

Nachhaltigkeitskonzepte in der Lebensmittelverarbeitung

Techane Bosona (PhD) & Girma Gebresenbet (Prof)

Swedish University of Agricultural Sciences, Department of Energy and Technology

Uppsala (Sweden)

techane.bosona@slu.se girma.gebresenbet@slu.se

Gliederung Die wichtigsten Inhalte umfassen:

- 9.1. Allgemeine Aspekte
- 9.2 Umweltwirkungen ausgewählter Bio-Produkte
- 9.3 Wirtschaftliche Aspekte ausgewählter Bio-Produkte

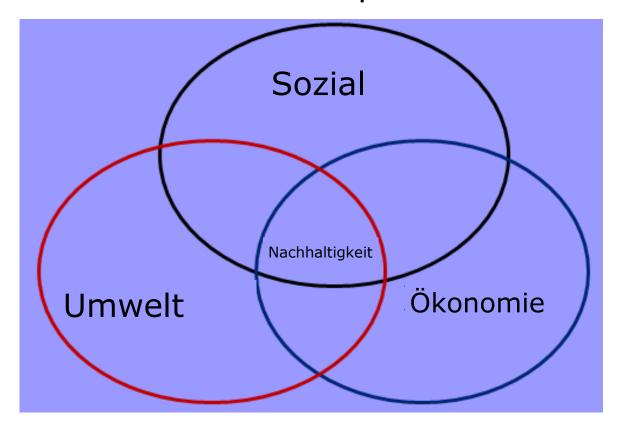
Lernerfolge

Die Haupt-Lernerfolge sind:

- i.Das allgemeine Konzept der Nachhaltigkeit in Lebensmittel-Wertschöpfungsketten verstehen
- ii.Den Einfluss der Lebensmittelverarbeitung auf die Umwelt verstehen
- iii.Den Einfluss der Lebensmittelverarbeitung auf die Lebensmittelproduktionskosten verstehen
- iv.Verstärktes Wissen über Lebenszyklus-Analyse (Life Cycle Analysis, LCA) und Lebenszykluskosten-Analyse-Tools (LCCA) und deren Anwendung zur Bewertung von ökologischen Lebensmittel-Wertschöpfungsketten

9.1. Generelle Aspekte der Nachhaltigkeit in der Lebensmittelproduktion

- Nachhaltigkeit in der Lebensmittelwertschöpfungskette (Food Value Chain, FVC) wird durch zunehmende Weltbevölkerung, Urbanisierung, Ressourcenverknappung, räumliche und zeitliche Fluktuation der Nahrungsmittelverfügbarkeit zu einer Herausforderung
- Im Allgemeinen wird Nachhaltigkeit im Kontext der nachhaltigen Entwicklung von der Weltkommission für Umwelt und Entwicklung (1987) definiert als:
- "Formen des Fortschritts, die den Bedürfnissen der Gegenwart entsprechen, ohne die Fähigkeit künftiger Generationen zu gefährden, ihre Bedürfnisse zu befriedigen".



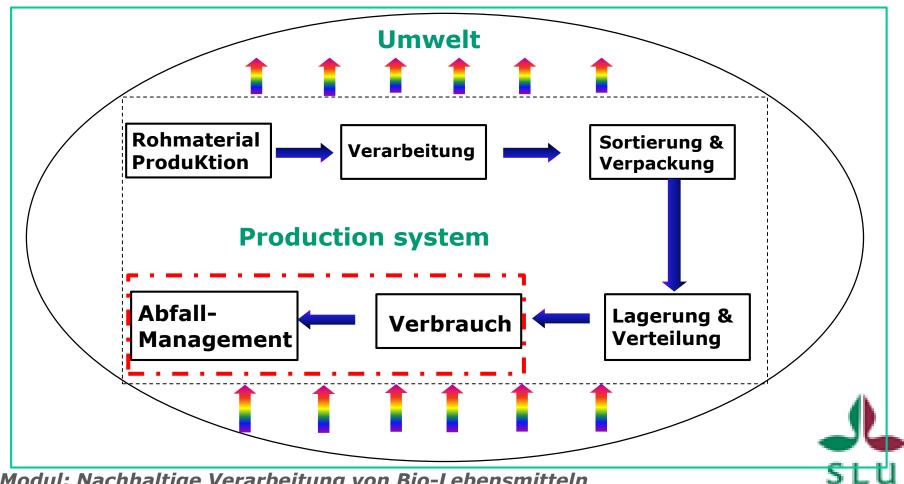
9.1. Generelle Aspekte ...

Konzeptionelle Nachhaltigkeit umfasst ökologische, ökonomische und soziale Aspekte

9.1. Generelle Aspekte ...

Aus der Sicht der nachhaltigen Lebensmittelproduktion und -Versorgung:

- •Die **Umweltdimension** berücksichtigt Umweltbelastungen wie Treibhausgasemissionen, Ressourcenverbrauch und Schäden an der Biodiversität usw
- •Die wirtschaftliche Dimension berücksichtigt Faktoren, die mit der Entwicklung der Wirtschaft zusammenhängen, wie etwa die Kosten der Nahrungsmittelproduktion und -versorgung, die Rentabilität und der Beitrag zur lokalen Wirtschaft.
- •Der **soziale Aspekt** befasst sich mit Themen wie Lebensmittelsicherheit, Lebensmittelqualität und Verbrauchergesundheit, Verbraucherzufriedenheit, gesellschaftliche Ernährungssicherheit, Tierschutz und Arbeitsumfeld für die Gesellschaft im Lebensmittelsektor.



9.1. Generelle Aspekte

Produktionssystem und Umwelt

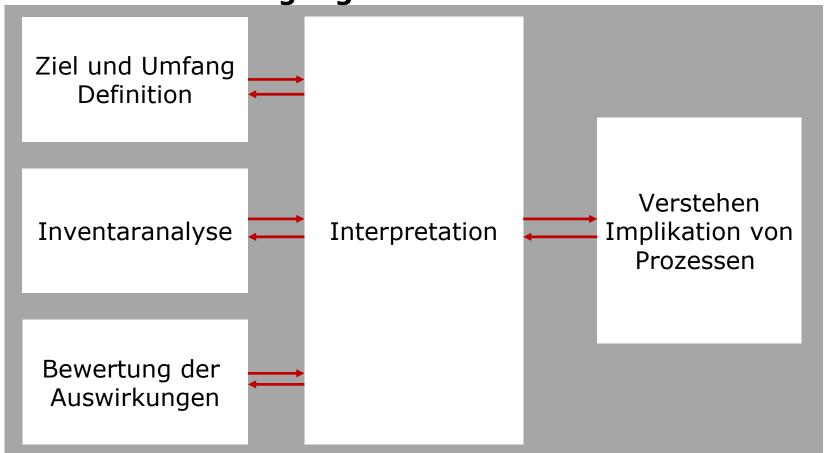
Modul: Nachhaltige Verarbeitung von Bio-Lebensmitteln

9.1. Generelle Aspekte ...

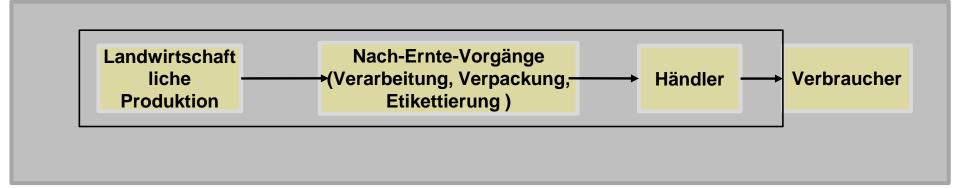
- Nachhaltigkeit der Lebensmittelwertschöpfungsketten muss steigen, um die wachsende und verstädterte Weltbevölkerung zu ernähren.
- Dies erfordert eine effizientere Nahrungsmittelproduktion und -verarbeitung (z. B. Trocknung), Lagerung und Transporttechniken auf regionaler oder landwirtschaftlicher Ebene.
- Es lohnt sich auch, die Nahrungsmittelproduktion in produktiveren Gebieten als selbstständige Gemeinschaft mit geringeren ökologischen und ökonomischen Kosten zu erhöhen
- Eine solche lokale Nahrungsmittelproduktion sollte in die ökologische Nahrungsmittelproduktion integriert werden, um den ökologischen und sozialen Nutzen zu erhöhen

9.2. Umweltauswirkungen ausgewählter Bio-Produkte

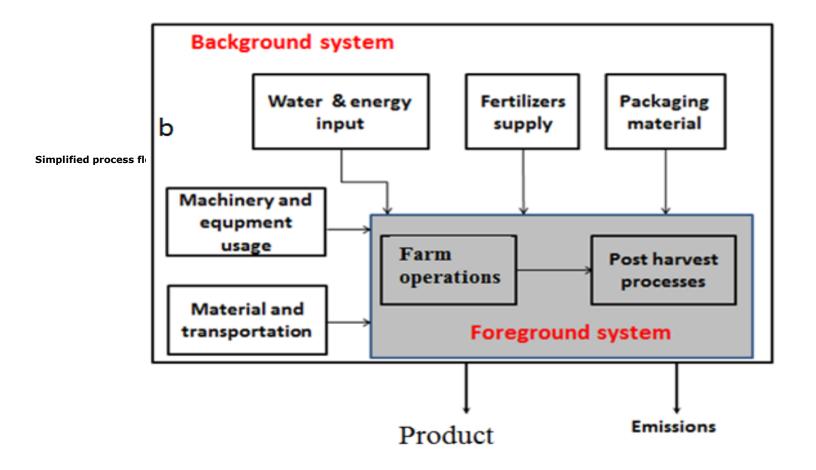
Lebenszyklus Analyse (LCA) als Werkzeug


- **Definition:** LCA ist gemäß ISO 14040 die "Erfassung und Bewertung von Inputs, Outputs und potenziellen Umweltauswirkungen eines Produktsystems während seines gesamten Lebenszyklus".
- Bewertung der Umweltleistung eines Produkts (und einer Dienstleistung) unter Berücksichtigung seiner "Lebenszyklusstadien"
- ∜Öko-Design zu fördern, d. h. umweltfreundlichere Produkte zu entwickeln (z. B. durch Unternehmen)
- Unterstützung bei der Entscheidungsfindung in komplexen Geschäftsstrategien oder Regierungspolitiken
- Bereitstellung geeigneter Informationen für Verbraucher (z. B. durch Kennzeichnung) in Bezug auf die Umweltauswirkungen eines Produkts oder einer Dienstleistung

LCA Rahmenbedingungen


- · Ziel und Umfang von LCA-Studien
- **Ziel:** Beurteilung der ökologischen Belastung von ökologischem Rindfleisch, Apfel-, Karotten-, Tomatenproduktion und -vertrieb in Schweden sowie von in Norwegen gezüchteten Bio-Lachsen
- Fragen zu beantworten:
 - Welche Umweltauswirkungen haben ausgewählte ökologische Lebensmittel, die in Schweden erzeugt werden, und die in Norwegen erzeugten ökologischen Lachse?
 - Wie die Abkühl- und Trocknungsprozesse beim Essen die Umweltbelastung beeinflussen?
 - Was sind die ökologischen Hot-Spot-Phasen des ausgewählten Produktlebenszyklus?

- Systemgrenze und Ansatz:
 - → LCA folgt der folgenden Produktwertschöpfungskette



Einflusskategorien sind:

- → Hauptauswirkung-Kategorien die in dieser Studie betrachtet werden:
 - **⊕** Energiebedarf im kumulativen Energiebedarf (CED)
 - → Globale Erwärmung: in kg CO2-Äquivalent
- Allokationsprinzip: sowohl die Massenzuweisung als auch die wirtschaftliche Zuteilung werden gegebenenfalls berücksichtigt

Bio-Lebensmittel Beschreibung	Funktionale Einheit
Lachs (Kühlkettenversorgungssystem)	1 Tonne frisches Lachsfilet an den Verbraucher geliefert
` .	1 Tonne Abendessen gekühlter Lachs an den Verbraucher geliefert
Frisches Rindfleisch (frei von Boni)	1 Tonne frisches Fleisch am Hoftor, das bereit ist, dem Verbraucher als Frischfleisch geliefert zu werden
Getrocknetes Rindfleisch (frei von Boni)	1 Tonne frisches Fleisch am Hoftor, das bereit ist, dem Verbraucher als Frischfleisch geliefert zu werden
Frischer Apfel	1 Tonne frische Äpfel am Hoftor, die bereit sind dem Verbraucher als frische Äpfel geliefert zu werden
Getrockneter Apfel	1 Tonne frische Äpfel am Hoftor, die bereit sind dem Verbraucher als getrocknete Äpfel geliefert zu werden
Frische Karotten Vorratsbehälter	1 Tonne frische Karotten am Hoftor, die bereit sind dem Verbraucher als frische Karotten geliefert zu werden
Getrocknete Karotten Vorratsbehälter	1 Tonne frische Karotten am Hoftor, die bereit sind dem Verbraucher als getrocknete Karotten geliefert zu werden
Frische Tomaten	1 Tonne frische Tomaten am Hoftor, die bereit sind dem Verbraucher als frische Tomaten geliefert zu werden
Getrocknete Tomaten	1 Tonne frische Tomaten am Hoftor, die bereit sind dem Verbraucher als getrocknete Tomaten geliefert zu werden

Produktionsstadien bei Zuchtlachs

- Futterproduktion für Smolt and heranwachsenden Lachs
- Befruchtung: Eier werden produziert und befruchtet

 Smolifizierung: Übertragung von Babyfischen vom Süßwasser ins Meer

Beschreibung der Transportabschnitte, die in LCA des SusOrganic Projekts berücksichtigt werden

Bio-Lebensmittel Wertkette	Abschnitte des Lebensmitteltransports		
Bio-Lachsproduktion &	Ungefähr 580 km vom Bauernhof/Schlachthaus zum		
Lieferung innerhalb	Verteilungszentrum in Oslo und weitere Verteilung im		
Norwegens	Umkreis von 50 km		
Bio-Lachs (Lieferung nach	Ungefähr 580 km vom Bauernhof/Schlachthaus zum		
Frankreich)	Verteilungszentrum in Oslo und weitere Transporte nach		
	Frankreich, d. H. Etwa 1700 km Straßenverkehr mit LKW		
	und 95 km Überseetransport mit Autofähre.		
Bio-Rindfleischproduktion &	10 km vom Bauernhof zum Schlachthof (Tiertransport), 50		
Lieferung in Schweden	km vom Schlachthof zum Einzelhändler		
Äfel-, Karroten- und	80 km vom Bauernhof zur Verarbeitungsanlage; 50 km von		
Tomatenproduktion &	Verarbeitungsbetrieb zu Händler		
Lieferung innerhalb			
Schwedens			

9.2. Umweltauswirkungen ... Verteilungs Szenarien für Lachsfilet

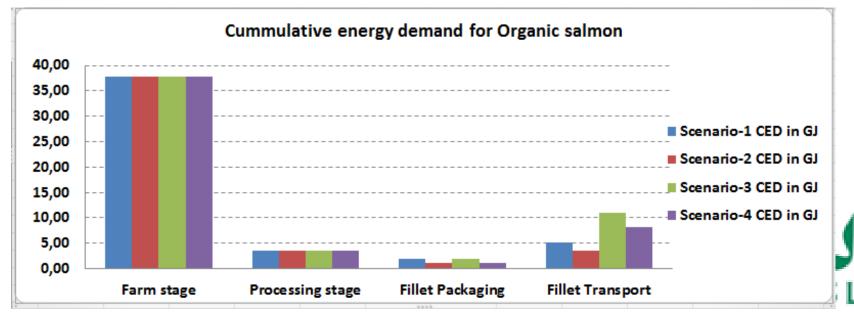
Szenario	Verarbeitetes Produkt	Ziel
Szenario-1	Filet (normale Kühlkette)	Norwegen
Szenario-2	Filet (Super-chilling-Verfahren)	Norwegen
Szenario-3	Filet (normale Kühlkette)	Paris
Szenario-4	Filet (Super-chilling-Verfahren)	Paris

Feuchtigkeitsgehalt beim Trocknungsprozess berücksichtigt

Produkt	Initial MC	Final MC
Apfel	82%	10%
Karotte	87%	12%
Tomate	93%	12%
Rindfleisch	74%	5%

Datenbestand umfasst

- Einige Primärdaten von Biobetrieben und Experten für Lebensmittelverarbeitung
- Aus einer Vorschau veröffentlichter Papiere
- Aus der ecoinvent Datenbank und SimaPro LCA Software

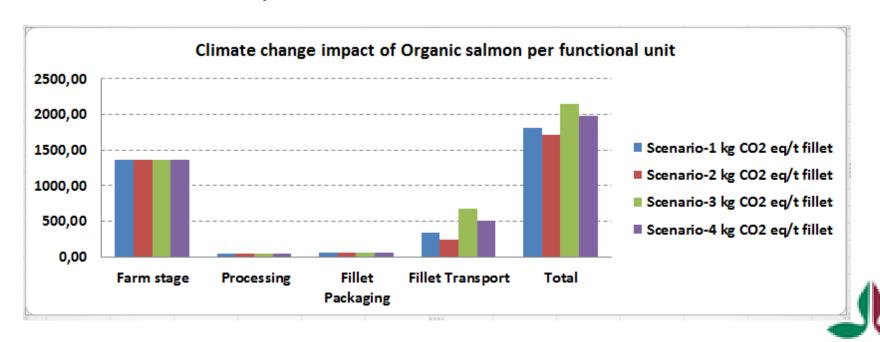


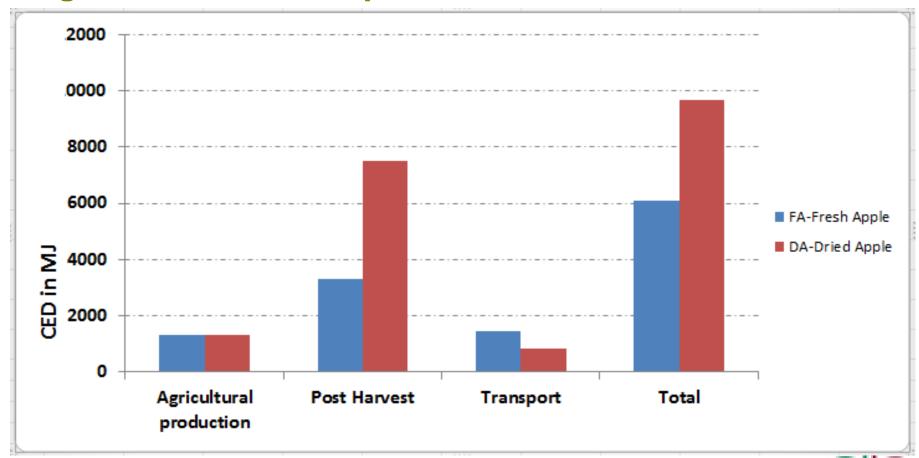
Ergebnisse von LCA, von Biolachs

Scenario	Unit of CED	Total	
Scenario-1	GJ		48,38
Scenario-2	GJ		46,06
Scenario-3	GJ		54,23
Scenario-4	GJ		50,71

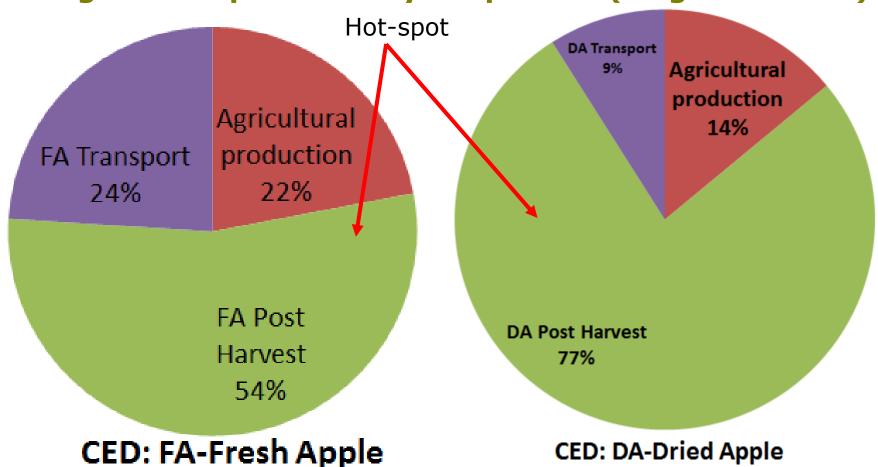
Kumulativer Energiebedarf (CED)

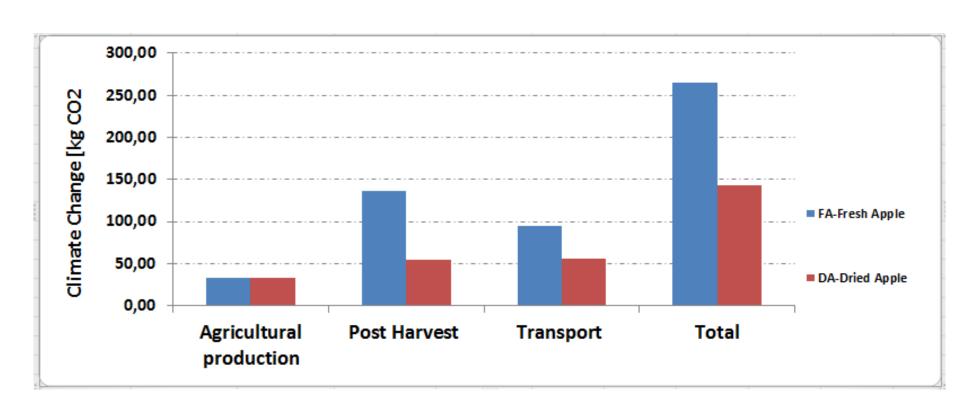
- ♣ Aufgrund des Super-Chilling-Verfahrens, vergleicht man Szenario-3 und Szenario-4, wird der CED insgesamt um 6,5% reduziert, wobei der verkehrsbezogene Energiebedarf einen wesentlichen Beitrag leistet.
- ⊕ Betrachtet man nur die Verpackungs- und Transportphase, reduziert sich die CED um ca. 28%
- → Die Futtermittelproduktion macht rund 90% der CED in der Landwirtschaft aus

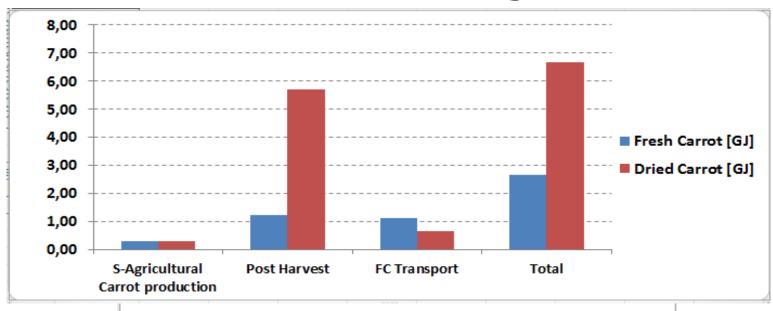

Vergleich von scenario-3 und scenario-4:

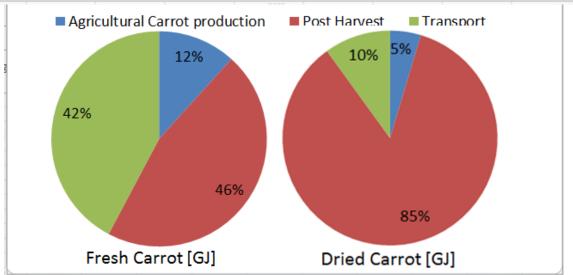

- In Szenario 4 wird die Auswirkung auf den Klimawandel im Vergleich zu Szenario 3 um 7,8% reduziert
- Supper-chilling beeinflusst das System im Bezug auf den Klimawandel positiv

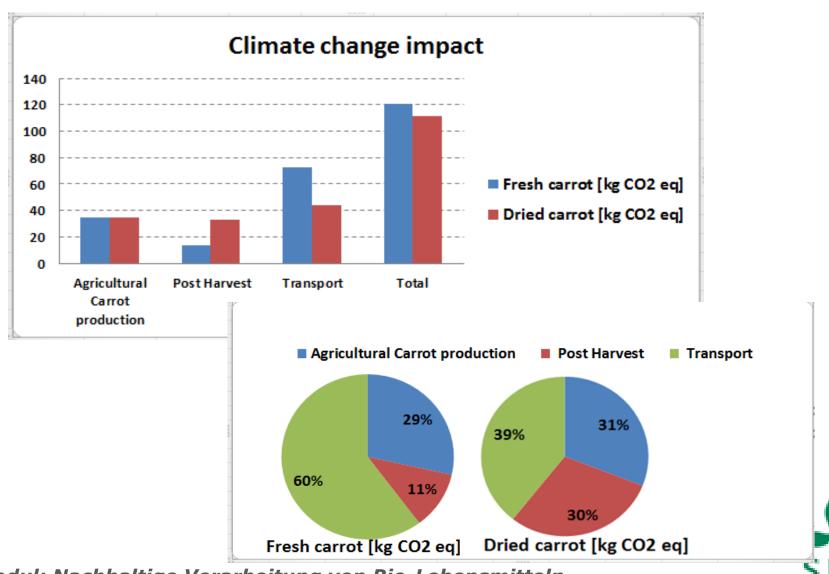
Vergleich des CED bei Äpfeln



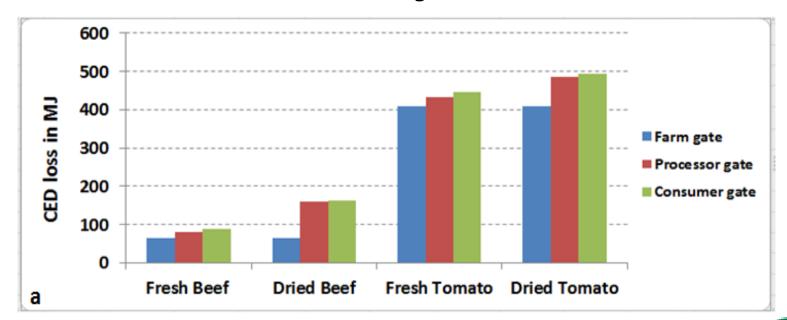

Beitrag der Haupt-Lebenszyklusphasen (zu gesamt CED)


Vergleich des Einflusses auf den Klimawandel





Modul: Nachhaltige Verarbeitung von Bio-Lebensmitteln


 Im Lebenszyklus wird der Beitrag zu verschiedenen Wirkungskategorien pro Funktionseinheit dargestellt

Wertschöpfung skette	Wirkungs kategorie	Einheit	Landwirt- schaftliche Produktion	Nachernte- Verarbeitung		Gesamt
Frisches Rindfleisch	CED	GJ	6.34	1.7	0.69	8.72
	GWP ₁₀₀	kg CO ₂ eq	12 889	30	45	12 964
Getrocknetes Rindfleisch	CED	GJ	6.34	9.72	0.27	16.33
	GWP ₁₀₀	kg CO ₂ eq	12 889	70	18	12 977
Frische Tomaten	CED	GJ	41	2.17	1.42	44.58
	GWP ₁₀₀	kg CO ₂ eq	366	88	93	547
	CED	GJ	41	7.60	0.80	49.40
Getrocknete Tomaten	GWP ₁₀₀	kg CO ₂ eq	366	49	52	467

 Die Umweltauswirkungen aufgrund von Lebensmittelverlusten steigen stromabwärts der Lebensmittelversorgungskette. Zum Beispiel wird hier ein Nahrungsmittelverlust dargestellt, der 10 kg frischem Produkt auf Betriebsebene entspricht, d. H. Wenn die gleiche Menge (10 kg) in verschiedenen Lebenszyklusstadien von Rindfleisch und Tomate verloren geht.

Bemerkungen

- ·Bio-Lachs- und Tomaten-Wertschöpfungsketten sind am energieintensivsten.
- ·Ungefähr 90% des Energieeinsatzes in der Tomatenfarm ist auf die hohe Energie für Gewächshausheizung und andere landwirtschaftliche Aktivitäten zurückzuführen.
- ·Bio-Rindfleisch hat die höchste THG-Emission. Neben Bio-Lachs hat Bio-Lachs einen hohen THG-Emissionswert.
- •Der Trocknungsprozess reduzierte die gesamten Treibhausgasemissionen in jeder Produktwertkette. Die Reduktion variiert zwischen 8% (bei Bio-Karotten) und 46% (bei Bio-Äpfeln).

- Neben der Verbesserung der Energieeffizienz in der Landwirtschaft und in der Nacherntephase ist die Einführung erneuerbarer Energie dort von Bedeutung, wo sie anwendbar ist, um die Nachhaltigkeit der ökologischen Wertschöpfungsketten zu verbessern.
- Bei einer effektiven Umsetzung hat der Trocknungsprozess unter Umweltgesichtspunkten mehrere Vorteile:
 - Erhöhte Haltbarkeit des Produkts, was wiederum den Produktverlust reduziert;
 - Es reduziert die Gesamt-Treibhausgasemissionen aufgrund der Reduzierung des Verpackungs- und Transportvolumens; und
 - Der Verlust von getrocknetem Produkt am Verbraucher ist mit einer geringeren THG-Emission im Vergleich zum äquivalenten Verlust frischer Tomaten auf Verbraucherebene verbunden.
- Der Verlust von Lebensmitteln auf der nachgelagerten Wertschöpfungskette ist mit einer höheren Umweltbelastung verbunden, da mehr Ressourcen für die Verarbeitung, Handhabung und den Transport verwendet werden.

9.3. Economic aspects of selected organic produces

- Die wirtschaftlichen Triebkräfte für nachhaltige Lebensmittelverarbeitung können eine Reihe von Formen annehmen. Es wird prognostiziert, dass der weltweit vermarktete Energieverbrauch zwischen 2008 und 2035 um 53% steigen wird. Dies wird mit der Erwartung verbunden sein, dass die Energiepreise auf lange Sicht weiter steigen werden.
- Ausgewählte Teilbetriebe in lebensmittelverarbeitenden Betrieben sind besonders energieintensiv, beispielsweise Trocknung und Verdampfung. Es wurde vorgeschlagen, dass Energie bis zu 10% der gesamten Produktionskosten für Produkte, die diese Anlagen erfordern, ausmachen kann.
- Zwischen 30% und 50% der eingehenden Rohstoffe können als Abfallmaterial bei der Lebensmittelverarbeitung enden.

9.3. Economic aspects cont...

Lebenszykluskostenanalyse (LCCA):

- → LCCA ist eine ökonomische Bewertungstechnik, die es ermöglicht, die Gesamtkosten für den Besitz und den Betrieb einer Anlage oder eines Systems über einen bestimmten Zeitraum zu bestimmen.
- → Ermöglicht die Bereitstellung zusätzlicher Informationen zur Bereitstellung von LCA-basierten Entscheidungen
- → Helfen Sie mit, den kostenintensivsten Punkt entlang der Produktlebenszyklusstufen zu identifizieren und Verbesserungsmaßnahmen zu ergreifen
- ☆ Kann sowohl Investitions- als auch Betriebskosten berücksichtigen
- ⊕ Die gleiche Systemgrenze wie bei LCA kann verwendet werden.

In dieser Studie berücksichtigte Hauptkosten:

- ⊕ Kosten auf der Farmstufe
- Kosten nach der Ernte (Verarbeitung, Verpackung usw.)
- ☆ Transportkosten

9.3. Ökonomische Aspekte...

Die Kosten können in jedem Lebensphasenstadium bestimmt werden

F= Farm-Stadium Kosten in €; H= Nacherntekosten in €

T= Transportkosten in €; TLC= Totalkosten in €

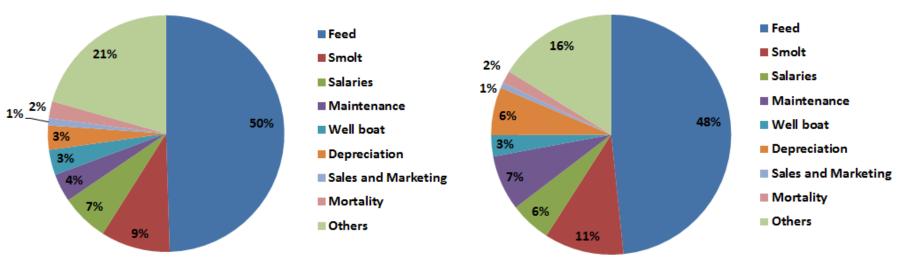
$$TLC = F + H + T$$

9.3. Ökonomische Aspekte...

LCCA Ergebnisse: Beitrag der einzelnen Stadien zu Gesamtkosten pro funktionaler Einheit

Organic food value chain	Unit ^a	Farm stage	Post-harvest processing stage	Transport stage	Total
Salmon supplied within Norway (with normal cold chain)	€	6213	475	27	6715
Salmon supplied within Norway (Supper- chilled)	€	6213	494	18	6725
Reduction/increase	%	0	(+)4.0	(-)33.33	(+)0.15
Salmon supplied to France (with norma cold chain)	€	6213	475	106	6794
Salmon supplied to France (supper-chilled)	€	6213	494	71	6778
Reduction/increase	%	0	(+)4	(-)33	(-)0.24
Fresh apple	€	1865	482	42	2391
Dried apple	€	1865	643	27	2537
Reduction/increase	%	0	(+)33.4	(-)36	(+)6
Fresh beef meat	€	6326	14204 ^b	1550	22080
Dried beef meat	€	6326	14752 ^b	885	21964
Reduction/increase	%	0	(+)4	(-)43	(-)0.5

a-Die Werte sind pro Funktionseinheit angegeben, jedoch nicht pro Tonne Endprodukt. b- Schätzung basierend auf einer durchschnittlichen Betriebsgewinnmarge von 4,4% bei Verarbeitung und Einzelhandel, die in einigen Fällen höher sein könnte



- → Die Lachsfarm ist ein Hot-Spot mit einem Kostenanteil von ca. 48%.
- → Die Gesamtkosten auf der Farmstufe betragen etwa 6750 €
 / t Filet für Bio-Lachs, während sie bei herkömmlichem
 Zuchtlachs bei 4958 € / t liegen

Cost distribution for conventional farmed salmon production

Cost distribution for farmed organic salmon production

9.3. Ökonomische Aspekte...

Bemerkungen

- •Das Super-Chilling-Verfahren reduziert die Transportkosten um ca. 33%. Die Stufen der Lachszucht und der Verarbeitung (einschließlich der Verpackung) machen jedoch etwa 92% bzw. 7% der gesamten Lebenszykluskosten aus, und mehr Verbesserungsmaßnahmen in diesen Phasen könnten die Nachhaltigkeit von Bio-Lachs verbessern.
- •Im Falle einer längeren Vertriebsdistanz erhöht die Trocknung von Lebensmitteln den Kostenvorteil im Vergleich zur Lieferung von frischen Produkten.

9.3. Ökonomische Aspekte...

- Auf der Ebene der landwirtschaftlichen Betriebe wird geschätzt, dass die Kosten für die Produktion von organischem Rindfleisch höher sind als die Verkaufspreise für Schlachttiere, was die Nachhaltigkeit der Produktion von ökologischem Rindfleisch beeinträchtigt
- Im Allgemeinen erhöht der Trocknungsprozess die Kosten bei der Verarbeitung, kann jedoch durch ein verringertes Volumen des zu transportierenden Produkts und der Verpackung ausgeglichen werden.
- Die Einführung geeigneter Trocknungsverfahren und -verpackungen spielt eine wichtige Rolle bei der Erhöhung der Verfügbarkeit von Nahrungsmitteln und bei der Verringerung von umweltbedingten und wirtschaftlichen Einschränkungen.

Verweise

- UN (2017). The Sustainable Development Goals Report 2017 of United Nations. URL: https://unstats.un.org/sdqs/files/report/2017/TheSustainableDevelopmentGoalsReport2017.pdf.
- LCA handbook (2004). Handbook on Life Cycle Assessment Operational Guide to the ISO Standards. Kluwer Academic Publishers; eBook ISBN: 0-306-48055-7; New York, Boston, Dordrecht, London, Moscow.
- Farr J.V. (2011). Systems Life Cycle Costing Economic Analysis, Estimation, and Management. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742.
- Winther U., Ziegler F., Hognes E.S., Emanuelsson A., Sund V., and Ellingsen H. (2009). Carbon footprint and energy use of Norwegian seafood products. Research report; SINTEF Fisheries and Aquaculture.
- Schaub & Leonard, 1996. Composting: An alternative waste management option for food processing industries. Trends in Food Science & Technology 7(8):263-268.

Verweise

- Borg J., Per Fors, Simon Isaksson S., Kambanou M.L.(2016). Food transport within the context of sustainability. Sustainability Opportunities 2016. https://gmv.gu.se/ digitalAssets/1593/1593132 _final-presentation-transportation-of-food.pdf
- Corrado S., Ardente F., Sala S., Saouter E. (2016). Modelling of food loss within life cycle assessment: From current practice towards a systematization. Journal of Cleaner Production, 140 (2017) 847-859. http://dx.doi.org/10.1016/j.jclepro.2016.06.050.
- Pelletier N. and Tyedmers P. (2007). Feeding farmed salmon: Is organic better? Aquaculture 272: 399-416. Doi:10.1016/j.aquaculture.2007.06.024.
- Alberto Ramírez (2007). Salmon by-product proteins. FAO, Rome. http://www.fao.org/3/a-a1394e.pdf accessed on 27-04-2017.
- EIA, 2011: International energy outlook 2011. https://www.eia.gov/outlooks/archive/ieo11/pdf/0484(2011).pdf

Modul 9

Nachhaltigkeitskonzepte in der Lebensmittelverarbeitung

9.1. Generelle Aspekte

- 1. Konzeptionell verfolgt die nachhaltige Lebensmittelversorgungskette das Ziel, Folgendes zu verbessern:
 - a. Den ökonomischen Aspekt der Lebensmittelversorgungskette
 - b. Den Umweltaspekt der Lebensmittelversorgungskette
 - c. Den sozialen Aspekt der Lebensmittelversorgungskette
 - d. Alle oben genannten Aspekte
- 2. Welche Faktoren erschweren die Aufrechterhaltung der Nachhaltigkeit der Lebensmittelversorgungskette?
 - a. Wachsende Weltbevölkerung,
 - b. ZunehmendeVerstädterung,
 - c. Zunehmende Erschöpfung von Ressourcen,
 - d. räumliche und zeitliche Schwankungen der Verfügbarkeit von Nahrungsmitteln
- 3. Die Umweltdimiension der Nachhaltigkeit im Lebensmittelsektor berücksichtigt nicht:
 - a. Treibhausgas Emissionen,
 - b. Regionale Wirtschaft
 - c. Mindern der Biodiversität
 - d. Erschöpfung der Ressourcen
- 4. Um die Nachhaltigkeit der Lebensmittelkette zu steigern, muss die Effizienz auf der Ebene der landwirtschaftlichen Produktion erhöht werden:
 - a. Verarbeitungsphase
 - b. Lebensmittellagerung
 - c. Transportphasen
 - d. Alle

9.2. Umwelteinflüsse ausgewählter Bioprodukte

- 1. In Betracht der Tomaten-Versorgungskette, angenommen dass ein Produkt, das 1 kg frischer Tomaten entspricht, während einer der folgenden Stufen der Lieferkette verloren geht.
 - Welche dieser kann die Umwelt am meisten belasten?
 - a. Verlust während Hof-Phase
 - b. Verlust während Verarbeitungsphase
 - c. Verlust auf Verbrauchsebene
 - d. Verlust auf Einzelhandelsebene
 - e. Verlust während Transportphase
- 2. Lebenszyklusanalyse (LCA), Methode der Umweltverträglichkeitsprüfung, wird nicht verwendet, um:
 - a. Umweltleistung eines Produkts zu bewerten
 - b. Umweltleistung der Dienstleistungserbringung zu bewerten
 - c. Umweltfreundlichere Produkte zu entwerfen
 - d. Die Entscheidungsfindung in Bezug auf den Umweltschutz zu unterstützen
 - e. Nahrungsnahrungsanalyse durchzuführen

3. Welches Lebenszyklusstadium der Wertschöpfungskette für Bio-Lachse ist am umweltfreundlichsten?

- a. Hof-Phase
- b. Verarbeitungsphase
- c. Einzelhandelsphase
- d. Verbrauchsphase

4. Welche Produktwertschöpfungskettehat weniger GHG -Emissionen in der Phase der landwirtschaftlichen Produktion?

- a. Gewächshaus basierte Bio-Tomatenproduktion
- b. Ökologische Feld-Karottenproduktion
- c. Rindfleisch-Produktion
- d. Biologische Lachsproduktion

9.3. Ökonomische Aspekte ausgewählter biologicher Erzeugnisse

1. Lebenszyklus Kostenanalyse (LCCA) ist eine wirtschaftliche Bewertungstechnik, die es ermöglicht:

- a. Die Investitionskosten vom Produkt einer Einrichtung zu bestimmen
- b.Die Betriebskosten einer Einrichtung oder eines Systems über einen bestimmten Zeitraum zu bestimmen
- c. Die Hauptkosten eines Produktlebenszyklus zu identifizieren und ggf. Verbesserungen vorzunehmen
- d. Eine Umweltverträglichkeitsprüfung für ein Produkt durchzuführen

2. Welche Nachernteverarbeitung könnte die Transportkosten des Produkts verringern?

- a. Super-Chilling Verfahren bei Bio-Lachs
- b. Trocknung von Rindfleisch
- c. Trocknung von Tomaten und Karotten
- d.Alle

3. Welche Aktivitäten können nicht zu geringeren Transportkosten führen?

- a. Schlachten von Fleischrindern in der Nähe von Betrieben, die den Tiertransport reduzieren
- b. Trocknen von frischem Rindfleisch auf Einzelhändlerebene
- c. Förderung einer lokalen Produktion und eines autonomen Nahrungsmittelversorgungssystems für die Gemeinschaft
- d. Frische Tomate auf Bauernhofniveau trocknen

4. Vorteile der Lebensmittelverarbeitung wie Trocknen und Kühlen können wiefolgt beschrieben werden:

- a. Eerhöhte Haltbarkeit der Lebensmittel
- b. Reduzierter Essensverlust
- c. Erhöhter Verkaufspreis des verarbeiteten Produkts
- d. Erhöhte Lebensmittelqualität
- e. Alle

List of answers Modul 9: Nachhaltigkeitskonzepte in der Lebensmittelverarbeitung

Unterthema	Frage	Antwort
9.1. Generelle Aspekte	1	d
	2	е
	3	b
	4	e
9.2. Umwelteinflüsse ausgewählter Bioprodukte	1	С
	2	e
	3	a
	4	b
9.3. Ökonomische Aspekte ausgewählter biologicher Erzeugnisse	1	С
	2	d
	3	b
	4	e