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Tropical forests in the Solomon Islands have been heavily logged in the last century. However, little is
known about forest recovery dynamics across this region. Extrapolating findings from logged forests in
tropical mainlands or large continental landbridge islands to isolated archipelagos such as the
Solomons is inappropriate because succession and diversification patterns and processes differ between
the former and latter. We compared the taxonomic diversity and composition of trees between unlogged
forest and sites that were logged 10, 30 and 50 years previously to provide an indication of the potential
dynamics of these forests following timber harvesting. The distance to logging roads and to unlogged
forest influenced post-logging recovery, emphasising the importance of edge effects in previously logged
forests. At least in the first 50 years after logging, tree-community composition did not appear to
converge toward that in unlogged forests over time. Although species assemblages in logged forests
generally tend to shift from light demanding-pioneers to old-growth species over time, a long-lived
pioneer Campnosperma brevipetiolata dominated the forest even 50 years after logging. We suggest that
recovery of the tree community in logged forests has been hindered by the persistence of C. brevipetiolata,
and suggest that it could be thinned via careful silviculture techniques to enhance growth of
mature-phase forest species. Removal of such persistent, long-lived pioneer trees could potentially help
to accelerate recovery of heavily logged forests.

� 2016 Elsevier B.V. All rights reserved.
1. Introduction

Industrial logging is a major driver of the decline of old-growth
forests in the tropics (Putz et al., 2012; Edwards et al., 2014;
Katovai et al., 2015a). Nonetheless, logging is often the economic
lifeline for many developing tropical countries, generating sub-
stantial revenue through wood exports (Katovai et al., 2012;
Shearman et al., 2012; Zimmerman and Kormos, 2012). Some
countries have exhausted timber stocks as a result of unsustainable
harvesting (see Shearman et al., 2012 for examples). However
there has been an increase in logging activities in many parts of
the tropics over the recent past (FAO, 2015). For example, the
Eastern Melanesian islands in the northwest Pacific have recently
become a logging hotspot as a result of timber depletion in neigh-
bouring Southeast Asia (Shearman et al., 2012; Katovai et al.,
2015a). Logging operations in Eastern Melanesia have increased
dramatically over the past several years, and have contributed sig-
nificantly to economies in the region (Katovai et al., 2015a).

In the Solomon Islands, logging exports have generated over
half of the country’s annual export revenue for the past two dec-
ades (Solomon Islands National Forest Resources Assessment
(SINFRA), 2011; Shearman et al., 2012; Katovai et al., 2015a). How-
ever, unregulated harvesting, exacerbated by poorly conceptu-
alised and implemented state policies, corruption, and illegal
harvesting has driven accessible timber stocks to near depletion
(Kabutaulaka, 2000; Shearman et al., 2012; Katovai et al., 2015a).
A collapse of the timber industry would have serious consequences
for the country’s economy. Furthermore, increased logging can
possibly trigger a widespread loss of biodiversity and ecological
functions via the disruption of species interactions (Zimmerman
and Kormos, 2012).

The effects of industrial logging on tropical forest biodiversity in
the mainland tropics and continental landbridge islands such as
those of Southeast Asia are well documented (see review in
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Wilcove et al., 2013). These studies propose that logged forests
retainmuch of their pre-logged biodiversity, even when intensively
logged (Edwards and Laurance, 2013). This might not hold true for
tropical oceanic islands, because the regional and nearby species
pools that influence their local diversity differ from those in
mainland regions Gillespie et al., 2008).

Tropical oceanic islands are currently ‘hot-spots’ for industrial
logging, but their responses to logging are relatively poorly studied
to date (Katovai et al., 2012, 2015a, 2015b). The Solomon Islands,
for example, currently has large tracts of forests that have been
logged over the last several decades, yet little is known about bio-
diversity within them (Bennett, 1995, 2000; SINFRA, 2011; Katovai
et al., 2012) or their temporal and spatial patterns of post-logging
recovery. Such forests are highly vulnerable to further degradation
by re-entry logging and subsequent land-use activities.

In an effort to inform forest-management policies, we examined
tree species communities across an array of logged forests on
Kolombangara Island in the Solomon Islands. We assessed the fac-
tors influencing recovery of tree diversity and species composition
in previously logged forests, with a particularly focus on determin-
ing whether a half century was sufficient to allow forests to recover
to pre-logging conditions.
2. Materials and methods

2.1. Study area

Forests in the Solomon Islands are rich in biodiversity and con-
tain exceptionally high endemism (Whitmore, 1969; Olson and
Dinerstein, 1998; Gillespie et al., 2008; Walter and Hamilton,
2014). For example, over half of all palm, orchid and climbing pan-
danus (Freycinetia spp.) species are endemic to the region, with
some endemic to a single island or forest type (Hancock and
Henderson, 1988). Such high insular biodiversity is thought to have
originated via very rare dispersal events from mainland tropical
locations (Gillespie et al., 2008; Keppel et al., 2009). A decline of
species diversity and ecological complexity of forests as one moves
eastward across Melanesia, further away from New Guinea and
Southeast Asia, supports this model (Gillespie et al., 2008; Keppel
et al., 2010). For instance, a 30-year census of tree dynamics in nat-
urally disturbed forests on Kolombangara, Solomon Islands
revealed a simple pattern of species replacement involving the
re-establishment of particular species at various stages of succes-
sion (Burslem and Whitmore, 1999). In contrast, forests on the
tropical mainland and large continental landbridge islands
undergo more complex successional patterns involving a larger
array of successional species, resulting in naturally disturbed
forests becoming floristically divergent with time (Keppel et al.,
2010).

This study was conducted on Kolombangara Island (157�E and
5�S) in the New Georgia group of the Solomon Islands. The geomor-
phology and floristics of large islands in New Georgia are very sim-
ilar to one another and also broadly comparable to other large
islands across the region (Whitmore, 1967; Hancock and
Henderson, 1988). Kolombangara is an extinct Pleistocene volcano
that is �32 km in diameter and circular in shape (Fig. 1). Topogra-
phy increases from the relatively flat coastal plains to the base of
the central volcanic cone at �700 m elevation and progressively
steepens to the crater rim at �1700 m elevation. The central crater,
at �600 m elevation, is �6.5 km in diameter and topographically
uneven. Rainfall is relatively uniform across the island, exceeding
3000 mm/yr, with bi-annual wet seasons from November to March
and July to August (Aldrick, 1993; Katovai et al., 2012).

Kolombangara was once covered with dense wet-tropical
forests, but with fewer families, genera and species compared to
the neighbouring Islands of New Guinea (Whitmore, 1969;
Hancock and Henderson, 1988). However, much of Kolombangara’s
lowland forests have been cleared or degraded since the early
1900s (Katovai et al., 2012). For example, since 1964, heavy logging
has degraded >90% of accessible lowland forests from the coastline
to 400 m elevation (Bennett, 2000; Katovai et al., 2012). Logging
has been more limited from 400 to 700 m elevation because of
unstable soils and steep slopes.

Initial logging on Kolombangara was exclusively implemented
by a single U.K. company, Lever Brothers (Katovai et al., 2012,
2015a). For this reason, harvesting strategies and extraction
patterns were highly systematic and consistent among sites
(Bennett, 2000). Operations began on the southeast of the island
and progressed anticlockwise (Bennett, 2000). Some patches of
traditionally owned land in the southwest were logged later,
beginning in the 1980s, by various other foreign companies.
Nonetheless, these later logging practises were relatively similar
to those used by the Lever Brothers.

In the past three decades, much of Kolombangara’s logged
forests in the SE, NE and NW quadrants of the island have been
converted into commercial wood plantations (Bennett, 2000).
However, patches of both logged and unlogged forests remain scat-
tered across these quadrants (Fig. 1). The absence of commercial
plantations in the SW quadrant has allowed natural regeneration
in large areas. Unlogged patches of lowland forests on the island
are typically restricted to traditionally owned and church-leased
lands (Whitmore, 1989; Katovai et al., 2012). However, most of
these forests have already been included in logging-concession
areas and are open to logging over the next few years.

2.2. Study design

From January to November 2013, we sampled 144 0.1-ha
(50 m � 20 m) vegetation plots in six logged and six unlogged
coupes spanning an elevation gradient from 20 to 422 m. During
this process we used oral traditional information and published
information to avoid establishing plots in old human settlements
(e.g. Burslem et al., 2000; Bayliss-Smith et al., 2003), to exclude
effects of past land use in our study.

We sampled a post-logging chronosequence, with two coupes
each sampled from areas that had been logged 10, 30, and 50 years
previously. Unlogged (control) coupes were largely intertwined
with logged coupes to ensure they were matched topographically
and elevationally (Fig. 1). In each coupe, 12 plots were established
using stratified random sampling to determine plot locations, with
plots stratified on the distance to the nearest logging road (e.g.
Laurance et al., 2001). Distances to the nearest logging road and
to unlogged forest were determined using GPS (Garmin 76cx
GPS; Garmin International, Inc., Kansas City, USA).

Basal area of cut stumps was used as a proxy for harvest inten-
sity in logged forests. We first measured the diameter and height of
all cut stumps in a 50 m � 70 m quadrat centred on the plot. For
each partially decomposed stump, we estimated stump diameter
by visually reconstructing the cut-level circumference using avail-
able information on the buttressing and bole profile from stump
base to cut level. A stem profile model developed for tropical
forests was then used to generate DBH estimates for stumps that
were either cut below or above the conventional DBH [�1.3 m]
(see protocol details in Ito et al., 2010). Finally we estimated the
basal area of harvested trees using these values for each quadrat.

In each plot, we measured elevation and soil nitrogen (N) as
these variables may strongly affect floristic communities (e.g.
Hardwick et al., 2004; Sundqvist et al., 2013; Asase et al., 2014).
Elevation was determined using GPS. To determine N in each plot,
we extracted soil samples to 30 cm depth from four randomly
selected points using a cylindrical soil extractor. Samples from



Fig. 1. Kolombangara is part of the New Georgia group of islands in the Solomon archipelago located in the northwest Pacific. Logged forest sites were demarcated according
to regeneration times of 10, 30 and 50 years. Two forest coupes were selected for each timeframe. Unlogged forests were demarcated.
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individual plots were air-dried, thoroughly mixed and sieved
through a 2 mmmesh (e.g. Asase et al., 2014). N weight percentage
(%N) was determined using a Costech Elemental Analyzer (Costech
Analytical Technologies, Inc., CA, USA) and Continuous-Flow
Isotope Ratio Mass Spectrometry (Bay et al., 2015).

Tree diversity surveys were conducted in 48 plots across the
study area. Four plots were randomly selected per coupe, thereby
covering �33% of the sampled sites. A recent study on the
Kolombangara showed the robustness of such a sample size in
capturing attributes of floristic diversity across the island
(Katovai et al., 2012).

2.3. Data collection

We identified and uniquely tagged all trees P10 cm DBH.
Proxies used for tree diversity were species richness and
Shannon–Weiner diversity index (H0), with the latter taking into
account both species richness and evenness – a measure of the
relative abundance of all tagged tree species per plot (Spellerberg
and Fedor, 2003). Species richness was determined by enumerating
the number of morphospecies identifiable from distinctive traits in
the field (e.g., Valencia et al., 2004). Species evenness was
determined by measuring the relative abundance of each species
per plot.

To determine species identity, we collected voucher specimens
including leaves, flowers and fruits (where possible) from each
tagged tree that could not be identified in the field. Voucher
specimens were returned to the National Herbarium in Honiara
where M. Sirikolo, an expert on the Solomon Islands flora, and E.
Katovai did further taxonomical sorting. Online herbarium data-
bases (http://www.pngplants.org; http://www.rbge.org.uk/home-
original) and published floras (e.g. Whitmore, 1967, 1969; Peekel,
1984; Hancock and Henderson, 1988) were also used to aid the
identification of morphospecies.

http://www.pngplants.org
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2.4. Statistical analyses

2.4.1. Spatial autocorrelation
In landscape level studies such as this, there is a potential that

spatial autocorrelation will influence outcomes. Spatial eigenvec-
tor mapping (SEVM) generated through Principle Coordinates
Neighbour Matrices (PCNM) was used to assess, and if necessary,
account for spatial autocorrelation (Dray et al., 2006; Costion
et al., 2015). GPS coordinates for all plots were formatted in deci-
mal latitude and longitude before importation into SAM – Spatial
Analyses in Macroecology (Rangel et al., 2010). A truncation
distance of 13.18 km (calculated in SAM) was then used to create
spatial filters. When each tree diversity and composition proxy
was selected to guide filters selection, a single eigenvector filter
was generated. However, in both cases the filter was neither statis-
tically significant (P > 0.05) nor had sufficient explanatory power
(R2 < 0.2) to warrant inclusion as a candidate predictor for tree
diversity models (Huang et al., 2011).
2.4.2. Recovery of tree diversity in logged forests
We used linear mixed-effect models (LMMs) to investigate the

response of tree species richness and H0 diversity to a series of
potential predictor variables. These predictors were ordination
axes generated by simplifying a much larger set of potential
predictors using nonmetric multidimensional scaling (NMS) on
PC-ORD (McCune and Mefford, 2011). Because plots within each
coupe were not independent of each other, we included coupe as
a random effect in all models. We checked for collinearity between
selected predictor variables by (a) plotting pairs of variables for
visual examination, (b) calculating correlation coefficients for each
pair of predictor variables, and (c) examining variance-inflation
factors using the package usdm in the program R (Naimi, 2013; R
Core Team, 2014). When two variables were strongly correlated,
we selected the most compelling predictor to model species
richness and diversity based on biological reasoning.

Prior to modelling, H0 diversity was log-transformed to
minimise heteroscedasticity. We then built global models for
species richness and for H0 diversity, which were each modelled
as functions of (a) time since logging, (b) site elevation, (c) harvest
intensity (basal area harvested), (d) soil N, (e) distance to nearest
logging road, and (f) distance to nearest unlogged forest (a poten-
tial source for old-growth propagules). We predicted our variables
to influence species richness and diversity in the following ways:
time since logging, soil N and distance to road would positively
impact species richness and diversity, with increasing elevation,
harvest intensity, and distance to unlogged forest having opposite
effects. We also tested for interactions between any selected
predictors and our random variable (logging coupe) (Asase et al.,
2014).

Interactions between time since logging and all predictor vari-
ables were also included in the models. We then used the dredge
function in the R package MuMIn to create a candidate model set
with all possible simpler subsets of each global model (Barton,
2013). Models for inference were selected based Akaike’s Informa-
tion Criterion (AICc), corrected for sample size, which trades off
model fit and model complexity (Burnham and Anderson, 2004;
Mazerolle, 2015) and identifies the ‘‘best simplest model(s)”. This
included all models with delta AICc < 7. The parameters from these
models were then averaged based on model weights (Burnham and
Anderson, 2004). Inferences from averaged parameter estimates
were drawn based on effect sizes and whether their 95% confi-
dence interval (CI) overlapped zero. Finally, we used the predictSE
function in the R package MuMin (Barton, 2013) to generate pre-
dicted values from the averaged models for visualising results.
All analyses were generated using R (R Core Team, 2014).
2.4.3. Tree richness and diversity across recovery time
We performed a one-way ANOVA to examine how means of

species richness and H0 differed among time-classes for logged
and unlogged forests, followed by Tukey’s post hoc tests.
Error-bar graphs were generated to visualise any differences in tree
richness and H0 diversity across time. This analysis was done in
Statistix 8 (Tallahassee FL 32317, USA).

2.4.4. Tree species composition across recovery time
To determine how tree community composition varied across

forest age-classes, we performed an Analysis of Similarity
(ANOSIM) based on Bray–Curtis similarity matrices of occurrence
and abundance using primer-E (Clarke and Gorley, 2006). Prior to
these analyses, rare species (<10 stems) were removed, as these
can potentially distort the ordination (Legendre and Gallagher,
2001; Laurance et al., 2008). Log(x + 1) transformations were used
to give somewhat greater weight to abundant species (Clarke et al.,
2006). Non-metric dimensional scaling (MDS) was then used to
identify major gradients in tree species composition and to
visualise patterns across forest classes. We also calculated impor-
tance values (Relative frequency + Relative Density + Relative
Dominance) for each species in each forest class to identify impor-
tant species in both logged and unlogged forests (Skeen, 1973;
Zhao-hua et al., 2001).
3. Results

Overall, 2450 individual trees were sampled in the 48 0.1 ha
plots. These were sorted into 50 families and 176 morphospecies
of which 118 were identified to species level, 55 to genus level
and three unidentified (Supporting Information Table A.1). Fifty-
seven species were found only in unlogged forest as compared to
54 in logged forests, while 65 occurred in both forest categories
(Supporting Information Fig. A.1).

3.1. Recovery dynamics of tree richness

There was no major colinearity among the selected predictor
variables (variance inflation factors all <2.06, with correlation
coefficients ranging from �0.42 to 0.43). For species richness, the
averaged LMM fit the data well (Pearson’s R between observed
and model-fitted values = 0.92) and comprised five models.
The averaged model included time, soil N, distance to road, and
distance to unlogged forest (Table 1).

Distance to road had a strong positive effect on species richness
at 10 years post-logging (slope = 9.8, 95% CI = 4.69, 15.0) (Fig. 2a)
and negative effects at 30 years post-logging (slope = �14.71;
95% CI = �22.66, �6.75) (Fig. 2b). The effect for 50 years post-
logging was weakly negative (slope = �11.2; 95% CI = �19.41,
�2.95) (Fig. 2c). Distance to unlogged forest had no effect on
species richness at 10 years post logging (slope = �11.27; 95%
CL = �1.64, 25.0) (Fig. 2d). At 30 and 50 years post-logging,
distance to unlogged forest had strong negative effects on
species richness (slope = �16.57; 95% CI = �22.44, �10.71 and
slope = �17.12; 95% CI = �23.13, �11.10, respectively)
(Fig. 2e and f). Although soil N was part of the averaged model, it
did not have any important effect on species richness across
recovery time (Table 1).

3.2. Recovery dynamics of species diversity

The averaged model for H0 diversity fitted the data well
(Pearson’s R between observed and model-fitted values = 0.95).
The average model consisted of nine models. The averaged model
included time, harvest intensity, distance to road, and distance to



Table 1
The species richness candidate model set (only with AICc < 7) used in the LMM analyses, with associated effect degrees of freedom, AICc and DAICc values. Columns 2–12
represent the predictors used in the model (with columns 8–12 indicating interactions between each predictor and time. Slope coefficient for each predictor was shown if the
predictors were included in the corresponding model. A ‘⁄’ sign indicates that predictor–time interaction was included in the corresponding model. A ‘–’ sign indicate that
predictors or their interactions with time were not included in the corresponding model. An average model was generated from models with DAICc < 7 which only constituted
distance to road and distance to unlogged forest and there interactions with time.

Model BAH Distuf Distrd Elev Snitro Time BAH: Time Distuf: Time Distrd: Time Elev: Time Snitro: Time df AICc DAICc

423 – 14.43 9.69 – – �22.54 – ⁄ ⁄ – – 11 126.1 0.00
295 – �2.68 10.60 – – 12.14 – – ⁄ – – 9 129.7 3.59
439 – 14.25 9.11 – �0.73 �18.96 – ⁄ ⁄ – – 12 131.9 5.77
311 – �2.64 10.19 – �0.49 14.21 – – ⁄ – – 10 132.9 6.80
293 – – 10.34 – – 6.82 – – ⁄ – – 8 133.0 6.93

BAH = Basal area harvested, Distuf = Distance to nearest unlogged forest, Distrd = Distance to road, Elev = Elevation, Snitro = Soil nitrogen.
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unlogged forest. However, harvest intensity and soil N had no
important effect on H0 diversity across recovery time (Table 2).

Distance to road had a weak positive effect on H0 diversity at
10 years post-logging (slope = 0.62, CI = 0.11, 1.12) (Fig. 3a). The
effect of distance to road was weakly negative for 30 years post-
logging (slope = �0.96, CI = �1.25, �0.67) (Fig. 3b). In 50 years
post-logging, the effect of distance to road was weakly positive
(slope = 0.79, CI = 1.11, 0.47) (Fig. 3c). Distance to unlogged forest
had a moderately positive effect on diversity at 10 years post-
logging (slope = 2.07, CI = 2.17, 8.99) and moderate negative effects
at 30 years (slope = �2.27, CI = �2.81, �1.73) and 50 years
(slope = �2.24, CI = �2.74, �1.73) post-logging (Fig. 3d–f).
3.3. Recovery of tree species richness and diversity

Means of tree species richness of the three logged forests and
unlogged forest categories were not significantly different
Fig. 2. The relationship between tree species richness and distance to road and distance
from the LMM, and the grey polygons, the 95% CI associated with the modelled predicti
influence on tree species richness across recovery time. Both had positive effects on recen
regeneration at 30 and 50 yrs. post-logging (b, c, e and f). Distance to propagule however
prediction line seems strongly positive due to the relative proximity of recently logged
(F3,44 = 2.59, p = 0.0644) with richness ranging from 16 to 22
species per plot. In contrast Shannon diversity means significantly
differed between these forests (F3,44 = 5.65, p = 0.0023). Tukey’s
post hoc tests however revealed only two homogenous groups
whereby H0 diversity mean in 10 yrs. post-logged forests was sig-
nificantly lower than those of older logged and unlogged forests
(Supporting Information Fig. A.2).
3.4. Recovery of tree species composition

ANOSIM and pairwise comparisons revealed that tree species
composition significantly differed across all four forest classes
(Global R = 0.47, p < 0.001) (Fig. 4a). Across logged forest classes,
tree compositional similarity was lowest between forests 10 and
50 years post-logging bearing a species similarity index of 20.8%
(R = 0.715, p < 0.001), followed by the 10 and 30 year classes
(26.8%; R = 0.56, p < 0.001). Tree compositional similarity was
to unlogged forest across recovery time. Solid lines represent fit (predicted) values
ons. Both distance to road and distance to unlogged forest appear to have a varied
tly logged forests i.e. 10 yrs. (a and d), and negatively influenced forests undergoing
had no pronounced effect on species richness in recently logged forests although the
forests to propagule sources (d).



Table 2
The Shannon diversity candidate model set (only with AICc < 7) used in the LMM analyses, with associated effect degrees of freedom, AICc and DAICc values. Columns 2–12
represent the predictors used in the model (with columns 8–12 indicating interactions between each predictor and time. Slope coefficient for each predictor was shown if the
predictors were included in the corresponding model. A ‘⁄’ sign indicates that predictor-time interaction was included in the corresponding model. A ‘–’ sign indicate that
predictors or their interactions with time were not included in the corresponding model. An average model was generated from models with DAICc < 7 which only constituted
distance to road and distance to unlogged forest and there interactions with time, basal area harvest and soil nitrogen. Nonetheless, the interactions between basal area harvested
and soil nitrogen with time was not included in either of the best models, and therefore its influence on species richness cannot be predicted across post-logging recovery.

Model BAH Distuf Distrd Elev Snitro Time BAH: Time Distuf: Time Distrd: Time Elev: Time Snitro: Time df AICc DAICc

423 – 2.16 0.78 – – �4.58 – ⁄ ⁄ – – 11 28.5 0.00
1 – – – – – – – – – – – 3 28.8 0.36
5 – – 0.33 – – – – – – – – 4 30.0 1.53

17 – – – – �0.21 – – – – – – 4 31.2 2.72
21 – – 0.31 – �0.20 – – – – – – 5 32.8 4.32
2 �0.09 – – – – – – – – – – 4 33.0 4.51

33 – – – – – 0.58 – – – – – 5 33.8 5.36
3 – 0.02 – – – – – – – – – 4 34.8 6.39

293 – – 0.89 – – �0.20 – – ⁄ – – 8 35.0 6.51

BAH = Basal area harvested, Distuf = Distance to nearest unlogged forest, Distrd = Distance to road, Elev = Elevation, Snitro = Soil nitrogen.

Fig. 3. The relationship between Shannon–Weiner diversity index (H0) and distance to road and distance to unlogged forest across recovery time. Solid lines represent fitted
(predicted) values from the LMM, and the grey polygons, the 95% confidence intervals associated with the modelled predictions. Both distance to road and distance to
unlogged forest appear to have a varied influence on H0 diversity across regeneration time. They both predicted a positive effect for recently logged forests i.e. 10 yrs. (a and d).
Effects of distance to road on H0 diversity was relatively weak for logged forests at 30 and 50 yrs. of recovery (b and c). Distance to unlogged forest, however, had a pronounced
negative effect on H0 diversity in these forests (e and f).
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highest between the 30 and 50 year post-logging forests (39.7%;
R = 0.154, p < 0.05). Tree species compositions of all post-logging-
time categories were significantly different from those in unlogged
forests: 10 years post-logging forests (20.9%; R = 0.383, p < 0.001),
30 years post-logging forests (22.9%; R = 0.345, p < 0.001) and
50 years post-logging forests (16.6%; R = 0.587, p < 0.001). Intra-
and inter-coupe similarities across all forest classes were �50%
and �20%, respectively. Mean similarities across logged and
unlogged forest forests were 32.8% and 29.9% respectively.

A two-dimensional MDS ordination showed strong associations
with several ecological gradients (Fig. 4b). Axis 1 was strongly
linked to elevation and harvest intensity (R = �0.83, p < 0.0001,
R = 0.50, p = 0.013, respectively). Axis 2 was strongly associated
with liana abundance (R = 0.51, p = 0.011) and also revealed tree-
species compositional change due to turnover between pioneer
and shade-tolerant species across forest succession. The presence
and abundance of ‘important species’ identified by MDS and
ANOSIM varied greatly among forest classes (Fig. 5). Only
Campnosperma brevipetiolata and Teijsmanniodendron ahernianum
were relatively important across all logged forest classes, of which
C. brevipetiolata was the most important species (Fig. 5). The relative
importance of T. ahernianum decreased from 10 to 30 years post-
logging and then increased between 30 and 50 years post-logging.
T. ahernianum was the most important species in unlogged forests.



Fig. 4. Non-metric multi-dimensional scaling (MDS) for similarity of tree species composition between logged forests at 10 years of regeneration (j), 30 years of regeneration
(d), 50 years of regeneration (N) and unlogged forests (r). MDS is based on Bray–Curtis similarity indices. Species compositions were significantly dissimilar between forest
classes (a). Successional change in species composition across post-logging regeneration is highly associated with elevation and harvest intensity [Axis 1] and liana
abundance [Axis 2] (b).
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4. Discussion

4.1. Recovery dynamics of tree diversity

Of the potential predictors investigated, distance to logging
road and distance to unlogged forest best explained changes in tree
species diversity during post-logging recovery on Kolombangara.
In contrast, a related study conducted in Borneo reported that
the distance matrices between logged and unlogged forests have
had trivial influence on post-logging retention of biodiversity
(Fisher et al., 2011). Unlike forests in Borneo where harvesting
was managed (i.e. cut size limit of 60 cm and 40 cm DBH at first
and second harvest respectively), logging on Kolombangara was
more intense (cut size limit of 30 cm DBH) and unregulated
(Katovai et al., 2015a). Such highly excessive logging can impose
serious damage on residual forests as well as arrest forest recovery
(Leverkus et al., 2015). We suggest that excessive logging may
increases the reliance on unlogged forests as propagule sources
for post-logging forest recovery.

Although being part of the average models, soil nitrogen (Tables
1 and 2), and basal-area harvest (Table 2) did not influence tree
species richness and diversity in logged forests. Our results confirm
the importance of maintaining propagule sources in close proxim-
ity to logged forests (Brown and Gurevitch, 2004; Duncan, 2006;
Alvarez-Aquino et al., 2014; Harrison and Swinfield, 2015). Addi-
tionally, our findings suggest that the recovery of tree diversity
were not influenced by small shifts in microclimate and soil attri-
butes associated with local topographical variation.

4.1.1. Distance to road
We found varying effects of road distance on tree diversity

across logged forests. In the 10-year post-logging plots, tree species
richness and diversity both increased further from logging roads
(Figs. 3a and 4a). This might result both from topographic effects



Fig. 5. Importance values of the top 10 dominant tree species in logged forest time classes and unlogged forests. C. brevipetiolata (in black) was highly dominant in logged
forests.
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and the greater intensity of damage associated with logging roads
(Whitmore, 1989; Katovai et al., 2012). Abandoned logging roads in
our study area were mostly located along plateaus on ridge tops
that converge at the base of the central cone of the extinct volcano.
Damage associated with log extraction and skidding trails were
intense near roads on ridge plateaus, where trees were highly
accessible. However, damage intensity decreased laterally away
from roads as logging extended into highly challenging topography
along steepening ridge slopes. An increase in species evenness in
our plots likely arose from the strong recruitment of pioneer spe-
cies in logged forests (e.g. Zimmerman and Kormos, 2012).

The increase in tree species richness and diversity near roads at
30 years post-logging may indicate a progressive mixing of long-
lived pioneers and mid-successional species, increasing richness
levels compared to areas of low disturbance (Asase et al., 2014).
Recent studies have shown similar trends elsewhere in tropical for-
ests where long-lived pioneer trees are prevalent (Asase et al.,
2014; Wang et al., 2014). On Kolombangara Island, for instance,
pioneer species such as C. brevipetiolata sp., Macaranga spp.,
Calophylum spp. and Dilenia spp. remained an integral part
of the forest stand along with several recently established
mid-succession species such as Dosyxylum, Syzigium, Sterculia,
Cryptocarya and Callophylum spp. (Bayliss-Smith et al., 2003).
4.1.2. Distance to unlogged forest
The influence of propagule sources on logged forests was weak

in recently logged forests but became increasingly pronounced in
mid to late succession stages (Figs. 3d–f and 4d–f). This suggests
that pioneer recruitment mostly depends on soil seed banks that
probably existed prior to disturbance (e.g. Schnitzer and Carson,
2001; Dalling and Brown, 2009; Tiansawat et al., 2014). This pattern
is usually driven by survival strategies (i.e. prolific seed production
in pre-disturbed forests, high seed dispersal and longevity) coupled
with favourable environments for disturbance-triggered germina-
tion in post-disturbed forests (Swaine and Whitmore, 1988;
Dalling and Brown, 2009; Tiansawat et al., 2014). Seeds of pioneer
tree species can also be rapidly dispersed into forest gaps by wind
after logging due to their relatively small size, (Laurance et al.,
2002; Correa et al., 2015).

The strong negative effect of distance to unlogged forest on tree
diversity in 30 and 50 years post-logging forests highlights the
importance of recruiting seeds of shade tolerant species into
post-logged forests. The seeds of numerous shade tolerant species
in wet tropical forests are desiccation-intolerant, resulting in short
viability, and often do not contribute to soil seed banks (Berjak and
Pammenter, 2013; O’brien et al., 2013). Studies of the mainland
tropics have suggested that �50% of tree species in wet tropical
forests are similarly recalcitrant in nature (Daws et al., 2006; Lan
et al., 2014).
4.2. Recovery of tree species richness and diversity

Tree species richness and diversity in logged forests on Kolom-
bangara can recover to pre-cut levels if allowed to regenerate with-
out human disturbances such as re-entry logging or other land use
activities. The high variation in species richness and diversity
among plots at 10 yrs. post-logging may be the result of patchy
logging damage (e.g., Berry et al., 2010; Bicknell et al., 2014;
Burivalova et al., 2014). These irregularities usually result from
varying topography and the distribution of timber trees within
concession areas (Katovai et al., 2015a). Although species richness
levels were similar across recovery times, tree diversity differed;
diversity in 10 years post-logging forests was markedly lower than
that found in 30 and 50 years post-logging forests. This may indi-
cate low species evenness of trees (P10 cm DBH) across recently
logged forests, (e.g. Almazán-Núñez et al., 2012; Sandor and
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Chazdon, 2014). Stem abundance of newly established trees at
10 yrs post-logging was relatively high because of many Macar-
anga dioca stems, but most trees of this species were <10 cm
DBH and hence not included in the analysis. The recovery of tree
diversity to pre-cut levels by 30–50 yrs post-logging suggests that
tree species evenness had largely recovered, even in intensely
logged areas. Several studies in tropical Asia and Africa have
reported similar results (e.g. Berry et al., 2010; Wilcove et al.,
2013; Asase et al., 2014).

4.3. Effects of logging on tree community assemblage

Unlike species richness and diversity, tree-community compo-
sition on logged forests of Kolombangara did not appear to recover
to pre-cut levels (Fig. 5a). It has often been suggested that diver-
gent recovery paths can occur where forests have been extremely
damaged via mass tree removal (Magnusson et al., 1999;
Chazdon et al., 2007; Bonnell et al., 2011; Cazzolla Gatti et al.,
2015), although other studies have argued that log-felling does
not permanently alter tree community composition (Bonnell
et al., 2011; Bicknell et al., 2014). It appears that logging damage
can be minimised through well-planned and managed harvest
techniques. Intense or careless harvesting can create extreme
levels of damage that alter regeneration dynamics by hampering
the recovery potentials of the forest (Yamamoto, 2000; Bonnell
et al., 2011; Cazzolla Gatti et al., 2015).

Post-logging regeneration across wet topical forests generally
relies on seed germination and establishment (e.g. Chazdon,
2003; Esaete et al., 2014; Valverde-Barrantes and Rocha, 2014).
Seed-based recovery often varies across a spatial mosaic compris-
ing gaps of various sizes (Chazdon, 2003; Katovai and Katovai,
2012; Arihafa and Mack, 2013). Large gaps (<90 m2), such as those
evident across logged forests in this study, favour light demanding
(pioneer) species. Initial light levels are usually very high in gaps of
this size and shade-tolerant species are unable to exist under these
conditions at the onset of gap-phase regeneration. The latter may
gradually replace the former during the course of succession
(Yamamoto, 2000; Cazzolla Gatti et al., 2015). Such transition is
usually determined by the longevity and adaptability of the occur-
ring species in response to the changing light-gap environment
(Chazdon et al., 2007). For instance, on Kolombangara, recently
logged forests are dominated by pioneer species including the
highly prevalent M. dioca and C. brevipetiolata among others
(Fig. 5). Macaranga dominance subsided within two decades of
regeneration, whereas C. brevipetiolata is long-lived, retaining
dominance even at 50 years post-logging. The latter is highly asso-
ciated with forest disturbance in many parts of the Solomon
Islands and other tropical oceanic islands where it is present
(Sheely and Meagher, 1996; Bayliss-Smith et al., 2003).

The dominance of C. brevipetiolata may have stalled succession
in logged forests by delaying growth and development of
late-successional species. The frequent occurrence of important
late succession species such as Dellinia spp., Callophylum spp. and
Terminalia spp. in the understory and subcanopy layer of
C. brevipetiolata-dominated forests on Kolombangara supports this
view (e.g. Whitmore, 1989; Katovai et al., 2012). Although the
importance of C. brevipetiolata declined between 30 and 50 yrs
post-logging, the turnover between C. brevipetiolata and late suc-
cession species appeared protracted and may take several decades
to fully play out (Chazdon et al., 2007). Such protracted succession
may have implications on the recovery of forest functions and
ecosystem provisioning on logged forests across Solomon Islands
(Edwards et al., 2014).

Silviculture experiments involving post-logging thinning of
C. brevipetiolata could potentially shed more light on its impact
on floristic recovery. Since C. brevipetiolata is a commercially
exported hardwood (Bennett, 2000), extracted trees can provide
economic benefits to local communities, as well as offset silvicul-
tural costs. Studies in the tropical forests of Central Africa showed
that post-logging thinning of pioneer trees facilitated species com-
positional recovery to pre-cut levels (Ouédraogo et al., 2011;
Gourlet-Fleury et al., 2013). However, the success of such efforts
relies on well-regulated forest management policies (Katovai
et al., 2015a, 2015b). Failure of previous post-logging silviculture
efforts has resulted from weak policies in regulating re-entry of
logging and secondary forest management in the region
(Zimmerman and Kormos, 2012). For example, the thinning long-
lived pioneer species in Papua New Guinea enhanced growth of
old growth species but prompted subsequent re-entry harvests
that permanently damaged the forests (P. Shearman, pers. comm.).
5. Conclusion

In this study, we show that proximity to logging roads and to
nearby unlogged forests strongly influenced patterns of tree regen-
eration in logged forests. While tree diversity was comparable
between logged and unlogged forests, tree community composi-
tion in logged forests differed significantly to that of unlogged for-
ests, even after 50 years of regeneration. We suggest that long-
lived pioneer tree species in intensively degraded tropical forests
can stall the succession process, which may inhibit the trajectory
of species compositional recovery to pre-cut levels. We conclude
that 50 years of post-logging regeneration is inadequate to return
tree floristic composition to pre-cut levels, when initial logging
damage is severe, as was the case on Kolombangara Island.

Since most of Kolombangara’s lowland forests have been mod-
ified via logging and commercial tree plantations, it is vital that
remnant patches of unlogged forests are protected to aid regener-
ation of logged forests. This is challenging, however, because most
remaining uncut forests in the Solomon Islands are highly vulner-
able to logging (Katovai et al., 2015a). Harvesting the dominant
pioneer C. brevipetiolata in logged forests might provide economic
returns to local communities while potentially removing a species
that is limiting forest recovery. Across the Solomon Islands, policies
that protect remaining unlogged forests and limit re-entry logging
before stands have recovered are a key priority.

Results from this study also suggest that post-logging floristic
recovery trends on tropical oceanic islands are generally similar
to those across mainland tropics and associated landbridge islands.
However, unlike in the mainland tropics where large expanses of
unlogged forests still remain, most tropical oceanic islands, partic-
ularly those in East Melanesia, have been extensively logged. It is
therefore vital that logging operations on islands abide by a set
of management guidelines that limit the impacts of harvesting to
ensure the potential for post-logging forest recovery is maximised.
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