
QATAR UNIVERSITY

 COLLEGE OF ENGINEERING

EFFICIENT SKYLINE SYSTEM DEVELOPMENT

FOR NORMAL AND HIDDEN DATABASES:

APPLICATION FOR GOOGLE FLIGHTS

BY

GEORGES J. ADAM

A Project Submitted to

the Faculty of the College of

Engineering

in Partial Fulfillment

of the Requirements

for the Degree of

Masters of Science in Computing

 January 2018

© 2018 Georges Adam. All Rights Reserved.

ii

COMMITTEE PAGE

The members of the Committee approve the Project of Georges J. Adam

defended on 21/12/2017.

Dr. Ali Mohamed Jaoua

 Thesis/Dissertation Supervisor

Dr. Abdelkarim Erradi

 Committee Member

 Dr. Aiman Erbad

Committee Member

Dr. Khaled Md Khan

Committee Chair

iii

ABSTRACT

ADAM, GEORGES, JOSEPH., Masters : January: 2018, Masters of Science in Computing

Title: Efficient Skyline System Development for Normal and Hidden Databases: Application for

Google Flights

Supervisor of Project: Ali, Mohamed ,Jaoua.

Deep web databases provide strict search interface and limited web access with top-k

results based on a pre-defined ranking function. However, top-k results may not be

suitable for multi-criteria decision making because of the variety in preferences. To make

the results more relevant to such a decision maker, skyline records were introduced, and

as per definition these records are not dominated by any other record such that a record

dominates another if it is better or as good as other for all attributes and better in at least

one attribute.

In this report, we introduce an algorithm for discovering skyline records from hidden

databases using different multi-objective attributes on a real-world database. We

predicted a new lower bound for the minimum issued number of queries to extract the

skyline. This was supported by our algorithm which accomplished the above task in an

efficient manner including the worst-case scenario hence proving our theory via running

rigorous experiments on a hidden database given the limitations on hand.

iv

ACKNOWLEDGMENTS

To start, I would like to thank Allah, for this opportunity and gifting upon me the ability

to finish this thesis and with it, complete my Master's Degree.

This project would not have been made possible, if not for the help of a few people and

their significant contributions to my work.

First, I would like to express my deepest gratitude to Professor Ali Jaoua, my research

supervisor, for his continued guidance, support, encouragement, and patience, throughout

this process.

Second, I am eternally grateful to my family, for their unconditional love, support,

encouragement, and patience throughout this exciting and challenging period in my life.

I would also like to take the opportunity to thank my friends, who supported me

throughout this research project.

This contribution was made possible by NPRP grant #07- 794-1-145 from the Qatar

National Research Fund (a member of Qatar Foundation). The statements made herein

are solely the responsibility of the authors.

v

TABLE OF CONTENTS

ACKNOWLEDGMENTS ... iv

LIST OF TABLES ... viii

LIST OF FIGURES ... ix

CHAPTER 1 ... 1

1.1 Problem Statement .. 1

1.2 Aim and Objective .. 3

1.3 Proposed Solution ... 4

1.4 Summary of Contributions .. 4

CHAPTER 2 ... 6

2.1 Background .. 6

A. Overview .. 6

B. Introduction to Skyline ... 7

C. Skyline Examples ... 8

D. Skyline Operator .. 12

2.2 Skyline Computation in Traditional Database Systems 15

A. Algorithms to Extract Skylines .. 19

B. Skyline with Presorting and Skyline-Join .. 22

C. Evaluation of Skyline Algorithms in PostgreSQL RDBMS 25

vi

CHAPTER 3 ... 27

3.1 Approaches for crawling a hidden database ... 27

3.2 Querying the Hidden Web.. 30

3.3 Google Hidden Web Crawl .. 32

CHAPTER 4 ... 35

4.1 Challenges and Limitations .. 35

4.2 Query Search Interface ... 36

A. One Ended Range Predicates (SQ)... 36

B. Two Ended Range Predicates (RQ) ... 36

C. Point Predicates (PQ) ... 37

D. Mixed Predicates .. 37

4.3 Performance Measure ... 38

4.4 Skyline Computation Algorithms .. 38

A. SQ-DB-SKY... 38

B. RQ-DB-SKY .. 41

C. PQ-DB-SKY... 42

D. MXED-DB-SKY .. 43

CHAPTER 5 ... 44

5.1 Skyline Computation over Normal Database .. 44

vii

5.2 Skyline Extraction over Hidden Database .. 46

CHAPTER 6 ... 49

6.1 Experimental Setup ... 49

A. Testing Environment .. 49

B. System Components ... 50

C. System Design .. 54

6.2 Experimental Validation of Algorithm 1 .. 61

6.3 Experimental Validation of Algorithm 2 .. 62

6.4 Experimental Validation of Algorithm 3 .. 65

CHAPTER 7 ... 68

7.1 Conclusions ... 68

7.2 Future Work .. 69

REFERENCES ... 70

APPENDICES .. 72

Appendix A: SQ-DB-SKY (1) .. 72

Appendix B: SQ-DB-SKY (2) .. 73

Appendix C: System Configuration for Experiments ... 74

Appendix D: Scenarios used in experiment .. 75

viii

LIST OF TABLES

Table 1 Main Differences Between Normal and Hidden Database 2

Table 2 Minimization of Attributes .. 9

Table 3 Restaurants Databases.. 10

Table 4 Hotel Database ... 12

Table 5 Parameters Used in Sending Query ... 51

Table 6 Used Data Objects from Returned JSON File ... 52

Table 7 Results of Experiment 1 ... 62

Table 8 Average Query cost and Percentage Found of Skylines 66

ix

LIST OF FIGURES

Figure 1 SQL Query.. 6

Figure 2 TOP-5 SQL Query .. 7

Figure 3 Definition of Skyline .. 8

Figure 4 Skyline Example ... 11

Figure 5 SQL Example Using “SKYLINE OF” Operator .. 14

Figure 6 SQL Example Without The “SKYLINE OF” Operator 15

Figure 7 Divide and Conquer Algorithm Example ... 21

Figure 8 Yahoo GUI for Crawling Of Hidden Database [9] .. 28

Figure 9 Google Flights Search Interface ... 36

Figure 10 Single Ended Range Query .. 37

Figure 11 Two Examples of Range Query Predicates .. 37

Figure 12 MQ Search Interface ... 38

Figure 13 SQDBSKY Algorithm [12] .. 39

Figure 14 SQDBSKY Tree Flow .. 40

Figure 15 RQDBSKY Algorithm ... 42

Figure 16 Converting Values to Minimal ... 45

Figure 17 Google Flights Search Interface ... 50

Figure 18 Skyline Examples of 2D and 3D Plotting... 53

Figure 19 Skyline Discovery: Algorithm 1 on a Normal Database 55

Figure 20 Skyline Discovery: Algorithm 2 on Hidden Database 57

x

Figure 21 Skyline Discovery: Algorithm 3 on Hidden Database 59

Figure 22 System Activity Diagram ... 60

Figure 23 Average Query Cost on Each Scenario .. 63

Figure 24 Number of Skylines Found on Each Scenario for Different K 64

Figure 25 Percentage Found of True Skylines for Different K .. 65

1

CHAPTER 1

Introduction

Real world databases are often queried by users interested in knowing the data and may

be using it to find or reach their goal. It is also known that some users are not looking to

search through the search results to find their answers. Querying such accurate query is

almost difficult to the search engine to understand what the user truly wants. Such

engines require pre-defined ranking functions in order to rank results in a way that the

most relevant results to the user are at first followed by the rest of results. Skyline queries

were proposed to give the user final and fast decision by allowing him to place his

personal preference on his desired objectives. Such a system can provide more accurate

results defined as either skylines or the best records in a database.

1.1 Problem Statement

Skyline discovery or extraction has never been a problem when dealing with normal

databases that you can query at any time or have complete view over the database

attributes and what values they contain. For example, one can simply use the “SKYLINE

OF” clause in any SQL statement [1] and directly process the extraction of skyline

objects. In contrast, hidden databases such as Amazon, Google Flight and Twitter, place

sever limits on how the user can interact with it. Such databases may restrict the number

of web accesses and other may minimize the number of returned results.

Here is a quick overview table on the main differences between normal and hidden

database functions:

2

Table 1

Main Differences Between Normal and Hidden Database

Traditional Databases Hidden Databases

Expose a ranked list of all tuples to a

pre-known ranking function

Known ranking function and unknown to

users.

Full SQL Power Limited number of (Top-k) results

Easy to crawl Limited number of queries per IP

Easy to compute skylines using traditional

techniques(DC,NN,NBL)

Hard to compute skylines

As we can see from Table 1, the calculation of skylines could be difficult due to the

limitations placed by providers on their databases. This is because they only allow user

interaction through straightforward queries from search interfaces or by the provided

Application-programming interface (API). In this project, we investigate and research

this problem by answering the following research questions:

• How can we extract skyline records from hidden databases using the least number

of sent queries?

Our main research problem in this investigation is to find a way to crawl or query as little

as possible in the hidden database in order to overcome its limitations and find the

maximum number of skylines.

• How are we calculating skyline points?

3

In this work, we also seek to find skyline points in an efficient manner without skipping

or leaving any skyline records for normal and hidden databases.

• What type of query optimizations such a system may benefit from to reduce the

number of web accesses or sent queries?

• How do we interact with APIs to define the values of the next sent query?

Our scope of work defines an algorithm to follow in order to crawl any database starting

from sending conjunctive queries based on the values of the returned results. We explain

the algorithm later in the following chapters.

1.2 Aim and Objective

This research aims to find a way to calculate skyline records for both hidden and normal

databases but mainly focuses on hidden databases. The goal is to reduce the number of

sending queries down to an efficient level.

Our aim is to find solutions for the various following objectives:

• Investigate an online hidden database such as Google Flights.

• Extract skyline flights from different trips and time for validation with our final

results.

• Prepare an experimental case to research and solve.

• Implement an algorithm or framework that utilizes the API to help reduce the

number of queries sent.

• Perform experiments on different scenarios and cases.

• Aggregate experiments result and conclude.

4

1.3 Proposed Solution

The project should deliver a fully working system designed to query an online hidden

database containing flights with airfares on hundreds of airlines to help the traveler pick

his best flight. The project will rely on Google Flights API in dealing with its database

for query optimization and customization with the minimum number of sent queries.

The design of such a system should be clear to follow the logic behind the algorithm

and check the returned result before sending the next query. One way is to log and trace

the execution of skyline detection and comparing results with true skylines to validate.

1.4 Summary of Contributions

The main project contribution is to help the traveler pick his best flight by specifying

only the flight itinerary for initializing the first query.

The backend system will calculate skylines based on the preferred scenario and provide

the user with skyline flights. This might improve query cost and provide faster search

results by bringing more relevant results as answers to the user for his specific

preference.

In most of the cases, the results returned by the hidden databases are usually processed

and calculated based on specific automated scenarios by the backend system to provide

answers for the user’s query.

In this project report, there will be three main contributions. First, is to focus on finding

skyline records. Second, is to return the number of skylines found with respect to the

number of submitted queries. Finally, the system was built off the concept of finding

skyline flights using user-input for the number of returned results, origin and destination

airports, and date of travel.

5

The report will be presented as follows: In chapter 2, we define the problem of top-k

queries, introduce skyline queries, show methods and algorithms to calculate the

skylines, and evaluate it on a real RDBMS (relational database management system). In

chapter 3, we explore hidden databases models and approaches taken for crawling deep

web databases since it will be our main focus. In chapter 4, we briefly look into related

work for finding a skyline on a hidden database. Chapter 5 presents and defines our

system. In chapter 6, we discuss the experimental setup and test our system by running

specific algorithms to extract skyline points on a real world hidden database. Finally, in

chapter 7, we demonstrate and conclude system efficiency while specifying future work.

6

CHAPTER 2

Background and Related Work

In this section, we have a look at an overview of skyline queries and why they are

important and how they provide better feedback from users when compared to top-k

queries. We also get to see related work such as the skyline operator and skyline-join

operator. Furthermore, we look into different algorithms and approaches used now to

compute skyline objects and evaluate them on a real RDBMS.

2.1 Background

A. Overview

In relational database management systems, we process and express queries usually using

normal SQL by giving the system the chance to provide the best possible results it can

retrieve for us by querying the database using normal SQL queries. For example, to find

the nearest restaurant names to the city center where the distance is at most 2km, we

should normally issue the query in Figure 1.

SELECT restaurants.name

FROM restaurants

WHERE restaurants.distance <= 2

Figure 1 SQL Query

We specified exactly what we wanted by imposing a condition on the distance to be less

than 2. However, in most cases, it is much better to let the database system give the most

7

probable best answer by making the user help the system by providing multiple criteria.

This can be very helpful because it can help the system build a ranking function in order

to get the best answer for the user. Such an example could be, combining two criteria in

order to produce the ranking function. The user could ask the system for the lowest or

highest values and get his answer. Top-k queries can be defined as queries that return top

score tuples of any given database based on a scoring function and the number of

expected results k. Moreover, it is always required for the user to define the number of

returned objects in the answer and the scoring function can be made by many attributes in

the database. An example showing a top-k query can be seen in figure 2. Consider a

database restaurant with DcityCenter is the distance to the city center and DBeach is the

distance to the beach.

SELECT restaurants.name

FROM restaurants

ORDER BY (restaurants. DcityCenter + restaurants.DBeach)

STOP AT 5

Figure 2 TOP-5 SQL Query

Top-K queries had many drawbacks including difficulty defining a meaningful ranking

function when the features had different semantics. To avoid this, Skyline queries were

proposed.

B. Introduction to Skyline

A Skyline query does not require a ranking function and the integer k. A Skyline is

8

defined as those points which are not dominated by any other point. By definition for

domination in Skylines, “A point dominates another point if it is as good or better in all

dimensions and better in at least one dimension”[1]. The interesting thing about Skyline

queries is that it doesn’t matter how you choose the weights of the attributes you are

looking at, since the skylines are guaranteed to discover your restaurant or hotel of

choice. It is more interesting in both cases to allow the user the ability of minimizing

attribute values and/or maximizing them in functions that are monotone on all attributes

and these objects cannot get dominated by any other object[1].

C. Skyline Examples

The definition behind domination of tuples underlies tuples dominating other tuples is

that a relation R (A1, A2, A3, A4…An) in a relational database D where Ai are the

attributes which can be ranked. Assuming that the less the values of the attributes the

better. A record or object t dominates another object t’ if and only if:

 ∀𝑗 = 1, … , 𝑚 ∶ 𝑡[𝐴𝑗] ≤ 𝑡’[𝐴𝑗] ∧ ∃𝑗: 𝑡[𝐴𝑗] < [𝑡’𝐴𝑗]

Figure 3 Definition of Skyline

Some examples on finding the skyline tuples from a table:

9

Table 2

Minimization of Attributes

 A1 A2 A3

t1 5 1 9

t2 4 4 8

t3 1 3 7

t4 3 2 3

In table 2, we can see a table of 4 tuples (t1, t2, t3 and t4) with 3 ranking attributes (A1,

A2, A3). We prefer “Minimum” over all the attributes so the less the value the better.

We can conclude that t2 is dominated by t3 and t4. t1, t3 and t4 are not dominated by any

other tuple so they are considered as skylines.

The skyline queries have been used over a period of time in making several multi-criteria

decision support applications. Due to the dominance in the relationship dataset the query

returns the objects that cannot be dominated by other objects.

Consider a person that cannot choose a restaurant over different restaurant because of the

variety of service, price, décor and the quality of food. The user would like high service,

food and décor but low price. Table 3 shows different restaurants with its corresponding

values (1=bad, 30=good).

10

Table 3

Restaurants Databases

 Service Food Décor Price

Zakopane 24 20 21 56

Yamanote 22 22 17 51.5

Summer

moon 21 25 19 47.5

Fenton &

Pickle 16 14 10 17.5

Brearton Grill 15 18 20 62

Briar Patch

BBQ 14 13 3 22.5

Restaurants, which are dominated in table 3, are the 2 restaurants “Brearton Grill” and

“Briar Patch BBQ”.

Thus, several algorithms have been proposed to work on the skyline query processing

deeply like the window-based, progressive, distributed, geometric based, index-based,

divide and conquer, and dynamic programming. Application-specific problems like the k-

dominant skylines, top-k dominating queries, spatial skyline queries and others several

variations were proposed[2]. An example of skyline query can be seen in Figure 1 when

11

the data objects are two dimensional points (2D) in the Euclidean plane while we search

for the minimal dimension on each point. Figure 4 plots 16 points with coordinates:

a (1; 12), b (2; 7), c (4; 22), d (5; 14), e (6; 5), f (8; 19), g (9; 9), h (10; 4), I (12; 13), j

(15; 15), k (15; 22), l (16; 6), m (17; 10) n (17; 20), o (21; 3), p (22; 14).

A.

Figure 4 Skyline Example

The skyline query returned the points/objects {a; b; e; h; o} which appear on the skyline

for users expecting the minimal x and y and in our example of restaurants could be the

minimal distance to city center and minimal distance to the beach[2].

Consider the example of hotels but changing attributes to price, distance to the beach and

the number of stars such as the user would like higher number of stars (table 3).

12

Table 4

Hotel Database

Hotel #Stars Distance Price

Aga 2 0.7 1175

Fol 1 1.2 1237

Kaz 1 1.2 750

Neo 3 0.2 2250

Tor 3 0.5 2250

Uma 2 0.5 980

From table 4, the skyline hotels highlighted satisfy all users and are not dominated by any

other hotel.

D. Skyline Operator

In investigating the optimization problem that is used for filtering database results to keep

desirable results, Borzsonyi, Kossmann and Stocker [1] proposed a solution for

expanding database systems. Skyline operator, accordingly, helps filter out database

results from a possibly large dataset. Skyline can be represented graphically as in Figure

3, thus the reason for using it. While illustrating about the application of skyline

operation in a travel agency where the customers are interested in finding hotels that are

close to the beach and have a low price, the authors emphasized on decision support

mechanisms. According to the authors, the study focused on how skyline operation is

extensively used for database visualization in the form of graphical representations. Other

points cannot dominate the points of interest. In the investigation, the authors

13

demonstrated that there are ways to extend SQL to present skyline queries, assess other

algorithms for skyline operator implementation and illustrate the way of integrating

skyline to operate with other existing database operations such as top N and join. In this

context, the argument that the authors talked about is that it is possible to get a nested

query after transforming the skyline query. The study [1] also illustrates the

implementation and demonstration of how skyline queries are important on relational

database systems. During the implementation process, there are no modifications on the

existing database system, whether object oriented or relational. In the proposed method,

skyline queries can be implemented to extend the current database systems (object-

relational, object oriented or relational) using the logical operator or clause known as

skyline operator.

In the experiment carried out, the authors used uncorrelated and correlated databases to

assess algorithm performance. In their findings, they emphasized the significance of

skyline in making the final decision. In examining skyline operator implementations, the

authors focused on distinct known approaches. The main approaches were divide and

conquer, two-dimensional skylines and block-nested loop algorithm. To extend the

derivations arrived at and theoretical analysis of divide and conquer algorithm previously

done, [1] they extended the same algorithm so that it worked better within the context of

the database. In addition, they proposed that the other alternative algorithm, block nested

loops, was better than previously examined algorithms.

Borzsonyi, Kossmann and Stocker study [1] extends other previous works focusing on

skyline operator. While previous research had suggested that points can collectively fit

into memory, this study illustrated how to integrate skyline operator into the existing

14

database system. To facilitate skyline queries specification, they described the potential

SQL extensions. To show that the initially proposed algorithm, in terms of database

performance, had poor performance, the authors presented and analyzed alternative

algorithms for skyline operator computations.

To analyze skyline queries extensively, the study discussed the exploitation of standard

index structures like R-trees and B-trees but to calculate the nearest neighbors (NN) to

the skyline, R-trees were used. The main reason of computing the nearest neighbors is to

determine the appropriate rows and prune the branches the rows that dominate. B-trees,

in contrast, are used to determine the superset for the skyline.

Borzsonyi, Kossmann and Stocker, in general, showed several ways to extend a database

system in order to calculate several important points by using the skyline operator by

expanding it with more operators such as MIN MAX and DIFF.

SELECT *

FROM Hotels

Skyline OF Price min, Distance min

Figure 5 SQL Example Using “SKYLINE OF” Operator

To extend the SELECT statement used in SQL, the authors proposed the clause,

SKYLINE OF. They used experimentation data to assess other algorithms used in

computing the skyline, discussed the use of indices in supporting skyline operation as

well as interaction between skyline operator and other existing database operators. The

15

result from the experiment performed led to the conclusion that divide and conquer

algorithm is useful for tough case implementation while block nested loops algorithm is

applicable to good cases.

SELECT *

FROM Hotels h

WHERE h.city = ‘Hawaii' AND NOT EXISTS(SELECT *

FROM Hotels h1

WHERE h1.city = ‘Hawaii'

AND h1.distance ≤h.distance

AND h1.price ≤h.price

AND (h1.distance＜h.distance OR h1.price＜h.price));

Figure 6 SQL Example Without The “SKYLINE OF” Operator

2.2 Skyline Computation in Traditional Database Systems

Similar to study [1], Kossmann, Ramsak and Rost [3] , in analyzing skyline queries

algorithms, argued that skyline queries, with a suitable online algorithm, helped select the

best points. The suggested algorithm is suitable for interactive environments. They

proposed, in their investigation, an online algorithm which calculates the skyline.

Dissimilar to other algorithms which calculate the skyline using batch processing, the

algorithm suggested returning immediately the first results, continuously providing more

results and helping users provide user preferences during runtime. As such, the user can

control the type of the results yielded by allowing him to choose cheaper hotels or better

distance to the beach. In the work, the authors evaluate NN algorithm in comparison to

others, majorly Bitmap algorithm and B-trees, which were found to be limited.

16

In the investigation, Kossmann, Ramsak and Rost found that while an online algorithm is

likely to take more processing time compared to batch-based algorithms, they quickly

produce skyline subsets. Batch algorithms were also found to have long running time. As

such, the authors had to define appropriate assessment properties. In assessing online

skyline computation, the authors suggested 6 properties that characterize the algorithm.

The properties include: a) instantaneous return of the first result; b) production of a full

skyline; c) not return points that are good points and later replace them with other better

points; d) fair in terms of not only favoring points that are good in 1 dimension; e) proper

control by using a GUI where the user can click on the screen to let the algorithm bring

back the next skyline points that are near the skyline he clicked on and f) universality for

database data sets (indexes) and skyline queries.

The study by Kossmann, Ramsak and Rost proposed the algorithm for 2-D skyline

queries. The online algorithm was also generalized to the other higher dimensional (e.g. 3

D) skyline queries. They, however, presented three assumptions in presenting the

algorithm, namely: a) all values were positive real numbers; b) the data set did not have

any duplicates and c) the algorithm tends to determine the interesting points close to the

initial one. Under these assumptions, it is still possible to use the proposed algorithm in

duplicate queries or data sets, find maximal value and all real numbers (positive as well

as negative).

In assessing skyline queries, the study compares alternative algorithms and variants.

Unlike the low emphasis on dimensions as investigated by [1], the research by

Kossmann, Ramsak and Rost compared several algorithm variations, focusing on

dimensions. They examined performance tradeoffs for four main variants, namely

17

propagate, laisser-faire, hybrid and merge. The experimental results helped the authors

confirm that hybrid and propagate variants outperform laisser-faire and merge variants.

They found that laisser-faire and merge variants, overall, spend more time on duplicates,

thus lowering performance. To use to do list indices, the authors found that indexing

structures like B-trees were not very useful. To improve on the performance of one

variant, hybrid, the authors proposed tuning as the applicable solution.

To support the findings by [3], Kossmann, Ramsak and Rost study and illustrate the

significance of skyline queries in applications such as decision support, data visualization

and customer information systems. The analysis, in relation to other related algorithms,

demonstrated distinctive virtues. The proposed algorithm, NN, serves as the single

algorithm which gave users free control to provide preferences thus directing the output.

With respect to B-tree algorithm, the authors revealed that the algorithm, in one

dimension, points well but lately returns other good points in multiple dimensions. The

study, in addition, concluded that the bitmap algorithm usually scans the whole database

system and used bitmaps to determine the points which form part of the proposed skyline

but doesn’t allow the user to interact with the system because he has no control where the

clustering of the database is responsible for returning the skyline objects returned first.

In similar research done by Papadias et al [4], they studied and proposed an advanced

algorithm suitable for skyline queries, similar to [1] and [3] studies. In the study, the

authors described a skyline as D-dimension points which have some points not controlled

by other points. The investigation focused on skyline computation with respect to

databases, in particular for progressive algorithms which return the first points of the

skyline quickly since it does not need to read all data file contents. In the assessment, the

18

authors acknowledged nearest neighbor as the most efficient algorithm using R-trees and

being implemented using divide and conquer model as illustrated in the study by [3].

Despite desirable features exhibited by NN algorithm (applicable to random dimensions

or data and high speed in returning the points), there is need to avoid duplication, large

space overhead and multiple access problems. So, they devised a branch-and-bound

skyline (BBS) algorithm that operates taking into account nearest neighbors with

optimum use of input and output. The algorithm proposed carries out one access to the R-

tree nodes likely to contain the required skyline points. Moreover, the suggested

algorithm has smaller space overhead and does not in any way retrieve duplicates

compared to NN algorithm.

The authors concluded the suggested algorithm, BBS, can be implemented easily and

applied effectively to several skyline queries. Using experimental and analytical

comparisons, the study eventually demonstrated that in all problem cases, taking into

account order of magnitude, BBS outperforms the NN algorithm proposed in [3]. Overall,

BBS algorithm used numerous data partitioning techniques. For simplicity, the authors

only used R-trees.

In the study, Papadias et al illustrated the significance of skyline operator in multiple

criteria decisions. The research done by [1] , in this context, suggested an enhanced SQL

syntax while using the skyline operator. For a query regarding price and distance of the

beach for several hotels in Figure 4, the syntax is given, Select*, From Hotels, Skyline of

Price min, Distance min. In the presented syntax, min suggests minimization of distance

and price attributes. In addition, it shows distinct conditions including group by and joins.

In the investigation, these authors assumed that the computation of the skyline is

19

anchored on min conditions for all dimensions considered. Nonetheless, all approaches

analyzed in the investigation are applicable in any combination of conditions.

To build on the existing work, Papadias et al discussed several approaches such as bitmap

technique, index approach, Block Nested Loop (BNL) and divide and conquer method.

For BNL, the user selects one point, say p, and compare others to this point to calculate

the skyline, and argument supported by [1]. Data in the data file is scanned completely to

compute the skyline in this method. For divide and conquer, the authors showed that a

dataset is divided into partitions and the main memory algorithm used to calculate the

skyline partially. In the approach, there is a need to read the whole data set, thus not

pertinent to online processing. The bitmap method encodes information essential for

deciding on the skyline point using bitmaps. The approach, according to [1], does not

allow for user preferences, a significant feature of most online algorithms, making it

limited. In the index approach, dimensional points are usually organized into lists, later

assigned to show the skyline. The approach was found limited since it does not support

user preferences and returns fixed skyline points.

A. Algorithms to Extract Skylines

There exist many proposed algorithms for the processing of skyline queries and can be

described in two categories: Index based and non-index based algorithms. This comes

after the datasets are getting bigger and require having them on disks.

For two-dimensional, skyline is computed by sorting data of the first attribute (from

better to worse) and then iterating through the tuples and by eliminating the dominated

ones. Whatever is left from the tuples, they are considered skylines because they are not

20

dominated by any other points.

For more than 2 dimensions, sorting does not work. It requires better algorithms for

extracting the skylines. Many skyline query processing algorithms and techniques were

proposed such as nested block loops (NBL), divide and conquer (DC) and nearest-

neighbor based (NN) [2].

• Block-Nested-Loop (BNL)

The algorithm uses a window in main memory that has the best tuple and a temp file to

write to if the window has no space. BNL compares every record with every other record

of the dataset through a nested loop. The quadratic complexity O (N2) makes the

algorithm inefficient (N is the total number of objects that are contained in the datasets)

[2]. The idea is to use a window, which is a memory block with limited space to hold a

number of limited data objects. The objects are checked to confirm if they dominate each

other. If any of the objects are dominated they are then eliminated and the dominant

object is inserted into the window. Thus, is the case if they are incomparable with all the

objects in the window. If the window is full, a temp disk file is used to contain the

candidate objects. The BNL works effectively when the skyline is effectively small with

the worst case being O(N2) when a much better I/O behavior is put in place[2].

There exists another type of BNL called the sort-filter skyline algorithm (SFS) which is

defined by the “topological sort with respect to the skyline dominance partial relation”.

The SFS makes the query process efficient and behaves better in a relational setting.

 The SFS is further proposed and extended[5] in a SaLSa algorithm (known as the Sort

and Limit Skyline algorithm) where the algorithm reduces the number of dominant

21

checks.

• Divide and Conquer (DC)

This method computes the median value and divides the space in two partitions P1 and

P2. The first partition P1 contains the better tuples (e.g. objects that are less than objects

in P2). We then compute the skylines of each partition S1 and S2 respectively where

again P1 and P2 are again partitioned to P12, P22, P11 and P21. The portioning stops

when a partition has only 1 or a few points. At last, the algorithm merges the results of S1

and S2 thereby eliminating the dominated points.

Figure 7 below shows the divide and conquer algorithm running on the graph of Figure 4.

Figure 7 Divide and Conquer Algorithm Example

22

The authors of [2] explained how the algorithm runs and how they managed to collect all

skyline points. The figure contains 4 partitions P11, P12, P21, and P22 while the partial

Skylines are S11 (b, e, h), S12 (a), S21 (l, o) and S22 (i) respectively. In order to obtain

all the skylines S, the dominated points are removed by some points in other partitions.

All points of the skyline of P11 must appear in the final skyline and those in P22 are

discarded because they are dominated by any point in P11. The skyline points in P12 are

compared with points in P11 because there is not any point in P22 or P21 that can

dominate those in P12. This example shows point (a) is not dominated by b, e, h,

therefore it is included in the final skyline which is S. Also, the skyline P21 is also

compared to the points in P11 which results in the removal of point “L” which ensures

that point “O” remains. Thus the algorithm terminates the skyline set S={a, b, e, h, o}[2].

This algorithm has a variation, an optimal algorithm named (DCSkyline) which helps in

computing skylines in 2-D spaces. It is similar to the BBS [4] only that it contains

pruning mechanisms.

B. Skyline with Presorting and Skyline-Join

Skyline with Pre-sorting

A 2003 study by Chomicki [6] suggested a skyline algorithm, called sort filter skyline

(SFS). The algorithm takes into account presorting on skyline queries, and is very

efficient in the relational database environment. The skyline algorithm suggested was

found to have good performance and works very well in relational database systems.

Through presorting, it is argued that the block nested loop algorithm can be revised to

generate SFS, a general skyline relational database algorithm. The authors illustrate how

23

to handle preference queries through the extension of relational systems.

Among the existing skyline algorithms, it is clear that index structures are used in

majority of the algorithms. The preciseness in these queries, however, makes the

algorithms applicable to only specific cases. Generalizations are thus not possible. The

study reveals a comparison involving three algorithms, namely SFS, divide and conquer

algorithm and block nested loop algorithm. The authors argue that divide and conquer is

only suitable for queries with more than five dimensions. The algorithm has some limits

because it cannot work properly on large volumes of data as well as small buffer pools.

For mid-range dimensions, the study showed that BNL algorithm is suitable. So, BNL

also seems a good option that requires revisions in relational settings.

Among the algorithms introduced by [2], there are proposals on how to improve BNL

algorithm. According to [6], tuples require presorting before BNL is applied. The

presorting practice is a guarantee that the tuples not read are not considered as skyline

points upon termination of algorithm processing. An assessment of several presorting

functions shows that best performance can only be achieved through maximum

coordinate pre-sort.

In their findings, [6] demonstrated that SFS serves as a practical algorithm that can be

extensively implemented in relational database skyline queries. In addition, the study

showed that several improvements are possible on the algorithm when pursuing improved

skyline algorithms. The existing sort merger join algorithm; accordingly, help integrate

sorting and filter skyline stages to guarantee an optimized SFS algorithm. So,

performance increases because of decline in the number of passes. In the study, several

advantages of SFS algorithms were revealed; well behaved in the relational database

24

environment, offers ordering capability, is output pipelineable and allows for

optimizations.

Skyline-Join

The study by Sun et al [7] examines the skyline operation in the distributed database

settings. The authors address the main problem about skyline queries processing using

numerous tables within the distributed environment. The proposed skyline operator,

called skyline join, stems from two operators, skyline operation and join operation. The

authors also suggest two methods for processing the skyline join queries. The methods

considerably minimize processing time and processing costs.

Skyline query processing in the distributed environment, based on the article [6], has

been gaining attention recently. Existing algorithms, in this case, are extended to

minimize data transfer and support skyline queries in several database settings. In the

algorithm suggested, partitioning and routing information help forward skyline queries.

Tuples are categorized into three main classes; a) general skyline points, local skyline

points and others. In the first two categories, joining the tuples help produce final results.

In the third category, other tuples dominate others, leading to discursion of tuples.

Overall, study [7] proposes more search space pruning method.

After proposing two methods, innovative iterative algorithm and existing skyline

algorithm (SaLSa) [5] used two synthetic datasets to assess their performance. In the first

synthetic dataset, the findings show that both algorithms cannot efficiently prune the

existing search space. In addition, both introduce extra central processing unit (CPU) cost

because of the running processes which are very complex. In the experiment performed,

the authors found that to process the anti-correlated datasets, the modified skyline

25

algorithm should be invoked to produce a temporal table and then the algorithm applied

in determining the final results. In the comparison, key elements that reveal algorithm

disparities include effect of dimensionality join selectivity impacts, iterative algorithm

effect and network costs.

In the second synthetic dataset, TPC-DS datasets were generated (decision support

standard measure for benchmark). Table sizes are modified because it is impossible to

tune the TPC-DS tables. The experiments, taking into account two algorithms, were

evaluated in terms of iterative algorithm effectiveness, dimensionality and network costs.

The paper [7] revealed similar results to those found using Synthetic dataset 1. The study

demonstrated that iterative algorithm calculates the (local) skyline points for each

temporary table and generate partial results leading to the pruning of the resultant skyline

join. AP-domination as well as outsiders eventually prunes the remaining tuples. Bloom

filter accuracy, data correlation, skyline attributes and data distribution determine the

algorithm performance.

C. Evaluation of Skyline Algorithms in PostgreSQL RDBMS

Eder and Wei [8] study assessed the performance of skyline algorithms within the

PostgreSQL settings. The algorithms included Linear Elimination Sort for Skyline

(LESS), Divide and Conquer (DC), SFS, Branch and Bound (BBS), Nearest Neighbor,

index, bitmap and BNL. The algorithms are categorized into two groups to assess

efficient computations. The first class comprise of solutions provided without dataset

processing. The second class includes algorithms that employ sorted lists, R-trees and

index structures to minimize query costs. The number of skyline parameters, in this case,

26

determines skyline queries performance.

PostgreSQL setting is useful in skyline algorithm assessments. In the relational database

management systems (RDMS), there are several advantages linked to skyline query

operation. To construct additional complex queries, it is easier to integrate skyline with

other existing relational operators. Similarly, index-based skyline algorithms can be

implemented using current indexing structures. In addition, the RDBMS system can

choose the most efficient algorithm in the given dataset while comparing several

algorithms.

In the previous skyline operation comparisons [6] and [7], [10] argue that an algorithm

that is best taking into account all evaluation aspects has not been found. Overall, the

common metrics in comparisons subsume cardinality, dimensionality, network costs and

distribution [7]. These properties, accordingly, give rise to algorithm efficiency.

Considering all data distributions, SFS+EF algorithm was found to have best time

performance. Compared to BNL, SFS+EF algorithm performs better. LESS was also

found to outperform SFS algorithm. Considering time dimensionality performance, SFS

performs better than the remaining algorithms, specifically for high dimension values.

Using skyline implementation experiments, the study revealed simple and useful rules

that cannot be found in the existing theoretical explanations. Two main findings (not in

theoretical explanations) were found: a) for the dataset with about 500 tuples and

comparatively small dimension, the performance of BNL in all properties is the best and

b) with selectivity factor less than or equal to 0.1, there is an effective elimination filter.

The study findings are significant because they examine skyline query optimization in

database environment and provide insights into skyline query attributes.

27

CHAPTER 3

Hidden Web Databases Crawling

Deep web databases, also known as hidden databases, cannot be crawled directly because

of the strict interfaces given by the provider to the user. In this chapter, we look at

different approaches by different authors and see how they interacted with such obstacles.

3.1 Approaches for crawling a hidden database

In the related literature dealing with skylines, scholars have examined extraction,

integration and evaluation of data from hidden databases. Sheng et al [9] study proposed

algorithms applicable to web-based hidden databases. For hidden databases, users use a

web search interface to present queries. Users who follow static links, thus, do not access

data. Rather, users query the web interface and read the result page to obtain data. During

run time, users can interact with the database interface provided to access the available

data. Figure 8 shows how a user can interact with the back-end database through a

restricted web interface on Yahoo autos to search for a car to buy. Search engine, based

on this investigation, crawls hidden databases using optimal algorithms. The proposed

algorithm extracts all rows from the hidden database.

28

Figure 8 Yahoo GUI for Crawling Of Hidden Database [9]

The algorithms proposed are efficient; in work case scenarios, they efficiently perform

few queries. With respect to the problem defined in terms of hidden databases, the

authors sought to prove reduction in the number of database queries. In the theoretical

results provided, Sheng et al demonstrated asymptotically optimal algorithms. In other

words, using constant factors does not guarantee improvements in terms of efficiency.

The authors used lower and upper boundaries to present experimental results that show

problem properties. Previous experiments also confirmed the findings presented in the

investigation.

Sheng et al investigation [9], clearly, systematically presents a detailed analysis about

29

hidden database crawling where there is need to retrieve data from a hidden server using

few database queries. The study has high level contribution since it examines algorithms

found efficient on real data and fast when applied in worst case scenarios. Using lower

bound results, the study establishes the hardness linked to the defined problem statement.

Based on the results, there are several underlying factors that impact hardness. The lower

bound results, in addition, confirm the asymptotic nature of the algorithms suggested.

Slice-cover algorithm showed the worst performance, which is confirmed in the

theoretical assessments provided since there is reflection of optimality on hardest dataset.

Compared to depth first search (DFS), a suboptimal solution, the slice-cover algorithm

does not provide improved efficiency. The authors discussed the effectiveness and

significance of heuristic, which is confirmed through significant improvements exhibited

by lazy-slice-cover algorithm. To illustrate the extensions to existing algorithms, the

authors propose a hybrid algorithm that integrates rank-shrink and lazy-slice-cover

algorithms.

While examining numeric attributes in the data set provided, the study focused on the

performance of two algorithms, namely rank-shrink and binary-shrink. To examine

categorical algorithms, the authors focused on how efficient the three algorithms are,

namely lazy-slice-cover, DFS and slice-cover. To examine these algorithms, real data sets

from three sources were used; NFS with 47,816 tuples, adult with 45,222 tuples and

Yahoo with 69,768 tuples. The experimental evaluations carried out showed that the

algorithms proposed demand for fewer queries compared to alternative solutions.

Search engines, as per now, cannot index the hidden databases effectively. So, they

cannot pose queries to appropriate data repositories. Hidden data has increased, and the

30

problem has restricted the amount of information ordinary internet users can access. So,

the investigation by Sheng et al addressed the concern evident in reduction of queries

while accessing hidden database servers. The goal of the study [9] was to determine the

method useful in crawling hidden databases at minimum costs. The authors developed

algorithms that help solve the problem where the dataset has categorical attributes,

numeric attributes or a combination of the two.

3.2 Querying the Hidden Web

Crawlers are useful in retrieval of indexed information. An investigation by Raghavan

and Garcia-Molin [10] on hidden web crawling ought to address the problem of

designing crawlers that extract content from hidden Web pages that can be accessed via

hypertext links. The authors proposed a general operational framework for a crawler that

accesses the hidden web. In addition, they provided comprehensive descriptions about

realizing the framework through the Stanford crawler prototype called Hidden Web

Exposer. The study explored a Layout-based Information Extraction Technique (LITE),

describing how the method extracts semantic information from the response pages and

search forms. The technique was later tested and validated using empirical findings.

Hidden Web crawler design is a very challenging task [10]. The crawler needs to parse,

interact and process human readable interfaces. In addition, users have to provide search

queries to the web crawlers, begging the question of equipping crawlers with appropriate

input during search engine construction. These two challenges are addressed in the study

through the task-specific and human assisted method proposed. To ensure task

specificity, the authors suggest that the crawler selects hidden web portions, and use

specified tasks to extract the content required. Such an archive is built through resource

31

discovery and content extraction procedures. To make sure that the information presented

suits specified tasks, human assistance is essential.

The operational model proposed by [10] comprises of four components, namely task

specific database, internal form representation, matching function and response analysis.

The crawler builds an internal form of representation having received a form page. The

task specific database has information essential in formulation of search engine queries

linked to specified tasks. The matching function is an algorithm that produces final output

from database contents, input and internal form representation. The response analysis

module receives form submission responses and stores requested pages. It then

distinguishes the pages that include search results and those with error messages. The

matching function uses the feedback to display appropriate responses based on searches

performed.

The hidden Web crawler prototype was built based on the described operational model

[10]. The HiWe crawler seeks to extract descriptive labels or information for the

corresponding elements. In the crawler, the database (task specific database), is arranged

bearing in mind finite number of classes and concepts. Each concept has a corresponding

label. To calculate candidate value assignments (in sets), the matching function matches

the match form labels against the task specific database. The matching function in this

case matches the labels first and then ranks the value assignments discovered.

The proposed HiWE prototype help address design issues including information to be

collected by the crawler, useful metadata information related to matching functions,

match algorithm that maximizes submission efficiency, organization, updating and

accessing the task specific database and using feedback provided by the response analysis

32

component to fine-tune the matches [10]. URL List is used as the primary data structure.

The list includes all URLs already discovered by the crawler. The prototype has a Crawl

manager responsible for controlling all crawling processes. The prototype has a parser

that adds hyperlink texts into the URL list after extracting them from the web pages

already crawled. The Form Processor, the Response Analyzer and the form analyzer are

responsible for submission operations and form processing. The task-specific database, in

general, is implemented using the LVS table.

3.3 Google Hidden Web Crawl

Some researchers have examined the web with respect to search engine coverage. For

instance, Madhavan et al [11] study, similar to [10] investigation, focusing on deep web

crawling, taking into account Google. The study describes a Deep-Web content surfacing

method. For every HTML form, submissions are pre-calculated and the final HTML

pages added onto the search engine index. The study included the surfacing results into

Google search engine which drives numerous content while dealing with content from the

deep web.

There are several problems originating from deep web surfacing. As such, [11] sought to

index HTML form content which extents numerous domains and languages. Attaining

such an objective requires an automatic, very efficient and highly scalable method. Since

majority of the HTML forms usually have text inputs, users have to submit valid values.

As such, the authors suggest an algorithm that helps identify inputs that only accept

specified value types (e.g. integers or characters). The third problem associated with deep

web surfacing is the presence of more input values on HTML forms; an immature

approach of computing the whole Cartesian product that includes all potential input

33

values generating numerous URLs. To address this problem, [11] proposes an algorithm

which navigates the whole search space efficiently (accounts for all combined possible

inputs) and determines the values that produce URLs appropriate for web search index

inclusion.

In the experimental results, [11] described several experiments which support the

hypothesis that the proposed algorithm effectively predicts the necessary templates for a

given HTML form. Forms with select menus were considered while focusing on the

templates instead of value selection in the inputs for texts. The authors manually

inspected all HTML forms and found that select menus having less than five options were

largely presentation inputs. The researchers compared ISIT algorithm with others and

showed that for all algorithms, numerous URLs cannot be generated. It is easier to

traverse the entire search space efficiently, based on this research finding. Practically, the

authors found that the underlying database can be covered properly using the existing

algorithm.

To choose query templates, the study revealed two primary challenges. First, there is

need to choose the template that lacks binding presentation inputs given that query

templates retrieve similar database records without presentation input. Nonetheless, it is

impossible to know beforehand, whether or not the input is actually presentation input.

The second consideration is that templates with appropriate dimensions should be

selected. One method of ensuring proper dimensions is to select the one with numerous

binding inputs (largest potential dimensions). Selecting an appropriate template,

according to [11], helps generating all probable queries guaranteeing maximum coverage.

The approach, nonetheless, increases crawling traffic eventually generating empty result

34

sets.

[11] Successfully provided a comprehensive coverage and description of technical

innovations that underlie Deep-Web surfacing system performed on a large-scale level.

Numerous users enjoy the surfacing presently, which covers numerous domains (about

700), many forms and numerous languages. The search traffic performed significantly

exemplifies the role of value gained from deep web surfacing. The study, in general,

demonstrates three main principles likely to inform future research. Deep web indexing

methods can be explored using the informativeness tests undertaken in relation to form

input. Making best web crawling efforts, based on the experimental study results, can

help the prototype [10] crawl deep web sites to maximize site traffic, eliminate complete

site crawling and reduce crawler burden.

35

CHAPTER 4

Skyline Extraction over Hidden Databases

In Chapter 3, we had an overview on different approaches to crawl/query hidden

databases. For such a purpose, we are interested in applying a research project that will

initiate an application on the problem concerning the discovery of skylines over top-k

hidden web databases. Extracting Skylines from a hidden web database will also enable a

variety of innovative third-party applications.

4.1 Challenges and Limitations

In relational databases, we can crawl the entire database and apply the traditional

methods for skyline computation (such as the algorithms discussed in chapter 2) over a

local copy of the database. These databases have full SQL power and can have a ranking

function that is already known to display all records according to it.

The challenge here in, hidden databases, is that we can only query the database through a

top-K search interface to compute the skyline tuples. Hidden databases are different than

traditional databases because the databases providers of the real-world databases place

sever limits on how the user can interact with the database. The top-k search interface

provides K results according to a ranking function the user never knows about. The data

access model of web databases is completely different from the traditional databases

access model [12].

A user looking for skylines can query the entire database using the different algorithms in

Chapter 3 and apply algorithms for skyline computation over this database locally.

However, it’s not always the case. Hidden databases also limit the number of web

36

accesses (queries sent) per IP address or API key limit. A good example is Google

Flights, which I did my project on, limit the number per API key for 50 queries per day.

Solution to this for skyline computation over hidden databases is to send as many queries

as necessary and stay under the limit through the restricted search interface [12].

4.2 Query Search Interface

An example of Google Flights search interface is shown in figure 9. Calculating the

skyline point over a restricted search interface with different types remains a challenge

[12].

Figure 9 Google Flights Search Interface

A. One Ended Range Predicates (SQ)

In this category, you only specify the upper bound. An example of that is the mileage of

a car (Mileage <= 31068 miles). A predicate on any attribute Ai can be 𝐴 < 𝑣, 𝐴 ≤

 𝑣 𝑜𝑟 𝐴 = 𝑣.

B. Two Ended Range Predicates (RQ)

A two-ended range predicate gives the choice to choose the lower and upper bounds.

𝐴𝑖 < (𝑜𝑟 ≤) 𝑣, 𝐴𝑖 = 𝑣 𝑜𝑟 𝐴𝑖 > (𝑜𝑟 ≥) 𝑣

37

Figure 10 Single Ended Range Query

Figure 11 Two Examples of Range Query Predicates

C. Point Predicates (PQ)

For the third category of search interface categories, predicates can only be in form of

equality where the predicate on attribute can only be of the form Ai = v.

D. Mixed Predicates

From SQ, RQ and PQ interfaces, we can have a mixture of them called Mixed Query.

38

Figure 12 MQ Search Interface

4.3 Performance Measure

As mentioned earlier, we would require minimizing the number of queries sent to the

databases because of the limit that the databases providers impose on the user. So, to

calculate the efficiency and improve it, we need to calculate the number of queries sent

and minimize it. In traditional databases, when computing the skylines, they usually

calculate the computation time and/or the number of I/O.

4.4 Skyline Computation Algorithms

We study an algorithm at a time for each search interface category mentioned in 4.2.

A. SQ-DB-SKY

The SQ-DB-SKY algorithm was proposed in [12] which is a divide-and- conquer skyline

algorithm that issues broad queries with queries that contain few predicates. It determines

the queries that are issued next based on the records that are received.

In the below figure, the pseudo code for SQDBSKY is illustrated.

39

Figure 13 SQDBSKY Algorithm [12]

For table 1 of database D (3 attributes A1, A2 and A3), we would like to calculate the

number of required queries. The proposed algorithm starts with issuing the first query q1:

Select * from D. Suppose that the top-1 returned tuple is t1. Now for each attribute we

send 3 queries based on the values of t3.

q2: SELECT * FROM D WHERE A1 < t1[A1]

q3: SELECT * FROM D WHERE A2 < t1[A2]

q4: SELECT * FROM D WHERE A3 < t1[A3]

By doing this we are looking for skylines that are not dominated by t3 so every tuple

returned must satisfy at least one of q2, q3, q4 or it would have been dominated. Suppose

that q2 returned t2, so we keep sending 3 queries based on the number of attributes for

each sub tree.

q5: WHERE A1 < t2[A1]

q6: WHERE A1 < t1[A1] AND A2 < t2[A2]

40

q7: WHERE A1 < t1[A1] AND A3 < t2[A3]

Figure 14 SQDBSKY Tree Flow

This algorithm is guaranteed to find all the skyline tuples and the proof of this is proved

in the paper of Abolfazl [12].

SQDBSKY algorithm also guarantees that every tuple returned by the query is a skyline

because it cannot be dominated by any other tuples not matching the query[12]. So the

highest number of search queries is 𝑂(|𝑆|𝑚). There is also something bad regarding this

algorithm where a tuple can be returned by many nodes matching the query and this

could lead to a higher query cost and the worst case grows exponentially with the number

of attributes m where 𝑂(𝑚. |𝑆|𝑚+1).

In the average-case, S(q): the set of skyline tuples matching q which is a randomly

chosen skyline tuple from S(q). To understand why this is, we start from the simplest

case of |S| = 1. The SELECT * query returns the single skyline tuple, while the m

branches of it all return empty, finishing the algorithm execution. In other words, the

41

query cost is always C1 = m + 1 (where the subscript 1 stands for |S| = 1). So, query cost

for 1 skyline tuple returned for 3 attributes is C1=1+3=4 queries.

Let m0 be the number of empty branches, when |S| > 2,

C|S| = 1 + m0 + m1 .C1 + …+ms-1. Cs-1

In the process of finding skylines for hidden databases and learning the outcome of

SQDBSKY algorithm we developed a small python code that is able to give similar

results to the work of [12]. The code can be found in Appendix A and B.

B. RQ-DB-SKY

We consider now the approach taken for range query predicates where we specify the

lower and upper bounds. The algorithm is similar to SQDBSKY but the authors of [12]

revised it by changing the three queries of q2 to q4 and making them mutually exclusive

instead of the overlapping queries.

q2: WHERE A1 < t1[A1]

q3: WHERE A1 >= t1[A1] & A2 < t1[A2]

q4: WHERE A1 >= t1[A1] & A2 >=t1[A2] & A3 < t1[A3]

This also implies that the total skyline discovery is not affected as for example t1 still

satisfies the conditions of q2 to q4.

42

Figure 15 RQDBSKY Algorithm

The query cost of this algorithm is to count the nodes of the tree 𝑂(𝑚. min (|𝑆|𝑚+1, 𝑛)).

It can be explained by finding the internal node, that at least must satisfy one skyline

record or it could have returned null and became a leaf. Then if the internal node is the

not first node to return a skyline record then the R(q) must give at least one tuple that is

unique and not given before because it would have been an empty node and would have

become a leaf. In this case, the upper bound of the number of interior nodes

is min (|𝑆|𝑚+1, 𝑛).

C. PQ-DB-SKY

For point query predicates, [12] stated the key differences between having a 2D space or

high dimensional cases. The paper discusses and explains the method used for 2D

43

databases by finding an algorithm called PQ-2D-SKY for this kind of space. The

algorithm works by issuing a first query “select *” which always return a skyline. After

that we partition the search space into rectangles R1 and R2. We loop the search space

until it is fully explored by taking a rectangle and preparing the second query to issue. If

a tuple is returned we append the results to skyline points and keep on pruning the

search space based on the point. This algorithm has proved instance optimality because

it is guaranteed to discover all skyline points.

In the case of having higher dimensionality, the authors agree that the PQ Skyline

discovery doesn’t guarantee instance optimality but they suggest high-level greedy

heuristic algorithm for dealing with such cases.

D. MXED-DB-SKY

For the mixed query predicates, the authors suggested to combine the ideas of all three

algorithms discussed above to produce the ultimate algorithm they call MQ-DB-SKY.

In this algorithm, all search interfaces were supported from the ranged query predicates

to the point query predicates.

44

CHAPTER 5

Methodology and System Development

In Chapter 4, we discussed different approaches taken by the authors of paper [12]

regarding the variety of search interfaces and the existence of an algorithm for each

interface. In this Chapter, we define the main concepts of our system by looking at the

different aspects of the algorithm, system structure and main goal. We also integrate and

develop our system over three phases on a real-world database.

Dealing with hidden databases required special attention to the queries as we send them

because of the limitations that are imposed by the provider. The goal is to find a method

that can satisfy the database rules by staying under the limit of query quota and using the

provided API if any. The user should have a goal to find such as finding the best hotels

that are near the beach and cheap or booking the cheapest flight ticket with minimum

number of transit time. For this purpose, we introduce an algorithm that takes the user

preference into consideration for finding skyline points from a hidden database.

5.1 Skyline Computation over Normal Database

For the purpose of extracting skylines, we develop a function capable of returning skyline

points over any given database. This function is a general algorithm for skyline

extraction. This part will explain the logic taken in computing skyline records.

As we might know and as explained in chapter 2, there exist many algorithms for

calculating skyline points. These algorithms work with known attributes from a database

without giving importance to user preference or objective. For this manner, we provide

the user with an application capable of dealing with multi objective attributes. In multi

45

objective attributes, the user can specify his mixed preference over his interesting

attributes.

Let’s take the hotel example where the user is looking for a hotel considering the distance

to the beach and the price. The user might be interested in closer distance to the beach so

that is minimum distance beach and cheaper price so that is minimum price. This

problem is called minimization of attributes.

A second example could be a traveler looking for a flight considering the connection

duration and number of stops. This user could be interested in high connection time for

transit and less number of stops so in this case we will have minimum stops and

maximum connection time. This problem is called multi objective optimization which is

an area of multi-criteria decision making. In our algorithm, we deal with the maximum

attributes as minimum attributes. This is done by converting all returned values to

minimal through the process of finding the highest value in the column and subtracting it

with other values in the column then multiplying by -1. This step is repeated every time

new records are discovered. The figure below shows an example of converting maximal

values to minimal.

Maximal Minimal

10 1

3 8

11 0

Figure 16 Converting Values to Minimal

46

For our system, we will use the multi objective optimization concept since we are willing

to find the best records for the user upon his mixed preference and goal setting.

After choosing the preference over attributes, the database is given to the system to

extract skylines by iterating through records while comparing each record to all other

records and eliminating the dominated records. At the end of the execution, only skyline

points are left because they are not dominated by any other record. From here, we can

provide the user with answers to his query for him to pick the best record. We also

validate later the skyline number and similarity we found in our experiments with the

results of other research work we call literature.

5.2 Skyline Extraction over Hidden Database

Due to the limitation of search interfaces and number of queries and not knowing enough

information on the database, we introduce a method in scanning the hidden database in

order to extract skylines. The logic followed is to send an initial query to the system

without any effort and return a small number of results. These results will be used to

prepare the second query and send it over again for more results. This process continues

until we find no more interesting results such as no more data found or getting same data.

The challenge with this process is the ability to send a reasonable number of queries

without exceeding the quota and finding the maximum number of skylines. The allowed

number of sent queries is defined by the database provider and our goal is to send lower

number of queries.

Consider a database with three interesting attributes A, B and C. We are interested in

sending queries over and over again until we are satisfied. We start by issuing a select *

query to fetch initial data and then we will experiment the effect of different scenarios. A

47

select * query can be defined as an initial query that the system should send to get

information on the database. The purpose of the scenarios is to allow us to find different

data than the initial data in order to calculate the skylines. An example of a scenario or

expression can be “A AND B OR C”. In this scenario, once we have found our initial

data by the first query, we find the best values on each of A, B and C. As an example, for

finding the best value, if the user chose minimum B then the smallest value in column B

is the best value and vice versa. From the new result values, we send another query

specifying a more detailed query with what we are looking for. After receiving new data,

we start calculating the skylines using the method described in skyline computation for

normal databases.

Many scenarios can be tested in order to find new data every time. The goal of doing

different scenarios is to test the effect and find more results that could lead to more partial

skylines or more true skylines. What we mean by true skylines are skylines that are found

from traditional methods on normal databases and are non-dominated records over the

entire database. Partial skylines could also still be dominated by other records that are not

yet found in the process.

This approach can be used on any database (normal or hidden) and any number of

attributes. Knowing the correct number of interesting attributes can lead into combined

Boolean expressions.

For A, B and C (3attributes database), we could have different combination to study the

effect such as the following example of combined Boolean expressions:

• A AND B AND C

• A AND B OR C

48

• A OR B AND C

• A OR B OR C

Sending queries based on the values of the previous queries could lead for better results

and better skyline extraction. Issuing queries to the database can be through the API

(explained in the next chapter) or through top-k search interfaces. Our method is a

general method that requires only simple knowledge of the database for query

formulation and a way of database interaction.

After submitting the initiative query (select *) and getting first results, consider the

following combined Boolean expression for 3 attributes “A AND B OR C”. The logic is

to send a query built by the corresponding above combined Boolean expression. The best

values are extracted from the initiative query and sent by the new query. For example, if

the best values of A, B and C are 4, 3 and 12 then the query that should be sent is:

“SELECT A, B, C from D where A <= 4 AND B <=3 OR C <=12”

This keeps going until no more data found or same returned data. We also experiment

with combining all of the combinations of scenarios in order to deliver more results to the

system at each stage of querying. This could lead to higher query cost but could also

provide more accurate skylines. However, experiments will show if we are still under the

quota.

49

CHAPTER 6

Experimental Evaluation

6.1 Experimental Setup

After defining our methodology to follow, we define the system components, architecture

and design in order to achieve our goal. We also prepare for experiments with different

scenarios and define a real-world database as our testing environment.

A. Testing Environment

For the purpose of testing our methodology logic and to compare our results with

different related work, we decided to test on Google Flights online hidden database. The

first reason was that the work of [12] used this database in their experimental evaluation.

The second reason was that Google flight provides an API for the interaction between the

user and the database. The third reason was to give the user a meaningful conclusion

behind skyline records and their importance in multi decision making. We believe that

such a system could be important in the market as well. The fourth important reason was

that this database restricts the number of web accesses per day (queries sent) to 50

queries only in which we are trying to find a solution.

Google flights makes online search for flights easier by allowing the user to look at

different prices from different third-party providers. It was launched on 13 September

2011 by Google. Google flights provided a search interface which allowed the user to

interact with the database.

50

Figure 17 Google Flights Search Interface

The search interface required some inputs from the user such as origin, destination,

departure date and arrival date. Google Flights provided an API called QPX Express API

for providing our system with real time flights information as JavaScript Object Notation

(JSON) interface.

We chose to code our system using Python version 2.7 because of the interesting libraries

such programming language has. It also allows easier coding and minimum lines of code

to express clear concepts. The system depends on many libraries provided in python to

facilitate our work.

B. System Components

• QPX Express API

The API provided by Google allowed our system to interact with the database. The api

provided an online document for how to use the API. It can be found in the following link

“https://developers.google.com/qpx-express/v1/trips/search”. The link also provides

description over each and every parameter sent from our system and received from the

request. The database was queried using the mentioned API from a python code while

specifying the needed parameters. Before the system was built, the API was studied

51

extensively in order to know what parameters were important and the JSON response for

finding ways of interpreting it. Testing such API required a lot of effort to better

understand the schema and extract important parameters.

The following table includes important parameters used by the system to generate queries

based on the documentation provided by Google.

Table 5

Parameters Used in Sending Query

Parameter Description

origin Airport designator of the origin

destination Airport designator of the destination

date Departure date in YYYY-MM-DD format.

maxStops The maximum number of stops the

passenger(s) is willing to accept in this

slice.

maxConnectionDuration The longest connection between two legs,

in minutes or time in transit.

maxPrice Return flights that don’t have more price

than the specified.

earliestTime The earliest time of day in HH:MM format.

latestTime The latest time of day in HH:MM format.

solutions The number of solutions to return.

52

After submitting the query using the parameters mentioned above, API returns a JSON

file containing flights in a JSON file. The next following table explains the JSON data

items that we extracted from JSON files to build our own table containing the flights

itineraries.

Table 6

Used Data Objects from Returned JSON File

Object Data Description

Flight ID Flight ID of the whole trip. A trip may

contain many flights.

Price Total ticket price.

C time Total connection time or transit time of the

whole trip.

Stops Total number of stops or transits.

D time Departure Time.

• Requests and JSON Library

The module called “Requests” was used to send some type of HTTP request to Google

by passing specified headers to the following URL:

"https://www.googleapis.com/qpxExpress/v1/trips/search?key={API}". After receiving

53

data using requests, the data was saved and dumped using python JSON module.

• Pandas Library

Pandas module was used to better deal with the received data because the system

required many steps in processing flights and saving data for future use. The library

provided data frames for faster data manipulation using the built-in indexes. It also

provided many tools to drop duplicates and eliminate certain records and compare

records through iteration.

• Matplotlib library

This module helped in plotting 2D or 3D spaces. After extracting the skyline records, an

example of 2D and 3D plotting

Figure 18 Skyline Examples of 2D and 3D Plotting

54

C. System Design

The system designed is able to extract skylines from Google flights by sending queries

based on the results of the previous query using the above-mentioned methodology and

concluding with query cost.

In this subject, the work was divided into three phases of development. First phase is to

develop the extraction of skylines as discussed previously and testing it on Google

Flights (considered as a normal database for this phase). Second phase is to implement

the logic explained in the methodology section in extracting data from hidden databases

and calculating skylines as it goes. In the last phase, a simulator was designed for

different scenarios on different airports and prepares the testing environment.

Considering the work done by Abolfazl in [12], the same story is taken into

consideration, that of a traveler looking for a flight for vacation in the next few days

where the price, connection time, number of stops are low and the highest latest departure

time. From here, it is concluded that the traveler is looking for the following attributes in

his query: minimum price, minimum connection time, minimum number of stops and

maximum departure time.

• Phase 1

In this phase, the method used on Google Flights is discussed on how the algorithm was

implemented for extracting skyline flights.

Google Flights allowed 500 returned results per query only. So as a way of verification

and to validate the results of the next phases, it required finding routes between two

airports where the number of returned results is less than 500 flights and calculating the

55

skyline flights on the returned result of the query. By doing this, completeness of skyline

discovery was achieved (finding all skylines with a single query because the system

returned all the flights for this trip < 500). The following below algorithm explains the

steps followed for skyline discovery on a normal database.

Figure 19 Skyline Discovery: Algorithm 1 on a Normal Database

• Phase 2

After finding skyline flights, the flights are saved into a temporary result table for

comparison later on. For this phase, the methodology was implemented for extracting

Algorithm 1: Find_Skylines(data)

1 skylines = [] #Fill it with non-dominated records

2 FOREACH field in data.FIELDS :

3 IF BEST_VALUE_IS_MAX(field) : # If value is max, convert value to minimal

4 max = MAX(field.VALUES) # find maximal value

5 FOREACH value in field.VALUES :

6 value = -1*(value - max) # convert to minimal

7 FOREACH row_a IN data.ROWS : # Loop through all records

8 FOREACH row_b in data.ROWS: #compare each record to the other

9 dominated = TRUE

10 IF row_a == row_b : #if equal skip record

11 BREAK

12 FOR filed in row_b.FIELDS : #if value of record is lower

13 IF row_a.FIELDS[field] .VALUE < row_b[field].VALUE

:

14 dominated = FALSE #set record to non-dominated

15 IF dominated : # if not set to false record is dominated so skip

16 BREAK

17 IF NOT dominated : #add non-dominated record to skyline records

18 Skylines.ADD(row_a)

56

data from hidden database such as Google flights in order to avoid limitations such as the

strict number of queries per day (50 web accesses per day for Google flights).

In this phase, the algorithm is designed to use the function in phase 1 to compare with

results in this phase. The purpose is to validate the answers, so if the same number of

results is met then that means all skyline records were reached. It should also be kept in

mind that having different number of skylines means that skyline flights found in phase 2

should not necessarily match skyline flights from phase 1. Why? Because skylines

calculated in phase 2 were calculated on different data and some of the flights were not

yet discovered by the queries so that means that there exist some flights that are dominant

in true skylines but were not detected yet. The following algorithm 2 shows how skyline

flights are calculated based on specific scenarios and to be discussed afterwards.

57

Figure 20 Skyline Discovery: Algorithm 2 on Hidden Database

Scenario: is an expression of attributes related by operators (AND, OR). Some examples

on scenarios focusing the four attributes price, connection time (C time), number of

stops(stops), and departure time (D time) are:

 Price OR C time OR Stops OR D time

 Price AND C time OR Stops OR D time

A user must write his scenarios in a specific format and keywords with no parentheses. If

Algorithm 2: find_skylines_scenario(scenarios)

1 n = K #number of returned results of every query

2 data = {SELECT * FROM DATABASE_TABLE} #initial query to explore database

3 skylines = Find_Skylines(data) #apply algorithm 1 to compare skylines (optional)

4 result = []

5 FOREACH scenario IN scenarios: loop in the scenario

6 data = {SELECT * FROM DATABASE_TABLE LIMIT n} #query database

7 partial_skylines = Find_Skylines(data) #calculate skylines on returned results

8 exit_reason = ‘’

9 previous_partial_skylines = []

10 WHILE TRUE:

11 If previous_partial_skylines == partial_skylines :

12 exit_reason = ‘Same data’ # same data is returned (loop)

13 BREAK

14 If data.LENGTH == 0:

15 exit_reason = ‘No more data’ #no data found

16 BREAK

17 parameters = GET_PARAMETERS (scenario,data)

18 #send new query with the values

19 data = {SELECT * FROM DATABASE_TABLE WHERE

parameters}

20 #add to skyline table then calculate skylines again for this table

21 partial_skylines = partial_skylines + Find_Skylines(data)

22 result.ADD([partial_ skylines,exit_reason])

23 #Keep sending queries until the scenario is done by adding more

skylines

58

it has more complex formulas, user must simplify it to be as follows:

A1 AND B1 OR A2 AND B2 OR A3 AND B3…

Examples:

- EX 1: Price AND C time OR Stops AND D time

 Priority is given to the AND operator, this will result in the union of two requests

- EX 2: Price OR C time OR Stops AND D time

 This will result in the union of three requests (Price, C time, Stops AND D time)

- EX 3: (Price OR C time) AND (Stops OR D time)

This must be written as: Price AND Stops OR Price AND D time OR Stops AND C time

OR D time AND C time

The user is able to test any date, origin airport, destination airport, number of returned

results and choose a scenario to run in order to experiment the query cost and skyline

flights at the same time.

Algorithm 2 was also enhanced into merging all possible scenarios for finding skylines in

one run for experimentation. In this case, after finding true skylines and returning “n”

initial data, all scenarios are run at the same time by querying with all possible scenarios

then merge results of all queries for skyline discovery and keep going with the same step

again and again until it gets the same data back then stop.

• Phase 3

An experimental environment is prepared by modifying the code to run as a simulation

of airports on different number of solutions because there is interest in finding the

efficiency of the algorithm with query costs and number of true skylines (found in phase

59

1). Also combined were all possible scenarios to an algorithm called algorithm 3.

Figure 21 Skyline Discovery: Algorithm 3 on Hidden Database

Algorithm 3 is responsible of combining the results of iteration from the different

scenarios. It has the same logic of algorithm 2 but instead of continuing the iteration on

the scenario data itself, it combines the scenario data of other scenarios at the same

iteration level then extracts skyline flights on the total scenario data.

Algorithm 3: find_skylines_all_scenarios(scenarios)

1 n = K #number of returned results of every query

2 data = {SELECT * FROM DATABASE_TABLE}

3 #calculate skyline flights to compare skylines (optional)

4 skylines = Find_Skylines(data)

5 #send first initial query as in algorithm 2 to explore database for n results

6 data = {SELECT * FROM DATABASE_TABLE LIMIT n }

7 partial_skylines = Find_Skylines(data)

8 exit_reason = ‘’

9 previous_partial_skylines = []

10 WHILE TRUE :

11 IF previous_partial_skylines == partial_skylines :

12 exit_reason = ‘Same data’ #quit when same is returned

13 BREAK

14 IF data.LENGTH == 0:

15 exit_reason = ‘No more data’ # quit when no more returned data

16 BREAK

17 #prepare for next query ,getting new values

18 parameters = GET_PARAMETERS(scenario,data)

19 #Loop through all the scenarios and get more data and new values

20 FOREACH scenario IN scenarios :

21 data = data + {SELECT * FROM DATABASE_TABLE

 WHERE parameters }

22 partial_skylines = partial_skylines + Find_Skylines(data)

60

The figure below shows the system architecture design.

Figure 22 System Activity Diagram

The system is designed to query the database with the initial query “SELECT *” to

retrieve K results where K is defined by the user. This is done just to have information on

the database and prepare the next query based on the best values of each attribute. Each

61

query sent to database must follow the proper scenario assigned to it such as following

the order and the expression. The database again returns K results and the system

examines the results. If new records were found, another query must be sent to the

database to find new records. The system stops execution in only two conditions:

• Same data: queries return the same data over and over again and stop only after

one time of extra queries.

• No data found: queries return no data to examine (empty results).

The different scenarios were evaluated for skyline extraction while varying the number of

solutions (returned result on each query). The results of our experiments on Google

flights real world database are also discussed.

6.2 Experimental Validation of Algorithm 1

The purpose of this experiment was to evaluate the algorithm chosen for skyline

extraction from a known database without implying any scenario.

The experiment included testing skyline extraction to find the true number of skylines on

different trips and dates so 6 airports were chosen randomly (‘ATL', 'DXB’, ‘PEK’,

‘LAX’,’DEN,’SAN’ and ’LGA’).

Table 7 shows the results of a simple experiment to find skyline flights from the total

number of flights of different trips.

62

Table 7

Results of Experiment 1

Flight Total Number of Flights Number of Skyline Flights

ATL -> BEY 246 10

ATL -> DXB 119 4

ATL -> LAX 227 4

ATL -> PEK 301 16

ATL -> DEN 106 8

ATL -> SAN 279 6

ATL -> LGA 128 11

It can be seen that the discovery of skyline flights doesn’t depend on the total number of

flights but depends on the data itself because flights that are not dominated by any other

flights are considered as skyline flights.

6.3 Experimental Validation of Algorithm 2

In this experiment, algorithm 2 is followed with the logic of a scenario and sending many

queries to the database with different values based on the result of the query before, in

order to calculate skyline flights for hidden database. A scenario will be an expression of

attributes related by operators (AND, OR) to send next queries based on the result of the

returned values (scenarios can be seen in appendix C). Every possible scenario is run on

different trips to evaluate the query cost (number of queries sent) and the number of

63

skylines. The number of returned results “K” was also modified for each scenario in

order to study the impact. Every scenario is noted as a number from one to eight (details

in appendix C).

Figure 23 Average Query Cost on Each Scenario

From the results of figure 23, it is noted that scenario 5 has the highest query cost for

K=1, 5 and 10 because it is queried in every iteration four times and then union the

results to calculate skyline flights on the given data. The lowest query cost among the

experiments was scenario 1 because this is just 1 query sent using the API of Google

specifying all the best values for all attributes in 1 query. Other scenarios results varied

upon the scenario and the data it got from Google. Also concluded from this experiment

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8

A
v
er

a
g
e

Q
u

er
y
 C

o
st

Scenarios

K = 1 K = 5 K = 10

64

was that K= 1 had the highest query cost in most of the scenarios because t returned just 1

flight after each query which required sending more queries to get more data.

Figure 24 Number of Skylines Found on Each Scenario for Different K

In Figure 24, the first scenario didn’t return any skyline flights because it’s a very strict

scenario and all conditions must be satisfied. It can also be seen that scenario 4 and 7

didn’t return high number of skylines for K = 1 and no skylines for K=5 and 10 because

of the different values returned from the queries that didn’t meet the conditions for the

next query. The highest number of skyline flights found was in scenario 5 because this

scenario allowed more data to be crawled and therefore better skyline detection.

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8

N
u

m
b

er
 o

f
S

k
y
li

n
es

Scenarios

K = 1 K = 5 K = 10

65

Figure 25 Percentage Found of True Skylines for Different K

In the experiments, true skyline flights are the flights that can never be dominated from

any other flight though it was necessary to calculate the percentage found of true skylines

because the skyline flights found can still be dominated by flights that were not

discovered yet. Figure 25 illustrates results of percentage found of skylines for each K

while scenario 5 achieved the highest percentage found of skyline flights.

6.4 Experimental Validation of Algorithm 3

First in this experiment, all possible scenarios were combined into one big scenario to

calculate the skyline flights. 8 possible scenarios were combined to query and fetch data

then combine these results to calculate skyline on it. The goal is to get as much new data

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

1 2 3 4 5 6 7 8

S
k

y
li

n
e

F
o
u

n
d

Scenarios

K = 1 K = 5 K = 10

66

as possible before calculating skyline flights. In this method, results were compared to

the results of paper [12] because both goals aimed to find the number of skyline flights

and the query cost. Experiments and testing environments conducted were the same as

the work of Abufazl[12] on different dates and the dates chosen were between 23

December 2017 and 30 January 2018. Also randomly chosen, were origin and destination

airports from the top 25 busiest airports in the United States of America. The same story

of a traveler looking for a getaway for his holiday and searching for the lowest price,

transit duration, number of stops and latest departure time was also considered.

It was noticed that the results of query cost did not fall within plausible outcomes as

different scenarios yielded empty queries, as seen in the experimental results of algorithm

2, which increased the query costs significantly. Hence, an alternative methodology was

proposed; the scenarios that only generated queries with high quality skyline flights were

combined instead of all. Appendix D shows details on the chosen scenarios.

Table 8

Average Query cost and Percentage Found of Skylines

 Literature K = 1 K = 5 K = 10

Avg Query Cost 44 46 31 26

Percentage Found 100 90 70 53

It was noticed from the results of table 8, that the methodology for K = 1 and choosing

only the scenarios 2, 5, 6 and 8 achieved very similar results to the literature of Abufazl.

The methodology for K=1 achieved an average of 90% of true skylines while Abufazl

67

achieved 100%. The average query cost in the methodology was also very similar ranging

between 44 and 46 queries.

In the results of table 8, it was also noticed that increasing the number of K would result

in less discovery of skylines and less query cost on average. This comes because of the

different best values of the returned results which varied the values to be sent in the next

queries.

68

CHAPTER 7

Conclusion and Future Work

This chapter outlines the main points obtained during the research with a brief summary

regarding results of the conducted experiments. It also proposes future work to improve

our methodology and achieve hopefully better results.

7.1 Conclusions

In conclusion, suggesting a high-quality method to extract skyline records from any

hidden database while able to maintain a reasonable query cost was the primary research

objective in this project. The method to combine different scenarios with multi-objective

optimization goal proved to be efficient in terms of number of skylines found and query

cost.

The project research discussed the following main points regarding skyline extraction:

• Converting maximal preference attributes into minimal using a specific

technique used in multi-objective optimization problems.

• Extracting skyline records for normal databases.

• Developed an efficient algorithm for skyline extraction based on scenarios and

conducted experiments over a top-k interface for a real world hidden database

which proved a low average query cost below the quota.

The methodology followed for extracting skyline records can be adapted for any hidden

web database such that choosing the preferences for attributes and number of returned

results “K” can allow getting more data as input for the system to calculate the non-

dominated tuples.

69

7.2 Future Work

Many different approaches and experiments have been left in this work for many reasons.

The main reason was the lack of time because the system was designed to deal with a real

world hidden database which restricted the number of queries sent per day and made it

difficult to conduct more experiments. There are also some proposed ideas in the system

to enhance the algorithms to be as smart as possible by not sending the same queries

again since it had already found the results. This report has mainly focused on testing a

new approach when it comes to dealing with hidden databases and crawling with minimal

query cost. The following ideas could be added in future:

• The way of interacting while querying the database could be improved by not

repeating the same queries especially for conjunctive queries that required more

than one query to find the result of the complete scenario.

• The system should be modified to bypass errors like error 503 “temporary

overload. Wait before retrying”. This can be done by finding the query cost of

having such an error and sleeping for a specific amount of time before querying

next.

• Introducing a tree browser, which allows the system to adapt the next query based

on the results of the previous query by following specific routes in the tree. This

could lead to lower query cost and a more accurate number of skylines.

70

REFERENCES

[1] S. Borzsony, D. Kossmann, and K. Stocker, “The Skyline operator,” Proc. 17th

Int. Conf. Data Eng., pp. 1–20, 2001.

[2] E. Tiakas, A. N. Papadopoulos, and Y. Manolopoulos, “Skyline queries: An

introduction,” IISA 2015 - 6th Int. Conf. Information, Intell. Syst. Appl., 2016.

[3] D. Kossmann, F. Ramsak, and S. Rost, “Shooting Stars in the Sky: An Online

Algorithm for Skyline Queries,” Proc. 28th Int. Conf. Very Large Data Bases, pp.

275–286, 2002.

[4] D. Papadias, Y. Tao, G. Fu, and B. Seeger, “An optimal and progressive algorithm

for skyline queries,” Proc. 2003 ACM SIGMOD Int. Conf. Manag. data -

SIGMOD ’03, p. 467, 2003.

[5] I. Bartolini, P. Ciaccia, and M. Patella, “SaLSa: computing the skyline without

scanning the whole sky,” Proc. 15th ACM Int. Conf. Inf. Knowl. Manag., pp. 405–

414, 2006.

[6] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang, “Skyline with presorting,” Proc.

IEEE Int. Conf. Data Eng., pp. 17–19, 2003.

[7] D. Sun, S. Wu, J. Li, and A. K. H. Tung, “Skyline-Join in Distributed Databases,”

in IEEE 24th International Conference, 2008, pp. 176–181.

[8] H. Eder and F. Wei, “Evaluation of skyline algorithms in PostgreSQL,” Proc.

2009 Int. Database Eng. Appl. Symp. - IDEAS ’09, p. 334, 2009.

[9] C. Sheng, N. Zhang, Y. Tao, and X. Jin, “Optimal Algorithms for Crawling a

Hidden Database in the Web,” Proc. VLDB Endow., vol. 5, no. 11, pp. 1112–1123,

71

2012.

[10] S. Raghavan and H. Garcia-molina, “Crawling the Hidden Web,” 27th VLDB

Conf. - Roma, Italy, pp. 1–10, 2001.

[11] J. Madhavan, D. Ko, \Lucja Kot, V. Ganapathy, A. Rasmussen, and A. Halevy,

“Google’s Deep Web crawl,” Proc. VLDB Endow. Arch., vol. 1, no. 2, pp. 1241–

1252, 2008.

[12] A. Asudeh, S. Thirumuruganathan, N. Zhang, and G. Das, “Discovering the

Skyline of Web Databases,” vol. 9, no. 7, pp. 600–611, 2015.

72

APPENDICES

Appendix A: SQ-DB-SKY (1)

The following python function generates the skyline points of any given database as CSV

format while concluding with total number of skylines and query cost.

'''

This is main fucntion that calculate the the SQ_DB_SKY algorithm. The input passed to

this function is the tuple, and list of values to be compared. This function is

iterated for each record, and returns the next row to be checked.

'''

def SQ_DB_SKY (startTuple,q, compareValue, AlreadyDoneTuple,colNumber):

 ## next Occurring values that will be returned by this function

 smallerValues = []

 # comparing the select tuple with each respective

 for index, row in enumerate(compareValue):

 print ("Comparing Value: "+str(row+1))

 for i in range (0,colNumber):

 valueToCompare=A[i][row]

 tmpLargesValue=-1

 rowNumToAppend=-1;

 for id, value in enumerate(A[i]):

 if int(value) < int(valueToCompare) and id!=row and

int(value)>tmpLargesValue:

 rowNumToAppend=id;

 if rowNumToAppend!=-1 and rowNumToAppend not in AlreadyDoneTuple :

 if q>4 and rowNumToAppend not in smallerValues:

 smallerValues.append(rowNumToAppend)

 elif q<=3:

 smallerValues.append(rowNumToAppend)

 # if T contains k Tuples Construct m queries

 q+=1;

 for vl in compareValue:

 if vl not in AlreadyDoneTuple:

 AlreadyDoneTuple.append(vl)

 return q, smallerValues, AlreadyDoneTuple;

73

Appendix B: SQ-DB-SKY (2)

The following is the algorithm main function responsible in calculating skyline points

and building the tree explained in Chapter 4.

def AlgorithmMain():

 global A;

 A = []

 SkyLines = []

 inputCSVFileName = 'test_data.csv'

 k= int(input("Enter the Number of Lines that you want to process"))

 inputRow=k+1

 inputColumNames= input ("Input the names of column as comma separated")

 colNames=inputColumNames.split(",")

 NumberOfColumns=len(colNames);

 incldueFirstColumn =False; #setting this value to False will return

 #subtracting the value from the index of the columns

 if incldueFirstColumn==False:

 colNames[:] = [int(x) - 1 for x in colNames]

 #this function reads from the csv file

 #** QUERYQ= {SELECT * FROM D }; S ={}

 readCSVFile(inputCSVFileName, inputRow,NumberOfColumns, colNames, incldueFirstColumn)

 start_time = time.time()

 if incldueFirstColumn==True:

 # startTuple = random.randrange(1,inputRow)

 startTuple=0

 print("Tuple to start " + str(startTuple))

 else:

 # startTuple = random.randrange(0, inputRow-1)

 startTuple = 0

 print ("Tuple to start "+ str(int(startTuple)+1))

 #A.append(A1); A.append(A2); A.append(A3)

 q=1;

 if incldueFirstColumn==True:

 compareValue = [startTuple-1]

 else:

 compareValue = [startTuple]

 AlreadyDone=[]

 #* While QueryQ is not emmpty

 while len(compareValue)>0:

 #print ("Main", end='')

 #q= QueryQ.deque(); T= Top-k(q)

 q, compareValue,AlreadyDone = SQ_DB_SKY(startTuple, q, compareValue, AlreadyDone,

NumberOfColumns)

 #if T is not emppty

 # Append the non-denominated Tuple in To to S

 for i in AlreadyDone:

 SkyLines.append(int(i)+1)

 # predict

 # Append q1..... to QueryQ

74

Appendix C: System Configuration for Experiments

• Airports:

"ATL","LAX","ORD","DFW","JFK","LAS","MSP","DTW","PHL","BOS","LG

A","FLL","BWI","IAD","SLC","MDW""PHX","IAH","CLT","MIA","MCO","

EWR","SEA","DEN","SFO".

https://www.tripsavvy.com/busiest-airports-in-the-usa-3301020

• SCENARIOS = [

 1- 'Price AND C time AND Stops AND D time',

 2- 'Price AND C time AND Stops OR D time',

 3- 'Price AND C time OR Stops OR D time',

 4- 'Price AND C time OR Stops AND D time',

 5- 'Price OR C time OR Stops OR D time',

 6- 'Price OR C time OR Stops AND D time',

 7- 'Price OR C time AND Stops AND D time',

 8- 'Price OR C time AND Stops OR D time'

]

• SOLUTIONS = number of returned trips (can be changed to any number less

than 500)

• COLUMNS_DICT = {

 'Price' : DOMINATE_MIN,

 'C time' : DOMINATE_MIN,

 'Stops' : DOMINATE_MIN,

 'D time' : DOMINATE_MAX,

 }

75

Appendix D: Scenarios used in experiment

The chosen scenarios for the experiment in section 6.3 for chapter 6 are:

• 'Price AND C time AND Stops OR D time'

• 'Price OR C time OR Stops OR D time'

• 'Price OR C time OR Stops AND D time'

• 'Price OR C time AND Stops OR D time'

We chose them from the total combined scenarios in Appendix C.

