checking is powerful and simple at the same time: to check whether a system satisfies a
desired behavior we check instead, by means of a suitable algorithm, whether a mathematical
model of the system meets a formal specification describing the systems [CGP02]. For the
latter, we usually use temporal logics such as LTL [Pnu77], CTL [CE81], CTL? [EH86],
and the like. In particular LTL was introduced by Pnueli, who also got for this the Turing
award.

Notably, first applications of model checking just concerned closed systems, which are
characterized by the fact that their behavior is completely determined by their internal states.
This makes the modeling quite easy, indeed one can simple use Kripke structures, that are
labeled-state transition systems, and the verification process is also easy as we have to handle
with only one source of non-determinism, i.e., the one coming from the system itself. Overall,
it turns out that the model checking problem for closed systems with respect to LTL and CTL?

specifications is PSPACE-complete, while it is just PTIME-complete for CTL specifications.

Unfortunately, all model checking techniques developed to handle closed systems turn
out to be quite useless in practice as most of the systems are open in the sense that they are
characterized by an ongoing interaction with an external environment on which the whole
behavior of the system relies. This makes the verification process much harder as one has
to deal with two sources of non-determinism, one coming from the environment and one
coming from the system itself. Also, to model open systems we need more involved structures
(than Kripke structures) in which one has to explicitly take into consideration the interaction
between the system and the external environment. To overcome this problem, Kupferman,
Vardi and Wolper introduced in late nineties module checking [KVW01] a specific framework
to handle the verification of open systems against branching-time temporal-logics such as
CTL, CTL? and the like. In particular, they showed that the verification procedure for open
systems always requires an additional (and unavoidable) exponential-time complexity with
respect to closed systems. Since its introduction, module checking has been a very active
field of research and applied in several directions. Among the others we recall applications
in the infinite-state recursive setting (i.e., pushdown systems) [BMP10, FMP08], as well as
hierarchical systems [MNP08]. Module checking has been also investigated in the imperfect
information setting [KV97, ALM+13]. In particular, for finite-state systems the problem
remains decidable although it requires an additional exponential-time complexity with respect
to the size of the system [KV97].

vii

Introduction CONTENTS

Following the success of module checking, researchers started looking at more general
open settings and, in particular, to multi-agent systems [Woo02, AHK02, JvdH04, CHP10,
MMV10a, MMPV14]. These are systems whose behavior depends on the ongoing interaction
between several autonomous entities (namely, agents or players) continuously interacting
among them in a cooperative or adversarial manner, trying to achieve a designed goal.
One of the most important developments in this field comes from Alur, Kupferman, and
Henzinger, who introduced the logic ATL and its extension ATL? [AHK02]. ATL? allows to
reason about strategies of agents having the satisfaction of temporal goals as payoff criterion.
Formally, this logic is obtained as a generalization of CTL?, in which the existential E and the
universal A path quantifiers are replaced with strategic modalities of the form 〈〈A〉〉 and [[A]],
where A is a set of agents. As far as the game model regards, concurrent game structures
(in short CGS) are generally used. CGS are labeled-state transition graphs whose transitions
are labeled with agent’s decisions, i.e., a tuple of actions, one for each agent. A player’s
strategy in a CGS can be seen as a ”conditional plan” for possible moves. Formally it is
defined as a function from a sequence of system states (i.e., possible histories of the game) to
actions. This general definition of strategy is called memoryfull or perfect recall as a player
can look at the entire past history of a play in order to come to a decision. Conversely, one
can also consider a simpler notion of positional a.k.a. memoryless strategy, which is defined
as a function from states to actions. Positional strategies are much easier to handle along the
verification process. Indeed ATL? model checking is 2EXPTIME-complete for memoryfull
strategies and PSPACE-complete for memoryless strategies (for ATL the complexity does
not change and it is PTIME-complete). The difference becomes even more evident in the
imperfect information setting. Indeed the model checking problem is undecidable already
in the restricted case of ATL specifications with three players [DT11]. This is undesirable
since imperfect information and memoryfull strategies (coming together) are quite common in
real-life multi-agent settings. This has therefore limited the application of ATL and ATL? in
practice. This problem has been recovered only recently by considering specific but realistic
restrictions on the architecture of the game model [BMM17] or on the way the agents can
hide their information along a play [BLMR17]. Under this restriction it has been possible to
retain decidability. ATL (and its extension ATL?) has been largely studied in the last two
decades, both from a practical and a theoretical point of view. For several years it has been
considered the referred logic for the strategic reasoning in multi-agent systems. Tools based
on ATL and ATL? also exist and the most famous one is MCMAS [LR06a, LQR09].

Despite its expressiveness, ATL? suffers from the strong limitation that strategies are
treated only implicitly in the semantics of its modalities. This restriction makes the logic
less suited to formalize important solution concepts, such as the Nash Equilibrium. These
considerations led to the introduction and study of Strategy Logic (SL, for short) [CHP07,
MMV10a], a more powerful formalism for the strategic reasoning. As a key aspect, this logic

viii

Contents Introduction

treats strategies as first-order objects that can be determined by means of the existential 〈〈x〉〉
and universal [[x]] quantifiers, which can be respectively read as “there exists a strategy x”
and “for all strategies x”. Remarkably, in SL [MMV10a], a strategy is a generic conditional
plan that at each step prescribes an action on the base of the history of the play. Therefore,
this plan is not intrinsically glued to a specific agent, but an explicit binding operator (a, x)

allows to link an agent a to the strategy associated with a variable x. Unfortunately, the
high expressivity of SL comes at a price. Indeed, it has been shown that the model-checking
problem for SL becomes non-elementary complete. To gain back elementariness, several
fragments of SL, strictly subsuming ATL? have been considered. Among the others, One-
Goal Strategy Logic (SG[1G], for short) considers SL formulas in a special prenex normal
form having a single temporal goal at a time. For a goal, it is specifically meant a sequence
of bindings followed by a temporal logic formula. It has been shown that for SG[1G] the
model checking question is 2-EXPTIME-COMPLETE, as it is for ATL. If one allows for a
Boolean combination of goals, then the resulting logic is named Boolean goal Strategy Logic
(SG[BG]), for which the model checking problem is non-elementary-complete [BGM15]. SL
is most recent and promising logic to be used for future applications in the strategic reasoning
for multi-agent systems. Tools for this logic also exist [ČLMM14, ČLM15].

For what we have discussed so far, it is clear that two ingredients play a central role in
formal verification multi-agent systems: the nature of the strategies and how much imperfect
information among players it is admitted. In this thesis we carefully investigate both this
issues under specific settings. As far as the strategies concerns, observe that in all cases
discussed above, in order to win a game, we just look for the existence of a winning strategy
for some coalitions of players or for its complement. This corresponds and extends the
classical modalities ∃ and ∀ in temporal logic. Sometimes, however, it is convenient to
have a more quantitative information about the number of strategies that allow to satisfy/not
satisfy a given goal. For example, in Nash Equilibrium, such an information amounts to
solve the challenging question of checking whether the equilibrium is unique [AKH02, PC79,
CHS99, ORS93, BBV86, Fra92, GK93, MMMS15, AMMR16]. This problem impacts on
the predictive power of Nash Equilibrium since, in case there are multiple equilibria, the
outcome of the game cannot be uniquely pinned down [SLCB13, ZG11, Pav12]. As another
example, consider the setting of robot rescue planning [KTN+99, Kit00, KT01, CTC07]. It
is not hard to imagine situations in which it is vital to know in advance whether a robot team
has more than a winning strategy from a critical stage, just to have a backup plan in case an
execution of a planned winning strategy cannot be executed anymore. Such a redundancy
allows to strengthen the ability of winning the game and, specifically, the rescue capability.

Another aspect to consider about strategies is how much memory they have. In particular,
memoryless strategies are too poor to cover real situations while memoryfull strategies make
sense only from a mathematical point of view and in case we think of strategic ability of

ix

Introduction CONTENTS

a machine (robot, computer program). However, the latter kind of strategies are not very
realistic for reasoning about human behavior. This is because humans are very bad at handling
combinatorially complex objects. A human strategy should be relatively simple and “intuitive”
or “natural” in order for the person to understand it, memorize it, and execute it. This applies
even more if the human agent has to come up with the strategy on its own.

Regarding the imperfect information aspects, as far as we have discussed, it easily
complicates the decision problem leading to non-elementariness or even to undecidability.
In this thesis we have considered restricted but realistic multi-agent scenarios in which the
verification problem of reaching a specific target is just EXPTIME-complete.

Now, we have all ingredients to show the problems and the related results of this thesis.

In Chapter 1 1, we study the problem of checking whether, in a two-player reachability
game, a designed player has more than a winning strategy. We investigate this question both
under perfect and imperfect information about the moves performed by the players. We
provide an automata-based solution that results, in the perfect information setting, in a linear-
time procedure; in the imperfect information setting, instead, it shows an exponential-time
upper bound. In both cases, the results are tight.

In Chapter 2 2, we study multi-player concurrent games under imperfect information
where (i) Player0’s objective is to reach a target W , and (ii) the opponents are trying to stop
this but have partial observation about Player0’s actions. We study the problem of deciding
whether the opponents can prevent Player0 to reach W , by beating every Player0’s strategy.
We show, using an automata-theoretic approach that, assuming the opponents have the same
partial observation and play under uniformity, the problem is in EXPTIME.

In Chapter 3 3, we introduce and study Graded Strategy Logic (GSL), an extension of
Strategy Logic (SL) with graded quantifiers. In GSL, by means of the existential construct
〈〈x≥ g〉〉ϕ, one can enforce that there exist at least g strategies x satisfying ϕ. Dually, via
the universal construct [[x<g]]ϕ, one can ensure that all but less than g strategies x satisfyϕ.
Strategies in GSL are counted semantically. This means that strategies inducing the same
outcome, even though looking different, are counted as one. While this interpretation is
natural, it requires a suitable machinery to allow for such a counting, as we do. Precisely,
we introduce a non-trivial equivalence relation over strategy profiles based on the strategic
behavior they induce. To give an evidence of GSL usability, we investigate some basic
questions about the Vanilla GSL[1G] fragment, that is the vanilla restriction of the well-
studied One-Goal Strategy Logic fragment of SL augmented with graded strategy quantifiers.
We show that the model-checking problem for this logic is PTIME-COMPLETE. We also
report on some positive results about the determinacy.

1It appears in [MMS17a].
2It appears in [MMS17b].
3It appears in [MMMS17].

x

Contents Introduction

In Chapter 4 4, we introduce Graded Strategy Logic (GRADEDSL), an extension of SL
by graded quantifiers over tuples of strategy variables, i.e., “there exist at least g different
tuples (x1, ..., xn) of strategies” where g is a cardinal from the set N ∪ {ℵ0,ℵ1, 2

ℵ0}. We
prove that the model-checking problem of GRADEDSL is decidable. We then turn to the
complexity of fragments of GRADEDSL. When the g’s are restricted to finite cardinals,
written GRADEDNSL, the complexity of model-checking is no harder than for SL, i.e., it
is non-elementary in the quantifier rank. We illustrate our formalism by showing how to
count the number of different strategy profiles that are Nash equilibria (NE). By analyzing
the structure of the specific formulas involved, we conclude that the important problems of
checking for the existence of a unique NE can be solved in 2EXPTIME, which is not harder
than merely checking for the existence of such an equilibrium.

In Chapter 5 5, we adopt the view of bounded rationality, and look only at ”simple”
strategies in specifications of agents’ abilities. We formally define what ”simple” means,
and propose a variant of alternating-time temporal logic that takes only such strategies into
account. We also study the model checking problem for the resulting semantics of ability.
More precisely, we introduce NatATL∗, a logic that extends ATL? by replacing the strategic
operator 〈〈A〉〉ϕ with a bounded version 〈〈A〉〉≤kϕ, where k ∈ N denotes the complexity
bound. To measure the complexity of strategies, we assume that they are represented by lists
of guarded actions. For memoryless strategies, guards are boolean propositional formulas.
For strategies with recall, guards are given as regular expressions over boolean propositional
formulas. As technical results, we study the problem of model checking NatATL for both
memoryless and memoryfull strategies. The complexity ranges from ∆P

2 to ∆P
3 in the general

case, and from PTIME to ∆P
2 for small complexity bounds.

For the sake of clarity of exposition, every chapter is a build in a way that is self content.
This means that introduction and preliminary concepts and notations are locally defined.

4It appears in [AMMR17].
5It appears in [JMM17].

xi

Part I

Reachability Games

CHAPTER 1

Additional Winning Strategies in
Reachability Games

Contents
1.1 Introduction . 4

1.2 Preliminaries . 6

1.3 Case Studies . 7

1.3.1 Cop and Robber Game. 7

1.3.2 Escape Game. 8

1.4 The Game Model . 9

1.5 Searching for Additional Winning Strategies 11

1.6 Games with Imperfect Information 14

1.7 Looking for Additional Winning Strategies in 2TRGI 17

1.7.1 Solution 2TRGI . 18

1.7.2 Additional Winning Strategies for 2TRGI 19

1.8 Conclusion and Future Work . 21

1.1. Introduction

1.1 Introduction

In this chapter, we address the quantitative question of checking whether Player0 has more
than a strategy to win a finite two-player game G. We investigate this problem under the
reachability objective, i.e. some states of the game arena are declared target. We consider
both the cases in which the players have perfect or imperfect information about the moves
performed by their opponent. We solve the addressed problem by using an automata-theoretic
approach. Precisely, we build an automaton that accepts only trees that are witnesses of more
than one winning strategy for the designed player over the game G. Hence, we reduce the
addressed quantitative question to the emptiness of this automaton. Our automata solution
mainly consists in extending the classic approaches by further individuating a place where
Player0 has the ability to follow two different ways (i.e., strategies) to reach a target state.
While this may look simple in the perfect information setting, in the imperfect case it requires
some careful thoughts. Furthermore, in support to the technical contribution of our solution
we observe the following: (i) it is an use of automata and an extension of previous approaches
never explored before; (ii) it provides an elegant solution ; (iii) it is an optimal solution as it
gives a tight upper bound, (iv) it is an easy scalable solution, as one can easily inject more
sophisticated solution concepts such as safety, fairness, etc.

By means of the automata-theoretic approach, one can also check for other “forms” of
additional winning conditions. For example one can check whether Player0 can win against
all but one Player1 strategies. This is intimately related to the concept of almost surely-
winning in probabilistic games [ACY95]. As a practical application, this is useful in game
design as it can highlight the presence of a unique undesired behavior of the adversarial player
and possibly suggest a way to prevent it. Similarly, it is useful in security; for example it can
highlight a flow in a firewall (a successful attack coming from the environment) and suggest a
way to correct it. Technically, the solution to the question “Does Player0 beat all Player1

strategies but one?” reduces to first build an automaton that collects all tree strategies for
Player0 that, except for one path, they correspond to winning strategies, and then check for
its non-emptiness.

In a broader vision, the importance of our work resides on the fact that it can be seen as a
core engine and as a first step through the efficient solution of important problems in computer
science and AI. Among the others, we mention checking the uniqueness of Nash Equilibrium
under imperfect information for reachability targets. This field has received much attention
recently and some results can be found in top venues such as [BMMRV17, BLMR17].
However, all the approaches used in the mentioned papers lead to a non-elementary complexity,
as they are shaped for very reach strategic formalisms to represent the solution concepts, and
thus far beyond the tight complexity we achieve instead in this work.

Along the chapter we make use of some cooperative and adversarial game examples

4

1.1. Introduction

that will help to better explain the specific game setting we are studying and the solution
approaches we provide.

Related works. Counting strategies has been deeply exploited in the formal verification of
reactive systems by means of specification logics extended with graded modalities, interpreted
over games of infinite duration [BLMV08, FMP08, MMMS15, AMMR16]. However, our
work is the first to consider additional winning strategies in the imperfect information setting.
Also, it is worth recalling that, on the perfect information side, the solution algorithms
present in the literature for graded modalities [MMMS15, AMMR16] have been conceived to
address complicated scenarios and, consequently, they usually perform much worse (w.r.t. the
asymptotic complexity) than our algorithm on the restricted setting we consider. Clearly one
can express with graded modalities the existence of additional strategies in a game. To see
how this is possible we refer to [AMMR16]for an example in the perfect information setting.

Graded modalities have been first investigated over closed systems, i.e., one-player games,
to count moves and paths in system models. A pioneering work is [Fin72], where these
modalities have been studied in classic modal logic. Successively, they have been exported to
the field of knowledge representation, to allow quantitative bounds on the set of individuals
satisfying specific properties, as well as they have been investigated in first-order logic
and description logic. Specifically, they are known as counting quantifiers in first-order
logics [GOR97], number restrictions in description logics [HS04, CGLV10, CEO14, BBL15]
and numerical constraints in query languages [BBL15, FE15]

In [KSV02], graded µCALCULUS has been introduced in order to express and evaluate
statements about a given number of immediately accessible worlds. Successively in [BMM12],
the notion of graded modalities have been extended to deal with number of paths. Among the
others graded CTL (GCTL, for short) has been introduced with a suitable axiomatization of
counting [BMM12]. That work has been recently extended in [AMR15] to address GCTL?,
a graded extension of CTL?.

In this work we analyze and compare different strategies in two-player games. The
comparison between strategies is a problematic that has been intensively investigated in other
works. Among the others, we mention [JDW02], where the concept of permissive strategies
has been introduced. However, the aim of that paper is to compare strategies in order to come
up with a single strategy that allows to represent all of them by one.

In multi-player system verification, we also witness several specific approaches
to count strategies. Chronologically, we first mention module checking for graded
µCALCULUS [FMP08], where the counting is restricted to moves in a two-player setting.
Then, in [MMMS15, AMMR16], motivated by counting Nash equilibria, two different graded
extension of Strategy Logic have been considered.

We finally remark that the automata-theoretic solution we provide takes inspiration from
the ones used in [KV97, FMP08, BMM12, Tho90, KV00]. In details, in [KV97] such a

5

1.2. Preliminaries

technique is used to show that the problem is EXPTIME-complete w.r.t. CTL formulas and
2EXPTIME-complete w.r.t. CTL? formulas. In [FMP08], an automata-theoretic approach
is used to show that the same problem over pushdown structures and graded µCALCULUS

formulas is 2EXPTIME-complete. In [BMM12], automata are used to show that graded CTL
formulas are satisfiable in exponential time. In [Tho90] efficient algorithms for the emptiness
problem of word and tree automata are provided. Finally, in [KV00], alternating tree automata
are used in the imperfect information case on the synthesis problem. However, our solution
is much more efficient since it is directly constructed for the simpler setting of two-player
turn-based games of finite duration, played with respect to the reachability objective.

1.2 Preliminaries

In this section we introduce some preliminary concepts needed to properly define the game
setting under exam as well as to describe the adopted solution approach. In particular, we
introduce trees useful to represent strategies and automata to collect winning strategies.

Trees. Let Υ be a set. An Υ-tree is a prefix closed subset T ⊆ Υ∗. The elements of T are
called nodes and the empty word ε is the root of T . For v ∈ T , the set of children of v (in
T) is child(T, v) = {v · x ∈ T | x ∈ Υ}. Given a node v = y · x, with y ∈ Υ∗ and x ∈ Υ,
we define anc(v) to be y, i.e., the ancestors of v, and last(v) to be x. We also say that v
corresponds to x. The complete Υ-tree is the tree Υ∗. For v ∈ T , a (full) path π of T from
v is a minimal set π ⊆ T such that v ∈ π and for each v′ ∈ π such that child(T, v′) 6= ∅,
there is exactly one node in child(T, v′) belonging to π. Note that every word w ∈ Υ∗ can
be thought of as a path in the tree Υ∗, namely the path containing all the prefixes of w. For
an alphabet Σ, a Σ-labeled Υ-tree is a pair <T, V > where T is an Υ−tree and V : T → Σ

maps each node of T to a symbol in Σ.

Automata Theory. We now recall the definition of alternating tree automata and its special
case of nondeterministic tree automata[VW86, KVW00, EJ91].

Definition 1.2.1 An alternating tree automaton (ATA, for short) is a tuple A =<

Σ, D,Q, q0, δ, F >, where Σ is the alphabet, D is a finite set of directions, Q is the set
of states, q0 ∈ Q is the initial state, δ : Q×Σ→ B+(D×Q) is the transition function, where
B+(D ×Q) is the set of all positive Boolean combinations of pairs (d, q) with d direction
and q state, and F ⊆ Q is the set of the accepting states.

An ATA A recognizes (finite) trees by means of (finite) runs. For a Σ-labeled tree
<T, V >, with T = D∗, a run is a (D∗× Q)-labeled N -tree <Tr, r > such that the root

6

1.3. Case Studies

is labeled with (ε, q0) and the labels of each node and its successors satisfy the transition
relation.

For example, assume thatA, being in a state q, is reading a node x of the input tree labeled
by ξ. Assume also that δ(q, ξ) = ((0, q1)∨ (1, q2))∧ (1, q1). Then, there are two ways along
which the construction of the run can proceed. In the first option, one copy of the automaton
proceeds in direction 0 to state q1 and one copy proceeds in direction 1 to state q1. In the
second option, two copies of A proceed in direction 1, one to state q1 and the other to state q2.
Hence, ∨ and ∧ in δ(q, ξ) represent, respectively, choice and concurrency. A run is accepting
if all its leaves are labeled with accepting states. An input tree is accepted if there exists a
corresponding accepting run. By L(A) we denote the set of trees accepted by A. We say that
A is not empty if L(A) 6= ∅.

As a special case of alternating tree automata, we consider nondeterministic tree automata
(NTA, for short), where the concurrency feature is not allowed. That is, whenever the
automaton visits a node x of the input tree, it sends to each successor (direction) of x at most
one copy of itself. More formally, an NTA is an ATA in which δ is in disjunctive normal form,
and in each conjunctive clause every direction appears at most once.

1.3 Case Studies

In this section we introduce two different case studies of two-player games. In the first
case the players behave adversarial. In the second one, they are cooperative. These running
examples are useful to better understand some technical parts of our work.

1.3.1 Cop and Robber Game.

Assume we have a maze where a cop aims to catch a robber, while the latter, playing
adversarial, aims for the opposite. For simplicity, we assume the maze to be a grid divided in
rooms, each of them named by its coordinates in the plane (see Figure 1.1). Each room can
have one or more doors that allow the robber and the cop to move from one room to another.
Each door has associated a direction along with it can be crossed. Both the cop and the robber
can enter in every room. The cop, being in a room, can physically block only one of its doors
or can move in another room. The robber can move in another room if there is a non-blocked
door he can take, placed between the two rooms, with the right direction. The robber wins the
game if he can reach one of the safe places (EXIT) situated in the four corners of the maze.
Otherwise, the robber is blocked in a room or he can never reach a safe place, and thus the
cop wins the game. We assume that both the cop and the robber are initially siting in the
middle of the maze, that is in the room (1, 1). It important to note that the game is played in
a turn-based manner, and the cop is the first player that can moves. Starting from the maze
depicted in Figure 1.1, one can see that the robber has only one strategy to win the game. In

7

1.3. Case Studies

d1
↑

d2
↓

→d3

→d4

→d5

d6
↓

d7
↓

→d8

→d9

→d10

d11
↓

d12
↓

EXIT EXIT

EXITEXIT

C&R

0

1

2

10 2

Figure 1.1: Cop and Robber Game.

fact, if the cop blocks the door d7 (resp., d9), the robber can choose the door d9 (resp., d7),
then the cop can go in the room (1, 2) (resp., (2, 1)), and finally the robber can choose the
door d12 (resp., d10) and then wins the game. Consider now two orthogonal variations of the
maze. For the first one, consider flipping the direction of the door d12. In this case, the robber
loses the game. As second variation, consider flipping the direction of the door d6. Then the
robber wins the game and he has now two strategies to accomplish it.

1.3.2 Escape Game.

Assume we have an arena similar to the one described in the previous example, but now with
a cooperative interaction between two players, a human and a controller, aiming at the same
target. Precisely, consider the arena depicted in Figure 1.2 representing a building where
a fire is occurring. The building consists of rooms and, as before, each room has one-way
doors and its position is determined by its coordinates. We assume that there is only one
exit in the corner (2, 2). One can think of this game as a simplified version of an automatic
control station that starts working after an alarm fire occurs and all doors have been closed.
Accordingly, we assume that the two players play in turn and at the starting moment all doors
are closed. At each control turn, he opens one door of the room in which the human is staying.
The human turn consists of taking one of the doors left open if its direction is in accordance
with the move. We assume that there is no communication between the players. We start
the game with the human siting in the room (0, 0) and the controller moving first. It is not
hard to see that the human can reach the exit trough the doors d1, d4, d7, d10 opened by the
controller. Actually, this is the only possible way the human has to reach the exit. Conversely,
if we consider the scenario in which the direction of the door d3 is flipped, then there are two
strategies to let the human to reach the exit. Therefore, the latter scenario can be considered
as better (i.e., more robust) than the former. Clearly, this extra information can be used to

8

1.4. The Game Model

d1
↓

d2
↑

←d3

→d4

→d5

d6
↓

d7
↓

→d8

←d9

→d10

d11
↓

d12
↓

H

EXIT

0

1

2

10 2

Figure 1.2: Escape Game.

improve an exit fire plan at its designing level.

1.4 The Game Model

In this section, we consider two-player turn-based games that are suitable to represent the case
studies we have introduced in the previous section. Precisely, we consider games consisting
of an arena and a target. The arena describes the configurations of the game through a set of
states, being partitioned between the two players. In each state, only the player that owns it
can take a move. This kind of interaction is also known as token-passing. About the target,
we consider the reachability objective, that is some states are declared target. The formal
definition of the considered game model follows.

Definition 1.4.1 A turn-based two-player reachability game (2TRG, for short), played be-
tween Player0 and Player1, is a tuple G , <St, sI , Ac, tr, W>, where St , St ∪ St

is a finite non-empty set of states, with Sti being the set of states of Playeri, sI ∈ St is a
designated initial state, Ac , Ac0 ∪Ac1 is the set of actions, W is a set of target states, and
tr : Sti × Aci → St−i, for i ∈ {0, 1} is a transition function mapping a state of a player
and its action to a state belonging to the other player.

To give the semantics of 2TRGs, we now introduce some basic concepts such as track, strategy
and play. Intuitively, tracks are legal sequences of reachable states in a game that can be seen
as descriptions of possible outcomes of the game.

Definition 1.4.2 A track is a finite sequence of states ρ ∈ St∗ such that, for all i ∈
[0, |ρ− 1|[, if (ρ)i ∈ St then there exists an action a0 ∈ Ac0 such that (ρ)i+1 = tr((ρ)i, a0),
else there exists an action a1 ∈ Ac1 such that (ρ)i+1 = tr((ρ)i, a1), where (ρ)i denotes the
i-st element of ρ. For a track ρ, by last(ρ) we denote the last element of ρ and by ρ≤i we

9

1.4. The Game Model

denote the prefix track (ρ)0 . . . (ρ)i. By Trk ⊆ St∗, we denote the set of tracks over St. By
Trki we denote the set of tracks ρ in which last(ρ) ∈ Sti. For simplicity, we assume that Trk

contains only tracks starting at the initial state sI ∈ St.

A strategy represents a scheme for a player containing a precise choice of actions along
an interaction with the other player. It is given as a function over tracks. The formal definition
follows.

Definition 1.4.3 A strategy for Playeri in a 2TRG G is a function σi : Trki → Aci that
maps a track to an action.

The composition of strategies, one for each player in the game, induces a computation called
play. More precisely, assume Player0 and Player1 take strategies σ0 and σ1, respectively.
Their composition induces a play ρ such that (ρ)0 = sI and for each i ≥ 0 if (ρ)i ∈ St then
(ρ)i+1 = tr((ρ)i, σ0(ρ≤i)), else (ρ)i+1 = tr((ρ)i, σ1(ρ≤i)).

A strategy is winning for a player if all the plays induced by composing such a strategies
with strategies from the adversarial player will enter a target state. If such a winning strategy
exists we say that the player wins the game. Reachability games under perfect information
are know to be zero-sum, i.e., if Player0 loses the game then Player1 wins it and vice versa.
The formal definition of reachability winning condition follows.

Definition 1.4.4 Let G be a 2TRG and W ⊆ St a set of target states. Player0 wins the
game G, under the reachability condition, if he has a strategy such that for all strategies of
Player1 the resulting induced play will enter a state in W.

It is folklore that turn-based two-player reachability games are positional [Tho90]. We
recall that a strategy is positional if the moves of a player over a play only depends of the last
state and a game is positional if positional strategies suffices to decide weather Player0 wins
the game. Directly from this result, the following corollary holds.

Corollary 1.4.1 Given a 2TRGG, a strategy σ0 for Player0, and a strategy σ1 for Player1,
the induced play ρ is winning for Player0 if there is (ρ)i ∈W with 0 ≤ i ≤ |St| − 1.

Hence, the corollary above just states that given a 2TRG game, Player0 wins the game
if he can reach a winning state in a number of steps bounded by the size of the set of states of
the game.

Example 1.4.1 The two case studies that we have analyzed in Section 1.3 can be easily
modeled using a 2TRG. We now give some details. As set of states we use all the rooms in
the maze, together with the status of their doors.

In the Escape Game the state ((0, 0), {dc1, dc3}) is the initial state, where dci means that the
door di is closed. For an open door, instead, we will use the label o in place of c. Formally, let

10

1.5. Searching for Additional Winning Strategies

Di,j be the set of doors (up to four) belonging to the room (i, j), which can be flagged either
with c (closed) or o (open), then we set St ⊆ {((i, j), Di,j) | 0 ≤ i, j ≤ 2}. The set of actions
for the controller are Accon = {opendi | 0 ≤ i ≤ 12}, i.e. he chooses a door to open. The
set of actions for the human are Achum = {takedi | 0 ≤ i ≤ 12}, i.e. he chooses a door to
take. Transitions are taken by the human in order to change the room (coordinates) or by the
controller to change the status of doors. These moves are taken in accordance with the shape
of the maze. The partitioning of the states between the players follows immediately, as well
as the definition of the target states. A possible track in which the human reaches the exit is ρ =

((0, 0),{dc1, dc3})((0, 0),{do1, dc3})((0, 1), {do1, dc2, dc4})((0, 1),{do1, dc2, do4})((1, 1),{do4, dc6, dc7,
dc9})((1, 1), {do4, dc6, do7, dc9})((1, 2), {dc5, do7, dc10})((1, 2), {dc5, do7, do10})((2, 2), {do10, d

c
12}).

In the same way, in Cop and Robber Game the initial state is ((1, 1), ∅), where ∅ means
that all doors are open. The set of actions for the cop are Accop = {blockdi | 0 ≤ i ≤ 12}, i.e.
he chooses a door to block. The set of actions for the robber are Acrob = {takedi | 0 ≤ i ≤
12}, i.e. he chooses a door to take.

1.5 Searching for Additional Winning Strategies

To check whether Player0 has a winning strategy in a 2TRG G one can use a classic
backward algorithm. We briefly recall it. Let succ : St→ 2St be the function that for each
state s ∈ St in G gives the set of its successors. The algorithm starts from a set S equal to
W. Iteratively, it tries to increase S by adding all states s ∈ St that satisfy the following
conditions: (i) s ∈ St and succ(s) ∩ S 6= ∅; or, (ii) s ∈ St and succ(s) ⊆ S. If S contains
at a certain point the initial state, then Player0 wins the game.

In case one wants to ensure that more than a winning strategy exists, the above algorithm
becomes less appropriate. For this reason, we use instead a top-down automata-theoretic
approach. To properly introduce this solution we first need to provide some auxiliary notation.
Precisely, we introduce the concepts of decision tree, strategy tree, and additional strategy
tree.

A decision tree simply collects all the tracks that come out from the interplays between
the players. In other words, a decision tree can be seen as an unwinding of the game structure
along with all possible combinations of players actions. The formal definition follows.

Definition 1.5.1 Given a 2TRG G, a decision tree is an St-labeled Ac-tree <T, V >, where
ε is the root of T , V (ε) = sI , and for all v ∈ T we have that:

• if last(v) ∈ Ac0 then last(anc(v)) ∈ Ac1, otherwise last(v) ∈ Ac1;

• V (v) = tr(V (anc(v)), last(v)).

We now introduce strategy trees that allow to collect, for each fixed strategy for Playeri,
all possible responding strategies for Player1−i, with i ∈ {0, 1}. Therefore, the strategy tree

11

1.5. Searching for Additional Winning Strategies

is a tree where each node labeled with s ∈ Sti has an unique successor determined by the
strategy for Playeri and each node labeled with s ∈ St−i has |Ac1−i| successors. Thus, a
strategy tree is an opportune projection of the decision tree. The formal definition follows.
Definition 1.5.2 Given a 2TRG and a strategy σ for Playeri, a strategy tree for Playeri is
an St-labeled Ac-tree <T, V >, where ε is the root of T , V (ε) = sI , and for all v ∈ T we
have that:

• if last(v) ∈ Ac0 then last(anc(v)) ∈ Ac1, otherwise last(v) ∈ Ac1;

• if V (anc(v)) ∈ Sti then V (v) = tr(V (anc(v)), σ(ρ)), otherwise V (v) =

tr(V (anc(v)), last(v));

where ρ = (ρ)0 . . . (ρ)|v|−1 is a track from sI , with (ρ)k = V (v≤k) for each 0 ≤ k ≤ |v| − 1.

Following the above definition and Definition 1.4.4, given a 2TRG G with a set of target
states W , if G is determined then Player0 wins the game and Player1 loses it by simply
checking the existence of a strategy tree for Player0, that is a tree such that each path enters
a state belonging to W . Such a tree is called a winning-strategy tree for Player0.

In case we want to ensure that at least two winning strategies exist then, at a certain point
along the tree, Player0 must take two successors. We build a tree automaton that accepts
exactly this kind of trees. We now give a definition of additional strategy trees and then we
define the desired tree automata.

Definition 1.5.3 Given a 2TRG G and two strategies σ1 and σ2 for Playeri, an additional
strategy tree for Playeri is an St-labeled Ac-tree < T, V > that satisfies the following
properties:

• the root node is labeled with the initial state sI of G;

• for each x ∈ T that is not a leaf and it is labeled with state s of Player0, it holds that
x has as children a non-empty subset of succ(s);

• for each x ∈ T that is not a leaf and it is labeled with state s of Player1, it holds that
x has as children the set of succ(s);

• each leaf of T corresponds to a target state in G;

• there exists at least one leaf in T that has an ancestor node x that corresponds to a
Player0 state in G and it has at least two children.

The above definition, but the last item, is the classical characterization of strategy tree.
The last property further ensures that Player0 has the ability to enforce at least two winning
strategies no matter how Player1 acts.

12

1.5. Searching for Additional Winning Strategies

We now give the main result of this section, i.e. we show that it is possible to decide in
linear time whether, in a 2TRG, Player0 has more than a winning strategy. We later report
on the application of this result along the case studies.

Theorem 1.5.1 For a 2TRG game G it is possible to decide in linear time whether Player0

has more than a strategy to win the game.

Proof.Consider a 2TRG game G. We build an NTA A that accepts all trees that are
witnesses of more than a winning strategy for Player0 over G. We describe the automaton. It
uses Q = St× {ok, split} as set of states where ok and split are flags and the latter is used
to remember that along the tree Player0 has to ensure the existence of two winning strategies
by opportunely choosing a point where to ”split”. We set as alphabet Σ = St and initial
state q0 = (sI , split). For the transitions, starting from a state q = (s, flag) and reading the
symbol a, we have that:

δ(q, a) =



(s′, ok) if s = a and s ∈ St and flag = ok;

((s′, ok) ∧ (s′′, ok)) ∨ (s′, split) if s = a and s ∈ St and flag = split;

(s1, ok) ∧ · · · ∧ (sn, ok) if s = a and s ∈ St and flag = ok;

(s1, f1) ∧ · · · ∧ (sn, fn) if s = a and s ∈ St and flag = split;

∅ otherwise.

where s′, s′′ ∈ succ(s) with s′ 6= s′′, {s1, . . . , sn} = succ(s), and f1, . . . , fn are flags
in which there exists 1 ≤ i ≤ n such that fi = split and for all j 6= i, we have fj = ok.
Informally, given a state q, if q belongs to Player0 and its flag is split then there are one
successor with flag split or two successors with flag ok. Instead, if the flag is ok then there is
only one successor with flag ok. In the case in which the state belongs to Player1 and its
flag is ok then there are n successors with flag ok. Finally, if the flag is split then there are
n− 1 successors with flag ok and one successor with flag split.

The set of accepting states is W × {ok}. A tree is accepted by A if all the branches lead
to a target state and there is a node labeled with a state in St that has at least two successors.
By Corollary 1.4.1, we have that A considers only trees with depth until the number of states,
so if no state in W is reached in |St| steps, then there is a loop over the states in the game
model that forbids to reach states in W.

The size of the automaton is just linear in the size of the game. Moreover, by using the
fact that, from [Tho90], checking the emptiness of an NTA can be performed in linear time,
the desired complexity result follows. �

13

1.6. Games with Imperfect Information

Example 1.5.1 Consider the Escape Game example. By applying the above construction, the
automaton A accepts an empty language. Indeed, for each input tree, A always leads to a leaf
containing either a state with a non-target component (i.e., the tree is a witness of a losing
strategy) or with a flag split (i.e., Player0 cannot select two winning strategies). Conversely,
consider the same game, but flipping the direction of the door d3 in the maze. In this case,
A is not empty. Indeed, starting from the initial state (((0, 0), {dc1, dc3}), split), A proceeds
in two different direction with states (((0, 0), {do1, dc3}), ok) and (((0, 0), {dc1, do3}), ok), that
refer to two distinct winning strategies for the controller.

A similar reasoning can be exploited with the Cop and Robber Game example. Indeed, by
applying our solution technique, we end in an automaton that accepts an empty language.
Conversely, by flipping the door d4, the automaton accepts a tree that is witnessing of two
different winning strategies each of them going through one of the two doors left unblocked
by the cop.

For the sake of completeness, we report that in case of one-player games the problem
of checking whether more than a winning strategy exists can be checked in NLOGSPACE.
Indeed, it is enough to extend the classic path reachability algorithm in a way that we search
for two paths leading to the target state. This can be done by just doubling the used logarithmic
working space [Sip06].

By means of the automata-theoretic approach, one can also check for other and more
sophisticated “forms” of additional winning conditions. For example one can check whether
Player0 can win the game in case the opponent player is restricted to use all but one strategy.
This check can be accomplished by first using a classic backward algorithm, introduced at
the beginning of this section, for Player1 and then the automaton introduced in the proof
of Theorem 1.5.1, but used to collect all additional strategy trees for Player1. Precisely, if
the backward algorithm says that Player1 wins the game and the automaton is empty, then
the result holds. Indeed, the satisfaction of both these conditions says that Player1 has one
and only one strategy to beat all strategies of Player0. Therefore, by removing this specific
strategy, Player0 wins the game. So, the explanation of the concept of all but one strategy
derives.

Theorem 1.5.2 For a 2TRG game G it is possible to decide in linear time whether Player0

can win G against all but one strategies of Player1.

1.6 Games with Imperfect Information

In this section, we provide the setting of two-player turn-based finite games with imperfect
information. As for the perfect information case, we consider here games along the reach-
ability objective. The main difference with respect to the perfect case is that both players

14

1.6. Games with Imperfect Information

may not have full information about the moves performed by their opponents. Therefore,
there could be cases in which a player has to come to a decision (which move to perform)
without knowing exactly in which state he is. More precisely, we assume that the players act
uniformly, so they use the same moves over states that are indistinguishable to them. The
formal definition of these games follows.

Definition 1.6.1 A turn-based two-player reachability game with imperfect information
(2TRGI , for short), played between Player0 and Player1, is a tuple G , <

St, sI , Ac, tr, W, ∼=0 ,∼=1>, where St, sI , Ac, tr, and W are as in 2TRG. Moreover, ∼=0

and ∼=1 are two equivalence relations over Ac.

Let i ∈ {0, 1}. The intuitive meaning of the equivalence relations is that two actions
a, a′ ∈ Ac−i such that a ∼=i a

′ cannot be distinguished by Playeri. For this reason, we
say that a and a′ are indistinguishable to Playeri. By [Aci] ⊆ Aci we denote the subset of
actions that are distinguishable for Player1−i. If two actions are indistinguishable then also
the reached states are so 1. A relation ∼=i is said an identity equivalence if it holds that a ∼=i a

′

iff a = a′. Note that, a 2TRGI has perfect information if the equivalence relations contain
only identity relations.

To give the semantics of 2TRGIs, we now introduce the concept of uniform strategy. A
strategy is uniform if it adheres on the visibility of the players. To formally define it, we first
give the notion of indistinguishability over tracks.

For a Playeri and two tracks ρ, ρ′ ∈ Trk, we say that ρ and ρ′ are indistinguishable to
Playeri iff |ρ| = |ρ′| = m and for each k ∈ {0, . . . ,m−1}we have that tr((ρ)k, (ρ)k+1) ∼=i

tr((ρ′)k, (ρ
′)k+1), where tr is the function that given two states s and s′ returns the action a

such that s′ = tr(s, a). Note that tr is well defined since it takes as input successive states
coming from real tracks and it returns just one unique action due to the specific definition of
tr.

Definition 1.6.2 A strategy σi is uniform iff for every ρ, ρ′ ∈ Trk that are indistinguishable
for Playeri we have that σ(ρ) = σ(ρ′).

Thus uniform strategies are based on observable actions. In the rest of the paper we only refer
to uniform strategies. We continue by giving the definition of the the semantics of 2TRGI ,
i.e. how Player0 wins the game.

Definition 1.6.3 Let G be a 2TRGI and W ⊆ St a set of target states. Player0 wins the
game G, under the reachability condition, if he has a uniform strategy such that for all
uniform strategies of Player1 the resulting induced play has at least one state in W.

1For technical reasons, the indistinguishability over states follows from that one over actions. Thanks to this,
the construction of the 2TRGI easily follows.

15

1.6. Games with Imperfect Information

Technically, a uniform strategy can be seen as an opportune mapping, over the decision
tree, of a player’s ”strategy schema” built over the visibility part of the decision tree itself. In
other words, the player first makes a decision over a set S of indistinguishable states and then
this unique choice is used in the decision tree for each state in S. This makes the decision tree
to become uniform. It is important to observe, however, that we use memoryfull strategies.
This means that in a decision tree, the set S of indistinguishable states resides at the same
level. To make this idea more precise, we now formalize the concept of schema strategy tree
and uniform strategy tree.

Definition 1.6.4 Given a 2TRGI and a uniform strategy σ for Playeri, a schema strategy
tree for Playeri is a {>,⊥}-labeled (Aci ∪ [Ac−i])-tree <T, V >, where ε is the root of T ,
V (ε) = sI , and for all v ∈ T we have that:

• if last(v) ∈ Aci then last(anc(v)) ∈ [Ac−i], otherwise last(v) ∈ [Ac−i];

• if last(v) ∈ [Ac−i] then V (v)=> else if last(v) = σ(ρ) then V (v)=>, otherwise
V (v)=⊥;

where ρ = (ρ)0 . . . (ρ)|v|−1 is a track from sI , with (ρ)k = tr((ρ)k−1, last(v≤k)) for each
0≤k≤|v|− 1.

Thus, in a schema strategy tree the > label indicates that Playeri selects the correspond-
ing set of visible states in the decision tree and the ⊥ is used conversely 2. In particular, the
starting node of the game is the root of the schema strategy tree and it is always enabled;
all nodes belonging to the adversarial player are always enabled; and one of the successors
of Playeri nodes is enabled in accordance with the uniform strategy σ. Straightforwardly,
a uniform strategy tree is a projection of the decision tree along the schema strategy tree.
In the next example we consider an extension of the Cop and Robber Game with imperfect
information.

Example 1.6.1 Consider again the Cop and Robber Game example given in Section 1.3.
Assume now, that we change the set of actions for the robber in Acrob = {l, r, t, b}, where
l, r, t, and b represent left, right, top, and bottom, respectively, and that the cop can always
choose between two doors to enter, namely d1 and d2. Assume also that the cop can only
recognize whether the robber moves horizontally or vertically. In other words, it holds that
l ∼=cop r and t ∼=cop b. Accordingly, the cop has only two uniform moves to perform, one for
the first pair and one for the second. This is clearly different from the perfect information
case where the cop has instead four moves to possibly catch the robber. More formally, in
the imperfect information case, assuming that the robber moves first, we have four possible

2The use of > and ⊥ is a classical solution in the automata theoretic approach to disable/enable successors, as
it has been done in Module Checking [KVW01] and the like.

16

1.7. Looking for Additional Winning Strategies in 2TRGI

evolutions of the schema strategy tree. In all schema the root is labeled with > and it has
two successors x and y, both labeled with > and corresponding to the actions l and r, and,
t and b, possibly performed by the robber, respectively. Moreover, x and y have both two
children. The four schema evolve by respectively placing to the children of x and y the
following four combination of > and ⊥: ((>,⊥)(>,⊥)), ((>,⊥)(⊥,>)), ((⊥,>)(>,⊥)),
and ((⊥,>)(⊥,>)). For example, the second tuple corresponds to choose action d1 in
response to actions l and r and d2 in response to t and b; similarly, the mining of the other
tuple follows. Directly from this explanation it is no hard to build the corresponding uniform
strategy trees.

1.7 Looking for Additional Winning Strategies in 2TRGI

In this section, we introduce an automaton-theoretic approach to solve 2TRGI , taking as
inspiration those introduced in [KV97, FMP08, BMM12, Tho90]. We start by analyzing the
basic case of looking for a winning strategy. We recall that this problem is already investigated
and solved in the case in which there is imperfect information over states [Rei84, CDHR07].
By these considerations, we show how to solve the case in which the imperfect information
is over the actions. Subsequently, we extend the latter case to check whether the game also
admits additional winning strategies.

Before starting we recall that positional strategies do not suffice to decide a game with
imperfect information. Indeed, it is well known that Player0 needs exponential memory
w.r.t. the size of the states of the game in order to come up with a winning strategy in case it
exists [CDHR07]. Therefore, we cannot use directly the approach exploited in Section 1.5. A
possible direction to solve a game G with imperfect information is to convert it, by means of a
subset construction, in a game Ḡ with perfect information and solve it by using Theorem 1.5.1
(see for example [CDHR07]). With this translation one can individuate along the game Ḡ
exponential strategies necessary to Player0 for winning the game. As the subset construction
involves an exponential blow-up and Theorem 1.5.1 provides a polynomial-time solution we
get an overall exponential procedure. In this paper, however, we present a different and more
elegant way to solve games with imperfect information. Precisely, we introduce a machinery
that in polynomial time can represent exponential strategies. With more details, given a
game with imperfect information G we construct an alternating tree automaton that accepts
trees that represent uniform strategies under imperfect information. This is done by sending
the same copy of the automaton (same direction) to all states that are indistinguishable to
Player0. Then, the automaton checks that in all these common directions Player0 behaves
the same and satisfies the reachability condition. Precisely, the automaton takes in input trees
corresponding to Player0’s strategies over the unwinding of the game by replacing nodes by
the equivalence classes. The run instead is as usual, that is a Player0 strategy over the total

17

1.7. Looking for Additional Winning Strategies in 2TRGI

unwinding of the game. The beauty of this approach resides on the fact that we do not make
explicit the exponential strategies required to win the game but rather consider a polynomial
compact representation of them by means of the automaton. Clearly, as the emptiness of
alternating tree automata is exponential, we get the same overall exponential complexity as in
the subset construction approach.

1.7.1 Solution 2TRGI

To solve 2TRGI , we use an automata-approach via alternating tree automata. The idea is to
read a {>,⊥}-labeled (Ac ∪ [Ac])-tree such that more copies of the automaton are sent to
the same directions along the class of equivalence over [Ac1].

Theorem 1.7.1 Given a 2TRGI G played by Player0 and Player1, the problem of deciding
whether Player0 wins the game is EXPTIME-COMPLETE.

Proof. Let G be a 2TRGI . For the lower bound, we recall that deciding the winner in a
2-player turn-based games with imperfect information is EXPTIME-HARD [Rei84, CDHR07].

For the upper bound, we use an automata-theoretic approach. Precisely, we build an ATA
A that accepts all schema strategy trees for Player0 over G. The automaton, therefore will
send more copies on the same direction of the input tree when they correspond to hidden
actions. Then it will check the consistency with the states on the fly by taking in consideration
the information stored in the node of the tree. This can be simply checked by means of a
binary counter along with the states of the automaton. For the sake of readability we omit
this.

The automaton uses as set of states Q = St × St × {>,⊥} × {0, 1} and alphabet
Σ = {>,⊥}. Note that, we use in Q a duplication of game states as we want to remember the
game state associated to the parent node while traversing the tree. For the initial state we set
q0 = (sI , sI ,>, 0), i.e., for simplicity the parent game state associated to the root of the tree
is the game state itself. The flag f ∈ {0, 1} indicates whether along a path we have entered a
target state, in that case we move f from 0 to 1. Given a state q = (s, s′, t, f), the transition
relation is defined as:

δ(q, t′) =



∧
a0∈Ac0

(d, (s′, s′′,>, f ′)) if s′ ∈ St and t′ = > and t = >;∧
a1∈Ac1

(d, (s′, s′′,>, f ′)) if s′ ∈ St and t′ = > and t = >;

false if t′ = > and t = ⊥;

true if t′ = ⊥.

where if s′ ∈ St then s′′ = tr(s′, a0) and d is in accordance with |Ac1|, else s′′ =

tr(s′, a1) and d is in accordance with |Ac0|; if q′ ∈ W then f ′ = 1 otherwise f ′ = f .

18

1.7. Looking for Additional Winning Strategies in 2TRGI

Informally, given a state q, if q belongs to Player0 (resp., Player1) and it is enabled then
there are |Ac0| (resp., |Ac1|) enabled successors. Instead, if q is disabled then the automaton
returns false. Finally, if the automaton reads the symbol ⊥ then it returns true.

The set of accepted states is F = {(s, s′, t, f) : s, s′ ∈ St ∧ t = > ∧ f = 1}. Recall that
an input tree is accepted if there exists a run whose leaves are all labeled with accepting states.
In our setting this means that an input tree simulates a schema strategy tree for Player0.
So, if the automaton is not empty then Player0 wins the game, i.e., there exists a uniform
strategy for him.

The required computational complexity of the solution follows by considering that: (i)
the size of the automaton is polynomial in the size of the game, (ii) to check its emptiness can
be performed in exponential time [EJ88, KVW00]. �

1.7.2 Additional Winning Strategies for 2TRGI

In this section we describe the main result of this work, i.e., we show an elementary solution
to ensure that more than a winning strategy exists in 2TRGIs. As we have anticipated earlier
we use an opportune extension of the automata-theoretic approach we have introduced in the
previous sections.

First of all, we formalize the concept of schema additional strategy tree.

Definition 1.7.1 Given a 2TRGI and two uniform strategies σ and σ′ for Playeri, a schema
additional strategy tree for Playeri is a {>,⊥}-labeled (Aci∪ [Ac−i])-tree<T, V >, where
ε is the root of T , V (ε) = sI , and for all v ∈ T we have that:

• if last(v) ∈ Aci then last(anc(v)) ∈ [Ac−i], otherwise last(v) ∈ [Ac−i];

• if last(v) ∈ [Ac−i] then V (v) => else if last(v) = σ(ρ) or last(v) = σ′(ρ) then
V (v)=>, otherwise V (v)=⊥;

where ρ = (ρ)0 . . . (ρ)|v|−1 is a track from sI , with (ρ)k = tr((ρ)k−1, last(v≤k)) for each
0≤k≤|v|− 1.

Informally, a schema additional strategy tree is a schema strategy tree in which at a certain
point along the tree, a state of Player0 has to two successors. We build a tree automaton that
accepts exactly this kind of trees. Now, we have all ingredients to give the following result.

Theorem 1.7.2 Given a 2TRGI G played by Player0 and Player1, the problem of decid-
ing whether Player0 has more than a uniform strategy to win the game is in EXPTIME-
COMPLETE.

Proof. Let G be a 2TRGI . For the lower bound, we recall that deciding the winner in a
2-player turn-based games with imperfect information is EXPTIME-HARD [Rei84, CDHR07].

19

1.7. Looking for Additional Winning Strategies in 2TRGI

For the upper bound, we use an automata-theoretic approach. Precisely, we build an ATA
A that accepts all schema additional strategy trees for Player0 over G. Since the automaton
sends more copies on the same direction of the input tree when they correspond to hidden
actions, then it checks the consistency with the states on the fly by taking in consideration
the information stored in the node of the tree. In detail, the automaton uses as set of states
Q = St×St×{>,⊥}×{0, 1}×{ok, split}, where given a state q = (s, s′, t, f, f̄) we have
that s is the parent of s′, s′ is the actual state, t is used to disable/enable the state, f is a flag
indicating whether along the path we have entered in a target state, and f̄ is a flag indicating
whether along the path there was a state of Player0 with two successors. The alphabet is
Σ = {>,⊥} and the initial state is q0 = (sI , sI ,>, 0, split). Given a state q = (s, s′, t, f, f̄),
the transition relation is defined as follows:

δ(q, t′) =

∧
a0∈Ac0

(d, (s′, s′′,>, f ′, ok)) if s′ ∈ St and t′ = > and t = > and f̄ = ok;∧
a0∈Ac0

∨
f̄ ′∈{ok,split}(d, (s

′, s′′,>, f ′, f̄ ′)) if s′ ∈ St and t′ = > and t = > and f̄ = split;∧
a1∈Ac1

(d, (s′, s′′,>, f ′, ok)) if s′ ∈ St and t′ = > and t = > and f̄ = ok;∧
a1∈Ac1

∨
f̄ ′∈{ok,split}(d, (s

′, s′′,>, f ′, f̄ ′)) if s′ ∈ St and t′ = > and t = > and f̄ = split;

false if t′ = > and t = ⊥;

true if t′ = ⊥.

where it holds that if s′ ∈ St then s′′ = tr(s′, a0) and d is in accordance with |Ac1|,
otherwise s′′ = tr(s′, a1) and d is in accordance with |Ac0|; if q′ ∈W then f ′ = 1 otherwise
f ′ = f . Informally, given a state q, if q belongs to Player0, it is enabled, and its flag is split
so there are |Ac0| enabled successors, such that it holds that either all of them have split has
flag, or at least two of them have ok as flag . Instead, if the state q is enabled and its flag is ok
then there are |Ac0| enabled successors and all of them have the flag ok. If the state q belongs
to Player1, it is enabled, and its flag is ok, thus there are |Ac1| enabled successors such that
all of them have the flag ok. Instead, if the state is enabled and its flag is split then there are
|Ac1| enabled successors such that at least one successor has flag split. In the case in which
the state q is disabled then the automaton returns false. Finally, if the automaton reads the
symbol ⊥ then it returns true.

The set of accepted states is F = {(s, s′, t, f, f̄) : s, s′ ∈ St ∧ t = >∧ f = 1 ∧ f̄ = ok}.
Recall that an input tree is accepted if there exists a run whose leaves are all labeled with
accepting states. In our setting this means that an input tree simulates a schema additional
strategy tree for Player0. So, if the automaton is not empty then Player0 wins the game,
i.e., there exists a schema additional strategy tree for him. The required computational
complexity of the solution follows by considering that: (i) the size of the automaton is

20

1.8. Conclusion and Future Work

polynomial in the size of the game, (ii) to check its emptiness can be performed in exponential
time [EJ88, KVW00]. �

Finally, also in the imperfect information case one can repeat the same reasoning done in
Section 1.5 about “all but one” strategies. Indeed, it is sufficient to use the automata in the
proofs of Theorem 1.7.1 and Theorem 1.7.2 from the viewpoint of Player1. Indeed, the result
follows by checking whether the former automaton is not empty and the latter automaton is
empty. Consequently, the following result holds.

Theorem 1.7.3 For a 2TRGI game G it is possible to decide in EXPTIME-COMPLETE

whether Player0 has a uniform strategy against all but one uniform strategies of Player1.

1.8 Conclusion and Future Work

In this chapter we have introduced a simple but effective automata-based methodology to
check whether a player has more than a winning strategy in a two-player game under the
reachability objective. Our approach works with optimal asymptotic complexity both in the
case the players have perfect information about the moves performed by their adversarial or
not. Overall, this is the first work dealing with the counting of strategies in the imperfect
information setting we are aware of.

We have showed how our approach can be applied in practice by reporting on its use
over two different game scenarios, one cooperative and one adversarial. We believe that the
solution algorithm we have conceived in this chapter can be used as core engine to count
strategies in more involved game scenarios and in many solution concepts reasoning. For
example, it can be used to solve the Unique Nash Equilibrium problem, in an extensive game
form.

This work opens to several interesting questions and extensions. An interesting direction
is to consider the counting of strategies in multi-agent concurrent games. This kind of
games have several interesting applications in artificial intelligence [Woo02]. Some works
along this line have been done, but not for finite games, nor in the imperfect information
setting. As another direction of work, one can consider some kind of hybrid game, where one
can opportunely combine teams of players working concurrently with some others playing
in a turn-based manner as in [JM14, JM15, MS15]. Last but not least, it would be worth
investigating infinite-state games. These games arise for example in case the interaction
among the players behaves in a recursive way [BMP10, MP15].

21

CHAPTER 2

Hiding actions in Multi-Player Games

Contents
2.1 Introduction . 23

2.2 Game Definition . 25

2.3 Does the imperfect information matter? 30

2.4 Automata-Theoretic Solution . 33

2.4.1 Automata Theory . 33

2.4.2 Solution for 2CRGI . 34

2.4.3 Solution for CRGI . 35

2.5 Conclusion . 37

2.1. Introduction

2.1 Introduction

In this chapter we consider multi-player reachability games, played by n players
Player0 . . . P layern−1, where Playeri>0 can have (equal) imperfect information about
the actions taken by Player0. Conversely, Player0 has always full observability over the
actions taken by the other players. Some states of the game arena are set as target and the
aim of Player1 . . . P layern−1 is to prevent Player0 from reaching a target state, otherwise
Player0 wins the game. Precisely, we check whether Player0 have a counter-strategy to
every joint-strategy of his opponents, or equivalently that Player1 . . . P layern−1 do not have
a winning strategy. Clearly, all players will act by adhering to their observability. Solving the
game amounts to checking whether Player0 wins the game.

The game model we consider can be applied in a number of concrete scenarios. As an
example, it can be used in the context of Wireless Sensor Networks [AV10], which consist of
a large number of small sensors that are used for gathering data in a variety of environments.
The data collected by each sensor is communicated through the network to a single processing
center that uses all reported data to determine characteristics of the environment or detect
an event. The communication or message passing process is usually designed in a way that
it limits the consumption of energy. For this reason, some sensors have a limited scanner
view [BC03]. This scenario can be easily casted in our game setting, where the information
from sensors can be seen as actions, as well as it is for the processing center who has complete
information from the sensors. Then, it is possible to check whether a specific configuration
(for example a critical one) can be reached. Other examples can be found in the setting of not
losing games [GLLS07].

Deciding the winner of the introduced multi-player concurrent game setting requires
addressing a major issue: we have to limit the check to solely those players’ strategies that are
compatible with the visible information. Note that the visibility constraint is not a property
easy to check [KV97]. In particular, an imperfect information at a certain round of the game
may propagate along all future interactions stages and this has to be taken into account in every
single play. We address this difficulty by introducing an ad hoc structure, named blocking
tree. Precisely, we consider a tree that, at each node and for every possible action taken by
Player0, collects the best possible counter-actions of the adversarial players, chosen under
the visibility constraint. Such a tree is considered “blocking” whenever it contains only paths
along which no target state is met. Then, we say that Player0 wins the game if and only if no
blocking tree exists. Otherwise, we say that Player0 loses the game and then the opponents
win it. By using this reasoning and by exploiting an automata-theoretic approach we show
that deciding our game setting can be done in EXPTIME. Precisely, we build an alternating
tree automaton [EJ99] that accepts all blocking trees and reduce the game decision problem
to check its emptiness. As the automata construction is linear and checking its emptiness is

23

2.1. Introduction

exponential, we get the result.

Regarding the automata we use, recall that nondeterministic tree automata, on visiting a
node of the input tree, send exactly one copy of themselves to each successor of the node. An
alternating automaton instead can send several copies of itself to the same successor. To this
purpose, the automaton uses directions to indicate to which successor to send a state. In our
setting, we set as directions the product of the common visible actions among all the players.
This allows to keep together states that, looking the same to those players, share the same
chosen actions. Note that while the input tree has a very “thin shape” due to the imperfect
information setting, the corresponding run has as branching degree the product of the actions
all players can choose. Also, we have a tight complexity since turn-based 2-player games
with imperfect information are EXPTIME-hard [KV97].

Related works. Imperfect information games have been largely considered in the litera-
ture [DT11, KV00, JÅ07, Rei84, BJ14]. A seminal work is [Rei84] in which a number of
variants of 2-player games with imperfect information have been investigated. Generally,
having imperfect information immediately reflects on worsening the complexity of solving
the game. In multi-player games one can easily jump to non-elementary [PR89] or even to
undecidability [DT11]. As an evidence we mention [PR90] where a pipeline of processes
architecture is considered and each output communication of process i is taken as the input
communication of process i+ 1. The reachability problem under imperfect information in this
specific setting is decidable but complete for non-elementary time1. In [vdMW05] the authors
impose a hierarchy in order to regain decidability of the synthesis problem under imperfect
information. As in [PR90] the problem is decidable but non-elementary. In contrast, as we
discussed in the rest of the chapter, our (automata) procedure is 1-EXPTIME-COMPLETE.
Moreover, differently from [vdMW05], we use concurrency, imperfect actions, and specific
adversarial coalitions. Other works worth of mention concern ATL∗, a logic introduced by
Alur, Kupferman and Henzinger [AHK02]. In many cases, deciding the related decision
problem becomes undecidable [AHK02, DT11]. In particular it is undecidable in the case of
three agents having perfect recall of the past (as we do), while it is elementary decidable in
case the agents play positional (a.k.a. memoryless) strategies. However note that in the ATL∗

setting the agents can learn during a play and possibly move to perfect information about
the game structure. This is a very strong requirement that conflicts with several application
domains (see [KVW01] for an argument) and we do not consider it here.

A group of works that is closely related to our setting concerns module checking [KV97,
KVW01, JM14]. In the basic setting this is a two-player game where one of the players, the
environment, has nondeterministic strategies. Module checking has been also investigated in
the imperfect information setting and the related works have been a good source of inspiration

1Other settings have been also taken in consideration and leading to an undecidable problem.

24

2.2. Game Definition

for the solution techniques we propose in this chapter. Note that in module checking the
system player (Player0, in our case) has one fixed strategy, while the adversarial environment
(Player1) has imperfect information about the arena (and thus the actions performed by
Player0). Our work can be seen as a specific multi-player variant of module checking under
deterministic strategies.

Other works dealing with imperfect information games and worth of mentioning
are [BK10, CDHR07, CH12]. These works consider two-player turned-based games rather
than concurrent multi-player arenas, as we do. On the other hand they consider richer
structures (such as stochastic arenas) and/or richer winning conditions.

Close to our setting is also the game structure studied in [CD14]. There the authors
consider reachability three-player concurrent games under some specific form of imperfect
information but with no hierarchy over the visibility of actions. Solving such a game turns out
to be non-elementary. Finally we report that, in a short paper recently published, a preliminary
study on reachability games under imperfect information have been considered along with a
winning condition similar to the one we use here [MMS16]. Our work improves and extends
all the results reported there on two-player games and, more important, introduces fresh results
on the multi-agent side. For the sake of readability we also use some concepts introduced
there.

We conclude this section by remarking that our definition of imperfect information relies
on the actions played by the players involved in the game, rather than the visited states This
allows to reason about the actions played by other players and not only the outcome of these
actions. Apart few works we are aware of [KM98, San07, FS05, CD14], this direction has
been less explored in literature, but shown to be useful in several contexts. In particular, in the
reasoning about Nash Equilibria, such an extra information plays a key role [AAK15, San07].

2.2 Game Definition

In this section we define the multi-player reachability game under interest as well as some
preliminary notions. We consider that Player1, . . . , P layern−1 can have imperfect informa-
tion about the actions performed by Player0. Instead, Player0 is omniscient and has perfect
information about all other players.

Model. We model the game by means of a classic concurrent game structure [AHK02]
augmented with a set of target states and an equivalence relation over Player0’s actions. The
formal definition follows.

Definition 2.2.1 A concurrent multi-player reachability game with imperfect information
(CRGI , for short) is a tuple G ,<St, sI ,P,Ac, tr,W,∼=> where St is a finite non empty set
of states, sI ∈ St is a designated initial state, P , {Player0, . . . , P layern−1} is the set of

25

2.2. Game Definition

players, Ac , Ac0 ∪ . . . ∪Acn−1 is the set of actions. We assume that Aci ∩ Acj = ∅, for
each 0 ≤ i, j < n. W ⊆ St is a set of target states, tr : St× (Ac0× . . .×Acn−1)→ St is a
transition function mapping a tuple made of a state and one action for each player to a state,
and ∼= is an equivalence relations on Ac0.

W.l.o.g., we assume that for each pair of states s and s′ there exists at most one tuple
of players’ actions that lets to transit from s to s′. Observe that one can always transform
an arbitrary CRGI to make this property true by opportunely duplicating the states that are
reachable along different agents’ decisions, starting from a common state.

For two actions a, a′ ∈ Ac0, we say that a and a′ are indistinguishable/invisible to all
players Player1, . . . , P layern−1 if a ∼= a′. Moreover, we fix with [Ac0] ⊆ Ac0 as a set of
representative actions over ∼=. If two actions are indistinguishable for a player then also the
reached states are so. That is, the imperfect information over actions induces the imperfect
information over states. It is important to note that, in our setting all players can distinguish
the initial state while this is not true in general, in case of imperfect information over states.
A relation ∼= is said to be an identity equivalence if a ∼= a′ iff a = a′.

A CRGI has perfect information if ∼= contains only identity relations (so, we drop I
from the acronym). A CRGI is a 2-player game if P = {Player0, P layer1} and we name it
2CRGI . Hence, 2CRG are 2-player games under perfect information.

Tracks, strategies, and plays. To give the semantics of CRGIs, we now introduce some
basic concepts such as track, strategy, and play.

Definition 2.2.2 A track is a finite sequence of states ρ ∈ St∗ such that, for all i ∈
[0, |ρ| − 1[, there exists n actions a0 ∈ Ac0, . . . , an−1 ∈ Acn−1 such that (ρ)i+1 =

tr((ρ)i, a0, . . . , an−1), where (ρ)i is the ith element of ρ.

For a track ρ, by ρ≤i we denote the prefix track (ρ)0 . . . (ρ)i. By Trk ⊆ St∗, we denote
the set of tracks over St. For simplicity, we assume that Trk contains only tracks starting at
the initial state sI ∈ St.

A strategy represents a scheme for a player containing a precise choice of actions along an
interaction with the other players. It is given as a function over tracks. The formal definition
follows.

Definition 2.2.3 A strategy for Playeri in a CRGI G is a function σi : Trk→ Aci mapping
each track to an action.

A strategy is uniform if it adheres on the visibility of the players. To formally define it,
we first give the notion of indistinguishability over tracks.

Let tr : St× St ⇀ (Ac0 × . . .×Acn−1) a partial function that given two states s and s′

returns, if exists, the tuple of actions a0, . . . , an−1 such that s′ = tr(s, a0, . . . , an−1). Note

26

2.2. Game Definition

that tr is well defined as we assume that for each pair of states s and s′ there exists at most
one tuple of players’ actions that allows us to move from s to s′.

Definition 2.2.4 Given two tracks ρ, ρ′ ∈ Trk, we say that ρ and ρ′ are indistinguishable to
Playerj , with j > 0, iff (i) |ρ| = |ρ′| = m; (ii) for each k ∈ {0, . . . ,m − 1} it holds that
tr((ρ)k, (ρ)k+1)(0) ∼= tr((ρ′)k, (ρ

′)k+1)(0).

We can now define the concept of uniform strategy.

Definition 2.2.5 A strategy σi is uniform iff for every ρ, ρ′ ∈ Trk that are indistinguishable
for Playeri we have that σi(ρ) = σi(ρ

′).

Thus uniform strategies are based on observable actions. In the rest of the paper we only
refer to uniform strategies.

The composition of strategies, one for each player in the game, induces a computation
called play. More precisely, assume Player0, . . . , P layern−1 take strategies σ0, . . . , σn−1,
respectively. Their composition induces a play ρ such that (ρ)0 = sI and for each i ≥ 0 we
have that (ρ)i+1 = tr((ρ)i, σ0(ρ≤i), . . . , σn−1(ρ≤i)), for all i ∈ N.

Now, we give the concepts towards the definition of the the semantics of CRGI , i.e. how
Player0 wins the game. For a matter of presentation, we reason about the simpler case of
2CRG. Most of the concepts we present here will be used or opportunely extended to define
CRGI .

Reachability winning condition. To make our reasoning clear, we recall the classic definition
of reachability winning condition and then discuss its rule in our game setting. First of all, we
define the concept of winning strategy.

Definition 2.2.6 Let G be a 2CRG and W a set of target states. A strategy σ is winning
for Player0 (resp., Player1) over G under the reachability condition, if for all strategies of
Player1 (resp., Player0) the resulting induced plays have at least one (resp., no) state in W.

In reachability games, if a player has a winning strategy, we say that he wins the game, as
reported in the following definition.

Definition 2.2.7 Let G be a 2CRG and W a set of target states. Player0 (resp., Player1)
wins the game G under the reachability condition, if he has a winning strategy.

It is important to observe that the above definition does not guarantee that the game always
admits a winner. In fact, there are scenarios in which no one of the players has a winning
strategy, that is a strategy that beats all counter strategies of the opponent player. One can
be convinced of this by simply considering the classic two-player concurrent matching bit

27

2.2. Game Definition

game. Indeed, by applying Definition 2.2.7 we have that neither Player0 wins the game nor
Player1 does.

Trees. In this paper we are going to use a different winning condition to establish whether
Player0 wins the game. We formalize this condition by means of trees. For this reason we
first recall some basic notation about this structure.

Let Υ be a set. An Υ-tree is a prefix closed subset T ⊆ Υ∗. The elements of T are called
nodes and the empty word ε is the root of T . For v ∈ T , the set of children of v (in T) is
child(T, v) = {v · x ∈ T | x ∈ Υ}. Given a node v = y · x, with y ∈ Υ∗ and x ∈ Υ, we
define prf(v) to be y and last(v) to be x. We also say that v corresponds to x. The complete
Υ-tree is the tree Υ∗. For v ∈ T , a (full) path π of T from v is a minimal set π ⊆ T such
that v ∈ π and for each v′ ∈ π such that child(T, v′) 6= ∅, there is exactly one node in
child(T, v′) belonging to π. Note that every word w ∈ Υ∗ can be thought of as a path in the
tree Υ∗, namely the path containing all the prefixes of w. For an alphabet Σ, a Σ-labeled
Υ-tree is a pair < T, V > where T is an Υ−tree and V : T → Σ maps each node of T to a
symbol in Σ.

The considered winning condition. In this paper we consider the setting in which Player1

wins the game (and thus Player0 loses it) if, for each strategy of Player0 there exists a
strategy for Player1, that can force the induced play to avoid a target state. Otherwise,
Player0 wins the game. Under this definition it is immediate to observe that a game always
has a winner, under both perfect and imperfect information. The winning condition we
adopt simply enforces the winning power of Player0 under imperfect information. However
observe that under this condition, we still have cases (in particular in the perfect information
setting) in which Player1 does not have a winning strategy but still he can block Player0

and thus the latter loses the game (see Section 2.3 for an example). We formalize our new
winning condition by means of a tree structure that we call blocking tree. To proper introduce
this structure we also need to provide the concepts of decision tree and strategy tree.

We now give the notion of decision tree. Such a tree simply collects all the tracks that
come out from the interplays between the players. In other words, a decision tree can be seen
as an unwinding of the game structure along with all possible combinations of player actions.
More formally, given a 2CRG G, a decision tree is an St-labeled full (Ac0 × Ac1)∗-tree
collecting all tracks over G.

We now introduce strategy trees that allow to collect, for each fixed strategy for Playeri,
all possible responding strategies for Player1−i, with i ∈ {0, 1}. Therefore, the strategy tree
is a full tree whose directions are determined by Ac1−i and it is labeled with states given in
accordance with the transition function of the game based on the fixed strategies for Playeri
and all possible strategies of Player1−i. Thus, a strategy tree is an opportune projection of
the decision tree. The formal definition follows.

28

2.2. Game Definition

Definition 2.2.8 Given a 2CRG G and a strategy σ for Playeri, a strategy tree for Playeri
is an St-labeled full Ac∗1−i-tree < Ac∗1−i, l >, with l as follows:

1. V (ε) = sI ;

2. for all v ∈ Ac+
1−i, let ρ = (ρ)0 . . . (ρ)|v|−1 be a track from sI , with (ρ)k = l(v≤k) for

each 0 ≤ k < |v|. We have that V (v) = tr(V (prf(v)), act0, act1), with acti = σ(ρ)

and act1−i = last(v).

The strategy tree can be used to check whether a strategy is winning in accordance to
Definition 2.2.6. In fact, given a 2CRG G with a set of target states W , then Player0 wins
the game under the reachability condition by simply checking the existence of a strategy tree
for Player0, that is a tree such that each path enters a state belonging to W . Such a tree is
called a winning-strategy tree for Player0. Analogously, one can check whether Player0

cannot win the game by checking whether Player1 can “block” every possible strategy for
Player0. This blocking behavior that let Player0 losing the game can be collected in a
blocking tree for Player0. The definition of blocking tree follows.

Definition 2.2.9 Given a 2CRG G a blocking tree for Playeri is a {>,⊥}-labeled (Ac0 ×
Ac1)-tree <T, V > with T ⊂ (Ac0 ×Ac1)∗ and V as follows:

1. V (ε) = >;

2. for all nodes v ∈ T , we have that ρ = (ρ)0 . . . (ρ)|v|−1 is a track from sI such that for
each 0 < k < |v| it holds that (ρ)k = tr((ρ)k−1, last(v≤k));

3. For all nodes v ∈ T labeled with ⊥ all children are labeled with ⊥;

4. For every v ∈ T , a ∈ Ac0, and child(T, v)(a) = {v · x ∈ child(T, v) | x =

(a, b), for some b ∈ Ac1}, we have that there exists exactly one node in child(T, v)(a)

labeled with > and all the others labeled with ⊥; i.e., the one labeled with > corre-
sponds to the action Player1 chooses as a countermove to a chosen by Player0;

5. for all v ∈ T , if |v| > |St| and V (v) = > then for all 0 ≤ i ≤ |St| we have that
(ρ)i /∈W .

By the above definition, we formalize the winning condition we consider as follows.

Definition 2.2.10 Let G be a 2CRG and W a set of target states. Player0 (resp., Player1)
wins the game G if there is not (resp., there is) a blocking tree for Player0.

The existence of a blocking tree makes in our settingPlayer0 losing the game. Conversely,
if such a blocking tree does not exist, Player0 wins the game. This condition makes the game

29

2.3. Does the imperfect information matter?

rather than artificial and corresponds to several real settings in formal verification, security,
and planning. For example, a scenario in which one wants to check whether a system is
immune to an external attack from an adversarial environment can be easily casted in our
setting [JM14, JM15, RES+10].

In the rest of the paper we only refer to Definition 2.2.10 as winning condition. However,
note that in the sequel we will extend the notion of blocking tree to handle the case of
imperfect information along CRGI , as we need a richer structure.

2.3 Does the imperfect information matter?

In this section we show, by means of examples, that the imperfect information has a key role
to let Player0 winning the game. We use here the definition of blocking tree as given in
the previous section and also use an informal explanation of its extension under imperfect
information. We prefer to anticipate here this section to help the reader to better understand
the formalisms and the constructions we will introduce in the next section as well as to provide
some simple reasoning about the game setting we propose.

First, we introduce a 2CRG consisting of a variant of the classic paper, rock, and scissor
game in which Player0 plays as usual, by choosing an action between paper (p), rock (r),
and scissor (s), while Player1 uses as actions fire (f) and water (w). The game is depicted in
Figure 2.1. The vertexes of the graph are the states of the game and the labels over the edges
represent the possible actions that can be taken by the players. The transition function can be
easily retrieved by the figure. As this is a one-shot game, we assume that after the first move
has been performed, the game remains in the reached state forever, i.e. tr(si, a, b) = si for all
i ∈ {1, · · · , 6}, a ∈ Ac0, and b ∈ Ac1. The set of target states is W = {s1, s5, s6}, i.e., the
set of states that Player0 wants to reach (note that the target states are drawn in boldface along
the figure). One can see that Player0 cannot win the game since there exists a blocking tree
for Player0. In fact, by combining the action p for Player0 with the action f for Player1,
it prevents the former to reach a target state. The same happens by combining the actions
r or s for Player0 with w for Player1. It is important to observe that our game setting is
concurrent, i.e. in each state every player chooses an action simultaneously and independently
from the actions taken by the other players. If we would have considered instead a turn-based
scenario, then the order of the players becomes crucial. To better understand this note that in
turn-based if Player0 moves first then he loses the game and, conversely, he wins the game if
he moves after Player1.

Consider the game as before but with in addition imperfect information on the actions
performed by Player0 (see Figure 2.2). Precisely we have that his actions p (paper) and
r (rock) are indistinguishable to Player1, i.e. p ∼= r. Under this assumption we have that
Player0 wins the game since there is not a blocking tree for Player0 (built by considering

30

2.3. Does the imperfect information matter?

sI

ss s

s ss

pw rw sw

pf rf sf

Figure 2.1: Variant of paper, rock, and scissor game.

sI

ss s

ss s

pw rw sw

pf rf sf

Figure 2.2: Extended paper, rock, and scissor where p ∼= r.

31

2.3. Does the imperfect information matter?

sIs

ss

s

s

s

s

s s

s

s

s

pfl

pwc

pfc pwl rfl

rwc

rfc

rwl

sfl swcsfc

swl

Figure 2.3: Extended paper, rock, and scissor with 3 players.

classic action-choice uniformity for Player1, over the visible actions of Player0). In fact,
suppose that Player0 picks an action between p an r. Then, Player1 can use (simultaneously)
for both these cases, just one action. If the hidden action is p then he wins the game by
choosing f (fire). But in case Player0 has chosen r, this would be instead a loosing move
for Player1. A similar reasoning applies in case Player1 chooses w (water). In other words
Player1 cannot uniformly block Player0. So, whereas with perfect information Player1

wins the game, here, having imperfect information regarding some actions, Player0 wins the
game.

Finally, as an extension of the above example consider the CRGI depicted in Figure 2.3.
In this game we have three players. As above, Player0 can take as action one among p,
r, and s, Player1 one between f and w, and additionally Player2 can take actions c for
cloud or l for lightning. We suppose that the moves c and l have the same behavior of w
and f , respectively. The transition relation of this game can be easily retrieved by the figure.
The set of target states for Player0 is W = {s2, s5, s9}. Assume now that Player1 and
Player2 have imperfect information on the actions p and r taken by Player0, i.e. p ∼= r. This
means that such actions are indistinguishable for Player1 and Player2, making Player1

and Player2 to have only partial view of the game. Over this game, Player1 and Player2

cooperate to win the game. It is not hard to check that by letting Player1 and Player2 to
choose actions with different behavior, this makes Player0 to lose the game. With more
precise words, one can build a blocking tree by using the described way of acting for Player1

and Player2 and then, in accordance with our definition of winning condition, we have that

32

2.4. Automata-Theoretic Solution

Player0 loses the game.

2.4 Automata-Theoretic Solution

In this section, we introduce an automaton-theoretic approach to solve CRGI . We start by
analyzing the case of 2-player reachability games under imperfect information and show that
it is EXPTIME-COMPLETE. Then, we handle the most general setting of CRGI and show
that, as for 2CRGI , deciding the winner of the game is also EXPTIME-COMPLETE. For a
matter of clarity, we first recall some basic notation and definitions about automata.

2.4.1 Automata Theory

We recall the definition of alternating tree automata and its special case of nondeterministic
tree automaton.

Definition 2.4.1 An alternating tree automaton (ATA, for short) is a tuple A ,<

Σ, D,Q, q0, δ, F >, where Σ is the alphabet, D is a finite set of directions, Q is the set
of states, q0 ∈ Q is the initial state, δ : Q×Σ→ B+(D×Q) is the transition function, where
B+(D ×Q) is the set of all positive Boolean combinations of pairs (d, q) with d direction
and q state, and F ⊆ Q is the set of the accepting states.

An ATA A recognizes (finite) trees by means of runs. For a Σ-labeled tree < T, V >,
with T = D∗, a run is a (D∗×Q)-labeled N-tree < Tr, r > such that the root is labeled with
(ε, q0) and the labels of each node and its successors satisfy the transition relation.

For example, assume thatA, being in a state q, is reading a node x of the input tree labeled
by ξ. Assume also that δ(q, ξ) = ((0, q1)∨ (1, q2))∧ (1, q1). Then, there are two ways along
which the construction of the run can proceed. In the first option, one copy of the automaton
proceeds in direction 0 to state q1 and one copy proceeds in direction 1 to state q1. In the
second option, two copies of A proceed in direction 1, one to state q1 and the other to state q2.
Hence, ∨ and ∧ in δ(q, ξ) represent, respectively, choice and concurrency. A run is accepting
if all its leaves are labeled with accepting states. An input tree is accepted if there exists a
corresponding accepting run. By L(A) we denote the set of trees accepted by A. We say that
A is not empty if L(A) 6= ∅.

As a special case of alternating tree automata, we consider nondeterministic tree automata
(NTA, for short), where the concurrency feature is not allowed. That is, whenever the
automaton visits a node x of the input tree, it sends to each successor (direction) of x at most
one copy of itself. More formally, an NTA is an ATA in which δ is in disjunctive normal
form, and in each conjunctive clause every direction appears at most once.

33

2.4. Automata-Theoretic Solution

2.4.2 Solution for 2CRGI

Recall that blocking trees are projections of decision trees. In case of imperfect information
over the actions played by Player0, some non-uniform strategies of Player1 are no longer
valid. This reflects directly in the way the blocking tree is built. To restrict to the visibility of
the players, we merge in the blocking tree the directions that come out from indistinguishable
actions. This means that the tree branching is reduced accordingly.

In other words, in the perfect information setting, the blocking tree has just one direction
for each possible action of Player0. In the imperfect information setting, instead, we consider
a “thin” tree in which some nodes carry more action choices (all indistinguishable) at the
same time. So, the set of directions of the blocking tree is given by ∼= and set to [Ac0]. In the
2-player case, the set [Ac0] represents the class of actions Ac0 that are indistinguishable to
Player1.

For the solution side, we use an automata-approach via alternating tree automata. The idea
is to read a {>,⊥}-labeled full ([Ac0]×Ac1)*-tree such that more copies of the automaton
are sent to the same directions along the class of equivalence over [Ac0]. The automaton
checks the consistency of the moves on the fly and its size is just polynomial in the size of the
game arena. These trees are taken with depth greater than the number of states; so if no state
in W is reached in |St| step, then there is a loop over the states in the game model that forbids
to reach states in W in the future.

Theorem 2.4.1 Given a 2CRGI G played by Player0 and Player1, the problem of deciding
whether Player0 wins the game is EXPTIME-COMPLETE.

Proof sketch. Let G be a 2CRGI . For the lower bound, we recall that deciding the winner
in a 2-player turn-based games with imperfect information is EXPTIME-HARD [Rei84]. For
the upper bound, we use an automata-theoretic approach. Precisely, we build an ATA

A that accepts all trees that are blocking for Player0 over G. These are {>,⊥}-labeled
([Ac0]×Ac1)∗-trees that represent the projection of the decision tree over the blocking tree
in accordance with the visibility over the actions. The branching degree of the input tree is
thus given by [Ac0] × Ac1. The automaton, therefore will send more copies on the same
direction of the input tree when they correspond to hidden actions. Then it will check the
consistency with the states on the fly by taking in consideration the information stored in the
node of the tree. The automaton accepts only trees that have depth (i.e. all its paths) greater
than |St|. This can be simply checked by means of a binary counter along with the states of
the automaton. For the sake of readability we omit this part.

The automaton uses as set of states Q = St × St × {>,⊥} × {0, 1} and alphabet
Σ = {>,⊥}. We use in Q a duplication of game states as we want to remember the game
state associated to the parent node while traversing the tree. For the initial state we set
q0 = (sI , sI ,>, 0), i.e. for simplicity the parent game state associated to the root of the tree

34

2.4. Automata-Theoretic Solution

is the game state itself. The flag f ∈ {0, 1} indicates whether along a path we have entered a
target state. In that case we move f from 0 to 1. Given a state s = (p, q, t, f) and symbol t′,
the transition relation δ(s, t′) is defined as:
∧
a0∈Ac0

∧
a1∈Ac1

(d, (q, q′,>, f ′)) if t= t′=>∧f=0;

true if t′ = ⊥;

false if t = ⊥ ∨ f = 1.

where q′ = tr(q, a0, a1), t, t′ ∈ {>,⊥}, d = [Ac0] × Ac1, and f ′ = 1 if q′ ∈ W

otherwise f ′ = f .
The set of accepted states is F = {(p, q, t, f) : p, q ∈ St ∧ t = > ∧ f = 0}. Recall that

an input tree is accepted if there exists a run whose leaves are all labeled with accepting states.
In our setting this means that an input tree simulates a blocking tree for Player0. So, if the
automaton is empty then Player0 wins the game, i.e., does not exist a blocking tree for him.
The required computational complexity of the solution follows by considering that: (i) the
size of the automaton is polynomial in the size of the game, (ii) to check its emptiness can be
performed in exponential time over the number of states [EJ88, KVW00].�

2.4.3 Solution for CRGI

In this section we describe the main result of this work, i.e. an exponential solution algorithm
to decide CRGIs. As we have anticipated earlier we use an opportune extension of the
automata-theoretic approach we have introduced in the previous sections. Such an extension
needs to work with n players: Player0 . . . P layern−1.

In particular, we decide the game by looking for a blocking tree for Player0, which
is built by considering all possible ways players Playerj , with 1 ≤ j < n, have to block
Player0, but playing under uniform visibility. These trees, once again, can be collected in
a ATA that we can build by opportunely extending the one introduced for 2-player games
with imperfect information. Precisely, the automaton will take as input {>,⊥}-labeled full
([Ac0]×Ac1 × . . .×Acn−1)∗-trees such that more copies of the automaton are sent along
the same directions as defined by the equivalence class over the actions.

Theorem 2.4.2 Given a CRGI G played by Player0 . . . P layern−1, the problem of decid-
ing whether Player0 wins the game is EXPTIME-COMPLETE.

Proof sketch. Let G be a CRGI . For the lower bound, we inherit it from 2CRGI . For the
upper bound, we build an ATA A that accepts all trees that are blocking for Player0 over G.
These are {>,⊥}-labeled full ([Ac0]×Ac1×. . .×Acn−1)∗-trees that represent all projections,
one for each Playeri, in accordance with the visibility of the actions. The branching degree
of the input tree is thus given by [Ac0]×Ac1× . . .×Acn−1. The automaton, as in the 2-player

35

2.4. Automata-Theoretic Solution

ε

jwl> sfl⊥jwc⊥jfc>jfl⊥ sfc> sfl⊥ swl>.

Figure 2.4: Tree accepted by the automaton.

case, has set of states Q = St× St× {>,⊥} × {0, 1}, initial state q0 = (sI , sI ,>, 0), and
alphabet Σ = {>,⊥}. Given a state s = (p, q, t, f) and symbol t′, the transition relation
δ(s, t′) is defined as:
∧
a0∈Ac0

· · ·
∧
an−1∈Acn−1

(d,(q, q′,>, f ′)) if t= t′=>∧f=0;

true if t′ = ⊥;

false if t = ⊥ ∨ f = 1.

where q′ = tr(q, a0, . . . , an−1), t, t′ ∈ {>,⊥}, d = [Ac0]× . . .×Acn−1, and f ′ = 1 if
q′ ∈W otherwise f ′ = f .

The set of accepted states as for the 2-player case is F = {(p, q, t, f) : p, q ∈ St ∧ t =

>∧ f = 0}. By applying a reasoning similar to that used in the previous section, one can see
that the automaton A accepts only trees that simulate blocking trees for Player0. So, if the
automaton is empty then Player0 wins the game. We finally obtain the required complexity
result by observing that also in this case the size of the automaton is polynomial and by
recalling that checking its emptiness can be done in exponential time over the number of
states [EJ88, KVW00]. So, on the construction of the automata, any branching degree, even
exponential, is not a problem.�

ε

jwl> sfl⊥jwc⊥jfc⊥jfl> sfc> sfl⊥ swl>.

Figure 2.5: Tree rejected by the automaton.

36

2.5. Conclusion

We conclude this section by reasoning on the application of the above automata construc-
tion over the game example reported in Figure 2.3. First observe that, [Ac0] = {j, s} (j is the
representative action of p ∼= r). One can see that the automaton accepts the {>,⊥}-labeled
full ([Ac0]×Ac1×Ac2)∗-tree depicted in Figure 2.4 but rejects the one in Figure 2.5. Indeed,
the projection of the tree in Figure 2.4 over the decision tree of the game induces a blocking
tree for Player0 in which all paths do not reach a target state. Conversely, the projection of
the tree in Figure 2.5 over the decision tree of the game induces a tree in which there exists a
path (precisely the path leading to rfl) that reaches a target state.

2.5 Conclusion

On game reasoning for multi-player systems, imperfect information plays a key role. Several
fundamental works in formal verification and strategy reasoning have deeply investigated this
setting. Among the others we mention the seminal work of Pnueli and Rosner [PR90] that
considered n-player games, by extending important results achieved by Reif [Rei84] over
two-player games under imperfect information. Pnueli and Rosner considered multi-player
games over different architecture models. Worth of note is the pipeline of processes in which
each output communication of a process i is used as an input to a process i+ 1. Another
seminal work concerns ATL by Alur, Kupferman and Henzinger [AHK02], who addressed the
imperfect information problem from a logic point of view. This setting has been an important
source of several works in AI and formal verification.

However, moving from perfect to imperfect information makes the problem of deciding
multi-agent games much more complicated. For example, the reachability game under
the pipeline architecture of Pnueli and Rosner is non-elementary and solving ATL goals
specifications over multi-agent concurrent game structures is undecidable [AHK02, DT11]
(in the general setting). In the perfect information case, instead, they are both elementary
decidable. This has given rise in the years to the need of investigating restricted imperfect
information settings (and thus methodologies) in which the decision problem gets back to
an elementary complexity and, possibly, not too far from the one for the perfect information
case.

In this chapter we have addressed a variant of the reachability game problem for n players
under a specific form of imperfect information. Precisely we have considered the case in
which Player0 is omniscient and plays against all other players who have common partial
visibility over the actions he can perform. Remarkably, we have considered as a winning
condition for Player0 the inability for all other players to prevent him to reach a target state
(while using uniformity along action choice) and formalized this concept by introducing
blocking trees. As a variant of classic reachability condition in 2-player concurrent games,
this enforces Player0 ability to win the game and so to declare always a winner of the game.

37

2.5. Conclusion

We have proved that our game setting can be decided in EXPTIME by making use of an
automata-theoretic solution. It is worth remarking the efficiency of the automata solution we
have provided that is able to handle several memoryfull player’s strategies under imperfect
information all in one shot.

Overall, the framework we have addressed is one of the few multi-player game settings
with imperfect information yet elementary decidable. It is important to note that, one cannot
translate our game with n players in a two-player one, by just removing players. In particular
this is not possible for the imperfect information. To be convinced, see the very end of last
paragraph of Section 2.3: by simply merging Player1 and Player2 (performing only one
action at time), then Player0 loses the game.

We argue that the introduced game framework has several practical and broad applications.
Along the introduction we have given some specific example. In addition, one can think of a
rob and copper scenario in which several independent and non-communicating coppers try to
catch a robber being at different distances from him. Clearly the coppers in the back have
less information from the ones being in the front and the robber, being in front of every one
else and playing adversarial, can have full information over the actions of the other players.
In such a scenario, a reasonable goal for the coppers is to prevent the robber to reach a safe
(target) state.

Another way to see our work is an orthogonal application of the module checking
extension along with multiple-agents [JM14, JM15]. By casting that settings in ours, we
address the case in which the system is represented by Player0 and the environment is made
by several agents (the opponent players) having imperfect information about the system. We
recall that in [JM14, JM15] the environment is modeled by a single player while the system
is composed by several agents.

Clearly, there are several other specific settings/extensions one can consider for n players
under imperfect information. We conclude this section just reporting some of them, which we
aim to investigate as future work. One extension that would be worth investigating concerns
the relaxation of the common visibility among the opponent players upon Player0. Another
interesting extension concerns multi-target games. That is every player has its own target to
reach. In this case every player works against every one else. To give some fairness condition
over the game, one can also think of having an order (for each player) over the targets. This
means that if a player cannot reach his own goal, he may want to help one player rather than
another. This can be generalized by considering a solution concept as a target. We conjecture
that the exponential algorithm we have proposed can be adapted to deal with this scenario as
well.

38

Part II

Counting Strategies

CHAPTER 3

Reasoning about Graded Strategy
Quantifiers

Contents
3.1 Introduction . 42

3.2 Graded Strategy Logic . 44

3.2.1 Model . 44

3.2.2 Syntax . 48

3.2.3 Semantics . 50

3.2.4 Results . 52

3.3 Strategy Equivalence . 53

3.3.1 Elementary Requirements . 54

3.3.2 Play Requirement . 54

3.3.3 Strategy Requirements . 55

3.4 From Concurrent To Turn-Based Games 57

3.4.1 Normalization . 59

3.4.2 Minimization . 60

3.4.3 Conversion . 61

3.5 Determinacy . 65

3.6 Model Checking . 72

3.7 Discussion . 77

3.1. Introduction

3.1 Introduction

Formal methods in system design are a renowned story of success. Breakthrough contributions
in this field comprise model checking [CE81, QS82] and temporal logics such as LTL [Pnu77],
CTL [CE81], CTL? [EH86], and the like. First applications of these methodologies involved
closed systems [HP85] generally analyzing whether a Kripke structure, modeling the system,
meets a temporal logic formula, specifying the desired behavior [CGP02]. In the years several
algorithms have been proposed in this setting and some implemented as tools [BBF+10].
Nevertheless these approaches turn to be useless when applied to open systems [HP85].
The latter are characterized, in the simplest situation, by an ongoing interaction with an
external environment on which the whole system behavior deeply relies. To be able to deal
with the unpredictability of the environment, extensions of the basic verification techniques
have come out. A first attempt worth of note is module checking where a Kripke structure
is replaced by a specific two-player arena. Module checking has been first introduced
in [KV96, KVW01]. In the last decade this methodology has been fruitfully extended in
several directions (see [ALM+13, JM14, JM15] for some related works).

Starting from the study of module checking, researchers have looked for logics focusing
on the strategic behavior of players in multi-agent systems [AHK02]. One of the most
important developments in this field is Alternating-Time Temporal Logic (ATL?, for short),
introduced by Alur, Henzinger, and Kupferman [AHK02]. This logic allows to reason about
strategies of agents having the satisfaction of temporal goals as the payoff criterion. Formally,
it is obtained as a generalization of CTL?, in which the existential E and the universal A path
quantifiers are replaced with strategic modalities of the form 〈〈A〉〉 and [[A]], where A is a
set of agents. Strategic modalities over agent teams are used to describe cooperation and
competition among them in order to achieve certain goals. In particular, these modalities
express selective quantifications over those paths that are the result of infinite interaction
between a coalition and its complement.

Despite its expressiveness, ATL? suffers from the strong limitation that strategies are
treated only implicitly in the semantics of its modalities. This restriction makes the logic less
suited to formalize several important solution concepts, such as Nash Equilibrium. These
considerations led to the introduction of Strategy Logic (SL, for short) [CHP07, MMV10a],
a more powerful formalism for strategic reasoning. As a key aspect, SL treats strategies
as first-order objects that can be determined by means of the existential 〈〈x〉〉 and universal
[[x]] quantifiers, which can be respectively read as “there exists a strategy x” and “for all
strategies x”. Remarkably, a strategy in SL is a generic conditional plan that at each step
prescribes an action on the base of the history of the play. Such a plan is not intrinsically
glued to a specific agent but an explicit binding operator (a, x) allows to link an agent a to
the strategy associated with a variable x.

42

3.1. Introduction

A common aspect about all logics mentioned above is that quantifications are either
existential or universal. Per contra, there are several real scenarios in which “more precise”
quantifications are crucially needed (see [BMM12, MMS15], for an argumentation). This
has attracted the interest of the formal verification community to graded modalities. These
have been first studied in classic modal logic [Fin72] and then exported to the field of
knowledge representation to allow quantitative bounds on the set of individuals satisfying
specific properties. Specifically, they are counting quantifiers in first-order logics [GOR97],
number restrictions in description logics [LST05, LWW07, CDL99, ABL07] and numerical
constraints in query languages [Bár15].

First applications of graded modalities in formal verification concern closed systems.
In [KSV02], graded µCALCULUS has been introduced in order to express statements about a
given number of immediately accessible worlds. Successively in [FNP09b, BMM09, BMM10,
BMM12], the notion of graded modalities have been extended to deal with number of paths.
Among the others graded CTL (GCTL, for short) has been introduced with a suitable
axiomatization of counting [BMM12]. This work has been recently extended in [AMR15] to
address GCTL?, a graded extension of CTL?.

In open systems verification, we are aware of just two orthogonal approaches in which
graded modalities have been investigated, but in a very restricted form: module checking for
graded µCALCULUS [FMP08] and an extension of ATL with graded path modalities (GATL,
for short) [FNP09a]. In particular, the former involves a counting of one-step moves among
two agents, the latter allows for a more restricted counting on the histories of the game, but in
a multi-player setting. Both approaches suffer of several limitations. First, not surprisingly,
they cannot express powerful game reasoning due to the limitation of the underlying logic.
Second, it is based on a very rigid and restricted counting of strategies.

In this chapter, we take a different approach by formally introducing a machinery to count
strategies in a multi-agent setting and use it upon the powerful framework of SL. Precisely,
we introduce and study Graded Strategy Logic (GSL) which extends SL with the existential
〈〈x ≥ g〉〉ϕ and universal [[x < g]]ϕ graded strategy quantifiers. They allow to express that
there are at least g or all but less than g strategies x satisfying ϕ, respectively. As in SL, we
use the binding operator to associate these strategies to agents.

As far as the counting of strategies is concerned, one of the main difficulties resides on the
fact that some strategies, although looking different, produce the same outcome and therefore
have to be counted as one. To overcome this problem while preserving a correct counting over
paths for the underlining logic SL, we introduce a suitable equivalence relation over profiles
based on the strategic behavior they induce. This is by its own an important contribution of
this work.

To show the applicability of GSL we investigate basic game-theoretic and verification
questions over a powerful fragment of GSL. Recall that model checking is non-elementary-

43

3.2. Graded Strategy Logic

complete for SL and this has spurred researchers to investigate fragments of the logic for
practical applications. Here, we concentrate on the vanilla version of the SL[1G] fragment
of SL. We recall that SL[1G] was introduced in [FAGV12]. As for ATL, vanilla SL[1G] (for
the first time introduced here) requires that two successive temporal operators in a formula
are always interleaved by a strategy quantifier. We prove that the model-checking problem
for this logic is PTIME-COMPLETE. We also show positive results about the determinacy of
turn-based games.

GSL can have useful applications in several multi-agent game scenarios. For example, in
safety-critical systems, it may be worth knowing whether a controller agent has a redundant
winning strategy to play in case of some fault. Having more than a strategy may increase the
chances for a success [ATO+09], i.e., if a strategy fails for any reason, it is possible to apply
the others.

Such a redundancy can easily be expressed in GSL by requiring that at least two different
strategies exist for the achievement of the safety goal. The universal graded strategy quantifier
may turn useful to grade the “security” of a system. For example, one can check whether
preventing the use of at most k strategies, the remaining ones are all winning. In a network
this may correspond to prevent some attacks while leaving the communication open.

3.2 Graded Strategy Logic

In this section we introduce syntax and semantics of Graded Strategy Logic (GSL, for short),
an extension of Strategy Logic (SL, for short) [MMV10a] that allows reasoning about the
number of strategies an agent may exploit in order to satisfy a given temporal goal. We recall
that SL simply extends LTL with two strategy quantifiers and a binding construct used to
associate an agent to a strategy.

This section is organized as follows. In Subsection 3.2.1, we recall the definition of
concurrent game structure, used to interpret GSL and give some examples. In Subsec-
tion 3.2.2 we introduce the syntax of GSL, and, in Subsection 3.2.3, its semantics. Finally, in
Subsection 3.2.4 we list the main results of this work.

3.2.1 Model

Similarly to SL, as semantic framework we use concurrent game structures [AHK02], i.e.,
a generalization of both Kripke structures [Kri63] and labeled transition systems [Kel76] in
which the system is modeled as a game where players perform actions chosen strategically as
a function on the history of the play.

Definition 3.2.1 (Concurrent Game Structure) A Concurrent Game Structure (CGS, for
short) is a tuple G , 〈AP,Ag,Ac,St, tr, ap, s〉, where AP, Ag, Ac, and St are sets of

44

3.2. Graded Strategy Logic

atomic propositions, agents/players, actions and states, respectively, sI ∈ St is an initial state,
and ap : St→ 2AP is a labeling function mapping each state to the set of atomic propositions
true in that state. Let Dc,Ag⇀Ac be the set of decisions, i.e., partial functions describing
the choices of an action by some agent. Then, tr : Dc→ (St⇀ St) denotes the transition
function mapping every decision δ∈Dc to a partial function tr(δ) ⊆ St×St representing a
deterministic graph over the states.

Intuitively, a CGS can be seen as a generic labeled transition graph [Kel76], where labels
are possibly incomplete agent decisions, which determine the transitions to be executed at
each step of a play in dependence of the choices made by the agents in the relative state.
In particular, incomplete decisions allow us to represent any kind of legal move in a state,
where some agents or a particular combination of actions may not be active. It is worth noting
that, due to the way the transition function is defined, a CGS is in general nondeterministic.
Indeed, two different but indistinguishable decisions may enable different transitions for the
same state. Even more, a single decision may induce a non-functional relation. However,
due to the focus of this work, we restrict to the case of deterministic games structures, by
describing later on few conditions that rule out how the transition function has to map partial
decisions to transitions.

A concurrent game structure G naturally induces a graph Gr(G) = 〈St,Ed 〉, whose
vertexes are represented by the states and the edge relation Ed ,

⋃
δ∈Dc tr(δ) is obtained by

rubbing out all labels on the transitions. Note that there could be states where no transitions
are available, i.e., dom(Ed) ⊂ St. If this is the case, those states in St \ dom(Ed) are called
sink-states. A path π ∈ Pth , {π ∈ Stω : ∀i ∈ N . ((π)i, (π)i+1) ∈ Ed} is simply an
infinite path in G. Similarly, the order |G| , |Gr(G)| (resp., size ‖G‖ , ‖Gr(G)‖) of G is the
order (resp., size) of its induced graph. As usual in the study of extensive-form games, finite
paths also describe the possible evolutions of a play up to a certain point. For this reason,
they are called in the game-theoretic jargon histories, whose corresponding set is denoted
by Hst , {ρ ∈ St∗ : ∀i ∈ [0, |ρ| − 1[. ((ρ)i, (ρ)i+1) ∈ Ed}. Moreover, by fst(ρ) = ρ0

(resp., fst(π) = π0) we denote the first element in the history (resp., path), by lst(ρ) we
denote the last element occurring in the history ρ and by ρ≤i (resp., π≤i) we denote the prefix
up to the state of index i. We now introduce the sets of decisions, agents, and actions that
trigger some transition in a given state s ∈ St by means of the three functions dc : St→ 2Dc,
ag : St→ 2Ag, and ac : St×Ag→ 2Ac such that:

dc(s) , {δ ∈ Dc : s ∈ dom(tr(δ))};

ag(s) , {a ∈ Ag : ∃δ ∈ dc(s) . a ∈ dom(δ)};

ac(s, a) , {δ(a) ∈ Ac : δ ∈ dc(s) ∧ a ∈ dom(δ)}, for all a ∈ Ag.

45

3.2. Graded Strategy Logic

These functions can be easily lifted to the set of histories as follows: dc : Hst→ 2Dc with
dc(ρ) , dc(lst(ρ)), ag : Hst → 2Ag with ag(ρ) , ag(lst(ρ)), and ac : Hst × Ag → 2Ac

with ac(ρ, a) , dc(lst(ρ), a).

A decision δ∈Dc is coherent w.r.t. a state s∈St (s-coherent, for short), if ag(s)⊆dom(δ)

and δ(a)∈ ac(s, a), for all a∈ ag(s). By Dc(s)⊆Dc, we denote the set of all s-coherent
decisions.

A strategy is a partial function σ ∈ Str , Hst ⇀ Ac prescribing, whenever defined,
which action has to be performed for a certain history of the current outcome. Roughly
speaking, it is a generic conditional plan which specifies “what to do” but not “who will do
it”. Indeed, a given strategy can be used by more than one agent at the same time. We say that
σ is coherent w.r.t. an agent a ∈ Ag (a-coherent, for short) if, in each possible evolution of the
game, either a is not influential or the action that σ prescribes is available to a. Formally, for
each history ρ ∈ Hst, it holds that either a 6∈ ag(ρ) or ρ ∈ dom(σ) and σ(ρ) ∈ ac(ρ, a). By
Str(a) ⊆ Str we denote the set of a-coherent strategies. Moreover, Str(A) ,

⋂
a∈A Str(a)

indicates the set of strategies that are coherent with all agents in A ⊆ Ag.

For a state s ∈ St, we say that σ is s-total iff it is defined on all non-trivial histories (i.e.,
|ρ| > 0) starting in s, i.e.,dom(σ) = {ρ ∈ Hst|fst(ρ) = s}.

A profile is a function ξ ∈ Prf , Ag→a Str(a) specifying a unique behavior for each
agent a ∈ Ag by associating it with an a-coherent strategy ξ(a) ∈ Str(a). Given a profile ξ,
to identify which action an agent a ∈ Ag has chosen to perform on a history ρ ∈ Hst, we
first extract the corresponding strategy ξ(a) and then determine the action ξ(a)(ρ), whenever
defined. To identify, instead, the whole decision on ρ, we apply the standard flipping operator
to ξ. 1 We get so a function ξ̂ : Hst → Dc such that ξ̂(ρ)(a) = ξ(a)(ρ), which maps each
history to the planned decision.

A path π ∈ Pth is a play w.r.t. a profile ξ ∈ Prf (ξ-play, for short) iff, for all i ∈ [0, |π|[,
there exists a decision δ ∈ dc((π)i) such that δ ⊆ ξ̂((π)≤i) and ((π)i, (π)i+1) ∈ tr(δ), i.e.
(π)i+1 is one of the successors of (π)i induced by the decision ξ̂((π)≤i) prescribed by the
profile ξ on the history (π)≤i.

CGSs describe generic mathematical structures, where the basilar game-theoretic notions
of history, strategy, profile, and play can be defined. However, in several contexts, some
constraints rule out how the function tr maps partial decisions to transitions between states.
Here, as already observed, we require that the CGSs are deterministic. We do this by means
of the following constraints:

1. there are no sink-states, i.e., dc(s) 6= ∅, for all s ∈ St;

2. for all s-coherent decisions δ ∈ Dc(s), there exists a set of agents A ⊆ ag(s) such that
δ�A ∈ dc(s);

1By ĝ : (B → (A → C)) we denote the operation of flipping of a function g : (A → (B → C)).

46

3.2. Graded Strategy Logic

3. each decision induces a partial function among states, i.e. tr(δ) ∈ St ⇀ St, for all
δ ∈ Dc;

4. there are no different but indistinguishable active decisions in a given state s ∈ St,
i.e., for all δ, δ ∈ dc(s) with δ 6= δ, there exist a ∈ dom(δ) ∩ dom(δ) such that
δ(a) 6= δ(a).

Given a state s ∈ St, the determinism in a CGS ensures that there exists exactly one
ξ-play π starting in s, i.e., fst(π) = s. Such a play is called (ξ, s)-play. For this reason, we
use the play function play : Prf × St → Pth to identify, for each profile ξ ∈ Prf and state
s ∈ St, the corresponding (ξ, s)-play play(ξ, s).

I

1 2

1/2 2/1

W

PP 7→ii

PP 7→ri PP 7→ir

PP 7→rr

PP 7→ii

PP 7→fi

PP 7→fr

PP 7→ir

PP 7→ii

PP 7→if

PP 7→rf

PP 7→ri

AP 7→ii

AP 7→2i

P 7→f

AP 7→ii

AP 7→1i

P 7→f

PP 7→aa

PP 7→ia PP 7→ai

APP 7→1ii APP 7→2ii

Figure 3.1: A scheduler system GS .

As a running example, consider the concurrent game structure GS depicted in Figure 3.1.
It models a scheduler system that comprises two processes, P and P, willing to access a
shared resource, such as a processor, and an arbiter A used to solve conflicts arisen under
contending requests. The processes can use four actions: i for idle, r for (resource) request,
f for free (a resource), and a for abandon (a pending request), all with the obvious meaning.
The action i means that the process does not want to change the current situation in which the
entire system resides. The action r is used to ask for the resource, when this is not yet owned,
while the action f releases it. Finally, the action a is asserted by a process that, although has
asked for the resource, did not obtain it and so it decides to relinquish the request. The system
can reside in the states I, 1, 2, 1/2, 2/1 and W. The first three are ruled by the processes, the

47

3.2. Graded Strategy Logic

last by all the agents, and 1/2 (resp, 2/1) by P (resp., P) and A. The idle state I indicates
that none of the processes owns the resource, while a state k ∈ {1, 2} asserts that process Pk
is using it. The state 1/2 (resp. 2/1) indicates that the process P (resp., P) has the resource,
while its competitor requires it. Finally, the waiting state W represents the case in which an
action from the arbiter is required in order to solve a conflict. To denote who is the owner of
the resource, we label 1 and 1/2 (resp., 2 and 2/1) with the atomic proposition r (resp., r).
A decision is graphically represented by ~a 7→ ~c, where ~a is a sequence of agents and ~c is a
sequence of corresponding actions. For example PP → ir indicates that agents P and P

take actions i and r, respectively. All the other available decisions are depicted in Figure 3.1.

3.2.2 Syntax

GSL extends SL by replacing the two classic strategy quantifiers 〈〈x〉〉 and [[x]], where x
belongs to a countable set Vr of variables, with their graded version 〈〈x≥ g〉〉 and [[x<g]],
where the finite number g ∈ N denotes the corresponding degree, that is a bound associated
to the strategy quantifiers. Intuitively, these quantifiers are read as “there exist at least g
strategies” and “all but less than g strategies”. Moreover, GSL syntax comprises a set AP of
atomic proposition to expresses properties over the states, a binding operator to link strategies
to agents, and Boolean connectives.

Definition 3.2.2 (GSL Syntax) GSL formulas are built inductively by means of the follow-
ing context-free grammar, where a ∈ Ag, p ∈ AP, x ∈ Vr, and g ∈ N:

ϕ := p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ | ϕRϕ | 〈〈x ≥ g〉〉ϕ | [[x < g]]ϕ | (a, x)ϕ.

As usual, to provide the semantics of a predicative logic, it is necessary to define the
concept of free and bound placeholders of a formula. As for SL, since strategies can be
associated to both agents and variables, we need the set of free agents/variables free(ϕ) as
the subset of Ag ∪Vr containing (i) all agents a for which there is no binding (a, x) before
the occurrence of an atomic proposition and (ii) all variables x for which there is a binding
(a, x) but no quantification 〈〈x ≥ g〉〉 or [[x < g]].

Definition 3.2.3 (GSL Free Agents/Variables) The set of free agents/variables of a GSL
formula is given by the function free : GSL → 2Ag∪Vr such that:

1. free(p) , Ag, with p ∈ AP;

2. free(¬ϕ) , free(ϕ);

3. free(ϕ1 ∨ ϕ2) , free(ϕ1) ∪ free(ϕ2);

4. free(ϕ1 ∧ ϕ2) , free(ϕ1) ∪ free(ϕ2);

48

3.2. Graded Strategy Logic

5. free(Xϕ) , Ag ∪ free(ϕ);

6. free(ϕ1Opϕ2) , Ag ∪ free(ϕ1) ∪ free(ϕ2) with Op ∈ {U,R};

7. free(〈〈x ≥ g〉〉ϕ) , free(ϕ) \ {x};

8. free([[x < g]]ϕ) , free(ϕ) \ {x};

9. free((a, x)ϕ) , free(ϕ), if a 6∈ free(ϕ), with a ∈ Ag and x ∈ Vr;

10. free((a, x)ϕ) , (free(ϕ) \ {a}) ∪ {x}, if a ∈ free(ϕ), with a ∈ Ag and x ∈ Vr.

A formula ϕ without free agents (resp., variables), i.e., with free(ϕ) ∩ Ag = ∅ (resp.,
free(ϕ) ∩ Vr = ∅)), is named agent-closed (resp., variable-closed). A sentence is a both
agent- and variable-closed formula. Since a variable x may be bound to more than a single
agent at the time, we also need the subset shr(ϕ, x) of Ag containing those agents for which
a binding (a, x) occurs in ϕ.

Definition 3.2.4 (GSL Shared Variables) The set of shared variables of a GSL formula is
given by the function shr : GSL ×Vr→ 2Ag such that:

1. shr(p, x) , ∅, with p ∈ AP;

2. shr(¬ϕ, x) , shr(ϕ, x);

3. shr(ϕ1 ∨ ϕ2, x) , shr(ϕ1, x) ∪ shr(ϕ2, x);

4. shr(ϕ1 ∧ ϕ2, x) , shr(ϕ1, x) ∪ shr(ϕ2, x);

5. shr(Xϕ, x) , shr(ϕ, x);

6. shr(ϕ1Opϕ2, x) , shr(ϕ1, x) ∪ shr(ϕ2, x) with Op ∈ {U,R};

7. shr(〈〈x ≥ g〉〉ϕ, x) , shr(ϕ, x);

8. shr([[x < g]]ϕ, x) , shr(ϕ, x);

9. shr((a, y)ϕ, x) , shr(ϕ, x), if a 6∈ free(ϕ) or y 6= x, with a ∈ Ag and y ∈ Vr;

10. shr((a, x)ϕ, x) , shr(ϕ, x) ∪ {a}, if a ∈ free(ϕ), with a ∈ Ag.

For complexity reasons, we restrict to the One-Goal fragment of GSL (GSL[1G], for
short), which is the graded extension of SL[1G] [MMPV14]. To formalize its syntax, we
first introduce some notions. A quantification prefix over a set V⊆Vr of variables is a word
℘∈{〈〈x≥g〉〉, [[x<g]] : x∈V ∧ g∈N}|V| of length |V| such that each x∈V occurs just once
in ℘. With Qn(V) we indicate the set of quantification prefixes over V . A binding prefix over
A⊆Ag is a word [∈{(a, x) : a∈A ∧ x∈Vr}|A| such that each a∈A occurs exactly once

49

3.2. Graded Strategy Logic

in [. By Bn we indicate the set of all binding prefixes. GSL[1G] restricts GSL by forcing,
after a quantification prefix, a single goal to occur i.e., a formula of the kind [ψ, where [is a
binding prefix on all the agents in Ag. The syntax of GSL[1G] follows.

Definition 3.2.5 (GSL[1G] Syntax) GSL[1G] formulas are built inductively through the fol-
lowing grammar:

ϕ := p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ | ϕRϕ | ℘[ϕ,

with ℘ quantification prefix over free([ϕ) and [ϕ a goal.

As an example of GSL[1G] property, in the context of the scheduler system, consider
the sentence ϕ = ℘[ψ, with ℘= 〈〈x≥k〉〉[[y<g1]][[y<g2]], [=(A, x)(P, y)(P, y), and
ψ=F(r ∨ r). It says that there are at least k strategies for the arbiter A ensuring that one
between the processes P and P receives the resource, being them able to avoid less than g1

and g2 strategies, respectively.

3.2.3 Semantics

As for SL, the interpretation of a GSL formula requires a valuation for its free placeholders.
This is done via assignments, i.e., partial functions χ∈ Asg, (Vr ∪ Ag)⇀ Str mapping
variables/agents to strategies. An assignment χ is complete if it is defined on all agents in
Ag, i.e., χ(a)∈ Str({a}), for all a ∈ Ag ⊆ dom(χ). In this case, it directly identifies the
profile χ�Ag given by the restriction of χ to Ag. In addition, χ[e 7→ σ], with e ∈ Vr ∪ Ag

and σ ∈ Str, denotes the assignment defined on dom(χ[e 7→ σ]) , dom(χ) ∪ {e} that
differs from χ only on the fact that e is associated with σ. Formally, χ[e 7→ σ](e) = σ

and χ[e 7→ σ](e′) = χ(e′), for all e′ ∈ dom(χ)\{e}. For a state s ∈ St, it is said that χ
is s-total if all strategies χ(l) are s-total, for l ∈ dom(χ). The set Asg ,Vr ∪ Ag⇀ Str

(resp., Asg(s) , Vr ∪ Ag ⇀ Str(s)) contains all (resp., s-total) assignments. Moreover,
Asg(X) , X⇀Str (resp., Asg(X, s) , X⇀Str(s)) indicates the subset of X-defined (resp.,
s-total) assignments, i.e., (resp., s-total) assignments defined on the set X⊆Vr∪Ag. Finally,
for a formula ϕ, we say that χ is ϕ-coherent iff (i) free(ϕ) ⊆ dom(χ), (ii) χ(a) ∈ Str({a}),
for all a ∈ dom(χ) ∩ Ag, and (iii) χ(x) ∈ Str(shr(ϕ, x)), for all x ∈ dom(χ) ∩ Vr. To
provide the semantics of GSL, we give a definition of update state/assignment which is used
to calculate, at a certain step of the play, what the current state and its updated assignment
are. For a given state s ∈ St and a complete s-total assignment χ ∈ Asg(s), the i-th update
state/assignment of (χ, s), with i ∈ N, is the pair of a complete assignment and a state
(χ, s)i , ((χ)(π)≤i

, (π)i) where π = play(χ, s). In other words, (χ, s)i corresponds to the
i-th element of the sequence, given a partial assignments (χ)(π)≤i

.

50

3.2. Graded Strategy Logic

We now define the semantics of a GSL formula ϕ w.r.t. a CGS G and a ϕ-coherent
assignment χ. In particular, we write G, χ |= ϕ to indicate that ϕ holds in G under χ. The
semantics of LTL formulas and agent bindings are defined as in SL. The definition of
graded strategy quantifiers, instead, makes use of a family of equivalence relations ≡ϕG on
assignments that depend on the structure G and the considered formula ϕ. This equivalence
is used to reasonably count the number of strategies that satisfy a formula w.r.t. an a priori
fixed criterion. Observe that we use a relation on assignments instead of a more direct one on
strategies, since the classification may also depend on the context determined by the strategies
previously quantified. In Section 3.3, we will come back to the properties the equivalence
relation has to satisfy in order to be used in the semantics of GSL.

Definition 3.2.6 (GSL Semantics) Let G be a CGS, ϕ be a GSL formula and s ∈ St be a
state. For all ϕ-coherent assignments χ ∈ Asg, the relation G, χ, s |= ϕ is inductively defined
as follows.

1. For every p ∈ AP, it holds that G, χ, s |= p iff p ∈ ap(s).

2. For all formulas ϕ, ϕ1, and ϕ2, it holds that:

(a) G, χ, s |= ¬ϕ iff G, χ, s 2 ϕ;

(b) G, χ, s |= ϕ1 ∧ ϕ2 iff G, χ, s |= ϕ1 and G, χ, s |= ϕ2;

(c) G, χ, s |= ϕ1 ∨ ϕ2 iff G, χ, s |= ϕ1 or G, χ, s |= ϕ2.

3. For each x ∈ Vr, g ∈ N, and ϕ ∈ GSL, it holds that:

(a) G, χ, s |= 〈〈x ≥ g〉〉ϕ iff |({χ[x 7→ σ] : σ ∈ ϕ[G, χ, s](x)}/≡ϕG)| ≥ g;

(b) G, χ, s |= [[x < g]]ϕ iff |({χ[x 7→ σ] : σ ∈ ¬ϕ[G, χ, s](x)}/≡¬ϕG)| < g;

where η[G, χ, s](x),{σ∈Str(shr(η, x)) : G, χ[x 7→σ], s |= η} is the set of shr(η, x)-
coherent strategies that, being assigned to x in χ, satisfy η.

4. For each a ∈ Ag, x ∈ Vr, and ϕ ∈ GSL, it holds that G, χ, s |= (a, x)ϕ iff G, χ[a 7→
χ(x)], s |= ϕ.

5. Finally, if the assignment χ is also complete, for all formulas ϕ, ϕ1, and ϕ2, it holds
that:

(a) G, χ, s |= Xϕ iff G, (χ, s)1 |= ϕ;

(b) G, χ, s |= ϕ1Uϕ2 if there is an index i ∈ N such that G, (χ, s)i |= ϕ2 and, for all
indexes j ∈ N with j < i, it holds that G, (χ, s)j |= ϕ1;

(c) G, χ, s |= ϕ1Rϕ2 if, for all indexes i ∈ N , it holds that G, (χ, s)i |= ϕ2 or, there
is an index j ∈ N with j < i, such that G, (χ, s)j |= ϕ1.

51

3.2. Graded Strategy Logic

Intuitively, the existential quantifier 〈〈x ≥ g〉〉ϕ allows us to count the number of equiv-
alence classes w.r.t. ≡ϕG over the set of assignments {χ[x 7→ σ] : σ ∈ ϕ[G, χ](x)} that,
extending χ, satisfy ϕ. The universal quantifier [[x<g]]ϕ is the dual of 〈〈x≥g〉〉ϕ and counts
how many classes w.r.t. ≡¬ϕG there are over the assignments {χ[x 7→ σ] : σ ∈ ¬ϕ[G, χ](x)}
that, extending χ, do not satisfy ϕ. Note that all GSL formulas with degree 1 are SL formulas,
since with 〈〈x≥ 1〉〉ϕ is appropriate to find a single strategy that satisfies the formula, just
like 〈〈x〉〉ϕ. Furthermore, by [[x< 1]]ϕ all strategies are considered, without excluding any,
just like [[x]]ϕ. In order to complete the description of the semantics, we now give the classic
notions of model and satisfiability of an GSL sentence. We say that a CGS G is a model of
an GSL sentence ϕ, in symbols G |= ϕ , if G,∅, sI |= ϕ.2 In general, we also say that G
is a model for ϕ on s ∈ St, in symbols G, s |= ϕ, if G,∅, s |= ϕ. An GSL sentence ϕ is
satisfiable if there is a model for it.

Consider again the sentence ϕ = 〈〈x ≥ k〉〉[[y < g1]][[y < g2]](A, x)(P, y)(P, y)

F(r ∨ r) of the scheduler example. Once a reasonable equivalence relation on assignments
is fixed (see Section 3.3), one can see that GS |= ϕ with k ≥ 0 and (g1, g2) = (1, 2) but
GS 6|= ϕ with (k, g1, g2) = (1, 1, 1). Indeed, if the processes use the same strategy, they may
force the play to be in (I+ · W)∗ · Iω + (I+ · W)ω, so they either avoid to do a request or
relinquish a request that is not immediately served. Consequently, to satisfy ϕ, we need to
verify the property against all but one strategy of P, i.e., the one used by P. Under these
assumptions, we can see that the arbiter A has an infinite number of different strategies by
suitably choosing the actions on all histories ending in the state W.

3.2.4 Results

In this section, we summarize the main results we have obtained on GSL along this paper. We
start showing that graded ATL (GATL) [FNP09a] is strictly included in GSL[1G]. Precisely,
we first show that GATL can be translated into GSL[1G], then we provide a formula GSL[1G]

and show that it cannot be expressed in GATL. In [FNP09a], the authors introduce two
different semantics for GATL, called off-line and on-line, and it has been showed that this
logic has the ability to count how many different strategies (in the off-line semantics) or paths
(in the on-line semantics) satisfy a certain property. Under the off-line semantics, over a
CGS with agents α and α, the GATL formula 〈〈α〉〉gψ is equivalent to the GSL[1G] sentence
〈〈x≥ g〉〉[[x< 1]](α, x)(α, x)ψ. Under the on-line semantics, instead, it is equivalent to the
sentence [[x< 1]]〈〈x≥ g〉〉(α, x)(α, x)ψ. Note that the counting over strategies in GATL is
limited to existential agents and, so, the GSL[1G] formula [[x<2]]〈〈y≥1〉〉(α, x)(α, y)ψ does
not have any ATL equivalent formula. From these considerations, we derive the following
theorem.

2The symbol ∅ stands for the empty function.

52

3.3. Strategy Equivalence

Theorem 3.2.1 GSL[1G] is more expressive of GATL.

It is important to note that the criteria used for the strategy classification in GATL is
strictly coupled with the temporal operators Xϕ, ϕ1Uϕ2, and Gϕ along the syntax, and we do
not see how this can be extended to the whole LTL, unless one uses the approach proposed
in [BMM12].

Another important result we prove in Section 3.5 is the determinacy for GSL[1G] in the
case of 2 variables as stated in the following theorem.

Theorem 3.2.2 (Determinacy) GSL[1G, 2AG] on Turn-Based Game Structures is deter-
mined.

Finally, in Section 3.6, we solve the model checking problem for the vanilla fragment
of GSL[1G] with 2 variables. As for ATL, Vanilla GSL[1G] requires that two successive
temporal operators in a formula are always interleaved by a strategy quantifier.

Theorem 3.2.3 (Model Checking) The model-check

ing problem for Vanilla GSL[1G] is PTIME-COMPLETE w.r.t. the size of the structure and the
sentence.

3.3 Strategy Equivalence

Our definition of the GSL semantics makes use of an arbitrary family of equivalence relation
on assignments. This choice introduces flexibility in its description, since one can come up
with different logics by opportunely choosing different equivalences. In this section, we focus
on a particular relation whose key feature is to classify as equivalent all assignments that
reflect the same “strategic reasoning”, although they may have completely different structures.
Just to get an intuition about what we mean, consider two assignments χ and χ and the
corresponding involved strategies associated with the agents a and a. Assume now that, for
each i∈{1, 2}, the homologous strategies χ(ai) and χ(ai) only differ on histories never
met by a play because of a specific combination of their actions. Clearly, χ and χ induce
the same agent behaviors, which means to reflect the same strategic reasoning. Therefore, it is
natural to set them as equivalent, as we do. Two formulas are considered equivalent whenever
the two assignments are equivalent for both or none of them. Also, if two assignments do not
satisfy the same formulas, they are not equivalent.

In the sequel, in order to illustrate the introduced concepts, we analyze subformulas of
the previously described sentence 〈〈x≥ k〉〉[[y< 1]][[y< 2]](A,x)(P,y)(P,y)F(r∨r),
together with their negations, over the CGS GS of Figure 3.1.

53

3.3. Strategy Equivalence

3.3.1 Elementary Requirements

Logics usually admit syntactic redundancy. For example, in LTL we have ¬X(p ∧ q) ≡
X¬(p ∧ q) ≡ X(¬p ∨ ¬q). Also, the semantics is normally closed under substitution. Yet
for LTL, this means that ¬X(p ∧ q) can be replaced with X¬(p ∧ q) or X(¬p ∨ ¬q), without
changing the meaning of a formula. GSL should not be an exception. To ensure this, we
require the invariance of the equivalence relation on assignments w.r.t. the syntax of the
involved formulas.

Definition 3.3.1 (Syntax Independence) An equivalence relation on assignments ≡·G is
syntax independent if, for any pair of equivalent formulasϕ1 andϕ2 and (free(ϕ1)∪free(ϕ2))-
coherent assignments χ, χ ∈ Asg, we have that χ ≡ϕ

G χ iff χ ≡ϕ

G χ.

As declared above, our aim is to classify as equivalent w.r.t. a formula ϕ all assignments
that induce the same strategic reasoning. Therefore, we cannot distinguish them w.r.t. the
satisfiability of ϕ itself.

Definition 3.3.2 (Semantic Consistency) An equivalence relation on assignments ≡·G is
semantically consistent if, for any formula ϕ and ϕ-coherent assignments χ, χ ∈ Asg, we
have that if χ ≡ϕGχ then either G, χ |= ϕ and G, χ |= ϕ or G, χ 6|= ϕ and G, χ 6|= ϕ.

3.3.2 Play Requirement

We now deal with the equivalence relation for the basic case of temporal properties. Before
disclosing the formalization, we give an intuition on how to evaluate the equivalence of two
complete assignments χ and χ w.r.t. their agreement on the verification of a generic LTL
property ψ. Let π and π with π 6= π be the plays satisfying ψ induced by χ and χ,
respectively. Also, consider their maximal common prefix ρ = prf(π, π) ∈ Hst. If ρ can
be extended to a play in such a way that ψ does not hold, we are sure that the reasons why
both the assignments satisfy the property are different, as they reside in the parts where the
two plays diverge. Consequently, we can assume χ and χ to be non-equivalent w.r.t. ψ.
Conversely, if all infinite extensions of ρ necessarily satisfy ψ, we may affirm that this is
already a witness of the verification of the property by the two plays and, so, by the two
assignments. Hence, we can assume χ and χ to be equivalent w.r.t. ψ.

In the following, we often make use of the concept of witness of an LTL formula ψ as the
set Wψ , {ρ ∈ Hst : ∀π ∈ Pth . ρ < π ⇒ π |= ψ} containing all histories that cannot be
extended to a play violating the property.

Definition 3.3.3 (Play Consistency) An equivalence relation on assignments ≡·G is play
consistent if, for any LTL formula ψ and ψ-coherent assignments χ, χ ∈ Asg, we have
that χ≡ψGχ iff either π = π or prf(π, π) ∈ Wψ, where π = play(χ�Ag, sI) and

54

3.3. Strategy Equivalence

π= play(χ�Ag, sI) are the plays induced by χ and χ, respectively, and Wψ ⊆ Hst is the
witness set of ψ.

To see how to apply the above definition, consider the formula ψ = F(r ∨ r) and
let Wψ be the corresponding witness set, whose minimal histories can be represented by
the regular expression I+ · (1 + 2) + (I+ · W)+ · (1 + 2 + 1/2 + 2/1). Moreover, let
χ, χ, χ ∈ Asg({A, P, P}) be three complete assignments on which we want to check the
play consistency. We assume that each χi associates a strategy χi(a) = σai with the agent
a ∈ {A, P, P} as defined in the following, where ρ, ρ′ ∈ Hst with lst(ρ′) 6= I : for the arbiter
A, we set σA/(ρ · W),2, σA//(ρ · 1/2)=σA(ρ · 2/1),i, and σA(ρ · W)=σA/(ρ · 2/1),1;
for the processes, instead, we set σP//(ρ

′)=σP//(ρ
′),i, σP/(ρ · I)=σP//(ρ · I),r,

and σP (ρ · I), i3. Now, one can see that χ ≡ψGχ, but χ 6 ≡ψGχ. Indeed, χ, χ, and
χ induce the plays π = I · W · 2/1 · 1/2ω, π = I · W · 2/1ω, and π = I · 2ω, respectively,
where ρ=prf(π, π)=I · W · 2/1 and ρ=prf(π, π)=I are the corresponding common
prefixes. Thus, ρ belongs to the witness Wψ, while ρ does not.

As another example, consider the formula ψ = G(¬r ∧ ¬r), which is equivalent to
the negation of the previous one, and observe that its witness set Wψ is empty. Moreover,
let χ, χ, χ ∈ Asg({A, P, P}) be the three complete assignments we want to analyze.
The strategies for the arbiter A are defined as above, while those of the processes follows:
σPi//(ρ

′),i, σPi/(ρ ·I),r, σPi/(ρ ·W),a, and σPi (ρ ·I)=σPi (ρ ·W),i, where i ∈ {1, 2}

and ρ, ρ′ ∈ Hst with lst(ρ′) 6∈ {I, W}. Now, one can see that χ ≡ψGχ, but χ6≡ψGχ. Indeed,
χ and χ induce the same play (I · W)ω, while χ runs along Iω. Thus, χ and χ are
equivalent, but χ and χ are not.

3.3.3 Strategy Requirements

The semantics of a binding construct ϕ= (a, x)η involves a redefinition of the underlying
assignment χ, as it asserts that ϕ holds under χ once the inner part η is satisfied by associating
the agent a to the strategy χ(x). Thus, the equivalence of two assignments χ and χ w.r.t. ϕ
necessarily depends on that of their extensions on a w.r.t. η.

Definition 3.3.4 (Binding Consistency) An equivalence relation on assignments ≡·G is bind-
ing consistent if, for a formula ϕ = (a, x)η and ϕ-coherent assignments χ, χ ∈ Asg, we
have that χ ≡ϕGχ iff χ[a 7→χ(x)]≡ηGχ[a 7→χ(x)].

To get familiar with the above concept, consider the formula [ψ, where [,

(A, x)(P, y)(P, y), and let χ, χ, χ ∈ Asg({x, y, y}) be the assignments assuming as
values the strategies χi(x) , σAi and χi(yj) , σ

Pj
i previously defined, where i ∈ {1, 2, 3}

and j ∈ {1, 2}. Then, by definition, it is immediate to see that χ ≡[ψG χ, but χ6≡[ψG χ.
3Note that, we use σa

i/j(ρ) = α to represent σa
i (ρ) = α and σa

j(ρ) = α.

55

3.3. Strategy Equivalence

Before continuing with the analysis of the equivalence, it is worth making same reasoning
about the dual nature of the existential and universal quantifiers w.r.t. the counting of strategies.
We do this by exploiting the classic game-semantics metaphor originally proposed for first-
order logic by Lorenzen and Hintikka, where the choice of an existential variable is done
by a player called ∃ and that of the universal ones by its opponent ∀. Consider a sentence
〈〈x≥g1〉〉[[x<g2]]η, having 〈〈y≥h1〉〉η1 and [[y<h2]]η2 as two subformulas in η. When
player ∃ tries to choose h1 different strategies y to satisfy η1, it also has to maximize the
number of strategies x by verifying [[x<g2]]η to be sure that the constraint ≥ g1 of the
first quantification is not violated. At the same time, player ∀ tries to do the opposite while
choosing h2 different strategies y not satisfying η2, i.e., it needs to maximize the number of
strategies x falsifying η in order to violate the constraint < g2 of the second quantifier.

With the above observation in mind, we now treat the equivalence for the existential
quantifier. Two assignments χ and χ are equivalent w.r.t. a formula ϕ=〈〈x≥g〉〉η if player
∃ is not able to find a strategy σ among those satisfying η, to associate with the variable x,
that allows the corresponding extensions of χ and χ on x to induce different behaviors w.r.t.
η. In other words, ∃ cannot distinguish between the two assignments, as they behave the same
independently of the way they are extended.

Definition 3.3.5 (Existential Consistency) An equivalence relation on assignments ≡·G is
existentially consistent if, for any formula ϕ = 〈〈x ≥ g〉〉η and ϕ-coherent assignments
χ, χ ∈ Asg, we have that χ ≡ϕGχ iff, for each strategy σ ∈ η[G, χ](x) ∪ η[G, χ](x), it
holds that χ[x 7→ σ]≡ηGχ[x 7→ σ].

To clarify the above definition, consider the formula ϕ = 〈〈y≥2〉〉[ψ and let χ, χ, χ ∈
Asg({x, y}) be the three assignments having as values the strategies χi(x) , σAi and
χi(y) , σPi previously defined, where i ∈ {1, 2, 3}. By a matter of calculation, one
can see that χ≡ϕGχ, but χ 6 ≡ϕGχ. By definition, χ ≡ϕGχ iff, for each strategy σ ∈
([ψ)[G, χ](y) ∪ ([ψ)[G, χ](y), it holds that χ[y 7→ σ]≡[ψG χ[y 7→ σ]. Now, observe
that the strategy σP introduced above is the unique one that allows χ and χ to satisfy [ψ
once extended on y. At this point, we can easily show that χ[y 7→ σP]≡[ψG χ[y 7→ σP],
as the derived complete assignments χ[y 7→ σP] ◦ [and χ[y 7→ σP] ◦ [induce the
same play (I · W)ω. The non-equivalence of χ and χ easily follows from the fact that
σP 6∈([ψ)[G, χ](y), as χ[y 7→σP]◦[induces the play I ·2ω that does not satisfy ψ. Thus,
χ[y 7→σP] 6≡[ψG χ[y 7→σP].

We conclude with the equivalence for the universal quantifier. Two assignments χ and
χ are equivalent w.r.t. a formula ϕ = [[x<g]]η if, for each index i ∈ {1, 2} and strategy σi
player ∀ chooses among those satisfying η under χi, there is a strategy σ−i this player can
choose among those satisfying η under χ−i such that, once the two strategies are associated
with the variable x, they make the corresponding extensions of assignments equivalent w.r.t.

56

3.4. From Concurrent To Turn-Based Games

η. This means that the parts of the concurrent game structure that are reachable under χ and
χ contain exactly the same information w.r.t. the verification of the inner formula. In other
words, ∀ cannot distinguish between the two assignments, as the induced subtrees of possible
plays are practically the same.

Definition 3.3.6 (Universal Consistency) An equivalence relation on assignments ≡·G is
universally consistent if, for any formula ϕ = [[x < g]]η and ϕ-coherent assignments
χ, χ ∈ Asg, we have that χ ≡ϕGχ iff, for all i ∈ {1, 2} and strategy σi ∈ η[G, χi](x),
there is a strategy σ−i∈η[G, χ−i](x) such that χ[x 7→ σ]≡ηGχ[x 7→σ].

Finally, to better understand the above definition, consider the formula ϕ= [[y< 1]]η,
where η = [[y < 2]][ψ, and let χ, χ, χ ∈ Asg({x}) be the three assignments having as
values the strategies χi(x) , σAi previously defined, where i ∈ {1, 2, 3}. One can see that
χ≡ϕGχ, but χ6≡ϕGχ.

First, observe that η[G, χ](y) = η[G, χ](y) = Str. Indeed, for all strategies σ ∈ Str,
we have that G, χ[y 7→σ] |= η and G, χ[y 7→σ] |= η, since G, χ[y 7→σ, y 7→σ′] |= [ψ

and G, χ[y 7→σ, y 7→σ′] |= [ψ, for all σ′ ∈ Str such that σ 6= σ′. This is due to the fact
that the plays π and π induced by the two complete assignments χ[y 7→σ, y 7→σ′] ◦ [
and χ[y 7→σ, y 7→σ′] ◦ [differ from (I+ · W)∗ · Iω and (I+ · W)ω, as the strategies of the
two processes are different. Also, they share a common prefix ρ=prf(π, π) belonging to
Wψ, since the strategies of the arbiter only differ on the histories ending in the state 2/1. We
can now show that χ and χ are equivalent, by applying the above definition in which we
assume that σi = σ−i.

To prove that χ and χ are non-equivalent, we show that there is a strategy σ ∈
η[G, χ](y) for χ such that, for all strategies σ′ ∈ η[G, χ](y) for χ, it holds that
χ[y 7→ σ] 6 ≡ηGχ[y 7→ σ′]. As before, observe that η[G, χ](y) = η[G, χ](y) = Str

and choose σ ∈ Str as the strategy σP previously defined. At this point, one can easily see
that all plays compatible with χ[y 7→σ] ◦ [pass through either I · 1 or I · W · 2/1, while a
play compatible with χ ◦ [cannot pass through the latter history. Thus, the non-equivalence
of the two assignments immediately follows.

3.4 From Concurrent To Turn-Based Games

In this section, we transform a game in a simpler but equivalent form. Precisely, we show
how to transform a game from concurrent to turn-based. The definition of the turn-based
structure follows.

Definition 3.4.1 (Turn-Based Game Structure) A CGS G is a Turn-Based Game Structure
(TBGS, for short) if there exist a function own : St→ Ag, named owner function such that,

57

3.4. From Concurrent To Turn-Based Games

s
a,c

s
a

s
a,c

s
a,b

s
a,c

s
a

s
a

s
a

20

01

10

02/12/21

22

00

11

01/10

00/11

00/11

01/10

22/21/20/02/12

00/11

01/10

0

1

0

1

0

1

0/1

Figure 3.2: An example of CGS G. Note that each node of G is labeled with its name (in the upper
part) and the subset of the players that are active in it (in the lower part).

for all states s ∈ St and decisions δ1, δ2∈Dc, it holds that if δ1(own(s)) = δ2(own(s)) then
tr(δ1)(s) = tr(δ2)(s).

It is worth recalling that similar reductions have been also used to solve questions related
to GATL in [FNP09a] and the one-goal fragment of SL in [MMS14b]. However, none of
them can be used for GSL[1G]. The main reason resides in the fact that in both the mentioned
cases, the reduction always results in a two-player game, where the two players represent a
collapsing of all existential and universal modalities, respectively. Conversely, in GSL[1G]

we need to maintain a multi-player setting in the construction. This is due to the fact that the
technique employed in GSL[1G] to count the non-equivalent strategies in a quantification, say
〈〈x≥g〉〉ϕ , depends on the particular kind of quantifications and counting on the variables
contained in its matrix, i.e., ϕ. In particular, it is worth recalling that in GATL strategies are
grouped together w.r.t. set of agents, while in GSL[1G] every agent strategy is considered
separately. Thus, we introduce an ad-hoc transformation of the concurrent game under exam
into a multi-player turn-based one, which has the peculiarity of retaining the same number of
variables, but can collapse equivalent actions. More precisely, starting with a game having k
variables, we end in a game with k agents and k variables. The proposed conversion is divided
into three parts. The first, called normalization, concerns the elimination of the bindings,
where a different agent is introduced for every free variable. The second, named minimization,
is the elimination of equivalent actions that are, therefore, redundant. Finally, the third is the
real transformation of the game in a turn-based one. To better understand the three steps of
the conversion, we consider the following running example.

Example 3.4.1 Consider the CGS G = 〈AP,Ag,Ac,St, tr, ap, s〉 depicted in Figure 3.2,

58

3.4. From Concurrent To Turn-Based Games

where AP = {p}, Ag = {a, b, c}, Ac = {0, 1, 2}, St = {s, s, s, s, s, s, s, s},
and sI = s. Note that agent a is active in all states, agent b only in s, and agent c in
s, s, and s. Moreover, we have that ac(s, a) = ac(s, b) = ac(s, a) = ac(s, c) =

{0, 1, 2} and ac(s, a) = ac(s, c) = ac(s, a) = ac(s, c) = ac(s, a) = ac(s, c) =

ac(s, a) = ac(s, a) = ac(s, a) = {0, 1}. Finally, the labeling function is defined as
ap(s) = ap(s) = ap(s) = ap(s) = ap(s) = ∅ and ap(s) = ap(s) = ap(s) = {p}.
The transition function is directly derivable from the figure.

3.4.1 Normalization

In this subsection, we introduce the concept of normalized CGS w.r.t. a given binding. The
aim is to show how to turn a CGS G in a new one G• in which all agents associated with the
same variable are merged into a single player. Basically, by applying the normalization, we
restrict our attention to the part of the structure that is effectively involved in the verification
of the formula w.r.t. a binding [. From a technical point of view, the normalization consists of
two steps. The first transforms the set of variables into the set of agents; this means that all
bindings become identities of the kind (x, x). The second involves the transition function,
which is augmented in order to associate decisions to the new agent (via the binding).

Construction 3.4.1 (CGS Normalization) From a CGS G=〈AP,Ag,Ac,St, tr, ap, s〉, a
binding prefix [∈Bn(Ag) and GSL[1G] formula ϕ = ℘[ψ, we build the normalized CGS
G• , 〈AP,Ag•,Ac,St, tr•, ap, sI〉 as follows:

• the new agents in Ag• , rng([) are all variables bounded by [, where rng : Bn→ Ag,
i.e., it returns all agents bounded by [.

• the new transition function tr•(δ•)(s) , tr(δ• ◦ [)(s) simply maps a state s ∈ St and
a new active decision δ• ∈ dc•(s) , {δ• ∈ Dc• : δ• ◦ [∈ dc(s)} into the successor
tr(δ• ◦ [)(s) of s following the original decision δ• ◦ [∈ Dc;

• the new GSL[1G] formula is ϕ• , ℘
∏
x∈rng([)(x, x)ψ.

Observe that, to normalize the game, we simply need to normalize its CGS, as well as to
change the underling GSL[1G] formula, since agent and variable names now coincide. Indeed,
the new GSL[1G] formula differs from the original one only on its bindings, which now are
all identities.

Example 3.4.2 Consider again the game depicted in Figure 3.2, with ϕ = ℘[Fp a GSL[1G]

formula, where ℘ = 〈〈x ≥ 3〉〉[[y < 2]] and [= (a, x)(b, y)(c, x). The resulting normalized
CGS is G• , 〈AP,Ag•,Ac, St, tr•, ap, sI〉, where the set of new agents is Ag• , {x, y}
and the transition function is reported in Figure 3.3. Note that, the transitions in which the
agents a and c in Figure 3.2 take different actions are removed. The associated GSL[1G]

sentence is ϕ• , 〈〈x ≥ 3〉〉[[y < 2]](x, x)(y, y)Fp.

59

3.4. From Concurrent To Turn-Based Games

s
x

s
x

s
x

s
x,y

s
x

s
x

s
x

s
x

20

01

10

02/12/21

22

00

11

0/1

0/1

2

0/1

0

1

0

1

0

1

0/1

Figure 3.3: Normalized CGS G• built on G.

3.4.2 Minimization

As for previous considerations, actions involving the same strategic reasoning need to be
merged together. We accomplish this by constructing a new concurrent game structure that
maintains just one representative for each class of equivalence actions. Before describing the
formal construction, we need to introduce some accessory notions.

Given a CGS G =〈AP,Ag,Ac,St, tr, ap, s〉, one of its states s ∈ St, a quantification
prefix ℘ ∈ Qn(ag(s)), and a function vr : Qn→ Vr, we can define an equivalence relation
δ ≡℘s δ between decisions δ, δ ∈ Dc with ag(s) \ vr(℘) ⊆ dom(δ), dom(δ) that locally
mimics the behavior of the one between assignments previously discussed. Intuitively, it
allows to determine whether two different moves of a set of agents are actually mutually
substitutable w.r.t. the strategy quantification of interest. Formally, we have that:

1. for the empty quantification prefix ε, it holds that δ ≡εsδ iff tr(δ)(s) = tr(δ)(s);

2. δ≡
〈〈a≥g〉〉℘
s δ iff, for all active actions c ∈ ac(s, a), it holds that δ[a 7→ c]≡℘s δ[a 7→

c];

3. δ≡
[[a<g]]℘
s δ iff, for all indexes i ∈ {1, 2} and active actions ci ∈ ac(s, a), there exists

an active action c−i ∈ ac(s, a) such that δ[a 7→ c]≡℘s δ[a 7→ c].

At this point, we can introduce an equivalence relation between the active actions c, c ∈
ac(s, a) of an agent a ∈ ag(s), once a partial decision δ ∈ Dc with {a′ ∈ ag(s) : a′ <℘

a} ⊆ dom(δ) of the agents already quantified is given. Formally, c ≡
〈〈a≥g〉〉℘
s,δ c iff δ[a 7→

c]≡℘s δ[a 7→ c] and c ≡
[[a<g]]℘
s,δ c iff δ[a 7→ c]≡℘s δ[a 7→ c], where ℘ represents the dual

60

3.4. From Concurrent To Turn-Based Games

prefix of ℘, i.e., ℘ = ¬℘. Intuitively, the two actions c, c are equivalent w.r.t. δ iff agent a
can use them indifferently to extend δ, without changing the set of successors of s it can force
to reach.

We can now introduce the concept of minimization of a CGS, in which the behavior of
each agent is restricted in such a way that he can only choose the representative element from
each class of equivalent actions. Before moving to the formal definition, as an additional
notation, we use ℘≥a to denote the suffix of the quantification prefix ℘ starting from its
variable/agent a.

Construction 3.4.2 (CGS Minimization) From a CGS G = 〈AP,Ag,Ac, St, tr, ap, s〉
normalized w.r.t. a binding prefix [∈ Bn(Ag), and a quantification prefix ℘ ∈ Qn(rng([)),
we build the minimized CGS G� , 〈AP,Ag,Ac,St, tr�, ap, sI〉, where the new transition
function tr� is defined as follows. First, assume Λ(s, δ, a) ⊆ ac(s, a) to be a subset of active
actions for the agent a ∈ ag(s) on the state s ∈ St such that, for each c ∈ ac(s, a), there is
exactly one c′ ∈ Λ(s, δ, a) with c≡℘≥a

s,δ c
′. Intuitively, Λ(s, δ, a) is one of the minimal sets of

actions needed by the agent a in order to preserve the essential structure of the CGS. At this
point, let dc�(s) , {δ ∈ dc(s) : ∀a ∈ dom(δ) . δ(a) ∈ Λ(s, δ�{a′∈dom(δ):a′<℘a}, a)} to be
the set of active decisions having only values among those ones previously chosen. Finally,
for each state s ∈ St and decision δ ∈ Dc, assume tr�(δ)(s) , tr(δ)(s), if δ ∈ dc�(s), and
tr�(δ) , ∅, otherwise.

Observe that the minimization of the game only involves the CGS, as we just change the
active actions of the agents, while states and agents remain unchanged.

Example 3.4.3 Consider the normalized game G• of the Example 3.4.2 and sentence ϕ• =

℘[Fp, where ℘ = 〈〈x ≥ 3〉〉[[y < 2]] and [= (x, x)(y, y). The corresponding minimized CGS
is G� , 〈AP,Ag•,Ac,St, tr�, ap, sI〉, where the new transition function tr� is depicted in
Figure 3.4. To give an intuition, we analyze the equivalence relation between the actions

0, 1 ∈ ac(s, x) of the agent x. We have that 0 ≡℘s,∅1 iff ∅[x 7→ 0] ≡[[y<]]
s ∅[x 7→ 1] iff,

for all indexes i ∈ {1, 2} and active actions ci ∈ ac(s, y), there exists an active action
c−i ∈ ac(s, y) such that δ[y 7→ c] ≡εsδ[y 7→ c]. Since ac(s, y) = ∅ the previous
equivalence is vacuously verified. Therefore, 0 and 1 are equivalent actions.

3.4.3 Conversion

Finally, we describe the conversion of concurrent game structures into turn-based ones. As
anticipated before, differently from similar transformations one can found in literature, the
game we obtain is one with k agents and k variables, where k is the number of variables of
the starting game. Additionally, our construction makes use of the concepts of minimization
and equivalence between actions, by removing the ones that induce equivalent paths. The

61

3.4. From Concurrent To Turn-Based Games

s
x

s
x

s
x

s
x,y

s
x

s
x

s
x

s
x

20

01

10

02/12/21

22

00

11

0

0

2

0

0

1

0

1

0

1

0

Figure 3.4: Minimized CGS G� built on Normalized G•.

intuitive idea of our reduction is to replace each state in the concurrent game structure with a
finite tree whose height depends on the number of strategy quantifications. Also, we enrich
each state of the new structure with extra information regarding the corresponding state in the
concurrent one: (i) the index of the operator in the prefix of quantifications; (ii) the sequence
of actions taken by the agents along a partial play. The formal definition follows.

Construction 3.4.3 (CGS Conversion) From a CGS G =〈AP,Ag,Ac, St, tr, ap, s〉 min-
imized w.r.t. a binding prefix [∈ Bn(Ag) and a quantification prefix ℘ ∈ Qn(rng([)),
we build the TBGS G? , 〈AP,Ag,Ac, St?, tr?, ap?, sI

?〉, where the new set of states St?

and the new transition function tr? are defined as follows. Given a state s ∈ St, we de-
note by ℘s the quantification prefix obtained from ℘ by simply deleting all agents/variables
not in ag(s) and by Vr(℘s) the corresponding set of variables. The state space has to
maintain the information about the position in G together with the index of the first vari-
able that has still to be evaluated and the values already associated to the previous vari-
ables. To do this, we set St? , {(s, i, δ)|s ∈ St, i ∈ [0, |ag(s)|], δ ∈ (Vr(℘s<i) → Ac)}.
Observe that, when a play is in a state (s, |ag(s)|, δ), all quantifications are already re-
solved and it is time to evaluate the corresponding decision δ. Before proceeding with the
definition of the transition function, it is helpful to identify which are the active agents
and decisions for each possible state. Formally, for all (s, i, δ) ∈ St?, we have that
ag((s, i, δ)) , {vr(℘si)} and dc?((s, i, δ)) , {vr(℘si) 7→ c : c ∈ ac(s, vr(℘si))}, if i < |℘s|,
and ag((s, i, δ)) , ∅ and dc?((s, i, δ)) , {∅}, otherwise. The transition function is de-

62

3.4. From Concurrent To Turn-Based Games

s, 0, ∅

s, 1, 1 s, 1, 2

s, 1, 0

s, 2, 10s, 2, 11 s, 2, 12

s, 0, ∅ s, 0, ∅ s, 0, ∅

s, 1, 0s, 1, 1s, 1, 0 s, 1, 0

s, 2, 01

s, 0, ∅

s, 2, 00

s, 0, ∅

s, 1, 0s, 1, 1 s, 1, 0 s, 1, 2

s, 2, 02

s, 0, ∅ s, 1, 0

s, 2, 20

s, 0, ∅

s, 1, 0

s, 2, 21

s, 0, ∅

s, 1, 0

s, 2, 22

s, 0, ∅

s, 1, 0 s, 1, 1

s, 0, ∅s, 0, ∅ s, 0, ∅

s, 0, ∅s, 0, ∅ s, 0, ∅

1

0

2

1
0

2

1
0 2

0
21

0
1 0

0 201

0 0 10

0

0

Figure 3.5: Turn-based game structure G? built on Minimized G�. In particular, the agent x is owner
of all circle nodes, the agent y is owner of all square nodes, and each diamond node represents the
transition state. Note that, for a matter of readability some nodes are duplicated.

63

3.4. From Concurrent To Turn-Based Games

fined as follows. For each new state (s, i, δ) with i < |℘s| and new decision vr(℘si) 7→ c,
we simply need to increase the counter i and embed vr(℘si) 7→ c into δ. Formally, we set
tr?(vr(℘si) 7→ c)((s, i, δ)) , (s, i+1, δ[vr(℘si) 7→ c]). For a new state (s, |ag(s)|, δ), instead,
we just introduce a transition to the state (s′, 0,∅), where s′ is the successor of s in the CGS
following the decision δ. Formally, we have tr?(∅)((s, |ag(s)|, δ)) , (tr(δ)(s), 0,∅). The
new labeling function ap? is such that, for each state (s, j, δ) we have that

ap?((s, j, δ)) ,

ap(s), if j = 0 and δ = ∅;

∅, otherwise.

Finally, the initial state s?I , (sI , 0,∅).

By means of a simple generalization of the classic correctness proof of a transformation
of a concurrent game into a turn-based one, the following result derives.

Theorem 3.4.1 (Concurrent/Turn-Based Conversion) For each CGS G with |St| and
GSL[1G] formula ϕ = ℘[ψ with |Vr(℘)| variables, there is an equivalent TBGS G? with
|Vr(℘)| agents/variables of order O(|St| · |Ac||Vr(℘)|).

Proof. The theorem is proved by following the three steps of normalization, minimization
and conversion. In detail, from a CGS G=〈AP,Ag,Ac, St, tr, ap, s〉, a binding prefix
[∈ Bn(Ag) and GSL[1G] formula ϕ = ℘[ψ, by applying the construction described in
Sections 3.4.1, we obtain the normalized CGS G• , 〈AP,Ag•,Ac, St, tr•, ap, sI〉. At
this point, From the latter w.r.t. a binding prefix [∈ Bn(Ag), and a quantification pre-
fix ℘ ∈ Qn(rng([)), by applying the construction described in Sections 3.4.2 we build
the minimized CGS G� , 〈AP,Ag,Ac, St, tr�, ap, sI〉. Finally, , we build the TBGS
G? , 〈AP,Ag,Ac, St?, tr?, ap?, sI

?〉 by applying the construction in Sections 3.4.3 to the
minimized CGS G� , 〈AP,Ag,Ac,St, tr�, ap, sI〉. Regarding the complexity of the con-
version from G to G?, we have that the size of G? is exponential in the number of the variable
of the quantification prefix. Indeed, for each s ∈ St, the conversion produces a number of
states equal to

∑|ag(s)|
i=0 |Ac|i = O(|Ac||ag(s)|). So, the overall size is O(|St| · |Ac||ag(s)|).

Thanks to the normalization Ag = Vr(℘), the result follows. �

Example 3.4.4 Consider the minimized game G� of Example 3.4.3 with the formula
ϕ� = ϕ•. We want to build a turn-based game G? from G�. The new CGS is G? ,
〈AP,Ag•,Ac,St?, tr?, ap?, sI

?〉, where the new set of states St?, the new transition function
tr?, and the new initial state sI? , (s0, 0, ∅) are depicted in Figure 3.5. Finally, the labeling
function is ap(s, 0, ∅) = ap(s, 0, ∅) = ap(s, 0, ∅) = ap(s, 0, ∅) = ap(s, 0, ∅) = p and,
for each state (s, j, δ), with j 6= 0 and δ 6= ∅ we have that ap(s, j, δ) = ∅.

64

3.5. Determinacy

3.5 Determinacy

In this section, we address the determinacy problem for a fragment of GSL, that we name
GSL[1G, 2AG], involving only two players over turn-based structures. Recall that determinacy
has been first proved for classic Borel turn-based two-player games in [Mar75]. However,
the proof used there does not directly apply to our graded setting. To give evidence of the
differences between the two frameworks, observe that in SL[1G, 2AG] sentences like 〈〈x〉〉[[x]]η

imply [[x]]〈〈x〉〉η, while in GSL[1G, 2AG] the corresponding implication 〈〈x≥ i〉〉[[x<j]]η ⇒
[[x< j]]〈〈x≥ i〉〉η does not hold. The determinacy property we are interested in is exactly
the converse direction, i.e., [[x<j]]〈〈x≥ i〉〉η ⇒ 〈〈x≥ i〉〉[[x<j]]η. In particular, we extend
the Gale-Stewart Theorem [PP04], by exploiting a deep generalization of the technique
used in [FNP09a]. The idea consists of a fixed-point calculation over the number of winning
strategies an agent can select against all but a fixed number of those of its opponent. Regarding
this approach, we recall that the simpler counting considered in [FNP09a] is restricted to
existential quantifications only.

Construction 3.5.1 (Grading Function) Let G be a two-agent turn-based game structure
G with Ag = {α, α}, and ψ be an LTL formula with Wψ,W¬ψ ⊆ Hst denoting the
witness sets for ψ and ¬ψ, respectively. It is immediate to see that, in case sI ∈Wψ (resp.,
sI ∈W¬ψ), all strategy profiles are equivalent w.r.t. the temporal property ψ (resp., ¬ψ). If
sI ∈ X , Hst \ (Wψ ∪W¬ψ), instead, we need to introduce a grading function Gαψ : X→ Γ,
where Γ , N→ (N ∪ {ω}), that allows to determine how many different strategies the agent
α (resp., α) owns w.r.t. ψ (resp., ¬ψ). Informally, Gαψ(ρ)(j) represents the number of winning
strategies player α can put up against all but at most j strategies of its adversary α, once the
current play has already reached the history ρ ∈ X.

Before continuing, observe that α sometimes has the possibility to commit a suicide, i.e.,
to choose a strategy leading directly to a history in W¬ψ, with the hope to win the game by
collapsing all strategies of its opponent into a unique class. The set of histories enabling
this possibility is defined as follows: S , {ρ ∈ X : ∃ρ′ ∈W¬ψ . ρ < ρ′ ∧ ∀ρ′′ ∈ Hst . ρ ≤
ρ′′ < ρ′ ⇒ ρ′′ ∈ Hstα}, where Hstα = {ρ ∈ Hst : ag(lst(ρ)) = {α}} is the set of histories
ending in a state controlled by α. Intuitively, α can autonomously extend a history ρ ∈ S into
one ρ′ ∈W¬ψ that is surely loosing, independently of the behavior of α. Note that there may
be several suicide strategies, but all of them are equivalent w.r.t. the property ψ. Also, against
them, all counter strategies of α are equivalent as well.

At this point, to define the function Gαψ, we introduce the auxiliary functor Fαψ : (X →
Γ)→ (X→ Γ), whose least fixpoint represents a function returning the maximum number of
different strategies α can use against all but a precise fixed number of counter strategies of α.
Formally, we have that:

65

3.5. Determinacy

Fαψ(f)(ρ)(j) ,


∑

ρ′∈suc(ρ)∩X f(ρ′)(0)+|suc(ρ)∩Wψ|, ifρ∈Hstαand j=0;∑
ρ′∈suc(ρ)∩X f(ρ′)(j), ifρ∈Hstαand j>0;∑
c∈C(ρ)(j)

∏
ρ′∈dom(c) f(ρ

′)(c(ρ′)), otherwise;

where suc(ρ) = {ρ′ ∈ Hst : ∃s ∈ St. ρs = ρ′} and C(ρ)(i) ⊆ (suc(ρ) ∩X) ⇀ N contains
all partial functions c ∈ C(ρ)(i) for which α owns a suicide strategy on the histories not in
their domains, i.e., (suc(ρ) ∩X) \ dom(c) ⊆ S, and the sum of all values assumed by c plus
the number of successor histories that are neither surely winning nor contained in the domain
of c equals to i, i.e., i =

∑
ρ′∈dom(c) c(ρ

′) + |suc(ρ) \ (Wψ ∪ dom(c))|.
Intuitively, the first item of the definition simply asserts that the number of strategies

F(f)(ρ)(0) that agent α has on the α-history ρ, without excluding any counter strategy of its
adversary, is obtainable as the sum of the f(ρ′)(0) strategies on the successor histories ρ′ ∈ X

plus a single strategy for each successor history that is surely winning. Similarly, the second
item takes into account the case in which we can avoid exactly j counter strategies. The
last item, instead, computes the number of strategies for α on the α-histories. In particular,
through the set C(ρ)(j), it first determines in how many ways it is possible to split the number
j of counter strategies to avoid among all successor histories of ρ. Then, for each of these
splittings, it calculates the product of the corresponding numbers f(ρ′)(c(ρ′)) of strategies
for α.

We are finally able to define the grading function Gαψ by means of the least fixpoint
f? = Fαψ(f?) of the functor Fαψ, whose existence is proved in Lemma 3.5.1:

Gαψ(ρ)(j),
∑j

h=0 f
?(ρ)(h)+

1, if ρ∈S and j≥1;

0, otherwise.

Intuitively, Gαψ(ρ)(j) is the sum of the numbers f?(ρ)(h) of winning strategies the agent α can
exploit against all but exactly h strategies of its adversary α, for each h ∈ [0, j]. Moreover, if
ρ ∈ S, we need to add to this counting the suicide strategy that α can use once α avoids to
apply his unique counter strategy.

Lemma 3.5.1 (Fixpoint Existence) The functor Fαψ of Construction 3.5.1 admits a unique
least-fixed point.

Proof. Consider the set of functions D , X → Γ, where Γ , N → (N ∪ {ω}), equipped
with the binary relation v ⊆ D × D defined as follows: f v f iff f(ρ)(j) ≤ f(ρ)(j),
for all histories ρ ∈ X and indexes j ∈ N, where ≤ is the standard ordering on the set of
natural numbers extended with the maximum element ω. Now, it is immediate to see that
v is a reflexive, antisymmetric, and transitive relation over D. Hence, (D,v) is a partial

66

3.5. Determinacy

order. Actually, this structure is a complete lattice [Win93], since any set of functions F ⊆ D

admits a greatest lower bound inf F, which can be computed as follows: (inf F)(ρ)(j) ,

minf∈Ff(ρ)(j), for all ρ ∈ X and j ∈ N. Moreover, by direct inspection, it can be easily
showed that the functor Fαψ : D→ D over D defined in Construction 3.5.1 is monotone w.r.t.
v, i.e., Fαψ(f) v Fαψ(f), whenever f v f, for all f, f ∈ D (in particular, notice that the
only operations used in its definition are the sum and the multiplication). Consequently, by
the Knaster-Tarski Theorem, Fαψ admits a least fixpoint. �

Thanks to the above construction, one can compute the maximum number of strategies that
a player has at its disposal against all but a fixed number of strategies of the opponent. Next
lemma precisely describes this fact. Indeed, we show how the satisfiability of a GSL[1G, 2AG]

sentence 〈〈x ≥ i〉〉[[x ≤ j]](α, x)(α, x)ψ can be decided via the computation of the associated
grading function Gαψ, where by [[x ≤ j]]ϕ we mean [[x < j + 1]]ϕ.

Lemma 3.5.2 (Grading Function) Let G be a two-agent turn-based game structure, where
Ag = {α, α}, and ϕ = 〈〈x ≥ i〉〉[[x ≤ j]](α, x)(α, x)ψ a GSL[1G, 2AG] sentence. Moreover,
let Gαψ be the grading function and Wψ,W¬ψ,X ⊆ Hst the sets of histories obtained in
Construction 3.5.1. Then, G |= ϕ iff one of the following three conditions hold: (i) i ≤ 1,
j ≥ 0, and sI ∈Wψ; (ii) i ≤ 1, j ≥ 1, and sI ∈W¬ψ; (iii) i ≤ Gαψ(sI)(j) and sI ∈ X.

Proof. For the case (i), we consider the worst scenario in which i = 1 and j = 0, i.e., we have
the sentence ϕ = 〈〈x ≥ 1〉〉[[x ≤ 0]](α, x)(α, x)ψ. Since sI ∈ Wψ and Wψ only contains
histories that cannot be extended to a play violating the property ψ, we know that from sI ,
by taking any strategy for player α against all strategies for the player α, the corresponding
play satisfy the formula ψ. Moreover, all strategies are equivalent. We show this by directly
analyzing the semantic of sentence ϕ.

1. G |= ϕ iff |({∅[x 7→ σx] : σx ∈ ϕ′[G,∅, sI](x)}/≡ϕ
′

G)| ≥ 1, where ϕ′ = [[x ≤
0]](α, x)(α, x)ψ;

2. ϕ′[G,∅, sI](x) = {σx∈Str({α}) : G,∅[x 7→σx], sI |= ϕ′};

3. G,∅[x 7→σx], sI |= ϕ′ iff |({∅[x 7→ σx, x 7→ σx] : σx ∈ ¬ϕ′′[G,∅[x 7→σx], sI](x)}/
≡¬ϕ

′′

G)| ≤ 0, where ϕ′′ = (α, x)(α, x)ψ;

4. ¬ϕ′′[G,∅[x 7→σx], sI](x) = {σx∈Str({α}) : G,∅[x 7→σx, x 7→ σx], sI |= ¬ϕ′′};

5. G,∅[x 7→σx, x 7→ σx], sI 6|= ¬ϕ′′, since G,∅[x 7→σx, x 7→ σx], sI |= ϕ′′ due to the
fact that sI ∈Wψ.

By item (5), the set ¬ϕ′′[G,∅[x 7→σx], sI](x) of item (4) is empty. Therefore, from the item
(3) we immediately derive that G,∅[x 7→σx], sI |= ϕ′. Consequently, the set ϕ′[G,∅, sI](x)

of item (2) is equal to Str({α}), from which we immediately see at item (1) that G,∅, sI |= ϕ.

67

3.5. Determinacy

For the case (ii), we consider the worst scenario in which i = 1 and j = 1, i.e. we have the
sentence ϕ = 〈〈x ≥ 1〉〉[[x ≤ 1]](α, x)(α, x)ψ. Since sI ∈W¬ψ then the player α can use all
its strategies to satisfy ¬ψ, independently from behavior of α. By Definition 3.3.3, we know
that all these strategies are equivalent. Therefore, by removing the unique corresponding
equivalence class we have that agent α can use any of its strategies to vacuously satisfy the
formula ψ, since we do not actually require ϕ to hold at all. Also in this case, we show this
by directly analyzing the semantic of sentence ϕ.

1. G |= ϕ iff |({∅[x 7→ σx] : σx ∈ ϕ′[G,∅, sI](x)}/≡ϕ
′

G)| ≥ 1, where ϕ′ = [[x ≤
0]](α, x)(α, x)ψ;

2. ϕ′[G,∅, sI](x) = {σx∈Str({α}) : G,∅[x 7→σx], sI |= ϕ′};

3. G,∅[x 7→σx], sI |= ϕ′ iff |({∅[x 7→ σx, x 7→ σx] : σx ∈ ¬ϕ′′[G,∅[x 7→σx], sI](x)}/
≡¬ϕ

′′

G)| ≤ 1, where ϕ′′ = (α, x)(α, x)ψ;

4. ¬ϕ′′[G,∅[x 7→σx], sI](x) = {σx∈Str({α}) : G,∅[x 7→σx, x 7→ σx], sI |= ¬ϕ′′};

5. G,∅[x 7→σx, x 7→ σx], sI |= ¬ϕ′′, since sI ∈W¬ψ.

By item (5), the set ¬ϕ′′[G,∅[x 7→ σx], sI](x) of item (4) is equal to Str({α}). By Def-
inition 3.3.3, for all σ1, σ2 ∈ ¬ϕ′′[G,∅[x 7→ σx], sI](x), it holds that ∅[x 7→ σx, x 7→
σ1]≡¬ϕ

′′

G ∅[x 7→σx, x 7→ σ2]. Due to this fact, |({∅[x 7→ σx, x 7→ σx] : σx ∈ ¬ϕ′′G,∅[x 7→
σx], sI](x)}/≡¬ϕ

′′

G)| = 1 we immediately derive that G,∅[x 7→σx], sI |= ϕ′. Consequently,
the set ϕ′[G,∅, sI](x) of item (2) is equal to Str({α}), from which we immediately see at
item (1) that G,∅, sI |= ϕ.

For the case (iii), the proof proceeds by nested induction over the indexes j and i of
strategy counting. Precisely, the external induction is done over j, while the internal one over
i.

As internal base case, i.e., when j = 0 and i = 1, we have that Gαψ(sI)(0) , f?(sI)(0) ≥
1, where f? is the least fix point of the functor Fαψ, i.e., f? = Fαψ(f?). Now, let σα ∈ Str({α})
be an α-strategy satisfying the following property: for all histories ρ ∈ X ∩ Hstα with
f?(ρ)(0) ≥ 1, if suc(ρ) ∩Wψ 6= ∅, then the action σα(ρ) is chosen in such a way that the
successor history ρ′ , ρ · tr({α 7→ σα(ρ)})(lst(ρ)) of ρ following the decision {α 7→ σα(ρ)}
belongs to suc(ρ) ∩Wψ, i.e., ρ′ ∈ suc(ρ) ∩Wψ. Otherwise, we require that f?(ρ′)(0) ≥ 1.
The existence of such a strategy is immediately derived by the first case of the definition of
the functor Fαψ. Moreover, σα is a winning strategy for α, due to the last case of the same
definition. To see that this is actually the case, let σα ∈ Str({α}) be an α-strategy and
consider the resulting play π = play({α 7→ σα, α 7→ σα}, sI). Due to the construction of σα,
on every history ρ ∈ Hstα that is a prefix of π, we have that f?(ρ)(0) ≥ 1. The same holds
for every ρ ∈ Hstα that is a prefix of π, as well. Indeed, due to the last case of the definition

68

3.5. Determinacy

of the functor, we would have had f?(ρ′)(0) = 0 otherwise, for all histories ρ′ ≤ ρ. However,
this is clearly impossible, due to the fact that f?(sI)(0) ≥ 1. Now, since f? is the least fix
point of Fαψ, there exists necessarily a prefix ρ ∈ Hst of π belonging to Wψ, which implies
that π satisfies the temporal property ψ.

For the internal inductive case, i.e., when j = 0 and i > 1, assume Sα to be the set of i−1

non-equivalent winning α-strategies constructed by inductive hypothesis. We want to prove
that there exists a new α-strategy σα ∈ Str({α}) that is neither contained in Sα nor equivalent
to any of those strategies there contained. To do this, let σα be the strategy satisfying the
following property: for all histories ρ ∈ X ∩Hstα with ρ′ , ρ · tr({α 7→ σα(ρ)})(lst(ρ)), it
holds that |{σ ∈ Sα : ρ′ = ρ · tr({α 7→ σ(ρ)})(lst(ρ))}| < f?(ρ′)(0). Intuitively, the actions
prescribed by σα force a play to follows histories that are not completely covered by the
other strategies. Therefore, if such a strategy σα exists, we necessarily have that σα 6∈ Sα.
Moreover, due to the turn-based structure of the underlying model, this observation also
suffices to prove that σα cannot be equivalent to any strategy contained in Sα. Indeed,
due to the particular choice of the actions σα(ρ), there exists a play compatible with σα
that is not compatible with any other strategy of this predetermined set. If, instead, such
a particular strategy does not exist, there is a history ρ ∈ X ∩ Hstα ruled by the opponent
player α satisfying the following: (i) for all prefixes ρ′ < ρ, it holds that ρ′ ∈ Hstα; (ii)
|{σ ∈ Sα : ∀ρ′ < ρ . ρ′ · tr({α 7→ σ(ρ′)})(lst(ρ′)) ≤ ρ}| < f?(ρ)(0). Intuitively, these two
properties ensure that the number of strategies of Sα passing trough ρ is strictly less than the
one predicted by the function f?. Consequently, there is an α-strategy σα 6∈ Sα such that
ρ′ · tr({α 7→ σα(ρ′)})(lst(ρ′)) ≤ ρ, for all ρ′ < ρ. Also in this case σα is not equivalent to
any strategy in Sα. Indeed, due to property (ii), there always exists an α-strategy that forces
σα and σ ∈ Sα to follows different and, so, non equivalent plays. To conclude this case, one
has to prove that σα is winning. To do this, the same approach used in the base case above
can be applied.

Finally, for the remaining two cases having j > 0, we proceed similarly to the previous
ones, by taking additional care to eliminate j strategies of player α while proving that the
considered i strategies of player α are winning. This is done by exploiting the splitting of
all the α-strategies dictated by the set C(ρ)(j) used in the last case of the definition of the
functor Fαψ. �

By transfinite induction on its recursive structure, we can prove a quite natural but
fundamental property of the grading function, i.e., its duality in the form described in the
next lemma. To give an intuition, assume that agent α has at most j strategies to satisfy the
temporal property ¬ψ against all but at most i strategies of its adversary α. Then, it can be
shown that the latter has more than i strategies to satisfy ψ against all but at most j strategies
of the former.

Lemma 3.5.3 (Grading Duality) Let Gαψ and Gα¬ψ be the grading functions and X ⊆ Hst

69

3.5. Determinacy

s
a

s
b

s
b

s
a

s
a

s
a

s
y

s
x

s
x

s
x

0 1 20

1
2 0

1 0 1

0

1

0

1

0/1 0/10
1

0
1

Figure 3.6: Turn-based structure.

the set of histories obtainable by Construction 3.5.1. For all histories ρ ∈ X and indexes
i, j ∈ N, it holds that if Gα¬ψ(ρ)(i) ≤ j then i < Gαψ(ρ)(j).

Summing up the above two results, we can easily prove that, on turn-based game structures,
GSL[1G, 2AG] is determined. Indeed, suppose that sI ∈ X and G |= [[x ≤ j]]〈〈x ≥ i〉〉[ψ,
where [= (α, x)(α, x) (the case with sI ∈Wψ immediately follows from classic Martin’s
Determinacy Theorem [Mar75, Mar85]). Obviously, G does not satisfy the negation of
this sentence, i.e., G 6|= 〈〈x ≥ j + 1〉〉[[x ≤ i − 1]][¬ψ. By Lemma 3.5.2, we have that
Gα¬ψ(sI)(i− 1) ≤ j. Hence, by Lemma 3.5.3, it follows that i ≤ Gαψ(sI)(j). Finally, again
by Lemma 3.5.2, we obtain that G |= 〈〈x ≥ i〉〉[[x ≤ j]][ψ, as required by the definition of
determinacy.

Theorem 3.5.1 (Determinacy) GSL[1G, 2AG] on turn-based game structures is determined.

Example 3.5.1 Consider the structure depicted in Figure 3.6, the state s ∈ St, and the
formula ϕ = 〈〈x ≤ g1〉〉[[y < g2]][ψ, with [= (a, x)(b, y) and ψ = Fp. The set of histories
Wψ is s · s · s+

 + s · (s · s)+ · s+
 · s · (s + s)

∗ + s · s · ((s · s)∗ · s)+ · (ε +

s + s · (s + s · (s + s)
∗)), while W¬ψ , s · (s+

 · s∗ + s · s+
). The set X contains

s + s · s + s · (s · s)∗ · s + s · (s · s)+ + s · (s · s)+ · s+
 . Finally, the set of

suicide strategies is s + s · s.
Now, we evaluate the results of function f for each history in X. First, we set f(ρ)(j) = 0,

∀ρ ∈ Hst and ∀j ≥ 0. For all k > 0, i ≥ 0, and the history ss, we have that

fk(ss)(i) ,

0, if i > 0;

1, otherwise.

For all k > 0, i ≥ 0, and ρ ∈ s · (s · s)+ · s+
 , we have that

70

3.5. Determinacy

fk(ρ)(i) ,

0, if i > 0;

k, otherwise.

For all k > 0, i ≥ 0, and ρ ∈ s · (s · s)+, we have that

fk(ρ)(i) ,

0, if k < (2i) + 1;

k − ((2i) + 1), otherwise.

For all k > 0, i ≥ 0, and ρ ∈ s · (s · s)∗ · s, we have that

fk(ρ)(i) ,

0, if k < (2i) or i = 0;

k − (2i), otherwise.

For all k > 0, i ≥ 0, and the history s, we have that

fk(s)(i) ,


0, if k < (2i) + 1 and i > 0 or k < 2 and i = 0;

1, if k ≥ 2 and i = 0;

k − ((2i) + 1), otherwise.

Now, we illustrate the results of fixpoint f?. For all i ≥ 0 and the history ss, we have that

f?(ss)(i) ,

0, if i > 0;

1, otherwise.

For all i ≥ 0 and ρ ∈ s · (s · s)+ · s+
 , we have that

f?(ρ)(i) ,

0, if i > 0;

ω, otherwise.

For all i ≥ 0 and ρ ∈ s · (s · s)+, we have that

f?(ρ)(i) , ω

For all i ≥ 0 and ρ ∈ s · (s · s)∗ · s, we have that

f?(ρ)(i) ,

0, if i = 0;

ω, otherwise.

For all k > 0, i ≥ 0, and history the s, we have that

f?(s)(i) ,

1, if i = 0;

ω, otherwise.

Finally, we evaluate the results of grading function. For all j ≥ 0 and the history ss, we
have that

71

3.6. Model Checking

Gaψ(ss)(j) ,

1, if j = 0;

2, otherwise.

For all j ≥ 0 and ρ ∈ s · (s · s)+ · s+
 , we have that

Gaψ(ρ)(j) , ω

For all ρ ∈ s · (s · s)+ ∪ s · (s · s)∗ · s ∪ {s}, we have the same result of function f?,
i.e., Gaψ(ρ)(j) , f?(ρ)(j) for all j ≥ 0.

3.6 Model Checking

We finally describe a solution of the model-checking problem for the fragment of
GSL[1G, 2AG], in which all temporal properties are used as in ATL. This means that we
only admit simple temporal properties, i.e., ϕ1Uϕ2, ϕ1Rϕ2, and Xϕ, where ϕ1, ϕ2, and ϕ are
sentences. This fragment, called Vanilla GSL[1G, 2AG], is in relation with GSL[1G, 2AG], as
CTL and ATL are with CTL? and ATL?, respectively.

The idea here is to exploit the characterization of the grading function stated in
Lemma 3.5.2 in order to verify whether a game structure G satisfies a sentence ϕ = 〈〈x ≥ i〉〉
[[x ≤ j]](α, x)(α, x)ψ, while avoiding the naive calculation of the least fixpoint Fαψ, which
requires an infinite calculation due to the cycles of the structure.

Fortunately, due to the simplicity of the temporal property ψ, we have that the four sets
Wψ, W¬ψ, X, and S previously introduced are memoryless, i.e., if a history belongs to them,
every other history ending in the same state is also a member of these sets. Therefore, we
can focus only on states by defining Wψ , {s ∈ St : G, s |= Aψ}, W¬ψ , {s ∈ St :

G, s |= A¬ψ}, X , St \ (Wψ ∪W¬ψ), and S , {s ∈ St : G, s |= E(αUA¬ψ)} via very
simple CTL properties. Observe that we use α and α as labeling of a state to recognize its
owner. Intuitively, Wψ and W¬ψ contain the states from which agents α and α can ensure,
independently from the adversary, the properties ψ and ¬ψ, respectively. The set X, instead,
contains the states on which we have still to determine the number of strategies at disposal
of the two agents. Finally, S maintains the suicide states, i.e., those states from which α can
commit suicide by autonomously reaching W¬ψ. In addition, since at most j strategies of
α can be avoided while reasoning on the sentence ϕ, we need just to deal with functions in
the set Γ , [0, j]→ (N ∪ {ω}) instead of Γ , N→ (N ∪ {ω}). Consequently, the functor
Fαψ : (X→ Γ)→ (X→ Γ) can be redefined as follows:

Fαψ(f)(s)(h) ,


∑

s′∈suc(s)∩X f(s′)(0)+|suc(s)∩Wψ|, ifs∈Stαand h=0;∑
s′∈suc(s)∩X f(s′)(h), ifs∈Stαand h>0;∑
c∈C(s)(h)

∏
s′∈dom(c) f(s

′)(c(s′)), otherwise;

72

3.6. Model Checking

where suc(s)={s′∈St : (s, s′)∈Ed} and C(s)(i) ⊆ (suc(s) ∩X) ⇀ N contains all partial
functions c ∈ C(s)(i) for which α owns a suicide strategy on the states not in their domains,
i.e., (suc(s) ∩X) \ dom(c) ⊆ S, and the sum of all values assumed by c plus the number of
successors that are neither surely winning nor contained in the domain of c equals to i, i.e.,
i=
∑

s′∈dom(c)c(s
′)+|suc(s)\(Wψ∪dom(c))|. Similarly, the grading function Gαψ : X→Γ

becomes

Gαψ(s)(h) ,
∑h

l=0 f
?(s)(l)+

1, if s ∈ S and h ≥ 1;

0, otherwise.

where f? is the least fixpoint of Fαψ. Observe that the existence of such a fixpoint can be
proved in the same way of Lemma 3.5.1, where the set of functions D is D , X → Γ,
where Γ , [0, j] → (N ∪ {ω}). Unfortunately, these redefinitions are not enough by their
own to ensure that the fixpoint calculation can be done in a finite, possibly small, number of
iterations of the functor. This is due to two concomitant factors: the functions in Γ have an
infinite codomain and the game structure G might have cycles inside. In order to solve such a
problem, we make use of the following observation. Suppose that agent α has at least one
strategy on one of its states s ∈ Stα against all strategies of its opponent α that is also part of
a cycle in which no state of α is adjacent to a state belonging to the set W¬ψ. Then, α can
use this cycle from s to construct an infinite number of nonequivalent strategies, by simply
pumping-up the number of times he decides to traverse it before following the previously
found strategy. Therefore, in this case, we avoid to compute the infinite number of iterations
required to reach the fixpoint, by directly assuming ω as value. Formally, we introduce the
functor I : (X → Γ) → (X → Γ) defined as follows, where L ⊆ Stα denotes the set of
α-states belonging to a cycle of the above kind: I(f)(s)(h) = ω, if s ∈ L and f(s)(h) > 0,
and I(f)(s)(h) = f(s)(h), otherwise, for all s ∈ St and h ∈ [0, j]. It can be proved that
f? = (I◦Fαψ)(f?) iff f? = Fαψ(f?), i.e., the functor obtained by composing I and Fαψ has exactly
the same least fixpoint of Fαψ. Moreover, f? = (I ◦ Fαψ)n(f) where j · |G| ≤ n and f is the
zero function, i.e., f(s)(h) = 0, for all s ∈ X and h ∈ [0, j]. Hence, we can compute f? in a
number of iterations of I ◦ Fαψ that is linear in both the degree j and the size of G. Finally, it is
not hard to see that the computation of the sets L can be done in polynomial time.

As an example of an application of the model-checking procedure, consider the two-agent
turn-based game structure G depicted in Figure 3.7, with the circle states ruled by α, the
square ones by its opponent α, and where s and s are labeled by the atomic proposition
p. Also, consider the vanilla GSL[1G, 2AG] sentence ϕ = 〈〈x ≥ i〉〉[[x ≤ j]](α, x)(α, x)Fp.
First, we need to compute the preliminary sets of states WFp = {s, s} (the light-gray area),
W¬Fp = {s, s} (the dark-gray area), X = {s, s, s, s, s} (the white area partitioned
into strong-connected components), S = {s, s}, and L = {s}. Now, we can evaluate the
fixpoint f? of the functor I ◦ Fαψ that can be obtained, due to the topology of G, after 2(j + 1)

73

3.6. Model Checking

s

s s

s

s s

s

s s

α 7→0

α 7→1

α 7→2

α 7→0

α 7→1
α 7→2 α 7→0

α 7→1

α 7→0

α 7→1

α 7→0

α 7→1
α 7→0

α 7→1

∅

α 7→0

α 7→1

α 7→0

α 7→1

Figure 3.7: A two-player turn-based game structure.

iterations, i.e., f? = (I ◦ Fαψ)2(j+1)(f). Indeed, at the first one, the values on the states s and
s are stabilized to f?(s)(0) = 1, f?(s)(0) = ω, and f?(s)(h) = f?(s)(h) = 0, for all
h ∈ [1, j]. After 2j iterations, we obtain f?(s)(0) = 0, f?(s)(h) = ω, for all h ∈ [1, j], and
f?(s)(h) = ω, for all h ∈ [0, j]. By computing the last iteration, we derive f?(s)(0) = 1

and f?(s)(h) = ω, for all h ∈ [1, j]. Note that 2(j + 1) is exactly the sum 1 + 2j + 1 of
iterations that the components of the longest chain {s} < {s, s} < {s} need in order
to stabilize the values on their states. Finally, we can verify whether G |= ϕ, by computing
the grading function GαFp at s, whose values are GαFp(s)(0) = 1 and GαFp(s)(h) = ω, for all
h ∈ [1, j]. Thus, G |= ϕ iff i = 1 or j > 0.

In order to obtain a PTIME procedure, we have also to ensure that each evaluation of the
composed functor I ◦ Fαψ can be computed in PTIME w.r.t. the above mentioned parameters.
Actually, the whole I and the first two items of Fαψ can easily be calculated in linear time. The
third item, instead, may require a sum of an exponential number of elements. Indeed, due to
all possible ways a degree j can split among the successors of a state s, the corresponding
set C(s)(j) may contain an exponential number of functions. To avoid this, by exploiting a
technique similar to the one proposed in [BMM10, BMM12], we linearly transform a game
structure into an equivalent one where all states ruled by α have degree at most 2. Formally,
starting from the CGS G , 〈AP,Ag,Ac,St, tr, ap, s〉, we construct the equivalent G′ ,

74

3.6. Model Checking

s s

s

s

s

s

s

s

s

s

α 7→0

α 7→1

α 7→2

α 7→0 α 7→#

α 7→0

α 7→#

α 7→1

α 7→2

α 7→0

Figure 3.8: Degree transformation.

〈AP′,Ag,Ac,St′, tr′, ap′, sI〉. The set of states is defined as follows: St′ , Stα ∪ Stα with
Stα = {s|s ∈ St∧ own(s) = α} and Stα = {si|s ∈ St∧ 0 ≤ i < |suc(s)| ∧ own(s) = α},
where s, s, . . . , s|suc(s)|− are fresh states representing |suc(s)| different copies of state
s. The labeling function is so defined: ap′(s) = ap(s) and ap′(si) = {#}, for each
0 ≤ i < |suc(s)|. Let en : St × Dc ⇀ [0, |suc(s)− 1|[be a partial function that returns
the index of the decision such that it is injective and dom(en) = {(s, δ)|δ ∈ dc(s)}, we
define dc′(si) , {α → #} ∪ {δ} if i ∈ [0, |suc(s)|[and en(s, δ) = i, while dc′(si) , δ

if i = |suc(s)− 1| and en(s, δ) = i. At this point, we can define the transition function as
follows:

tr′(δ)(si) ,

si+, if si ∈ Stα and δα = #;

t, otherwise, where t = tr(δ)(s) .

In this way, the cardinality of C(s)(j) is bounded by j. For example, consider the left part of
Figure 3.8 representing the substructure of the previous game structure G induced by the state
s together with its three successors. It is not hard to see that we can replace it, in G, by the
binary graph at its right, without changing the number of strategies that the two agents have at
their disposal.

Theorem 3.6.1 (Model Checking) The model-checking problem for Vanilla GSL[1G, 2AG]

is PTIME in both the size of the game structure and the sentence. Moreover it is PTIME-HARD

w.r.t. both the data and combined complexity.

Proof. Suppose we want to verify that the vanilla GSL[1G, 2AG] sentence ϕ = 〈〈x ≥ i〉〉[[x ≤
j]](α, x)(α, x)ψ holds on a binary CGS G (the general case easily follows by induction on
the syntactic structure of the sentence, as in the classic ATL model-checking approach, and
by linearly transforming any CGS into a binary one). First observe that the computation
of the sets of surely-winning states Wψ, surely-loosing states W¬ψ, undetermined states

75

3.6. Model Checking

X = St \ (Wψ ∪W¬ψ), and suicide states S can be computed in linear time, since they are
defined by means of simple CTL properties. Moreover, let Z ⊆ Stα be the set of α-states
adjacent to some surely-loosing state, and L ⊆ Stα the set of α-states of all cycles whose
nodes do not belong to Z. Note that the elements of Z can be determined in liner time w.r.t.
the number of moves of the CGS G. Similarly, the sets L can be computed by applying the
classic cycle-detection procedure based on DFS on the graph induced by the nodes in St \ Z.
At this point, we can compute the least fixpoint f? of the functor I ◦ Fαψ in a number of steps
that is bounded by the product of j with the number of moves in G, where every step only
requires polynomial time. As we show later, f? is the least fixpoint for Fαψ as well. Therefore,
the grading function Gαψ is immediately derived. Finally, G |= ϕ iff the conditions stated in
Lemma 3.5.2 hold.

For the lower bound, observe that the PTIME hardness w.r.t. the size of the game is derived
from the fact that classic reachability games [Imm81] are subsumed. Instead, the hardness
w.r.t. the combined complexity follows as GSL[1G, 2AG] subsumes CTL [Sch02].

It remains to verify that the least fixpoint f? of Fαψ is exactly the least fixpoint of I ◦ Fαψ,
which can be computed in polynomial time. Since Fαψ(f?) = f?, to prove that (I◦Fαψ)(f?) = f?,
it is enough to show that I(f?) = f?. Indeed, (I◦Fαψ)(f?) = I(Fαψ(f?)) = I(f?). Now, let s ∈ X

and h ∈ [0, h]. By definition of the functor I, we have that, if s 6∈ L, then I(f?)(s)(h) =

f?(s)(h), else either I(f?)(s)(h) = ω and f?(s)(h) > 0 or I(f?)(s)(h) = f?(s)(h) = 0.
Therefore, we have only to show that, if f?(s)(h) > 0, then f?(s)(h) = ω, where s ∈ L.
Since s ∈ L, there exists a cycle s = s, s, . . . , sn = s, where all nodes do not belong
to Zh. In particular, by induction on the length n, we can show that there necessarily
exists an index i ∈ [0, n[such that si ∈ Stα has a successor s′ different from si+, where
f?(s′)(h) > 0. Otherwise, we would have the existence of a fixpoint f?′ for the functor Fαψ,
where f?′(si)(h) = 0, which contradicts the fact that f? is the least fixpoint of Fαψ. Moreover,
by direct inspection of the definition of Fαψ, we have that f?(s)(h) = f?(s)(h) ≥ f?(s)(h) ≥
. . . ≥ f?(si)(h) ≥ f?(s′)(h) + f?(si+)(h) ≥ f?(s′)(h) + f?(si+)(h) ≥ . . . ≥ f?(s′)(h) +

f?(sn)(h) = f?(s′)(h) + f?(s)(h), i.e., f?(s)(h) ≥ f?(s′)(h) + f?(s)(h) ≥ 1 + f?(s)(h).
Hence, we necessarily have f?(s)(h) = ω.

Finally, to show that f? can be computed in polynomial time, we prove that f? = (I ◦
Fαψ)n(f), where n = j · |G| and f is the zero function, i.e., f(s)(h) = 0, for all s ∈ X and
h ∈ [0, j]. Let fi = (I ◦ Fαψ)i(f), for i ∈]0, n]. It is easy to observe that fi(s)(0) = 0, for all
states s ∈ Z and indexes i ∈ [0, n]. This is due to the fact that the set of functions C(s)(0)

used in the definition of Fαψ is necessarily empty. Therefore, after |G| iterations, we have
that all values of f?(s)(0) are determined. Indeed, all cycles passing through Z cannot pump
up the values of the corresponding nodes, while those avoiding Z, thanks to the functor I,
immediately reach the value ω as soon as they are positive. The same reasoning applies, in
general, for the computation of the values f?(s)(h) that are determined after at most h|G|

76

3.7. Discussion

iterations, since they only depend on the values f?(s′)(h′), where h′ ≤ h. �

3.7 Discussion

In multi-agent systems general questions to be investigated are: “is there a winning strategy?”
or “is the game surely winning?” (i.e., no matter which strategy the agent can play). In the
years, several logics suitable for the strategic reasoning have been introduced and, by means
of existential and universal modalities, this kind of questions has been addressed [AHK02].
However, these logics are not able to address quantitative aspects such as “what is the number
of winning strategies an agent can play?” or, in general, to determine the success rate of a
game [MMS15]. These questions are critical in dealing with solution concepts [Mye91] and
in open-system verification [FMP08].

In this chapter, we have introduced and studied GSL, an extension of Strategy Logic
with graded modalities. The use of a powerful formalism such as Strategy Logic ensures the
ability of dealing with very intricate game scenarios [MMV10a]. The obvious drawback of
this is a considerable amount of work on solving any related question [FAGV12]. One of the
main difficulties we have faced in GSL has been the definition of the right methodology to
count strategies. To this aim, we have introduced a suitable equivalence relation over strategy
profiles based on the strategic behavior they induce and studied its robustness. Also, we have
provided arguments and some examples along the chapter to give evidence of the usefulness
of GSL and the suitability of the proposed counting.

In order to provide results of practical use, we have investigated basic questions over
a restricted fragment of GSL. Precisely we have considered the case in which the graded
modalities are applied to the vanilla restriction of the one-goal fragment of SL [FAGV12].
The resulting logic, named Vanilla SL[1G], has been investigated in the turn-based setting. We
have obtained positive results about determinacy and showed that the related model-checking
problem is PTIME-COMPLETE.

The framework and the results presented in this work open for several future work
questions. First, it would be worth investigating the extension of existing formal verification
tools such as MCMAS [LR06b] with our results. We recall that MCMAS, originally developed
for the verification for multi-agent models with respect to specification given in ATL [LR06b],
has been recently extended to handle Strategy Logic specifications [ČLMM14, ČLM15].
Under our formalism it is possible to check, in a single evaluation process, that more than
one strategy gives a fault and possibly correct all these errors. This in a way similar as the
verification tool NuSMV has been extended to deal with graded-CTLverification [FNP09a].

Another research direction regards investigating the graded extension of other formalism
for the strategic reasoning such as ATL with context [BLLM09, LLM10], as well as, for
the sake of completeness, to determine the complexity of the model checking problem with

77

3.7. Discussion

respect to other fragments of Strategy Logic [MMS14b, MMS14a].
Finally, it would be really interesting to address the satisfiability for GSL[1G] too, by

generalizing the solution procedure developed for SL[1G] [FAGV12]. However, we want to
observe that, the technical tools described in this article are not powerful enough to solve this
problem, since this also needs a bounded-width tree model property. So, further work is still
required. Moreover, the procedure exploited for graded CTL [BMM09, BMM10, BMM12]
cannot easily be applied to GSL[1G], due to the fact that the binary-tree unraveling used there
would modify the way the strategies are valuated as equivalent.

78

CHAPTER 4

Graded Modalities in Strategy Logic

Contents
4.1 Introduction . 80

4.2 Graded Strategy Logic . 82

4.2.1 Syntax . 83

4.2.2 Models . 85

4.2.3 Semantics . 85

4.2.4 Fragments of GRADEDSL . 87

4.3 Model-checking GRADEDSL . 89

4.3.1 From Logic to Automata . 91

4.3.2 Decidability and Complexity of Model Checking 93

4.4 Analysing Games using GRADEDSL 96

4.4.1 Strategic Form and Infinitely Repeated Games 96

4.4.2 Quasi-Quantitative Games and Objective-LTL Games 96

4.4.3 Example: The Prisoner’s Dilemma (PD) 97

4.4.4 Illustrating GRADEDSL: uniqueness of solutions 99

4.5 Conclusion . 102

4.1. Introduction

4.1 Introduction

Strategy Logic (SL) is a powerful formalism for reasoning about strategies in multi-agent
systems [MMV10a, MMPV14]. Strategies tell an agent what to do — they are functions that
prescribe an action based on the history. The key idea in SL is to treat strategies as first-order
objects. A strategy x can be quantified existentially 〈〈x〉〉 (read: there exists a strategy x) and
universally [[x]] (read: for all strategies x). Furthermore, strategies are not intrinsically glued to
specific agents: the binding operator (α, x) allows one to bind an agent α to the strategy x. SL
strictly subsumes several other logics for strategic reasoning including the well known ATL
and ATL? [AHK02]. Being a very powerful logic, SL can directly express many solution
concepts [CHP10, MMPV14, GHW17, KPV14, Bel15, BLMR17, GMP+17, BMMRV17]
among which that a strategy profile x is a Nash equilibrium, and thus also the existence of a
Nash equilibrium (NE).

The Nash equilibrium is one of the most important concepts in game theory, forming the
basis of much of the recent fundamental work in multi-agent decision making. A challenging
and important aspect is to establish whether a game admits a unique NE [AKH02, PC79,
CHS99]. This problem is relevant to the predictive power of NE since, in case there are
multiple equilibria, the outcome of the game cannot be uniquely pinned down [SLCB13,
ZG11, Pav12]. Unfortunately, uniqueness has mainly been established either for special
cost functions [AKH02], or for very restrictive game topologies [ORS93]. Moreover, there
is no general theory of when games have unique equilibria that can be applied to different
application areas [AKH02].

In this chapter, we address and solve the problem of expressing the uniqueness of certain
solution concepts (and NE in particular) in a principled and elegant way, by introducing
an extension of SL called GRADEDSL. More specifically, we extend SL by replacing the
quantification 〈〈x〉〉 and [[x]] over strategy variables with graded quantification over tuples of
strategy variables: 〈〈x1, . . . , xn〉〉≥g (read 〈〈x1, . . . , xn〉〉≥g as “there exist at least g different
tuples (x1, . . . , xn) of strategies”) and its dual [[x1, . . . , xn]]<g, where g ∈ N∪ {ℵ0,ℵ1, 2

ℵ0}.
Here, two tuples are different if they are different in some component, and two strategies are
different if they disagree on some history. The key is being able to express uniqueness of
NE is the combination of quantifying over tuples (instead of singleton variables), and adding
counting (in the form of graded modalities).

As far as the expressive power of GRADEDSL concerns, we prove that counting strategies
in SL is not possible in general (see Theorem 4.2.1). On the other hand, every formula of
SL has an equivalent formula of GRADEDSL formed by replacing every quantifier 〈〈x〉〉 with
〈〈x〉〉≥1. Additionally, the possibility of quantifying over tuples of strategy variables (rather
than single strategies) makes the logic quite expressive.

We address the model-checking problem for GRADEDSL and prove that it is decidable.

80

4.1. Introduction

We also address the complexity of several fragments of GRADEDSL. First we consider
the case in which the g’s are restricted to finite cardinals, written GRADEDNSL. Then we
investigate the graded extension of classic fragments of SL, such as Nested-Goal SL and
one-goal SL [MMPV14], while maintaining the restriction of grades over finite cardinals.
Roughly speaking, the Nested-Goal restriction encompasses formulas in a special prenex
normal form with a particular nested temporal structure that restricts the application of
both strategy quantifiers and agent bindings; further, the one-goal restriction is obtained by
forbidding any nesting and Boolean operation over bindings (see Section 4.2.4 for details).

We show that the complexity of the model-checking problem for GRADEDNSL is no
harder than for SL, i.e., it is non-elementary in the nesting depth of quantifiers. In particular,
we show that model checking GRADEDNSL formulas with a nesting depth k > 0 of blocks
of quantifiers (a block of quantifiers is a maximally-consecutive sequence of quantifiers of
the same type, i.e., either all existential, or all universal) is in (k + 1)EXPTIME, and that
for the special case where the formula starts with a block of quantifiers, it is in kEXPTIME.
Since many natural formulas contain a very small number of quantifiers, the complexity of the
model-checking problem is not as bad as it seems. Specifically, several solution concepts can
be expressed as SL formulas with a small number of quantifiers[CHP10, MMPV14, GHW17,
KPV14, Bel15]. Since the existence of a NE, and the fact that there is at most one NE, can
be expressed in GRADEDNSL using simple formulas (assuming that the agents’ goals are
given as LTL formulas) we are able to conclude that the problem of checking the uniqueness
of a NE can be solved in 2EXPTIME. Previously, it was known that existence of NE can be
checked in 2EXPTIME [MMPV14]. Thus, GRADEDSL is the first logic that can solve the
existence and uniqueness of NE (as well as many other solution concepts) in 2EXPTIME.

Concerning the graded Nested-Goal fragment, namely GRADEDSL[NG], we show that, in
case the g’s are restricted to finite cardinals, it has the same model-checking complexity as
Nested-Goal SL, i.e., non-elementary in the alternation number of the quantifiers appearing
in the formula. For the one-goal fragment, namely GRADEDNSL[1G], the model checking
problem is instead 2EXPTIME-COMPLETE. All model checking complexities reported so far
refer to the size of the formula.

Related work. The importance of solution concepts, verifying a unique equilibrium, and
the relationship with logics for strategic reasoning is discussed above. We now give some
highlights from the long and active investigation of graded modalities in the formal verification
community.

Graded modalities were first studied in modal logic [Fin72] and then exported to the field
of knowledge representation to allow quantitative bounds on the set of individuals satisfying
a given property. Specifically, they were considered as counting quantifiers in first-order
logics [GOR97] and number restrictions in description logics [HB91]. Graded µ-calculus, in
which immediate-successor accessible worlds are counted, was introduced to reason about

81

4.2. Graded Strategy Logic

graded modal logic with fixed-point operators [KSV02]. Recently, the notion of graded
modalities was extended to count the number of paths in the branching-time temporal logic
formulas CTL and CTL? [BMM12, RAM15].

Graded strategy quantifiers were studied in [MMMS15, FNP09a]. However, in contrast
to our work, both of these works have an intricate way of counting. The work in [MMMS15]
introduced a graded extension of SL, called GSL. This logic gives a semantic definition
for when two strategies should be considered equal, and counts the number of equivalence
classes. While this intricate approach is justifiable, it leads to a complicated model-checking
problem. Indeed, only a very weak fragment of GSL has been solved in [MMMS15], namely
the vanilla restriction of the graded version of the one-goal fragment of SL [FAGV12]. There
is a common belief that the one-goal fragment is not powerful enough to express the existence
of a Nash Equilibrium in concurrent games. The smallest fragment that is known to be able to
represent this is the so called Boolean-goal Strategy Logic, whose graded extension (in the
GSL sense) has no known solution.1

We note that the work in [FNP09a] introduced a graded extension of ATL with two
semantics for graded strategy quantifiers. Both of these semantics also employ an intricate
equivalence relation on paths and sets of paths.

Finally, we mention that in the verification of reactive systems there is an orthogonal
approach called module checking. 2 Module-checking for graded µ-calculus was studied in
[ALMS08, FMP08].

4.2 Graded Strategy Logic

In this section we introduce Graded Strategy Logic, which we call GRADEDSL for short.

In the following we use a finite set Vr of variables, a finite set Ag of agents, and a finite
set AP of atomic propositions (atoms). We denote variables by xi, xj , etc., agents by αi, αj ,
etc., and atomic propositions by p, q, etc. The assumption that these sets are finite is simply a
technical convenience: the model-checking problem (Definition 4.3.1) takes as input formulas
and arenas with any number of variables, agents, and atoms.

1In [GHW15] it has been shown that, in the restricted case of turn-based structures it is possible to express the
existence of Nash equilibria in m−ATL? [MMV10b], a memory-full variant of ATL? (hence included in one-goal
SL), but exponentially more succinct — and thus with a much more expensive model-checking algorithm. As the
authors in [GHW15] also state, it is not clear how to extend this result to the concurrent setting, even in the case
of two agents.

2Module checking is a decision problem proposed in late 1990s to formalize verification of open sys-
tems [KVW01]. Recently it has been showed that module checking offers a distinctly different perspective
from the problem of model checking [JM14].

82

4.2. Graded Strategy Logic

4.2.1 Syntax

GRADEDSL extends SL by replacing the singleton strategy quantifiers 〈〈x〉〉 and [[x]] with
the graded (tupled) quantifiers 〈〈x1, . . . , xn〉〉≥g and [[x1, . . . , xn]]<g, respectively, where
g ∈ N ∪ {ℵ0,ℵ1, 2

ℵ0} is called the grade of the quantifier. Intuitively, these are read as
“there exist at least g tuples of strategies (x1, . . . , xn)” and “all but less than g many tuples of
strategies”, respectively. The syntax (α, x) denotes a binding of the agent α to the strategy x.

Definition 4.2.1 GRADEDSL formulas are built inductively by means of the following gram-
mar, where p ∈ AP, α ∈ Ag, x, x1, . . . , xn ∈ Vr such that xi 6= xj for i 6= j and n ∈ N,
and g ∈ N ∪ {ℵ0,ℵ1, 2

ℵ0}:

ϕ := p | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ | 〈〈x1, . . . , xn〉〉≥gϕ | (α, x)ϕ.

Note that GRADEDSL formulas are defined w.r.t. fixed finite sets of atomic propositions
AP, agents Ag, and variables Vr.

Notation. Whenever we write 〈〈x1, . . . , xn〉〉≥g we mean that xi 6= xj for i 6= j, i.e., the
variables in a tuple are distinct (note that this does not mean that the strategies the variables
represent are distinct).

Shorthands are derived as usual. Specifically, true , p ∨ ¬p, false , ¬true, Fϕ ,
trueUϕ, and Gϕ , ¬F¬ϕ. Also, we have that [[x1, . . . , xn]]<gϕ , ¬〈〈x1, . . . , xn〉〉≥g¬ϕ.
The operators 〈〈x1, . . . , xn〉〉≥g (resp. [[x1, . . . , xn]]<g) are called existential (resp. universal)
strategy quantifiers.

In order to define the semantics, we first define the concept of free placeholders in a
formula, which refer to agents and variables. Intuitively, an agent or variable is free in ϕ if
it does not have a strategy associated with it (either by quantification or binding) but one is
required in order to ascertain if ϕ is true or not. The definition mimics that for SL [MMPV14].
It is important for defining the model-checking procedure, in particular for the encoding of
strategies as trees (Definition 4.3.3).

Definition 4.2.2 The set of free agents and free variables free(ϕ) ∈ 2Ag∪Vr of a
GRADEDSL formula ϕ is inductively defined as follows:

• free(p) , ∅, where p ∈ AP;

• free(¬ϕ) , free(ϕ);

• free(ϕ1 ∨ ϕ2) , free(ϕ1) ∪ free(ϕ2);

• free(Xϕ) , Ag ∪ free(ϕ);

• free(ϕ1 Uϕ2) , Ag ∪ free(ϕ1) ∪ free(ϕ2);

83

4.2. Graded Strategy Logic

• free(〈〈x1, . . . , xn〉〉≥gϕ) , free(ϕ) \ {x1, . . . , xn};

• free((α, x)ϕ) ,

free(ϕ), if α 6∈ free(ϕ);

(free(ϕ) \ {α}) ∪ {x}, otherwise.

A formula ϕ without free agents (resp., variables), i.e., with free(ϕ) ∩ Ag = ∅ (resp.,
free(ϕ) ∩ Vr = ∅), is called agent-closed (resp., variable-closed). If ϕ is both agent- and
variable-closed, it is called a sentence.

Roughly, the quantifier rank of ϕ is the maximum, over all paths in the parse-tree of ϕ, of
the number of strategy quantifiers that appear on the path, e.g., 〈〈x1, . . . , xn〉〉≥g(α1, x) . . .

(αn, xn)
∧n
i=1(〈〈y〉〉(αi, y)ψi)→ ψi has quantifier rank 2 if each ψi is quantifier free.

Definition 4.2.3 The quantifier rank qr(ϕ) ∈ N of a GRADEDSL formula ϕ is inductively
defined as follows:

• qr(p) , 0, where p ∈ AP;

• qr(OPϕ) , qr(ϕ), where OP ∈ {¬,X, [};

• qr(ϕ1OPϕ2) , max(qr(ϕ1), qr(ϕ2)) where OP ∈ {∨,U};

• qr(〈〈x1, . . . , xn〉〉≥gϕ) , qr(ϕ) + 1.

Roughly, a quantifier-block of ϕ is a maximally-consecutive sequence of quantifiers in ϕ
of the same type (i.e., either all existential, or all universal). The quantifier-block rank of a
formula is like the quantifier rank except that a quantifier block of j quantifiers contributes 1

instead of j to the count. The formal definition follows:

Definition 4.2.4 The quantifier-block rank qbr(ϕ) ∈ N of a GRADEDSL formula ϕ that uses
the shorthand for universal strategy quantifiers is inductively defined as follows:

• qbr(p) , 0, where p ∈ AP;

• qbr(OPϕ) , qbr(ϕ), where OP ∈ {¬,X, [};

• qbr(ϕ1OPϕ2) , max(qbr(ϕ1), qbr(ϕ2)) where OP ∈ {∨,U};

• qbr(〈〈x1, . . . , xn〉〉≥gϕ) , qbr(ϕ) if ϕ begins with an existential strategy quantifier,
and qbr(ϕ) + 1 otherwise.

• qbr([[x1, . . . , xn]]<gϕ) , qbr(ϕ) if ϕ begins with a universal strategy quantifier, and
qbr(ϕ) + 1 otherwise.

Note that we treat ¬〈〈x1, . . . , xn〉〉≥g¬ϕ differently to [[x1, . . . , xn]]<gϕ. Thus, one should
choose the existential and universal quantifiers judiciously in order to obtain a low quantifier-
block rank.

84

4.2. Graded Strategy Logic

4.2.2 Models

Sentences of GRADEDSL are interpreted over arenas 3, just as for ATL and SL [AHK02,
MMPV14].

Definition 4.2.5 An arena over fixed sets of atomic proposition AP and agents Ag is a tuple
A , 〈Ac,St, sI , ap, tr〉, where:

• Ac is a finite set of actions;

• St is a finite set of states;

• sI ∈ St is the initial state;

• ap : St → 2AP is the labeling function mapping each state to the set of atomic
propositions true in that state;

• Let Dc,Ag→Ac be the set of decisions, i.e., functions describing the choice of an
action by every agent. Then, tr : Dc→(St→St) is a transition function mapping every
decision δ∈Dc to a function tr(δ) : St→ St.

We will usually take the set Ag of agents to be {α1, . . . , αn}. A path (from s) is a finite
or infinite non-empty sequence of states s1s2 . . . such that s = s1 and for every i there
exists a decision δ with tr(δ)(si) = si+1. Given a path π = s1s2 . . . , with λ(π) we denote
the label of π as a sequence of sets of atomic propositions π1, π2, . . . where ap(s1) = π1,
ap(s2) = π2, and so on. The set of paths starting with s is denoted Pth(s). The set of finite
paths from s, called the histories (from s), is denoted Hst(s). A strategy (from s) is a function
σ∈Str(s),Hst(s)→Ac that prescribes which action has to be performed given a history.
We write Pth,Hst,Str for the set of all paths, histories, and strategies (no matter where they
start). We use the standard notion of equality between strategies [LBS08], i.e., σ1 = σ2 iff for
all ρ ∈ Hst, σ1(ρ) = σ2(ρ). This extends to equality between two n-tuples of strategies in
the natural way, i.e., coordinate-wise. There is a subtlety in this definition, i.e., two strategies
are different if they differ on some history ρ, even if that history is not reachable using either
of the strategies.

4.2.3 Semantics

As for SL, the interpretation of a GRADEDSL formula requires a valuation of its free place-
holders.

Definition 4.2.6 An assignment (from s) is a function χ ∈ Asg(s), (Vr ∪ Ag)→ Str(s)

mapping variables and agents to strategies.
3This is sometimes called a Concurrent Game Structure.

85

4.2. Graded Strategy Logic

We denote by χ[e 7→ σ], with e ∈ Vr ∪Ag and σ ∈ Str(s), the assignment that differs from
χ only in the fact that e maps to σ. Extend this definition to tuples: for e = (e1, . . . , en) with
ei 6= ej for i 6= j, define χ[e 7→ σ] to be the assignment that differs from χ only in the fact
that ei maps to σi (for each i).

Since an assignment ensures that all free variables are associated with strategies, it induces
a play.

Definition 4.2.7 Let χ ∈ Asg(s) be an assignment. By (χ, s)-play we denote the path π ∈
Pth(s) such that, for all i ∈ N, it holds that πi+1 = tr(dc)(πi), where dc(α) , χ(α)(π≤i),
for α ∈ Ag. The function play : Asg× St→ Pth, with dom(play) , {(χ, s) : χ ∈ Asg(s)},
maps (χ, s) to the (χ, s)-play play(χ, s) ∈ Pth(s).

The notation π≤i (resp. π<i) denotes the prefix of the sequence π of length i (resp. i− 1).
Similarly, the notation πi denotes the ith symbol of π. Thus, play(χ, s)i is the ith state on the
play determined by χ from s.

The following definition of χi says how to interpret an assignment χ starting from a point
i along the play, i.e., for each placeholder e, take the action the strategy χ(e) would do if it
were given the prefix of the play up to i followed by the current history.

Definition 4.2.8 For χ ∈ Asg(s) and i ∈ N, writing ρ , play(χ, s)≤i (the prefix of the play
up to i) and t , play(χ, s)i (the last state of ρ) define χi ∈ Asg(t) to be the assignment from
t that maps e ∈ Vr ∪Ag to the strategy that maps h ∈ Hst(t) to the action χ(e)(ρ<i · h).

The semantics of GRADEDSL mimics the one for SL as given in [MMPV14]. Given
an arena A, for all states s ∈ St and assignments χ ∈ Asg(s), we now define the relation
A, χ, s |= ϕ, read ϕ holds at s in A under χ.

Definition 4.2.9 Fix an arena A. For all states s ∈ St and assignments χ ∈ Asg(s), the
relation A, χ, s |= ϕ is defined inductively on the structure of ϕ:

• A, χ, s |= p iff p ∈ ap(s);

• A, χ, s |= ¬ϕ iff A, χ, s 6|= ϕ;

• A, χ, s |= ϕ1 ∨ ϕ2 iff A, χ, s |= ϕ1 or A, χ, s |= ϕ2;

• A, χ, s |= Xϕ iff A, χ1, play(χ, s)1 |= ϕ;

• A, χ, s |= ϕ1 Uϕ2 iff there is i ∈ N such that A, χi, play(χ, s)i |= ϕ2 and, for all
j ∈ N with j < i, it holds that A, χj , play(χ, s)j |= ϕ1;

• A, χ, s |= (α, x)ϕ iff A, χ[α 7→ χ(x)], s |= ϕ;

• A, χ, s |=〈〈x1, . . . , xn〉〉≥gϕiff there exist g many n-tuples of strategies σi (0 ≤ i < g)
such that:

86

4.2. Graded Strategy Logic

– σi 6= σj for i 6= j;

– A, χ[x 7→ σi], s |= ϕ for 0 ≤ i < g and x = (x1, . . . , xn).

Intuitively, 〈〈x1, . . . , xn〉〉≥gϕexpresses that the number of distinct tuples of strategies
that satisfy ϕ is at least g.

As usual, if χ and χ′ agree on free(ϕ), then A, χ, s |= ϕ if and only if A, χ′, s |= ϕ,
i.e., the truth of ϕ does not depend on the values the assignment takes on placeholders that
are not free. Thus, for a sentence ϕ we write A, s |= ϕ to mean that A, χ, s |= ϕ for some
(equivalently, for all) assignments χ. Also, we write A |= ϕ to mean A, sI |= ϕ where sI is
the initial state of A.

4.2.4 Fragments of GRADEDSL

In this section we introduce various syntactic fragments of GRADEDSL. Obviously SL can be
considered a fragment of GRADEDSL: note that the GRADEDSL quantifier 〈〈x1, . . . , xn〉〉≥g

in case g = 1 and n = 1 has the same semantics as the SL quantifier 〈〈x1〉〉. The next
result shows that GRADEDSL is strictly more expressive than SL, i.e., there is a GRADEDSL
sentence whose models are not the set of models of any SL sentence.

Theorem 4.2.1 GRADEDSL is strictly more expressive than SL.

Proof. Fix Ag = {α}, AP = {p}, St = {s}, sI = s, ap(s) = {p}. Define A =

〈AcA,St, sI , ap, trA〉, where AcA = {0}, and trA(δ)(s) = s for every decision δ; and
B = 〈AcB, St, sI , ap, trB〉, where AcB = {0, 1}, and trB(δ)(s) = s for every decision δ.
Thus, each arena consists of a single state with self-loops, the difference being that in B there
are two actions while in A there is only a single action.

Consider the GRADEDSL formula ¬〈〈x〉〉≥2true. Note that A |= ¬〈〈x〉〉≥2true (since
there is only a single strategy inA), while B 6|= ¬〈〈x〉〉≥2true (since there are at least two, and
in fact 2ℵ0 many, strategies in B).

Let χA be the unique assignment in A, i.e., that maps α and every variable in Vr to the
strategy σ defined by σ(h) = 0 for all histories h. We claim that, for every SL formula ϕ, if
A, χA, s |= ϕ then, for all assignments χ we have that B, χ, s |= ϕ. Thus, in particular, no
SL sentence can distinguish between A and B, and the theorem follows.

One can easily prove the claim by induction on the structure of an SL formula. Alterna-
tively, one may note that A and B are locally-isomorphic, and thus agree on all SL formulas
(see [Mog11, Section 3] for the definition and properties of “local-isomorphism”).4 �

Recall that SL has a few natural syntactic fragments, the most powerful of which is
SL[NG] (here “NG” stands for Nested-Goal). Recall that in SL[NG], we require that bindings

4We thank an anonymous reviewer for pointing this out.

87

4.2. Graded Strategy Logic

and quantifications appear in exhaustive blocks. I.e., whenever there is a quantification over a
variable in a formula ψ it is part of a consecutive sequence of quantifiers that covers all of the
free variables that appear in ψ, and whenever an agent is bound to a strategy then it is part of
a consecutive sequence of bindings of all agents to strategies. Also, formulas with free agents
are not allowed. We define GRADEDSL[NG] in a similar way, as follows.

A quantification prefix over a set V⊆Vr of variables is a sequence ℘ from the set

{〈〈x1, . . . , xn〉〉≥g, [[x1, . . . , xn]]<g : n ∈ N, x1, . . . , xn∈V ∧ g∈N ∪ {ℵ0,ℵ1, 2
ℵ0}}∗

such that each x∈V occurs exactly once in ℘. A binding prefix is a sequence [∈ {(α, x)

: α∈Ag ∧ x∈Vr}∗ such that each α∈Ag occurs exactly once in [. We denote the set of
binding prefixes by Bn, and the set of quantification prefixes over V by Qn(V).

Definition 4.2.10 GRADEDSL[NG] formulas are built inductively using the following gram-
mar, with p ∈ AP, ℘ ∈ Qn(V) (V ⊆ Vr), and [∈ Bn:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ | ℘ϕ | [ϕ,

where in the rule ℘ϕ we require that ϕ is agent-closed and ℘ ∈ Qn(free(ϕ)). In this case we
call ℘ϕ a principal formula.

Formulas of GRADEDSL[NG] can be classified according to their alternation number, i.e.,
the maximum number of quantifier switches in a quantification prefix. 5 Formally:

Definition 4.2.11 The alternation number alt(ϕ) of a GRADEDSL[NG] formula ϕ is defined
as follows:

• alt(p) , 0, where p ∈ AP;

• alt(OPϕ) , alt(ϕ), where OP ∈ {¬,X, [};

• alt(ϕ1OPϕ2) , max(alt(ϕ1), alt(ϕ2)) where OP ∈ {∨,U};

• alt(℘ϕ) , max(alt(ϕ), alt(℘)) where ℘ = ℘1 . . . ℘|℘|−1 is a quantification prefix and
alt(℘) ,

∑|℘|−1
i=1 switch(℘i, ℘i+1), where switch(Q,Q′) = 0 if Q and Q′ are either

both universal or both existential quantifiers, and 1 otherwise 6.

Another important fragment of SL is SL[1G] (here “1G” stands for One-Goal). Intuitively,
SL[1G] is the fragment of GRADEDSL[NG] in which quantification is immediately followed

5In [MMPV14] the alternation number is described for all formulas of SL. Here, we only define it for
GRADEDSL[NG] since this is enough for our purposes.

6Observe that formulas of the form ℘ϕ have no free variables and thus one cannot form formulas of the form
℘′℘ϕ.

88

4.3. Model-checking GRADEDSL

by binding. The importance of this fragment stems from the fact that it strictly includes ATL?

while maintaining the same complexity for both the model checking and the satisfiability
problems, i.e. 2EXPTIME-COMPLETE [FAGV12, MMPV14]. However, it is commonly be-
lieved that Nash Equilibrium cannot be expressed in this fragment. Similarly, we give the
following definition of GRADEDSL[1G]:

Definition 4.2.12 GRADEDSL[1G] formulas are built inductively using the following gram-
mar, with p ∈ AP, ℘ ∈ Qn(V) (V ⊆ Vr), and [∈ Bn:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ | ℘[ϕ,

where ℘ is a quantification prefix over free([ϕ).

Recall (see [MMPV14]) that ATL? can be viewed as the fragment of SL[1G] in which
occurrences of ℘[are of the form

〈〈x1〉〉 · · · 〈〈xm〉〉[[xm+1]] · · · [[xn]](β1, x1)(β2, x2) · · · (βn, xn),

where {β1, · · · , βn} = Ag for n = |Ag|, and xi 6= xj for all i 6= j. In the usual notation of
ATL?, the operator ℘[is written 〈〈A〉〉 where A = {β1, · · · , βm}. In a similar way, but using
tuples of strategies, we define a graded extension of ATL? as a fragment of GRADEDNSL[1G]:

Definition 4.2.13 GRADEDATL? formulas are built inductively using the following gram-
mar, with p ∈ AP, ℘ is of the form 〈〈x1, · · · , xm〉〉≥g[[xm+1, · · · , xn]] where n = |Ag|,
m ≤ n, g ∈ N ∪ {ℵ0,ℵ1, 2

ℵ0} and xi 6= xj for all i 6= j, and [is of the form
(β1, x1)(β2, x2) · · · (βn, xn) where {β1, · · · , βn} = Ag:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ | ℘[ϕ.

Finally, an important fragment of GRADEDSL (in which one can express uniqueness of
strategy profiles) is when all grades are in N.

Definition 4.2.14 Let GRADEDNSL, GRADEDNSL[NG] GRADEDNSL[1G], and
GRADEDNATL? denote the corresponding fragments in which all grades are from
the set N.

4.3 Model-checking GRADEDSL

In this section we study the model-checking problem for GRADEDSL and show that it is
decidable with a time-complexity that is non-elementary (i.e., not bounded by any fixed tower
of exponentials). However, it is elementary if the number of blocks of quantifiers is fixed.

89

4.3. Model-checking GRADEDSL

Definition 4.3.1 The model-checking problem for GRADEDSL (respectively,
GRADEDSL[NG]) is the following decision problem: given a formula ϕ from GRADEDSL
(respectively, GRADEDSL[NG]) over some finite sets of atoms AP, agents Ag, and variables
Vr, and given an arena A over the sets AP and Ag, decide whether A|= ϕ.

When measuring computational complexity, the grades in formulas are written in unary.

For the algorithmic procedures, we follow an automata-theoretic approach [KVW00],
reducing the decision problem for the logic to the emptiness problem of an automaton. The
procedure we propose here extends that used for SL in [MMPV14]. The only case that is
different is the new graded quantifier over tuples of strategies, i.e., we show how to convert
a GRADEDSL formula ϕ into an automaton that accepts exactly the (tree encodings) of the
assignments that satisfy ϕ.

Tree Automata. A Σ-labeled Υ-tree T is a pair 〈T, V 〉 where T ⊆ Υ+ is prefix-
closed (i.e., if t ∈ T and s ∈ Υ+ is a prefix of t then also s ∈ T), and V : T → Σ

is a labeling function. Note that every word w ∈ Υ+ ∪ Υω with the property that every
prefix of w is in T , can be thought of as a path in T. Infinite paths are called branches.
Nondeterministic tree automata (NTA) are a generalization to infinite trees of the classical
automata on words [Tho90]. Alternating tree automata (ATA) are a further generalization of
nondeterministic tree automata [EJ91]. Intuitively, on visiting a node of the input tree, while
an NTA sends exactly one copy of itself to each of the successors of the node, an ATA can
send several copies to the same successor. We use the parity acceptance condition [KVW00].

For a set X , let B+(X) be the set of positive Boolean formulas over X , including the
constants true and false. A set Y ⊆ X satisfies a formula θ ∈ B+(X), written Y |= θ, if
assigning true to elements in Y and false to elements in X \ Y makes θ true.

Definition 4.3.2 An Alternating Parity Tree-Automaton (APT) is a tuple M ,

〈Σ,∆,Q, δ, q,F〉, where

• Σ is the input alphabet,

• ∆ is a set of directions,

• Q is a finite set of states,

• q ∈ Q is an initial state,

• δ : Q× Σ→ B+(∆×Q) is an alternating transition function, and

• F, an acceptance condition, is of the form (F1, . . . ,Fk) ∈ (2Q)+ where F1 ⊆ F2 . . . ⊆
Fk = Q.

90

4.3. Model-checking GRADEDSL

The set ∆×Q is called the set of moves. An NTA is an ATA in which each conjunction in the
transition function δ has exactly one move (d, q) associated with each direction d.

An input tree for an APT is a Σ-labeled ∆-tree T = 〈T, v〉. A run of an APT on
an input tree T = 〈T, v〉 is a (∆ × Q)-tree R such that, for all nodes x ∈ R, where
x = (d, q) . . . (dn, qn) (for some n ∈ N), it holds that (i) y , (d, . . . , dn) ∈ T and (ii)
there is a set of moves S ⊆ ∆ × Q with S |= δ(qn, v(y)) such that x · (d, q) ∈ R for all
(d, q) ∈ S.

The acceptance condition allows us to say when a run is successful. Let R be a run of an
APTM on an input tree T and u ∈ (∆×Q)ω one of its branches. Let inf(u) ⊆ Q denote the
set of states that occur in infinitely many moves of u. Say that u satisfies the parity acceptance
condition F=(F1, . . . ,Fk) if the least index i∈ [1, k] for which inf(u) ∩ Fi 6= ∅ is even. A
run is successful if all its branches satisfy the parity acceptance condition F. An APT accepts
an input tree T iff there exists a successful run R ofM on T.

The language L(M) of the APTM is the set of trees T accepted byM. Two automata
are equivalent if they have the same language. The emptiness problem for alternating parity
tree-automata is to decide, givenM, whether L(M) = ∅. The universality problem is to
decide whetherM accepts all trees.

4.3.1 From Logic to Automata

We reduce the model-checking problem of GRADEDSL to the emptiness problem for alternat-
ing parity tree automata [MMPV14]. The main step is to translate every GRADEDSL formula
ϕ (i.e., ϕ may have free placeholders), arena A, and state s, into an APT that accepts a tree if
and only if the tree encodes an assignment χ such that A, χ, s |= ϕ.

We first describe the encoding, following [MMPV14]. Informally, the arenaA is encoded
by its “tree-unwinding starting from s” whose nodes represent histories, i.e., the St-labeled
St-tree T , 〈Hst(s), u〉 such that u(h) is the last symbol of h. Then, every strategy χ(e) with
e ∈ free(ϕ) is encoded as an Ac-labelled tree over the unwinding. The unwinding and these
strategies χ(e) are viewed as a single (VAL × St)-labeled tree where VAL , free(ϕ)→ Ac.

Definition 4.3.3 The encoding of χ (w.r.t. ϕ,A, s) is the (VAL × St)-labeled St-tree T ,

〈T, u〉 such that T is the set of histories h of A starting with s and u(h) , (f, q) where q is
the last symbol in h and f : free(ϕ)→ Ac is defined by f(e) , χ(e)(h) for all e ∈ free(ϕ).7

We now state and prove a lemma that says one can translate every formula in GRADEDSL
into an APT. It is proved by induction on the structure of the formula ϕ, as in [MMPV14].
The idea for handling the new case, i.e., the graded quantifier 〈〈x1, . . . , xn〉〉≥gψ, is to build

7In case free(ϕ) = ∅, then f is the (unique) empty function. In this case, the encoding of every χ may be
viewed as the tree-unwinding from s.

91

4.3. Model-checking GRADEDSL

an APT that is a projection of an APT that itself checks that each of the g tuples of strategies
satisfies ψ and that each pair of g tuples is distinct. The case that g ∈ N directly builds the
required automaton (as is done for SL [MMPV14]), while the case that g ∈ {ℵ0,ℵ1, 2

ℵ0}
goes through logic. Write MSOL for monadic second-order logic in the signature of trees.
We use the following two results that show how to express counting quantifiers in MSOL.
The first is due to Rabin [Rab69] and is nicely explained in [Tho90].

Theorem 4.3.1 (MSOL and Automata) For every MSOL formula α(Y)

there exists an APT accepting the set of trees Y such that α(Y) holds. Conversely,
for every APT there is an MSOL formula α(Y) that holds on those Y that are accepted by
the APT.

The second is due to [BKR10] and is proved using the composition technique.

Theorem 4.3.2 For every MSOL formula α(X,Y) and κ ∈ {ℵ0,ℵ1, 2
ℵ0} there exists an

MSOL formula β(X) equivalent to “there exist κ many trees Y such that α(X,Y)”.

Lemma 4.3.1 For every GRADEDSL formula ϕ, arena A, and state s ∈ St, there exists
an APT M such that for all assignments χ, if T is the encoding of χ (w.r.t. ϕ,A, s), then
A, χ, s |= ϕ iff T ∈ L(M).

Proof. As in [MMPV14] we induct on the structure of the formula ϕ to construct the
corresponding automatonM. The Boolean operations are easily dealt with using the fact
that disjunction corresponds to non-determinism, and negation corresponds to dualising the
automaton. The temporal operators are dealt with by following the unique play (determined
by the given assignment) and verifying the required subformulas, e.g., for Xψ the automaton,
after taking one step along the play, launches a copy of the automaton for ψ. All of these
operations incur a linear blowup in the size of the automaton. The only case that differs
from SL is the quantification, i.e., we need to handle the case that ϕ = 〈〈x1, . . . , xn〉〉≥gψ.
Recall that G, χ, s |=〈〈x1, . . . , xn〉〉≥gψ iff there exists g many tuples σi of strategies such that:
σa 6= σb for a 6= b, and G, χ[x 7→ σi], s |= ψ for 0 ≤ i < g.

There are two cases.
Case g ∈ {ℵ0,ℵ1, 2

ℵ0}. Consider 〈〈x1, . . . , xn〉〉≥gψ. By induction, there is an APT D
for ψ. Apply Theorem 4.3.1 to translateD into an MSOL formula α, then apply Theorem 4.3.2
to get an MSOL formula β that holds iff “there exist g many tuples of trees such that α”
(recall that a tuple of trees is coded as a single tree). Finally, apply Theorem 4.3.1 to convert
β into the required APT.

Note that the blowup in the translations (MSOL to APT, and closure under “there exists κ
many trees”) is non-elementary.

Case g ∈ N. LetM be the APT for ψ, given by induction. We show how to build an NPT

for ϕ that mimics the definition of ϕ: it will be a projection of an APT, which itself is the

92

4.3. Model-checking GRADEDSL

intersection of two automata, one checking that each of the g tuples of strategies satisfies ψ,
and the other checking that each pair of the g tuples of strategies is distinct.

In more detail, introduce a set of fresh variables X , {xji : i ≤ n, j ≤ g}, and consider
the formulas ψj (for j ≤ g) formed from ψ by renaming xi (for i ≤ n) to xji . Define
ψ′ , ∧j≤gψj . Note that, by induction, each ψj has a corresponding APT and thus, there is
an APT BM,X for ψ′ (conjunction can be dealt using universal-choice). Note that the input
alphabet for BM,X is (free(ψ′)→ Ac)× St and that X ⊆ free(ψ′).

On the other hand, let CX be an APT with input alphabet (free(ψ′) → Ac) × St that
accepts a tree T = 〈T, v〉 if and only if for every a 6= b ≤ g there exists i ≤ n and h ∈ T such
that v(h) = (f, q) (where q is the last symbol of h) and f(xai) 6= f(xbi). To build CX simply
form the conjunction of automata Ca,bX (for a 6= b ≤ g), each of which is the disjunction of
automata Ca,b,iX (for i ≤ n) that checks (by nondeterministically guessing a path) that there
exists a history h starting in s such that f(xai) 6= f(xbi) (where the first co-ordinate of v(h) is
f).

Form the APT DM,X for the intersection of BM,X and CX (formed using universal-
choice).

Now, using the classic transformation [MS95], we remove alternation from the APT

DM,X to get an equivalent NPT N (note that this step costs an exponential). Finally, use the
fact that NPTs are closed under projection (with no blowup) to get an NPT for the language
projX(L(N)) of trees that encode assignments χ satisfying ϕ.

For completeness we recall this last step. If L is a language of Σ-labeled trees with
Σ , A → B, and X ⊂ A, then the X-projection of L, written projX(L), is the language
of Σ′-labeled trees with Σ′ , A \ X → B such that T , 〈T, v〉 ∈ projX(L) if and only if
there exists an X-labeled tree 〈T,w〉 such that the language L contains the tree 〈T, u〉 where
u : T → (A → B) maps t ∈ T to v(t) ∪ w(t). Now, if N is an NPT with input alphabet
Σ , A→ B, and if X ⊂ A, then there is an NPT with input alphabet Σ′ , A \X→ B with
language projX(L(N)).

The proof that the construction is correct is immediate. �

4.3.2 Decidability and Complexity of Model Checking

We can immediately conclude that model-checking graded strategy logic is decidable.

Theorem 4.3.3 The model-checking problem for GRADEDSL is decidable. Moreover, the
complexity is not bounded by any fixed tower of exponentials.

Proof. For decidability, use Lemma 4.3.1 to transform the arena and ϕ into an APT and test
its emptiness. The lower bound already holds for SL [MMPV14]. �

In the rest of this section we supply a finer analysis of the complexity of various fragments
of graded strategy logic. To do this, we first analyse the number of states of the APT

93

4.3. Model-checking GRADEDSL

constructed in Lemma 4.3.1.
All the cases in the induction incur at most a linear blowup except for the quantification

case. For the quantification case, in case g ∈ {ℵ0,ℵ1, 2
ℵ0} the blowup is non-elementary.

In case g ∈ N then the translation incurs an exponential blowup. Indeed, the number of
states of the APT BM,X is g × n times the number of states of the APT for ψ, and since CX
consists of the conjunction of g(g − 1) automata (one for each pair of tuples), and each such
automaton has O(n) many states, the number of states of CX is O(ng2). Thus, the number of
states of the APT DM,X is polynomial in the number of states of the APT for ψ. Finally, the
translation from an APT to an NPT results in an exponentially larger automaton [KVW00].

In case all grades are from N and the formulas are written using the universal-strategy
quantifier shorthand, we can easily modify the construction to handle quantifier-blocks in
one shot as if they were a single quantifier, i.e., with a single exponential blowup. For
instance, suppose φ = 〈〈y1, . . . , ym〉〉≥h〈〈x1, . . . , xn〉〉≥gψ (additional quantifiers are treated
similarly). As in the proof, let M be the APT for ψ and take DM,X . Now, instead of
immediately removing alternation and projecting, build DM′,Y where M′ is DM,X and
Y , {yji : i ≤ m, j ≤ h}. Finally, remove alternation from DM′,Y to get an NPT

N ′, and then apply the (X ∪ Y)-projection to the language of N ′ to get the desired APT

for φ. Note that the size of DM′,Y is exponential in the number of states of M since
the costly step of removing alternation is performed only once. Similarly, to deal with a
block of universal strategy quantifiers simply use dualisation. For instance, to deal with
φ = [[y1, . . . , ym]]<h[[x1, . . . , xn]]<gψ apply the previous procedure to the equivalent formula
¬〈〈y1, . . . , ym〉〉≥h〈〈x1, . . . , xn〉〉≥g¬ψ (recall that negating an APT is done by dualisation,
which incurs no blowup).

Recall that GRADEDNSL denotes the fragment of GRADEDSL in which all grades are
restricted to N.

Theorem 4.3.4

1. For every k ≥ 1, the model-checking problem for GRADEDNSL formulas of quantifier-
block rank at most k is in (k + 1)EXPTIME.

2. For every k ≥ 1, the model-checking problem for GRADEDNSL formulas of the form
ϕ = ℘ψ, where ℘ is a quantifier-block of ϕ and ψ is of quantifier-block rank at most
k − 1, is in kEXPTIME.

3. The model-checking problem for GRADEDNSL formulas of the form 〈〈x1, . . . , xn〉〉≥gψ
or [[x1, . . . , xn]]<gψ is in EXPTIME w.r.t. the parameter g (written in unary).

Proof. Before proving the upper bounds, recall that the complexity of checking emptiness
(resp. universality) of an APT is in EXPTIME in the number of states [KVW00].

94

4.3. Model-checking GRADEDSL

For item 1 proceed as follows. As discussed after Lemma 4.3.1, for the case that all grades
are in N, the number of states of the APT for ϕ is a tower of exponentials whose height is the
quantifier-block rank of ϕ. This gives the (k + 1)EXPTIME bound.

For item 2 suppose that ϕ = ℘ψ where ℘ consists of, say, n existential quantifiers (resp.
universal quantifiers). The quantifier-block rank of ψ is k− 1. Moreover, the APT Dψ, whose
number of states is non-elementary in k − 1, has the property that it is non-empty (resp.
universal) if and only if the arena satisfies ℘ψ. Conclude that model checking ℘ψ can be
solved in kEXPTIME.

For item 3 first observe that the size of the APT constructed in Lemma 4.3.1 grows
quadratically in g. The statement follows by recalling that the complexity of model-checking
formulas of this form is exponential in the number of states of the APT. �

Theorem 4.3.5 For every k ≥ 1, the model-checking problem for GRADEDNSL[NG] formulas
of alternation number at most k is in (k + 1)EXPTIME and kEXPSPACE-hard.

Proof. The lower bound already holds for SL[NG] [MMPV14]. For the upper bound, as for
SL[NG], note that principal formulas are “state formulas”, i.e., their truth value only depends
on the state in which they are interpreted (this is because they have no free placeholders).
Thus, one can apply the following marking algorithm to a formula Φ. For every principal
subformula ϕ = ℘ψ of Φ for which ψ is quantifier-free, and for every state s of A, introduce
a new atomic proposition pϕ. Label s by pϕ (i.e., extend the labelling function at s to include
pϕ) iff A, s |= ϕ. Replace the subformula ϕ of Φ by the atom pϕ, and repeat this process.
Observe that the complexity of marking a state is in (k + 1)EXPTIME where k = alt(ϕ)

(indeed, alt(ϕ) = qbr(ϕ) since ϕ = ℘ψ and ψ is quantifier-free, and thus one can apply
Theorem 4.3.4 item 1). Also, the cost of the whole marking algorithm is the sum of the
costs of all the marking rounds, and the number of rounds is at most the size of the formula.
After the marking algorithm has completed, one is left with a Boolean combination of
atomic propositions which is trivial to evaluate at each state. Thus the total time is at most
(k + 1)EXPTIME. �

Theorem 4.3.6 The model-checking problem for GRADEDNSL[1G] is 2EXPTIME-
COMPLETE.

Proof. The lower-bound already holds for SL[1G] [MMPV14]. The upper-bound follows the
same algorithm as for SL[1G] [MMPV14] but uses the (no more complex) construction from
Lemma 4.3.1 for the strategic quantifier 〈〈x1, . . . , xn〉〉≥g instead of 〈〈x〉〉. �

Finally, since model checking ATL? is 2EXPTIME-HARD, and ATL? is a syntactic
fragment of GRADEDNATL?, which itself is a syntactic fragment of GRADEDNSL[1G], we
have that:

95

4.4. Analysing Games using GRADEDSL

Theorem 4.3.7 The model-checking problem for GRADEDNATL? is 2EXPTIME-
COMPLETE.

4.4 Analysing Games using GRADEDSL

In this section we describe how to use the models and formulas of GRADEDSL to reason
about solution concepts from game theory. In particular, we show how to use arenas to model
games of finite or infinite duration, and GRADEDSL to express the uniqueness of winning
strategies, Nash equilibria, subgame-perfect equilibria, and Pareto-efficient profiles. We prove
that deciding the uniqueness for all these solution concepts is not more expensive than merely
deciding their existence, i.e., 2EXPTIME. We note that while the problem of deciding the
existence of, e.g., NE, is 2EXPTIME-hard [GHW17], it is not known whether deciding the
uniqueness of NE is as hard. This intriguing question remains open, and we reserve it for
future work.

4.4.1 Strategic Form and Infinitely Repeated Games

The Strategic Form is the most familiar representation of strategic interactions in Game
Theory. A game written in this way amounts to a representation of every player’s preference
for every state of the world, in the special case where states of the world depend only on the
players’ combined actions.

Definition 4.4.1 A strategic form game is a tuple (N,A, (�i)i∈N), where:

• N is a finite set of n players, indexed by i;

• A = A1 × . . . × An, where Ai is a finite set of actions available to player i. Each
vector a = (a1, . . . , an) ∈ A is called an action profile;

• each �i is a total pre-order (i.e., reflexive and transitive) on A.

Note that a common way to give the preference relation is by using a payoff function
pay : A→ R, which assigns a real number to every element in A. In this case, the preference
relation �i is defined by having a �i a′ iff pay(a) ≤ pay(a′).

A classic way to model players that repeatedly interact with each other in a game
(N,A, (�i)i∈N) is by infinitely repeated games, see e.g., [OR94]. We will illustrate by
formalising an iterated prisoner’s dilemma (Section 4.4.3).

4.4.2 Quasi-Quantitative Games and Objective-LTL Games

As expected, we can also specify games by arenas and a payoff function on plays. In this sec-
tion we define quasi-quantitative games, a generalisation of objective-LTL games [KPV14].

96

4.4. Analysing Games using GRADEDSL

Figure 4.1: Prisoner’s Dilemma in Strategic Form. Each row corresponds to a possible
action for player 1, each column corresponds to a possible action for player 2, and each cell
corresponds to one possible outcome. Payoffs of the players for an outcome are written in the
corresponding cell, with the payoff of player 1 listed first.

∅

T1S2 P1P2S1T2R1R2

CC CD DC DD

∗∗ ∗∗ ∗∗ ∗∗

Figure 4.2: Arena of the Prisoner’s dilemma.

LetA be an arena with n agents. Letm ∈ N, for each agent αi ∈ Ag, a quasi-quantitative
objective is a tuple Si , 〈fi, L1

i , . . . , L
m
i 〉, where fi : {0, 1}m → Z, and each Lji is a set of

sequences of sets of atomic propositions. If π is an infinite path, then agent αi receives payoff
fi(b

π
i) ∈ N where the j’th bit of bπi is 1 if and only if ap(π) ∈ Lji . We assume agents are trying

to maximise their payoffs. The tuple G = 〈A, S1, . . . , Sn〉 is called a quasi-quantitative game.
In case each fi : {0, 1}m → {−1, 1} we say that the game is win/lose. If

∑
1≤i≤n fi(b

π
i) = 0

for all π, then G is zero-sum, otherwise it is a non zero-sum.

In case each Lji is the set of models of an LTL formula ϕji over AP, we call G an objective-
LTL game. We introduce the following useful shorthand. For αi ∈ Ag and a ∈ {0, 1}m,
define ηai for the LTL formula

∧
j≤m ψa,j where ψa,j = ϕji if aj = 1 and ψa,j = ¬ϕji if

aj = 0.

4.4.3 Example: The Prisoner’s Dilemma (PD)

A natural way to draw games in strategic form is via an n-dimensional matrix. Figure 4.1
contains the matrix of the classic Prisoner’s Dilemma. The two actions are C (co-operate)
and D (defect). The payoffs are the prison sentences (in years) that the prisoners get for each
pair of actions that they choose.8 The dilemma faced by the prisoners is that, whatever the

8The story behind the dilemma is this: Two people have been arrested for robbing a bank and placed in
separate isolation cells. Each has two possible choices, remaining silent (action C) or confessing (action D). If a
robber confesses and the other remains silent, the former is released and the latter stays in prison for a long time.

97

4.4. Analysing Games using GRADEDSL

choice of the other prisoner, each is better off playing action D. But the result obtained when
both play action D is worse than if they both play action C. Observe that the actual numbers
are not important for there to be a dilemma. Rather, it is enough that the induced preference
relation is Ti > Ri > Pi > Si, where Ri represents the reward that player i receives if both
cooperate; Pi is the punishment that player i receives if both defect; Ti is the temptation that
player i receives as a sole defector, and Si is the sucker payoff that player i receives as a sole
cooperator.

We can model the Prisoner’s Dilemma with the arena in Figure 4.2. Agent αi (representing
player i) has objective Si , 〈fi, ϕ1

i , ϕ
2
i , ϕ

3
i , ϕ

4
i 〉 where ϕ1

i , XSi, ϕ2
i , XPi, ϕ3

i , XRi,
and ϕ4

i , XTi and fi returns the value of its input vector interpreted as a binary number, e.g.,
fi(0100) = 4 that represents the payoff in which ϕ3

i is true. In words, we have two agents α1

and α2. Each agent has two actions, C and D. For each possible pair of moves, the game
goes in a state whose atomic propositions represent the preferences.

It is well known that in the Prisoner’s Dilemma the only Nash equilibrium is for both
players to defect. The reason is that each prisoner must hedge against the possibility of the
other one defecting. However, it is clear that if they would have both cooperated, they would
be better off. If there was a way for one prisoner to later punish a defection of the other
prisoner, it may not have to hedge, and would be able to cooperate instead. Such behaviours
emerge as a rational choice, for example, when one considers the infinitely repeated prisoner’s
dilemma, in which the prisoners repeat the basic strategic form game infinitely often.9 Indeed,
it is well known that for this iterated game (for example, with a payoff that is the mean-payoff
of the prison sentences [Bin92]), a new Nash equilibrium emerges, in which both players
use the so called Grim strategy, in which a prisoner cooperates as long as the other prisoner
cooperates, but switches to always defect the first time the other prisoner defects. Observe that
the resulting infinite play of this Nash equilibrium has both players cooperating all the time.
The core reason that the pair of grim strategies is a Nash equilibrium for the mean-payoff
version of the iterated prisoner’s dilemma is that this payoff ignores the price of being a
‘sucker’ on any finite prefix of the play, i.e., that the mean-payoff of a play is independent of
any finite prefix of that play — other properties of the mean are not needed, and constitute
unimportant noise. Indeed, the same Nash equilibria would emerge if, for example, one takes
instead of the mean-payoff the maximal payoff that repeats infinitely often.

More generally, given a game in strategic form, and a preference relation �i over its set
of possible outcomes A, one can define a new preference relation �∞i over Aω by assigning a
payoff to every subset of A and assigning to each play the set inf(π) ⊆ A of outcomes in A

If both confess they are both convicted, but will get early parole. If both remain silent, they get a lighter sentence
(e.g., on firearms possession charges).

9Alternatively, one can introduce the threat of a punishment for defecting by considering a probabilistic version
in which it is unclear to the prisoners how many repetitions will be used. Note, however, that a fixed number of
repetitions turns out to be essentially the same as playing only once [Bin92].

98

4.4. Analysing Games using GRADEDSL

∅

T1S2 P1P2S1T2R1R2

CC

CD DC

DD

∗∗
∗∗ ∗∗

∗∗

Figure 4.3: Arena of the Iterated Prisoner’s dilemma.

that appear infinitely often in π. Formally, let Fi : 2A → Z be a function mapping subsets
of A to integers, and define π �∞i π′ iff Fi(inf(π)) ≤ Fi(inf(π′)).10 For example, for the
iterated prisoners’ dilemma, setting Fi(X) to be the number of elements y in A such that
y ≺i x where x is a �i-maximal element of X , results in a game with the same set of Nash
equilibria as in the mean payoff version.

We formalise the infinitely repeated prisoner’s dilemma as an objective-LTL game.
The arena is in Figure 4.3. The preferences, for agent αi, are defined by the objective
Si , 〈fi, ϕ1

i , ϕ
2
i , ϕ

3
i , ϕ

4
i 〉 where ϕ1

i , GFSi, ϕ2
i , GFPi, ϕ3

i , GFRi, and ϕ4
i , GFTi,

and fi as before.

4.4.4 Illustrating GRADEDSL: uniqueness of solutions

We illustrate how to express with GRADEDSL some important solution concepts in Game
Theory. We start with the concept of winning strategy that is useful in zero-sum games,
and then we analyse the well known solution concepts, such as Nash and subgame-perfect
equilibria, that are used in non zero-sum games. We use ordinary SL quantifiers (i.e.,
〈〈x〉〉, [[x]]) since, as observed in Section 4.2, these are expressible in GRADEDSL.

4.4.4.1 Winning strategies

In two-agent win-lose zero-sum games the main solution concept is the winning strategy.
That is, if G is such an objective-LTL game, then a strategy for agent α1 is winning if and
only if for all strategies of agent α2, the resulting induced play has payoff 1 for agent α1. This
can be expressed in SL as follows:

φWS(x) , [[y]](α1, x)(α2, y)
∨

f1(a)=1

ηa1

where ηa1 is the LTL formula defined in Section 4.4.2. Thus, the following formula expresses
that there is a unique winning strategy for agent α1:

〈〈x〉〉≥1φWS(x) ∧ ¬〈〈x〉〉≥2φWS(x) (4.1)

10This is reminiscent of the Muller acceptance condition in automata theory.

99

4.4. Analysing Games using GRADEDSL

Observe that this is a formula of GRADEDNSL[NG] of alternation number 1. Thus, by
Theorem 4.3.4 we get:

Theorem 4.4.1 Deciding if a given agent in a two-agent zero-sum objective-LTL game has
a unique winning strategy can be solved in 2EXPTIME.

We illustrate with an example. In [MMS15] the authors describe a two-agent game named
“Cop and the Robber”, played in a maze, in which the objective of the Robber is to reach an
exit (and thus the objective of the Cop is to ensure the Robber never reaches the exit). The
authors describe two closely related mazes in which the Robber has, respectively, exactly
one and exactly two winning strategies. Both these properties can easily be expressed by
GRADEDSL. For instance, the Robber has a single LTL objective F exit, and the following
formula of GRADEDNSL expresses that the Robber has exactly one winning strategy:

〈〈x〉〉≥1[[y]](Robber, x)(Cop, y)F exit ∧ ¬〈〈x〉〉≥2[[y]](Robber, x)(Cop, y)F exit.

4.4.4.2 Nash Equilibria

The central solution concept in non zero-sum games is the Nash Equilibrium. A tuple
of strategies, one for each agent, is called a strategy profile. A strategy profile is a Nash
equilibrium (NE) if no agent can increase his payoff by unilaterally choosing a different
strategy. A game may have zero, one, or many NE.

Consider the case that each agent αi has a general objective tuple Si , 〈fi, ϕ1
i , . . . , ϕ

m
i 〉.

Recall the definition of the LTL formulas ηai from Section 4.4.2.
For x , (x . . . xn) and y , (y1 . . . yn), the following formula says that if all agents

follow x, then no agent i gets a better payoff by deviating and following yi:

φDEV (x, y) ,
n∧
i=1

∧
a∈{0,1}m

([(x/yi)η
a
i)→

∨
fi(a′)≥fi(a)

[(x)ηa
′
i

where [(x) = (α1, x) . . . (αn, xn), and

[(x/yi) = (α1, x) . . . (αi−1, xi−)(αi, yi)(αi+1, xi+) . . . (αn, xn).

Then, the following SL formula says that x is a NE

φNE(x) , [[y1]] . . . [[yn]]φDEV (x, y),

and the following GRADEDNSL[NG] formula expresses that there is a unique NE:

〈〈x, . . . , xn〉〉≥1[[y1]]. . .[[yn]]φDEV (x, y) ∧ ¬〈〈x, . . . , xn〉〉≥2[[y1]] . . . [[yn]]φDEV (x, y)

Thus, by Theorem 4.3.4 we get:

100

4.4. Analysing Games using GRADEDSL

Theorem 4.4.2 Deciding if an objective-LTL game has a unique NE can be solved in
2EXPTIME.

Rational synthesis can be formalised as the problem of deciding if a given game has a
NE such that the resulting play satisfies a given LTL formula Ψ. In our setting, we get the
following result by replacing φDEV by Ψ ∧ φDEV in the previous formula:

Theorem 4.4.3 Deciding if an objective-LTL game has a unique NE satisfying an LTL
formula Ψ can be solved in 2EXPTIME.

4.4.4.3 Pareto efficiency

A strategy profile is said to be Pareto efficient (PE) if there is no other strategy profile
that makes some agent better off without making another agent worse off. The formula
φPE(x) , [[x′1]] . . . [[x′n]]ψ(x, x′) expresses that x is PE where ψ(x, x′) is

∧
i≤n

∧
(a,a′)∈Xi

(
([(x)ηai ∧ [(x′)ηa

′
i)→

∨
j 6=i

∨
(c,c′)∈Yi

([(x)ηcj ∧ [(x′)ηc
′
j)

)
,

where (a, a′) ∈ Xi iff fi(a
′) > fi(a), where (c, c′) ∈ Yi iff fj(c

′) < fj(c), [(x) ,

(α1, x1) . . . (αn, xn), and [(x′) , (α1, x
′
1) . . . (αn, x

′
n). Using graded modalities, we can

thus express that there is a unique PE using the following GRADEDNSL[NG] formula of
alternation number 1:

〈〈x, . . . , xn〉〉≥1φPE(x) ∧ ¬〈〈x, . . . , xn〉〉≥2φPE(x).

Thus, by using Theorem 4.3.4 we get:

Theorem 4.4.4 Deciding if an objective-LTL game has a unique Pareto efficient profile can
be solved in 2EXPTIME.

4.4.4.4 Subgame-perfect equilibria

Finally, we end with a discussion of the problem of deciding if a game has a unique subgame-
perfect equilibrium, and give an upper bound. It has been argued (in [Umm06, KPV14]) that
NE may be implausible when used for sequential games (of which infinitely repeating games
are central examples), and that a more robust notion is subgame-perfect equilibrium [Sel65].

Informally, a strategy profile is a subgame-perfect equilibrium if it is a NE in every
reachable subgame. Here is the mathematical definition instantiated for quasi-quantitative
games (following the definition in [OR94] for extensive-form games). Given a history
h ∈ Hst(sI) ending in state s, say h = us, and a strategy σ ∈ Str(sI), the h-translation of σ
is the strategy σ|h ∈ Str(s) that maps h′ ∈ Hst(s) to σ(u · h′). Given a quasi-quantitative

101

4.5. Conclusion

game G = 〈A, S1, . . . , Sn〉, the profile σ1, . . . , σn is a subgame-perfect equilibrium (SPE) iff
for all histories h ∈ Hst(sI), the profile σ1|h, . . . , σn|h is a NE in G = 〈A|h, S1|h, . . . , Sn|h〉
where A|h is the same arena as A but with s as the initial state, and if S = 〈fi, L1

i , . . . , L
m
i 〉

then S|h = 〈fi, H1
i , . . . ,H

m
i 〉 where π ∈ Hj

i iff u ·π ∈ Lji . The point is that the payoff in G|h
applies to the whole path (i.e., starting from sI), even though the strategies only apply after h.

Using the notation in the previous paragraph, suppose each Lji is prefix-independent, i.e.,
π ∈ Lji iff π≥n ∈ Lji for all n ≥ 1 (here π≥n is the suffix of π starting at position n). In this
case, Hj

i = Lji . Observe that the assumption that the objectives are prefix-independent is not
too restrictive. Indeed, as discussed in Section 4.4.3, in many infinitely repeated games the
outcome ignores all finite prefixes of the play.

Thus, suppose G is an objective-LTL game in which the set of models of each ϕji is
prefix-independent. The following formula of SL expresses that x is an SPE:11

φS(x) , [[z]] . . . [[zn]][[y]] . . . [[yn]](α1, z) . . . (αn, zn)GφDEV (x, y).

Indeed, since [[·]] commutes with G, the formula φS(x) is equivalent to

[[z]] . . . [[zn]](α1, z) . . . (αn, zn)GφNE(x),

which is true in A, χ, sI iff for all histories h starting in sI and ending, say, in state s, we
have that A, χ′, s |= φNE where the strategy χ′(x) is the h-translation of the strategy χ(x),
i.e., the profile χ′(x1), . . . , χ′(xn) is a NE in G|h.

Using graded modalities, we can thus express there is a unique SPE (assuming each ϕji is
prefix-independent) as the following GRADEDNSL[NG] formula of alternation number 1:

〈〈x, . . . , xn〉〉≥1φS(x) ∧ ¬〈〈x, . . . , xn〉〉≥2φS(x).

Thus, by using Theorem 4.3.4 we get:

Theorem 4.4.5 Deciding if an objective-LTL game with prefix-independent objectives ϕji
has a unique SPE can be solved in 2EXPTIME.

4.5 Conclusion

The Nash equilibrium is the foundational solution concept in game theory. The last twenty
years have witnessed the introduction of many logical formalisms for modeling and reasoning
about solution concepts, and NE in particular [MMV10a, MMPV14, CHP10, BLLM09,
LLM10, Bel15, GHW17]. These formalisms are useful for addressing qualitative questions
such as “does the game admit a Nash equilibrium?”. Among others, Strategy Logic (SL)

11Previous formalisations of SPE overlook the need for a condition like prefix-independence [Umm06,
MMPV14, KPV14].

102

4.5. Conclusion

has come to the fore as a general formalism that can express and solve this question, for LTL
objectives, in 2EXPTIME. Contrast this with the fact that this question is 2EXPTIME-complete
even for two player zero-sum LTL games [PR89].

One of the most important questions about NE in computational game theory is “does the
game admit more than one NE?” [PC79, CHS99] This issue has been deeply investigated in
game theory and is shown to be very challenging [SLCB13, ZG11, Pav12, AKH02, ORS93,
BBV86, Fra92, GK93]. Prior to this work, no logic-based technique, as far as we know,
solved the corresponding decision problem, i.e., whether or not a given game has a unique
NE.12

In this chapter we introduced GRADEDSL to address and solve the unique NE problem.
We have demonstrated that GRADEDSL is elegant, simple, and very powerful, and can solve
the unique NE problem for LTL objectives in 2EXPTIME, and thus at the same complexity
that is required to merely decide if a NE exists. We also illustrated that one can express
the uniqueness of other solution concepts, including winning strategies, subgame-perfect
equilibria, and Pareto-efficient profiles, all in 2EXPTIME. We remark that the exact complexity
of the existence of a unique NE, and of counting the number of NE, has been studied for
other representations of games, notably games in strategic form with rational co-efficients
and considering mixed strategies [GZ89, CS08]. The exact complexity of the existence of
NE in our representation is currently unknown. Finally, our work gives the first algorithmic
solution to the model-checking problem of a graded variant of ATL?, and proves it to be
2EXPTIME-COMPLETE.

In the multi-agent setting, reasoning about epistemic alternatives plays a key role. Thus,
an important extension would be to combine the knowledge operators in SLK [ČLMM14]
with the graded quantifiers we introduced for GRADEDSL. Since strategic reasoning under
imperfect information has an undecidable model-checking problem [DT11], one may restrict
to memoryless strategies as was done for SLK. More involved, would be to add grades to the
knowledge operators, thus being able to express “there exists at least g equivalent worlds”
[vdHM92].

Finally, another direction is to implement GRADEDSL and its model-checking procedure
in a formal verification tool. A reasonable approach would be, for example, to extend the tool
SLK-MCMAS [ČLMM14, ČLM15].

12In the related work section we discussed the logic GSL [MMMS15, MMMS17] that, although motivated by
the need to address the unique NE problem, only supplies a model-checking algorithm for a very small fragment
of GSL that cannot express LTL goals and, it is assumed, is not able to express the existence of NE.

103

Part III

Strategies and their complexity

CHAPTER 5

Reasoning about Natural Strategic
Ability

Contents
5.1 Introduction . 107

5.2 A Logic for Natural Ability . 108

5.2.1 Syntax . 109

5.2.2 Concurrent Game Structures . 109

5.2.3 Strategies and Their Complexity 110

5.2.4 Semantics of NatATL . 111

5.3 Model Checking for Natural Memoryless Strategies 112

5.3.1 Model Checking for Small Strategies 112

5.3.2 Model Checking: General Case 112

5.4 A Logic for Natural Strategic Ability of Agents with Memory 118

5.4.1 Natural Recall . 118

5.4.2 NatATL for Strategies with Recall 119

5.4.3 Relation to Natural Memoryless Strategies 119

5.5 Model Checking for Natural Strategies with Recall 121

5.5.1 Model Checking for Small Strategies 122

5.5.2 Model Checking: General Case 123

5.6 Summary and Future Work . 124

5.1. Introduction

5.1 Introduction

Logics for strategic reasoning provide powerful tools to reason about multi-agent sys-
tems [AHK02, vdHW02, Sch04, JvdH04, CHP10, MMPV14]. The logics allow to express
properties of agents’ behavior and its dynamics, driven by their individual and collective
goals. An important factor here is interaction between the agents, which can be cooperative
as well as adversarial. Specifications in agent logics can be then used as input to model check-
ing [CE81, QS82], which makes it possible to verify the correct behavior of a multi-agent
system using recently developed practical automatic tools [LQR09, ČLMM14, ČLM15].

A fundamental contribution in this field is Alternating-Time Temporal Logic (ATL∗)
and its fragment ATL [AHK02]. ATL∗ formulas are usually interpreted over concurrent
game structures (CGS) which are labeled state-transition systems that model synchronous
interaction among agents. For example, given a CGS modeling a system with k agents and
a shared resource, the ATL formula 〈〈A〉〉Fgrant expresses the fact that the set of agents
A can ensure that, regardless of the actions of the other agents, an access to the resource
will be eventually granted. The specification holds if agents in A have a collective strategy
whose every execution path satisfies Fgrant. As in game theory, strategies are understood as
conditional plans, and play a central role in reasoning about purposeful agents.

Formally, strategies in ATL∗ (as well as in other logics of strategic reasoning, such as
Strategy Logic [CHP10, MMPV14]) are defined as functions from sequences of system states
(i.e., possible histories of the game) to actions. A simpler notion of positional a.k.a. memory-
less strategies is formally defined by functions from states to actions. That makes sense from
a mathematical point of view, and also in case we think of strategic ability of a machine (robot,
computer program). We claim, however, that the approach is not very realistic for reasoning
about human behavior. This is because humans are very bad at handling combinatorially
complex objects. A human strategy should be relatively simple and “intuitive” or “natural” in
order for the person to understand it, memorize it, and execute it. This applies even more if
the human agent has to come up with the strategy on its own.

In this work, we adopt the view of bounded rationality, and look only at strategies whose
complexity does not exceed a given bound. In this way we put a limit on the resources needed
to represent and use the strategy. More precisely, we introduce NatATL∗, a logic that extends
ATL∗ by replacing the strategic operator 〈〈A〉〉ϕ with a bounded version 〈〈A〉〉≤kϕ, where
k ∈ N denotes the complexity bound. To measure the complexity of strategies, we assume
that they are represented by lists of guarded actions. For memoryless strategies, guards
are boolean propositional formulas. For strategies with recall, guards are given as regular
expressions over boolean propositional formulas. As technical results, we study the problem
of model checking NatATL for both memoryless and memoryfull strategies. The complexity
ranges from ∆P

2 to ∆P
3 in the general case, and from P to ∆P

2 for small complexity bounds.

107

5.2. A Logic for Natural Ability

Related Works. ATL∗ has been the subject of intensive research within multi-agent systems
and AI. Works that are closest in spirit to our proposal concern modeling, specification, and
reasoning about strategies of bounded agents. The papers that studied explicit representation
of strategies are also relevant.

In the former group, [AW09] investigates strategic properties of agents with bounded
memory, while [ALNR09, ALNR10, BF10a, BF10b] extend temporal and strategic logics
to handle agents with bounded resources. Issues related to bounded rationality are also
investigated in [BCS08, HO09, GSW14].

The latter category is much richer and includes extensions of ATL∗ with explicit reason-
ing about actions and strategies [vdHJW05, Ågo06, WvdHW07, HLMW14], and logics that
combine features of temporal and dynamic logic [HK82, NJ09]. A variant of STIT logic
that enables reasoning about strategies and their performance in the object language [DB16].
Also, plans in agent-oriented programming are in fact rule-based descriptions of strate-
gies. In particular, reasoning about agent programs using strategic logics was investigated
in [BFVW06, ADLM07, ALDM08, DJ10, YS12].

None of those works considers directly the subject of this work, i.e., logic-based reasoning
about agents’ abilities in scenarios where natural representation and reasonable complexity of
strategies is essential.

5.2 A Logic for Natural Ability

In this section we introduce all ingredients to define NatATL, a logic for reasoning about
natural strategic ability.

Example 5.2.1 (Motivating examples) The main application domain that we have in mind
is reasoning about usability. Consider, e.g., a ticket vending machine at a railway station.
Intuitively, it is not enough that a customer has a strategy to successfully buy the right ticket.
If the strategy is too complex, most people will be unable to follow it, and the machine will be
practically useless.

Another application area is gaming, where one could define the game level by the
complexity of the smallest winning strategy.

In both cases, we need to understand what it means for a strategy to be “simple” or
“complex”, and to relate our definition of strategic ability to this complexity measure.

We begin by presenting the syntax of NatATL. Then, we recall how to model multi-agent
systems by means of concurrent game structures. Further, we show how to define natural
memoryless strategies based on guarded actions. Finally, we propose the formal semantics of
NatATL formulas.

108

5.2. A Logic for Natural Ability

5.2.1 Syntax

Alternating-time temporal logic (ATL, for short) [AHK02] generalizes branching-time tem-
poral logic CTL∗ by replacing path quantifiers E,A with strategic modality 〈〈A〉〉. Informally,
〈〈A〉〉γ reads ”there exists a strategy for the coalition A such that, no matter how the other
players will act, the formula γ is satisfied. Natural ATL (NatATL, for short) is obtained by
replacing in ATL the modality 〈〈A〉〉 with the bounded strategic modality 〈〈A〉〉≤k. Intuitively,
〈〈A〉〉≤kγ reads as coalition A has a collective strategy of size less or equal than k to enforce
the property γ. As for ATL, the formulas of NatATL make use of classical temporal operators:
“X ” (“in the next state”), “G” (“always from now on”), “F” (“now or sometime in the future”),
U (strong “until”), and W (weak “until”).

Formally, let Agt be a finite set of agents and Prop a countable set of atomic propositions.
The language of NatATL is defined as follows:

ϕ ::= p |¬ϕ |ϕ ∧ ϕ | 〈〈A〉〉≤kX ϕ | 〈〈A〉〉≤kϕU ϕ | 〈〈A〉〉≤kϕW ϕ.

where A ⊆ Agt, k ∈ N, and p ∈ Prop. Derived boolean connectives and constants
(∨, true, false) are defined as usual. “Sometime” and “always” can be defined as Fγ ≡
trueU γ and Gγ ≡ γW false.

Additionally, 1NatATL will denote the fragment of NatATL that admits only formulas
consisting of a single strategic modality, followed by a temporal formula over boolean
connectives and atomic propositions.

5.2.2 Concurrent Game Structures

The semantics of NatATL is defined over concurrent game structures[AHK02].

Definition 5.2.1 (CGS) A concurrent game structure (CGS) is a tuple M =

〈Agt, St, Act, d, t, Prop, V 〉 which includes nonempty finite sets of: agents Agt =

{a1, . . . , a|Agt| :}, states St, actions Act, atomic propositions Prop, and a propositional
valuation V : St→ 2Prop. The function d : Agt× St→ 2Act defines availability of actions.
The (deterministic) transition function t assigns a successor state q′ = t(q, α1, . . . , α|Agt|) to
each state q ∈ St and any tuple of actions αi ∈ d(ai, q) that can be executed by Agt in q.

In the rest of the paper, we will write da(q) instead of d(a, q), and we will denote the set
of collective choice of group A at state q by dA(q) =

∏
ai∈A dai(q).

A pointed CGS is a pair (M, q0) consisting of a concurrent game structure M and an
initial state q0 in M .

A path λ = q0q1q2 . . . in a CGS is an infinite sequence of states such that there is a
transition between each qi, qi+1. λ[i] denotes the ith position on λ, λ[i, j] the part of λ
between positions i and j, and λ[i,∞] the suffix of λ starting with i. We denote with Λ the

109

5.2. A Logic for Natural Ability

set of all paths. Similarly, a history h = q0q1q2 . . . qn is a finite sequence of states that can
be effected by subsequent transitions. By last(h) = qn we denote the last element of the
sequence. We denote by H = St+ the set of all the histories in the model.

5.2.3 Strategies and Their Complexity

To properly interpret NatATL formulas, we introduce the concept of natural strategies and
their outcomes over a CGS. Following Schobbens [Sch04], we distinguish between strategies
with and without the recall of the hitherto history of the game. We will use R to refer to the
semantics of strategic ability arising for strategies with recall, and r for strategies without
recall. In this section, we show how natural strategies without recall can be defined. The other
kind of strategies is proposed and studied in Section 5.4.

We start by defining a natural memoryless strategy (or r-strategy) sa for agent a. The
idea is to use a rule-based representation, with a list of condition-action rules. The first
rule whose condition holds in the current state is selected, and the corresponding action is
executed. We formally represent it with lists of guarded actions, i.e., sequences of pairs
(β(2Prop), α) such that β(2Prop) is a boolean combination over possible subsets of Prop
and α is an action in da(q) for every q ∈ St such that q |= β(2Prop), i.e. q satisfies β(2Prop)

w.r.t. the propositional evaluation V . We assume that the last pair on the list is (>, idle),
i.e., the last rule is guarded by a condition that will always be satisfied. The set of all natural
memoryless strategies is denoted by Σr

a. By size(sa), we denote the number of guarded
actions in sa. Moreover, condk(sa) will denote the kth guard (condition) on the list, and
actk(sa) the corresponding action. Finally, match(q, sa) is the smallest n ≤ size(sa) such
that q |= condn(sa) and actn(sa) ∈ da(q). That is, match(q, sa) matches state q with the
first condition in sa that holds in q, and action available in q.

By compl (sa), we denote the complexity of the strategy sa. Intuitively, the complexity of
a strategy is understood as the level of sophistication of its representation. Several natural
metrics can be used to measure the complexity of a strategy, given its representation from
(β(2Prop)×Act)+, e.g.:

Number of used propositions: compl#(sa) = |{p ∈ Prop | p ∈ dom(sa)}|;
Largest condition: complmax(sa) = max{|φ| | (φ, α) ∈ sa};
Total size of the representation: complΣ(sa) =

∑
(φ,α)∈sa |φ|

with |φ| being the number of symbols in φ. From now on, we will focus on the last metric for
complexity of strategies, which takes into account the total size of all the conditions used in
the representation.

Example 5.2.2 Consider the following r-strategy s:

1. (¬ticket ∧ ¬selected, select);

110

5.2. A Logic for Natural Ability

2. (¬ticket ∧ selected, pay);

3. (>, idle).

If we look at the number of used propositions, we have that compl#(s) =

|{ticket, selected}| = 2. If we consider the largest condition instead, we have complmax(s) =

5. Finally, if we use the total size of the representation, we get complΣ(s) = 10.1

A collective natural strategy for agents A = {a1, . . . , a|A| :} is a tuple of individual
natural strategies sA = (sa1 , . . . , sa|A|). The set of such strategies is denoted by Σr

A. The
“outcome” function out(q, sA) returns the set of all paths that occur when agents A execute
strategy sA from state q onward. Formally, given a state q ∈ St, a subset of agents A and a
collective memoryless strategy sA, we define:

out(q, sA) = {λ ∈ Λ | (λ[0] = q) ∧ ∀i≥0∃α1,...,α|Agt| .

(a ∈ A⇒ αa = actmatch(λ[i],sa)(sa)) ∧

(a /∈ A⇒ αa ∈ da(λ[i])) ∧ (λ[i+ 1] = t(λ[i], α1,..., α|Agt|))}.

5.2.4 Semantics of NatATL

Given a CGSM , a state q ∈ St, a path λ ∈ Λ, and k ∈ N, the semantics of NatATL is defined
as follows:

M, q |=r p iff p ∈ V (q), for p ∈ Prop;

M, q |=r ¬ϕ iff M, q 6|=r ϕ;

M, q |=r ϕ1 ∧ ϕ2 iff M, q |=r ϕ1 and M, q |=r ϕ2;

M, q |=r 〈〈A〉〉≤kX ϕ iff there is a strategy sA ∈ Σr
A such that compl (sA) ≤ k and, for

each path λ ∈ out(q, sA), we have M,λ[1] |=r ϕ;

M, q |=r 〈〈A〉〉≤kGϕ iff there is a strategy sA ∈ Σr
A such that compl (sA) ≤ k and, for

each path λ ∈ out(q, sA), we have M,λ[i] |=r ϕ for all i ≥ 0;

M, q |=r 〈〈A〉〉≤kϕU ψ iff there is a strategy sA ∈ Σr
A such that compl (sA) ≤ k and, for

each path λ ∈ out(q, sA), we have M,λ[i] |=r ψ for some i ≥ 0 and M,λ[j] |=r ϕ for
all 0 ≤ j < i.

Example 5.2.3 When designing a game, the designer can define the game level by the
complexity of the smallest winning strategy for the player. Using NatATL, we can say that the
level of game G is k iff G |=r 〈〈a〉〉≤kFwin ∧ ¬〈〈a〉〉≤k−1Fwin.

We will refer to the logical system (NatATL, |=r) as NatATLr, and analogously for
1NatATLr .

1We leave it as an exercise to the interested reader to construct an equivalent strategy with complΣ(s) = 8.

111

5.3. Model Checking for Natural Memoryless Strategies

5.3 Model Checking for Natural Memoryless Strategies

In this section we show how to solve the model checking problem for NatATL with r-strategies,
i.e. NatATLr. We start with the simpler case in which the bound of the strategies is given
as a constant and prove that the model checking problem is polynomial in the size of the
game structure. Then, we consider the case in which the bound k is a variable and prove
that the model checking problem becomes ∆P

2 − complete. Regarding this latter case, we
also investigate the setting in which NatATLr formulas have only one strategic operator, i.e.
1NatATLr, and show that the model checking problem turns out to be NP− complete. The
results and the proofs presented in this section have been inspired by [Sch04, JD06].

5.3.1 Model Checking for Small Strategies

We begin by looking at the model checking of NatATLr formulas with constant bounds on
the strategy modalities. Under this restriction, one can show a polynomial reduction to the
model checking problem for CTL formulas. Thus, we obtain the following result.

Theorem 5.3.1 The model checking problem for NatATLr with fixed k is in P.

Proof. First, consider the formula ϕ = 〈〈A〉〉≤kγ, in which A ⊆ Agt and γ is a formula
over boolean connectives and atomic propositions. By assumption, the collective strategy that
we can assign to coalitionA, namely sA, is bounded and precisely it holds that complΣ(sA) ≤
k. Thus, we have O(|Prop|k) possible kinds of guarded actions and so O((|Prop|k)k) =

O(|Prop|k2
) possible lists. Given the collective strategy sA, we can prune the CGS by

removing all edges that disagree with sA. This operation costs, in the worst case, O(|t|),
where t is the transition relation of the inputCGS. So far we have solved the strategic operator
of the input formula ϕ and we are left with a structure S that can be seen as a Kripke structure.
Now, we can reduce our problem to model checking the CTL formula Aγ (“for all paths
γ”) over S by using the standard model checking algorithm for CTL [CE81], well-known to
have complexity O(|t| · |γ|). The total complexity is thus O(|Prop|k2 · (|t|+ (|t| · |γ|))) =

O(|Prop|k2 · |t| · |γ|), and hence polynomial in the size of the model.
To conclude the proof, note that if we have a formula with more strategic operators then

we can use a classic bottom-up procedure, i.e. we start solving the innermost formula having a
strategic operator (as we have done above) and, once this is solved, we update the formula and
the structure and continue with the new innermost formula. The procedure ends on dealing
with the outermost strategic operator of the input formula. �

5.3.2 Model Checking: General Case

We now study the complexity for NatATLr with the bound of the strategic modalities given as
variables. We consider two different cases: formulas with a single strategic operator followed

112

5.3. Model Checking for Natural Memoryless Strategies

by a simple temporal subformula, and formulas with possibly nested strategic operators. For
the former case we show an NP procedure, and by a reduction from SAT that the problem is
NP-complete. For the latter case we show a ∆P

2 procedure and by a reduction from SNSAT
the ∆P

2 -completeness.

Theorem 5.3.2 Model checking 1NatATLr is in NP.

Proof. Consider ϕ = 〈〈A〉〉≤kγ, in which A ⊆ Agt and γ is a formula over boolean
connectives and atomic propositions. By assumption, we can use strategies with no a priori
bounded size. To overcome this, to construct a collective strategy sA we use an oracle that
returns a collective strategy for A. We can now conclude by using the same reasoning done in
the proof of Theorem 5.3.1. In particular, since we use an oracle over a polynomial algorithm
the overall complexity is NP. �

We continue by showing a matching lower bound by means of a reduction from the
well-known SAT problem. We first provide the reduction and then show that it is correct in
Theorem 5.3.3. In SAT, the main ingredients are a CNF formula ϕ = C1 ∧ . . . ∧ Cn and
m propositional variables from a set X = {x1, . . . , xm}. Each clause Ci can be written as
Ci = x

s(i,1)
1 ∨ . . . ∨ xs(i,m)

m , where s(i, j) ∈ {+,−, 0}; x+
j denotes a positive occurrence of

xj in Ci, x−j denotes an occurrence of ¬xj in Ci, and x0
j indicates that xj does not occur in

Ci. The SAT problem asks if ∃X.ϕ, that is, if there is a valuation of x1, . . . , xm such that ϕ
holds. We construct the corresponding CGS Mϕ as follows. There are two players: verifier
v and refuter r. The state space contains an initial state q0, a state for each clause Ci in ϕ, a
state for each literal in Ci and the state q>. The set of Prop is {C1, . . . ,Cn, x1, . . . , xm, win}.
Furthermore, we label each state clause/variable with its proposition and q> with win. The
flow of the game is defined as follows. The refuter decides at the beginning of the game which
clause Ci will have to be satisfied: it is done by proceeding from the initial state q0 to a clause
state qi. At qi, verifier decides (by proceeding to a proposition state qi,j) which of the literals
x
s(i,j)
j from Ci will be attempted. Finally, at qi,j , verifier attempts to prove Ci by declaring

the underlying propositional variable xj true (action>) or false (action⊥). If v succeeds (i.e.,
if it executes > for x+

j , or executes ⊥ for x−j), then the system proceeds to the winning state
q>. Otherwise, the system stays in qi,j . It is important to note that by definitions of Prop and
V , we know that v can use just one action (i.e. truth value) for each variable. This is due to
the fact that we use as strategies the guarded actions that are determined directly from the
atomic proposition instead from states.

More formally, Mϕ =〈Agt, St, Act, d, t, Prop, V 〉, where:

• Agt = {v, r},

• St = {q0} ∪ Stcl ∪ Stprop ∪ {q>}, where Stcl = {q1, . . . , qn}, and Stprop =

{q1,1, . . . , q1,m, . . . , qn,1, . . . , qn,m};

113

5.3. Model Checking for Natural Memoryless Strategies

q0
∅

q1
C1

q2
C2

q1,1
x1

q1,3
x3

q2,2
x2

q2,3
x3

q>
win

(I, C1)

(I, C2)

(x1, I)

(x3, I)

(x2, I)

(x3, I)

(⊥, I)

(>, I)

(⊥, I)
(>, I)

(⊥, I)

(>, I)

(>, I)
(⊥, I)

(I, I)

Figure 5.1: A CGS for checking satisfiability of ϕ = (x1 ∨ x3) ∧ (x2 ∨ ¬x3). Action I
denotes “idle.” For simplicity, we omit the states that have no incoming edges.

• Act = {I, C1, . . . , Cn, x1, . . . , xm,>,⊥},

• d(v, q0) = d(v, q>) = {I}, d(v, qi) = {xj | xj or ¬xj is in Ci}, d(v, qi,j) =

{>,⊥}; d(r, q0) = {C1, . . . , Cn} and d(r, q) = {I} with q ∈ St \ {q0};

• t(q0, I, Ci) = qi, t(qi, xj , I) = qi,j , t(qi,j ,>, I) = q> if s(i, j) = +, and qi,j other-
wise, t(qi,j ,⊥, I) = q⊥ if s(i, j) = −, and qi,j otherwise;

• Prop = {C1 . . .Cn, x1, . . . , xm, win};

• V (q0) = ∅, V (qi) = Ci, V (qi,j) = xj, and V (q>) = win;

where 1 ≤ i ≤ n and 1 ≤ j ≤ m.
As an example, model Mϕ for ϕ = (x1 ∨ x3) ∧ (x2 ∨ ¬x3) is presented in Figure 5.1.

Theorem 5.3.3 SAT (n,m,ϕ) iff Mϕ, q0 |= 〈〈v〉〉≤n+mFwin

Proof. (⇒) Firstly, if there is a valuation υ that makes ϕ true, then for every clause Ci one
can choose a literal out of Ci that is made true by the valuation. Now, we can construct a strat-
egy for v such that: (i) for each clause Ci we define a guarded action (Ci, α), where α is the
action to go at the state literal that satisfy Ci in accordance with υ; and (ii) for each literal xj
we define a guarded action (xj, α), where α is the action to go in q> in accordance with υ.
(⇐) Conversely, if Mϕ, q0 |= 〈〈v〉〉≤n+mFwin, then there is a strategy sv such that q> is
achieved for all paths from out(q0, sv). But then the valuation, which assigns propositions
x1, . . . , xm with the same values as sv, satisfies ϕ. �

By Theorem 5.3.2 and Theorem 5.3.3, the following result holds.

Corollary 5.3.1 Model checking 1NatATLr is NP-complete.

114

5.3. Model Checking for Natural Memoryless Strategies

Now, we show how to solve the model checking problem for any formula in NatATLr.

Theorem 5.3.4 Model checking NatATLr is in ∆P
2 .

Proof. We make use of a bottom-up procedure based on the one introduced in the proof of
Theorem 5.3.1. Precisely, take an arbitrary formula ϕ of NatATLr and consider its inner part
that is of the kind ψ = 〈〈A〉〉≤kγ, with γ being a formula over boolean connectives and atomic
propositions. Now, apply over ψ the procedure used in the proof of Theorem 5.3.2 that we
know to be NP. Once ψ is solved, use the same NP procedure to solve ψ′, a formula that
contains ψ and a strategic operator, and so on for each strategic operator in ϕ. This means
that we use an oracle over a polynomial procedure for each strategic operator in ϕ. Summing
up, the total complexity to solve a formula in NatATLr is PNP = ∆P

2 . �

We now turn on the lower bound and show a reduction from the SNSAT problem, a
well-known ∆P

2 -hard problem. We first provide the reduction and then prove that it is correct.

Definition 5.3.1 Given a fixed number r and 1 ≤ i ≤ r, a SNSAT instance is defined as
follows:

• r sets of propositional variables Xi = {x1,i, . . . , xm,i};

• r propositional variables zi;

• r Boolean formulas ϕi involving only on variables in Xi ∪ {z1, . . . , zi−1};

• zi ≡ there exists an assignment of variables in Xi such that ϕi is true.

The output of an SNSAT instance is the truth-value of zr. Note that we can write, by
abuse of notation, zi ≡ ∃Xiϕi(z1, . . . , zi−1, Xi). Let n be the maximal number of clauses in
any ϕ1, . . . , ϕr from the given input. Now, each ϕi can be written as:

ϕi = Ci1 ∧ . . . ∧ Cin, and

Cij = x
si(j,1)
1,i ∨ . . . ∨ xs

i(j,m)
m,i ∨ zs

i(j,m+1)
1 ∨ . . . zs

i(j,m+i−1)
i−1

where 1 ≤ j ≤ n, si(j, k) ∈ {+,−, 0} with 1 ≤ k ≤ m; as before, x+
k,i denotes a positive

occurrence of xk,i in Cij , x
−
k,i denotes an occurrence of ¬xk,i in Cij , and x0

k,i indicates that
xk,i does not occur in Cij , and si(j, k) ∈ {+,−, 0} with m < k < m+ i; defines the sign of
zk−m in Cij .

Given such an instance of SNSAT, we construct a sequence of concurrent game structures
Mi in a similar way to the construction used for the reduction from SAT. That is, clauses and
variables xk,i are handled in exactly the same way as before. Moreover, if zh, with 1 ≤ h < i,
occurs as a positive literal in ϕi, we embed Mh in Mi, and add a transition to the initial state
qh0 of Mh. If ¬zh occurs in ϕi, we do almost the same: the only difference is that we split the
transition into two steps, with a state negih (labeled with a proposition neg) added in between.
More formally, Mi =〈Agt, Sti, Acti, di, ti, P ropi, V i〉, where:

115

5.3. Model Checking for Natural Memoryless Strategies

• Agt = {v, r},

• Sti = {qi0} ∪ Stcl ∪ Stprop ∪ Stneg ∪ {q>} ∪ Sti−1, where Stcl = {qi1, . . . , qin},
Stprop = {qi1,1, . . . , qi1,m, . . . , qin,1, . . . , qin,m}, and Stneg = {negi1, . . . , negii−1};

• Acti = {I, C1, . . . , Cn, x1, . . . , xm, z1, . . . , zr,>,⊥};

• di(v, qi0) = di(v, q>) = di(v, negih) = {I}, di(v, qij) = {xk |
xk,i or ¬xk,i is in Cij} ∪ {zh | zh or ¬zh is in Cij}, di(v, qij,k) = {>,⊥}; di(r, qi0) =

{C1, . . . , Cn} and di(r, q) = {I} with q ∈ St \ {qi0}. For q ∈ Sti−1, we simply
include the function from Mi−1: di(a, q) = di−1(a, q);

• ti(qi0, I, Cj) = qij , t
i(qij , xk, I) = qij,k, ti(qij , zh, I) = qh0 if si(j, h) = + and negih

otherwise, ti(negih, I, I) = qh0 , t(qij,k,>, I) = q> if si(j, k) = +, and qij,k otherwise,
t(qij,k,⊥, I) = q> if si(j, k) = −, and qi,j otherwise. For q ∈ Sti−1, we include the
transition function from Mi−1: ti(q, α1, α2) = ti−1(q, α1, α2);

• Propi = {Ci
1, . . . ,C

i
n, x

i
1, . . . , x

i
m,win, neg};

• V (qi0) = ∅, V (qij) = Ci
j, V (qij,k) = xik, V (negih) = neg and V (q>) = win.

where 1 ≤ i ≤ r, 1 ≤ j ≤ n, 1 ≤ k ≤ m, and 1 ≤ h < i.
As an example, model M3 is presented in Figure 5.2.
To prove the hardness, we consider the following sequence of formulas.

φ1 = 〈〈v〉〉≤n+m(¬neg)U (win),
:

φi = 〈〈v〉〉≤n+m(¬neg)U (win ∨ (neg ∧ 〈〈∅〉〉≤0X ¬φi−1)).2

Before we prove the hardness, we state an important lemma. It says that overlong formulas
φi do not introduce new properties of model Ml, with 1 ≤ l ≤ i ≤ r. More precisely, a
formula φi that includes more nestings than model Ml can be as well reduced to φi−1 when
model checked in Ml, q

l
0.

Lemma 5.3.1 ∀1 ≤ l ≤ i ≤ r: Ml, q
l
0 |= φi iff Ml, q

l
0 |= φi−1.

The proof of the lemma is a straightforward adaptation of [JD06, Lemma 5].

Theorem 5.3.5 ∀1 ≤ i ≤ r : zi is true iff Mi, q
i
0 |= φi

Proof. Induction on i:
(i) For i = 1, we use the proof of Theorem 5.3.3.

2Note that 〈〈∅〉〉≤0 is equivalent to the CTL path quantifier A (“for all paths”). To see this, observe that the
empty coalition ∅ has just one strategy – the empty strategy, which is of size 0 – and the strategy enforces γ iff γ
holds on all paths in the system, starting from the current state.

116

5.3. Model Checking for Natural Memoryless Strategies

q3
0

∅

q3
1

C3
1

neg3
1

neg

q3
3

C3
3

q2
0

∅

q1
0

∅

q3
3,1

x31

q3
3,2

x32
q2
1

C2
1

q1
1

C1
1

q1
2

C1
2

q2
2

C2
2

q1
2,2

x12
q2
2,2

x22

q>
win

q3
2

C3
2

q1
1,2

x12

q1
1,1

x11

(I, C1) (I, 2)
(I, 3)

(z2, I)

(z1, I)

(I, I)

(x1, I)

(x2, I)

(I, C1)

(I, C2)

(I, C1) (I, C2)

(>, I)

(⊥, I)

(>, I)

(⊥, I)

(z1, I)

(x1, I)(x2, I) (x2, I)
(x2, I)

(>, I)

(⊥, I)

(⊥, I)

(>, I)

(⊥, I)
(>, I)

(>, I)

(⊥, I)

(I, I)

Figure 5.2: A CGS for ϕ3 = z2∧¬z1∧(x1∨x2), ϕ2 = z1∧¬x2, and ϕ1 = (x1∨x2)∧¬x2.
For simplicity, we omit the states that have no ingoing edges.

(ii) For i > 1, we prove both directions.

(⇒) Firstly, if zi is true then there is a valuation υ of Xi that makes ϕi true. We construct
sv as in the proof of Theorem 5.3.3. In case that some xsk,i has been chosen in clause Cij
then we define the guarded action (Ci

j, xk) and we are done. In case that some z−h has
been chosen in clause Cij , where h < i, we have (by induction) that Mh, q

h
0 |= ¬φh. By

Lemma 5.3.1, also Mh, q
h
0 |= ¬φi, and hence Mi, q

h
0 |= ¬φi. So we can make the same

choice (i.e., we define the guarded action (Ci
j, zh)) in sv, and this will lead to state neqih, in

which it holds that neg ∧ AX ¬φi. In case that some z+
h has been chosen in clause Cij , we

have that Mh, q
h
0 |= φh. By Lemma 5.3.1, also Mh, q

h
0 |= φi. That is, there is a strategy s′v

in Mh such that (¬neg)U (win ∨ (neg ∧ AX ¬φi−1)) holds for all paths from out(qh0 , s
′
v).

Then, we can merge s′v into sv.

(⇐) Conversely, if Mi, q
i
0 |= φi, then there is a strategy sv that enforces (¬neg)U (win ∨

(neg ∧ AX ¬φi−1)). First, we consider the clause Cij with guarded action (Ci
j, xk), i.e. for

which a propositional state is chosen by sv. The strategy defines a valuation for Xi that

117

5.4. A Logic for Natural Strategic Ability of Agents with Memory

satisfies these clauses. For the other clauses, i.e. there is a guarded action (Ci
j, zh), we have

two possibilities:

• sv chooses qh0 in the state corresponding to Cij . Neither win nor neg have been encoun-
tered on this path yet, so we can take sv to demonstrate that Mi, q

h
0 |= φi, and hence

Mh, q
h
0 |= φi. By Lemma 5.3.1, also Mh, q

h
0 |= φh. By induction, zh must be true, and

hence clause Cij is satisfied.

• sv chooses negih in the state corresponding to Cij . Then, it must be that Mi, neg
i
h |=

AX ¬φi−1, and hence Mh, q
h
0 |= ¬φi−1. By Lemma 5.3.1, also Mh, q

h
0 |= ¬φh. By

induction, zh must be false, and hence clause Cij (containing ¬zh) is also satisfied.

�

By Theorem 5.3.4 and Theorem 5.3.5, the following result holds.

Corollary 5.3.2 Model checking NatATLr is ∆P
2 -complete.

5.4 A Logic for Natural Strategic Ability of Agents with Memory

Agents with memory can base their decisions on the history of the game, that has occurred so
far. We represent conditions on histories by regular expression over boolean propositional
formulas.

5.4.1 Natural Recall

Let Reg(L) be the set of regular expressions over the language L (with the standard con-
structors ·,∪, ∗ representing concatenation, nondeterministic choice, and finite iteration).
A natural strategy with recall (or R-strategy) sa for agent a is a sequence of appropriate
pairs from Reg(β(2Prop)) × Act. That is, it consists of pairs (r, α) where r is a regular
expression over β(2Prop) and α is an action available in last(h), i.e. α ∈ da(last(h)), for
all histories h ∈ H consistent with r. Formally, given a regular expression r and the language
L(r) on words generated by r, a history h = q0 . . . qn is consistent with r iff ∃ b ∈ L(r)

such that |h| = |b| and ∀0≤i≤n h[i] |= b[i]. Similarly to r-strategies, the last pair on the list
is assumed to be simply (>∗, idle). The set of such strategies is denoted by ΣR

a . Finally,
match(λ[0, i], sa) is the smallest n ≤ size(sa) such that ∀0≤j≤iλ[j] |= condn(sa)[j] and
actn(sa) ∈ da(λ[i]). A collective natural strategy for agents A = {a1, . . . , a|A| :} is a tuple
of individual natural strategies sA = (sa1 , . . . , sa|A|). The set of such strategies is denoted
by ΣR

A. Again, out(q, sA) returns the set of all paths of strategy sA. For strategies with
recall, we simply replace “match(λ[i], sa)” with “match(λ[0, i], sa)” in the definition from
Section 5.2.3.

118

5.4. A Logic for Natural Strategic Ability of Agents with Memory

We extend the metrics to strategies with recall and collective strategies with recall in the
straightforward way.

Example 5.4.1 Consider the following R-strategy s:

1. (safe∗, digGold);

2. (safe∗ · (¬safe ∧ haveGun), shoot);

3. (safe∗ · (¬safe ∧ ¬haveGun), run);

4. (>∗ · (¬safe) · (¬safe), hide);

5. (>∗, idle).

(1) represents the guarded action in which safe has held in all the states of the history. In
that case, the agent should quietly dig for gold. Otherwise, (2) or (3) is used for each history
in which safe held for all states but the last. Then, the agent should run away or shoot
back depending on whether she has a gun. If it doesn’t work (item (3)), the agent should
hide. Otherwise (item (4)), she waits and does nothing. For the complexity, we have that
compl#(s) = 2, complmax(s) = 8, and complΣ(s) = 27.

Remark 5.4.1 Note that natural strategies with recall are by definition finite. Thus, they
do not exactly correspond to the notion of perfect recall where an agent may specify differ-
ent choices for each of the infinitely many finite histories of the game. In this sense, our
representations are similar to finite memory strategies from [Ves13].

5.4.2 NatATL for Strategies with Recall

Now it is easy to define the semantics of natural strategic ability for agents with recall.
Formally, we construct the semantic relation |=R by replacing “|=r” with “|=R” and Σr

A with
ΣR
A in the clauses from Section 5.2.4.

We will refer to the logical system (NatATL, |=R) as NatATLR.

5.4.3 Relation to Natural Memoryless Strategies

It is well known that the semantics of ATL based on memoryless and perfect recall strategies
coincide (under perfect information). This follows from the correctness of the model checking
algorithm in [AHK02], cf. also [Sch04]. Precisely, there is a strategy with recall to enforce a
given temporal property γ iff there is a memoryless strategy to enforce γ. We now prove that
the same does not hold in NatATL.

Theorem 5.4.1 The following results hold in NatATL:

119

5.4. A Logic for Natural Strategic Ability of Agents with Memory

q0
∅

q1
p1

q2
p2

q3
∅

q4
∅

q5
win

q6
∅

(a, a)

(a, b)

(a, a)

(a, a)

(a, a)

(b, a)

(a, a)

(b, a)

(a, a)

(a, a)

Figure 5.3: A counterexample for Theorem 5.4.1.

1. For allM, q, and all formulas ϕ = 〈〈A〉〉≤kγ, it holds thatM, q |=r ϕ impliesM, q |=R

ϕ.

2. There exist M, q, and a formula ϕ = 〈〈A〉〉≤kγ, such that M, q |=R ϕ and not M, q |=r

ϕ.

Proof. (1) Firstly, given an r-strategy s it is possible to construct an R-strategy s′ that has
the same behavior of s. In fact, for each guarded action (θ, α) of s with θ ∈ β(2Prop) and
α ∈ Act we can write a guarded action (r, α) in s′ such that r = (>∗) · θ.

(2) Consider, the CGS M in Figure 5.3, where there are two players 1 and 2. Each transition
is labeled with a couple of actions (α, β), where α is an action of 1 and β is an action of 2.
We show that the formula ϕ = 〈〈1〉〉≤kFwin is true by using a natural strategy with recall and
is false for each possible natural memoryless strategy. The following strategy with recall s
satisfies ϕ:

• (> · p1 · >, a);

• (> · p2 · >, b);

• (>∗, a).

To be convinced, first recall that natural memoryless strategies are defined only over
atomic propositions, so, if there are states with the same set of atomic propositions, then
there exists at most one guarded action and then at most one possible action in these states.
Therefore, in the model in Figure 5.3 with a natural memoryless strategy it is impossible
to define two different behaviors in the states q3 and q4, and for this reason player 1 has no
memoryless strategies to reach a state labeled with win. �

Note that the proof of (2) does not use the bound k to construct the counterexample.
Thus, it is not only the case that a strategy with recall may inflate beyond the given bound
when being transformed to memoryless; it may even be the case that an equivalent natural
memoryless strategy does not exist! This is because in NatATL choices in strategies are based
on conditions whose granularity depends on the available Boolean propositions. In contrast,

120

5.5. Model Checking for Natural Strategies with Recall

the semantics of ATL defines memoryless strategies as functions from states to actions, which
allows for arbitrary granularity.

To remove the limit of natural memoryless strategies, we define a subclass of models
named fully distinguishing models. The idea behind this kind of models is the one used
in [AHK02, LMO08] to define the distinguishing models. The formal definition follows.

Definition 5.4.1 Given a CGS M , we say that M is a fully distinguishing model iff, for all
S ⊆ St, there exists p ∈ Prop such that:

• ∀s ∈ S, M, s |= p, and

• ∀s /∈ S, M, s 2 p

Theorem 5.4.2 Given a fully distinguishing model M , a state q, a subset of agents A, and a
formula ϕ = 〈〈A〉〉≤kγ, it holds that: M, q |=r ϕ iff M, q |=R ϕ.

Proof. (⇒) For this direction we use the proof of Theorem 5.4.1(1).
(⇐) Assume now that M, q |=R ϕ. By definition, there is a strategy sA ∈ ΣR

A such that
compl (sA) ≤ k, and for each path λ ∈ out(q, sA), we have M,λ |=R γ. From sA, let
us construct a memoryless strategy s′A ∈ Σr

A such that the following facts hold: (i) ∀λ ∈
out(q, s′A), we have M,λ |=r γ and (ii) compl (s′A) ≤ compl (sA). We start at the state q.
We know that M is a fully distinguishing model, so the state q is distinguishable with respect
to the other states of M . Consider for simplicity that the only atomic proposition that is true
in q is q. We fix s′A(q) = sA(q), where sA(q) represents the action in the strategy with recall
sA for the regular expression q that is just an atomic proposition. Consider now the successors
of q consistent with sA(q). ∀q′ ∈ out(q, sA(q)) we take the atomic proposition q′ that is true
just in q′ and fix s′A(q′) = sA(q · q′), where q · q′ is the regular expression that is composed
by the atomic propositions q and q′ that are only true in q and q′, respectively. We repeat this
procedure until we get to a fixpoint, i.e. all states are covered, except possibly for some states
that are unreachable when we execute sA. By the definition, we also know that these states
satisfy the guarded action (>, idle). To conclude the proof, we just need to show that (i)
and (ii) hold. Item (i) can be proved by induction. For the lack of space, we omit the details.
Item (ii) follows by the construction of s′A. In fact, we construct s′A from sA, that is for each
guarded action (q, α) of s′A there is a guarded action (r, α) of sA, where r = r0 · . . . · rn
and rn = q, then compl (s′A) ≤ compl (sA). �

5.5 Model Checking for Natural Strategies with Recall

In this section we show how to solve the model checking problem for NatATL with R-
strategies, i.e. NatATLR. We consider both the cases in which the bound of the strategies is a
constant or a variable.

121

5.5. Model Checking for Natural Strategies with Recall

5.5.1 Model Checking for Small Strategies

When the bound of the strategies is fixed, we can reduce our problem to the model checking
for CTL. This leads to the following result.

Theorem 5.5.1 The model checking problem for NatATLR with fixed k is in ∆P
2 .

Proof. Assume for the moment that we have a NatATLR formula ϕ = 〈〈A〉〉≤kγ, where
A ⊆ Agt and γ is a formula over boolean connectives and atomic propositions. As for the
solution in NatATLr, we know that the collective strategy we can assign to A, namely sA,
is bounded and, precisely, we have that complΣ(sA) ≤ k. The main difference between
r-strategies and R-strategies regards the underlying domains, i.e., we move from boolean
propositional formulas to regular expressions over boolean propositional formulas (both
over atomic propositions). Recall that, regular expressions are a combination of atomic
propositions (Prop), boolean connectives (Bool), and standard constructors (Con). Thus,
in this case, we have (|Prop + Bool + Con|)k possible different guarded actions and
(|Prop+Bool + Con|k)k = |Prop+Bool + Con|k2

possible lists. Given sA, we cannot
prune M since we have an R-strategy. Let us consider now the unwinding of M and remove
all edges that are not in accordance with sA. It is important to observe that the unwinding
of a model can be infinite and thus we need to consider a bounded unwinding. A possibility
would be to consider the tree unwinding with depth |St| + 1 as we are sure that after this
bound there is a loop. Unfortunately, this is a too big upper-bound. Indeed, checking all paths
of the unwinding, in the worst case (i.e. each state is connected with all states of the model),
requires |St||St| steps, that is exponential on the number of states. To avoid this exponential
blow-up we use a guessing oracle. The algorithm that solves the model checking problem
for NatATLR with fixed k is depicted in Figure 5.4. The mCheckkNatATLR

algorithm uses the
oracle depicted in Figure 5.5. It guesses a history h of length |St|+ 1 that satisfies the CTL
formula ¬Aγ. If such a history exists then the oracle returns true and mCheckkNatATLR

returns
false because the original formula wants γ to hold. Conversely, if the oracle returns false and
mCheckkNatATLR

returns true then M, q |=R ϕ. For the complexity, we use an oracle over a
polynomial procedure. So, we have that the total complexity is PNP = ∆P

2 . To conclude
the proof, let us drop the initial limitations on the formula. If the formula has more than
one strategic operator, then we proceed as in the proof of Theorem 5.3.1 and so we use a
bottom-up procedure, i.e. we first solve the formula with the inner most strategic operator,
then we update the formula and repeat the procedure, until we reach the outermost formula.
This requires to use a further oracle over a polynomial procedure that works over a polynomial
procedure itself. Hence, we have that the overall complexity is PPNP

= PNP = ∆P
2 . �

122

5.5. Model Checking for Natural Strategies with Recall

1 Algorithm mCheckkNatATLR
(M, q ,ϕ) :

2 f o r e v e r y sA wi th compl (sA) ≤ k do
3 t = Oracle(M, q, ϕ, sA)

4 re turn (¬t)

Figure 5.4: Model checking algorithm for NatATLR with fixed k

1 Algorithm O r a c l e (M, q ,ϕ ,sA) :
2 Guess h ∈ H |St+1|(q)

3 i f h i s i n c o n s i s t e n t w i th sA

4 re turn f a l s e
5 e l s e
6 re turn mCheckCTL(h, h[0],¬Aγ)

Figure 5.5: Oracle

5.5.2 Model Checking: General Case

We now study the complexity for NatATLR in case the bound over the strategies is not
fixed. In particular, we study separately the cases in which the formula under exam has one
or more nested strategic operators. For the former we show a ΣP

2 procedure and, for the
latter, a ∆P

3 one. As for the memoryless case, the proofs in this section have been inspired
by [Sch04, JD06].

Theorem 5.5.2 Model checking 1NatATLR with variable k is in ΣP
2 .

Proof. Consider the formula 〈〈A〉〉≤kγ, where A = {a} and γ is a formula over boolean
connectives and atomic propositions. By assumption, the bound of the strategy is not fixed.
For this reason, to construct a strategy sa we use an NP oracle that constructs a strategy for
a. We report in Figure 5.6 the related mCheckNatATLR algorithm. Regarding the complexity,
since we use an oracle over a non-deterministic algorithm we have that checking the model
checking problem is NPNP = ΣP

2 . �

Theorem 5.5.3 Model checking NatATLR with variable k is in ∆P
3 .

1 Algorithm mCheckNatATLR (M, q ,ϕ , k) :
2 Guess sA wi th compl (sA) ≤ k
3 t = O r a c l e (M, q, ϕ, sA)

4 re turn (¬t)

Figure 5.6: Model checking NatATLR with variable k

123

5.6. Summary and Future Work

memoryless finite recall

ATL P-complete P-complete

1NatATL, fixed k in P in ∆P
2

NatATL, fixed k in P in ∆P
2

1NatATL, variable k NP-complete in ΣP
2

NatATL, variable k ∆P
2 -complete in ∆P

3

Figure 5.7: Summary of model checking complexity results

Proof. We can use a bottom-up procedure similarly to the one we have used in the proof
of Theorem 5.3.1 for NatATLr, by looping the construction in Theorem 5.5.2. In this case, we
use an oracle over a non-deterministic procedure over a polynomial procedure, so we obtain
that the overall complexity to solve the addressed problem is PNPNP

= ∆P
3 . �

5.6 Summary and Future Work

In this chapter, we propose an alternative take on strategic reasoning, where agents can handle
only relatively simple strategies. We use a natural representation of strategies by lists of
guarded actions, and assume that only strategies up to size k can be employed as witnesses to
formula 〈〈A〉〉≤kγ. In terms of technical results, we show that model-checking for NatATL
with memoryless strategies is in P when k is fixed, and ∆P

2 -complete when k is a parameter
of the problem. For strategies with recall, the problem is in ∆P

2 when k is fixed, and in ∆P
3

in the general case, cf. the summary presented in Figure 5.7.

Clearly, reasoning about simple natural memoryless strategies is no more difficult than
about arbitrary ATL strategies (and in practice we expect it to be actually easier). On the
other hand, verification of natural strategies with recall seems distinctly harder. It would be
interesting to look for conditions under which the latter kind of strategies can be synthesized
in polynomial time.

We also prove an important property that sets NatATL apart from standard ATL: in
NatATL, the memoryless and memoryfull semantics do not coincide.

In the future, we plan to extend the framework to natural strategies with imperfect
information. We would also like to extend our results to the broader language of NatATL∗,
and refine them in terms of parameterized complexity. Another interesting path concerns
a graded version of the logic with counting how many successful natural strategies are
available. We also intend to look at other natural expressions of strategies, including a survey
of psychological studies suggesting how people plan and execute their long-term behaviors.
Finally, a more complete account of bounded rationality may be obtained by combining
bounds on conceptual complexity of strategies (in the spirit of our work here) with their

124

5.6. Summary and Future Work

temporal complexity via timing constraints in the vein of [BLMO07, AJK+17].

125

Bibliography

[AAK15] S. Almagor, G. Avni, and O. Kupferman. Repairing Multi-Player Games. In
CONCUR, pages 325–339, 2015.

[ABL07] M. Arenas, P. Barceló, and L. Libkin. Combining Temporal Logics for Query-
ing XML Documents. In ICDT, pages 359–373, 2007.

[ACY95] R. Alur, C. Courcoubetis, and M. Yannakakis. Distinguishing Tests for Nonde-
terministic and Probabilistic Machines. In STOC, pages 363–372, 1995.

[ADLM07] N. Alechina, M. Dastani, B. Logan, and J.-J. Ch. Meyer. A Logic of Agent
Programs. In AAAI, pages 795–800, 2007.

[Ågo06] T. Ågotnes. Action and Knowledge in Alternating-time Temporal Logic.
Synthese, 149(2):377–409, 2006.

[AHK02] R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-Time Temporal Logic.
JACM, 49(5):672–713, 2002.

[AJK+17] E. Andre, W. Jamroga, M. Knapik, W. Penczek, and L. Petrucci. Timed ATL:
Forget Memory, Just Count. In AAMAS, pages 1460–1462, 2017.

[AKH02] E. Altman, H. Kameda, and Y. Hosokawa. Nash Equilibria in Load Balancing
in Distributed Computer Systems. IGTR, 4(2):91–100, 2002.

[ALDM08] N. Alechina, B. Logan, M. Dastani, and J.-J. Ch. Meyer. Reasoning about
Agent Execution Strategies. In AAMAS, pages 1455–1458, 2008.

[ALM+13] B. Aminof, A. Legay, A. Murano, O. Serre, and M. Y. Vardi. Pushdown Module
Checking with Imperfect Information. IC, 223:1–17, 2013.

[ALMS08] B. Aminof, A. Legay, A. Murano, and O. Serre. µ-calculus Pushdown Module
Checking with Imperfect State Information. In IFIP-TCS, pages 333–348,
2008.

[ALNR09] N. Alechina, B. Logan, N.H. Nga, and A. Rakib. A Logic for Coalitions with
Bounded Resources. In IJCAI, pages 659–664, 2009.

[ALNR10] N. Alechina, B. Logan, H.N. Nguyen, and A. Rakib. Resource-Bounded
Alternating-Time Temporal Logic. In AAMAS, pages 481–488, 2010.

Bibliography Bibliography

[AMMR16] B. Aminof, V. Malvone, A. Murano, and S. Rubin. Graded Strategy Logic:
Reasoning about Uniqueness of Nash Equilibria. In AAMAS, pages 698–706,
2016.

[AMMR17] B. Aminof, V. Malvone, A. Murano, and S. Rubin. Graded Modalities in
Strategy Logic. IC, 2017. To appear.

[AMR15] B. Aminof, A. Murano, and S. Rubin. On CTL* with Graded Path Modalities.
In LPAR, pages 281–296, 2015.

[ATO+09] T. Antal, A. Traulsen, H. Ohtsuki, C.E. Tarnita, and M.A. Nowak. Mutation-
Selection Equilibrium in Games with Multiple Strategies. JTB, 258(4):614–622,
2009.

[AV10] I. F. Akyildiz and M. C. Vuran. Wireless sensor networks. John Wiley & Sons,
2010.

[AW09] T. Agotnes and D. Walther. A Logic of Strategic Ability Under Bounded
Memory. JLLI, 18(1):55–77, 2009.

[Bár15] E. Bárcenas. A Counting Logic for Trees. Computación y Sistemas, 19(2):407–
422, 2015.

[BBF+10] B. Bérard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci, and P. Sch-
noebelen. Systems and Software Verification: Model-Checking Techniques and
Tools. Springer, 2010.

[BBL15] F. Baader, S. Borgwardt, and M. Lippmann. Temporal conjunctive queries
in expressive description logics with transitive roles. In AJCAI, pages 21–33,
2015.

[BBV86] T. C. Bergstrom, L. E. Blume, and H. R. Varian. On the Private Provision of
Public Goods. JPE, 29(1):25–49, 1986.

[BC03] S. Bandyopadhyay and E. J. Coyle. An energy efficient hierarchical clustering
algorithm for wireless sensor networks. In INFOCOM, pages 1713–1723,
2003.

[BCJK15] R. Bloem, K. Chatterjee, S. Jacobs, and R. Könighofer. Assume-guarantee
synthesis for concurrent reactive programs with partial information. In TACAS,
pages 517–532, 2015.

[BCS08] M. Barlo, G. Carmona, and H. Sabourian. Bounded memory with finite action
spaces. Technical report, Sabanci University, Universidade Nova de Lisboa
and University of Cambridge, 2008.

127

Bibliography BIBLIOGRAPHY

[Bel15] F. Belardinelli. A Logic of Knowledge and Strategies with Imperfect Informa-
tion. In LAMAS, 2015.

[BF10a] N. Bulling and B. Farwer. Expressing Properties of Resource-Bounded Systems:
The Logics RTL* and RTL. In CLIMA, pages 22–45, 2010.

[BF10b] N. Bulling and B. Farwer. On the (Un-)Decidability of Model Checking
Resource-Bounded Agents. In ECAI, pages 567–572, 2010.

[BFVW06] R. Bordini, M. Fisher, W. Visser, and M. Wooldridge. Verifying Multi-Agent
Programs by Model Checking. AAMAS, 12(2):239–256, 2006.

[BGM15] P. Bouyer, P. Gardy, and N. Markey. Weighted Strategy Logic with Boolean
Goals Over One-Counter Games. In FSTTCS, pages 69–83, 2015.

[Bin92] K. G. Binmore. Fun and Games: A Text on Game Theory. D.C. Heath, 1992.

[BJ14] N. Bulling and W. Jamroga. Comparing variants of strategic ability: how
uncertainty and memory influence general properties of games. AAMAS,
28(3):474–518, 2014.

[BK10] D. Berwanger and L. Kaiser. Information Tracking in Games on Graphs. JLLI,
19(4):395–412, 2010.

[BKR10] V. Bárány, L. Kaiser, and A. M. Rabinovich. Expressing Cardinality Quantifiers
in Monadic Second-Order Logic over Trees. FI, 100(1-4):1–17, 2010.

[BLLM09] T. Brihaye, A. Da Costa Lopes, F. Laroussinie, and N. Markey. ATL with
Strategy Contexts and Bounded Memory. In LFCS, pages 92–106, 2009.

[BLMO07] T. Brihaye, F. Laroussinie, N. Markey, and G. Oreiby. Timed Concurrent Game
Structures. In CONCUR, pages 445–459, 2007.

[BLMR17] F. Belardinelli, A. Lomuscio, A. Murano, and S. Rubin. Verification of Multi-
agent Systems with Imperfect Information and Public Actions. In AAMAS,
pages 1268–1276, 2017.

[BLMV08] P.A. Bonatti, C. Lutz, A. Murano, and M.Y. Vardi. The Complexity of Enriched
Mu-Calculi. LMCS, 4(3):1–27, 2008.

[BMM09] A. Bianco, F. Mogavero, and A. Murano. Graded Computation Tree Logic. In
LICS, pages 342–351, 2009.

[BMM10] A. Bianco, F. Mogavero, and A. Murano. Graded Computation Tree Logic
with Binary Coding. In CSL, pages 125–139, 2010.

128

Bibliography Bibliography

[BMM12] A. Bianco, F. Mogavero, and A. Murano. Graded Computation Tree Logic.
TOCL, 13(3):25:1–25:53, 2012.

[BMM17] R. Berthon, B. Maubert, and A. Murano. Decidability Results for ATL* with
Imperfect Information and Perfect Recall. In AAMAS, pages 1250–1258, 2017.

[BMMRV17] R. Berthon, B. Maubert, A. Murano, S.Rubin, and M. Y. Vardi. Strategy logic
with imperfect information. In LICS, pages 1–12, 2017.

[BMP10] L. Bozzelli, A. Murano, and A. Peron. Pushdown module checking. FMSD,
36(1):65–95, 2010.

[CD14] K. Chatterjee and L. Doyen. Partial-observation stochastic games: How to win
when belief fails. TOCL, 15(2):16, 2014.

[CDHR07] K. Chatterjee, L. Doyen, T. A. Henzinger, and J.F. Raskin. Algorithms for
omega-regular games with imperfect information. LMCS, 3(4):1–23, 2007.

[CDL99] D. Calvanese, G. De Giacomo, and M. Lenzerini. Reasoning in expressive
description logics with fixpoints based on automata on infinite trees. In IJCAI,
pages 84–89, 1999.

[CE81] E.M. Clarke and E.A. Emerson. Design and Synthesis of Synchronization
Skeletons Using Branching-Time Temporal Logic. In LP, pages 52–71, 1981.

[CEO14] D. Calvanese, T. Eiter, and M. Ortiz. Answering Regular Path Queries in
Expressive Description Logics via Alternating Tree-Automata. IC, 237:12–55,
2014.

[CGLV10] D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Y. Vardi. Node Selection
Query Languages for Trees. In AAAI, 2010.

[CGP02] E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. MIT Press,
2002.

[CH12] K. Chatterjee and T. A. Henzinger. A survey of stochastic omega-regular games.
JCSS, 78(2):394–413, 2012.

[CHP07] K. Chatterjee, T.A. Henzinger, and N. Piterman. Strategy Logic. In CONCUR,
pages 59–73, 2007.

[CHP10] K. Chatterjee, T.A. Henzinger, and N. Piterman. Strategy Logic. IC, 208(6):677–
693, 2010.

129

Bibliography BIBLIOGRAPHY

[CHS99] R. Cornes, R. Hartley, and T. Sandler. An Elementary Proof via Contraction.
JPET, 1(4):499–509, 1999.

[ČLM15] P. Čermák, A. Lomuscio, and A. Murano. Verifying and Synthesising Multi-
Agent Systems against One-Goal Strategy Logic Specifications. In AAAI, pages
2038–2044, 2015.

[ČLMM14] P. Čermák, A. Lomuscio, F. Mogavero, and A. Murano. MCMAS-SLK: A
Model Checker for the Verification of Strategy Logic Specifications. In CAV,
pages 524–531, 2014.

[CS08] V. Conitzer and T. Sandholm. New complexity results about nash equilibria.
Games and Economic Behavior, 63(2):621–641, 2008.

[CTC07] M. Chang, Y. Tseng, and J. Chen. A Scenario Planning Approach for the
Flood Emergency Logistics Preparation Problem under Uncertainty. LTR,
43(6):737–754, 2007.

[DB16] H. Duijf and J. M. Broersen. Representing Strategies. In SR, pages 15–26,
2016.

[DJ10] M. Dastani and W. Jamroga. Reasoning about Strategies of Multi-Agent
Programs. In AAMAS, pages 625–632, 2010.

[DT11] C. Dima and F. L. Tiplea. Model-checking ATL under Imperfect Information
and Perfect Recall Semantics is Undecidable. CoRR, abs/1102.4225, 2011.

[EH86] E.A. Emerson and J.Y. Halpern. “Sometimes” and “Not Never” Revisited: On
Branching Versus Linear Time. JACM, 33(1):151–178, 1986.

[EJ88] E.A. Emerson and C.S. Jutla. The Complexity of Tree Automata and Logics of
Programs (Extended Abstract). In FOCS, pages 328–337, 1988.

[EJ91] E.A. Emerson and C.S. Jutla. Tree Automata, µ-Calculus and Determinacy. In
FOCS, pages 368–377, 1991.

[EJ99] E.A. Emerson and C.S. Jutla. The Complexity of Tree Automata and Logics of
Programs. SJM, 29(1):132–158, 1999.

[FAGV12] F.Mogavero, A.Murano, G.Perelli, and M.Y. Vardi. What Makes ATL* Decid-
able? A Decidable Fragment of Strategy Logic. In CONCUR, pages 193–208,
2012.

[FE15] C. Feier and T. Eiter. Reasoning with Forest Logic Programs Using Fully
Enriched Automata. In LPNMR, pages 346–353, 2015.

130

Bibliography Bibliography

[Fin72] K. Fine. In So Many Possible Worlds. NDJFL, 13(4):516–520, 1972.

[FMP08] A. Ferrante, A. Murano, and M. Parente. Enriched Mu-Calculi Module Check-
ing. LMCS, 4(3):1–21, 2008.

[FNP09a] A. Ferrante, M. Napoli, and M. Parente. Graded-CTL: Satisfiability and
Symbolic Model Checking. In ICFEM, pages 306–325, 2009.

[FNP09b] A. Ferrante, M. Napoli, and M. Parente. Model Checking for Graded CTL. FI,
96(3):323–339, 2009.

[Fra92] C. D. Fraser. The Uniqueness of Nash Equilibrium in the Private Provision of
Public Goods: an Alternative Proof. JPE, 49(3):389–390, 1992.

[FS05] E. Faingold and Y. Sannikov. Equilibrium degeneracy and reputation effects in
continuous time games. Technical report, mimeo, 2005.

[GHW15] J. Gutierrez, P. Harrenstein, and M. Wooldridge. Expresiveness and Complexity
Results for Strategic Reasoning. In CONCUR, pages 268–282, 2015.

[GHW17] J. Gutierrez, P. Harrenstein, and M. Wooldridge. Reasoning about equilibria in
game-like concurrent systems. APAL, 168(2):373–403, 2017.

[GK93] A. Glazer and K. A. Konrad. Private Provision of Public Goods, Limited Tax
Deducibility, and Crowding Out. PFA, 50(2):203–216, 1993.

[GLLS07] O. Grumberg, M. Lange, M. Leucker, and S. Shoham. When not losing is
better than winning: Abstraction and refinement for the full mu-calculus. IC,
205(8):1130–1148, 2007.

[GMP+17] J. Gutierrez, A. Murano, G. Perelli, S. Rubin, and M. Wooldridge. Nash
Equilibria in Concurrent Games with Lexicographic Preferences. In IJCAI,
pages 1067–1073, 2017.

[GOR97] E. Grädel, M. Otto, and E. Rosen. Two-Variable Logic with Counting is
Decidable. In LICS, pages 306–317, 1997.

[GSW14] A. Gupta, S. Schewe, and D. Wojtczak. Making the best of limited memory in
multi-player discounted sum games. arXiv preprint arXiv:1410.4154, 2014.

[GZ89] I. Gilboa and E. Zemel. Nash and correlated equilibria: Some complexity
considerations. GEB, 1(1):80–93, 1989.

[HB91] B. Hollunder and F. Baader. Qualifying Number Restrictions in Concept
Languages. In KR, pages 335–346, 1991.

131

Bibliography BIBLIOGRAPHY

[HK82] D. Harel and D. Kozen. Process Logic: Expressiveness, Decidability, Com-
pleteness. JCSS, 25(2):144–170, 1982.

[HLMW14] A. Herzig, E. Lorini, F. Maffre, and D. Walther. Alternating-time Temporal
Logic with Explicit Programs. In LAMAS, 2014.

[HO09] J. Hörner and W. Olszewski. How robust is the Folk Theorem? QJE,
124(4):1773–1814, 2009.

[HP85] D. Harel and A. Pnueli. On the development of reactive systems. In Logics and
models of concurrent systems. NATO Advanced Summer Institutes vol. F-13.,
pages 477–498. Springer, 1985.

[HS04] I. Horrocks and U. Sattler. Decidability of SHIQ with Complex Role Inclusion
Axioms. AI, 160(1-2):79–104, 2004.

[Imm81] N. Immerman. Number of Quantifiers is Better Than Number of Tape Cells.
JCSS, 22(3):384–406, 1981.

[JÅ07] W. Jamroga and T. Ågotnes. Constructive knowledge: what agents can achieve
under imperfect information. JANCL, 17(4):423–475, 2007.

[JD06] W. Jamroga and J. Dix. Model Checking ATLir is Indeed ∆P
2 -complete. In

EUMAS, 2006.

[JDW02] J.Bernet, D.Janin, and I. Walukiewicz. Permissive strategies: from parity games
to safety games. RAIRO, 36(3):261–275, 2002.

[JM14] W. Jamroga and A. Murano. On Module Checking and Strategies. In AAMAS,
pages 701–708, 2014.

[JM15] W. Jamroga and A. Murano. Module Checking of Strategic Ability. In AAMAS,
pages 227–235, 2015.

[JMM17] W. Jamroga, V. Malvone, and A. Murano. Reasoning about Natural Strategic
Ability. In AAMAS, pages 714–722, 2017.

[JvdH04] W. Jamroga and W. van der Hoek. Agents that Know How to Play. FI,
63(2-3):185–219, 2004.

[Kel76] R.M. Keller. Formal verification of parallel programs. CACM, 19(7):371–384,
1976.

[Kit00] H. Kitano. Robocup Rescue: A Grand Challenge for Multi-Agent Systems. In
IEEE, pages 5–12, 2000.

132

Bibliography Bibliography

[KM98] M. Kandori and H. Matsushima. Private observation, communication and
collusion. Econometrica, 66(3):627–652, 1998.

[KPV14] O. Kupferman, G. Perelli, and M. Y. Vardi. Synthesis with Rational Environ-
ments. In EUMAS, pages 219–235, 2014.

[Kri63] S.A. Kripke. Semantical Considerations on Modal Logic. APF, 16:83–94,
1963.

[KSV02] O. Kupferman, U. Sattler, and M.Y. Vardi. The Complexity of the Graded
µ-Calculus. In CADE, pages 423–437, 2002.

[KT01] H. Kitano and S. Tadokoro. Robocup Rescue: A Grand Challenge for Multia-
gent and Intelligent Systems. AI magazine, 22(1):39, 2001.

[KTN+99] H. Kitano, S. Tadokoro, I. Noda, H. Matsubara, T. Takahashi, A. Shinjou, and
S. Shimada. Robocup rescue: Search and Rescue in Large-Scale Disasters as a
Domain for Autonomous Agents Research. In IEEE, pages 739–743, 1999.

[KV96] O. Kupferman and M.Y. Vardi. Module Checking. In CAV, pages 75–86, 1996.

[KV97] O. Kupferman and M. Y. Vardi. Module Checking Revisited. In CAV, pages
36–47, 1997.

[KV00] O. Kupferman and M. Y. Vardi. Synthesis with incomplete informatio. In
Advances in Temporal Logic, pages 109–127. Springer, 2000.

[KVW00] O. Kupferman, M.Y. Vardi, and P. Wolper. An Automata Theoretic Approach
to Branching-Time Model Checking. JACM, 47(2):312–360, 2000.

[KVW01] O. Kupferman, M. Y. Vardi, and P. Wolper. Module Checking. IC, 164(2):322–
344, 2001.

[LBS08] K. Leyton-Brown and Y. Shoham. Essentials of Game Theory: A Concise,
Multidisciplinary Introduction (Synthesis Lectures on Artificial Intelligence
and Machine Learning). M&C, 2008.

[LLM10] A.D.C. Lopes, F. Laroussinie, and N. Markey. ATL with Strategy Contexts:
Expressiveness and Model Checking. In FSTTCS, pages 120–132, 2010.

[LMO08] F. Laroussinie, N. Markey, and G. Oreiby. On the expressiveness and complex-
ity of ATL. arXiv preprint arXiv:0804.2435, 2008.

[LQR09] A. Lomuscio, H. Qu, and F. Raimondi. MCMAS: A Model Checker for the
Verification of Multi-Agent Systems. In CAV, pages 682–688, 2009.

133

Bibliography BIBLIOGRAPHY

[LR06a] A. Lomuscio and F. Raimondi. MCMAS: A Model Checker for Multi-agent
Systems. In TACAS, pages 450–454, 2006.

[LR06b] A. Lomuscio and F. Raimondi. Model Checking Knowledge, Strategies, and
Games in Multi-Agent Systems. In AAMAS, pages 161–168, 2006.

[LST05] C. Lutz, U. Sattler, and L. Tendera. The Complexity of Finite Model Reasoning
in Description Logics. IC, 199(1):132–171, 2005.

[LWW07] C. Lutz, D. Walther, and F. Wolter. Conservative Extensions in Expressive
Description Logics. In IJCAI, pages 453–458, 2007.

[Mar75] A.D. Martin. Borel Determinacy. AM, 102(2):363–371, 1975.

[Mar85] A.D. Martin. A Purely Inductive Proof of Borel Determinacy. In SPM, pages
303–308, 1985.

[MMMS15] V. Malvone, F. Mogavero, A. Murano, and L. Sorrentino. On the Counting of
Strategies. In TIME, pages 170–179, 2015.

[MMMS17] V. Malvone, F. Mogavero A. Murano, and L. Sorrentino. Reasoning about
Graded Strategy Quantifiers. IC, 2017. To appear.

[MMPV14] F. Mogavero, A. Murano, G. Perelli, and M. Y. Vardi. Reasoning About
Strategies: On the Model-Checking Problem. TOCL, 15(4):34, 2014.

[MMS14a] F. Mogavero, A. Murano, and L. Sauro. A Behavioral Hierarchy of Strategy
Logic. In CLIMA, pages 148–165, 2014.

[MMS14b] F. Mogavero, A. Murano, and L. Sauro. Strategy Games: A Renewed Frame-
work. In AAMAS, pages 869–876, 2014.

[MMS15] V. Malvone, A. Murano, and L. Sorrentino. Games with additional winning
strategies. In CILC, pages 175–180, 2015.

[MMS16] V. Malvone, A. Murano, and L. Sorrentino. Hiding Actions in Concurrent
Games. In ECAI, pages 1686–1687, 2016.

[MMS17a] V. Malvone, A. Murano, and L. Sorrentino. Additional Winning Strategies in
Reachability Games. FI, 2017. To appear.

[MMS17b] V. Malvone, A. Murano, and L. Sorrentino. Hiding Actions in Multi-Player
Games. In AAMAS, pages 1205–1213, 2017.

[MMV10a] F. Mogavero, A. Murano, and M.Y. Vardi. Reasoning About Strategies. In
FSTTCS, pages 133–144, 2010.

134

Bibliography Bibliography

[MMV10b] F. Mogavero, A. Murano, and M.Y. Vardi. Relentful Strategic Reasoning in
Alternating-Time Temporal Logic. In LPAR, pages 371–387, 2010.

[MNP08] A. Murano, M. Napoli, and M. Parente. Program Complexity in Hierarchical
Module Checking. In LPAR, pages 318–332, 2008.

[Mog11] F. Mogavero. Logics in Computer Science. PhD thesis, Università degli Studi
di Napoli ”Federico II”, Napoli, Italy, 2011.

[MP15] A. Murano and G. Perelli. Pushdown Multi-Agent System Verification. In
IJCAI, pages 1090–1097, 2015.

[MS95] D.E. Muller and P.E. Schupp. Simulating Alternating Tree Automata by
Nondeterministic Automata: New Results and New Proofs of Theorems of
Rabin, McNaughton, and Safra. TCS, 141(1-2):69–107, 1995.

[MS15] A. Murano and L. Sorrentino. A Game-Based Model for Human-Robots
Interaction. In WOA, pages 146–150, 2015.

[Mye91] R.B. Myerson. Game Theory: Analysis of Conflict. Harvard University Press,
1991.

[NJ09] P. Novák and W. Jamroga. Code Patterns for Agent Oriented Programming. In
AAMAS, pages 105–112, 2009.

[OR94] M.J. Osborne and A. Rubinstein. A Course in Game Theory. MIT Press, 1994.

[ORS93] A. Orda, R. Rom, and N. Shimkin. Competitive routing in multiuser communi-
cation networks. NET, 1(5):510–521, 1993.

[Pav12] L. Pavel. Game Theory for Control of Optical Networks. Springer, 2012.

[PC79] G.P. Papavassilopoulos and J. B. Cruz. On the Uniqueness of Nash Strategies
for a Class of Analytic Differential Games. JOTA, 27(2):309–314, 1979.

[Pnu77] A. Pnueli. The Temporal Logic of Programs. In FOCS, pages 46–57, 1977.

[PP04] D. Perrin and J. Pin. Infinite Words. Elsevier, 2004.

[PR89] A. Pnueli and R. Rosner. On the Synthesis of a Reactive Module. In ACM,
pages 179–190, 1989.

[PR90] A. Pnueli and R. Rosner. Distributed reactive systems are hard to synthesize.
In FOCS, pages 746–757, 1990.

135

Bibliography BIBLIOGRAPHY

[QS82] J.P. Queille and J. Sifakis. Specification and verification of concurrent systems
in CESAR. In SP, pages 337–351, 1982.

[Rab69] M.O. Rabin. Decidability of Second-Order Theories and Automata on Infinite
Trees. TAMS, 141:1–35, 1969.

[RAM15] S. Rubin, B. Aminof, and A. Murano. On CTL∗ with Graded Path Modalities.
In LPAR, pages 281–296, 2015.

[Rei84] J. H. Reif. The Complexity of Two-Player Games of Incomplete Information.
JCSS, 29(2):274–301, 1984.

[RES+10] S. Roy, C. Ellis, S. G. Shiva, D. Dasgupta, V. Shandilya, and Q. Wu. A Survey
of Game Theory as Applied to Network Security. In HICSS, pages 1–10, 2010.

[San07] Y. Sannikov. Games with imperfectly observable actions in continuous time.
Econometrica, 75(5):1285–1329, 2007.

[Sch02] P. Schnoebelen. The Complexity of Temporal Logic Model Checking. In
AIML, pages 393–436, 2002.

[Sch04] P.Y. Schobbens. Alternating-Time Logic with Imperfect Recall. ENTCS,
85(2):82–93, 2004.

[Sel65] R. Selten. Spieltheoretische Behandlung eines Oligopolmodells mit Nachfrage-
tragheit. ZgS, 121(2):301–324, 1965.

[Sip06] M. Sipser. Introduction to the Theory of Computation. Thomson Course
Technology Boston, 2006.

[SLCB13] D. Simchi-Levi, X. Chen, and J. Bramel. The Logic of Logistics: Theory,
Algorithms, and Applications for Logistics Management. Springer, 2013.

[Smi82] J. M. Smith. Evolution and the Theory of Games. Cambridge university press,
1982.

[Tho90] W. Thomas. Automata on Infinite Objects. In Handbook of Theoretical
Computer Science (vol. B), pages 133–191. MIT Press, 1990.

[Umm06] M. Ummels. Rational Behaviour and Strategy Construction in Infinite Multi-
player Games. In FSTTCS, pages 212–223, 2006.

[vdHJW05] W. van der Hoek, W. Jamroga, and M. Wooldridge. A Logic for Strategic
Reasoning. In AAMAS, pages 157–164, 2005.

136

Bibliography Bibliography

[vdHM92] W. van der Hoek and J.J. Meyer. Graded modalities in epistemic logic. In
LFCS, pages 503–514, 1992.

[vdHW02] W. van der Hoek and M.J. Wooldridge. Tractable Multiagent Planning for
Epistemic Goals. In AAMAS, pages 1167–1174, 2002.

[vdMW05] R. van der Meyden and T. Wilke. Synthesis of Distributed Systems from
Knowledge-Based Specifications. In CONCUR, pages 562–576, 2005.

[Ves13] S. Vester. Alternating-time temporal logic with finite-memory strategies. In
GandALF, pages 194–207, 2013.

[VW86] M.Y. Vardi and P. Wolper. Automata-Theoretic Techniques for Modal Logics
of Programs. JCSS, 32(2):183–221, 1986.

[Win93] G. Winskel. The Formal Semantics of Programming Languages (An Introduc-
tion). MIT Press, 1993.

[WJ95] M. Wooldridge and N. R. Jennings. Intelligent agents: Theory and practice.
KER, 10(2):115–152, 1995.

[Woo02] M. Wooldridge. An Introduction to Multi Agent Systems. John Wiley & Sons,
2002.

[WvdHW07] D. Walther, W. van der Hoek, and M. Wooldridge. Alternating-Time Temporal
Logic with Explicit Strategies. In TARK, pages 269–278, 2007.

[YS12] N. Yadav and S. Sardiña. Reasoning about Agent Programs Using ATL-Like
Logics. In JELIA, pages 437–449, 2012.

[ZG11] Y. Zhang and M. Guizani. Game Theory for Wireless Communications and
Networking. CRC Press, 2011.

137

List of Figures

1.1 Cop and Robber Game. 8
1.2 Escape Game. 9

2.1 Variant of paper, rock, and scissor game. 31
2.2 Extended paper, rock, and scissor where p ∼= r. 31
2.3 Extended paper, rock, and scissor with 3 players. 32
2.4 Tree accepted by the automaton. 36
2.5 Tree rejected by the automaton. 36

3.1 A scheduler system GS . 47
3.2 An example of CGS G. Note that each node of G is labeled with its name (in the

upper part) and the subset of the players that are active in it (in the lower part). . . 58
3.3 Normalized CGS G• built on G. 60
3.4 Minimized CGS G� built on Normalized G•. 62
3.5 Turn-based game structure G? built on Minimized G�. In particular, the agent x is

owner of all circle nodes, the agent y is owner of all square nodes, and each diamond

node represents the transition state. Note that, for a matter of readability some nodes

are duplicated. 63
3.6 Turn-based structure. 70
3.7 A two-player turn-based game structure. 74
3.8 Degree transformation. 75

4.1 Prisoner’s Dilemma in Strategic Form. Each row corresponds to a possible
action for player 1, each column corresponds to a possible action for player 2,
and each cell corresponds to one possible outcome. Payoffs of the players for
an outcome are written in the corresponding cell, with the payoff of player 1
listed first. 97

4.2 Arena of the Prisoner’s dilemma. 97
4.3 Arena of the Iterated Prisoner’s dilemma. 99

5.1 A CGS for checking satisfiability of ϕ = (x1 ∨ x3) ∧ (x2 ∨ ¬x3). Action I
denotes “idle.” For simplicity, we omit the states that have no incoming edges.114

5.2 A CGS for ϕ3 = z2 ∧ ¬z1 ∧ (x1 ∨ x2), ϕ2 = z1 ∧ ¬x2, and ϕ1 = (x1 ∨
x2) ∧ ¬x2. For simplicity, we omit the states that have no ingoing edges. . . 117

5.3 A counterexample for Theorem 5.4.1. 120
5.4 Model checking algorithm for NatATLR with fixed k 123

List of Figures List of Figures

5.5 Oracle . 123
5.6 Model checking NatATLR with variable k 123
5.7 Summary of model checking complexity results 124

139

