
A Dynamic Programming Approach
to Improving Translation Memory Matching

and Retrieval Using Paraphrases

Rohit Gupta1(B), Constantin Orăsan1, Qun Liu2, and Ruslan Mitkov1

1 University of Wolverhampton, Wolverhampton, UK
R.Gupta@wlv.ac.uk

2 Dublin City University, Dublin, Ireland

Abstract. Translation memory tools lack semantic knowledge like para-
phrasing when they perform matching and retrieval. As a result, para-
phrased segments are often not retrieved. One of the primary reasons
for this is the lack of a simple and efficient algorithm to incorporate
paraphrasing in the TM matching process. Gupta and Orăsan [1] pro-
posed an algorithm which incorporates paraphrasing based on greedy
approximation and dynamic programming. However, because of greedy
approximation, their approach does not make full use of the paraphrases
available. In this paper we propose an efficient method for incorporating
paraphrasing in matching and retrieval based on dynamic programming
only. We tested our approach on English-German, English-Spanish and
English-French language pairs and retrieved better results for all three
language pairs compared to the earlier approach [1].

Keywords: Edit distance with paraphrasing · Translation memory ·
TM matching and retrieval · Computer aided translation · Paraphrasing

1 Introduction

Apart from retrieving exact matches, one of the core features of a TM system is
the retrieval of previously translated similar segments for post-editing in order
to avoid translation from scratch when an exact match is not available. However,
this retrieval process is generally limited to edit-distance based measures oper-
ating on surface form (or sometimes stem) matching. Most commercial systems
use edit distance [2] or some variation of it. Although these measures provide a
strong baseline, they are not sufficient to capture semantic similarity between
segments as judged by humans. For example, even though segments like I would
like to congratulate the rapporteur and I wish to congratulate the rapporteur have
the same meaning, current TM systems will consider them not similar enough
to use one instead of the other. The two segments have only 71 % similarity
based on word based Levenshtein edit-distance, even though one segment is a
paraphrase of the other segment. To mitigate this limitation of TM, we propose
an approach to incorporating paraphrasing in TM matching.
c© Springer International Publishing Switzerland 2016
P. Sojka et al. (Eds.): TSD 2016, LNAI 9924, pp. 259–269, 2016.
DOI: 10.1007/978-3-319-45510-5 30

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DCU Online Research Access Service

https://core.ac.uk/display/196235449?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

260 R. Gupta et al.

A trivial approach to implementing paraphrasing along with edit-distance
is to generate all the paraphrased segments based on the paraphrases avail-
able and store these additional segments in the TM. This approach leads to a
combinationtorial explosion and is highly inefficient both in terms of time nec-
essary to process and space to store. For a TM segment which has n different
phrases where each phrase can be paraphrased in m more possible ways, we get
(m + 1)n − 1 additional segments (still not considering that these phrases may
contain paraphrases as well). To measure how many segments will be generated
in reality, we randomly selected a sample of 10 segments from the TM and used
the same paraphrase database as used in our experiments to generate additional
segments. By limiting only to not more than three phrases to be paraphrased
per segment we generated 1,622,115 different segments.

This paper presents a simple, novel and efficient approach to improve match-
ing and retrieval in TM using paraphrasing based on dynamic programming.
Our tool is available on Github.1

2 Related Work

Several researchers have pointed out the need for more advanced processing in
TMs that go beyond surface form comparisons and proposed the use of semantic
or syntactic information, but their methods are inefficient for large TMs [3–8].

Macklovitch and Russell [4] showed that using NLP techniques like named
entity recognition and morphological processing can improve matching in TM,
whilst Somers [5] highlighted the need for more sophisticated matching tech-
niques that include linguistic knowledge like inflection paradigms, synonyms and
grammatical alterations. Both Planas and Furuse [3] and Hodász and Pohl [6]
proposed to use lemmas and parts of speech along with surface form compari-
son. Hodász and Pohl [6] extended the matching process to a sentence skeleton
where noun phrases are either tagged by a translator or by a heuristic NP aligner
developed for English-Hungarian translation. Planas and Furuse [3] tested a pro-
totype model on 50 sentences from the software domain and 75 sentences from a
journal with TM sizes of 7,192 and 31,526 segments respectively. A fuzzy match
retrieved was considered usable if less than half of the words required editing to
match the input sentence. The authors concluded that the approach gives more
usable results compared to Trados Workbench, an industry standard commercial
system, used as a baseline.

Pekar and Mitkov [7] presented an approach based on syntactic transfor-
mation rules. They evaluated the proposed method using a query sentence and
found that the syntactic rules help in retrieving better segments. The use of
alignments between source and target at word, phrase or character level was
proposed in [9] as a way of improving matching.

Recent work focused on approaches which use paraphrasing in TM matching
and retrieval [1,10,11]. Utiyama et al. [10] developed a method which relies on
a finite state transducer limited to exact matches only. Gupta and Orăsan [1]
1 https://github.com/rohitguptacs/TMAdvanced.

https://github.com/rohitguptacs/TMAdvanced

A Dynamic Programming Approach to TM Matching and Retrieval 261

proposed a paraphrasing approach based on greedy approximation and dynamic
programming. Gupta et al. [11] showed that post-editing time is reduced if para-
phrases are used in the TM matching. Timonera and Mitkov [12] show clause
splitting as a preprocessing stage improves the matching and retrieval.

The approach proposed in this paper is similar to the one described in [1] but
instead of using greedy approximation we use dynamic programming which opti-
mises edit-distance globally and makes the approach more simple and efficient.

3 Our Approach

In this section, we present our approach to include paraphrasing in the TM
matching and retrieval process. In order to be able to compare our approach
with the one proposed in [1], we use the same settings for the experiments. In
the rest of the paper we will refer to the method proposed in [1] as DPGA
(Dynamic Programming and Greedy Approximation) and the method proposed
in this paper as DP (Dynamic Programming only).

3.1 Paraphrase Corpus and Classification

We use the PPDB 1.0 paraphrase database [13] for our work. This database con-
tains lexical, phrasal and syntactic paraphrases automatically extracted using a
large collection of parallel corpora. The paraphrases in this database are con-
structed using a bilingual pivoting method. The paraphrase database is available
in six sizes (S, M, L, XL, XXL, XXXL) where S is the smallest and XXXL is
the largest; we use size L (lexical and phrasal) in this research.

We use the four types proposed in [1] for classifying paraphrases on the basis
of the number of words they contain (common part is shown in bold and can
be removed after considering the context when computing edit-distance):

1. Paraphrases having one word in both the source and target sides, e.g.
“period” ⇔ “duration”

2. Paraphrases having multiple words on both sides but differing in one word
only, e.g. “in the period” ⇔ “during the period”

3. Paraphrases having multiple words, but the same number of words on both
sides, e.g. “laid down in article”⇔ “set forth in article”

4. Paraphrases in which the number of words in the source and target differ,
e.g. “a reasonable period of time to” ⇔ “a reasonable period to”

The classification of paraphrases helps to implement the Type 1 and Type 2
paraphrases more efficiently (see Sect. 3.4 for further details).

3.2 Matching Steps

There are two options for incorporating paraphrasing in a typical TM matching
pipeline: to paraphrase the input or to paraphrase the TM. For our approach we
have chosen to paraphrase the TM on fly because it allows retrieval of matches
in real time.

262 R. Gupta et al.

Our approach is also inspired by the one proposed in [1] and comprises of
the following steps:

1. Read the Translation Memories available
2. Classify and store all paraphrases for each segment in the TM in their reduced

forms according to the types presented in Sect. 3.1
3. Read the file that needs to be translated
4. For each segment in the input file

(a) retrieve the potential segments for paraphrasing in the TM according to
the filtering steps of Sect. 3.3

(b) search for the most similar segment based on the approach described in
Sect. 3.4

(c) retrieve the most similar segment if it is above a predefined threshold

3.3 Filtering

Before processing begins, several filtering steps are applied to each input seg-
ment. The purpose of this filtering process is to remove unnecessary candidates
and speed up the processing. These steps, based on [1], are as follows:

1. lenFilter: Filter out segments based on length. If segments differ consider-
ably in length, the edit-distance will also differ correspondingly. In our case,
TM segments are discarded if the TM segments are shorter than 39 % of the
input or vice-versa.

2. simFilter: Filter out segments based on baseline edit-distance similarity. TM
segments which have a similarity below a certain threshold will be removed.
In our case, the threshold was set to 39 %.

3. maxFilter: Next, after filtering the candidates with the above two steps we
sort the remaining segments in decreasing (non-increasing) order of baseline
edit-distance similarity and pick the top 100 segments.

4. beamFilter: Finally, segments within a certain range of similarity with the
most similar segment are selected for paraphrasing. Here, the range adopted
is 35 %. This means that if the most similar segment has 95 % similarity,
segments with a similarity below 60 % will be discarded.

3.4 Edit-Distance with Paraphrasing Computation

For our implementation, we use the basic edit-distance procedure [2], which is
word-based edit-distance with cost 1 for insertion, deletion and substitution. We
obtain the similarity between two segments by normalising edit-distance with
the length of the longer segment.

We have employed the basic edit-distance as a baseline and adapted it to
incorporate paraphrasing. When edit-distance is calculated, the paraphrases of
Types 1 and 2 can be implemented in a more efficient manner than for para-
phrases of Types 3 and 4. They have the unique property that they can be
reduced to single word paraphrases by removing the other matching words. The

A Dynamic Programming Approach to TM Matching and Retrieval 263

basic procedure works by comparing each token one by one in the input seg-
ment with each token in the TM segment. This procedure makes use of previous
edit-distance computations to optimise the edit-distance globally (for the whole
sentence). In our dynamic programming approach, at every step we consider the
best matching path.

Table 1. Edit-distance calculation

i j 0 1 2 3 4 5 6 10 7 8 9 11

the period
duration
time

laid down referred to in under provided for by article

0 # 0 1 2 3 4 3 4 5 3 4 5 6

1 the 1 0 1 2 3 2 3 4 2 3 4 5

2 period 2 1 0 1 2 1 2 3 1 2 3 4

3 referred 3 2 1 1 2 0 1 2 1 2 3 3

4 to 4 3 2 2 2 1 0 1 2 2 3 2

5 in 5 4 3 3 3 2 1 0 3 3 3 1

6 article 6 5 4 4 4 3 2 1 4 4 4 0

Algorithm 1. Edit-Distance with Paraphrasing using Dynamic Programming
1: procedure Edit-Distance(InputSegment,TMLattice)
2: M ← length of TMLattice � number of nodes in a TM lattice
3: N ← length of InputSegment � number of nodes in a input segment
4: Initialise D, a two dimensional array of size M × N initialized with distance from null # �

See Table 1, all values at i = 0 and all values at j = 0
5: for j ← 1...M do
6: for i ← 1...N do
7: cost ← 1 � substitution cost
8: if TMLatticej = InputSegmenti then
9: cost ← 0 � substitution cost if matches
10: if cost = 1 and TMLatticej is a TM token then� condition to avoid paraphrasing

the paraphrase
11: OneWordPP ← get Type 1 and Type 2 paraphrases associated with TMToken
12: if InputToken ∈ OneWordPP then � applying type 1 and type 2 paraphrasing
13: cost ← 0
14: P ← previous indices of paths at TMLatticej � get indices of previous nodes

connecting to the present node TMLatticej

15: D[i, j] ← minimum(D[i − 1, j] + 1, D[i, k] + 1, D[i − 1, k] + cost for all k ∈ P) �
store minimum edit distance by considering insertion, deletion or substitution for all paths

16: k ← index of minimum edit distance path at last node
17: N ← length of InputSegment � number of tokens in a input segment
18: Return D[k, N] � Return minimum edit-distance

Table 1 illustrates the edit-distance calculation of the first five tokens of the
Input and TM segment with paraphrasing of the example given in Fig. 1. The
second column represents the input segment (the period referred to in article) and

264 R. Gupta et al.

the period laid down in article

(i) TM Segment

the period

time

duration

laid down

referred to

provided for by

in

under

article

(ii) TM lattice with paraphrasing

(1)
the

(2)
period

time

duration

(3)
laid

(4)
down

(5)
referred

(6)
to

(7)
provided

(8)
for

(9)
by

(10)
in

under

(11)
article

(iii) The DP approach considering all paraphrases available

the period

time

duration

referred to

in

under

article

(iv) The DPGA approach with greedy selection of a path (in bold)

the period referred to in article

(v) Input test segment

Fig. 1. (i) TM segment, (ii) TM lattice after considering paraphrases, (iii) The DP
approach considering all paraphrases available (numbers show values of j as given in
Table 1, dashed area indicates Types 1 and 2 paraphrasing), (iv) DPGA with greedy
selection, (v) Input test segment

the second row represents the TM segment (the period laid down in article) along
with the paraphrases. Figure 1(v) shows the input test segment and Fig. 1(ii)
shows the TM lattice. In Algorithm 1, InputSegment is the segment that to be

A Dynamic Programming Approach to TM Matching and Retrieval 265

translated and TMLattice is the TM lattice (TM segment with paraphrasing).
Table 1 shows the edit-distance calculation of the first five tokens of the input
segment and TM lattice. In Table 1, if a word from the input segment matches
any of the words “period”, “time” or “duration”, the cost of substitution will
be 0. In Algorithm 1, line 14 gets the previous indices at every step.

For example, in Table 1, when executing the token ‘in’ the algorithm will
consider previous indices of ‘down’ and ‘to’ (see lattice in Fig. 1 (ii)) and store
the minimum edit-distance path in line 15. As we can see in Table 1, the column
‘in’ is updated after considering both column ‘down’ and ‘to’ and column ‘article’
is updated after considering column ‘in’ and ‘by’. In contrast to the DP approach,
the DPGA approach makes a greedy selection and will update only on the bases
of selected paraphrases and not all paraphrase paths as shown in Fig. 1.

3.5 Computational Considerations

The time complexity of the basic edit-distance procedure is O(mn) where m and
n are lengths of source and target segments, respectively. After employing para-
phrasing of Type 1 and Type 2, the complexity increases to O(mn log(p)), where
p−1 is the number of additional paraphrases of Type 1 and Type 2 per token of
TM segment. Employing paraphrasing of Type 3 and Type 4 further increases
the edit-distance complexity to O(mn(log(p) + q l)), where q is the number of
Type 3 and Type 4 paraphrases stored per token and l is the average length of
a Type 3 and Type 4 paraphrase. The time complexity of the DPGA approach
is O(l mn(log(p) + q)), which is slightly more compared to O(mn(log(p) + q l))
complexity the DP approach. However, in practice we have not observed much
difference in the speed of both approaches.

If we consider, Type 1 and Type 2 paraphrases in the same manner (compar-
ing sequentially instead of searching in a list) as Type 3 and Type 4, the time
complexity of the DP approach can be simply written as O(k n), where k is the
number of nodes in the TM lattice and n is the number of nodes in the input
segment.

4 Experiments and Results

In this section, we present our experiments and the results obtained. For our
experiments we used the English-French, English-German and English-Spanish
pairs of the 2014 release of the DGT-TM corpus [14]. From this corpus, we
filtered out segments of fewer than seven words and more than 40 words; the
remaining pairs were used to create the TM and Test dataset. The test sets for
all language pairs contain 20,000 randomly selected unique segments and the
rest are used as the TM. The statistics of the datasets are given in Table 2.

When we use paraphrasing in the matching and retrieval process, the fuzzy
match score of a paraphrased segment is increased, which results in the retrieval
of more segments at a particular threshold. This increment in retrieval can be
classified into two types: without changing the top rank and by changing the

266 R. Gupta et al.

Table 2. DGT-TM corpus statistics

English-German English-French English-Spanish

TM Test set TM Test set TM Test set

Segments 204, 776 20, 000 204, 713 20, 000 202, 700 20, 000

Source words 4, 179, 007 382, 793 4, 177, 332 382, 358 4, 140, 473 383, 694

Target words 3, 833, 088 343, 274 4, 666, 196 407, 495 4, 783, 178 433, 450

top rank. For example, for a particular input segment, we have two segments:
A and B in the TM. Using simple edit-distance, A has a 65 % and B has a 60 %
fuzzy score; the fuzzy score of A is better than that of B. As a result of using
paraphrasing, we observe two types of score changes:

1. the score of A is still better than or equal to that of B, for example, A has
85 % and B has 70 % fuzzy score;

2. the score of A is less than that of B, for example, A has 75 % and B has 80 %
fuzzy score.

In the first case, paraphrasing does not supersede the existing model and just
facilitates it by improving the fuzzy score so that the top segment ranked using
edit distance gets retrieved. However, in the second case, paraphrasing changes
the ranking and now the top-ranked segment is different. In this case, the para-
phrasing model supersedes the existing simple edit distance model. This second
case also gives a different reference with which to compare. In the experiments
reported below, we take the top segment retrieved using simple edit distance as
a reference against the top segment retrieved using paraphrasing and compare
to determine which one is better.

We performed experiments using both approaches (DPGA and DP). For both
of them, we conducted experiments in two different preprocessing settings: In
setting 1 (S1), we do not remove any punctuation marks and in the preprocessing
step we perform only tokenization; In setting 2 (S2), along with tokenization,
we also remove punctuation marks in the preprocessing stage. The DGT-TM
dataset is of legal genre and contains many punctuation marks. We deleted the
punctuation marks to see how it affects the baseline edit-distance and the edit-
distance with paraphrasing. In S2, punctuation marks are also removed from the
target side.2

Table 3 presents our results. We measure an increase in the number of seg-
ments in an interval when using paraphrasing as well as quality of those seg-
ments against simple edit-distance. Table 3 shows similarity threshold inter-
vals (TH) for TM (the threshold intervals shown are on the basis of edit-
distance with paraphrasing similarity), the total number of segments retrieved

2 We have used Stanford tokenizer on the English side and tokenizer provided with
Moses [15] on the target side. The source (English) tokenization is used for matching
and target language tokenization is used when calculating BLEU score.

A Dynamic Programming Approach to TM Matching and Retrieval 267

Table 3. Results on English-German (DE), English-French (FR) and English-Spanish
(ES)

DP Approach DPGA Approach
TH 100 [85, 100) [70, 85) [55, 70) 100 [85, 100) [70, 85) [55, 70)

DE

S1

EditRetrieved 6629 1193 1029 1259 6629 1193 1029 1259
+ParaRetrieved 54 114 146 445 44 88 89 244

%Improve 0.81 9.56 14.19 35.35 0.66 7.38 8.65 19.38
RankCh 7 8 27 217 4 5 21 115

METEOR-EditRankCh 83.82 57.42 24.05 26.47 75.69 63.78 25.11 27.74
METEOR-ParaRankCh 90.76 64.15 33.88 26.89 89.93 49.97 28.53 27.58

BLEU-EditRankCh 72.79 38.21 12.13 15.38 65.26 50.27 6.67 17.69
BLEU-ParaRankCh 84.15 49.11 14.44 14.40 73.79 23.68 8.08 15.61

S2

EditRetrieved 6767 1078 889 1070 6767 1078 889 1070
+ParaRetrieved 60 123 150 380 49 98 99 224

%Improve 0.89 11.41 16.87 35.51 0.72 9.09 11.14 20.93
RankCh 8 15 36 176 5 9 30 118

METEOR-EditRankCh 80.01 57.79 37.99 24.90 69.20 49.19 38.58 25.00
METEOR-ParaRankCh 90.27 67.34 43.95 27.59 88.21 54.42 38.68 28.23

BLEU-EditRankCh 64.97 50.22 25.20 13.37 49.34 36.06 23.06 13.02
BLEU-ParaRankCh 84.90 54.43 29.67 14.51 77.85 36.38 23.48 14.99

FR

S1

EditRetrieved 6611 1197 1040 1257 6611 1197 1040 1257
+ParaRetrieved 54 116 141 443 44 90 87 241

%Improve 0.82 9.69 13.56 35.24 0.67 7.52 8.37 19.17
RankCh 7 8 26 217 4 5 20 115

METEOR-EditRankCh 94.88 45.92 34.91 32.26 92.26 54.38 39.96 33.47
METEOR-ParaRankCh 96.17 70.23 42.92 32.70 91.44 61.28 39.37 33.35

BLEU-EditRankCh 78.21 17.81 20.06 19.75 79.60 28.87 18.76 20.87
BLEU-ParaRankCh 87.56 46.58 24.67 18.15 69.32 27.42 17.19 17.50

S2

EditRetrieved 6750 1082 894 1078 6750 1082 894 1078
+ParaRetrieved 60 125 141 377 49 100 91 223

%Improve 0.89 11.55 15.77 34.97 0.73 9.24 10.18 20.69
RankCh 8 15 33 177 5 9 28 118

METEOR-EditRankCh 81.73 50.35 49.02 31.45 71.18 41.02 50.27 31.17
METEOR-ParaRankCh 92.87 66.37 58.60 33.99 85.27 52.54 58.60 35.77

BLEU-EditRankCh 63.44 33.50 32.84 19.56 48.88 15.76 32.25 18.18
BLEU-ParaRankCh 84.80 47.38 39.70 20.02 68.68 28.31 37.85 18.77

ES

S1

EditRetrieved 6620 1187 1028 1233 6620 1187 1028 1233
+ParaRetrieved 54 115 141 433 44 89 86 234

%Improve 0.82 9.69 13.72 35.12 0.66 7.50 8.37 18.98
RankCh 7 8 29 209 4 5 21 110

METEOR-EditRankCh 85.85 52.10 36.62 33.80 73.62 51.61 35.72 34.85
METEOR-ParaRankCh 88.45 64.83 44.48 34.58 83.36 49.02 44.94 35.93

BLEU-EditRankCh 72.79 24.74 17.49 19.20 55.75 38.20 14.49 20.11
BLEU-ParaRankCh 78.09 44.48 24.22 19.09 75.49 18.61 24.13 19.48

S2

EditRetrieved 6757 1076 885 1050 6757 1076 885 1050
+ParaRetrieved 60 125 142 374 49 100 92 221

%Improve 0.89 11.62 16.05 35.62 0.73 9.29 10.40 21.05
RankCh 8 15 34 179 5 9 28 118

METEOR-EditRankCh 82.11 58.01 49.32 35.13 69.89 51.35 49.58 35.46
METEOR-ParaRankCh 87.12 67.94 60.42 36.07 82.52 66.11 60.39 37.14

BLEU-EditRankCh 61.84 37.02 33.42 18.84 37.04 29.67 29.29 18.37
BLEU-ParaRankCh 73.83 47.07 44.08 19.82 69.89 44.80 42.02 19.83

using the baseline approach (EditRetrieved), the additional number of segments
retrieved using the paraphrasing approaches (+ParaRetrieved), the percentage
increase in retrieval obtained over the baseline (%Improve), and the number
of segments that changed their ranking and rose to the top because of para-
phrasing (RankCh). BLEU-ParaRankCh and METEOR-ParaRankCh represent
the BLEU score [16] and METEOR [17] score over translations retrieved by
the DP approach for segments which changed their ranking and come up in

268 R. Gupta et al.

the threshold interval because of paraphrasing and BLEU-EditRankCh and
METEOR-EditRankCh represent the BLEU score and METEOR score on corre-
sponding top translations retrieved by the baseline approach. Table 3 also shows
results obtained by the DPGA approach.

The DP approach presented in this paper retrieves more matches than the
DPGA approach for all language pairs. We see that the DP approach retrieves
better results compared to using simple edit-distance for all language pairs in
both settings.

Table 3 shows that for S1 (English-German), the DPGA approach does not
retrieve better results compared to simple edit-distance for threshold interval [85,
100) and [55, 70). We have observed that removing punctuation marks in the pre-
processing stage not only increases the retrieval but also increases the improve-
ment in retrieval using paraphrases. Table 3 shows that there is an improvement
around 9.56 % improvement for S1 and 11.41 % for S2 in the interval [85, 100)
for the DP approach on English-German. Table 3 also suggests that the DPGA
approach is more sensitive to preprocessing performed which can be seen in the
difference between S1 and S2 results for all language pairs. The quality of the
retrieved segments is influenced more for the DPGA approach compared to the
DP approach.

5 Conclusion

In this paper, we presented our new dynamic programming based approach
to include paraphrasing in the process of translation memory matching and
retrieval. Using the DP approach, depending on the preprocessing settings, we
observed an increase in retrieval around 9 % to 16 % for threshold intervals [100,
85) or [85, 70). We observe that the number of matches increased when using
paraphrasing in every interval and also have better quality compared to those
retrieved by simple edit-distance. The DP approach also yields better results
compared to the DPGA approach for all three language pairs.

Acknowledgement. The research leading to these results has received funding from
the People Programme (Marie Curie Actions) of the European Union’s Seventh Frame-
work Programme FP7/2007-2013/ under REA grant agreement No. 317471.

References

1. Gupta, R., Orăsan, C.: Incorporating paraphrasing in translation memory match-
ing and retrieval. In: Proceedings of the European Association of Machine Trans-
lation (EAMT-2014) (2014)

2. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and
reversals. Sov. Phys. Dokl. 10, 707–710 (1966)

3. Planas, E., Furuse, O.: Formalizing translation memories. In: Proceedings of the
7th Machine Translation Summit, pp. 331–339 (1999)

A Dynamic Programming Approach to TM Matching and Retrieval 269

4. Macklovitch, E., Russell, G.: What’s been forgotten in translation memory. In:
White, J.S. (ed.) AMTA 2000. LNCS (LNAI), vol. 1934, pp. 137–146. Springer,
Heidelberg (2000)

5. Somers, H.: Translation memory systems. Comput. Transl.: Transl. Guide 35, 31–
48 (2003)

6. Hodász, G., Pohl, G.: MetaMorpho TM: a linguistically enriched translation mem-
ory. In: International Workshop, Modern Approaches in Translation Technologies
(2005)

7. Pekar, V., Mitkov, R.: New generation translation memory: content-sensivite
matching. In: Proceedings of the 40th Anniversary Congress of the Swiss Asso-
ciation of Translators, Terminologists and Interpreters (2007)

8. Mitkov, R.: Improving third generation translation memory systems through iden-
tification of rhetorical predicates. In: Proceedings of LangTech 2008 (2008)

9. Clark, J.P.: System, method, and product for dynamically aligning translations in
a translation-memory system, 5 February 2002. US Patent 6,345,244

10. Utiyama, M., Neubig, G., Onishi, T., Sumita, E.: Searching translation memories
for paraphrases. In: Machine Translation Summit XIII, pp. 325–331 (2011)

11. Gupta, R., Orăsan, C., Zampieri, M., Vela, M., Van Genabith, J.: Can translation
memories afford not to use paraphrasing? In: Proceedings of EAMT (2015)

12. Timonera, K., Mitkov, R.: Improving translation memory matching through clause
splitting. In: Proceedings of the Workshop on Natural Language Processing for
Translation Memories (NLP4TM), Hissar, Bulgaria, pp. 17–23 (2015)

13. Ganitkevitch, J., Benjamin, V.D., Callison-Burch, C.: PPDB: the paraphrase data-
base. In: Proceedings of NAACL-HLT, Atlanta, Georgia, pp. 758–764 (2013)

14. Steinberger, R., Eisele, A., Klocek, S., Pilos, S., Schlüter, P.: DGT-TM: a freely
available translation memory in 22 languages. In: LREC, pp. 454–459 (2012)

15. Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Federico, M., Bertoldi, N.,
Cowan, B., Shen, W., Moran, C., Zens, R., et al.: Moses: open source toolkit for
statistical machine translation. In: Proceedings of the 45th Annual Meeting of the
ACL on Interactive Poster and Demonstration Sessions, pp. 177–180. Association
for Computational Linguistics (2007)

16. Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: BLEU: a method for automatic
evaluation of machine translation. In: Proceedings of the ACL, pp. 311–318 (2002)

17. Denkowski, M., Lavie, A.: Meteor universal: language specific translation evalu-
ation for any target language. In: Proceedings of the EACL 2014 Workshop on
Statistical Machine Translation (2014)

18. Gupta, R.: Use of language technology to imporve matching and retrieval in trans-
lation memory. Ph.D. thesis, University of Wolverhampton (2016)

	A Dynamic Programming Approach to Improving Translation Memory Matching and Retrieval Using Paraphrases
	1 Introduction
	2 Related Work
	3 Our Approach
	3.1 Paraphrase Corpus and Classification
	3.2 Matching Steps
	3.3 Filtering
	3.4 Edit-Distance with Paraphrasing Computation
	3.5 Computational Considerations

	4 Experiments and Results
	5 Conclusion
	References

