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ABSTRACT 

ADAM, GEORGES, JOSEPH., Masters : January: 2018, Masters of Science in Computing 

Title: Efficient Skyline System Development for Normal and Hidden Databases: Application for 

Google Flights 

Supervisor of Project: Ali, Mohamed ,Jaoua. 

Deep web databases provide strict search interface and limited web access with top-k 

results based on a pre-defined ranking function. However, top-k results may not be 

suitable for multi-criteria decision making because of the variety in preferences. To make 

the results more relevant to such a decision maker, skyline records were introduced, and 

as per definition these records are not dominated by any other record such that a record 

dominates another if it is better or as good as other for all attributes and better in at least 

one attribute.  

In this report, we introduce an algorithm for discovering skyline records from hidden 

databases using different multi-objective attributes on a real-world database. We 

predicted a new lower bound for the minimum issued number of queries to extract the 

skyline. This was supported by our algorithm which accomplished the above task in an 

efficient manner including the worst-case scenario hence proving our theory via running 

rigorous experiments on a hidden database given the limitations on hand. 
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CHAPTER 1 

Introduction 

Real world databases are often queried by users interested in knowing the data and may 

be using it to find or reach their goal. It is also known that some users are not looking to 

search through the search results to find their answers. Querying such accurate query is 

almost difficult to the search engine to understand what the user truly wants.  Such 

engines require pre-defined ranking functions in order to rank results in a way that the 

most relevant results to the user are at first followed by the rest of results. Skyline queries 

were proposed to give the user final and fast decision by allowing him to place his 

personal preference on his desired objectives. Such a system can provide more accurate 

results defined as either skylines or the best records in a database. 

1.1 Problem Statement 

Skyline discovery or extraction has never been a problem when dealing with normal 

databases that you can query at any time or have complete view over the database 

attributes and what values they contain. For example, one can simply use the “SKYLINE 

OF” clause in any SQL statement [1] and directly process the extraction of skyline 

objects. In contrast, hidden databases such as Amazon, Google Flight and Twitter, place 

sever limits on how the user can interact with it. Such databases may restrict the number 

of web accesses and other may minimize the number of returned results. 

Here is a quick overview table on the main differences between normal and hidden 

database functions: 
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Table 1  

Main Differences Between Normal and Hidden Database 

Traditional Databases Hidden Databases 

Expose a ranked list of all tuples to a 

pre-known ranking function 

Known ranking function and unknown to 

users. 

Full SQL Power Limited number of (Top-k) results 

Easy to crawl Limited number of queries per IP 

Easy to compute skylines using traditional 

techniques(DC,NN,NBL) 

Hard to compute skylines 

 

 

As we can see from Table 1, the calculation of skylines could be difficult due to the 

limitations placed by providers on their databases. This is because they only allow user 

interaction through straightforward queries from search interfaces or by the provided 

Application-programming interface (API). In this project, we investigate and research 

this problem by answering the following research questions: 

• How can we extract skyline records from hidden databases using the least number 

of sent queries? 

Our main research problem in this investigation is to find a way to crawl or query as little 

as possible in the hidden database in order to overcome its limitations and find the 

maximum number of skylines. 

• How are we calculating skyline points? 
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In this work, we also seek to find skyline points in an efficient manner without skipping 

or leaving any skyline records for normal and hidden databases. 

• What type of query optimizations such a system may benefit from to reduce the 

number of web accesses or sent queries? 

• How do we interact with APIs to define the values of the next sent query? 

Our scope of work defines an algorithm to follow in order to crawl any database starting 

from sending conjunctive queries based on the values of the returned results. We explain 

the algorithm later in the following chapters. 

1.2 Aim and Objective 

 

This research aims to find a way to calculate skyline records for both hidden and normal 

databases but mainly focuses on hidden databases. The goal is to reduce the number of 

sending queries down to an efficient level. 

Our aim is to find solutions for the various following objectives: 

• Investigate an online hidden database such as Google Flights. 

• Extract skyline flights from different trips and time for validation with our final 

results. 

• Prepare an experimental case to research and solve. 

• Implement an algorithm or framework that utilizes the API to help reduce the 

number of queries sent. 

• Perform experiments on different scenarios and cases. 

• Aggregate experiments result and conclude. 
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1.3 Proposed Solution 

The project should deliver a fully working system designed to query an online hidden 

database containing flights with airfares on hundreds of airlines to help the traveler pick 

his best flight. The project will rely on Google Flights API in dealing with its database 

for query optimization and customization with the minimum number of sent queries. 

The design of such a system should be clear to follow the logic behind the algorithm 

and check the returned result before sending the next query. One way is to log and trace 

the execution of skyline detection and comparing results with true skylines to validate. 

1.4 Summary of Contributions 

The main project contribution is to help the traveler pick his best flight by specifying 

only the flight itinerary for initializing the first query.  

The backend system will calculate skylines based on the preferred scenario and provide 

the user with skyline flights. This might improve query cost and provide faster search 

results by bringing more relevant results as answers to the user for his specific 

preference. 

In most of the cases, the results returned by the hidden databases are usually processed 

and calculated based on specific automated scenarios by the backend system to provide 

answers for the user’s query. 

In this project report, there will be three main contributions. First, is to focus on finding 

skyline records. Second, is to return the number of skylines found with respect to the 

number of submitted queries. Finally, the system was built off the concept of finding 

skyline flights using user-input for the number of returned results, origin and destination 

airports, and date of travel. 
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The report will be presented as follows: In chapter 2, we define the problem of top-k 

queries, introduce skyline queries, show methods and algorithms to calculate the 

skylines, and evaluate it on a real RDBMS (relational database management system). In 

chapter 3, we explore hidden databases models and approaches taken for crawling deep 

web databases since it will be our main focus. In chapter 4, we briefly look into related 

work for finding a skyline on a hidden database. Chapter 5 presents and defines our 

system. In chapter 6, we discuss the experimental setup and test our system by running 

specific algorithms to extract skyline points on a real world hidden database. Finally, in 

chapter 7, we demonstrate and conclude system efficiency while specifying future work. 
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CHAPTER 2  

Background and Related Work 

In this section, we have a look at an overview of skyline queries and why they are 

important and how they provide better feedback from users when compared to top-k 

queries. We also get to see related work such as the skyline operator and skyline-join 

operator. Furthermore, we look into different algorithms and approaches used now to 

compute skyline objects and evaluate them on a real RDBMS. 

2.1 Background 

A. Overview 

In relational database management systems, we process and express queries usually using 

normal SQL by giving the system the chance to provide the best possible results it can 

retrieve for us by querying the database using normal SQL queries. For example, to find 

the nearest restaurant names to the city center where the distance is at most 2km, we 

should normally issue the query in Figure 1. 

 

SELECT restaurants.name 

FROM restaurants 

WHERE restaurants.distance <= 2 

Figure 1 SQL Query 

 
 

We specified exactly what we wanted by imposing a condition on the distance to be less 

than 2. However, in most cases, it is much better to let the database system give the most 
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probable best answer by making the user help the system by providing multiple criteria. 

This can be very helpful because it can help the system build a ranking function in order 

to get the best answer for the user. Such an example could be, combining two criteria in 

order to produce the ranking function. The user could ask the system for the lowest or 

highest values and get his answer. Top-k queries can be defined as queries that return top 

score tuples of any given database based on a scoring function and the number of 

expected results k. Moreover, it is always required for the user to define the number of 

returned objects in the answer and the scoring function can be made by many attributes in 

the database. An example showing a top-k query can be seen in figure 2. Consider a 

database restaurant with DcityCenter is the distance to the city center and DBeach is the 

distance to the beach. 

 

 

SELECT  restaurants.name 

FROM restaurants 

ORDER BY (restaurants. DcityCenter + restaurants.DBeach) 

STOP AT 5 

Figure 2 TOP-5 SQL Query 

 
 

Top-K queries had many drawbacks including difficulty defining a meaningful ranking 

function when the features had different semantics. To avoid this, Skyline queries were 

proposed. 

B. Introduction to Skyline 

A Skyline query does not require a ranking function and the integer k. A Skyline is 
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defined as those points which are not dominated by any other point. By definition for 

domination in Skylines, “A point dominates another point if it is as good or better in all 

dimensions and better in at least one dimension”[1]. The interesting thing about Skyline 

queries is that it doesn’t matter how you choose the weights of the attributes you are 

looking at, since the skylines are guaranteed to discover your restaurant or hotel of 

choice.  It is more interesting in both cases to allow the user the ability of minimizing 

attribute values and/or maximizing them in functions that are monotone on all attributes 

and these objects cannot get dominated by any other object[1]. 

C. Skyline Examples 

The definition behind domination of tuples underlies tuples dominating other tuples is 

that a relation R (A1, A2, A3, A4…An) in a relational database D where Ai are the 

attributes which can be ranked. Assuming that the less the values of the attributes the 

better. A record or object t dominates another object t’ if and only if: 

 

 

  ∀𝑗 =  1, … , 𝑚 ∶  𝑡[𝐴𝑗] ≤  𝑡’[𝐴𝑗] ∧  ∃𝑗: 𝑡[𝐴𝑗] < [𝑡’𝐴𝑗]  

Figure 3 Definition of Skyline 

 

 

Some examples on finding the skyline tuples from a table: 
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Table 2  

Minimization of Attributes 

 

  A1 A2 A3 

t1 5 1 9 

t2 4 4 8 

t3 1 3 7 

t4 3 2 3 

 

In table 2, we can see a table of 4 tuples (t1, t2, t3 and t4) with 3 ranking attributes (A1, 

A2, A3). We prefer “Minimum” over all the attributes so the less the value the better. 

We can conclude that t2 is dominated by t3 and t4. t1, t3 and t4 are not dominated by any 

other tuple so they are considered as skylines. 

The skyline queries have been used over a period of time in making several multi-criteria 

decision support applications. Due to the dominance in the relationship dataset the query 

returns the objects that cannot be dominated by other objects.  

Consider a person that cannot choose a restaurant over different restaurant because of the 

variety of service, price, décor and the quality of food. The user would like high service, 

food and décor but low price. Table 3 shows different restaurants with its corresponding 

values (1=bad, 30=good). 
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Table 3   

Restaurants Databases 

 

  Service Food Décor Price 

Zakopane 24 20 21 56 

Yamanote 22 22 17 51.5 

Summer 

moon 21 25 19 47.5 

Fenton & 

Pickle 16 14 10 17.5 

Brearton Grill 15 18 20 62 

Briar Patch 

BBQ 14 13 3 22.5 

 

 

Restaurants, which are dominated in table 3, are the 2 restaurants “Brearton Grill” and 

“Briar Patch BBQ”. 

Thus, several algorithms have been proposed to work on the skyline query processing 

deeply like the window-based, progressive, distributed, geometric based, index-based, 

divide and conquer, and dynamic programming. Application-specific problems like the k-

dominant skylines, top-k dominating queries, spatial skyline queries and others several 

variations were proposed[2]. An example of skyline query can be seen in Figure 1 when 
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the data objects are two dimensional points (2D) in the Euclidean plane while we search 

for the minimal dimension on each point. Figure 4 plots 16 points with coordinates:  

a (1; 12), b (2; 7), c (4; 22), d (5; 14), e (6; 5), f (8; 19), g (9; 9), h (10; 4), I (12; 13), j 

(15; 15), k (15; 22), l (16; 6), m (17; 10) n (17; 20), o (21; 3), p (22; 14).  

 

 

A.  

Figure 4 Skyline Example 

 
 
 

The skyline query returned the points/objects {a; b; e; h; o} which appear on the skyline 

for users expecting the minimal x and y and in our example of restaurants could be the 

minimal distance to city center and minimal distance to the beach[2]. 

Consider the example of hotels but changing attributes to price, distance to the beach and 

the number of stars such as the user would like higher number of stars (table 3). 
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Table 4  

Hotel Database 

 

Hotel #Stars Distance Price 

Aga 2 0.7 1175 

Fol 1 1.2 1237 

Kaz 1 1.2 750 

Neo 3 0.2 2250 

Tor 3 0.5 2250 

Uma 2 0.5 980 

 

 

From table 4, the skyline hotels highlighted satisfy all users and are not dominated by any 

other hotel. 

D. Skyline Operator 

In investigating the optimization problem that is used for filtering database results to keep 

desirable results, Borzsonyi, Kossmann and Stocker [1] proposed a solution for 

expanding database systems. Skyline operator, accordingly, helps filter out database 

results from a possibly large dataset. Skyline can be represented graphically as in Figure 

3, thus the reason for using it. While illustrating about the application of skyline 

operation in a travel agency where the customers are interested in finding hotels that are 

close to the beach and have a low price, the authors emphasized on decision support 

mechanisms. According to the authors, the study focused on how skyline operation is 

extensively used for database visualization in the form of graphical representations. Other 

points cannot dominate the points of interest. In the investigation, the authors 
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demonstrated that there are ways to extend SQL to present skyline queries, assess other 

algorithms for skyline operator implementation and illustrate the way of integrating 

skyline to operate with other existing database operations such as top N and join. In this 

context, the argument that the authors talked about is that it is possible to get a nested 

query after transforming the skyline query. The study [1] also illustrates the 

implementation and demonstration of how skyline queries are important on relational 

database systems. During the implementation process, there are no modifications on the 

existing database system, whether object oriented or relational. In the proposed method, 

skyline queries can be implemented to extend the current database systems (object-

relational, object oriented or relational) using the logical operator or clause known as 

skyline operator.  

In the experiment carried out, the authors used uncorrelated and correlated databases to 

assess algorithm performance. In their findings, they emphasized the significance of 

skyline in making the final decision. In examining skyline operator implementations, the 

authors focused on distinct known approaches. The main approaches were divide and 

conquer, two-dimensional skylines and block-nested loop algorithm. To extend the 

derivations arrived at and theoretical analysis of divide and conquer algorithm previously 

done, [1] they extended the same algorithm so that it worked better within the context of 

the database. In addition, they proposed that the other alternative algorithm, block nested 

loops, was better than previously examined algorithms.  

Borzsonyi, Kossmann and Stocker study [1] extends other previous works focusing on 

skyline operator. While previous research had suggested that points can collectively fit 

into memory, this study illustrated how to integrate skyline operator into the existing 
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database system. To facilitate skyline queries specification, they described the potential 

SQL extensions. To show that the initially proposed algorithm, in terms of database 

performance, had poor performance, the authors presented and analyzed alternative 

algorithms for skyline operator computations.  

To analyze skyline queries extensively, the study discussed the exploitation of standard 

index structures like R-trees and B-trees but to calculate the nearest neighbors (NN) to 

the skyline, R-trees were used. The main reason of computing the nearest neighbors is to 

determine the appropriate rows and prune the branches the rows that dominate. B-trees, 

in contrast, are used to determine the superset for the skyline.  

Borzsonyi, Kossmann and Stocker, in general, showed several ways to extend a database 

system in order to calculate several important points by using the skyline operator by 

expanding it with more operators such as MIN MAX and DIFF. 

 

 

SELECT * 

FROM Hotels  

Skyline OF Price min, Distance min 

Figure 5 SQL Example Using “SKYLINE OF” Operator 

 
 

To extend the SELECT statement used in SQL, the authors proposed the clause, 

SKYLINE OF. They used experimentation data to assess other algorithms used in 

computing the skyline, discussed the use of indices in supporting skyline operation as 

well as interaction between skyline operator and other existing database operators. The 
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result from the experiment performed led to the conclusion that divide and conquer 

algorithm is useful for tough case implementation while block nested loops algorithm is 

applicable to good cases. 

 

 

SELECT * 

FROM Hotels h 

WHERE h.city = ‘Hawaii' AND NOT EXISTS(SELECT * 

FROM Hotels h1 

WHERE h1.city = ‘Hawaii' 

AND h1.distance ≤h.distance 

AND h1.price ≤h.price 

AND (h1.distance＜h.distance OR h1.price＜h.price)); 

Figure 6 SQL Example Without The “SKYLINE OF” Operator 

 
 

2.2 Skyline Computation in Traditional Database Systems 
 

Similar to study [1], Kossmann, Ramsak and Rost [3] , in analyzing skyline queries 

algorithms, argued that skyline queries, with a suitable online algorithm, helped select the 

best points. The suggested algorithm is suitable for interactive environments. They 

proposed, in their investigation, an online algorithm which calculates the skyline. 

Dissimilar to other algorithms which calculate the skyline using batch processing, the 

algorithm suggested returning immediately the first results, continuously providing more 

results and helping users provide user preferences during runtime. As such, the user can 

control the type of the results yielded by allowing him to choose cheaper hotels or better 

distance to the beach. In the work, the authors evaluate NN algorithm in comparison to 

others, majorly Bitmap algorithm and B-trees, which were found to be limited.  
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In the investigation, Kossmann, Ramsak and Rost found that while an online algorithm is 

likely to take more processing time compared to batch-based algorithms, they quickly 

produce skyline subsets. Batch algorithms were also found to have long running time. As 

such, the authors had to define appropriate assessment properties. In assessing online 

skyline computation, the authors suggested 6 properties that characterize the algorithm. 

The properties include: a) instantaneous return of the first result; b) production of a full 

skyline; c) not return points that are good points and later replace them with other better 

points; d) fair in terms of not only favoring points that are good in 1 dimension; e) proper 

control by using a GUI where the user can click on the screen to let the algorithm bring 

back the next skyline points that are near the skyline he clicked on and f) universality for 

database data sets (indexes) and skyline queries.  

The study by Kossmann, Ramsak and Rost proposed the algorithm for 2-D skyline 

queries. The online algorithm was also generalized to the other higher dimensional (e.g. 3 

D) skyline queries. They, however, presented three assumptions in presenting the 

algorithm, namely: a) all values were positive real numbers; b) the data set did not have 

any duplicates and c) the algorithm tends to determine the interesting points close to the 

initial one. Under these assumptions, it is still possible to use the proposed algorithm in 

duplicate queries or data sets, find maximal value and all real numbers (positive as well 

as negative).  

In assessing skyline queries, the study compares alternative algorithms and variants. 

Unlike the low emphasis on dimensions as investigated by [1], the research by 

Kossmann, Ramsak and Rost compared several algorithm variations, focusing on 

dimensions. They examined performance tradeoffs for four main variants, namely 
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propagate, laisser-faire, hybrid and merge. The experimental results helped the authors 

confirm that hybrid and propagate variants outperform laisser-faire and merge variants. 

They found that laisser-faire and merge variants, overall, spend more time on duplicates, 

thus lowering performance. To use to do list indices, the authors found that indexing 

structures like B-trees were not very useful. To improve on the performance of one 

variant, hybrid, the authors proposed tuning as the applicable solution.   

To support the findings by [3], Kossmann, Ramsak and Rost study and illustrate the 

significance of skyline queries in applications such as decision support, data visualization 

and customer information systems. The analysis, in relation to other related algorithms, 

demonstrated distinctive virtues. The proposed algorithm, NN, serves as the single 

algorithm which gave users free control to provide preferences thus directing the output. 

With respect to B-tree algorithm, the authors revealed that the algorithm, in one 

dimension, points well but lately returns other good points in multiple dimensions. The 

study, in addition, concluded that the bitmap algorithm usually scans the whole database 

system and used bitmaps to determine the points which form part of the proposed skyline 

but doesn’t allow the user to interact with the system because he has no control where the 

clustering of the database is responsible for returning the skyline objects returned first.  

In similar research done by Papadias et al [4], they studied and proposed an advanced 

algorithm suitable for skyline queries, similar to [1] and [3] studies. In the study, the 

authors described a skyline as D-dimension points which have some points not controlled 

by other points. The investigation focused on skyline computation with respect to 

databases, in particular for progressive algorithms which return the first points of the 

skyline quickly since it does not need to read all data file contents. In the assessment, the 
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authors acknowledged nearest neighbor as the most efficient algorithm using R-trees and 

being implemented using divide and conquer model as illustrated in the study by [3]. 

Despite desirable features exhibited by NN algorithm (applicable to random dimensions 

or data and high speed in returning the points), there is need to avoid duplication, large 

space overhead and multiple access problems. So, they devised a branch-and-bound 

skyline (BBS) algorithm that operates taking into account nearest neighbors with 

optimum use of input and output. The algorithm proposed carries out one access to the R-

tree nodes likely to contain the required skyline points. Moreover, the suggested 

algorithm has smaller space overhead and does not in any way retrieve duplicates 

compared to NN algorithm.   

The authors concluded the suggested algorithm, BBS, can be implemented easily and 

applied effectively to several skyline queries. Using experimental and analytical 

comparisons, the study eventually demonstrated that in all problem cases, taking into 

account order of magnitude, BBS outperforms the NN algorithm proposed in [3]. Overall, 

BBS algorithm used numerous data partitioning techniques. For simplicity, the authors 

only used R-trees.  

In the study, Papadias et al illustrated the significance of skyline operator in multiple 

criteria decisions. The research done by [1] , in this context, suggested an enhanced SQL 

syntax while using the skyline operator. For a query regarding price and distance of the 

beach for several hotels in Figure 4, the syntax is given, Select*, From Hotels, Skyline of 

Price min, Distance min. In the presented syntax, min suggests minimization of distance 

and price attributes. In addition, it shows distinct conditions including group by and joins. 

In the investigation, these authors assumed that the computation of the skyline is 
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anchored on min conditions for all dimensions considered. Nonetheless, all approaches 

analyzed in the investigation are applicable in any combination of conditions.  

To build on the existing work, Papadias et al discussed several approaches such as bitmap 

technique, index approach, Block Nested Loop (BNL) and divide and conquer method. 

For BNL, the user selects one point, say p, and compare others to this point to calculate 

the skyline, and argument supported by [1]. Data in the data file is scanned completely to 

compute the skyline in this method. For divide and conquer, the authors showed that a 

dataset is divided into partitions and the main memory algorithm used to calculate the 

skyline partially. In the approach, there is a need to read the whole data set, thus not 

pertinent to online processing. The bitmap method encodes information essential for 

deciding on the skyline point using bitmaps. The approach, according to [1], does not 

allow for user preferences, a significant feature of most online algorithms, making it 

limited. In the index approach, dimensional points are usually organized into lists, later 

assigned to show the skyline. The approach was found limited since it does not support 

user preferences and returns fixed skyline points. 

A. Algorithms to Extract Skylines 

There exist many proposed algorithms for the processing of skyline queries and can be 

described in two categories: Index based and non-index based algorithms. This comes 

after the datasets are getting bigger and require having them on disks.  

For two-dimensional, skyline is computed by sorting data of the first attribute (from 

better to worse) and then iterating through the tuples and by eliminating the dominated 

ones. Whatever is left from the tuples, they are considered skylines because they are not 
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dominated by any other points. 

For more than 2 dimensions, sorting does not work. It requires better algorithms for 

extracting the skylines. Many skyline query processing algorithms and techniques were 

proposed such as nested block loops (NBL), divide and conquer (DC) and nearest-

neighbor based (NN) [2]. 

• Block-Nested-Loop (BNL) 

The algorithm uses a window in main memory that has the best tuple and a temp file to 

write to if the window has no space. BNL compares every record with every other record 

of the dataset through a nested loop. The quadratic complexity O (N2) makes the 

algorithm inefficient (N is the total number of objects that are contained in the datasets) 

[2]. The idea is to use a window, which is a memory block with limited space to hold a 

number of limited data objects. The objects are checked to confirm if they dominate each 

other. If any of the objects are dominated they are then eliminated and the dominant 

object is inserted into the window. Thus, is the case if they are incomparable with all the 

objects in the window. If the window is full, a temp disk file is used to contain the 

candidate objects. The BNL works effectively when the skyline is effectively small with 

the worst case being O(N2) when a much better I/O behavior is put in place[2]. 

There exists another type of BNL called the sort-filter skyline algorithm (SFS) which is 

defined by the “topological sort with respect to the skyline dominance partial relation”. 

The SFS makes the query process efficient and behaves better in a relational setting. 

 The SFS is further proposed and extended[5] in a SaLSa algorithm (known as the Sort 

and Limit Skyline algorithm) where the algorithm reduces the number of dominant 
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checks. 

• Divide and Conquer (DC) 

This method computes the median value and divides the space in two partitions P1 and 

P2. The first partition P1 contains the better tuples (e.g. objects that are less than objects 

in P2). We then compute the skylines of each partition S1 and S2 respectively where 

again P1 and P2 are again partitioned to P12, P22, P11 and P21. The portioning stops 

when a partition has only 1 or a few points. At last, the algorithm merges the results of S1 

and S2 thereby eliminating the dominated points. 

Figure 7 below shows the divide and conquer algorithm running on the graph of Figure 4.  

 

 

 

 

Figure 7 Divide and Conquer Algorithm Example 
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The authors of [2] explained how the algorithm runs and how they managed to collect all 

skyline points. The figure contains 4 partitions P11, P12, P21, and P22 while the partial 

Skylines are S11 (b, e, h), S12 (a), S21 (l, o) and S22 (i) respectively. In order to obtain 

all the skylines S, the dominated points are removed by some points in other partitions. 

All points of the skyline of P11 must appear in the final skyline and those in P22 are 

discarded because they are dominated by any point in P11. The skyline points in P12 are 

compared with points in P11 because there is not any point in P22 or P21 that can 

dominate those in P12. This example shows point (a) is not dominated by b, e, h, 

therefore it is included in the final skyline which is S. Also, the skyline P21 is also 

compared to the points in P11 which results in the removal of point “L” which ensures 

that point “O” remains. Thus the algorithm terminates the skyline set S={a, b, e, h, o}[2]. 

This algorithm has a variation, an optimal algorithm named (DCSkyline) which helps in 

computing skylines in 2-D spaces. It is similar to the BBS [4] only that it contains 

pruning mechanisms. 

B. Skyline with Presorting and Skyline-Join 

Skyline with Pre-sorting 

A 2003 study by Chomicki [6] suggested a skyline algorithm, called sort filter skyline 

(SFS). The algorithm takes into account presorting on skyline queries, and is very 

efficient in the relational database environment. The skyline algorithm suggested was 

found to have good performance and works very well in relational database systems. 

Through presorting, it is argued that the block nested loop algorithm can be revised to 

generate SFS, a general skyline relational database algorithm. The authors illustrate how 
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to handle preference queries through the extension of relational systems. 

Among the existing skyline algorithms, it is clear that index structures are used in 

majority of the algorithms. The preciseness in these queries, however, makes the 

algorithms applicable to only specific cases. Generalizations are thus not possible. The 

study reveals a comparison involving three algorithms, namely SFS, divide and conquer 

algorithm and block nested loop algorithm. The authors argue that divide and conquer is 

only suitable for queries with more than five dimensions. The algorithm has some limits 

because it cannot work properly on large volumes of data as well as small buffer pools. 

For mid-range dimensions, the study showed that BNL algorithm is suitable. So, BNL 

also seems a good option that requires revisions in relational settings. 

Among the algorithms introduced by [2], there are proposals on how to improve BNL 

algorithm. According to [6], tuples require presorting before BNL is applied. The 

presorting practice is a guarantee that the tuples not read are not considered as skyline 

points upon termination of algorithm processing. An assessment of several presorting 

functions shows that best performance can only be achieved through maximum 

coordinate pre-sort. 

In their findings, [6] demonstrated that SFS serves as a practical algorithm that can be 

extensively implemented in relational database skyline queries. In addition, the study 

showed that several improvements are possible on the algorithm when pursuing improved 

skyline algorithms. The existing sort merger join algorithm; accordingly, help integrate 

sorting and filter skyline stages to guarantee an optimized SFS algorithm. So, 

performance increases because of decline in the number of passes. In the study, several 

advantages of SFS algorithms were revealed; well behaved in the relational database 
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environment, offers ordering capability, is output pipelineable and allows for 

optimizations.  

Skyline-Join 

The study by Sun et al [7] examines the skyline operation in the distributed database 

settings. The authors address the main problem about skyline queries processing using 

numerous tables within the distributed environment. The proposed skyline operator, 

called skyline join, stems from two operators, skyline operation and join operation. The 

authors also suggest two methods for processing the skyline join queries. The methods 

considerably minimize processing time and processing costs.  

Skyline query processing in the distributed environment, based on the article [6], has 

been gaining attention recently. Existing algorithms, in this case, are extended to 

minimize data transfer and support skyline queries in several database settings. In the 

algorithm suggested, partitioning and routing information help forward skyline queries. 

Tuples are categorized into three main classes; a) general skyline points, local skyline 

points and others. In the first two categories, joining the tuples help produce final results. 

In the third category, other tuples dominate others, leading to discursion of tuples. 

Overall, study [7] proposes more search space pruning method. 

After proposing two methods, innovative iterative algorithm and existing skyline 

algorithm (SaLSa) [5] used two synthetic datasets to assess their performance. In the first 

synthetic dataset, the findings show that both algorithms cannot efficiently prune the 

existing search space. In addition, both introduce extra central processing unit (CPU) cost 

because of the running processes which are very complex. In the experiment performed, 

the authors found that to process the anti-correlated datasets, the modified skyline 
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algorithm should be invoked to produce a temporal table and then the algorithm applied 

in determining the final results. In the comparison, key elements that reveal algorithm 

disparities include effect of dimensionality join selectivity impacts, iterative algorithm 

effect and network costs. 

In the second synthetic dataset, TPC-DS datasets were generated (decision support 

standard measure for benchmark). Table sizes are modified because it is impossible to 

tune the TPC-DS tables. The experiments, taking into account two algorithms, were 

evaluated in terms of iterative algorithm effectiveness, dimensionality and network costs. 

The paper [7] revealed similar results to those found using Synthetic dataset 1. The study 

demonstrated that iterative algorithm calculates the (local) skyline points for each 

temporary table and generate partial results leading to the pruning of the resultant skyline 

join. AP-domination as well as outsiders eventually prunes the remaining tuples. Bloom 

filter accuracy, data correlation, skyline attributes and data distribution determine the 

algorithm performance. 

C. Evaluation of Skyline Algorithms in PostgreSQL RDBMS 

Eder and Wei [8] study assessed the performance of skyline algorithms within the 

PostgreSQL settings. The algorithms included Linear Elimination Sort for Skyline 

(LESS), Divide and Conquer (DC), SFS, Branch and Bound (BBS), Nearest Neighbor, 

index, bitmap and BNL. The algorithms are categorized into two groups to assess 

efficient computations. The first class comprise of solutions provided without dataset 

processing. The second class includes algorithms that employ sorted lists, R-trees and 

index structures to minimize query costs. The number of skyline parameters, in this case, 
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determines skyline queries performance.  

PostgreSQL setting is useful in skyline algorithm assessments. In the relational database 

management systems (RDMS), there are several advantages linked to skyline query 

operation. To construct additional complex queries, it is easier to integrate skyline with 

other existing relational operators. Similarly, index-based skyline algorithms can be 

implemented using current indexing structures. In addition, the RDBMS system can 

choose the most efficient algorithm in the given dataset while comparing several 

algorithms.  

In the previous skyline operation comparisons [6] and [7], [10] argue that an algorithm 

that is best taking into account all evaluation aspects has not been found. Overall, the 

common metrics in comparisons subsume cardinality, dimensionality, network costs and 

distribution [7]. These properties, accordingly, give rise to algorithm efficiency. 

Considering all data distributions, SFS+EF algorithm was found to have best time 

performance. Compared to BNL, SFS+EF algorithm performs better. LESS was also 

found to outperform SFS algorithm. Considering time dimensionality performance, SFS 

performs better than the remaining algorithms, specifically for high dimension values.  

Using skyline implementation experiments, the study revealed simple and useful rules 

that cannot be found in the existing theoretical explanations. Two main findings (not in 

theoretical explanations) were found: a) for the dataset with about 500 tuples and 

comparatively small dimension, the performance of BNL in all properties is the best and 

b) with selectivity factor less than or equal to 0.1, there is an effective elimination filter. 

The study findings are significant because they examine skyline query optimization in 

database environment and provide insights into skyline query attributes.  
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CHAPTER 3 

Hidden Web Databases Crawling 

Deep web databases, also known as hidden databases, cannot be crawled directly because 

of the strict interfaces given by the provider to the user. In this chapter, we look at 

different approaches by different authors and see how they interacted with such obstacles. 

3.1 Approaches for crawling a hidden database 

In the related literature dealing with skylines, scholars have examined extraction, 

integration and evaluation of data from hidden databases. Sheng et al [9] study proposed 

algorithms applicable to web-based hidden databases.  For hidden databases, users use a 

web search interface to present queries. Users who follow static links, thus, do not access 

data. Rather, users query the web interface and read the result page to obtain data. During 

run time, users can interact with the database interface provided to access the available 

data. Figure 8 shows how a user can interact with the back-end database through a 

restricted web interface on Yahoo autos to search for a car to buy. Search engine, based 

on this investigation, crawls hidden databases using optimal algorithms. The proposed 

algorithm extracts all rows from the hidden database. 
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Figure 8 Yahoo GUI for Crawling Of Hidden Database [9] 

 
 

The algorithms proposed are efficient; in work case scenarios, they efficiently perform 

few queries. With respect to the problem defined in terms of hidden databases, the 

authors sought to prove reduction in the number of database queries. In the theoretical 

results provided, Sheng et al demonstrated asymptotically optimal algorithms. In other 

words, using constant factors does not guarantee improvements in terms of efficiency. 

The authors used lower and upper boundaries to present experimental results that show 

problem properties. Previous experiments also confirmed the findings presented in the 

investigation.  

Sheng et al investigation [9], clearly, systematically presents a detailed analysis about 
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hidden database crawling where there is need to retrieve data from a hidden server using 

few database queries. The study has high level contribution since it examines algorithms 

found efficient on real data and fast when applied in worst case scenarios. Using lower 

bound results, the study establishes the hardness linked to the defined problem statement. 

Based on the results, there are several underlying factors that impact hardness. The lower 

bound results, in addition, confirm the asymptotic nature of the algorithms suggested.  

Slice-cover algorithm showed the worst performance, which is confirmed in the 

theoretical assessments provided since there is reflection of optimality on hardest dataset. 

Compared to depth first search (DFS), a suboptimal solution, the slice-cover algorithm 

does not provide improved efficiency. The authors discussed the effectiveness and 

significance of heuristic, which is confirmed through significant improvements exhibited 

by lazy-slice-cover algorithm. To illustrate the extensions to existing algorithms, the 

authors propose a hybrid algorithm that integrates rank-shrink and lazy-slice-cover 

algorithms. 

While examining numeric attributes in the data set provided, the study focused on the 

performance of two algorithms, namely rank-shrink and binary-shrink. To examine 

categorical algorithms, the authors focused on how efficient the three algorithms are, 

namely lazy-slice-cover, DFS and slice-cover. To examine these algorithms, real data sets 

from three sources were used; NFS with 47,816 tuples, adult with 45,222 tuples and 

Yahoo with 69,768 tuples. The experimental evaluations carried out showed that the 

algorithms proposed demand for fewer queries compared to alternative solutions.  

Search engines, as per now, cannot index the hidden databases effectively. So, they 

cannot pose queries to appropriate data repositories. Hidden data has increased, and the 
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problem has restricted the amount of information ordinary internet users can access. So, 

the investigation by Sheng et al addressed the concern evident in reduction of queries 

while accessing hidden database servers. The goal of the study [9] was to determine the 

method useful in crawling hidden databases at minimum costs. The authors developed 

algorithms that help solve the problem where the dataset has categorical attributes, 

numeric attributes or a combination of the two. 

3.2 Querying the Hidden Web 

Crawlers are useful in retrieval of indexed information. An investigation by Raghavan 

and Garcia-Molin [10] on hidden web crawling ought to address the problem of 

designing crawlers that extract content from hidden Web pages that can be accessed via 

hypertext links. The authors proposed a general operational framework for a crawler that 

accesses the hidden web. In addition, they provided comprehensive descriptions about 

realizing the framework through the Stanford crawler prototype called Hidden Web 

Exposer. The study explored a Layout-based Information Extraction Technique (LITE), 

describing how the method extracts semantic information from the response pages and 

search forms. The technique was later tested and validated using empirical findings.  

Hidden Web crawler design is a very challenging task [10]. The crawler needs to parse, 

interact and process human readable interfaces. In addition, users have to provide search 

queries to the web crawlers, begging the question of equipping crawlers with appropriate 

input during search engine construction. These two challenges are addressed in the study 

through the task-specific and human assisted method proposed. To ensure task 

specificity, the authors suggest that the crawler selects hidden web portions, and use 

specified tasks to extract the content required. Such an archive is built through resource 



  
   

31 
 

discovery and content extraction procedures. To make sure that the information presented 

suits specified tasks, human assistance is essential.  

The operational model proposed by [10] comprises of four components, namely task 

specific database, internal form representation, matching function and response analysis. 

The crawler builds an internal form of representation having received a form page. The 

task specific database has information essential in formulation of search engine queries 

linked to specified tasks. The matching function is an algorithm that produces final output 

from database contents, input and internal form representation. The response analysis 

module receives form submission responses and stores requested pages. It then 

distinguishes the pages that include search results and those with error messages. The 

matching function uses the feedback to display appropriate responses based on searches 

performed.  

The hidden Web crawler prototype was built based on the described operational model 

[10]. The HiWe crawler seeks to extract descriptive labels or information for the 

corresponding elements. In the crawler, the database (task specific database), is arranged 

bearing in mind finite number of classes and concepts. Each concept has a corresponding 

label. To calculate candidate value assignments (in sets), the matching function matches 

the match form labels against the task specific database. The matching function in this 

case matches the labels first and then ranks the value assignments discovered.  

The proposed HiWE prototype help address design issues including information to be 

collected by the crawler, useful metadata information related to matching functions, 

match algorithm that maximizes submission efficiency, organization, updating and 

accessing the task specific database and using feedback provided by the response analysis 
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component to fine-tune the matches [10]. URL List is used as the primary data structure. 

The list includes all URLs already discovered by the crawler. The prototype has a Crawl 

manager responsible for controlling all crawling processes. The prototype has a parser 

that adds hyperlink texts into the URL list after extracting them from the web pages 

already crawled. The Form Processor, the Response Analyzer and the form analyzer are 

responsible for submission operations and form processing. The task-specific database, in 

general, is implemented using the LVS table.  

3.3 Google Hidden Web Crawl 

Some researchers have examined the web with respect to search engine coverage. For 

instance, Madhavan et al [11] study, similar to [10] investigation, focusing on deep web 

crawling, taking into account Google. The study describes a Deep-Web content surfacing 

method. For every HTML form, submissions are pre-calculated and the final HTML 

pages added onto the search engine index. The study included the surfacing results into 

Google search engine which drives numerous content while dealing with content from the 

deep web.  

There are several problems originating from deep web surfacing. As such, [11] sought to 

index HTML form content which extents numerous domains and languages. Attaining 

such an objective requires an automatic, very efficient and highly scalable method. Since 

majority of the HTML forms usually have text inputs, users have to submit valid values. 

As such, the authors suggest an algorithm that helps identify inputs that only accept 

specified value types (e.g. integers or characters). The third problem associated with deep 

web surfacing is the presence of more input values on HTML forms; an immature 

approach of computing the whole Cartesian product that includes all potential input 
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values generating numerous URLs. To address this problem, [11] proposes an algorithm 

which navigates the whole search space efficiently (accounts for all combined possible 

inputs) and determines the values that produce URLs appropriate for web search index 

inclusion.  

In the experimental results, [11] described several experiments which support the 

hypothesis that the proposed algorithm effectively predicts the necessary templates for a 

given HTML form. Forms with select menus were considered while focusing on the 

templates instead of value selection in the inputs for texts. The authors manually 

inspected all HTML forms and found that select menus having less than five options were 

largely presentation inputs. The researchers compared ISIT algorithm with others and 

showed that for all algorithms, numerous URLs cannot be generated. It is easier to 

traverse the entire search space efficiently, based on this research finding. Practically, the 

authors found that the underlying database can be covered properly using the existing 

algorithm.  

To choose query templates, the study revealed two primary challenges. First, there is 

need to choose the template that lacks binding presentation inputs given that query 

templates retrieve similar database records without presentation input. Nonetheless, it is 

impossible to know beforehand, whether or not the input is actually presentation input. 

The second consideration is that templates with appropriate dimensions should be 

selected. One method of ensuring proper dimensions is to select the one with numerous 

binding inputs (largest potential dimensions). Selecting an appropriate template, 

according to [11], helps generating all probable queries guaranteeing maximum coverage. 

The approach, nonetheless, increases crawling traffic eventually generating empty result 
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sets.  

[11] Successfully provided a comprehensive coverage and description of technical 

innovations that underlie Deep-Web surfacing system performed on a large-scale level. 

Numerous users enjoy the surfacing presently, which covers numerous domains (about 

700), many forms and numerous languages. The search traffic performed significantly 

exemplifies the role of value gained from deep web surfacing. The study, in general, 

demonstrates three main principles likely to inform future research. Deep web indexing 

methods can be explored using the informativeness tests undertaken in relation to form 

input. Making best web crawling efforts, based on the experimental study results, can 

help the prototype [10] crawl deep web sites to maximize site traffic, eliminate complete 

site crawling and reduce crawler burden. 
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CHAPTER 4 

Skyline Extraction over Hidden Databases 

In Chapter 3, we had an overview on different approaches to crawl/query hidden 

databases. For such a purpose, we are interested in applying a research project that will 

initiate an application on the problem concerning the discovery of skylines over top-k 

hidden web databases. Extracting Skylines from a hidden web database will also enable a 

variety of innovative third-party applications. 

4.1 Challenges and Limitations 

In relational databases, we can crawl the entire database and apply the traditional 

methods for skyline computation (such as the algorithms discussed in chapter 2) over a 

local copy of the database. These databases have full SQL power and can have a ranking 

function that is already known to display all records according to it. 

The challenge here in, hidden databases, is that we can only query the database through a 

top-K search interface to compute the skyline tuples. Hidden databases are different than 

traditional databases because the databases providers of the real-world databases place 

sever limits on how the user can interact with the database. The top-k search interface 

provides K results according to a ranking function the user never knows about. The data 

access model of web databases is completely different from the traditional databases 

access model [12]. 

A user looking for skylines can query the entire database using the different algorithms in 

Chapter 3 and apply algorithms for skyline computation over this database locally. 

However, it’s not always the case. Hidden databases also limit the number of web 
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accesses (queries sent) per IP address or API key limit. A good example is Google 

Flights, which I did my project on, limit the number per API key for 50 queries per day. 

Solution to this for skyline computation over hidden databases is to send as many queries 

as necessary and stay under the limit through the restricted search interface [12]. 

4.2 Query Search Interface 

An example of Google Flights search interface is shown in figure 9. Calculating the 

skyline point over a restricted search interface with different types remains a challenge 

[12]. 

 

 

Figure 9 Google Flights Search Interface 

 
 

A. One Ended Range Predicates (SQ) 

In this category, you only specify the upper bound. An example of that is the mileage of 

a car (Mileage <= 31068 miles).  A predicate on any attribute Ai can be 𝐴 < 𝑣, 𝐴 ≤

 𝑣  𝑜𝑟  𝐴 = 𝑣. 

B. Two Ended Range Predicates (RQ) 

A two-ended range predicate gives the choice to choose the lower and upper bounds. 

𝐴𝑖 <  (𝑜𝑟 ≤) 𝑣, 𝐴𝑖 =  𝑣 𝑜𝑟 𝐴𝑖 >  (𝑜𝑟 ≥) 𝑣 
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Figure 10 Single Ended Range Query 

 

 

Figure 11 Two Examples of Range Query Predicates 

 
 

C. Point Predicates (PQ) 

For the third category of search interface categories, predicates can only be in form of 

equality where the predicate on attribute can only be of the form Ai = v.  

D. Mixed Predicates 

From SQ, RQ and PQ interfaces, we can have a mixture of them called Mixed Query. 
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Figure 12 MQ Search Interface 

 
 

4.3 Performance Measure 

As mentioned earlier, we would require minimizing the number of queries sent to the 

databases because of the limit that the databases providers impose on the user. So, to 

calculate the efficiency and improve it, we need to calculate the number of queries sent 

and minimize it. In traditional databases, when computing the skylines, they usually 

calculate the computation time and/or the number of I/O. 

4.4 Skyline Computation Algorithms 

We study an algorithm at a time for each search interface category mentioned in 4.2. 

A. SQ-DB-SKY 

The SQ-DB-SKY algorithm was proposed in [12] which is a divide-and- conquer skyline 

algorithm that issues broad queries with queries that contain few predicates. It determines 

the queries that are issued next based on the records that are received. 

In the below figure, the pseudo code for SQDBSKY is illustrated. 
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Figure 13 SQDBSKY Algorithm [12] 

 

For table 1 of database D (3 attributes A1, A2 and A3), we would like to calculate the 

number of required queries. The proposed algorithm starts with issuing the first query q1: 

Select * from D. Suppose that the top-1 returned tuple is t1. Now for each attribute we 

send 3 queries based on the values of t3. 

q2: SELECT * FROM D WHERE A1 < t1[A1] 

q3: SELECT * FROM D WHERE A2 < t1[A2] 

q4: SELECT * FROM D WHERE A3 < t1[A3] 

By doing this we are looking for skylines that are not dominated by t3 so every tuple 

returned must satisfy at least one of q2, q3, q4 or it would have been dominated. Suppose 

that q2 returned t2, so we keep sending 3 queries based on the number of attributes for 

each sub tree. 

q5: WHERE A1 < t2[A1] 

q6: WHERE A1 < t1[A1] AND A2 < t2[A2] 
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q7: WHERE A1 < t1[A1] AND A3 < t2[A3]  

 

 

Figure 14 SQDBSKY Tree Flow 

 

This algorithm is guaranteed to find all the skyline tuples and the proof of this is proved 

in the paper of Abolfazl [12]. 

SQDBSKY algorithm also guarantees that every tuple returned by the query is a skyline 

because it cannot be dominated by any other tuples not matching the query[12]. So the 

highest number of search queries is 𝑂(|𝑆|𝑚). There is also something bad regarding this 

algorithm where a tuple can be returned by many nodes matching the query and this 

could lead to a higher query cost and the worst case grows exponentially with the number 

of attributes m where 𝑂(𝑚. |𝑆|𝑚+1). 

In the average-case, S(q): the set of skyline tuples matching q which is a randomly 

chosen skyline tuple from S(q). To understand why this is, we start from the simplest 

case of |S| = 1. The SELECT * query returns the single skyline tuple, while the m 

branches of it all return empty, finishing the algorithm execution. In other words, the 
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query cost is always C1 = m + 1 (where the subscript 1 stands for |S| = 1). So, query cost 

for 1 skyline tuple returned for 3 attributes is C1=1+3=4 queries. 

Let m0 be the number of empty branches, when |S| > 2, 

C|S| = 1 + m0 + m1 .C1 + …+ms-1. Cs-1 

In the process of finding skylines for hidden databases and learning the outcome of 

SQDBSKY algorithm we developed a small python code that is able to give similar 

results to the work of [12]. The code can be found in Appendix A and B. 

B. RQ-DB-SKY 

We consider now the approach taken for range query predicates where we specify the 

lower and upper bounds. The algorithm is similar to SQDBSKY but the authors of [12] 

revised it by changing the three queries of q2 to q4 and making them mutually exclusive 

instead of the overlapping queries. 

q2: WHERE A1 < t1[A1] 

q3: WHERE A1 >= t1[A1] & A2 < t1[A2] 

q4: WHERE A1 >= t1[A1] & A2 >=t1[A2] & A3 < t1[A3] 

This also implies that the total skyline discovery is not affected as for example t1 still 

satisfies the conditions of q2 to q4. 
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Figure 15 RQDBSKY Algorithm 

 
 

The query cost of this algorithm is to count the nodes of the tree 𝑂(𝑚. min (|𝑆|𝑚+1, 𝑛)). 

It can be explained by finding the internal node, that at least must satisfy one skyline 

record or it could have returned null and became a leaf. Then if the internal node is the 

not first node to return a skyline record then the R(q) must give at least one tuple that is 

unique and not given before because it would have been an empty node and would have 

become a leaf. In this case, the upper bound of the number of interior nodes 

is min (|𝑆|𝑚+1, 𝑛). 

C. PQ-DB-SKY 

For point query predicates, [12] stated the key differences between having a 2D space or 

high dimensional cases. The paper discusses and explains the method used for 2D 
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databases by finding an algorithm called PQ-2D-SKY for this kind of space. The 

algorithm works by issuing a first query “select *” which always return a skyline. After 

that we partition the search space into rectangles R1 and R2. We loop the search space 

until it is fully explored by taking a rectangle and preparing the second query to issue. If 

a tuple is returned we append the results to skyline points and keep on pruning the 

search space based on the point. This algorithm has proved instance optimality because 

it is guaranteed to discover all skyline points. 

In the case of having higher dimensionality, the authors agree that the PQ Skyline 

discovery doesn’t guarantee instance optimality but they suggest high-level greedy 

heuristic algorithm for dealing with such cases. 

D. MXED-DB-SKY 

For the mixed query predicates, the authors suggested to combine the ideas of all three 

algorithms discussed above to produce the ultimate algorithm they call MQ-DB-SKY. 

In this algorithm, all search interfaces were supported from the ranged query predicates 

to the point query predicates.  
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CHAPTER 5 

Methodology and System Development 

In Chapter 4, we discussed different approaches taken by the authors of paper [12] 

regarding the variety of search interfaces and the existence of an algorithm for each 

interface. In this Chapter, we define the main concepts of our system by looking at the 

different aspects of the algorithm, system structure and main goal. We also integrate and 

develop our system over three phases on a real-world database. 

Dealing with hidden databases required special attention to the queries as we send them 

because of the limitations that are imposed by the provider. The goal is to find a method 

that can satisfy the database rules by staying under the limit of query quota and using the 

provided API if any. The user should have a goal to find such as finding the best hotels 

that are near the beach and cheap or booking the cheapest flight ticket with minimum 

number of transit time. For this purpose, we introduce an algorithm that takes the user 

preference into consideration for finding skyline points from a hidden database. 

5.1 Skyline Computation over Normal Database 

For the purpose of extracting skylines, we develop a function capable of returning skyline 

points over any given database. This function is a general algorithm for skyline 

extraction. This part will explain the logic taken in computing skyline records. 

As we might know and as explained in chapter 2, there exist many algorithms for 

calculating skyline points. These algorithms work with known attributes from a database 

without giving importance to user preference or objective. For this manner, we provide 

the user with an application capable of dealing with multi objective attributes. In multi 
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objective attributes, the user can specify his mixed preference over his interesting 

attributes.  

Let’s take the hotel example where the user is looking for a hotel considering the distance 

to the beach and the price. The user might be interested in closer distance to the beach so 

that is minimum distance beach and cheaper price so that is minimum price. This 

problem is called minimization of attributes. 

A second example could be a traveler looking for a flight considering the connection 

duration and number of stops. This user could be interested in high connection time for 

transit and less number of stops so in this case we will have minimum stops and 

maximum connection time. This problem is called multi objective optimization which is 

an area of multi-criteria decision making. In our algorithm, we deal with the maximum 

attributes as minimum attributes. This is done by converting all returned values to 

minimal through the process of finding the highest value in the column and subtracting it 

with other values in the column then multiplying by -1. This step is repeated every time 

new records are discovered. The figure below shows an example of converting maximal 

values to minimal. 

 

Maximal Minimal 

10 1 

3 8 

11 0 

Figure 16 Converting Values to Minimal 
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For our system, we will use the multi objective optimization concept since we are willing 

to find the best records for the user upon his mixed preference and goal setting. 

After choosing the preference over attributes, the database is given to the system to 

extract skylines by iterating through records while comparing each record to all other 

records and eliminating the dominated records. At the end of the execution, only skyline 

points are left because they are not dominated by any other record. From here, we can 

provide the user with answers to his query for him to pick the best record. We also 

validate later the skyline number and similarity we found in our experiments with the 

results of other research work we call literature. 

5.2 Skyline Extraction over Hidden Database 

Due to the limitation of search interfaces and number of queries and not knowing enough 

information on the database, we introduce a method in scanning the hidden database in 

order to extract skylines. The logic followed is to send an initial query to the system 

without any effort and return a small number of results. These results will be used to 

prepare the second query and send it over again for more results. This process continues 

until we find no more interesting results such as no more data found or getting same data. 

The challenge with this process is the ability to send a reasonable number of queries 

without exceeding the quota and finding the maximum number of skylines. The allowed 

number of sent queries is defined by the database provider and our goal is to send lower 

number of queries. 

Consider a database with three interesting attributes A, B and C. We are interested in 

sending queries over and over again until we are satisfied. We start by issuing a select * 

query to fetch initial data and then we will experiment the effect of different scenarios. A 
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select * query can be defined as an initial query that the system should send to get 

information on the database. The purpose of the scenarios is to allow us to find different 

data than the initial data in order to calculate the skylines. An example of a scenario or 

expression can be “A AND B OR C”. In this scenario, once we have found our initial 

data by the first query, we find the best values on each of A, B and C. As an example, for 

finding the best value, if the user chose minimum B then the smallest value in column B 

is the best value and vice versa. From the new result values, we send another query 

specifying a more detailed query with what we are looking for. After receiving new data, 

we start calculating the skylines using the method described in skyline computation for 

normal databases. 

Many scenarios can be tested in order to find new data every time. The goal of doing 

different scenarios is to test the effect and find more results that could lead to more partial 

skylines or more true skylines. What we mean by true skylines are skylines that are found 

from traditional methods on normal databases and are non-dominated records over the 

entire database. Partial skylines could also still be dominated by other records that are not 

yet found in the process. 

This approach can be used on any database (normal or hidden) and any number of 

attributes. Knowing the correct number of interesting attributes can lead into combined 

Boolean expressions. 

For A, B and C (3attributes database), we could have different combination to study the 

effect such as the following example of combined Boolean expressions: 

• A AND B AND C 

• A AND B OR C 
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• A OR B AND C 

• A OR B OR C 

Sending queries based on the values of the previous queries could lead for better results 

and better skyline extraction. Issuing queries to the database can be through the API 

(explained in the next chapter) or through top-k search interfaces. Our method is a 

general method that requires only simple knowledge of the database for query 

formulation and a way of database interaction.  

After submitting the initiative query (select *) and getting first results, consider the 

following combined Boolean expression for 3 attributes “A AND B OR C”. The logic is 

to send a query built by the corresponding above combined Boolean expression. The best 

values are extracted from the initiative query and sent by the new query. For example, if 

the best values of A, B and C are 4, 3 and 12 then the query that should be sent is: 

“SELECT A, B, C from D where A <= 4 AND B <=3 OR C <=12” 

This keeps going until no more data found or same returned data. We also experiment 

with combining all of the combinations of scenarios in order to deliver more results to the 

system at each stage of querying. This could lead to higher query cost but could also 

provide more accurate skylines. However, experiments will show if we are still under the 

quota.  
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CHAPTER 6 

Experimental Evaluation 

6.1 Experimental Setup 

After defining our methodology to follow, we define the system components, architecture 

and design in order to achieve our goal. We also prepare for experiments with different 

scenarios and define a real-world database as our testing environment. 

A. Testing Environment 

For the purpose of testing our methodology logic and to compare our results with 

different related work, we decided to test on Google Flights online hidden database. The 

first reason was that the work of [12] used this database in their experimental evaluation. 

The second reason was that Google flight provides an API for the interaction between the 

user and the database. The third reason was to give the user a meaningful conclusion 

behind skyline records and their importance in multi decision making. We believe that 

such a system could be important in the market as well. The fourth important reason was 

that this database restricts the number of web accesses per day (queries sent) to 50 

queries only in which we are trying to find a solution. 

Google flights makes online search for flights easier by allowing the user to look at 

different prices from different third-party providers. It was launched on 13 September 

2011 by Google. Google flights provided a search interface which allowed the user to 

interact with the database. 
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Figure 17 Google Flights Search Interface 

 
 

The search interface required some inputs from the user such as origin, destination, 

departure date and arrival date. Google Flights provided an API called QPX Express API 

for providing our system with real time flights information as JavaScript Object Notation 

(JSON) interface. 

We chose to code our system using Python version 2.7 because of the interesting libraries 

such programming language has. It also allows easier coding and minimum lines of code 

to express clear concepts. The system depends on many libraries provided in python to 

facilitate our work. 

B. System Components 

• QPX Express API 

The API provided by Google allowed our system to interact with the database. The api 

provided an online document for how to use the API. It can be found in the following link 

“https://developers.google.com/qpx-express/v1/trips/search”. The link also provides 

description over each and every parameter sent from our system and received from the 

request. The database was queried using the mentioned API from a python code while 

specifying the needed parameters. Before the system was built, the API was studied 
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extensively in order to know what parameters were important and the JSON response for 

finding ways of interpreting it. Testing such API required a lot of effort to better 

understand the schema and extract important parameters.  

The following table includes important parameters used by the system to generate queries 

based on the documentation provided by Google. 

 

Table 5  

Parameters Used in Sending Query 

Parameter Description 

origin Airport designator of the origin 

destination Airport designator of the destination 

date Departure date in YYYY-MM-DD format. 

maxStops The maximum number of stops the 

passenger(s) is willing to accept in this 

slice. 

maxConnectionDuration The longest connection between two legs, 

in minutes or time in transit. 

maxPrice Return flights that don’t have more price 

than the specified. 

earliestTime The earliest time of day in HH:MM format. 

latestTime The latest time of day in HH:MM format. 

solutions The number of solutions to return. 
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After submitting the query using the parameters mentioned above, API returns a JSON 

file containing flights in a JSON file. The next following table explains the JSON data 

items that we extracted from JSON files to build our own table containing the flights 

itineraries. 

 

Table 6  

Used Data Objects from Returned JSON File 

 

Object Data Description 

Flight ID Flight ID of the whole trip. A trip may 

contain many flights. 

Price Total ticket price. 

C time Total connection time or transit time of the 

whole trip. 

Stops Total number of stops or transits. 

D time Departure Time. 

 

 

• Requests and JSON Library 

The module called “Requests” was used to send some type of HTTP request to Google 

by passing specified headers to the following URL: 

"https://www.googleapis.com/qpxExpress/v1/trips/search?key={API}". After receiving 
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data using requests, the data was saved and dumped using python JSON module. 

• Pandas Library 

Pandas module was used to better deal with the received data because the system 

required many steps in processing flights and saving data for future use. The library 

provided data frames for faster data manipulation using the built-in indexes. It also 

provided many tools to drop duplicates and eliminate certain records and compare 

records through iteration.   

• Matplotlib library 

This module helped in plotting 2D or 3D spaces. After extracting the skyline records, an 

example of 2D and 3D plotting  

 

 

Figure 18 Skyline Examples of 2D and 3D Plotting 
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C. System Design 

The system designed is able to extract skylines from Google flights by sending queries 

based on the results of the previous query using the above-mentioned methodology and 

concluding with query cost. 

In this subject, the work was divided into three phases of development. First phase is to 

develop the extraction of skylines as discussed previously and testing it on Google 

Flights (considered as a normal database for this phase). Second phase is to implement 

the logic explained in the methodology section in extracting data from hidden databases 

and calculating skylines as it goes. In the last phase, a simulator was designed for 

different scenarios on different airports and prepares the testing environment. 

Considering the work done by Abolfazl in [12], the same story is taken into 

consideration, that of a traveler looking for a flight for vacation in the next few days 

where the price, connection time, number of stops are low and the highest latest departure 

time. From here, it is concluded that the traveler is looking for the following attributes in 

his query: minimum price, minimum connection time, minimum number of stops and 

maximum departure time. 

• Phase 1 

In this phase, the method used on Google Flights is discussed on how the algorithm was 

implemented for extracting skyline flights. 

Google Flights allowed 500 returned results per query only. So as a way of verification 

and to validate the results of the next phases, it required finding routes between two 

airports where the number of returned results is less than 500 flights and calculating the 
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skyline flights on the returned result of the query. By doing this, completeness of skyline 

discovery was achieved (finding all skylines with a single query because the system 

returned all the flights for this trip < 500). The following below algorithm explains the 

steps followed for skyline discovery on a normal database. 

 

 

Figure 19 Skyline Discovery: Algorithm 1 on a Normal Database 

 
 

• Phase 2 

After finding skyline flights, the flights are saved into a temporary result table for 

comparison later on. For this phase, the methodology was implemented for extracting 

Algorithm 1: Find_Skylines(data) 

 

1 skylines = [ ]            #Fill it with non-dominated records 

2 FOREACH field in data.FIELDS :  

3  IF BEST_VALUE_IS_MAX(field) :  # If value is max, convert value to minimal 

4  max = MAX(field.VALUES)  # find maximal value 

5   FOREACH value in field.VALUES : 

6    value = -1*(value - max) # convert to minimal 

7 FOREACH row_a IN data.ROWS : # Loop through all records 

8   FOREACH row_b in data.ROWS: #compare each record to the other 

9    dominated = TRUE 

10     IF row_a == row_b : #if equal skip record 

11    BREAK 

12   FOR filed in row_b.FIELDS : #if value of record is lower 

13           IF row_a.FIELDS[field] .VALUE < row_b[field].VALUE 

: 

14                   dominated = FALSE #set record to non-dominated 

15   IF dominated : # if not set to false record is dominated so skip 

16    BREAK 

17  IF NOT dominated :   #add non-dominated record to skyline records 

18   Skylines.ADD(row_a)     
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data from hidden database such as Google flights in order to avoid limitations such as the 

strict number of queries per day (50 web accesses per day for Google flights). 

In this phase, the algorithm is designed to use the function in phase 1 to compare with 

results in this phase. The purpose is to validate the answers, so if the same number of 

results is met then that means all skyline records were reached. It should also be kept in 

mind that having different number of skylines means that skyline flights found in phase 2 

should not necessarily match skyline flights from phase 1. Why? Because skylines 

calculated in phase 2 were calculated on different data and some of the flights were not 

yet discovered by the queries so that means that there exist some flights that are dominant 

in true skylines but were not detected yet. The following algorithm 2 shows how skyline 

flights are calculated based on specific scenarios and to be discussed afterwards.  
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Figure 20 Skyline Discovery: Algorithm 2 on Hidden Database 

 
 

Scenario: is an expression of attributes related by operators (AND, OR). Some examples 

on scenarios focusing the four attributes price, connection time (C time), number of 

stops(stops), and departure time (D time) are: 

    Price OR C time OR Stops OR D time 

    Price AND C time OR Stops OR D time 

A user must write his scenarios in a specific format and keywords with no parentheses. If 

Algorithm 2: find_skylines_scenario(scenarios) 

 

1 n = K #number of returned results of every query 

2 data = {SELECT * FROM DATABASE_TABLE} #initial query to explore database 

3 skylines = Find_Skylines(data)  #apply algorithm 1 to compare skylines (optional) 

4 result = [ ] 

5 FOREACH scenario IN scenarios:  loop in the scenario 

6  data = {SELECT * FROM DATABASE_TABLE LIMIT n} #query database 

7  partial_skylines = Find_Skylines(data) #calculate skylines on returned results 

8  exit_reason = ‘’ 

9  previous_partial_skylines = [ ] 

10  WHILE TRUE: 

11   If previous_partial_skylines == partial_skylines : 

12    exit_reason = ‘Same data’ # same data is returned (loop) 

13    BREAK 

14   If data.LENGTH == 0: 

15    exit_reason = ‘No more data’ #no data found 

16    BREAK 

17   parameters = GET_PARAMETERS (scenario,data) 

18   #send new query with the values 

19   data = {SELECT * FROM DATABASE_TABLE WHERE 

parameters} 

20   #add to skyline table then calculate skylines again for this table 

21   partial_skylines = partial_skylines + Find_Skylines(data) 

22  result.ADD([partial_ skylines,exit_reason]) 

23   #Keep sending queries until the scenario is done by adding more 

skylines 
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it has more complex formulas, user must simplify it to be as follows: 

A1 AND B1 OR A2 AND B2 OR A3 AND B3… 

Examples: 

- EX 1: Price AND C time OR Stops AND D time 

 Priority is given to the AND operator, this will result in the union of two requests 

- EX 2: Price OR C time OR Stops AND D time 

 This will result in the union of three requests (Price, C time, Stops AND D time) 

- EX 3: (Price OR C time) AND (Stops OR D time) 

This must be written as: Price AND Stops OR Price AND D time OR Stops AND C time 

OR D time AND C time 

The user is able to test any date, origin airport, destination airport, number of returned 

results and choose a scenario to run in order to experiment the query cost and skyline 

flights at the same time. 

Algorithm 2 was also enhanced into merging all possible scenarios for finding skylines in 

one run for experimentation. In this case, after finding true skylines and returning “n” 

initial data, all scenarios are run at the same time by querying with all possible scenarios 

then merge results of all queries for skyline discovery and keep going with the same step 

again and again until it gets the same data back then stop. 

• Phase 3 

An experimental environment is prepared by modifying the code to run as a simulation 

of airports on different number of solutions because there is interest in finding the 

efficiency of the algorithm with query costs and number of true skylines (found in phase 
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1). Also combined were all possible scenarios to an algorithm called algorithm 3. 

 

 

Figure 21 Skyline Discovery: Algorithm 3 on Hidden Database 

 

Algorithm 3 is responsible of combining the results of iteration from the different 

scenarios. It has the same logic of algorithm 2 but instead of continuing the iteration on 

the scenario data itself, it combines the scenario data of other scenarios at the same 

iteration level then extracts skyline flights on the total scenario data. 

Algorithm 3: find_skylines_all_scenarios(scenarios) 

 

1 n = K #number of returned results of every query 

2 data = {SELECT * FROM DATABASE_TABLE} 

3 #calculate skyline flights to compare skylines (optional) 

4 skylines = Find_Skylines(data) 

5 #send first initial query as in algorithm 2 to explore database for n results 

6 data = {SELECT * FROM DATABASE_TABLE LIMIT n } 

7 partial_skylines = Find_Skylines(data) 

8 exit_reason = ‘’ 

9 previous_partial_skylines = [] 

10 WHILE TRUE :  

11  IF previous_partial_skylines == partial_skylines : 

12   exit_reason = ‘Same data’ #quit when same is returned 

13   BREAK 

14  IF data.LENGTH == 0: 

15   exit_reason = ‘No more data’ # quit when no more returned data 

16   BREAK 

17  #prepare for next query ,getting new values 

18  parameters = GET_PARAMETERS(scenario,data) 

19  #Loop through all the scenarios and get more data and new values 

20  FOREACH scenario IN scenarios :  

21   data = data + {SELECT * FROM DATABASE_TABLE   

    WHERE parameters } 

22  partial_skylines = partial_skylines + Find_Skylines(data) 
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The figure below shows the system architecture design. 

 

 

Figure 22 System Activity Diagram 

 

The system is designed to query the database with the initial query “SELECT *” to 

retrieve K results where K is defined by the user. This is done just to have information on 

the database and prepare the next query based on the best values of each attribute. Each 
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query sent to database must follow the proper scenario assigned to it such as following 

the order and the expression. The database again returns K results and the system 

examines the results. If new records were found, another query must be sent to the 

database to find new records. The system stops execution in only two conditions: 

• Same data: queries return the same data over and over again and stop only after 

one time of extra queries. 

• No data found: queries return no data to examine (empty results). 

The different scenarios were evaluated for skyline extraction while varying the number of 

solutions (returned result on each query). The results of our experiments on Google 

flights real world database are also discussed. 

6.2 Experimental Validation of Algorithm 1 

The purpose of this experiment was to evaluate the algorithm chosen for skyline 

extraction from a known database without implying any scenario.  

The experiment included testing skyline extraction to find the true number of skylines on 

different trips and dates so 6 airports were chosen randomly (‘ATL', 'DXB’, ‘PEK’, 

‘LAX’,’DEN,’SAN’ and ’LGA’). 

Table 7 shows the results of a simple experiment to find skyline flights from the total 

number of flights of different trips. 
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Table 7  

Results of Experiment 1 

 

Flight Total Number of Flights Number of Skyline Flights 

ATL -> BEY 246 10 

ATL -> DXB 119 4 

ATL -> LAX 227 4 

ATL -> PEK 301 16 

ATL -> DEN 106 8 

ATL -> SAN 279 6 

ATL -> LGA 128 11 

 

 

It can be seen that the discovery of skyline flights doesn’t depend on the total number of 

flights but depends on the data itself because flights that are not dominated by any other 

flights are considered as skyline flights.  

6.3 Experimental Validation of Algorithm 2 

In this experiment, algorithm 2 is followed with the logic of a scenario and sending many 

queries to the database with different values based on the result of the query before, in 

order to calculate skyline flights for hidden database. A scenario will be an expression of 

attributes related by operators (AND, OR) to send next queries based on the result of the 

returned values (scenarios can be seen in appendix C). Every possible scenario is run on 

different trips to evaluate the query cost (number of queries sent) and the number of 
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skylines. The number of returned results “K” was also modified for each scenario in 

order to study the impact. Every scenario is noted as a number from one to eight (details 

in appendix C). 

 

 

 

Figure 23 Average Query Cost on Each Scenario 

 

From the results of figure 23, it is noted that scenario 5 has the highest query cost for 

K=1, 5 and 10 because it is queried in every iteration four times and then union the 

results to calculate skyline flights on the given data. The lowest query cost among the 

experiments was scenario 1 because this is just 1 query sent using the API of Google 

specifying all the best values for all attributes in 1 query. Other scenarios results varied 

upon the scenario and the data it got from Google. Also concluded from this experiment 
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was that K= 1 had the highest query cost in most of the scenarios because t returned just 1 

flight after each query which required sending more queries to get more data.  

 

 

 

Figure 24 Number of Skylines Found on Each Scenario for Different K 

 

In Figure 24, the first scenario didn’t return any skyline flights because it’s a very strict 

scenario and all conditions must be satisfied. It can also be seen that scenario 4 and 7 

didn’t return high number of skylines for K = 1 and no skylines for K=5 and 10 because 

of the different values returned from the queries that didn’t meet the conditions for the 

next query. The highest number of skyline flights found was in scenario 5 because this 

scenario allowed more data to be crawled and therefore better skyline detection. 
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Figure 25 Percentage Found of True Skylines for Different K 

 

 

In the experiments, true skyline flights are the flights that can never be dominated from 

any other flight though it was necessary to calculate the percentage found of true skylines 

because the skyline flights found can still be dominated by flights that were not 

discovered yet. Figure 25 illustrates results of percentage found of skylines for each K 

while scenario 5 achieved the highest percentage found of skyline flights. 

6.4 Experimental Validation of Algorithm 3 

First in this experiment, all possible scenarios were combined into one big scenario to 

calculate the skyline flights. 8 possible scenarios were combined to query and fetch data 

then combine these results to calculate skyline on it. The goal is to get as much new data 
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as possible before calculating skyline flights. In this method, results were compared to 

the results of paper [12] because both goals aimed to find the number of skyline flights 

and the query cost. Experiments and testing environments conducted were the same as 

the work of Abufazl[12] on different dates and the dates chosen were between 23 

December 2017 and 30 January 2018. Also randomly chosen, were origin and destination 

airports from the top 25 busiest airports in the United States of America. The same story 

of a traveler looking for a getaway for his holiday and searching for the lowest price, 

transit duration, number of stops and latest departure time was also considered. 

It was noticed that the results of query cost did not fall within plausible outcomes as 

different scenarios yielded empty queries, as seen in the experimental results of algorithm 

2, which increased the query costs significantly. Hence, an alternative methodology was 

proposed; the scenarios that only generated queries with high quality skyline flights were 

combined instead of all. Appendix D shows details on the chosen scenarios. 

Table 8  

Average Query cost and Percentage Found of Skylines 
 

 Literature K = 1 K = 5 K = 10 

Avg Query Cost 44 46 31 26 

Percentage Found 100 90 70 53 

 

It was noticed from the results of table 8, that the methodology for K = 1 and choosing 

only the scenarios 2, 5, 6 and 8 achieved very similar results to the literature of Abufazl. 

The methodology for K=1 achieved an average of 90% of true skylines while Abufazl 
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achieved 100%. The average query cost in the methodology was also very similar ranging 

between 44 and 46 queries. 

In the results of table 8, it was also noticed that increasing the number of K would result 

in less discovery of skylines and less query cost on average. This comes because of the 

different best values of the returned results which varied the values to be sent in the next 

queries.  
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CHAPTER 7 

Conclusion and Future Work 

This chapter outlines the main points obtained during the research with a brief summary 

regarding results of the conducted experiments. It also proposes future work to improve 

our methodology and achieve hopefully better results. 

7.1 Conclusions 

In conclusion, suggesting a high-quality method to extract skyline records from any 

hidden database while able to maintain a reasonable query cost was the primary research 

objective in this project. The method to combine different scenarios with multi-objective 

optimization goal proved to be efficient in terms of number of skylines found and query 

cost.  

The project research discussed the following main points regarding skyline extraction: 

• Converting maximal preference attributes into minimal using a specific 

technique used in multi-objective optimization problems. 

• Extracting skyline records for normal databases. 

• Developed an efficient algorithm for skyline extraction based on scenarios and 

conducted experiments over a top-k interface for a real world hidden database 

which proved a low average query cost below the quota. 

The methodology followed for extracting skyline records can be adapted for any hidden 

web database such that choosing the preferences for attributes and number of returned 

results “K” can allow getting more data as input for the system to calculate the non-

dominated tuples. 
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7.2 Future Work 

Many different approaches and experiments have been left in this work for many reasons. 

The main reason was the lack of time because the system was designed to deal with a real 

world hidden database which restricted the number of queries sent per day and made it 

difficult to conduct more experiments. There are also some proposed ideas in the system 

to enhance the algorithms to be as smart as possible by not sending the same queries 

again since it had already found the results. This report has mainly focused on testing a 

new approach when it comes to dealing with hidden databases and crawling with minimal 

query cost. The following ideas could be added in future: 

• The way of interacting while querying the database could be improved by not 

repeating the same queries especially for conjunctive queries that required more 

than one query to find the result of the complete scenario. 

• The system should be modified to bypass errors like error 503 “temporary 

overload. Wait before retrying”. This can be done by finding the query cost of 

having such an error and sleeping for a specific amount of time before querying 

next. 

• Introducing a tree browser, which allows the system to adapt the next query based 

on the results of the previous query by following specific routes in the tree. This 

could lead to lower query cost and a more accurate number of skylines. 
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APPENDICES 

Appendix A: SQ-DB-SKY (1) 

The following python function generates the skyline points of any given database as CSV 

format while concluding with total number of skylines and query cost. 

 
 

 

  

''' 

This is main fucntion that calculate the the SQ_DB_SKY algorithm. The input passed to 

this function is the tuple, and list of values to be compared. This function is 

iterated for each record, and returns the next row to be checked. 

''' 

 

 

def SQ_DB_SKY (startTuple,q, compareValue, AlreadyDoneTuple,colNumber): 

    ## next Occurring values that will be returned by this function 

    smallerValues = [] 

    # comparing the select tuple with each respective 

    for index, row in enumerate(compareValue): 

        print ("Comparing Value: "+str(row+1)) 

        for i in range (0,colNumber): 

            valueToCompare=A[i][row] 

 

            tmpLargesValue=-1 

            rowNumToAppend=-1; 

 

            for id, value in enumerate(A[i]): 

                if int(value) < int(valueToCompare) and id!=row and 

int(value)>tmpLargesValue: 

                    rowNumToAppend=id; 

 

            if rowNumToAppend!=-1 and rowNumToAppend not in AlreadyDoneTuple : 

                if q>4 and rowNumToAppend not in smallerValues: 

                    smallerValues.append(rowNumToAppend) 

                elif q<=3: 

                    smallerValues.append(rowNumToAppend) 

            # if T contains k Tuples    Construct m queries .... 

 

            q+=1; 

    for vl in compareValue: 

        if vl not in AlreadyDoneTuple: 

            AlreadyDoneTuple.append(vl) 

    return q, smallerValues, AlreadyDoneTuple; 
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Appendix B: SQ-DB-SKY (2) 

The following is the algorithm main function responsible in calculating skyline points 

and building the tree explained in Chapter 4. 

 

 

def AlgorithmMain(): 

 

    global A; 

    A = [] 

    SkyLines = [] 

    inputCSVFileName = 'test_data.csv' 

 

    k= int(input("Enter the Number of Lines that you want to process")) 

    inputRow=k+1 

    inputColumNames= input ("Input the names of column as comma separated") 

    colNames=inputColumNames.split(",") 

    NumberOfColumns=len(colNames); 

 

 

    incldueFirstColumn =False;    #setting this value to False will return 

 

    #subtracting the value from the index of the columns 

    if incldueFirstColumn==False: 

        colNames[:] = [int(x) - 1 for x in colNames] 

 

 

 

    #this function reads from the csv file 

    #** QUERYQ= {SELECT * FROM D }; S ={} 

    readCSVFile(inputCSVFileName, inputRow,NumberOfColumns, colNames, incldueFirstColumn) 

 

 

    start_time = time.time() 

    if incldueFirstColumn==True: 

        # startTuple = random.randrange(1,inputRow) 

        startTuple=0 

        print("Tuple to start " + str(startTuple)) 

 

    else: 

        # startTuple = random.randrange(0, inputRow-1) 

        startTuple = 0 

        print ("Tuple to start "+ str(int(startTuple)+1)) 

    #A.append(A1); A.append(A2); A.append(A3) 

    q=1; 

 

    if incldueFirstColumn==True: 

        compareValue = [startTuple-1] 

    else: 

        compareValue = [startTuple] 

 

    AlreadyDone=[] 

 

    #* While QueryQ is not emmpty 

    while len(compareValue)>0: 

        #print ("Main", end='') 

        #q= QueryQ.deque(); T= Top-k(q) 

        q, compareValue,AlreadyDone = SQ_DB_SKY(startTuple, q, compareValue, AlreadyDone, 

NumberOfColumns) 

 

    #if T is not emppty 

    #    Append the non-denominated Tuple in To to S 

    for i in AlreadyDone: 

        SkyLines.append(int(i)+1) 

 

    # predict 

    # Append  q1..... to QueryQ 
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Appendix C: System Configuration for Experiments 

• Airports: 

"ATL","LAX","ORD","DFW","JFK","LAS","MSP","DTW","PHL","BOS","LG

A","FLL","BWI","IAD","SLC","MDW""PHX","IAH","CLT","MIA","MCO","

EWR","SEA","DEN","SFO". 

https://www.tripsavvy.com/busiest-airports-in-the-usa-3301020 

 

• SCENARIOS = [ 

  1-  'Price AND C time AND Stops AND D time', 

  2-  'Price AND C time AND Stops OR D time', 

  3-  'Price AND C time OR Stops OR D time', 

  4-  'Price AND C time OR Stops AND D time', 

  5-  'Price OR C time OR Stops OR D time', 

  6-  'Price OR C time OR Stops AND D time', 

  7- 'Price OR C time AND Stops AND D time', 

  8-  'Price OR C time AND Stops OR D time' 

    ] 

 

• SOLUTIONS = number of returned trips ( can be changed to any number less 

than 500) 

• COLUMNS_DICT = { 

    'Price'             : DOMINATE_MIN, 

    'C time'            : DOMINATE_MIN, 

    'Stops'             : DOMINATE_MIN, 

    'D time'            : DOMINATE_MAX, 

    } 
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Appendix D: Scenarios used in experiment 

The chosen scenarios for the experiment in section 6.3 for chapter 6 are: 

• 'Price AND C time AND Stops OR D time' 

• 'Price OR C time OR Stops OR D time' 

• 'Price OR C time OR Stops AND D time' 

• 'Price OR C time AND Stops OR D time' 

We chose them from the total combined scenarios in Appendix C. 


