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ABSTRACT 

 

Exploring Sedentary Behavior as a Secondary Prevention Target for Heart Disease 

 

Andrea T. Duran  

The purpose of this dissertation series was to describe sedentary behavior and its 

associations with cardiovascular disease (CVD) biomarkers and outcomes, and to explore the 

potential that reducing sedentary behavior may be a secondary prevention target for Acute 

Coronary Syndrome (ACS) survivors. As such, the following series of research studies evaluate 

the mechanisms, patterns, and correlates of sedentary behavior in relation to CVD risk and 

examine whether sedentary behavior might be a risk factor for CVD outcomes among ACS 

survivors. In Chapter II, a cross-sectional study of young, healthy adults examined a set of 

biomarkers representing several aspects of endothelial cell health to elucidate the relationship 

between free-living, habitual sedentary time and endothelial dysfunction. Results showed that 

there were no differences in measures of endothelial cell injury, endothelial cell reparative 

capacity, or upper extremity endothelium-dependent vasodilatation in participants with high 

compared with low volumes of device-measured sedentary behavior in a sample of young, healthy 

adults. These findings suggest that physiological mechanisms other than endothelial dysfunction 

may need to be explored as a potential link between habitual prolonged sedentary time and CVD 

in young adults. Chapter III employed group-based trajectory modeling to identify distinct patterns 

of sedentary behavior, as measured by accelerometry, in ACS survivors over the 28 consecutive 

days following hospital discharge, and, secondly, to explore potential correlates of these patterns. 

Results demonstrated that ACS patients as a group engaged in high volumes of accelerometer-

measured sedentary time. Three patterns of sedentary behavior over the first month post-discharge 



 

were identified; these involved either gradual or rapid reductions in sedentary behavior. Several 

measures of disease severity and physical health (e.g., GRACE CVD risk score, physical health-

related quality of life), and partner status (i.e., married or partnered or without partner), were 

associated with the worst patterns of sedentary behavior (i.e., high volume of sedentary time with 

only a slight decline over time). These findings provide insight on the different patterns of 

sedentary behavior that emerge as patients resume their daily life over the first month post hospital 

discharge. Chapter IV, building upon the study presented in Chapter III, examined whether 

accelerometer-measured sedentary behavior of ACS survivors over the first month post hospital 

discharge was associated with 1-year health outcomes. The purpose of this study was to understand 

whether sedentary behavior in the early post hospital discharge period may be an important risk 

factor in ACS survivors, that might be targeted in secondary prevention strategies. Results 

demonstrated that the average sedentary behavior over the first month post hospital discharge was 

not significantly associated with increased risk of 1-year recurrent major adverse cardiovascular 

events or hospitalizations. These findings do not support sedentary behavior in the early post 

hospital discharge period as a prognostic risk factor that should be modified in ACS survivors as 

part of secondary heart disease prevention strategy. However, studies with larger sample sizes,  

and that evaluate sedentary behavior patterns beyond the first month are needed. Collectively, 

these studies show that high volumes of sedentary behavior are prevalent in ACS survivors over 

the first month immediately following hospital discharge. Future work is needed to further study 

the underlying mechanisms through which sedentary behavior may confer CVD risk and to 

determine whether sedentary behavior is an important modifiable risk factor in ACS survivors.  
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CHAPTER I 

Introduction  

Acute coronary syndrome (ACS), characterized by unstable angina (UA), non-ST-

elevation myocardial infarction (NSTEMI), and ST-elevation myocardial infarction (STEMI), is 

among the top causes of death in the modern, industrialized world (Fuster & Kovacic, 2014).  In 

the United States, more than 1.1 million people are hospitalized annually for an ACS event 

(Mozaffarian et al., 2015). Despite improvements in acute care, 21% of ACS survivors will be re-

hospitalized and approximately 1 in 5 patients will die within 1 year following hospitalization 

(Menzin, Wygant, Hauch, Jackel, & Friedman, 2008). Much of the increased morbidity and 

mortality risk among ACS survivors remains unexplained (Berton, Cordiano, Palmieri, Cavuto, & 

Pellegrinet, 2014; Fox et al., 2010). Thus, there is a need to identify modifiable risk factors for 

intervention to increase survival and reduce recurrent events among ACS patients. 

Sedentary behavior, defined as any sitting or reclining behavior with energy expenditure ≤ 

1.5 metabolic equivalents (METs; i.e. watching TV, computer use, etc.), has emerged as a distinct 

cardiovascular disease (CVD) risk factor that may carry clinical relevance beyond how much one 

exercises (Roger et al., 2011; World Health Organization, 2009). Accumulating evidence from 

population-based studies indicate that sedentary behavior is associated with elevated CVD 

morbidity and mortality, and worsened CVD risk factors, such as impaired glucose regulation and 

dyslipidemia (Wilmot et al., 2012). Notably, the deleterious effects of sedentary behavior are 

attenuated only by high levels of moderate-to-vigorous physical activity (MVPA) (~60 to 75 

min/d), which exceed physical activity recommendations (Ekelund et al., 2016; Garber et al., 

2011). This raises the question as to whether reducing sedentary behavior may represent another 
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therapeutic target for secondary prevention and rehabilitation of ACS survivors, in addition to 

existing MVPA recommendations (Amsterdam et al., 2014). 

To understand the clinical utility of sedentary behavior reduction as a secondary prevention 

target in ACS survivors, the biological mechanisms that underlie the deleterious relationship 

between sedentary behavior and CVD must be established. Endothelial dysfunction, an early 

pathogenic process underlying atherosclerosis, is a promising mechanism purported to be a 

contributing factor to the sedentary behavior-CVD link (Ross, 1999; Versari, Daghini, Virdis, 

Ghiadoni, & Taddei, 2009). The sitting posture (the primary sedentary posture) promotes muscle 

inactivity of the lower extremities and changes in the angles at which the femoral and popliteal 

arteries run (Restaino, Holwerda, Credeur, Fadel, & Padilla, 2015); eliciting adverse hemodynamic 

changes within the arterial tree  (Delp & Laughlin, 1998; Padilla, Johnson, et al., 2009; Padilla, 

Sheldon, Sitar, & Newcomer, 2009; Restaino et al., 2015). As such, it is hypothesized that 

prolonged sitting may confer CVD risk by exposing the endothelium to a pro-atherogenic milieu, 

facilitating endothelial dysfunction over time (Hamilton, Hamilton, & Zderic, 2007; Thosar, 

Johnson, Johnston, & Wallace, 2012). If this sitting-induced endothelial dysfunction hypothesis is 

confirmed, sedentary behavior reduction may be a meaningful secondary prevention target for 

ACS survivors.   

In addition to understanding the mechanisms, it’s important to describe the patterns and 

pervasiveness of sedentary behavior in ACS survivors during the period immediately following 

hospitalization, as well as determine whether these patterns are linked to survival and recurrent 

cardiac events. Currently, no studies have examined the amount of time ACS survivors engage in 

sedentary behaviors immediately after hospitalization, a critical time period when lifestyle 

interventions ideally begin (e.g., cardiac rehabilitation). Therefore, the purpose of this dissertation 



 

3 
 

series is to provide a foundation of empirical evidence to recognize the implications of sedentary 

behavior as a potential secondary prevention target for ACS survivors. As such, the following 

research studies attempt to understand the mechanisms, patterns, and correlates of sedentary 

behavior in relation to CVD, as well as whether sedentary behavior is linked to CVD health 

outcomes in ACS survivors.  

Significance  

Technological advancements in transportation, communication, the workplace and 

domestic-entertainment have cultivated occupational, home and social environments that oblige 

or promote sedentary behavior (Brownson, Boehmer, & Luke, 2005; Owen, 2012). As a result, 

time spent in sedentary behavior has continued to increase and physical activity levels have 

continued to decline over the past 50 years in the United States (Ng & Popkin, 2012). U.S. adults 

now spend an alarming 9 to 10 hours per day in sedentary behavior, including occupational sitting, 

TV viewing, and computer use (Dunstan, Howard, Healy, & Owen, 2012). Given the ubiquitous 

nature and high volumes of sedentary behavior detected among U.S. adults, as well as the adverse 

health consequences of too much sitting (previously described), there is an urgent need to identify 

populations that spend excessive time engrossed in sedentary behaviors (Rosenberg et al., 2015). 

ACS survivors, a vulnerable population at high risk for recurrent cardiac events and mortality, 

experience psychosocial and physical barriers to movement as they regain functional 

independence, (re)form lifestyle habits and integrate back into their daily activities (Conraads et 

al., 2012; Yates, Price-Fowlkes, & Agrawal, 2003). Consequently, ACS survivors may engage in 

high volumes of sedentariness after hospitalization. Thus, efforts are needed to understand whether 

sedentary-reduction strategies are needed for the vulnerable population of ACS survivors.  
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By employing a multi-faceted, comprehensive approach to characterizing sedentary 

behavior and its underlying physiological mechanisms, this dissertation series will provide a 

foundation for understanding the implications of sedentary-reduction strategies in ACS survivors. 

Collectively, the findings from the studies included in this dissertation series will: 

1) impart crucial insight as to whether endothelial dysfunction is a contributing factor to 

the sedentary behavior-CVD link. 

2) characterize ACS survivors according to their sedentary behavior as they recuperate 

from their ACS event, which may reveal unique patterns and subsets of patients in 

whom sedentary reduction strategies may be most beneficial.   

3) provide fundamental information about whether sedentary behavior is an important risk 

factor of CVD outcomes and hospitalizations in ACS survivors, which can inform 

secondary prevention guidelines.   

Overview  

This dissertation series on sedentary behavior and CVD includes three discrete, yet related, 

cross-sectional studies that focus on 1) endothelial dysfunction as a potential underlying 

mechanism that links sedentary behavior to CVD, 2) the characterization of sedentary behavior in 

ACS survivors during the first month post hospital discharge, and 3) the exploration of the 

association between sedentary behavior during the first month post hospital discharge and 

increased risk of health outcomes in ACS survivors. Study one examines the association of habitual 

sedentary behavior with comprehensive markers of endothelial dysfunction among young, healthy 

adults. The second study employs group-based trajectory modeling to identify distinct patterns of 

sedentary behavior, measured by accelerometry for 28 consecutive days post-hospital discharge, 

in ACS survivors, as well as potential correlates of these patterns. The third study, which builds 
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off the methods of study two, utilizes cox proportional hazard regression modeling to calculate the 

hazard ratio for health outcomes associated with sedentary time, with the goal to understand 

whether sedentary behavior during the first month post hospital discharge is an important risk 

factor of recurrent cardiac events and hospitalizations in ACS survivors.  

The specific aims of this dissertation are to: 

1) comprehensively examine whether habitual accelerometer-measured sedentary time is 

associated with markers of endothelial function in a cohort of healthy adults 

2) identify and evaluate patterns of change in sedentary behavior over the 28-day 

convalescent period following ACS, as well as identify correlates of the observed patterns 

3) determine whether accelerometer-measured sedentary behavior is associated with risk of 

1-year recurrent major adverse cardiac events and recurrent hospitalizations in ACS 

survivors.  

The hypotheses for each specific aim of this dissertation are: 

1) greater sedentary time will be associated with poorer endothelial cell health in healthy 

adults (i.e., lower endothelial-dependent vasodilation, higher circulating endothelial 

microparticles, lower circulating endothelial progenitor cells) 

2) ACS survivors will exhibit at least two unique patterns of change in sedentary behavior 

over the 28-day period post-hospital discharge and markers of disease severity will be 

correlates of these unique patterns 

3) greater sedentary time during the first month post-hospital discharge will be predictive of 

increased 1-year risk of recurrent major adverse cardiac events and recurrent 

hospitalizations in ACS survivors. 
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Dissertation Structure  

Chapters II, III, and IV are three separate studies that have utilized accelerometry to 

measure sedentary behavior in adults with and without ACS, with the overarching goal to provide 

empirical evidence to support further exploration of sedentary behavior as a potential secondary 

prevention target in ACS survivors. Accordingly, Chapters II-IV aim to understand the 

mechanisms, characterization, and correlates of accelerometer-measured sedentary behavior in 

relation to CVD, and whether this behavior is linked to CVD health outcomes. For each chapter, 

an abstract, introduction, methods, results, discussion, conclusion, references, related tables and 

figures, and supplemental material are presented. Appendix A includes the literature review for 

the dissertation series. Appendix B includes details about the EndoPAT™ protocol used to 

measure endothelial-dependent vasodilation in study one. Appendix C contains information on the 

endothelial cell transformations used for each outcome variable in study one. Appendix D includes 

the calculations used to derive the estimate statement for obtaining mean sedentary time in the 

multilevel growth curve models in study three. Appendices E and F comprises all relevant study 

instruments used within study one and study two/three, respectively. Related Institutional Review 

Board documents from Teachers College, Columbia University, and where applicable, Columbia 

University Medical Center, are included for all primary dissertation studies and are provided in 

Appendix G.   
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CHAPTER II 

Exploring the Associations Between Habitual Sedentary Behavior and Endothelial Cell 

Health 

Abstract 

 Endothelial dysfunction, an early pathogenic process underlying atherosclerosis, is a 

mechanism that may explain the link between prolonged sedentary time and cardiovascular disease 

(CVD). However, the relationship between habitual sedentary behavior and markers of endothelial 

function have yet to be explored. Purpose: Examine the association of accelerometer-measured 

sedentary time with markers of endothelial function. Methods: Participants (n=83; 43.4% male; 

25.5±5.8 y) with valid accelerometer and endothelial function data from the Putative Mechanisms 

Underlying Myocardial Infarction Onset and Emotions (PUME) study were examined. Sedentary 

behavior and moderate-to-vigorous physical activity (MVPA) were measured for 7-days by 

accelerometer. Endothelial function measures included endothelium-dependent vasodilation 

[reactive hyperemia index (RHI)]; circulating endothelial microparticles (EMPs) [CD62E+ and 

CD31+/CD42- surface markers]; and circulating endothelial progenitor cells (EPCs) 

[CD34+/CD133+/KDR+ and CD34+/KDR+ surface markers]. Participants were classified as 

having high or low sedentary time based on a median split of total sedentary time. Multivariable 

regressions were used to examine differences of endothelial cell variables between low and high 

sedentary behavior groups. Models were adjusted for age, sex, race, ethnicity, and education 

(Model 1), MVPA (Model 2), and body mass index (Model 3). Results: Mean (±SD) sedentary 

time and MVPA for the overall sample was respectively 9.9 ± 1.7 h/day and 64.5 ± 28.0 min/day 

over a 16-hour waking day. Participants in the low and high sedentary behavior groups spent a 

mean (SD) of 8.6 ± 1.1 and 11.1 ± 1.0 h/day in sedentary time, respectively, over a 16-hour waking 
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day. No significant differences between the low and high sedentary behavior groups were detected 

in RHI, EMPs (CD62E+, CD31+/CD42-), or EPCs (CD34+/KDR+, CD34+/CD133+/KDR+), 

even after adjusting for selected covariates (p>0.05 for all). Conclusion: Among young, healthy, 

active adults, sedentary behavior was not associated with markers of endothelial cell health. This 

suggests that, in this population, mechanisms other than endothelial dysfunction should be 

explored as a potential link between prolonged sedentary time and CVD.   



 

12 
 

Introduction 

Accumulating evidence indicates that prolonged sedentary time is associated with incident 

cardiovascular disease (CVD), incidence of CVD-related risk factors, and mortality, potentially 

independent of moderate-to-vigorous physical activity (MVPA) (Biswas et al., 2015; Wilmot et 

al., 2012). However, the mechanisms underlying the associations between sedentary behavior and 

CVD have not been elucidated. Endothelial dysfunction, an early pathogenic process underlying 

atherosclerosis, is a putative contributory mechanism (R. Ross, 1999; Versari, Daghini, Virdis, 

Ghiadoni, & Taddei, 2009). The sitting posture (the primary sedentary posture) promotes muscle 

inactivity of the lower extremities and changes in the angles at which the femoral and popliteal 

arteries run, causing bends within the arterial tree (Restaino, Holwerda, Credeur, Fadel, & Padilla, 

2015). These physiological conditions elicit hemodynamic changes that include blood pooling in 

the legs, decreased thigh and calf blood flow, and augmented turbulent blood flow in the deformed 

arterial segments (Delp & Laughlin, 1998; Padilla, Johnson, et al., 2009; Padilla, Sheldon, Sitar, 

& Newcomer, 2009; Restaino et al., 2015). For these reasons, it is thought that prolonged sitting 

promotes atherosclerosis and increased CVD risk by exposing the endothelium to a pro-

atherogenic milieu, facilitating endothelial dysfunction over time (Hamilton, Hamilton, & Zderic, 

2007; Thosar, Johnson, Johnston, & Wallace, 2012).   

 Experimental evidence from laboratory studies has shown that prolonged exposure to the 

sitting posture blights endothelial function in the leg vasculature, as indicated by impaired 

endothelial-dependent vasodilation (EDV) in the popliteal and femoral arteries following 

uninterrupted sitting bouts of 1-6 hours (Morishima et al., 2016; Morishima, Restaino, Walsh, 

Kanaley, & Padilla, 2017; Padilla & Fadel, 2017; Thosar, Bielko, Mather, Johnston, & Wallace, 

2015). This sitting induced, leg-specific endothelial dysfunction, however, has shown to be 

restored with light muscular activity (e.g., light-intensity walking, leg fidgeting, etc.), questioning 
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the long-term effects of prolonged sitting on the vasculature outside the context of an acute 

laboratory setting (Morishima et al., 2016; Thosar et al., 2015). Moreover, the laboratory based 

models employed in existing studies are limited because 1) acute periods of sitting in the lab over 

a single day (or in most cases a few hours) is not indicative of chronic exposure to sitting (e.g., 24 

hours, 7 days/week), and 2) the control condition (non-movement of the legs and feet in the sitting 

position for hours at a time) does not have real world generalizability since few adults engage in 

such prolonged, uninterrupted sedentary periods during a typical day (e.g., workday). Thus, it is 

unclear if chronic exposure to such conditions with prolonged sitting contributes to endothelial 

dysfunction. Observational studies, therefore, are needed to determine whether free-living, 

habitual patterns of sedentary behavior (indicative of more chronic exposure) are linked to 

impairments in the function of the vasculature.     

 Studies conventionally define endothelial dysfunction solely as an impairment in EDV. 

This narrow focus provides insight concerning only one aspect of endothelial function. Lab-based 

investigations have elucidated the upstream processes underlying endothelial dysfunction, which 

include endothelial cell injury and diminished endothelial cell reparative capacity.  A 

comprehensive evaluation of endothelial function not only includes the assessment of EDV, but 

also cellular measures such as circulating endothelial microparticles (EMPs) and circulating 

endothelial progenitor cells (EPCs) (Deanfield, Halcox, & Rabelink, 2007). Therefore, the purpose 

of the current study was to comprehensively examine whether habitual accelerometer-measured 

sedentary time is associated with markers of endothelial function, including EDV, circulating 

levels of EMPs (a measure of endothelial cell injury), and circulating levels of EPCs (a measure 

of endothelial cell reparative capacity), in a cohort of healthy adults. It was hypothesized that 
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participants with greater sedentary time would exhibit poorer endothelial cell health (i.e., lower 

EDV, higher circulating EMPs, lower circulating EPCs). 

Methods 

Participants: Healthy adult participants were enrolled into the Putative Mechanisms Underlying 

Myocardial Infarction Onset and Emotions (PUME) study, a laboratory-based, single-blind, 

randomized controlled experimental study conducted from September 2013 to December 2018 

(N=280). As described elsewhere, PUME was designed to examine the impact of induced negative 

emotions (i.e., anger, anxiety and sadness) on endothelial function (Ensari et al., 2018). Inclusion 

criteria included adults ≥18 years of age with English proficiency. Exclusion criteria included 

individuals with any: (a) chronic medical condition including prevalent CVD and traditional CVD 

risk factors including history of hypertension, diabetes, dyslipidemia; (b) active smoking; (c) 

medication use including over-the-counter drugs and herbal medications; or (d) self-reported 

history of psychosis, mood disorders, or personality disorder diagnoses.  

Instrumented measures of sedentary behavior were collected in a subsample of PUME 

participants over the period from October 2014 to December 2018. All active PUME participants 

were invited to complete a 7-day accelerometer protocol: 160 were eligible and consented to 

participate, 66 declined or were unable to be scheduled, and 94 participated. Excluding those with 

missing data and non-adherent wear time (n=11), useable data were available from 83 participants. 

Thus, the analysis was restricted to participants who were adherent to an accelerometry protocol 

requiring at least 3 days with 10 or more hours of wear over a consecutive 7-day period. 

Characteristics of PUME participants included and those excluded in the present analyses are 

presented in Supplemental Table 1.  
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Procedures: Participants came into the Center for Behavioral Cardiovascular Health’s research 

laboratory on two occasions. The first visit entailed collection/measurement of endothelial 

markers, for which the participants were instructed to arrive at 08:30 am following a fast from the 

previous midnight, and to refrain from any strenuous exercise in the 12 hours prior to their visit.  

To maintain adequate hydration levels, participants were asked to drink 64 ounces of water in the 

24 hours prior to their visit. Upon arrival, they were escorted to a temperature-controlled room and 

seated in a comfortable chair for the entire visit, which lasted approximately 3.5 hours. A 20-gauge 

intravenous catheter was inserted into an antecubital vein of the dominant arm. Afterwards, the 

participant was instrumented with the EndoPAT2000 device and instructed to relax for 30 min. 

Following this rest, EDV assessment was completed (described below). Blood was then drawn 

into serum tubes, EDTA tubes and citrate tubes. The first tube of the withdrawn blood was 

discarded (i.e., ‘discard tube’) to avoid spurious hemolysis in subsequent sample tubes and 

improve sample quality (Heiligers-Duckers, Peters, van Dijck, Hoeijmakers, & Janssen, 2013; 

Munnix, Schellart, Gorissen, & Kleinveld, 2011). One citrated tube was used to measure 

circulating EMPs. One EDTA tube was used to measure EPCs.  

Accelerometer Protocol: A second visit was scheduled 7–14 days after the initial laboratory visit. 

At the second visit, participants were fitted with the activPAL™ (V.3, PAL Technologies, 

Glasgow, UK), a thigh-worn triaxial accelerometer and inclinometer that has been validated for 

determining step counts, physical activity, activity intensities, posture (sitting/lying, standing or 

stepping), and sedentary time in healthy adults (Godfrey, Culhane, & Lyons, 2007; Grant, Ryan, 

Tigbe, & Granat, 2006; Hart, McClain, & Tudor-Locke, 2011; Kozey-Keadle, Libertine, Lyden, 

Staudenmayer, & Freedson, 2011; Lyden, Keadle, Staudenmayer, & Freedson, 2017; Lyden, 

Kozey Keadle, Staudenmayer, & Freedson, 2012; Ryan, Grant, Tigbe, & Granat, 2006).  The 
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activPAL™ was waterproofed via a nitrile sleeve and worn by participants on the midline of their 

right thigh, held in place with a hypoallergenic adhesive dressing (Hypafix® or Tegaderm™). 

Participants were instructed to wear the device continuously for 7 days and to not remove the 

monitor unless it was to be fully submerged in water (e.g., swimming, bath). Participants were also 

asked to complete a sleep and wear-time log sheet to record daily sleep (‘lights out’) and wake 

times, and times when the device was removed (if any). 

Accelerometer Processing: Time-stamped 15-second epoch data files were exported using the 

activPAL™ software for subsequent processing and analysis in SAS 9.4. Non-wear and sleep time 

recorded in the logs were excluded from analyses. For each participant, minutes of sedentary time, 

light-intensity physical activity (LIPA, defined as 1.5-2.99 metabolic equivalents [METs] which 

are derived from stepping cadence), and MVPA (defined as ≥3 METs which are derived from 

stepping cadence) were summed for each day and averaged across the number of valid days (≥10 

h of wear) to derive ‘per day’ values (Lyden et al., 2017). Sedentary and MVPA bouts were also 

quantified. A sedentary bout was defined as consecutive epochs in which the activPAL™ 

registered no standing or stepping events of any length. An MVPA bout was defined as any 

stepping period of ≥10 minutes for which each consecutive epoch had a stepping cadence assigned 

an activity intensity of ≥3 METs. We corrected for the influence of variation in wear time by 

standardizing sedentary time using the residuals obtained when regressing sedentary time on wear 

time (Healy, Matthews, Dunstan, Winkler, & Owen, 2011; Qi et al., 2015; Willett & Stampfer, 

1986). As a result, sedentary time is expressed as the mean predicted sedentary time given a wear 

time of 16 h/day.  

Endothelium-dependent Vasodilation: Endothelial-dependent vasodilation was determined 

using the reactive hyperemia index (RHI), which is measured as the transient increase in blood 
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flow following a brief period of arterial occlusion. RHI moderately correlates with endothelial 

vasodilator function in the coronary arteries (Piero O. Bonetti et al., 2004), and with brachial flow-

mediated dilation (Kuvin et al., 2003). RHI was assessed using EndoPAT™2000, a validated 

peripheral arterial tonometry (PAT) device (Barac, Campia, & Panza, 2007; Piero O. Bonetti et 

al., 2004; Goor et al., 2004; Hansen, Butt, Holm-Yildiz, Karlsson, & Kruuse, 2017). A finger probe 

for the EndoPAT™2000 device was placed on the first digit of each hand. A blood pressure (BP) 

cuff was placed on the non-dominant forearm for inducing reactive hyperemia. After 

instrumentation, the participant relaxed for 30 min. Following this rest, EDV assessment was 

completed. 

To induce reactive hyperemia, the BP cuff  was inflated to 200 mmHg or 60 mmHg plus 

systolic BP (i.e., whichever occlusion pressure was higher); the pressure was maintained for 5 min, 

and then the cuff was deflated (P. O. Bonetti et al., 2003; Piero O. Bonetti et al., 2004; Goor et al., 

2004). RHI was calculated as the ratio of the average amplitude of the PAT signal through the 

range of a 90–120 s period post deflation, divided by the average amplitude of the PAT signal of 

a 2 min period before cuff inflation (i.e., resting period) (Hamburg et al., 2008). RHI values were 

then normalized to the concurrent signal from the contralateral, control arm (P. O. Bonetti et al., 

2003; Piero O. Bonetti et al., 2004; Kuvin et al., 2003) to control for fluctuations in sympathetic 

nerve outflow that may induce changes in peripheral arterial tone, superimposed on the hyperemic 

response (Axtell, Gomari, & Cooke, 2010). 

Endothelial-cell Derived Microparticles: Endothelial-cell (EC) injury was assessed by 

measuring circulating EMPs (Boulanger, Amabile, & Tedgui, 2006). Previous studies indicate that 

peripheral EMPs expressing CD62E+ are phenotypic for EC activation, and EMPs expressing 
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CD31+ are indicative of EC apoptosis (Bernal-Mizrachi et al., 2003; Garcia et al., 2005; Joaquin J 

Jimenez et al., 2003). 

EMPs were measured using flow cytometry as previously described (Bernal-Mizrachi et 

al., 2003; Garcia et al., 2005; Joaquin J Jimenez et al., 2003). Citrated blood was centrifuged at 

160×g for 10 min to prepare platelet-rich plasma (PRP), and the PRP was further centrifuged for 

6 min at 1500×g to obtain platelet-poor plasma (PPP). Fifty microliters of PPP were incubated with 

two sets: (a) 4 µL of phycoerythrin (PE)-conjugated monoclonal antibody to CD31 (BD) and 4 µL 

of fluorescein isothiocyanate (FITC)-conjugated monoclonal antibody to CD42b (BD); and (b) 

5 µL of PE-conjugated monoclonal antibody to CD62E (BD). EMPs were defined as the number 

of particles with a size <1.5 µm and that were positively labelled by CD62E+ (EMPs expressing 

CD62E), and positively labelled by CD31 and negatively labelled by CD42 (CD31+/CD42 EMPs). 

Appropriate FITC-labelled and PE-labelled isotype-matched IgG were used as negative controls. 

Using standard beads (Bang Laboratories), total flow cytometry counts for each experiment were 

converted to the number of EMPs per microliter. 

Endothelial Progenitor Cells: The EC reparative capacity was assessed by measuring circulating 

EPCs, which are bone-marrow-derived hematopoietic progenitor cells that differentiate into 

mature ECs and contribute to EC repair after ischemic injury. A reduced number of EPCs 

expressing CD34+/CD133+/KDR+ and CD34+/KDR+ have been associated with increased risk 

of subclinical atherosclerosis, ischemic stroke, and future vascular events (Fadini et al., 2006; 

Jevon, Dorling, & Hornick, 2008; Martí-Fàbregas et al., 2015; Schmidt-Lucke et al., 2005; Carmen 

Urbich & Stefanie Dimmeler, 2004; Werner et al., 2005). Blood samples were prepared and 

processed using flow cytometry (BD FACS Calibur) and analyzed using previously published 

protocols (Jelic et al., 2008; Peichev et al., 2000; Shimbo et al., 2013; Carmen Urbich & Stefanie 
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Dimmeler, 2004; Werner et al., 2005). Mononuclear cells in EDTA-anticoagulated blood were 

isolated by density-gradient centrifugation with Ficoll (Sigma) and counted using a Coulter 

Counter (Abx Pentra 60, Horiba). One million mononuclear cells were first aliquoted and 

incubated with 15 µL mouse serum (Sigma) to block non-specific binding of antibodies, followed 

by an incubation with monoclonal antibodies against human KDR (PE-labelled) (10 µL; R&D 

Systems), CD34 (FITC-labelled) (20 µL; BD) and CD133 (APC-labelled) (20 µL; Miltenyi 

Biotec). Isotype-identical antibodies IgG1-PE (BD), IgG-FITC (BD) and IgG2b-APC 

(eBioscience) served as negative controls. Data were gated on the mononuclear lymphocytic 

population, and 500,000 events were collected in the gated region for each sample. Data for the 

two EPCs measures were expressed as the proportion of the mononuclear lymphocytic populations 

that consist of CD34+/CD133+/KDR+ cells, the primary EPC outcome and CD34+/KDR+ cells, 

a secondary EPC outcome. 

Statistical Analyses: Participants were classified into high and low total sedentary time groups by 

a median split of 589 min/day of sedentary time. Descriptive statistics, including means ± standard 

deviation and frequencies, were computed to characterize the high and low sedentary groups. For 

each endothelial cell variable, outliers were winsorized and thereafter transformed when 

appropriate. EMP data were multiplied by a correction factor of 0.91141 and natural log 

transformed. EPC data were divided by a correction factor of 20,000 to convert raw data into a 

proportion of anti-body per 20,000 cells and square root transformed because zero was a possible 

value. EMP and EPC data were transformed back to its original scale for ease of interpretation. 

Multivariable linear regression models were used to compare the levels of each endothelial 

cell variable (RHI, EMPs and EPCs) between high and low sedentary groups. Prior to evaluating 

the association between sedentary time and each endothelial cell variable, we considered three 
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different possibilities for education to be included in adjusted models. We then conducted a 

forward selection regression analysis and found that education represented as a binary variable 

that dichotomized participants by education less than a college degree or at least a college degree 

added the most predictive value above age, sex, ethnicity and race. Unadjusted models were first 

conducted. Subsequent models adjusted for age, sex, race, ethnicity and education (Model 1), and 

further adjusted for MVPA (Model 2) and body mass index (BMI) (Model 3). As a sensitivity 

analysis, all analyses were repeated with total sedentary behavior expressed as a continuous 

variable in hours/day.  

As some evidence suggests that prolonged, uninterrupted sedentary bouts (e.g. sitting for 

hours at a time) may potentially be the most hazardous form of sedentary behavior (Diaz, 

Goldsmith, et al., 2017; Diaz, Howard, et al., 2017; Healy et al., 2008; Healy et al., 2011), the 

above analyses were repeated examining mean sedentary bout duration (a measure of overall 

prolonged, uninterrupted sedentary behavior that has been linked to mortality) as the exposure 

variable. Participants were classified into high and low sedentary bout groups by a median split 

17.2 min/bout of mean sedentary bout duration, respectively. All analyses were conducted using 

SAS, version 9.4 (SAS Institute). 

 A priori power analyses were conducted using Power Analysis and Sample Size Analysis 

Software Version:15.0.1. The sample provided 80% power to detect the least meaningful 

detectable difference of 0.5, 492.1, 209.2, 83.9, and 2.5 between groups for RHI, CD62+ EMPs, 

CD631+/CD42- EMPs, CD34+/KDR+ EPCs, and CD34+/CD133+/KDR+ EPCs, respectively.  

Results 

Participants: The mean (± SD) of age and BMI of the overall sample (n=83) was 25.5±5.8 yr and 

24.1±4.0 kg/m2, respectively. Participants were predominantly female (56.6%), 25.3% were 

Hispanic, and the majority had at least a college degree (75.9%). Sedentary behavior accounted 
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for 61.7 ± 10.2 % of wear time, equivalent to 9.9 ± 1.7 hours/day over a 16-hour waking day. The 

mean (±SD) mean sedentary bout duration was 18.7 ± 7.4 min/bout. LIPA and MVPA accounted 

for 31.6 ± 9.3 % and 6.7 ± 2.9 % of wear time, respectively, equivalent to 306.6 ± 95.8 min/day, 

and 64.5 ± 28.0 min/day. Table 1 presents the characteristics of the 83 participants classified into 

the high and low sedentary groups according to total sedentary time. Participants in the high 

sedentary group were significantly younger in age, more likely to be male, and engaged in lower 

levels of MVPA.  

Sedentary Behavior and Endothelial Cell Health: Differences in the markers of endothelial cell 

health between the high and low total sedentary time groups are shown in Table 2. In unadjusted 

and adjusted models, there were no significant differences between high and low total sedentary 

time groups in endothelial-dependent vasodilation as indicated by the RHI. There was also no 

significant difference in circulating levels of EMPs (CD62E+ and CD31+/CD42-) or EPCs 

(CD34+/KDR+ and CD34+/CD133+/KDR+) in both unadjusted and adjusted models. In an 

unadjusted model and after adjustment for age, sex, race, ethnicity, and education, circulating 

levels of CD62E+ EMPs trended towards being significantly lower among those in the high 

sedentary group; however, this difference was no longer close to statistical significance after 

additional adjustment for MVPA (Model 2) and BMI (Model 3). Similarly, when high and low 

sedentary groups were defined according to accumulation of sedentary time in prolonged, 

uninterrupted sedentary bouts (e.g. mean sedentary bout duration), there were no significant 

differences between the high and low groups for any of the endothelial measures (Table 3). In 

sensitivity analyses expressing total sedentary time and prolonged, uninterrupted sedentary bouts 

as continuous variables, there was no significant associations observed for any of the endothelial 

cell variables (Supplemental Table 2 & 3).  
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Discussion  

In this cross-sectional study of young, healthy adults, we evaluated a comprehensive set of 

biomarkers that represent several aspects of endothelial cell health to examine the relationship 

between free-living, habitual sedentary time and endothelial dysfunction. It was hypothesized that 

participants with greater sedentary time would exhibit poorer endothelial cell health (i.e., lower 

EDV, higher circulating EMPs, lower circulating EPCs). Contrary to this hypothesis, it was found 

that there were no differences in measures of EC injury, EC reparative capacity, or upper extremity 

EDV in participants with high compared with low volumes of accelerometer-measured sedentary 

time among a sample of young, healthy adults. These findings provide preliminary evidence that 

habitual sedentary behavior does not incur CVD risk, in part, through endothelial dysfunction.  

EDV of the peripheral upper extremities has been shown to be highly correlated with EDV 

of the coronary arteries, and it has demonstrated prognostic utility beyond traditional CVD risk 

factors (Matsuzawa, Kwon, Lennon, Lerman, & Lerman, 2015; Poredos & Jezovnik, 2013; Takase 

et al., 1998). Previous experimental findings from Thosar et al. (2014) and Padilla et al. (2009) 

collectively demonstrated that an acute bout of prolonged sitting causes impairment in brachial 

artery shear rate patterns (e.g. decrease in antegrade shear rate, increase in oscillatory shear index) 

in young, healthy adults; however, paradoxically brachial artery FMD was preserved. The 

preservation of brachial artery FMD, despite alterations in brachial artery hemodynamics, was 

postulated to be due to the acute exposure and relatively short duration of sitting (i.e., 3 hours), 

necessitating a need to elucidate the relationship of upper extremity endothelial function with 

chronic exposure to sedentary behavior. Utilizing a 7-day accelerometer protocol to ascertain 

habitual levels of sedentary behavior levels (which we infer to be reflective of chronic exposure to 

sedentary time), no differences were observed in RHI among those with higher and lower levels 

of free-living, habitual sedentary behavior, suggesting that sedentary behavior does not attenuate 
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EDV of the upper extremities. This may be because the arteries of the upper extremities are more 

resilient to reductions in shear compared to arteries of the lower extremities, as atherosclerotic 

lesions are distributed nonuniformly throughout the vasculature and develop primarily in the lower 

extremities (Padilla & Fadel, 2017). However, the lack of differences in the systemic measures of 

endothelial cell injury and repair among those with higher and lower levels of sedentary behavior 

support these EDV results, suggesting that endothelial dysfunction does not manifest as a result of 

chronic exposure to sedentary behavior.  

Jenkins and colleagues (2013) were the first to provide in vivo experimental evidence that 

disturbed blood flow in the distal forearm acutely induces endothelial activation and apoptosis in 

humans, as reflected by release of microparticles from activated (CD62E+) and apoptotic 

(CD31+/CD42b-) endothelial cells. As the sitting posture promotes blood pooling in the legs, 

decreased thigh and calf blood flow, and augmented turbulent blood flow in the deformed arterial 

segments (Delp & Laughlin, 1998; Padilla, Johnson, et al., 2009; Padilla, Sheldon, et al., 2009; 

Restaino et al., 2015), it is hypothesized that sustained reductions of shear stress as a result of 

chronic exposure to high volumes of sitting would result in elevated circulating EMPs. In support 

of this hypothesis, Navasiolava et al. (2010) and Boyle et al. (2013) used experimental models of 

physical inactivity (dry water immersion for 7 days; <5,000 steps for 5 days) and found that 

circulating EMPs indicative of endothelial apoptosis (i.e., CD31+/CD42b- EMPs) were 

significantly elevated following induction of inactivity. However, no changes were observed in 

circulating EMPs indicative of endothelial activation (i.e., CD62E+) in either study (Boyle et al., 

2013; Navasiolava et al., 2010). Because this marker is only expressed and released from 

endothelial cells when they are in an inflamed state, it was hypothesized that the lack of increase 

in CD62E+ EMPs was due to the relatively short nature of the study design (5-7 days) wherein 
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substantive inflammation was not incurred to facilitate EMP release (Boyle et al., 2013; J. J. 

Jimenez et al., 2003; Krogh-Madsen et al., 2010). The finding that circulating CD62E+ EMPs 

levels were similar among young, healthy adults with high and low amounts of habitual sedentary 

behavior in the current study, however, does not support this hypothesis, suggesting that the 

inflammatory milieu necessary for the CD62E+ EMP phenotype to be expressed may not have 

been present in the current study’s population of young, healthy adults whom exhibit higher levels 

of habitual sedentary behavior. Furthermore, no differences were observed in circulating 

CD31+/CD42b- EMPs between participants with higher and lower levels of habitual sedentary 

behavior, which is also contrary to previous experimental findings from Navasiolava et al. and 

Boyle et al. Reasons for the discrepant findings are unclear but could be attributed to differences 

in study design (cross-sectional vs. acute induction of inactivity wherein it is difficult to ascertain 

whether the observed effects are the result of increases in sedentary behavior or reductions in 

MVPA), inclusion of women (only men were studied in the previous experimental studies), and 

differences in the processing and analyzing of EMPs (which widely vary from investigator to 

investigator).   

Bone marrow-derived EPCs are circulating precursors of EC that have the ability to 

promote endothelial repair, regeneration, and neovascularization (Adams et al., 2004; Mobius-

Winkler, Hollriegel, Schuler, & Adams, 2009; Umemura & Higashi, 2008; C. Urbich & S. 

Dimmeler, 2004). Physical exercise can promote EPC mobilization from the bone marrow into 

circulation, while detraining and experimental induction of physical inactivity for 10 days have 

been shown to reduce circulating EPCs, suggestive that regular physical activity is necessary to 

maintain EPC levels (Guhanarayan, Jablonski, & Witkowski, 2014). As such, chronic exposure to 

a sedentary life style may be associated with lower percentage of EPCs among adults (M. D. Ross, 
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Malone, & Florida-James, 2016; S. Witkowski et al., 2010). Contrary to this hypothesis, the 

current study observed no differences in circulating EPC levels between high and low sedentary 

individuals. Similarly, D’ascenzi and colleagues (2016) found that no differences in resting 

levels of circulating EPCs were detected between elite athletes and age- and sex-matched 

sedentary healthy subjects. Studies evaluating the effect of physical activity interventions on 

circulating EPCs have yielded inconsistent results wherein physical activity interventions have 

been reported to yield improvements in circulating EPCs among patients with coronary artery 

disease, coronary artery disease risk factors, or heart failure, while no improvements were 

observed among healthy young and older men (Sarah Witkowski et al., 2010). As such, it is 

plausible that basal levels of circulating EPCs are static in disease-free populations, which may be 

a contributing factor to the lack of differences in circulating EPCs observed in the present study. 

Future studies in older populations and those with chronic diseases may be warranted.  

There are several strengths to our study. First, the current study utilized both EDV and 

molecular measures of endothelial function. Measuring EMPs and EPCs, in addition to EDV, 

enabled us to complete a comprehensive evaluation of EC health at the systemic level, which is 

essential to unveil the complex processes that underlie endothelial dysfunction (e.g., EC injury, 

repair and regeneration). Second, the activPAL™ was used for measuring habitual sedentary 

behavior. This device is widely considered the gold-standard measure of sedentary behavior 

because it is extremely accurate (≥96%) and is one of the only devices capable of distinguishing 

motionless standing from sedentary time, thus allowing us to adhere to the consensus sedentary 

behavior definition, which includes both intensity of activity (≤1.5 METS) and position (sitting or 

reclining) (Gibbs, Hergenroeder, Katzmarzyk, Lee, & Jakicic, 2015). Third, young healthy adults 

are an ideal population to study the effects of sitting on endothelial function as this population is 
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generally free of overt chronic disease which could confound associations (e.g. those with multi-

morbidities have poor physical function and are thus more sedentary) (Deanfield et al., 2007).  

Finally, our study utilized a 7-day accelerometer protocol to assess habitual, as opposed to acute 

or extreme, sedentary behavior. Evidence shows that 3 to 5 days of monitoring yields reliable 

estimates of one’s usual or habitual activity/inactivity (Trost, McIver, & Pate, 2005). Previous 

experimental physical inactivity models examining the influence of sedentary behavior on 

endothelial function included bed rest, dry water immersion, and acute, uninterrupted sitting 

(Thosar et al., 2012), which fails to reflect chronic conditions and has limited real world 

generalizability since few adults engage in such prolonged, uninterrupted sedentary periods and/or 

bed rest during a typical day (e.g., workday).  

Several limitations must be acknowledged when interpreting our study findings. First, this 

was a cross-sectional study, which limits our ability to evaluate the effect of sedentary time on 

endothelial function, as causation cannot be implied. Second, EDV of the upper extremity 

microvasculature was measured. Laboratory evidence suggests the pathophysiological 

consequences of prolonged sitting are primarily manifested in the vasculature of the lower 

extremities. Thus, studies evaluating the association of habitual sedentary behavior with lower 

extremity EDV are still needed (Padilla & Fadel, 2017). Finally, this is a relatively small, single-

center study in an urban academic medical center, which may limit the generalizability of our 

findings and statistical power to detect significant differences between high and low sedentary 

groups. Thus, caution is warranted when interpreting our study findings given the possibility of a 

type II error. Nonetheless, our study was powered to detect relatively small differences in the 

endothelial measures (i.e., 80% power to detect a 0.5 difference in RHI). Further, some of the 

observed non-significant differences were in the opposite direction of our hypotheses (e.g. 
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circulating EMPs were non-significantly lower in the high sedentary group compared to the low 

sedentary group); thus, even with greater statistical power we would still have not yielded evidence 

to support endothelial dysfunction as a link between sedentary behavior and CVD risk. 

Conclusion  

In conclusion, this study demonstrated that there were no differences in a comprehensive 

battery of endothelial function measures, including measures of EDV, EC injury, ad EC reparative 

capacity, when comparing young, healthy adults that accumulated higher and lower levels of 

habitual sedentary behavior (both the total volume and accumulation in prolonged, uninterrupted 

bouts). These findings suggest that physiological mechanisms other than endothelial dysfunction 

(e.g., glucose and lipid metabolism) may need to be explored as a potential link between habitual 

prolonged sedentary time and CVD. However, future research is needed to explore the link 

between habitual sedentary behavior and lower extremity endothelial function.  
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Table 1. Characteristics of participants in the high and low total sedentary time groups (n=83). 

 
Sedentary Behavior Group 

Variables 

Low 

(n=41) 

High 

(n=42) 

P-Value 

Participant Characteristics     

Age (yr) 26.7 (7.3) 24.4 (3.4) 0.08 

Men (%) 31.7 54.7 0.03 

Black Race (%) 7.3 2.4 0.29 

Hispanic Ethnicity (%) 29.3 21.4 0.40 

Education    0.16 

≤ High School Graduate (%) 9.8 2.4  

Some College (%) 17.1 19.1  

College Graduate (%) 29.3 50.0  

Graduate/Professional School (%) 43.9 28.6  

Body Mass Index (kg/m2) 24.7 (4.1) 23.5 (3.8) 0.16 

Accelerometer Characteristics     

Total Sedentary Time (mins/day) 515.5 (68.6) 668.4 (57.2) <0.001 

Mean Sedentary Bout Duration (mins/bout) 15.1 (3.7) 22.3 (8.3) <0.001 

Standing Time (mins/day) 312.8 (78.5) 206.1 (55.6) <0.001 

LIPA (mins/day) 370.1 (82.7) 244.6 (60.8) <0.001 

MVPA (mins/day) 75.7 (27.3) 53.5 (24.3) <0.001 

MVPA Bouts (mins/day) 13.8 (12.4) 8.4 (9.8) 0.03 

Wear Time (mins/day) 961.8 (63.0) 971.9 (56.0) 0.44 

Valid Wear Days   0.15 

   3-5 days (%) 5.0 0.0  

   6-7 days (%) 95.0 100.00  

Data are presented as mean (standard deviation) or frequency  

LIPA= light intensity physical activity; MVPA= moderate-vigorous physical activity.  

MVPA Bouts= total minutes of MVPA accrued in bouts ≥10 min; defined as any period of ≥10 

minutes for which each consecutive 15-sec epoch had an activity intensity was ≥3 METs.  
Median split cut-point for high and low total sedentary time groups was 589 min/day 
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Table 2. Reactive hyperemia index, endothelial microparticles, and endothelial progenitor cells by 

median split of accelerometer-measured sedentary time (n=83). 

 
Sedentary Behavior Group 

Endothelial Cell Variable 

Low 

(n=41) 

High 

(n=42) 

P-value 

Reactive Hyperemia Index    

Unadjusted 2.53 (2.24 – 2.83) 2.32 (2.08 – 2.55) 0.25 

Model 1 2.48 (2.22 – 2.75) 2.36 (2.10 – 2.62) 0.53 

Model 2 2.46 (2.18 – 2.75) 2.38 (2.10 – 2.66) 0.72 

Model 3 2.51 (2.21 – 2.81) 2.36 (2.07 – 2.64) 0.50 

    

Endothelial Microparticles    

CD62E+ (counts/μl)    

Unadjusted 830.71 (720.94 – 957.20) 696.14 (617.90 – 784.28) 0.06 

Model 1 832.05 (732.10 – 945.65) 695.04 (612.54 – 788.65) 0.06 

Model 2 816.86 (711.81 – 937.41) 707.66 (617.86 – 810.51) 0.19 

Model 3 810.62 (701.81 – 936.30) 703.26 (613.98 – 805.54) 0.20 

    

CD31+/CD42- (counts/μl)    

Unadjusted 508.08 (428.53 – 602.40) 510.64 (450.01 – 579.43) 0.96 

Model 1 513.93 (444.21 – 594.61) 504.96 (437.26 – 583.14) 0.87 

Model 2 533.07 (456.21 – 622.88) 487.25 (417.92 – 568.09) 0.46 

Model 3 523.93 (446.30 – 615.05) 482.26 (414.65 – 560.89) 0.50 

    

Endothelial Progenitor Cells    

CD34+/KDR+ (%)    

Unadjusted 81.21 (53.55 – 114.61) 99.12 (71.38 – 131.40) 0.40 

Model 1 86.69 (59.93 - 118.39) 93.39 (65.84 –125.75) 0.76 

Model 2 76.74 (50.43 – 108.56) 104.07 (73.38 – 140.10) 0.27 

Model 3 72.61 (45.81 – 105.55) 107.97 (76.39 – 145.01) 0.17 

    

CD34+/CD133+/KDR+ (%)    

Unadjusted 1.89 (1.00 – 3.05) 2.31 (1.53 – 3.24) 0.53 

Model 1 1.86 (1.06 – 2.88) 2.33 (1.42 – 3.45) 0.51 

Model 2 1.86 (1.01 – 2.98) 2.33 (1.37 – 2.98) 0.57 

Model 3  1.71 (0.86 – 2.83) 2.42 (1.44 – 3.65) 0.39 

    

Data are presented as mean (95% confidence interval) for unadjusted analyses or estimated marginal 

mean (95% confidence interval) for adjusted analyses. Data were back transformed.  

Model 1: Adjusted for age, sex, race, ethnicity and education 

Model 2: Adjusted for covariates in model 1 plus moderate-vigorous physical activity. 

Model 3: Adjusted for covariates in model 2 plus body mass index  

Median split cut-point was 589 min/day for total sedentary time  
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Table 3. Reactive hyperemia index, endothelial microparticles, and endothelial progenitor cells by 

median split of mean sedentary bout duration (n=83). 

 

Sedentary Bout Group 

Endothelial Cell Variable 

Low 

(n=41) 

High 

(n=42) 

P-value 

Reactive Hyperemia Index    

Unadjusted 2.45 (2.16 – 2.74) 2.40 (2.15 – 2.65) 0.81 

Model 1 2.37 (2.11 – 2.63) 2.48 (2.22 – 2.73) 0.58 

Model 2 2.36 (2.09 – 2.62) 2.49 (2.23 – 2.75) 0.49 

Model 3 2.39 (2.12 – 2.67) 2.46 (2.20 – 2.73) 0.74 

    

Endothelial Microparticles    

CD62E+ (counts/μl)    

Unadjusted 812.40 (699.52 – 943.49) 711.45 (635.62 – 796.33) 0.15 

Model 1 815.23 (717.49 – 926.28) 709.04 (625.03 – 804.35) 0.14 

Model 2 806.23 (709.13 – 916.63) 716.76 (631.46 – 813.59) 0.22 

Model 3 800.83 (702.11 – 913.43) 708.98 (623.74 – 805.88) 0.21 

    

CD31+/CD42- (counts/μl)    

Unadjusted 515.82 (442.45 – 601.36) 503.15 (435.08 – 581.87) 0.81 

Model 1 520.64 (450.77 - 601.34) 498.61 (432.47 – 574.85) 0.68 

Model 2 526.54 (455.42 – 608.76) 493.15 (427.34 – 569.11) 0.54 

Model 3 509.92 (440.36 – 590.48) 493.85 (428.13 – 569.66) 0.77 

    

Endothelial Progenitor Cells    

CD34+/KDR+ (%)    

Unadjusted 80.53 (54.58 – 111.50) 99.86 (70.23 – 134.71) 0.37 

Model 1 87.36 (60.74 – 118.81) 92.71 (65.53 – 124.60) 0.80 

Model 2 84.41 (58.27 – 115.38) 95.74 (68.07 – 128.11) 0.60 

Model 3 83.46 (56.53 – 115.60) 97.06 (68.52 – 130.56) 0.55 

    

CD34+/CD133+/KDR+ (%)    

Unadjusted 2.19 (1.25 – 3.38) 2.00 (1.25 – 2.94) 0.78 

Model 1 2.20 (1.33 – 3.30) 1.99 (1.17 – 3.02) 0.71 

Model 2 2.23 (1.34 – 3.35) 1.96 (1.14 – 3.01) 0.68 

Model 3  2.32 (1.39 – 3.49) 1.83 (1.04 – 2.85) 0.51 

Data are presented as mean (95% confidence interval) for unadjusted analyses or estimated marginal 

mean (95% confidence interval) for adjusted analyses. Data presented were back transformed. 

Model 1: Adjusted for age, sex, race, ethnicity and education 

Model 2: Adjusted for covariates in model 1 plus moderate-vigorous physical activity. 

Model 3: Adjusted for covariates in model 2 plus body mass index  

Median split cut-point was 17.2 min/bout for mean sedentary bout duration.  

  



 

38 
 

Supplemental Material  

Supplemental Table 1. Characteristics of PUME study participants who were included or excluded from the 

present analyses. 

Variables 

Included  

(n=83) 

Excluded 

(n=197) 

P-Value 

Participant Characteristics    

Age (yrs) 25.5 (24.3 – 26.8) 26.5 (25.4 – 27.6) 0.29 

Men (%) 43.4 50.25 0.29 

Black Race (%) 4.82 17.26 <0.01 

Hispanic Ethnicity (%) 25.3 29.95 0.19 

Education    0.46 

≤ High School Graduate (%) 6.0 8.1 0.01 

Some College (%) 18.1 23.4  

College Graduate (%) 39.8 49.8  

Graduate/Professional School (%) 36.1 18.3  

Body Mass Index (kg/m2) 24.1 (23.2 – 25.0) 24.9 (24.3 – 25.5) 0.15 

    

Endothelial Cell Variables     

Reactive Hyperemia Index 2.42 (2.23 – 2.61) 2.31 (2.20 – 2.42) 0.29 

Endothelial Microparticles    

CD62E+ (counts/μl) 759.64 (692.53 – 833.26) 808.21 (755.43 – 864.68) 0.31 

CD31+/CD42- (counts/μl) 509.37 (459.34 – 564.86) 515.54 (481.83 – 551.59) 0.85 

Endothelial Progenitor Cells    

CD34+/KDR+ (%) 90.05 (70.17 – 112.41) 94.92 (83.57 – 107.00) 0.67 

CD34+/CD133+/KDR+ (%) 2.09 (1.48 – 2.81) 4.12 (3.36 – 4.95) <0.01 

Data are presented as mean (95% confidence interval) or frequency  
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Supplemental Table 2. Association of total sedentary time (expressed continuously) with 

endothelial measures (n=83). 

Endothelial Cell Variable β 95% CI P-value 

Reactive Hyperemia Index    

Unadjusted -0.019 (-0.133 - 0.094) 0.736 

Model 1 0.043 (-0.083 – 0.168) 0.502 

Model 2 0.091 (-0.058 - 0.239) 0.227 

Model 3 0.062 (-0.090 – 0.215) 0.417 

    

Endothelial Microparticles    

CD62E+ (counts/μl)    

Unadjusted -0.035 (-0.091 – 0.021) 0.220 

Model 1 -0.048 (-0.110 – 0.013) 0.121 

Model 2 -0.033 (-0.105 – 0.040) 0.375 

Model 3 -0.033 (-0.107 – 0.042) 0.386 

    

CD31+/CD42- (counts/μl)    

Unadjusted 0.009 (-0.054 - 0.072) 0.774 

Model 1 0.012 (-0.057 - 0.082) 0.725 

Model 2 -0.010 (-0.092 - 0.072) 0.805 

Model 3 -0.002 (-0.085 - 0.081) 0.965 

    

Endothelial Progenitor Cells    

CD34+/KDR+ (%)    

Unadjusted 0.030 x 10-3 (-4.786 – 4.846) x 10-3 0.990 

Model 1 -1.600 x 10-3  (-6.871 – 3.671) x 10-3 0.547 

Model 2 0.607 x 10-3 (-5.609 – 6.823) x 10-3 0.846 

Model 3 1.426 x 10-3 (-5.030 – 7.881) x 10-3 0.661 

    

CD34+/CD133+/KDR+ (%)    

Unadjusted -0.232 x 10-3 (-1.218 – 0.755) x 10-3 0.642 

Model 1 -0.098 x 10-3 (-1.226 – 1.030) x 10-3 0.863 

Model 2 -0.277 x 10-3 (-1.621 - 1.066) x 10-3 0.682 

Model 3  -0.258 x 10-3 (-1.635 – 1.118) x 10-3 0.709 

    

Data are presented as unadjusted/adjusted parameter estimate and 95% confidence interval; sedentary 

time was converted to hours per day for analyses.  

Model 1: Adjusted for age, sex, race, ethnicity and education 

Model 2: Adjusted for covariates in model 1 plus moderate-vigorous physical activity. 

Model 3: Adjusted for covariates in model 2 plus body mass index  
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Supplemental Table 3. Association of mean sedentary bout duration (expressed continuously) with 

endothelial measures (n=83). 

Endothelial Cell Variable β 95% CI P-value 

Reactive Hyperemia Index    

Unadjusted 0.346 (-1.186 – 1.877) 0.655 

Model 1 0.637 (-0.896 - 2.170) 0.411 

Model 2 0.897 (-0.725 - 2.520) 0.274 

Model 3 0.677 (-0.970 - 2.323) 0.415 

    

Endothelial Microparticles    

CD62E+ (counts/μl)    

Unadjusted -0.671 (-1.421 - 0.079) 0.079 

Model 1 -0.718 (-1.462 – 0.026) 0.058 

Model 2 -0.594 (-1.382 - 0.194) 0.137 

Model 3 -0.536 (-1.337 - 0.265) 0.186 

    

CD31+/CD42- (counts/μl)    

Unadjusted -0.326 (-1.177 - 0.525) 0.448 

Model 1 -0.234 (-1.081 – 0.613) 0.584 

Model 2 -0.425 (-1.317 - 0.467) 0.346 

Model 3 -0.336 (-0.034 - 0.027) 0.455 

    

Endothelial Progenitor Cells    

CD34+/KDR+ (%)    

Unadjusted -1.647 x 10-2 (-8.140 - 4.845) x 10-2 0.615 

Model 1 -1.848 x 10-2 (-8.295 - 4.599) x 10-2 0.570 

Model 2 -0.376 x 10-2 (-7.164 - 6.413) x 10-2 0.913 

Model 3 -0.050 x 10-2 (-7.034 - 6.934) x 10-2 0.989 

    

CD34+/CD133+/KDR+ (%)    

Unadjusted -0.489 x 10-2 (-1.818 - 0.841) x 10-2 0.467 

Model 1 -0.282 x 10-2 (-1.660 - 1.096) x 10-2 0.685 

Model 2 -0.398 x 10-2 (-1.864 - 1.067) x 10-2 0.590 

Model 3  -0.487 x 10-2 (-1.971 - 0.998) x 10-2 0.516 

Data are presented as unadjusted/adjusted parameter estimate and 95% confidence interval; 

WBC=white blood cells; sedentary bout duration was converted to hours per bout for analyses. 

Model 1: Adjusted for age, sex, race, ethnicity and education 

Model 2: Adjusted for covariates in model 1 plus moderate-vigorous physical activity. 

Model 3: Adjusted for covariates in model 2 plus body mass index  
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CHAPTER III 

Patterns of Sedentary Behavior in the First Month after Acute Coronary Syndrome 

Abstract 

Sedentary behavior is a key contributor to cardiovascular disease. Few data exist on the 

sedentary behavior patterns of acute coronary syndrome (ACS) patients. Purpose: To characterize 

patterns of sedentary time and their correlates in 149 ACS patients over the first month post 

hospital discharge, a critical period when patients recuperate from their ACS event. Methods: 

Sedentary time was measured by accelerometry for 28-days post hospital discharge. Group-based 

modeling at the day level was used to characterize sedentary patterns. Logistic regression models 

were conducted to examine correlates of membership in the most sedentary trajectory group. 

Results: Participants spent a mean of 9.7±2.0 h/day in sedentary behavior during the 28-days post 

hospital discharge, with significant decreases in sedentary time observed in each consecutive week 

(p<0.01 for all). Three distinct sedentary patterns were identified: high (20.6% of participants), 

moderate (47.9%), and low (31.5%). The high and moderate sedentary groups spent a mean of 

12.6±0.8 and 10.0±0.7 h/day sedentary, respectively, and had only minimal decreases in their 

sedentary time (< 3 min/day) over the 28-days. The low sedentary group spent a mean of 7.3±0.8 

h/day sedentary, with a rapid decrease in sedentary time (14 min/day) observed during the first 

week post hospital discharge followed by a relatively smaller decrease (~5 min/day) that persisted 

until day 21 post-discharge. Non-Hispanic ethnicity, left ventricular ejection fraction <40%, lower 

perceived physical health, and not having a partner were associated with a higher odds of being in 

the high sedentary group. Conclusion: ACS survivors accrued high volumes of sedentary time 

during the first month post hospital discharge, with most showing little change over time. 

Interventions targeting reductions in sedentary time among ACS survivors may be warranted 

particularly for those with poor physical health and greater disease severity.  
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Introduction  

In the United States, more than 1.1 million patients are hospitalized annually for an acute 

coronary syndrome (ACS) (Mozaffarian et al., 2015). Even with improvements in acute care, 21% 

of ACS survivors will be re-hospitalized and approximately 1 in 5 patients will die within 1 year 

following hospitalization (Menzin, Wygant, Hauch, Jackel, & Friedman, 2008). Much of the 

increased morbidity and mortality risk among ACS survivors remains unexplained (Berton, 

Cordiano, Palmieri, Cavuto, & Pellegrinet, 2014; Fox et al., 2010). Thus, there is a need to identify 

novel modifiable risk factors for intervention to increase survival and reduce recurrent events 

among ACS patients. 

Sedentary behavior (i.e. watching TV, computer use, etc.) has emerged as a distinct 

cardiovascular disease (CVD) risk factor that may carry clinical relevance beyond how much one 

exercises (Biswas et al., 2015; Roger et al., 2011; World Health Organization, 2009). 

Accumulating evidence from population-based studies indicate that sedentary behavior is 

associated with CVD morbidity and mortality, and CVD risk factors, such as insulin resistance 

(Wilmot et al., 2012). Notably, the deleterious effects of sedentary behavior are eliminated only 

by high levels of moderate-to-vigorous physical activity (MVPA) (~60 to 75 min/d), which exceed 

physical activity recommendations (Ekelund et al., 2016). Accordingly, the American Heart 

Association has released a scientific statement on sedentary behavior that endorsed the public 

health message “sit less, move more” (Young et al., 2016). This raises the question as to whether 

reducing sedentary behavior may represent another therapeutic target for secondary prevention 

and rehabilitation of ACS survivors, in addition to existing MVPA recommendations. 

Despite strong links between sedentary behavior and cardiovascular health, few data exist 

on the sedentary behavior patterns of ACS survivors. Furthermore, no studies have examined the 

change in sedentary behavior over time in ACS survivors during the period immediately following 
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hospitalization. Characterizing ACS survivors according to their sedentary behavior as they 

recuperate from their ACS event may reveal unique patterns and subsets of patients in whom 

sedentary reduction strategies may be most beneficial.  Therefore, the primary aim of the current 

study was to characterize the amount of sedentary behavior in ACS survivors and its trajectory of 

change over the first month post-discharge, a critical time period when health behaviors may be 

influenced and when lifestyle interventions ideally begin (e.g. cardiac rehabilitation). Group-based 

trajectory modeling was utilized to identify and evaluate unique patterns of change in sedentary 

behavior over the 28-day convalescent period following ACS.  A secondary aim was to identify 

correlates of sedentary behavior patterns in ACS survivors over the first month post-discharge. 

Methods 

Study Population: ACS patients from a tertiary care academic medical center were enrolled into 

the Prescription Use, Lifestyle, and Stress Evaluation (PULSE) study, an observational cohort 

study conducted from February 2009 to September 2012 (N=1087). PULSE was designed to 

examine behavioral and biological pathways that may confer increased risk for recurrent cardiac 

events (Whang et al., 2013). A diagnosis of and hospitalization for ACS was the inclusion 

criterion, where ACS events were defined according to American Heart Association/American 

College of Cardiology (AHA/ACC) criteria as either acute myocardial infarction (MI, with or 

without ST-elevation) or unstable angina (Amsterdam et al., 2014). Exclusion criteria included 

individuals less than 18 years of age, without English or Spanish proficiency, inability to complete 

the baseline assessment or to comply with the study protocol, and those who were medically 

unstable.  

This paper reports on a sub-study whose purpose was to examine physical activity and 

sedentary behavior as behavioral pathways that may confer increased risk for recurrent cardiac 
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events. Accordingly, physical activity and sedentary behavior were accelerometer-measured for 

up to 45 days post-discharge via accelerometry, conducted among the PULSE study cohort from 

August 2009 – September 2012 (Green et al., 2013). A total of 149 participants returned the 

accelerometer with usable data, adhered to accelerometer wear requirements (≥3 days with 

accelerometer wear > 10 h/day each week over the first 28 days post-discharge [weeks 1-4] 

(Kocherginsky, Huisingh-Scheetz, Dale, Lauderdale, & Waite, 2017; Trost, McIver, & Pate, 

2005), did not receive coronary artery bypass grafting and/or were not re-hospitalized before the 

28th day post-discharge, and were available for the current analysis (Supplemental Figure 1).  The 

PULSE protocols were approved by the Columbia University Medical Center Institutional 

Review Board and written informed consent was obtained from all participants before they were 

enrolled into the study. Characteristics of ancillary study participants and those who were 

excluded from the current analyses are shown in Supplemental Table 1. 

Accelerometer Protocol: Participants were fitted at or soon after hospital discharge with an 

Actical™ accelerometer (Philips Respironics, Bend, OR) on their non-dominant wrist, and were 

asked to wear the device continuously for 45 days post-discharge, and then to return the device 

via mail at the end of the monitoring period. Participants were instructed to remove the device 

when bathing and during sleep. The Actical™, an omni-directional accelerometer that can detect 

acceleration in all planes, has been validated for the measurement of physical activity when worn 

on the wrist (Diaz et al., 2018; Heil, 2006). Activity counts were collected in 1-minute epochs.   

Accelerometer Processing: Non-wear time was determined using the Choi algorithm, defined as 

at least 90 consecutive minutes of zero counts, with allowance of 1 or 2 minutes of nonzero counts 

as long as no counts were detected in the 30-minute windows at the start or end of the 90-minute 

(or longer) period (Choi, Liu, Matthews, & Buchowski, 2011). Epochs with less than 100 counts 
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per minute (cpm) and ≥1065 cpm were classified as sedentary behavior and MVPA, respectively 

(Hooker et al., 2011; Kulinski, Kozlitina, Berry, de Lemos, & Khera, 2016). Time spent in 

sedentary behavior was determined by summing the number of minutes in a day when the activity 

counts met these criteria. Physical activity recommendations endorse bouts of 10 minutes or more 

of MVPA as a health enhancing bout of physical activity. Accordingly, we defined a MVPA bout 

as any period of  ≥10 minutes for which each consecutive 10-min window contained ≤2 minutes 

for which the activity count was below threshold (1065 cpm) (Garber et al., 2011; Troiano et al., 

2008).  For each compliant day (≥10 hours of wear), the total number of sedentary minutes and the 

total time spent in MVPA bouts were calculated.  

Presently, there are no validated cut-points to classify sedentary behavior using the 

Actical™ when worn on the wrist. A sedentary cut-point of 100 counts per minute (cpm) was 

selected for the present study based on findings and methods defined in the Dallas Heart Study, a 

longitudinal, multiethnic population-based probability sample of Dallas County residents 

(Kulinski et al., 2016). The Dallas Heart Study assessed sedentary time with a wrist-worn 

Actical™ accelerometer and classified sedentary time as <100cpm. Findings from the Dallas Heart 

Study demonstrated that accelerometer-measured sedentary time was associated with subclinical 

atherosclerosis (Kulinski et al., 2016) and myocardial injury (Harrington et al., 2017). Given that 

sedentary time classified as <100cpm was associated with meaningful cardiovascular health 

indices in a large, representative sample, the present study incorporated the same cut-point for its 

analyses as that utilized in the Dallas Heart Study.  

Because of a high correlation between sedentary time and wear time (r=0.78), the current 

study corrected for the influence of variation in wear time by standardizing sedentary time using 

the residuals obtained when regressing sedentary time on wear time at the group level (Healy, 
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Winkler, Brakenridge, Reeves, & Eakin, 2015; Qi et al., 2015; Willett & Stampfer, 1986). As a 

result, sedentary time is expressed as the predicted sedentary time for that day, had the participant 

worn the device for 16 h.  

Potential Correlates of Sedentary Behavior: Sociodemographic factors (age, sex, race, 

ethnicity, education, partner status, Medicaid), hospitalization characteristics/procedures (ACS 

type, length of hospital stay, percutaneous coronary intervention [PCI]), measures of health 

status/disease severity (body mass index [BMI], left ventricular ejection fraction [LVEF], CVD 

history, Charlson Comorbidity Index (de Groot, Beckerman, Lankhorst, & Bouter, 2003; Núñez 

et al., 2004), Global Registry of Acute Coronary Events (GRACE)  risk score (Granger et al., 

2003) , depression, physical- and mental health-related quality of life), prior exercise history, 

cardiac rehabilitation participation, and sleep quality were examined as potential correlates of 

accelerometer-measured sedentary behavior characteristics. Details on all potential correlates are 

available in the Supplemental Methods of the Supplemental Material section.    

Statistical Analysis: Descriptive statistics, including frequencies and means ± standard 

deviations, were computed to characterize the sociodemographic and health characteristics as well 

as the patterns of sedentary behavior during weeks 1, 2, 3, and 4 and the whole month. Multilevel 

growth curve models were then used to examine and compare the pattern of time spent in sedentary 

behavior each week (Schwartz, Stone, Shiffman, Atienza, & Nebeling, 2007). 

 Classes or natural groupings of participants who tended to exhibit similar patterns of 

sedentary behavior over the 28 days post-discharge were identified and characterized using group-

based trajectory modeling (GBTM) (Nagin & Odgers, 2010). Using this approach, each individual 

is presumed to belong to only one group, and each group is assumed to have its own distinct 

trajectory (Nagin, 2005; Nagin & Odgers, 2010).  Quadratic trajectories and a normal probability 
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distribution for the estimated sedentary time, given a wear time of 16 h/day, were used to compare 

1-, 2-, 3-, 4-, 5-, and 6-group solutions to identify the model that best characterized sedentary 

patterns among ACS survivors over the first 28 days post-discharge without overfitting the data. 

The best fit model was selected using  the Bayesian information criterion (BIC), subject to the 

condition that each group contained at least 10% of participants (Nagin & Odgers, 2010).  All 

analyses were performed using SAS software, version 9.4 (SAS Institute Inc, Cary, North 

Carolina) and the PROC TRAJ macro (Jones, 2005). Based on the BIC and group proportion, a 3-

group model was selected as the final model.   

Multilevel growth curve models were then used to examine time effects within each 

trajectory group. Logistic regression models were conducted to examine correlates of membership 

in the most sedentary trajectory group. All correlates were initially examined, one at a time, in 

separate models that included age, gender, race and ethnicity as covariates (Model 1). In order to 

identify the strongest correlates of the most sedentary trajectory group, a backwards elimination 

regression analysis that included all correlates was then conducted to arrive at a parsimonious 

model that retained only those potential predictors that were statistically significant at the α = 0.05 

level; age, sex, race, and ethnicity were again included as covariates in the model (Model 2).  

Because a validated wrist-based Actical™ cut-point has not been established, a sensitivity analysis 

was conducted with all analyses repeated defining sedentary behavior as epochs with less than 200 

cpm. Additionally, to exclude possible accelerometer wear during sleep, a sensitivity analysis was 

conducted restricting the accelerometer analysis period to 8:00 AM to 8:00 PM. 

Results 

Table 1 presents the sociodemographic and health characteristics of the 149 participants 

who comprised the analytic sample. Participants were predominantly male, and racially and 
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ethnically diverse. The mean (± SD) of age and BMI was 62.8 ± 11.2 and 28.6 ± 5.0, respectively.  

The majority presented with unstable angina (n=78; 52.3%), received PCI during hospitalization 

(n=128; 85.9%), and did not attend cardiac rehabilitation post hospitalization (n=132; 88.6%). 

Additionally, the majority of participants had a partner/spouse (n=90; 60.4%) and almost half 

reported regular participation in exercise prior to their ACS event (n=68; 45.6%).  

Over the first month post-discharge, on average, sedentary behavior accounted for 60.6% 

of wear time over a 16-hour waking day, equivalent to a mean (SD) of 9.7 ± 2.0 h/day. The mean 

(SD) sedentary time was 10.3 ± 2.0, 9.8 ± 2.1, 9.4 ± 2.2, and 9.3 ± 2.2 h/day over a 16-hour waking 

day in weeks 1, 2, 3, and 4 post-discharge, respectively. Sedentary time declined over the first 

month post-discharge (F3, 592=25.53, p<0.001 for overall time effect), with decreases in sedentary 

time observed in each consecutive week (p<0.01 for weeks 1 vs. 2, 2 vs. 3, and 3 vs. 4).  

 Figure 1 shows the 3-group sedentary trajectories determined by the GBTM. Low, 

moderate, and high sedentary time trajectory groups were identified, which comprised 31.5%, 

47.9%, and 20.6% of the analytic sample, respectively. Characteristics of the 3 sedentary trajectory 

groups are shown in Supplemental Table 2. The mean ± SD of total sedentary time for the low, 

moderate and high trajectory groups was 7.3 ± 0.8, 10.0 ± 0.7, 12.6 ± 0.8 h/day, respectively. Each 

sedentary trajectory group had a significant change in day-level sedentary time over the 28-day 

post-hospitalization period (p<0.05 for all).  The high and moderate groups decreased their 

sedentary time at a rate of 1.9 (p=0.003) and 2.9 (p<0.001) min/day, respectively. The low 

sedentary trajectory group decreased their sedentary time at a rate of 14.0 min/day immediately 

post-discharge (p<0.001). After two weeks post-hospitalization, the rate in which sedentary time 

decreased reduced to 4.8 min/day and bottomed out at day 21 and thereafter increased to a rate of 

4.8 min/day at day 28. The low trajectory group had a significantly greater rate of change in 
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sedentary time compared to the high and moderate groups over the 28-day post-discharge period 

(<p=0.01 for both). The difference in the rate of change in sedentary time between the high and 

moderate trajectory groups was not statistically significant (1.9 versus 2.9 min/day; p=0.22).  In 

sensitivity analyses, similar 3-group trajectories were observed when using a sedentary cut-point 

of 200 cpm (Supplemental Figure 1) and when restricting the accelerometer analysis period to 8:00 

AM to 8:00 PM (Supplemental Figure 2).  

Multivariable models examining the correlates of the high sedentary trajectory group are 

shown in Table 2.  The final parsimonious model identified Hispanic ethnicity, having a partner, 

left ventricular ejection fraction (LVEF) < 40%, history of CVD, BMI, GRACE risk score, and 

physical health-related quality of life as significant bivariate correlates of the high sedentary 

trajectory group, controlling for age, sex, black race and ethnicity. ACS survivors with Hispanic 

ethnicity, a partner/spouse, history of CVD and higher BMI were less likely to be in the high total 

sedentary trajectory group. On the other hand, those with a LVEF < 40%, higher GRACE risk 

score or lower physical health-related quality of life were more likely to be in the high total 

sedentary time group.  

Discussion 

The current study found that ACS survivors spent, on average, more than 9 hours of a 16-

hour waking day engaged in sedentary behavior over the first month immediately following 

hospitalization. Sedentary time was greatest during the first week and decreased in subsequent 

weeks as ACS survivors assimilated back into everyday life after discharge. Our analysis suggests 

the presence of three distinct patterns of change. Two of these patterns, comprising approximately 

70% of study participants, exhibited small, but statistically significant rates of decline in sedentary 

time over the first month after discharge. Over the same time period, those in the third pattern 
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exhibited less sedentary behavior initially and a more rapid decline in sedentary time during the 

first 2-3 weeks, before leveling off at about 6¾ h/day of sedentary time. Several factors, including 

greater disease severity, lower physical health-related quality of life, and not having a partner were 

positively associated with the most hazardous post-hospital trajectory of sedentary time (e.g., high 

volume of sedentary time with only a modest improvement over time). 

It was previously reported in this cohort of ACS survivors that only ~16% met MVPA 

guidelines, and strikingly, ~40% of patients did not engage in a single day of health-enhancing 

physical activity akin to exercise (e.g. ≥30 MVPA bout min) (Kronish, Diaz, Goldsmith, Moise, 

& Schwartz, 2017). Collectively, the present and previous study provide a comprehensive 

description of the physical activity and sedentary behavior profile of ACS survivors in the first 

month after hospitalization. These results suggest that few ACS survivors engage in sufficient 

levels of MVPA, and many adopt a sedentary lifestyle immediately upon returning home; with 

most participants exhibiting relatively little change thereafter. These findings highlight a need to 

develop strategies for promoting movement in this vulnerable population. While cardiac 

rehabilitation is a cornerstone of secondary prevention, only 11.4% of our participants attended a 

cardiac rehabilitation program. This is not surprising, as low cardiac rehabilitation rates and poor 

adherence to exercise-based programs are well established among cardiac patients (Lawler, Filion, 

& Eisenberg, 2011; Leon et al., 2005). Furthermore, recent evidence has demonstrated that 

exercise-based cardiac rehabilitation programs do not yield reductions in sedentary time (since one 

can exercise for 30 min and be sedentary the rest of the day) (Biswas, Oh, Faulkner, & Alter, 2017; 

Martin et al., 2015; Prince, Blanchard, Grace, & Reid, 2016). Thus, a specific focus on sedentary 

behavior reduction strategies, in addition to exercise-based strategies, may be needed to promote 

greater activity in ACS survivors.  
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The total volume of sedentary behavior detected among ACS survivors in the current study 

is lower than that observed in other clinical populations (e.g., stroke, chronic obstructive 

pulmonary disease, etc.) (English et al., 2016; L. K. Lewis, Hunt, Williams, English, & Olds, 

2016). However, between-study differences in accelerometer protocols and processing (e.g., 

device, wear location, sedentary count threshold, and non-wear threshold duration) make it 

difficult (and potentially problematic) to compare results in the present study to those reported in 

other clinical conditions (Kozey-Keadle, Libertine, Lyden, Staudenmayer, & Freedson, 2011; 

Oliver, Badland, Schofield, & Shepherd, 2011; Paul, Kramer, Moshfegh, Baer, & Rumpler, 2007). 

A similar study suitable for comparing results from the current study is the Dallas Heart Study, a 

longitudinal, multiethnic population-based probability sample of 2,031 Dallas County adults 

without CVD. Utilizing a wrist-worn Actical™ accelerometer and a 100 cpm threshold to define 

sedentary behavior (identical to the present study), sedentary time accounted for a mean of 5.1 

h/day over a 12-hour time period from 8AM to 8PM in the Dallas Heart Study. Similarly, when 

the present study restricted the analytic period to 8AM to 8PM, it was observed that ACS survivors 

spent a mean of 5.4 h/day sedentary. The similar total volume of sedentary time observed between 

the current study sample and that of the Dallas Heart Study may be attributed to the high percentage 

of UA patients in the existing study sample (~52%), as these patients are reported to typically have 

persevered cardiac function and return to work soon after hospitalization relative to those with MI 

(Eggers, Jernberg, & Lindahl, 2017; Slebus et al., 2012). Future research may be needed to 

elucidate whether ACS survivors are prone to more hazardous volumes of sedentary behavior 

relative to their healthier peers.  

A unique contribution of the present study is the application of group-based trajectory 

modeling techniques to identify distinct patterns of change in sedentary behavior in a post-
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hospitalization patient group. The first month after hospital discharge was studied under the 

premise that this is a critical period when ACS survivors recuperate from their event and wherein 

different trajectories might be observed. Although significant decreases in sedentary time from 

one week to the next were observed for the full sample, different patterns of change emerged which 

were in some cases gradual and in others, more rapid. Regardless of the change observed over 

time, most patients still exhibited high volumes of sedentary behavior throughout the first month, 

which may indicate that intervening at any point during this critical time period could yield 

beneficial reductions in sedentary time and help mitigate future health risk.  

Understanding the factors that influence the amount of time ACS survivors spend sedentary 

may help to inform the development of effective interventions in this population. When examining 

factors associated with sedentary behavior among ACS survivors in the present study, it was 

unsurprisingly observed that sicker, more ill patients with poorer physical function were more 

likely to accrue higher volumes of sedentary time. Specifically, indices of disease severity (i.e. 

LVEF<40% and GRACE risk score) and physical health-related quality of life were among the 

factors associated with being classified in the most hazardous sedentary trajectory group (i.e., high 

volume and minimal improvement over time). In light of the fact the such patients are likely to 

have difficulty attaining MVPA recommendations (Forechi et al., 2018; Jefferis et al., 2014; 

Lohne-Seiler, Hansen, Kolle, & Anderssen, 2014), the replacement of sedentary time with even 

light-intensity activities of daily living may be beneficial. For example, in a general population-

based study, theoretical statistical simulations via isotemporal substitution have suggested that 

replacing 30 min of sedentary time with light physical activity could reduce all-cause mortality 

risk by 18% among low active adults (Keith M. Diaz et al., 2018).  
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Partner status was also a significant correlate, such that those without a partner or spouse 

were more likely to engage in hazardous amounts of sedentary time. Broadly, partner support is 

linked to a wide range of positive health behaviors and health outcomes (Lindsay Smith, Banting, 

Eime, O'Sullivan, & van Uffelen, 2017; Robles, Slatcher, Trombello, & McGinn, 2014). Partners 

often attempt to directly influence each other’s health behaviors (Franks et al., 2006), and partners 

may even engage in activities with patients as an effective strategy for illness management (Tucker 

& Mueller, 2000). Theorists have highlighted the importance of communal coping (i.e., appraising 

an illness as relevant for the couple and engaging collaboratively to manage patient illness) in 

promoting positive behavioral and health outcomes (Helgeson, Jakubiak, Van Vleet, & Zajdel, 

2018; M. A. Lewis et al., 2006; Lyons, Mickelson, Sullivan, & Coyne, 1998). In sum, the findings 

of the current study suggest that greater disease severity, lower physical health-related quality of 

life, and not having a partner may be important factors to consider when approaching the 

development and implementation of sedentary behavior reduction strategies for patients that 

recently experienced an ACS event. However, caution is warranted when interpreting these 

findings as causality cannot be inferred based on the cross-sectional nature of the current study. 

A strength of the present study is the accelerometer-measurement of sedentary behavior 

via accelerometry over 28 consecutive days immediately post-hospital discharge, which is a 

critical period when patients recover from their event and secondary prevention interventions 

ideally begin. Conventional accelerometer protocols often entail 7-day monitoring periods; thus, 

the present study represents one of the longest accelerometer protocols conducted in ACS patients. 

These findings, however, should be interpreted in the context of several limitations. First, the 

Actical™ accelerometer cannot distinguish between different postures (e.g. sitting, standing); thus, 

an intensity-only definition of sedentary was utilized (Gibbs, Hergenroeder, Katzmarzyk, Lee, & 
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Jakicic, 2015).  Second, wrist-worn accelerometers lack validated wrist-based cut-points and have 

been shown to be less accurate than hip/thigh accelerometers for estimating sedentary time, as they 

tend to underestimate daily sedentary time due to greater movement of the upper extremities during 

everyday activities (Koster et al., 2016). Despite existing limitations, wrist-worn accelerometers 

have been adopted by many population-based studies to increase wear compliance by alleviating 

the discomfort or inconvenience of hip-based accelerometer wear (Troiano, McClain, Brychta, & 

Chen, 2014). Use of a wrist-worn accelerometer in the present study permitted the evaluation of 

sedentary behavior over a far-longer period of time (28 days) relative to conventional hip-based 

accelerometer protocols (~7 days); thus, allowing the exploration of important post-hospital 

trajectories. Third, information about participants’ return to work post hospitalization was not 

collected. Return to work represents a critical indicator of recovery from illness (Perk, 2007; 

Warraich, Kaltenbach, Fonarow, Peterson, & Wang, 2018). Furthermore, prior studies have 

demonstrated that occupation can largely influence daily physical activity levels (Steeves et al., 

2018).  Thus, return to work (or lack thereof) could have influenced the observed findings. Lastly, 

this is a small, single-center study in an urban academic medical center, which may limit the 

generalizability of the current findings. Most participants presented with unstable angina (~52%), 

which may limit applicability of the results for patients with MI. Further, compliance to the 

accelerometer protocol was relatively low (~45%). Participants excluded from the current analyses 

were more likely to have a length of hospital stay >4 days, lower physical health-related quality of 

life, and less likely to receive PCI. Thus, the findings from the current study may not be 

generalizable to the full PULSE study cohort. 
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Conclusion 

In conclusion, this study demonstrated that ACS patients as a group engaged in high 

volumes of accelerometer-measured sedentary time, with patients exhibiting different patterns 

over the first month post-discharge, which involved either gradual or rapid reductions in sedentary 

behavior. Several measures of disease severity and physical health (LVEF<40%, GRACE risk 

score, physical health-related quality of life), as well as partner status, were associated with the 

most hazardous pattern of sedentary behavior. These findings provide a foundation for 

characterizing different patterns of sedentary behavior as patients assimilate back into their daily 

life and routine over the first month post-discharge. Future research is needed to determine whether 

these patterns of sedentary behavior are linked to the risk of adverse events after an ACS and to 

inform whether, amongst the multitude of secondary prevention strategies recommended for ACS 

survivors, sedentary behavior should also be targeted.  
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Table 1. Characteristics of Acute Coronary Syndrome survivors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Values presented as mean (SD) or %. CVD (cardiovascular disease), GRACE (Global Registry 

of Acute Coronary Events), MVPA (moderate-to-vigorous physical activity), NSTEMI (non-ST 

segment elevation myocardial infarction), STEMI (ST segment elevation myocardial infarction). 
*Depression= Beck Depression Inventory score > 10. 

  

Participant Characteristics  

Overall  

(n=149) 

Sociodemographic   

  Age (years) 62.8 (11.2) 

  Male (%) 69.8 (n=104) 

  Black Race (%) 17.4 (n=26) 

  Hispanic Ethnicity (%) 38.3 (n=57) 

  Education ≤ High School Graduation (%)  43.0 (n=64) 

  Partner/Spouse (%) 60.4 (n=90) 

  Medicaid (%) 34.0 (n=50) 

Hospitalization  

  Acute Coronary Syndrome Type  

    Unstable Angina (%) 52.3 (n=78) 

    NSTEMI (%) 31.5 (n=47) 

    STEMI (%) 16.1 (n=24) 

  Length of Hospital Stay > 4 days (%) 23.5 (n=35) 

  Percutaneous Coronary Intervention (%) 85.9 (n=128) 

Physical & Psychosocial  

  Exercise Participation Pre-ACS event (%) 45.6 (n=68) 

  Cardiac Rehabilitation Post-ACS event (%) 11.4 (n=17) 

  Body Mass Index (kg/m2) 28.6 (5.0) 

  Left Ventricular Ejection Fraction < 40% (%) 14.1 (n=21) 

  CVD History (%) 33.6 (n=50) 

  Charlson Comorbidity Index 1.5 (1.6) 

  GRACE Risk Score 87.8 (28.3) 

  Depression* (%)  30.9 (n=46) 

  Physical Health-Related Quality of Life 40.0 (10.9) 

  Mental Health-Related Quality of Life 53.0 (10.7) 

  Sleep Quality 5.2 (4) 

Accelerometer Characteristics  

  Wear Time (mins/day) 1219.0 (224.1) 

  Valid Wear Days 25.7 (2.8) 

  Total Sedentary Time (mins/day) 581.4 (121.6) 

  MVPA Bout Minutes (mins/day) 22.7 (37.6) 
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Table 2.  Correlates of being in the high sedentary behavior trajectory (versus either of the other 

two sedentary behavior trajectories). 

 

CVD (cardiovascular disease), CI (confidence interval), GRACE (Global Registry of Acute 

Coronary Events), LVEF (left ventricular ejection fraction), OR (odds ratio), PCI (Percutaneous 

Coronary Intervention), NSTEMI (non-ST segment elevation myocardial infarction), QoL 

(Quality of Life), STEMI (ST-segment elevation myocardial infarction), UA (unstable angina). 

*Separate logistic regression models for each correlate adjusted for Age, Sex, Black Race, and 

Hispanic Ethnicity.  
*Separate logistic regression models for each correlate adjusted for Age, Sex, Black Race, and 

Hispanic Ethnicity.  
†Parsimonious backward elimination regression model after including all correlates and adjusting 

for Age, Sex, Black Race, and Hispanic Ethnicity. 
‡Odds ratio for high sedentary group membership. Low and moderate groups were combined and 

set as the reference group. 
§Depression= Beck Depression Inventory score > 10.  

 Model 1*  Model 2† 

Variables OR (95% CI)‡  P-Value  OR (95% CI)‡  P-Value 

Sociodemographic         

Age 1.06 (1.02 - 1.11)  0.01  0.97 (0.89 – 1.06)  0.46 

Male 1.48 (0.56 - 3.90)  0.43  2.32 (0.52 – 10.31)  0.27 

Black Race 1.63 (0.50 - 5.30)  0.42  0.70 (0.16 – 3.11)  0.64 

Hispanic Ethnicity  1.33 (0.53 - 3.32)  0.54  0.20 (0.06 - 0.74)  0.02 

≤ High School Education  0.71 (0.27 - 1.84)  0.48  -  - 

Partner/Spouse  0.40 (0.15 - 1.08)  0.07  0.28 (0.08 – 0.97)  0.04 

Medicaid  5.56 (1.45 - 21.36)  0.01  -  - 

Hospitalization        

STEMI (reference =UA/NSTEMI) 2.11 (0.75 - 5.96)  0.16  -  - 

Length of Hospital Stay > 4 days 4.51 (1.75 - 11.62)  <0.01  -  - 

PCI 0.50 (0.16 - 1.53)  0.22  -  - 

Physical & Psychosocial        

Exercise Participation Pre-event 0.87 (0.37, 2.05)  0.76  -  - 

Cardiac Rehabilitation Post-event  2.29 (0.67 – 7.87)  0.19  -   

Body Mass Index 0.93 (0.84 - 1.02)  0.13  0.87 (0.77 – 0.99)  0.04 

LVEF < 40% 11.22 (3.67 - 34.3)  <0.01  9.24 (2.03 – 42.00)  <0.01 

CVD History  0.98 (0.40 - 2.37)  0.96  0.17 (0.05 – 0.68)  0.01 

Charlson Comorbidity Index 1.08 (0.83 - 1.41)  0.55  -  - 

GRACE Risk Score 1.04 (1.02 - 1.07)  <0.01  1.05 (1.01 – 1.09)  <0.01 

Depression§  1.30 (0.51 - 3.28)  0.58  -  - 

Physical Health-Related QoL  0.96 (0.92 - 1.00)  0.06  0.94 (0.89 – 0.99)  0.02 

Mental Health-Related QoL   0.95 (0.92 - 0.99)  0.03  -  - 

Sleep Quality 1.00 (0.9 - 1.12)  0.98  -  - 
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Figure 1. Sedentary time over the 28 days post-discharge period among low, moderate and high 

trajectory groups of Acute Coronary Syndrome survivors. Data are presented as mean ± 1 

standard error for each day, by sedentary trajectory group.   
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Supplemental Material  

Supplemental Methods 

Socio-demographic factors (age, sex, race, ethnicity, education, partner status, Medicaid), 

hospitalization characteristics/procedures (ACS type, length of hospital stay, percutaneous 

coronary intervention [PCI]), measures of health status/disease severity (body mass index [BMI], 

left ventricular ejection fraction [LVEF], CVD history, Charlson Comorbidity Index, GRACE 

risk score, physical- and mental health-related quality of life), prior exercise history, cardiac 

rehabilitation participation, depression, and sleep quality were all examined as potential correlates 

of accelerometer-measured sedentary behavior characteristics.  

Socio-demographic factors and prior exercise participation were determined by patient 

interview at baseline using standard questionnaires. Medicaid is a state-administered assistance 

program designed to provide health coverage for low-income people under the age of 65 years 

who cannot finance their own medical expenses or have qualifying comorbid conditions (Calvin 

et al., 2006). As such, Medicaid is considered a proxy for low socioeconomic status. Prior exercise 

participation was assessed by the single item “In the three months prior to this hospitalization, 

were you exercising regularly?” with “yes” and “no” response options. Cardiac rehabilitation 

participation was ascertained at 1-month post-hospitalization with a one item question “Since the 

last study visit, have you participated in cardiac rehabilitation” that had “yes” and “no” response 

options. Cardiac rehabilitation participation was determined by patient interview at one-month 

post hospitalization. LVEF, prior CVD, length of hospital stay, in-hospital cardiovascular 

procedures (PCI), and ACS type (unstable angina, non-ST-segment elevation MI, ST-segment 

elevation MI) were ascertained by medical record chart review. LVEF and length of hospital stay 

were expressed categorically (LVEF: <40% vs. ≥40%; length of stay: <4 days vs. ≥4 days) (Lopez-

Jimenez et al., 2004; Vavalle et al., 2012). The 6-month post-ACS mortality risk was assessed 
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using the Global Registry of Acute Coronary Events (GRACE) index. The GRACE index tabulates 

scores related to clinical health measures (age, heart rate, systolic blood pressure, serum creatinine, 

congestive heart failure Killip class, presence of cardiac arrest at admission, ST segment deviation, 

and elevated cardiac enzymes or biomarkers) that range from 1 to 263 points, with higher scores 

indicating greater mortality risk (Granger et al., 2003). To assess the severity of comorbidities the 

Charlson comorbidity (CCI) index was used. The CCI takes into account 17 categories of 

comorbidity (such as diabetes, dyslipidemia and hypertension), weighting each category by its 

mortality risk, sums the weighted scores and subgroups these into four categories (Núñez et al., 

2004). Numerous studies have supported the consistency and predictive validity of the CCI (de 

Groot, Beckerman, Lankhorst, & Bouter, 2003). 

Physical and mental health-related quality of life was assessed in-hospital by the Short 

Form 12 Health Survey (SF-12), a 12-item multi-purpose measure of health-related quality of life, 

which is based on eight health-related concepts, adapted from the longer SF-36 (Ware et al., 

2002). The SF-12 subscales include physical functioning, role-physical (e.g., how physical 

problems affect daily life), and social functioning, mental health, role-emotional (e.g., how 

emotional problems affect daily life), bodily pain, vitality, and general health. Composite scores 

of physical and mental health-related quality of life are derived from a combination of the eight 

sub-scales, and these are reported in this study.  

Depressive symptoms were measured in-hospital by the 21-item Beck Depression 

Inventory (Beck, Ward, Mendelson, Mock, & Erbaugh, 1961). Participants rated on a 4-point 

scale the extent to which various depression symptoms (21-items describing cognitive, affective, 

and somatic symptoms) had been present or absent for the previous week. Ratings were summed, 

and higher levels indicated greater symptom severity.  Sleep quality was measured at 1-month 
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follow-up by the Pittsburgh Sleep Quality Index, a 19-item self-rated questionnaire that assesses 

sleep quality and disturbances (Buysse, Reynolds, Monk, Berman, & Kupfer, 1989). Because 

sleep disturbance has been well documented among hospitalized patients (Redeker & Hedges, 

2002), we elected to assess sleep quality at 1-month follow-up instead of in-hospital.  
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Supplemental Figure 1. Consort of Accelerometer Device Return. 
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Supplemental Table 1. Characteristics of participants included vs. excluded from the present 

analyses who consented to participate in the ancillary physical activity study. 

 

Values presented as mean (SD) or %. CVD (cardiovascular disease), GRACE (Global Registry of Acute 

Coronary Events), NSTEMI (non-ST segment elevation myocardial infarction), QoL (quality of life), 

STEMI (ST segment elevation myocardial infarction). 
*Depression= Beck Depression Inventory score > 10. 

  

Participant Characteristics  

Included   Excluded P-Value 

(n=149)  (n=471)  

Sociodemographic      

  Age (yrs) 62.8 (11.2)  63.4 (11.7) 0.58 

  Male (%) 69.8  64.5 0.24 

  Black Race (%) 17.5  23.7 0.11 

  Hispanic Ethnicity (%) 38.3  36.7 0.74 

  Education ≤ High School (%)  43.0  50.7 0.10 

  Partner/Spouse (%) 60.4  55.1 0.26 

  Medicaid (%) 34.0  32.0 0.65 

Hospitalization     

  Acute Coronary Syndrome Type    0.44 

    Unstable Angina (%) 52.4  54.4  

    NSTEMI (%) 31.5  32.1  

    STEMI (%) 16.1  13.6  

  Length of Hospital Stay > 4 days (%) 23.5  40.8 <0.01 

  Percutaneous Coronary Intervention (%) 85.9  76.0 0.01 

Physical & Psychosocial     

  Exercise Participation Pre-ACS event (%) 45.6  44.0 0.69 

  Cardiac Rehabilitation Post-ACS event (%)  11.4  12.5 0.72 

  Body Mass Index (kg/m2) 28.6 (5.0)  29.2 (5.9) 0.22 

  Left Ventricular Ejection Fraction < 40% (%) 14.1  13.6 0.88 

  CVD History (%) 33.6  32.2 0.78 

  Charlson Comorbidity Index 1.5 (1.6)  1.7 (1.7) 0.29 

  GRACE Risk Score 87.8 (28.3)  91.7 (30.5) 0.16 

  Depression* (%)  30.9  33.6 0.55 

  Physical Health-Related QoL 40.0 (10.9)  37.8 (11.0) 0.03 

  Mental Health-Related QoL 53.0 (10.7)  54.0 (10.7) 0.35 

  Sleep Quality 5.2 (4)  5.6 (4.2) 0.38 
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Supplemental Table 2. Characteristics of Acute Coronary Syndrome survivors stratified by total 

sedentary time trajectory groups. 

Values presented as mean (SD) or %. CVD (cardiovascular disease), GRACE (Global Registry of Acute 

Coronary Events), MVPA (moderate-to-vigorous physical activity), NSTEMI (non-ST segment elevation 

myocardial infarction), QoL (quality of life), STEMI (ST segment elevation myocardial infarction). 
*Depression= Beck Depression Inventory score > 10.  

Participant Characteristics  

Low Moderate High 

(n=47) (n=72) (n=30) 

Sociodemographic     

  Age (yrs) 58.5 (10.7) 63.7 (10.8) 67.6 (11.0) 

  Male (%) 70.2 68.1 73.3 

  Black Race (%) 21.3 15.3 16.7 

  Hispanic Ethnicity (%) 42.6 38.9 30.0 

  Education ≤ High School (%)  48.9 41.7 36.7 

  Partner/Spouse (%) 55.3 68.1 50.0 

  Medicaid (%) 29.8 32.9 43.3 

Hospitalization    

  Acute Coronary Syndrome Type    

    Unstable Angina (%) 57.4 54.2 40.0 

    NSTEMI (%) 36.2 26.4 36.7 

    STEMI (%) 6.4 19.4 23.3 

  Length of Hospital Stay > 4 days (%) 17.0 18.1 46.7 

  Percutaneous Coronary Intervention (%) 93.6 83.3 80.0 

Physical & Psychosocial    

  Exercise Participation Pre-ACS event (%) 48.9 44.4 43.3 

  Cardiac Rehabilitation Post-ACS event (%) 10.6 9.7 16.7 

  Body Mass Index (kg/m2) 28.8 (5.4) 29.2 (4.9) 27 (4.5) 

  Left Ventricular Ejection Fraction < 40% (%) 4.3 9.7 40.0 

  CVD History (%) 31.9 33.3 36.7 

  Charlson Comorbidity Index 1.3 (1.4) 1.4 (1.7) 1.9 (1.6) 

  GRACE Risk Score 77.2 (23.5) 86.4 (23.9) 107.4 (35) 

  Depression* (%)  29.8 29.2 36.7 

  Physical Health-Related QoL 41.3 (10.6) 40.6 (11.1) 36.6 (10.5) 

  Mental Health-Related QoL 55.1 (8.5) 53 (11.3) 49.9 (11.7) 

  Sleep Quality 5.6 (4.4) 5 (3.9) 5.2 (3.5) 

Accelerometer Characteristics    

  Wear Time (mins/day) 1251.1 (219.8) 1173.4 (240.3) 1278.1 (166.9) 

  Valid Wear Days 26 (2.6) 25.1 (3.1) 26.4 (2.6) 

  Total Sedentary Time (mins/day) 440.3 (50.2) 601.1 (44.1) 755.4 (46.5) 

  MVPA Bout Minutes (mins/day) 42.3 (56.8) 16.6 (20.7) 6.6 (8.6) 
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Supplemental Figure 1. Sedentary time over the 28 days post-discharge period among low, 

moderate and high trajectory groups of Acute Coronary Syndrome survivors using a 200 count 

per minute threshold. Data are presented as mean ± 1 standard error for each day, by sedentary 

trajectory group.   
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Supplemental Figure 2. Sedentary time over the 28 days post-discharge period among low, 

moderate and high trajectory groups of Acute Coronary Syndrome survivors when restricting 

wear time from 8am-8pm. Data are presented as mean ± 1 standard error for each day, by 

sedentary trajectory group.   
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CHAPTER IV 

Accelerometer-Measured Sedentary Behavior and Health Outcomes in Acute Coronary 

Syndrome Survivors  

Abstract 

Acute coronary syndrome (ACS) survivors engage in high volumes of sedentary behavior 

over the first month after hospitalization. However, the relationships between sedentary behavior 

during this time period and health outcomes in ACS patients are unknown. Purpose: To 

determine whether accelerometer-measured sedentary behavior during the first month post 

hospital discharge is associated with the risk of 1-year recurrent major adverse cardiovascular 

events (MACE) or hospitalizations in ACS patients. Methods: Participants (n=323; 68.7% male; 

62.9±10.9 y) with confirmed ACS and valid accelerometer data from the Prescription Use, 

Lifestyle, and Stress Evaluation (PULSE) study were examined. Sedentary time was measured by 

accelerometry for 28-days post-hospital discharge. MACE included a composite of recurrent non-

fatal MI, urgent cardiac revascularization, and unstable angina hospitalization. Hospitalizations 

included the first occurrence of a hospitalization during or after completion of the accelerometer 

protocol, regardless of cause. Unadjusted and adjusted Cox proportional hazards regression 

modeling was used to calculate the hazard ratio (HR) for MACE and hospitalizations associated 

with mean sedentary time estimates. Results: Participants spent a mean (SD) of 9.9 ± 2.1 h/day 

in sedentary behavior during the 28-days post-hospital discharge, which accounted for 61.9% of 

wear time over a 16-hour waking day. At 1-year follow up, there were 40 recurrent MACE events 

and 142 hospitalizations. Mean sedentary time was not associated with risk of recurrent MACE 

or hospitalizations in unadjusted (HR [95% Confidence Interval (CI)]: 1.07 [0.93 – 1.24]; HR 

[95% CI]: 1.07 [0.99 – 1.16]; respectively) and multivariable adjusted models (HR [95% CI]: 0.98 

[0.83 – 1.15]; HR [95% CI]: 1.03 [0.95 – 1.14]; respectively). Conclusion: Sedentary behavior 
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during the immediate month after hospitalization was not associated with increased risk of 1-year 

recurrent major adverse cardiac events or hospitalizations in ACS survivors, suggesting that 

sedentary behavior during this post-hospital time window may not be a prognostic risk factor in 

ACS survivors.   
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Introduction  

More than one million patients are hospitalized each year for Acute Coronary Syndrome 

(ACS) in the United States alone (Mozaffarian et al., 2015). Accordingly, new technologies, 

interventions, medications, and treatment guidelines have been implemented over recent decades 

to improve survival after ACS, resulting in a growing population of ACS survivors. Existing  

treatments after ACS includes long-term medical and interventional therapy and secondary 

prevention strategies (Amsterdam et al., 2014). Current American Heart Association/American 

College of Cardiology (ACC/AHA) guidelines recognize physical activity and cardiac 

rehabilitation as Class I secondary prevention strategies (Amsterdam et al., 2014); however, few 

patients attain these lifestyle targets (e.g.,  ≥150 mins/week of moderate- to vigorous intensity 

physical activity [MVPA] or attend cardiac rehabilitation) as a result of different barriers (e.g., 

physical, social, provider referral, etc.) (Chow et al., 2019; Kronish, Diaz, Goldsmith, Moise, & 

Schwartz, 2017). Consequently, ACS survivors remain at substantial risk for recurrent cardiac 

events and mortality (Menzin, Wygant, Hauch, Jackel, & Friedman, 2008), underscoring a critical 

need to identify additional prognostic risk factors that can be targeted for intervention to prolong 

survival and reduce recurrent events in this vulnerable population. One such risk factor may be 

sedentary behavior.  

Evidence from population-based studies has linked prolonged sedentary behavior to 

increased risk for cardiovascular morbidity and mortality (Biswas et al., 2015; Wilmot et al., 2012), 

wherein only high levels of MVPA (~60 to 75 min/d) may mitigate the risk conferred by prolonged 

sedentariness (Ekelund et al., 2016).  Previous findings characterizing the physical activity and 

sedentary habits of ACS survivors over the first month after hospitalization show that few patients 

engage in sufficient levels of MVPA. Moreover, many rapidly adopt a sedentary lifestyle 

immediately upon returning home,  with most patients exhibiting relatively little change thereafter 
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(Duran, Garber, Schwartz, & Diaz, 2018; Kronish et al., 2017). However, no existing U.S. 

guidelines for secondary prevention in ACS patients mention sedentary behavior as a risk factor 

to be treated. This omission may be due to existing controversies about the adverse effects of 

sedentary behavior in the general population (e.g., uncertainty whether health effects are 

independent of MVPA; physiological mechanisms underlying adverse effects; feasibility of 

sedentary behavior reduction in adults) and/or a lack of empirical evidence (Young et al., 2016), 

as there is currently no published data to quantify how accelerometer-measured sedentary behavior 

relates to health outcomes in ACS patients.  

To inform secondary prevention guidelines on reducing sedentary behavior, evidence from 

prospective studies is needed to confirm the association between sedentary time and health 

outcomes in ACS survivors. Therefore, the primary aim of the current study was to determine 

whether sedentary behavior was associated with risk of 1-year recurrent major adverse 

cardiovascular event (MACE) and all-cause mortality (ACM) among ACS survivors. A secondary 

aim was to determine whether sedentary behavior was associated with risk of 1-year recurrent 

cardiovascular disease related hospitalizations in this same population. It was hypothesized that 

greater sedentary time during the first month post-discharge will predict increased 1-year risk of 

MACE, ACM, and hospitalizations in ACS survivors.  

Methods 

Study Population: ACS patients hospitalized in tertiary care academic medical center were 

enrolled into the Prescription Use, Lifestyle, and Stress Evaluation (PULSE) study, an 

observational cohort study conducted from February 2009 to September 2012 (N=1087). PULSE 

was designed to examine behavioral and biological pathways that may confer increased risk for 

recurrent cardiac events (Whang et al., 2013). Hospitalization with an adjudicated diagnosis of 
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ACS was the inclusion criterion. ACS events were defined according to American Heart 

Association/American College of Cardiology (AHA/ACC) criteria as either acute myocardial 

infarction (MI, with or without ST-elevation) or unstable angina (Amsterdam et al., 2014). 

Exclusion criteria included individuals less than 18 years of age, without English or Spanish 

proficiency, inability to complete the baseline assessment or to adhere with the study protocol, 

and those who were medically unstable.  

This paper reports on a sub-study whose purpose was to measure physical activity and 

sedentary behavior for up to 45 days following hospital discharge via accelerometry, conducted 

among the PULSE study cohort from August 2009 – September 2012 (Green et al., 2013). To 

stay consistent with methods from Chapter III, an accelerometer wear period of 28 days was 

selected for the current study. A total of 620 participants were given an accelerometer. Of these 

individuals, 323 participants returned the accelerometer with usable data and adhered to 

accelerometer wear requirements (≥3 days with accelerometer wear > 10 h/day for at least one 

week over the first 28 days post-discharge ) (Kocherginsky, Huisingh-Scheetz, Dale, Lauderdale, 

& Waite, 2017; Trost, McIver, & Pate, 2005) (Supplemental Figure 1A).  The PULSE protocols 

were approved by the Columbia University Medical Center Institutional Review Board and verbal 

and written informed consent was obtained from all participants before they were enrolled into 

the study. Characteristics of ancillary study participants, and those who were excluded from the 

current analyses are shown in Supplemental Table 1. 

Accelerometer Protocol: Participants were fitted at or soon after hospital discharge with an 

accelerometer (Actical™; Philips Respironics, Bend, OR) on their non-dominant wrist, and were 

instructed to wear the device continuously for 45 days, except when bathing or sleeping, and to 

return the device via mail at the end of the monitoring period. The accelerometer is an omni-
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directional accelerometer that has been validated for the measurement of physical activity when 

worn on the wrist (Diaz et al., 2018; Heil, 2006). Activity counts were collected in 1-minute 

epochs.   

Accelerometer Processing: Non-wear time was determined using the Choi algorithm, defined as 

at least 90 consecutive minutes of zero counts, with allowance of 1 or 2 minutes of nonzero counts 

as long as no counts were detected in the 30-minute windows at the start or end of the 90-minute 

(or longer) period (Choi, Liu, Matthews, & Buchowski, 2011). Epochs with less than 100 counts 

per minute (cpm) and ≥1065 cpm were classified as sedentary behavior and MVPA, respectively 

(Hooker et al., 2011; Kulinski, Kozlitina, Berry, de Lemos, & Khera, 2016). Time spent in 

sedentary behavior was determined by summing the number of minutes in a day when the activity 

counts met these criteria. Presently, there are no validated cut-points to classify sedentary behavior 

using this device when worn on the wrist. A sedentary cut-point of 100 counts per minute (cpm) 

was selected based on findings and methods defined in the Dallas Heart Study, a longitudinal, 

multiethnic population-based probability sample of Dallas County residents (Kulinski et al., 2016). 

The Dallas Heart Study assessed sedentary time with the same model wrist-worn accelerometer 

and classified sedentary time as <100cpm. Findings from the Dallas Heart Study demonstrated that 

accelerometer-measured sedentary time was associated with subclinical atherosclerosis (Kulinski 

et al., 2016), and chronic subclinical myocardial injury (Harrington et al., 2017). Given that 

sedentary time classified as <100cpm was associated with meaningful cardiovascular health 

indices in a large, representative sample, it was decided to incorporate the same cut-point for the 

current analyses as that utilized in the Dallas Heart Study.  

For each compliant day (≥10 hours of wear) during the immediate 28-day post-discharge 

period, the total number sedentary minutes and the total time spent in MVPA were calculated. 
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Compliant days that occurred on or after a re-occurring event (i.e., MACE/ACM or 

hospitalization) were removed from analyses. Because of a high correlation between sedentary 

time and wear time for both analytic samples (r=0.80 for both), we corrected for the influence of 

variation in wear time by standardizing sedentary time using the residuals obtained when 

regressing sedentary time on wear time at the group level (Healy, Winkler, Brakenridge, Reeves, 

& Eakin, 2015; Qi et al., 2015; Willett & Stampfer, 1986). As a result, sedentary time is expressed 

as the predicted sedentary time for that day, had the participant worn the device for 16 h.  

Outcome Ascertainment: The primary outcome was the first occurrence of either a major adverse 

cardiovascular event or all-cause mortality. Hospitalizations and vital status were assessed at 

participant follow-up phone calls completed at 1-, 6-, and 12-months after enrollment.  Medical 

record extraction was done uniformly for any reports of hospitalizations during the course of the 

study for adjudication of MACE and ACM. An Endpoint Classification Committee, which 

consisted of two board certified cardiologists, independently reviewed the medical record and 

classified cause of each hospitalization. Full agreement by both reviewers was required to classify 

an event. In the case of a disagreement, a third independent reviewer was consulted to adjudicate 

the end points determination. The reviewers were blinded to the medical record discharge codes. 

MACE was defined as the composite of a recurrent non-fatal MI, urgent cardiac revascularization 

(defined as ischemic symptoms that resulted in either urgent percutaneous coronary intervention 

[PCI] or coronary artery bypass graft [CABG] surgery), and unstable angina hospitalization. The 

criteria for each MACE category were abstracted from the ACC/AHA consensus of data elements 

for measuring outcomes and were used by the Endpoint Classification Committee to determine if, 

and on what date, one of these events occurred. ACM was defined as any death regardless of cause. 

Dates of death were confirmed through review of death certificates, medical records, and 
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administrative databases. The secondary outcome was recurrent hospitalization, defined as the first 

occurrence of a hospitalization during or after completion of the accelerometer protocol regardless 

of cause. All outcomes were operationalized as a binary variable based on event status (i.e., event 

occurred or no event) for analyses.      

Covariates: Potential covariates associated with risk of MACE/ACM and hospitalizations were 

measured. These included sociodemographic factors (age, sex, race, ethnicity, education, partner 

status); hospitalization characteristics/procedures (length of hospital stay, PCI, CABG); measures 

of health status/disease severity (body mass index [BMI; left ventricular ejection fraction [LVEF], 

estimated glomerular filtration rate less than 60 mL/ min/1.73 m2; hypertension; dyslipidemia; 

CVD history; Charlson Comorbidity Index (de Groot, Beckerman, Lankhorst, & Bouter, 2003; 

Núñez et al., 2004); Global Registry for Acute Coronary Events [GRACE] risk score (Granger et 

al., 2003)); current smoking; prior exercise history; and cardiac rehabilitation participation. Details 

of the measurement and scoring of all potential correlates are available in the Supplemental 

Material section of Chapter III (pages 66-68).   

Statistical Analysis: Descriptive statistics, including frequencies and means ± standard 

deviations, were computed to characterize participant sociodemographic, health, accelerometer 

and outcome characteristics. Multilevel growth curve models were then used to create mean 

sedentary time estimates for each participant based on model parameters specified from previous 

analyses conducted in Chapter III. The mean sedentary time estimates are adjusted for the temporal 

trend in the data and the number of days with valid wear time. Cox proportional hazards regression 

modeling was used to calculate the hazard ratio (HR) for MACE/ACM (primary aim) and 

hospitalizations (secondary aim) associated with mean sedentary time estimates. Crude HRs and 

95% confidence intervals (CI) were initially calculated. Subsequent HRs and 95% CI were 
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calculated after adjustment for covariates identified in separate preliminary backwards elimination 

regression analyses that included 20 potential correlates of MACE/ACM and hospitalizations. The 

parsimonious model for MACE/ACM included Charlson Comorbidity Index and GRACE Risk 

Score as potential covariates that were statistically significant at the α = 0.05 level. The 

parsimonious model for hospitalizations included sex, education, exercise participation prior to 

ACS event, estimated glomerular filtration rate less than 60 mL/ min/1.73 m2, and Charlson 

Comorbidity Index as potential predictors that were statistically significant at the α = 0.05 level.  

Because a validated cut-point for sedentary behavior using this wrist-based device has not 

been established, a sensitivity analysis was conducted, with all analyses repeated with sedentary 

behavior defined as epochs with less than 200 cpm. Additionally, to exclude possible 

accelerometer wear during sleep, a sensitivity analysis was conducted restricting the accelerometer 

analysis period to 8:00 AM to 8:00 PM. Lastly, a sensitivity analysis was conducted restricting the 

accelerometer analysis to participants that had ≥ 3 day of valid wear each week over the 28 days 

post-discharge (weeks 1-4). All analyses were performed using SAS software, version 9.4 (SAS 

Institute Inc, Cary, North Carolina).  

Results 

Participant Characteristics  

Table 1 presents the sociodemographic, health and accelerometer characteristics of the 

analytic sample (n=323). Participants were predominantly male, and racially and ethnically 

diverse. The majority presented with unstable angina, received PCI during hospitalization, had 

hypertension and dyslipidemia, and did not attend cardiac rehabilitation. Additionally, the 

majority of participants had an education greater than a high school graduation, and almost half 

reported regular participation in exercise prior to their ACS event. Over the first month after 
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discharge, sedentary behavior accounted for a mean of 61.9% of wear time over a 16-hour waking 

day, equivalent to a mean (SD) of 9.9 ± 2.1 hours of sedentary time per day. 

Sedentary Time and Risk of MACE/ACM 

At 1-year follow up, there were 40 recurrent MACE and there were no ACM events. Table 

2 (Upper Panel) presents the unadjusted and adjusted hazard ratios and 95% CI for MACE 

associated with mean sedentary time over the 28 days post-discharge period. Mean sedentary time 

was not associated with risk of recurrent MACE in either the unadjusted or  multivariable adjusted 

models. In sensitivity analyses, similar results were observed when using a sedentary cut-point of 

200 cpm (Supplemental Table 2: Upper Panel), when restricting the accelerometer analysis period 

to 8:00 AM to 8:00 PM (Supplemental Table 2: Middle Panel), and when restricting for valid 

wear time on ≥ 3 days each week over the 28 days post-hospital discharge period (Supplemental 

Table 2: Lower Panel).  

Sedentary Time and Risk of Hospitalizations  

At 1-year follow up, there were 142 recurrent hospitalizations for any cause. Table 2 

(Lower Panel) presents the unadjusted and adjusted hazard ratios and 95% CI for hospitalizations 

associated with mean sedentary time over the 28 days post-discharge period. Mean sedentary time 

was not significantly associated with risk of recurrent hospitalizations in the unadjusted and 

multivariable adjusted models. Similar results were observed when using a sedentary cut-point of 

200 cpm (Supplemental Table 3: Upper Panel), when restricting the accelerometer analysis period 

to 8:00 AM to 8:00 PM (Supplemental Table 3: Middle Panel), and when restricting for valid 

wear time on ≥ 3 days each week over the 28 days post-discharge period (Supplemental Table 3: 

Lower Panel).    
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Discussion  

In this prospective study of ACS survivors, the average sedentary time over the first month 

after hospitalization was not associated with an increased 1-year risk of recurrent MACE or 

hospitalizations. Contrary to our hypothesis, these preliminary findings suggest that sedentary 

behavior during the immediate month after hospitalization is not a prognostic risk factor of 

recurrent events and hospitalizations in ACS survivors.  

Secondary prevention is a vital feature of the management of care for ACS survivors, 

wherein subsequent cardiovascular morbidity and mortality can be reduced by a comprehensive 

approach (e.g., lifestyle changes, risk factor education, medical therapy) to constructively modify 

patients’ risk profiles (Amsterdam et al., 2014; Smith et al., 2011). Strong evidence exists on the 

cardiovascular protective effects induced by physical activity in secondary prevention, such as 

reducing the impact of disease, slowing its progress, and preventing recurrence of an acute event 

(Alves et al., 2016). However, little is known about the adverse effects elicited by sedentary 

behavior during secondary prevention efforts among ACS survivors. In an observational cohort 

study of more than 1,000 patients with coronary heart disease, Mons and colleagues (2014) found 

that patients who self-reported the least amount of activity at 12 months had a two-fold elevated 

risk for major cardiovascular events over the course of a 10-year follow-up period (Mons, 

Hahmann, & Brenner, 2014). However, the aforementioned study focused on physical activity 

levels as opposed to sedentary behavior, as well as measured activity levels at a timepoint when 

most lifestyle secondary prevention strategies may have already been completed.  

The present study fills a gap in the available evidence by examining the association 

between accelerometer-measured sedentary behavior (vs. physical activity) during the first month 

immediately after hospitalization (vs. 1-year post hospitalization) and 1-year recurrent 

cardiovascular events. The first month of recovery following ACS may present a critical period 



 

86 
 

when secondary prevention strategies begin to be adopted, and so this high degree of sedentariness 

is of concern. While the findings from this study suggest that sedentary behavior during the first 

month post-hospitalization is not associated with 1-year recurrent cardiac events among ACS 

survivors, it’s possible that a different post-hospitalization time period (e.g., 6 month) and/or 

longer post-hospitalization time period is needed (i.e., duration longer than one-year) to detect the 

adverse effects of sedentary behavior in ACS survivors.  

Previous studies have examined the association between accelerometer-measured physical 

activity and 30-day all-cause hospital readmissions in other clinical conditions such as heart failure 

and COPD. Waring and colleagues (2017) measured physical activity via a wrist-worn 

accelerometer in a group of heart failure patients and found that lower levels of physical activity 

over the first week post-discharge was related to higher 30-day all-cause readmissions (Waring, 

Gross, Soucier, & ZuWallack, 2017). Similarly, Chawla and colleagues (2014) found that lower 

physical activity over the first week post-discharge for a clinical exacerbation of Chronic 

Obstructive Pulmonary Disease was associated with more 30-day all-cause readmissions (Chawla, 

Bulathsinghala, Tejada, Wakefield, & ZuWallack, 2014). Although both studies found an 

association between lower physical activity levels and hospitalizations, comparison between 

findings of the current study and those reported in other clinical conditions is difficult due to 

differences in accelerometer protocols and processing (e.g., device, intensity threshold, vector 

magnitude units vs. count per minute, and non-wear threshold duration) and duration of the follow-

up (30 days vs. 1 year).  

A strength of the current study is the measurement of sedentary behavior via accelerometry 

over 28 consecutive days immediately post-hospital discharge in a racially/ethnically diverse 

sample of ACS survivors, which allowed for more precise measurement of habitual sedentary time 
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over several weeks. Conventional accelerometer protocols often entail 5 to 7-day monitoring 

periods, making the present study one of the longest accelerometer protocols conducted in ACS 

patients.  Nonetheless, several limitations should be acknowledged when interpreting the findings 

of the current study. First, the Actical™ accelerometer cannot distinguish between different 

postures (e.g. sitting, standing). This limits the current study’s ability to adhere to the consensus 

sedentary behavior definition, which includes both intensity of activity (≤1.5 METS) and position 

(sitting or reclining) (Gibbs, Hergenroeder, Katzmarzyk, Lee, & Jakicic, 2015; Sedentary 

Behaviour Research, 2012). Therefore, an intensity-only definition of sedentary behavior was 

employed, which may have overestimated sedentary time as some standing may also be included 

(Gibbs et al., 2015).  Secondly, wrist-worn accelerometers lack validated wrist-based cut-points, 

and have been shown to tend to underestimate daily sedentary time (Koster et al., 2016). Despite 

existing limitations, wrist-worn accelerometer placement have shown to increase wear adherence 

by alleviating the discomfort or inconvenience of hip-based accelerometer wear (Troiano, 

McClain, Brychta, & Chen, 2014), which was the rationale for using a wrist-based device for the 

current study protocol.  To account for this limitation, however, a sensitivity analysis with an 

alternative cut-point (200 cpm) was conducted, which yielded similar results for both recurrent 

MACE and hospitalizations. Lastly, this is a small, single-center study in an urban academic 

tertiary care medical center, which may limit this study’s power to detect associations, as well as 

the generalizability of the current findings. For instance, the majority of our sample presented with 

unstable angina (~54%), which may limit applicability of the results for patients with MI, as these 

are lower-risk patients. 
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Conclusion 

In conclusion, this study was unable to detect significant associations between sedentary 

behavior during the immediate month after hospitalization and the risk of 1-year recurrent major 

adverse cardiac events or hospitalizations in ACS survivors. While the findings of this study might 

suggest that targeting sedentary behavior is not an essential secondary prevention target in the 

periods, by far, these results are not definitive as to the potential benefit of a strategy of reducing 

sedentary behavior early in the post ACS recovery period. Future research with a larger sample 

and longer follow-up is needed to confirm the prognostic utility (or lack thereof) of sedentary 

behavior in the early and later post ACS recovery period.  
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Table 1. Characteristics of Acute Coronary Syndrome survivors in the primary analytic sample 

(n=323). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Values presented as mean (SD) or %. CVD (cardiovascular disease), eGFR (estimated glomerular filtration 

rate), GRACE (Global Registry for Acute Coronary Events), MVPA (moderate-to-vigorous physical 

activity), NSTEMI (non-ST segment elevation myocardial infarction), STEMI (ST segment elevation 

myocardial infarction). *Depression= Beck Depression Inventory score > 10. 

Participant Characteristics  Mean (SD) or % 

Sociodemographics  

  Age (yrs) 62.9 (10.9) 

  Male (%) 68.7 

  Black Race (%) 20.0 

  Hispanic Ethnicity (%) 39.3 

  Education ≤ High School Graduation (%)  45.2 

  Partner/Spouse (%) 57.9 

  Medicaid (%) 32.6 

Hospitalization  

  Acute Coronary Syndrome Type  

    Unstable Angina (%) 53.6 

    NSTEMI (%) 31.3 

    STEMI (%) 15.2 

  Length of Hospital Stay > 4 days (%) 31.3 

  Percutaneous Coronary Intervention (%) 79.3 

  Coronary Artery Bypass Graft Surgery (%) 8.4 

Physical & Psychosocial  

  Exercise Participation Pre-ACS event (%) 46.7 

  Cardiac Rehabilitation Post-ACS event (%) 12.7 

  Current Smoker (%) 13.3 

  Body Mass Index (kg/m2) 29.0 (5.5) 

  Left Ventricular Ejection Fraction < 40% (%) 14.9 

  Hypertension (%) 77.4 

  Dyslipidemia (%) 63.2 

  eGFR < 60 mL/min/1.73 m2 (%)  22.5 

  CVD History (%) 33.7 

  Charlson Comorbidity Index 1.6 (1.6) 

  GRACE Risk Score 89.2 (28.7) 

  Depression* (%)  34.4 

  Physical Health-Related Quality of Life 39.0 (10.7) 

  Mental Health-Related Quality of Life  53.4 (10.8) 

Accelerometer Characteristics  

  Wear Time (mins/day) 1171.5 (230.7) 

  Valid Wear Days 20.0 (7.6) 

  Total Sedentary Time (mins/day) 594.0 (126.0) 

  Total MVPA Minutes (mins/day)  49.4 (44.8) 

  MVPA Bout Minutes (mins/day) 14.9 (21.1) 
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Table 2. Unadjusted and adjusted hazard ratios and 95% CI for major adverse cardiac events and hospitalizations associated with 

mean sedentary time.  
 

 

Notes: CI (confidence interval), HR (hazard ratio), MACE (major adverse cardiac event). MACE model adjusted for Charlson 

Comorbidity Index and GRACE (Global Registry for Acute Coronary Events) risk score. Hospitalization model adjusted for sex, 

education, exercise participation pre-event, estimated glomerular filtration rate less than 60 mL/ min/1.73 m2, and Charlson 

Comorbidity Index. 

 

  

 Unadjusted Model Adjusted Model  

Variables HR  (95% CI)  P-Value  HR  (95% CI)  P-Value 

MACE (number of events=40) 
           

Sedentary Time (mins/day) 1.07  (0.93 – 1.24)  0.34  0.98  (0.83 – 1.15)  0.79 

            

Hospitalizations (number of events=142)            

 Sedentary Time (mins/day) 1.07  (0.99 – 1.16)  0.08  1.03  (0.95 – 1.14)  0.49 
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Supplemental Material 

Supplemental Figure 1. Consort of Accelerometer Device Return. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

620 participants 

given a device 

439 participants 

returned device 

181 devices lost/not returned 

8 devices never used  

431 participants 

returned device 

with data 

666 participants 

agreed to 

participate 

46 unable to schedule 

323 participants 

returned with 

valid wear days 

108 with < 3 valid wear 

days/week over post-discharge 

period  

 

930 eligible 

participants 

264 declined to participate 
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Supplemental Table 1. Characteristics of participants included vs. excluded from the primary 

analytic sample who consented to participate in the ancillary physical activity study.  

 

Values presented as mean (SD) or %. CVD (cardiovascular disease), eGFR (estimated glomerular 

filtration rate), GRACE (Global Registry for Acute Coronary Events), NSTEMI (non-ST segment 

elevation myocardial infarction), STEMI (ST segment elevation myocardial infarction). 
*Depression= Beck Depression Inventory score > 10. 

  

Participant Characteristics  

Included  Excluded  P-Value 

(n=323) (n=297)  

Sociodemographics    

  Age (yrs) 62.9 (10.9) 63.7 (12.2) 0.40 

  Male (%) 68.7 62.6 0.11 

  Black Race (%) 20.0 24.6 0.17 

  Hispanic Ethnicity (%) 39.3 34.7 0.23 

  Education ≤ High School Graduation (%)  45.2 52.86 0.06 

  Partner/Spouse (%) 57.9 54.7 0.43 

  Medicaid (%) 32.6 32.4 0.96 

Hospitalization    

  Acute Coronary Syndrome Type   0.76 

    Unstable Angina (%) 53.6 54.2  

    NSTEMI (%) 31.3 32.7  

    STEMI (%) 15.2 13.1  

  Length of Hospital Stay > 4 days (%) 31.3 42.4 <0.01 

  Percutaneous Coronary Intervention (%) 79.3 77.4 0.58 

  Coronary Artery Bypass Graft Surgery (%) 8.4 11.8 0.16 

Physical & Psychosocial    

  Exercise Participation Pre-ACS event (%) 46.7 41.8 0.17 

  Cardiac Rehabilitation Post-ACS event (%) 12.7 11.8 0.73 

  Current Smoker (%) 13.3 16.5 0.27 

  Body Mass Index (kg/m2) 29.0 (5.5) 29.2 (5.8) 0.68 

  Left Ventricular Ejection Fraction < 40% (%) 14.9 12.5 0.38 

  Hypertension (%) 77.4 81.1 0.25 

  Dyslipidemia (%) 63.2 61.6 0.69 

  eGFR < 60 mL/min/1.73 m2 (%)  22.5 23.5 0.78 

  CVD History (%) 33.7 33.8 0.50 

  Charlson Comorbidity Index 1.6 (1.6) 1.6 (1.7) 0.76 

  GRACE Risk Score 89.2 (28.7) 92.5 (31.3) 0.16 

  Depression* (%)  34.4 31.3 0.42 

Physical Health-Related Quality of Life 39.0 (10.7) 37.6 (11.3) 0.11 

Mental Health-Related Quality of Life  53.4 (10.8) 54.1 (10.5) 0.39 
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Supplemental Table 2. Unadjusted and adjusted hazard ratios and 95% CI for MACE associated 

with mean sedentary time in three separate sensitivity analyses classifying sedentary time: 1) using 

a 200 count per minute threshold (Upper Panel); 2) when restricting wear time from 8am to 8pm 

(Middle Panel); and 3) when restricting for valid wear time on ≥3 days/week over the 28 day post-

disccharge period (Lower Panel).  

 

Notes: CI (confidence interval), HR (hazard ratio), MACE (major adverse cardiac event). Models 

adjusted for Charlson Comorbidity Index and GRACE (Global Registry for Acute Coronary 

Events) risk score.  
*Number of events=40; n=323 
†Number of events=17; n=172 

  

 

 Unadjusted Model Adjusted Model 

Variables HR  (95% CI)  P-Value  HR  (95% CI)  P-Value 

Sensitivity Analysis #1*  

Sedentary Time (mins/day) 1.09  (0.93 – 1.28)  0.31  0.96  (0.80 – 1.16)  0.70 

            

Sensitivity Analysis #2* 

Sedentary Time (mins/day) 1.09  (0.88 – 1.34)  0.45  0.98  (0.77 – 1.24)  0.87 

            

Sensitivity Analysis #3† 

Sedentary Time (mins/day) 1.19  (0.95 – 1.49)  0.13  1.08  (0.83 – 1.39)  0.58 
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Supplemental Table 3. Unadjusted and adjusted hazard ratios and 95% CI for hospitalizations 

associated with mean sedentary time in three separate sensitivity analyses classifying sedentary 

time: 1) using a 200 count per minute threshold (Upper Panel); 2) when restricting wear time from 

8am to 8pm (Middle Panel); and 3) when restricting for valid wear time on ≥3 days/week over the 

28 day post-discharge period (Lower Panel).  

 

 

 

Notes: CI (confidence interval), HR (hazard ratio). Models adjusted for sex, education, exercise 

participation pre-event, estimated glomerular filtration rate less than 60 mL/ min/1.73 m2, and 

Charlson Comorbidity Index. 
*Number of events=142; n=316 
†Number of events=60; n=166 
 

  

 Unadjusted Model Adjusted Model 

Variables HR  (95% CI)  P-Value  HR  (95% CI)  P-Value 

Sensitivity Analysis #1*  

Sedentary Time (mins/day) 1.11  (1.02 – 1.21)  0.02  1.05  (0.96 – 1.15)  0.27 

            

Sensitivity Analysis #2* 

Sedentary Time (mins/day) 1.05  (0.94 – 1.18)  0.36  1.00  (0.89 – 1.13)  0.95 

            

Sensitivity Analysis #3† 

Sedentary Time (mins/day) 1.07  (0.94 – 1.21)  0.31  1.02  (0.91 – 1.16)  0.72 
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CHAPTER V 

Conclusion  

The goal of this dissertation series was to provide a foundation of empirical evidence to 

describe sedentary behavior and its associations with cardiovascular disease (CVD) biomarkers 

and outcomes, and to explore the potential that reducing sedentary behavior may be a secondary 

prevention target for Acute Coronary Syndrome (ACS) survivors. Accordingly, three separate 

cross-sectional studies were conducted that focused on 1) endothelial dysfunction as a potential 

underlying mechanism that links sedentary behavior to CVD mechanisms; 2) the characterization 

of sedentary behavior in ACS survivors during the first month post-hospital discharge; and 3) 

sedentary behavior as a prognostic risk factor for increased risk of 1-year health outcomes in ACS 

survivors. Study one found that free-living, habitual sedentary behavior was not associated with 

markers of endothelial function, including endothelial-dependent vasodilation, circulating levels 

of endothelial microparticles, and circulating levels of endothelial progenitor cells, in a cohort of 

healthy adults. Study two revealed that ACS patients, as a group, engaged in high volumes of 

accelerometer-measured sedentary time, with patients exhibiting either gradual or rapid reductions 

in sedentary behavior over the first month post-discharge. Study three demonstrated that sedentary 

time over the first month post-hospital discharge, on average, was not significantly associated with 

increased risk of 1-year recurrent major adverse cardiovascular events or recurrent 

hospitalizations. Collectively, this dissertation series on sedentary behavior and CVD provides 

empirical evidence that 1) habitual sedentary behavior is not associated with endothelial 

dysfunction in young adults; 2) ACS survivors engage in high volumes of sedentary behavior, with 

three identified patterns of either gradual or rapid reductions in sedentary behavior during the first 

month post-hospital discharge; and 3) sedentary time during the first month post-hospital discharge 

may not be associated with 1-year health outcomes in ACS survivors. Overall, these findings 
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suggest that sedentary behavior is prevalent in ACS survivors, albeit future work is needed to 

unveil whether sedentary behavior may be a viable secondary prevention target for ACS survivors.  

Several limitations should be taken into consideration when interpreting the results of the  

current dissertation series. First, study one included a sample of young, healthy, and active adults, 

wherein detectable endothelial dysfunction or subclinical atherosclerosis may not have been 

present. Second, study one participants accumulated, on average, high levels of MVPA (i.e., 64.5 

± 28.0 min/day of MVPA), which  may have moderated the adverse effects of sedentary behavior 

(Ekelund et al., 2016). For instance, a meta-analysis demonstrated that the association between 

daily sedentary behavior and all-cause mortality was considerably reduced at higher levels of 

physical activity, while eliminated in adults who were most active (e.g., 60-75 min/day of MVPA). 

Moreover, high levels of physical activity may elicit protective effects against sitting-induced 

endothelial dysfunction, as regular exercise training is antiatherogenic (Szostak & Laurant, 2011) 

and reduces oxidative stress through upregulation of antioxidants, such as superoxide dismutase 

(Fukai et al., 2000; Miyazaki et al., 2001; Ross, Malone, & Florida-James, 2016). Third, study two 

and three included a sample of ACS survivors that received care from a major tertiary care 

academic medical center, wherein standards of care may be more comprehensive and follow 

current clinical recommendations relative to other hospital profiles in the United States (e.g., minor 

teaching, community, federal government, etc.). Therefore, results from study two and three may 

not be generalizable to the overall ACS population receiving care in the United States. Considering 

existing limitations, future work is warranted to expand the applicability and breadth of the 

preliminary evidence presented in the current dissertation series.  
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Significance  

Secondary prevention is essential to the management of care for ACS survivors, wherein 

successive cardiovascular morbidity and mortality can be reduced by a comprehensive approach 

to positively modify patients’ risk profiles (Amsterdam et al., 2014; Smith et al., 2011). Strong 

evidence exists on the cardiovascular protective effects stimulated by physical activity in 

secondary prevention, such as reducing the impact of disease, slowing its progress, reducing CVD 

risk factors, and preventing recurrence (Alves et al., 2016). However, little is known about the 

adverse effects elicited by sedentary behavior among ACS survivors. Other studies in general 

populations and in other clinical populations suggest that targeting sedentary behavior may be 

another modifiable risk factor that may attenuate risks in ACS survivors. This may be particularly 

important to target, because few patients meet recommended physical activity targets or attend 

cardiac rehabilitation. The studies included in this dissertation series fill this important gap in the 

literature by exploring the mechanisms, patterns, and correlates of sedentary behavior in relation 

to CVD risks, as well as uncovering whether sedentary behavior is linked to health outcomes in 

ACS survivors. As such, the findings from this dissertation series impart meaningful insight 

because they: 

1) suggest that physiological mechanisms other than endothelial dysfunction (e.g., 

glucose and lipid metabolism) may need to be explored as a potential link between 

habitual prolonged sedentary time and CVD in younger adults, 

2) established that high volumes of sedentary behavior were prevalent in ACS survivors 

as they recover and resume daily activities over the first month following hospital 

discharge, 



 

102 
 

3) suggest that greater disease severity, lower physical health quality of life, and not 

having a partner may be important factors affecting sedentary behavior, 

4) provided empirical evidence that sedentary behavior during the first month after 

hospitalization might not be a prognostic risk factor of 1-year CVD outcomes and 

hospitalizations in ACS survivors.  

Overall, the findings unveiled from this dissertation provide a preliminary foundation for 

understanding the implications of sedentary behavior as a potential secondary prevention target in 

ACS survivors. Although our findings suggest that sedentary behavior may not be a secondary 

prevention target for reducing  CVD risks in ACS survivors, future research in larger prospective 

cohorts is needed to confirm and extend the findings of this dissertation series.  

Future Directions  

• Future work is needed to elicit the underlying biological mechanisms through which 

habitual sedentary behavior confers CVD risk.  

Rationale: Understanding the biological mechanisms that underlie the associations 

between sedentary behavior and adverse health outcomes in the general population and in 

people with CVD is necessary to determine the causal nature of these relationships. 

Identifying the pathways that link sedentary behavior to CVD can inform primary and 

secondary prevention strategies on how to mitigate CVD risk. Based on existing evidence 

in the general adult population, future studies should explore impaired glucose regulation 

and dyslipidemia as potential pathways wherein habitual sedentary behavior. 

• Future studies are needed to elucidate why ACS patients exhibit high levels of sedentary 

time post-hospital discharge, especially among those that show minimal reductions over 

time.  
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Rationale: Most ACS survivors in this dissertation exhibited high volumes of sedentary 

behavior throughout the first month post-discharge, but the reasons for this are unknown. 

Therefore, it’s essential to understand why patients are sedentary during this post-discharge 

period, and to allow for identification of ways that prolonged sedentary time may be 

reduced. 

• Future studies using prospective cohorts with larger sample sizes are needed to determine 

whether sedentary behavior during the early recovery period and longer periods of time is 

an independent risk factor that may be modified for secondary prevention in ACS 

survivors. 

Rationale: Evidence on the prospective associations between sedentary behavior and 

health outcomes in ACS survivors is limited, as this dissertation is the first to report on 

these associations. However, the current study included a small sample size and low event 

rate. More research on the prognostic utility of sedentary behavior at various time points 

post-discharge period can help confirm whether sedentary behavior is an important 

secondary prevention target for ACS survivors.  
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APPENDIX A 

Literature Review 

Acute Coronary Syndrome  

Epidemiology  

Acute coronary syndrome (ACS), characterized by unstable angina (UA), non-ST-elevation 

myocardial infarction (NSTEMI), and ST-elevation myocardial infarction (STEMI), is among the 

top causes of death in the modern, industrialized world (Fuster & Kovacic, 2014).  More than 1.1 

million patients are hospitalized annually for ACS in the United States alone (Mozaffarian et al., 

2015). Most patients hospitalized with an ACS survive, however they remain at high risk for 

recurrent cardiac events and mortality (Menzin, Wygant, Hauch, Jackel, & Friedman, 2008); 

highlighting the need to optimize secondary prevention strategies to increase survival and reduce 

recurrent events among ACS survivors.  

ACS presentation usually occurs in the sixth decade of life, with a median ACS 

presentation age of 68 years (interquartile range: 56 – 79) and a 3:2 male-to-female ratio in the 

United States (Amsterdam et al., 2014; Bob-Manuel, Ifedili, Reed, Ibebuogu, & Khouzam, 2017; 

Mozaffarian et al., 2015). It is estimated that more than 780,000 persons will experience an ACS 

each year in the United States, with approximately three-fourths of these patients presenting with 

NSTEMI (Amsterdam et al., 2014; Mozaffarian et al., 2015). Despite improvements in acute care, 

21% of ACS survivors will be re-hospitalized and ~1 in 5 will die within 1 year post-hospitalization 

(Menzin et al., 2008). Approximately $8 billion is spent annually on the care and management of 

ACS in the United States, with approximately $22,500 to $32,400 spent on one ACS patient over 

the course of a year (Hedayati, Yadav, & Khanagavi, 2018; Xiao, 2017).  The high economic 

burden is primarily due to the cost of re-hospitalizations and prolonged length of hospital stays. 
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Given its high prevalence, morbidity, mortality, and economic burden, ACS is considered the most 

serious among the coronary artery diseases to address from a public health perspective.  

Etiology and Pathophysiology  

Among the ACS categories, UA and NSTEMI are similar conditions that occur when there is 

subtotal occlusion of the vessel, while STEMI occurs when there is complete occlusion of the 

vessel leading to myocardial injury and necrosis (Hedayati et al., 2018; Wright et al., 2011). UA 

and NSTEMI are strongly connected conditions with similar pathogenesis and clinical 

presentations, but the conditions differ in gravity (Amsterdam et al., 2014; Hedayati et al., 2018); 

such that UA does not result in detectable quantities of myocardial injury biomarkers (i.e., 

troponin), while NSTEMI does present such biomarkers (Mozaffarian et al., 2015; Wright et al., 

2011). As such, the recent American College of Cardiology/American Heart Association 

guidelines constitute UA and NSTEMI as NSTE-ACS (Amsterdam et al., 2014), which accounts 

for approximately two-thirds of all hospital admissions for ACS in the United States each year. 

The development of ACS can be attributed to numerous factors, such as genetics, 

environment, psychosocial stressors, obesity, cardiometabolic diseases, smoking and physical 

inactivity (Bob-Manuel et al., 2017; Crea & Liuzzo, 2013). The underlying pathology of ACS is 

the sudden mismatch between myocardial oxygen consumption and demand, which is commonly 

caused by coronary artery obstruction due to the rupture and thrombosis of an atherosclerotic 

plaque in the coronary arteries (Amsterdam et al., 2014; Hedayati et al., 2018; Wright et al., 2011). 

In 1985, M.J. Davies was the first to propose that plaque rupture (also referred to as fissure) was 

the link between atherosclerosis and thrombosis. In 1994, Liuzzo and colleagues found that 

patients with ACS and high levels of C-Reactive Protein had a worse outcome than patients with 

normal levels of CRP, suggesting that plaque inflammation was responsible for plaque fissure. 
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More recently, a handful of review articles have been published to elucidate different pathological 

pathways to ACS. After reviewing postmortem and in vivo studies using intravascular imaging, 

Crea & Libby published a review in 2017 suggesting 4 pathological pathways to ACS: plaque 

rupture with systemic inflammation (macrophage rich lesions, “red” thrombus, systemic 

inflammation), plaque rupture without systemic inflammation (low systemic inflammation), 

plaque erosion (no fissure/rupture, “white” thrombus, neutrophils), and plaque without thrombosis 

(epicardial or microvascular spasm). Other causes of ACS exist, such as coronary embolism and 

coronary arteritis; noncoronary causes of myocardial oxygen supply-demand mismatch (i.e. 

hypotension, severe anemia, etc.); and non-ischemic myocardial injury (Amsterdam et al., 2014). 

Superficial erosion of the intima can also precipitate ACS, but this mechanism has a less clear 

relationship with inflammation (Libby et al., 2014, Wright et al., 2011).  The most common 

pathophysiology leading to ACS (i.e., 60-80% of cases) is coronary artery obstruction via plaque 

rupture, which will be the primary pathophysiological pathway discussed in this response.  

Endothelial dysfunction and arterial inflammation are the primary components in the 

pathogenesis of ACS, as they each contribute to the atherogenic process (i.e., atherosclerotic 

lesions, plaque formation and rupture) (Amsterdam et al., 2014; Hedayati et al., 2018; Wright et 

al., 2011).  Atherosclerosis is a maladaptive, non-resolving chronic inflammatory disease in which 

plaque forms and accumulates within the arterial walls from as early as childhood. Atherosclerotic 

plaques primarily form at sites of low endothelial shear stress, such as the coronary arteries (Bob-

Manuel et al., 2017; R. Ross, 1993), whereas regions of high endothelial shear stress are generally 

protected. Atherosclerotic lesions and plaque formation, also known as ‘fatty streaks,’ results from 

a buildup of oxidized low-density lipoprotein (LDL) cholesterol in the tunic intima, which causes 

injury to the endothelium and underlying smooth muscle (R. Ross, 1993). The accrual of oxidized 
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LDL elicits the expression of adhesion molecules and growth factors from smooth and endothelial 

cells, which eventually triggers an inflammatory cascade towards plaque instability and rupture.   

Impairments in endothelial function precede the development of atherosclerosis and 

contributes to the configuration, progression and adverse complications of atherosclerotic plaque 

(Barac, Campia, & Panza, 2007; R. Ross, 1993). Endothelial cells form a single-cell lining 

covering the internal walls of blood vessels throughout the entire vascular system, also known as 

the endothelium (Alberts et al., 2002; Della Corte et al., 2016).  The endothelium is recognized as 

the key regulator of vascular wall homeostasis due to its critical role in preserving vascular tone, 

vascular permeability to plasma elements, platelet and leukocyte adhesion and aggregation, and 

thrombosis (Alberts et al., 2002; Barac et al., 2007; Poredos & Jezovnik, 2013). Endothelial 

dysfunction is a pathophysiological condition characterized by a dysregulation of homeostatic 

mechanisms necessary to maintain healthy endothelium. Endothelial dysfunction is associated 

with abnormal modulation of vascular tone, platelet activation, leukocyte adherence, increased 

oxidative stress, and vascular inflammation; each of which can lead to the migration and 

proliferation of smooth cells and lipid-containing macrophages called foam cells (Barac et al. 

2007, Della Corte et al., 2016). Eventually, the lesions of atherosclerosis will enlarge, and trigger 

continued activation of arterial inflammation. Thus, endothelial dysfunction seems to be a systemic 

vascular process that not only facilitates the development of the atherosclerotic plaque, but may 

modulate its clinical course as well.  

Arterial inflammation is the most common underlying molecular and cellular 

pathophysiology of disturbed atherosclerotic plaque (Wright et al., 2011). Distinct features of 

atherosclerotic plaques that predispose to ACS include a thin fibrous cap, a large assortment of 

macrophages, a big lipid (necrotic) core, spotty calcification and expansive remodeling (Falk & 
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Virmani). Both innate and adaptive immunity play a key role in the formation and rupture of these 

vulnerable plaques  (Crea & Liuzzo, 2013; Libby, 2001; Libby, Tabas, Fredman, & Fisher, 2014). 

Regarding innate immunity, macrophages likely pave the way for the rupture of the fibrous cap of 

the plaque, as well as contributes to the necrotic core of the plaque. For instance, when 

macrophages are activated, they release enzymes (i.e., matrix metalloproteinases and cathepins) 

that degrade all components of the arterial extracellular matrix (Crea & Libby, 2017). When 

macrophages undergo apoptosis, they can lead to plaque necrosis by defective phagocytic 

clearance of the apoptotic cells or primary necrosis (Hansson, Libby, & Tabas, 2015). Moreover, 

mast cells infiltrate the advanced atherosclerotic plaque and, when activated, release a host of 

mediators and enzymes (i.e., histamine, serotonin, etc.), cytokines and a set or serine proteases, all 

of which exacerbates the inflammation in the atherosclerotic lesion.  Adaptive immunity also plays 

a role in coronary plaque instability, such that subsets of T lymphocytes (major participants in 

adaptive immunity) can either promote local plaque formation (effector T cells) or suppress 

inflammation (regulatory T cells).  Ultimately, the effector: regulatory T-cell balance promotes 

progressive inflammation (Hansson et al., 2015). This inflammatory milieu can lead to the loss of 

mechanical stability, primarily due to the diminished tensile strength of the collagen cap 

surrounding the plaque, and ultimately lead to plaque rupture (Crea & Liuzzo, 2013; Hansson et 

al., 2015; Libby, 2001; Libby et al., 2014). However, it should be noted that inflammation may not 

drive all transition from stable atherosclerosis to acute thrombotic events, such that coronary artery 

thrombosis caused by plaque rupture can occur with or without concomitant inflammation (Crea 

& Libby, 2017). Plaque rupture that occurs in the absence of systemic inflammation may be a 

result of psychological stress or extreme emotional disturbance. Another possibility is that 

cholesterol crystals (created when macrophage foam cells die) may activate local innate immune 
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pathways within the atherosclerotic plaque. More research is needed to clarify the molecular 

mechanisms leading to coronary instability in ACS patients without systemic inflammation.  

When the fibrous cap of the plaque cannot withstand the mechanical force of blood 

pressure, superficial fissures are formed in the cap. Upon rupture, components of the thrombogenic 

necrotic core (i.e., phospholipids, tissue factor and matrix molecules) are exposed to the blood, 

activating platelet receptors and coagulation factors that ultimately lead to the formation of a 

thrombus (Badimon & Vilahur, 2014; Santos-Gallego, Picatoste, & Badimon, 2014). The 

thrombus expands rapidly and can fill the lumen within minutes, resulting in an abrupt coronary 

artery obstruction and sudden mismatch between myocardial oxygen consumption and demand. 

The thrombus may occlude the artery at the site of plaque rupture or detach from the site of plaque 

rupture as an embolus and occlude the arterial lumen downstream. However, it’s important to 

differentiate the degree of occlusion in STEMI vs. NSTE-ACS, such that occlusion is complete 

and prolonged in STEMI and transient and partial in NSTE-ACS.  

The precipitation of the thrombotic event is likely due to the imbalance between 

prothrombotic and fibrinolytic activity on the plaque surface, as well as the fluid phase of blood. 

Rudolf Virchow was the first to recognize that thrombi precipitate on damaged vascular surfaces. 

Innate immunity plays a vital role in thrombosis, such that proinflammatory cytokines are stored 

in the alpha-granules of platelets and favor formation of thrombus on the atheroma plaque, as well 

as induce endothelial cell apoptosis. In response to inflammation, both the solid state of plaque 

and fluid phase of blood unite to promote thrombus accumulation by increased thrombogenicity, 

decreased anti-coagulant properties, and impaired fibrinolytic activity, However, the detailed 

series of events that operate in vivo has yet to be elucidated (Hansson et al., 2015).   

Signs & Symptoms 
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 Early detection of symptoms of ACS and risk stratification is important, such that 

expedited and accurate diagnosis is essential to reduce the high mortality and morbidity associated 

with ACS.  Symptoms of ACS can be categorized as “typical” or “atypical,” with atypical 

symptoms more prevalent in women, older adults (≥ 75 years of age), patients with diabetes 

mellitus, impaired renal function, and dementia (Amsterdam et al., 2014; Hedayati et al., 2018; 

Wright et al., 2011). Typical symptoms include pressure-type chest pain that usually occurs at rest 

or with minimal exertion persisting for at least ten minutes (Amsterdam et al., 2014; Wright et al., 

2011). Pain or discomfort typically starts in the substernal location and can radiate to the neck, jaw 

epigastrium or arms, often described as “squeezing,” ‘griplike,” “pressurelike,” “suffocating,” or 

“heavy” (Hedayati et al., 2018).  Atypical symptoms include pleuritic pain, abdominal discomfort, 

pain that radiates into the lower extremities, among others. Other atypical signs and symptoms 

with or without chest pain include dyspnea, indigestion, syncope, diaphoresis, and unexplained 

fatigue (Amsterdam et al., 2014; Hedayati et al., 2018). Once a patient’s symptoms are suspected 

to be representative of ACS, a clincal history, physical examination, electrocardiogram (ECG) and 

biomarkers of myocardial necrosis must be evaluated for proper risk stratification and diagnosis 

(Amsterdam et al., 2014; Wright et al., 2011).  

Treatment & Management Recommendations  

Standard of care for patients that present with ACS include supplemental oxygen, 

antianginal, antiplatelet, and anticoagulation therapy; which are further managed with either an 

early-invasive strategy or ischemia-guided strategy (Amsterdam et al., 2014; Bob-Manuel et al., 

2017). If therapy is ineffective, percutaneous coronary intervention (PCI) or coronary artery 

bypass grafting (CABG) may be performed, with the latter resulting in a longer hospital stay 

(Amsterdam et al., 2014). After patients have been sufficiently treated in an inpatient setting, they 
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are discharged and provided with secondary prevention strategies to reduce symptoms, re-

hospitalization and mortality (Amsterdam et al., 2014). 

Current post-ACS treatment includes long-term medical therapy and secondary prevention 

strategies (Wright et al., 2011). Long-term medical therapy is beyond the scope of the current 

review but can be found in the ACC/AHA Guideline for the Management of Patients with Non-

ST-Elevation Acute Coronary Syndromes (Amsterdam et al., 2014). Current ACC/AHA Class I 

secondary prevention strategies include cardiac rehabilitation (CR) and physical activity (PA) for 

patients with a recent ACS event (Kronish, Diaz, Goldsmith, Moise, & Schwartz, 2017; Wright et 

al., 2011). Outpatient CR services are delivered to patients within the first 3 to 6 months after a 

cardiovascular event (Thomas et al., 2007). A primary goal of outpatient CR programs is to 

develop and assist ACS survivors implement a safe and effective formal exercise and lifestyle PA 

program (American College of Sports, Riebe, Ehrman, Liguori, & Magal, 2018). 

Benefits of Habitual Physical Activity & Exercise for ACS Survivors 

Increasing levels of habitual PA is an important goal for CR programs, such that regular 

PA has been linked with a decreased severity of ACS, reduced in-hospital mortality rates, and 

improved short-term prognosis (Pitsavos et al., 2008). Regular PA can improve exercise capacity, 

reduce physical and depressive symptoms of ACS, enhance functional capacity, aid in weight loss 

and maintenance, and help improve risk factors such as hypertension, hyperlipidemia and glucose 

metabolism (Thompson et al., 2003). Underlying mechanisms in which PA confers its benefits are 

through favorable adaptations in the vasculature, systemic oxidative stress and inflammation, and 

morphological adaptations of the Left and Right ventricle which can improve cardiac output and 

exercise capacity (Lavie et al., 2015; Xiao, 2017); each of which target the pathophysiology of 

ACS.  
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When addressing the benefits of PA, it’s important to note that PA and exercise are 

different. PA is considered any bodily movement generated by skeletal muscle contraction that 

leads to a rise in caloric requirements greater than resting energy expenditure (Caspersen, Powell, 

& Christenson, 1985). Exercise, on the other hand, is a type of PA involving planned, structured 

and repetitive bodily movement performed with the goal to maintain or improve one’s physical 

fitness (Caspersen et al., 1985). ACS survivors can benefit from both PA and exercise, but most 

health benefits are elicited through chronic exercise training; hence the benefits seen with exercise-

based CR programs (Anderson et al., 2016).  For instance, increases of 10% to 60% in functional 

capacity and decreases of 10% to 25% in myocardial oxygen requirements have been observed 

after 12 weeks of exercise-based CR post-hospitalization (Williams, 2001; Williams et al., 2002). 

Additionally, chronic aerobic exercise training can improve endothelial function, ventricular 

function and attenuate ventricular remodeling (Xiao, 2017). Despite the well-established and 

overwhelming benefits of exercise-based CR, patient compliance within the programs is 

challenging due to logistical and monitoring abilities such as age, gender, socioeconomic status, 

travel distance and other comorbidities (Corra et al., 2010). Thus, there is a need to identify novel 

modifiable risk factors for intervention to increase survival and reduce recurrent events among 

ACS patients, one of which may be sedentary behavior. 

Sedentary Behavior 

Technological advancements in transportation, communication, the workplace and 

domestic-entertainment have cultivated occupational, home and social environments that oblige 

or promote sedentary behavior (Brownson, Boehmer, & Luke, 2005; Owen, 2012). As a result, 

time spent in sedentary behavior has continued to increase and physical activity levels have 

continued to decline over the past 50 years in the United States (Ng & Popkin, 2012). U.S. adults 
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now spend an alarming 9 to 10 hours per day in sedentary behavior, including sitting, TV viewing, 

screen time, and computer use (Dunstan, Howard, Healy, & Owen, 2012). Moreover, population-

based studies demonstrate that that average U.S. adult spends more than half of his or her day in 

sedentary behaviors (i.e., 51-68% of adults’ total waking hours are spent sedentary) (Dunstan, 

Howard, et al., 2012; Owen, Sparling, Healy, Dunstan, & Matthews, 2010). Accordingly, the 

expression “sitting is the new smoking” has been coined to describe the current epidemic of 

sedentary behavior within industrialized nations (Yeager S., 2016, Sturt & Nordstrom, 2016, 

Gerstacker D., 2016). 

Sedentary behavior (e.g., watching TV, computer use, etc.) has emerged as a distinct 

cardiovascular disease (CVD) risk factor that may carry clinical relevance beyond how much one 

exercises (Roger et al., 2011; World Health Organization, 2009). Accumulating evidence from 

population-based studies indicate that sedentary behavior is associated with CVD morbidity and 

mortality, and CVD risk factors, such as insulin resistance (Wilmot et al., 2012). Notably, the 

deleterious effects of sedentary behavior are eliminated only by high levels of moderate-to-

vigorous physical activity (MVPA) (~60 to 75 min/d), which exceed physical activity 

recommendations. This raises the question as to whether reducing sedentary behavior may 

represent another therapeutic target for secondary prevention and rehabilitation of ACS survivors, 

in addition to existing MVPA recommendations. The following sections will review critical 

aspects necessary to understand the public health significance of sedentary behavior, as well as the 

physiological responses of sedentary behavior that confer cardiovascular disease risk.  

Sedentary Behavior Characterization  

When deciding how to address the problem of too much sitting, it’s important to establish 

a standardized definition of sedentary behavior, which can improve between-study comparisons 



 

115 
 

and distinction between sedentary behavior and physical inactivity. The word ‘sedentary’ 

originates from the Latin origin ‘sedere’ – to sit, highlighting the importance of position or posture 

when defining sedentary behaviors. As such, sedentary behaviors are defined by both their posture 

and their low energy expenditure (Dunstan, Howard, et al., 2012). According to the Sedentary 

Behavior Research Network, sedentary behavior is defined as any waking behavior with an energy 

expenditure less than or equal to 1.5 times the resting metabolic rate while in a sitting or reclining 

posture (Chastin et al., 2016; Gibbs, Hergenroeder, Katzmarzyk, Lee, & Jakicic, 2015). Sedentary 

behavior includes activities such as sitting, watching TV, computer use, reading, driving, among 

other activities (Endorsed by The Obesity et al., 2016). In contrast, physical inactivity represents 

the lack of meeting the physical activity guidelines (i.e. ≥ 150 minutes/week of moderate- to 

vigorous-intensity physical activity)(Garber et al., 2011). This differentiation is important because 

current strategies exist to reduce physical inactivity via physical activity promotion, while a dearth 

of sedentary reduction strategies in health and wellness programs exist. Although the appropriate 

definition of sedentary behavior should be applied when developing methods for accelerometry 

processing, it’s important to note that definition of sedentary behavior was not standardized until 

2012. Thus, there is a wide range of assessment and analysis of sedentary behavior in the existing 

sedentary behavior literature.    

In order to measure the exposure to sedentary behaviors in epidemiological studies, one 

must decide which aspect of sedentary behavior is needed, such as total sedentary time, episodes 

of sedentary time, or a specific domain of sedentary behavior (e.g., work, transport, leisure, etc.). 

Accurate measurement is necessary to characterize patterns of, as well as changes in, sedentary 

behavior within and between individuals overtime. Accordingly, assessment methods that can 

reliably and accurately measure the frequency, duration, and volume of the sedentary behavior 
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exposure while abating bias should be selected. Additionally, researchers should make efforts to 

minimize the potential for bias due to measurement errors, whether systematic (differential) or 

random (non-differential) in nature.  

Sedentary Behavior Measurement  

Numerous studies have measured sedentary behavior utilizing different assessment tools 

and methodology. Among these assessment tools are questionnaire and surveys, self-recorded 

diaries, pedometers, actometers, accelerometers, and inclinometers (Atkin et al., 2012). Prior to 

the development of microelectronic technologies (i.e., accelerometers), most epidemiological 

studies in the United States relied on subjective methods (i.e., questionnaires and surveys) to 

measure estimates of time spent in sedentary behaviors. However, subjective methods used to 

measure sedentary behavior provides a narrow scope of overall levels of sedentary behavior 

accumulated in a typical waking day (Matthews et al., 2008). Moreover, self-report methods are 

prone to systematic errors through an incorrect classification of sedentary behaviors from a scoring 

perspective or inability of participants to accurately recall and estimate their sedentary time.  

Given the errors accompanied with self-report methods, the ideal measure of sedentary 

time would encompass the following: 1) accurate and reliable measurements across different 

population groups; 2) classify among sleep, reclining, sitting and standing; 3) differentiate among 

distinct domains and specific behaviors; 4) entail minimal cost and low participant burden; 5) 

ability to be worn continuously for extended periods of time; 6) produce data that can be provided 

in real-time that are easily analyzed and interpreted (Healy, Clark, et al., 2011). As such, a mix of 

subjective and objects measurements of sedentary behavior are essential to understand sedentary 

behavior epidemiology (Atkin et al., 2012). Thus, below is a brief overview of subjective and 

objective methods of sedentary behavior measurement.  
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Subjective Methods of Sedentary Behavior Measurement 

 Subjective measurements of sedentary behavior conventionally include questionnaires to 

provide a self-reported description of sedentary behaviors and to quantify the total time spent in 

sedentary behaviors as categorized by posture and energy expenditure (Ainsworth, Rivière, & 

Florez-Pregonero, 2018). Subjective methods include self-report questionnaires, proxy-report 

questionnaires, diaries, and ecological momentary assessment (EMA). Among the available 

subjective methods, the most commonly reported method used is questionnaires, the majority of 

which are self-administered and contain items that primarily focus on TV viewing and other 

screen-based behaviors (e.g., computer use) (Clark et al., 2009). A narrative review by Atkin and 

colleagues (2012) demonstrated that subjective methods demonstrate moderate reliability and 

slight to moderate validity, with questionnaires being the most popular method because of their 

low cost and ease of use. Global questionnaires (i.e., short [1-3 items] population health surveys) 

and quantitative recall questionnaires (e.g., Sedentary Behavior Questionnaire [SBQ]; Last 7-day 

Sedentary Time Questionnaire [SIT-Q-7d]) are the two types of questionnaires employed in 

sedentary behavior research and are often tailored for use by settings (e.g., population and 

intervention studies) and by the types of information obtained (e.g., impressions of sedentary 

behavior or time spent in specific sedentary behaviors) (Ainsworth et al., 2018). Generally, global 

questionnaires aim to categorize an individual’s sedentary behavior level, while quantitative recall 

questionnaires intend to capture the frequency, duration, mode and types of sedentary behaviors. 

Regardless of type, questionnaires vary in their mode of administration (e.g., self-administered vs. 

interviewer-administered), content (e.g., domain, recall frame, frequency, duration, and 

interruption), and psychometric properties (e.g., validity, reliability and responsiveness), each of 
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which should be taken into consideration when deciding which questionnaire should be employed 

for a specific study design and objectives (Atkin et al., 2012; Healy, Clark, et al., 2011).     

Objective Methods of Sedentary Behavior Measurement  

 The insights into how most adults spend their day in sedentary time, as well as the 

proportion of their overall waking hours spent in sedentary time, can be attributed to the 

advancements in microelectronic technologies. Microelectronic technologies include the 

pedometer, accelerometers, and inclinometers, which have enabled objective (i.e., device-based) 

methods of sedentary behavior measurement (Ainsworth et al., 2018). Among the evolved 

microelectronic technologies, the accelerometer has become widely used in population-based 

studies due to its ability to objectively derive time spent in sedentary, light-, moderate-, and 

vigorous-intensity physical activity behaviors (Healy, Clark, et al., 2011).  Accelerometers are 

small, lightweight, battery-operated devices that are commonly worn on the hip or wrist with an 

elastic belt and are either uniaxial (i.e., detect movement in the vertical plane) or tri-axial (i.e., 

detect movement in the vertical and horizontal planes). These electronic motion sensor devices 

measure the frequency and amplitude of the acceleration of the body segment to which the 

accelerometer is attached and combine this information into movement ‘counts’ (Chen & Bassett, 

2005). Accordingly, accelerometer cutpoints have been proposed for defining sedentary time in 

adults, with <100 cpm being the most common cutpoint employed when using the ActiGraph™ 

(ActiGraph LLC, Pensacola, FL, USA) and Actical™ activity monitor (Mini-Mitter, Bend, OR, 

USA) (Atkin et al., 2012) worn on the hip. However, the ActiGraph™ and Actical™ accelerometer 

cannot distinguish between different postures (e.g. sitting, standing), which limits researchers’ 

ability to adhere to the consensus sedentary behavior definition, which includes both intensity of 

activity (≤1.5 METS) and position (sitting or reclining) 48, 49.  Newer models of the ActiGraph™ 



 

119 
 

(GT3X and GT3X+) include an inclinometer function, which can improve the device’s ability to 

distinguish between postures, albeit validity of this function is limited (Atkin et al., 2012).  

The activPAL™ (V.3, PAL Technologies , Glasgow, UK) is a thigh-worn triaxial 

accelerometer and inclinometer that has been validated for determining step counts, physical 

activity, activity intensities, posture (sitting/lying, standing or stepping), and sedentary time in 

healthy adults (Godfrey, Culhane, & Lyons, 2007; Grant, Ryan, Tigbe, & Granat, 2006; Hart, 

McClain, & Tudor-Locke, 2011; Kozey-Keadle, Libertine, Lyden, Staudenmayer, & Freedson, 

2011; Lyden, Keadle, Staudenmayer, & Freedson, 2017; Lyden, Kozey Keadle, Staudenmayer, & 

Freedson, 2012; Ryan, Grant, Tigbe, & Granat, 2006). This device is widely considered the gold-

standard measure of sedentary behavior because it is extremely accurate (≥96%) and is one of the 

only devices capable of distinguishing motionless standing from sedentary time, thus allowing us 

to adhere to the consensus sedentary behavior definition, which includes both intensity of activity 

(≤1.5 METS) and position (sitting or reclining) (Gibbs et al., 2015). However, it’s important to 

note that the activPAL™ has not been used in population-based studies.  

The GENEActiv™ is a small (36 mm x 30 mm x 12 mm), lightweight (16 g), waterproof, 

wrist-worn device that contains a near-body temperature sensor to determine wear and non-wear 

time. It has a storage capacity of 45 days at a sampling frequency of 10 Hz that permits capture of 

frequent changes in activity. The GENEActiv™ device has shown to be valid and reliable for 

objectively measuring sedentary time and physical activity, as well as distinguishing between 

sedentary (sitting/reclining) and non-sedentary posture (standing) (Esliger et al., 2011; Pavey, 

Gomersall, Clark, & Brown, 2016; Rowlands et al., 2014; Rowlands et al., 2016; H. Zhang, Chin, 

Ang, Guan, & Wang, 2011). The GENEActiv™ estimates a person’s posture using the 

gravitational component of the acceleration signal from the wrist orientation of the monitor based 
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on the Euclidian norm minus one (ENMO) method (van Hees et al., 2013). Similar to the 

activPAL™, the GENEActiv™ has yet to be used as an objective method to measure sedentary 

time in population-based studies.  

Among the available device-based measures of sedentary time available for use in 

epidemiological research, the ActiGraph™ is the most widely used accelerometer for adults and 

older adults to date (Healy, Clark, et al., 2011; Heesch, Hill, Aguilar-Farias, van Uffelen, & Pavey, 

2018). In a small validation study by Matthews and colleagues (2008), the ActiGraph™ (<100 

counts/minute) and the Intelligent Device for Energy Expenditure and Activity (IDEEA) detected 

similar amounts of time spent in sedentary behaviors (8.63 ± 1.90 hours/day vs. 8.53 ± 1.86 

hours/day, respectively [p = 0.82]), and correlations between the measures were moderately high 

(ρ = 0.59, p < 0.01; unpublished observations) (K. Zhang, Werner, Sun, Pi-Sunyer, & Boozer, 

2003). When compared to the activPAL™, recorded sedentary time was lower for the 

ActiGraph™ activity monitor (mean [SD]=8.7[1.6] hour/day vs. 9.0 [1.8] hours/day), but the 

correlation between the measures was relatively high (ρ=0.76, p < 0.01). However, Bland-Altman 

analysis revealed a small mean difference and wide 95% limits of agreement, suggesting that 

ActiGraph™ can substantially over- and under-estimate sedentary time compared with the 

activPAL™. Overall, when interpreting between-study differences in sedentary behavior, it’s 

important to take into consideration the device, location of device (e.g., hip vs. wrist), sedentary 

count threshold, and non-wear threshold duration used in each study, as these factors have been 

reported to influence classification of sedentary time (Kozey-Keadle et al., 2011; Oliver, Badland, 

Schofield, & Shepherd, 2011; Paul, Kramer, Moshfegh, Baer, & Rumpler, 2007).  

Sedentary Behavior Epidemiology    
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Sedentary behavior epidemiology is the population-level study of the distribution, 

determinants, and adverse health effects of sedentary behaviors, which can help guide future 

research efforts and intervention development. The current review of literature will focus on the 

sedentary behavior epidemiology in the United States, as the participants for each dissertation 

study resided in the United States. Prior to the development of microelectronic technologies (i.e., 

accelerometers), most epidemiological studies in the United States relied on subjective methods 

(i.e., questionnaires and surveys) to measure estimates of time spent in sedentary behaviors. 

However, subjective methods used to measure sedentary behavior provides a narrow scope of 

overall levels of sedentary behavior accumulated in a typical waking day (Matthews et al., 2008). 

Moreover, self-report methods are prone to systematic errors through an incorrect classification of 

sedentary behaviors from a scoring perspective or inability of participants to accurately recall and 

estimate their sedentary time. Thus, the current review will focus on epidemiological studies that 

employed accelerometer-derived measurements of sedentary behavior. However, it should not be 

ignored that self-reported measures of sedentary behavior are important to capture important 

domain- and behavior-specific sedentary time information in population-based studies, which have 

gravely contributed to our understating of sedentary behavior epidemiology (see previous section). 

The descriptive epidemiology of sedentary time in the U.S. as measured by self-report can be 

found in a review by Healy and colleagues (2011) titled “Measurements of Adults’ Sedentary Time 

in Population-Based Studies” (Healy, Clark, et al., 2011).  

Matthews and colleagues (2008) were the first to describe the objective measure of the 

amount of time spent in overall sedentary behaviors in the United States, by gender, age, and 

racial/ethnic group. These authors evaluated participants (n=6,392) from the 2003-2004 National 

Health and Nutrition Examination Survey (NHANES) aged ≥ 6 years who wore an ActiGraph™ 
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accelerometer for at least 10 hours/day on their right hip for 7 consecutive days (Matthews et al., 

2008). Sedentary behavior was classified as the amount of time accumulated below 100 

counts/minute during periods when the monitor was worn and expressed as a proportion of 

monitor-wearing time (percent) and as total duration (hours/day). Time spent in overall sedentary 

behaviors reflects the accumulation of time spent sitting, reclining or lying down across different 

sedentary behavior domains, such as at home, school, in transit and during leisure time. Findings 

demonstrated that participants spent 54.9% of their monitored time (i.e., 7.7 hours/day) in 

sedentary behaviors, with the most sedentary groups being older adolescents and adults aged ≥ 60 

years. In regard to gender, females were found to be more sedentary than males before the age of 

30 years, with the reverse of this pattern observed after the age of 60 years. Regarding racial/ethnic 

group, Mexican-American adults exhibited sedentary levels that were significantly less than other 

U.S. adults, while White and Black females demonstrated similar levels of sedentary behaviors 

after the age of 12 years.  

Building off the initial findings from Matthews et al., Owens and colleagues wrote a 

commentary on sedentary behavior as a new health risk due to its omnipresence and high volume 

in developed nations (Owen et al., 2010). In this commentary, the authors reported on the 2003 to 

2004 and 2005 to 2006 NHANES accelerometry data and showed the differences in time spent in 

light activity and exercise across quartiles of sedentary time (Centers for Disease Control and 

Prevention, 2009-2010). These data demonstrated that the lowest and highest quartile of sedentary 

time was 6.3 and 10.2 hours/day, respectively, with most of the variance in sedentary time 

attributed to the change in light-intensity activity. They also reported that 1 in 4 white U.S. adults 

spend approximately 70% of their waking hours sitting, 30% in light activities, and little or no 



 

123 
 

time in exercise. However, these analyses only focused on the total time spent sedentary (i.e., 

volume), while overlooking how sedentary time is accumulated throughout a waking day.   

In 2008, Healy and colleagues pioneered, as well as provided evidence, for the concept that 

breaks (interruptions) in sedentary is important for metabolic health, highlighting the need to 

evaluate both the total volume and the pattern in which sedentary time is accumulated. This 

‘breaks’ hypothesis was first explored among adults from the 2004 to 2005 Australian Diabetes, 

Obesity and Lifestyle Study (AusDiab) study, which demonstrated that adults whose sedentary 

time was accumulated in prolonged, uninterrupted periods had a poorer cardiometabolic health 

profile compared to those who frequently interrupted their sedentary time. Similarly, findings from 

the 2003 to 2004 and 2005 to 2006 population-representative U.S. National Health and Nutrition 

Examination Survey (NHANES) study found that total sedentary time was detrimentally 

associated with insulin, beta-cell function (HOMA-%B), and insulin sensitivity (HOMA-%S), 

while breaks in sedentary time were beneficially associated with fasting plasma glucose levels 

(Healy, Matthews, Dunstan, Winkler, & Owen, 2011). As such, studies in the past 10 years have 

begun to assess both total volume and patterns of sedentary behavior to elucidate how sedentary 

time is accumulated in the real world and whether sedentary patterns are relevant for health.  

Shiroma and colleagues (2013) were the first to report on the sedentary behavior patterns 

among a large cohort of women from the Women’s Health Study. The Women’s Health Study 

included an observational ancillary study (2011-2013) to assess physical activity using 

accelerometers (i.e., ActiGraph™ GT3X+, ActiGraph Corp) among a cohort of healthy women 

throughout the United States (n=7,247; age (mean±SD)=71.4±5.8 yr). Sedentary behavior was 

defined using a <100 count per minute (cpm) cut point. This study reported that women spent 

65.5±9.0% of their wear time in sedentary behavior, equivalent to mean ± SD of 9.7 ± 1.5 
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hours/day, in which most sedentary time (~71%) was accumulated in shorter bouts lasting less 

than 30 minutes. This study provided important information about the sedentary behavior patterns 

among a large sample of older women, suggesting that women spend a large proportion of their 

(~2/3) waking time in sedentary behavior, most of which was accumulated in shorter bout 

durations (i.e., < 30 mins).  Findings from this study are limited, however, because the data are 

restricted to middle- or older-aged women who are primarily white and of higher socioeconomic 

status.  

Recently, Diaz and colleagues (2016) characterized patterns of sedentary behavior in a U.S. 

national cohort of middle- and older-aged adults (n=8,096; age (%)=45-54 yr (4.7), 55-64 yr (25.1), 

65-74 yr (41.8), ≥75 yr (28.4); Male (%)= 45.8) enrolled in the Reasons for Geographical and 

Racial Differences in Stroke (REGARDS) study, a population-based study of black and white 

adults ≥ 45 years. Seven-day accelerometry was conducted via a hip-worn Actical™ (Mini Mitter 

Respironincs, Inc., Bend, OR) accelerometer to collect objective measurements of sedentary 

behavior and physical activity from May 2009 to January 2013. Sedentary behavior was defined 

using a <50 cpm cut point. This study found that adults from the REGARDS sample spent on 

average over 11 hours of the waking day in sedentary behavior, almost half of which was 

accumulated in prolonged, uninterrupted sedentary bouts ≥ 30 minutes. Additionally, several 

factors were identified as significant correlates of the observed patterns of prolonged sedentary 

behavior, including older age, male sex, residence in non-stroke belt/buckle region, 

overweightness/obesity, winter season, and lower amounts MVPA. The proportion of total 

sedentary time accumulated in prolonged, uninterrupted bouts in the REGARDS sample are 

considerably higher than that reported among women in the Women’s Health Study. For instance, 

sedentary bouts ≥20, ≥30, and ≥60 minutes accounted for 60%, 48%, and 26% of total sedentary 
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time in the REGARDS sample, but only accounted for 44%, 31%, and 11% of total sedentary time 

in the Women’s Health Study, even when restricting  the REGARDS sample to females only (black 

females: 59%, 47%, and 27%; white females: 58%, 46%, and 24%). Discrepancies in findings 

from the REGARDS and Women’s Health Study may be attributed to differences in sample 

characteristics (e.g., age, occupation, race/ethnicity, socioeconomic status, etc.) and differences in 

accelerometer protocol/processing (e.g., device, sedentary count threshold, and non-wear 

threshold duration).  More research is needed to understand the proportion of sedentary behavior 

accumulated in prolonged, uninterrupted bouts among U.S. adults.  

Given that ACS presentation usually occurs in the sixth decade of life, it’s important to 

understand prevalence of sedentary behavior in older adults.  Harvey and colleagues (2013) 

conducted a systematic review on the prevalence of sedentary behavior objectively measured in, 

or subjectively reported by, older adults aged ≥ 60 years (Harvey, Chastin, & Skelton, 2013). This 

review assessed 23 reports of prevalence of sedentary behavior in older adults sourced from 7 

countries by self-reported sitting (number of surveys=9), TV viewing (n=10), computer use and 

screen time (n=3), as well as by accelerometry (n=1). This study found that approximately 60% of 

older adults self-reported sitting for more than 4 hours per day and over 54% reported watching 

more than 3 hours of TV and 65% sit in front of a screen for over 3 hours. Accelerometer-derived 

sedentary behavior revealed that 67% of the older population were sedentary for more than 8.5 

hours per day. Findings from this study demonstrated that, whether measurements are subjective 

or objective, most older adults are sedentary. However, only one study (n=649) evaluated 

sedentary time via accelerometry, highlighting the need to employ more studies evaluating 

objectively measured sedentary behavior in older adults before generalizing findings to the general 

population.  
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Harvey and colleagues (2015) conducted another systematic literature review to synthesize 

the existing evidence on amount of sedentary behavior reported by and measured in older adults. 

The review included large-scale population studies/surveys reporting the amount of sedentary 

behavior (objective/subjective) in older adults aged ≥ 60 years of age (n=349,698 adults within 22 

studies) published between 1981 and 2014.  Results indicated that older adults spent an average of 

9.4 hours per day in accelerometer-derived sedentary behavior, accounting for 65-80% of their 

waking day. Similar to their previous review, self-reported sedentary behavior was lower, with 

average weighted self-reports being 5.3 hours per day. The findings from this review are similar 

to that of Harvey et al. (2013) in the fact that estimated sedentary behavior time from self-report 

was substantially lower than that derived from objective methods (i.e., accelerometry), suggesting 

that most self-report surveys vastly underestimate the actual time older adults spend in sedentary 

behavior. Given the discrepancies between subjective and objective methodologies of 

measurement, future studies should employ objective methods to accurately capture sedentary 

behavior in older adults.   

In an effort to understand the prevalence of sedentary behavior among adults with 

established cardiovascular disease, Evenson and colleagues (2014) described the prevalence of 

self-reported and accelerometer-measured sedentary behavior among U.S. adults with CVD 

(n=680; Male (%) = range 53.3%-66.4%; non-Hispanic Whites (%)= 80.9%-86.1%), including 

angina (mean age = 69.6 yr), coronary heart disease (CHD, mean age=70.2 yr), congestive heart 

failure (CHF, mean age=69.3 yr), and myocardial infarction (MI, mean age=69.9 yr), from the 

2003-2006 NHANES study. A group without CVD (n=1,000) with similar age, gender, and 

race/ethnic distributions as those with CVD was chosen as the referent to compare sedentary 

behavior estimates. Self-reported past-month daily duration of screen-time exposure to television, 



 

127 
 

video and computer use that were unrelated to work was used to assess sedentary behavior via the 

NHANES physical activity questionnaire. Objective measurements of sedentary behavior were 

measured by 7-day accelerometry via a hip-worn ActiGraph device (ActiGraph model 7164; 

ActiGraph LLC; Fort Walton Beach, FL). Sedentary behavior was defined using a ≤100 cpm 

cutpoint.  This study found that among those with CVD, the proportion of individuals engaged in 

self-reported television watching ≥4 hours/day ranged from 36.2% (MI) to 44.8% (CHF) and 

accelerometer-derived sedentary behavior ranged from 9.6 hours/day (angina) to 10.1 hours/day 

(CHF). Additionally, all four CVD groups had higher television watching and sedentary behavior 

values when compared to the referent group, with CHF patients exhibiting lower PA and higher 

sedentary behavior compared to other CVD groups. Importantly, sedentary behavior was higher 

for MI participants 2-5 years (p=0.003), 6-10 years (p=0.08), and ≥ 10 years (p=0.03) from 

diagnosis compared to those within 1 year of diagnosis. This study highlighted the high prevalence 

of sedentary behaviors in vulnerable populations at risk for a recurrent CVD event, which provided 

a foundation for the notion that increased and targeted efforts are needed to reduce sedentary 

behavior for secondary prevention of CVD. Given the limited descriptive epidemiology of 

sedentary behavior among CVD populations, the current dissertation series will further explore the 

patterns of sedentary behavior among ACS survivors post hospitalization.  

Sedentary Behavior and Cardiovascular Morbidity and Mortality 

Overview 

Sedentary behavior has been estimated to cause 30% of the global cardiovascular disease 

burden and is the fourth leading cause for mortality worldwide (Roger et al., 2011; World Health 

Organization, 2009). The dangers of high volumes of sitting were first emphasized when Morris 

et al. (1953) identified a twofold increase in the risk of myocardial infarction in London bus drivers 



 

128 
 

compared with active bus conductors. Since then, evidence from population-based studies has 

linked prolonged sedentary behavior to increased risk for cardiovascular disease, type 2 diabetes, 

osteoporosis, breast and colon cancer and all-cause mortality, highlighting the negative impact of 

too much sedentary time on the nation’s health and well-being (Biswas et al., 2015; Chastin et al., 

2016; Endorsed by The Obesity et al., 2016; Wilmot et al., 2012). Moreover, recent evidence 

suggests that both total daily sedentary time and how often sedentary time is interrupted are 

important aspects to consider when looking at cardiovascular health outcomes among U.S. adults 

of different ages and racial/ethnic backgrounds (Diaz, Goldsmith, et al., 2017; Diaz et al., 2016; 

Diaz, Howard, et al., 2017). 

Data from over 240,000 adults in a national level study showed that spending more than 7 

hours/day in sedentary behavior was associated with a 2-fold greater risk of cardiovascular 

mortality, even among persons who engaged in more than 7 hours/week of moderate- to vigorous-

intensity physical activity (Matthews et al., 2012). Shockingly, approximately 60 to 75 mins per 

day of moderate- to vigorous-intensity physical activity is needed to mitigate the deleterious effects 

of prolonged sedentary behavior, which exceeds the current physical activity guidelines (Ekelund 

et al., 2016; Services, 2008). As a result, prolonged sedentary behavior is now thought to represent 

a unique aspect of an individual’s overall physical activity profile and is no longer considered 

simply to be the extreme low end of the physical activity continuum (Diaz et al., 2016; Diaz, 

Howard, et al., 2017; Dunstan, Howard, et al., 2012). Accordingly, physical activity 

recommendations from the American College of Sports Medicine and World Health Organization 

have expanded beyond promoting exercise and now also advocate for reductions in sedentary time 

(Garber et al., 2011; Organization, 2010). Thus, targeting a reduction in sedentary time, in addition 

to physical activity promotion, is needed to improve the nation’s health and wellness.  
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Meta-Analyses  

Over the past decade, a total of 9 meta-analyses have been conducted to estimate the 

potential impact of sedentary behavior on specific health outcomes, such as diabetes, CVD and 

mortality. Of these meta-analyses, 7 have determined the association of sedentary time with risk 

of Type 2 Diabetes (T2D), CVD, and/or CVD mortality (Grontved et al., 2011, Wilmot et al., 

2012, Ford et al., 2012, Biswas et al., 2015, Pandey et al., 2016, Patterson et al., 2018, Ekelund et 

al., 2018), while the remainder only evaluated the association between sedentary time and all-

cause mortality (Chau et al., 2013, Sun et al., 2015, Ekelund et al., 2016). Moreover, few meta-

analyses have examined the dose-response associations to reveal whether there is an evident 

increase in risk of incident disease or mortality at a specific level on the sedentary time continuum. 

Given the interest of understanding sedentary behavior as a potential secondary-prevention 

strategy in ACS patients, the current review will focus primarily on findings from meta-analyses 

that explored the associations between sedentary time and outcomes relevant for CVD morbidity 

and mortality.  

Grontved and Hu (2011) conducted a meta-analysis of all prospective cohort studies from 

1970 to March 2011 to determine the association between TV viewing time and risk of T2D and 

fatal or nonfatal CVD. Eight relevant studies were identified by researchers that met the following 

criteria: published in the English language, had a prospective design (cohort, case-cohort, and 

nested case-control), a study population that was healthy at baseline, and had estimates of relative 

risk (RR) or odds ration with 95% confidence intervals (CIs) or reported data to calculates these 

outcomes. Of these studies, 4 reported results on T2D (N=175,938; incident cases= 6,248 during 

1.1. million person-years to follow-up) and 4 reported on fatal or nonfatal CVD (N=34,253, 

incident cases=1052 with no indication of person-years at risk). Results indicated that greater TV 
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viewing time was associated with a higher risk of T2D (pooled RR, 1.20 [95%CI, 1.14-1.27] per 

2 hours of TV viewing time; p<0.001) and an increased risk of fatal or nonfatal CVD (RR, 1.15 

[95% CI, 1.06-1.23] per 2 hours of TV viewing per day; p<0.001), with a linear dose-response 

relationship observed for both. Based on incidence rates in the U.S., it was estimated that the 

absolute difference (cases per 100,000 individuals per year) per 2 hours of TV viewing per day 

was 176 and 38 for T2D and fatal CVD, respectively. However, this meta-analysis is limited in 

the small number of studies included, as well as the evidence to suggest that TV viewing is not a 

good representation of total sedentary time, especially in men (Sugiyama, Healy, Dunstan, Salmon, 

& Owen, 2008).  

Wilmot and colleagues (2012) conducted a systematic review and meta-analysis to 

examine the association of sedentary time with T2D, CVD, and CVD mortality. Eighteen studies 

(2 cross-sectional, 16 prospective) were included, with 794,577 participants, that met the following 

criteria: cross-sectional and prospective design, report data on adults ≥18 years of age, include 

self-reported or objective measurement of sedentary time, report data on a relevant health outcome 

(diabetes, CVD, CVD mortality). RR or hazard ratio (HR), and 95% Cis comparing the highest 

level of sedentary behavior with the lowest were extracted for each study. Results demonstrated 

that the greatest sedentary time compared with the lowest was associated with a 112% increase in 

the RR of diabetes (RR 2.12; 95% credible interval [CrI] 1.61, 2.78), a 147% increase in the RR 

of CVD (RR 2.47; 95% CI 1.44, 2.24), and a 90% increase in the risk of CVD mortality (HR 1.90; 

95% CrI 1.36, 2.66). The Bayesian predictive effect and interval were only significant for diabetes, 

demonstrating that the association between sedentary time and diabetes is stronger and more 

consistent than for CVD outcomes. This was the first meta-analysis to systematically quantify the 

strength of the association between sedentary behavior (as opposed to TV viewing only) and health 



 

131 
 

outcomes, demonstrating a strong association between sedentary time and adverse health 

outcomes. However, this meta-analysis, as well as that of Grontved and Hu (2011), relied solely 

on self-reported measures of sedentary behavior, which is likely to have poor validity (Clark et al., 

2009); highlighting the need to utilize objective measures of sedentary behavior (e.g., 

accelerometers, inclinometers, etc.) in future large population-based studies.  

Ford and colleagues (2012) examined the associations between self-reported screen time 

and sitting time and fatal and non-fatal CVD. Twelve relevant studies were included that met the 

following criteria: prospective design, report incidence or mortality from CVD as an outcome, 

report data on adults ≥18 years of age, and specifically assess sedentary behavior (screen time and 

sitting). Meta-analyses of the dose-response relationships for screen time or sitting time were 

conducted. This study found that compared with the lowest levels of sedentary time, risk estimated 

ranged up to 2.25 for the highest level of screen time and 1.68 for the highest level of sitting time, 

even after adjusting for physical activity. For six studies that measured screen time and CVD, the 

summary HR per 2 hour increase was 1.17 (95% CI: 1.13-1.20), while the summary HR per 2 hour 

increase of sitting time was 1.05 (95% CI: 1.01-1.09), albeit this summary HR was based on two 

studies of sitting time. Limitations of the current study include the limited number of prospective 

studies examining the link between various forms of sedentary behavior and risks of fatal or 

nonfatal CVD, as well as the self-reported assessment of sedentary time.  

Biswas and colleagues (2015) quantified the association between sedentary time and 

hospitalizations, CVD incidence and mortality, and T2D incidence in adults independent of 

physical activity.  Forty-four studies (prospective, cross-sectional and case-control study designs) 

were included that provided statistical effects relevant to the meta-analyses on CVD incidence and 

mortalities (551,366 participants) and T2D incidence (26,700 participants), while only one study 
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examined the association between sedentary time and hospitalizations. All included studies were 

primary research studies that assessed sedentary behavior in adult participants as a clear predictor 

variable, independent of physical activity and correlated to at least 1 health outcome. Studies that 

assessed the effects of varying physical activity intensities were included, as long as they also 

correlated a measure of sedentary behavior with an outcome. The study’s primary exposure was 

overall sedentary or sitting time (hours per week or hours per day) and odds ratios, RR ratios, and 

HRs with associated 95% CIs were collected from studies for each outcome, if available. 

Significant HR associations were found with CVD mortality (HR, 1.150 [CI, 1.090 to 1.410]), 

CVD incidence (HR, 1.143 [CI 1.002 to 1.729]), and T2D (HR, 1.910 [CI, 1.642 to 2.222]). These 

findings demonstrated that sedentary time (assessed as either daily overall sedentary time, sitting 

time, TV or screen time, or leisure time spent sitting) was independently associated with a greater 

risk for CVD incidence or mortality and T2D in adults, even after statistical adjustment for physical 

activity. Moreover, this study found that HRs associated with sedentary time and outcomes were 

generally more prominent at lower levels of physical activity than at higher levels. A strength of 

this study is the exclusive focus on studies that adjusted for physical activity, which enhanced that 

precision in the estimated independent effect sizes of associations between sedentary time and 

outcomes. However, limitations existed in the noticeable heterogeneity in research design and the 

assessment of sedentary time and physical activity, with all but 1 study used self-reported methods 

to measure patterns of sedentary behavior and physical activity.  

Ekelund and colleagues (2016) examined the associations of sedentary behavior and 

physical activity with CVD mortality as a secondary analysis. Sixteen studies were included in the 

meta-analysis, with nine studies including data on the associations between sedentary time (daily 

sitting or TV viewing time) and physical activity with CVD mortality (n=849.108, number of 
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deaths=24,481). Data on exposure variables were harmonized based on predefined criteria and 

categorized into four groups for sedentary behaviors (0 to < 4 hour/day, 4 to <6 hours/day, 6-8 

hour/day, and > 8 hour/day) and quartiles for physical activity (Quartile 1: 2.5 Met-hour/week; 5 

min/day of MVPA; Quartile 2: 16 MET-hour/week; 25-35 min/day of MVPA; Quartile 3: 30 

MET-hour/week; 50-65 min/day of MVPA; Quartile 4: 35.3 MET-hour/week; 60-75 min/day of 

MVPA). Compared to those in the lowest sedentary/most active group (i.e., < 4 hour/day and 

highest quartile of physical activity), CVD mortality rates were 23-74% higher in the two lowest 

quartiles of physical activity. However, daily sitting was not associated with increased CVD 

mortality in the most active quartile of physical activity (HR [95% CI]= 1.07 [0.96, 1.20]). The 

findings from this study demonstrated that across sitting time categories, all-cause mortality was 

considerably reduced at higher levels of physical activity, while eliminated in those who were most 

active. These findings are in conflict with the findings of those from Biswas and colleagues (2015), 

however Biswas and colleagues did not directly compare the joint effects of different, specified 

levels of physical activity and sitting time, to investigate the different amounts of sitting time and 

physical activity in relation to CVD mortality.  

Pandey and colleagues (2016) determined the categorical and quantitative dose-response 

association between sedentary time and CVD risk. Nine relevant prospective cohort studies with 

720, 425 unique participants (Male (%) = 24.9; mean age=54.5 yrs) and 25,769 unique 

cardiovascular events and a median follow up of 11 years were included that met the following 

criteria: had a prospective cohort design that reported the association between baseline sedentary 

time and the risk for CVD incidence (i.e., coronary artery disease, nonfatal myocardial infarction, 

stroke, and CV-related mortality) after adjusting for physical activity among adults participants 

(i.e., ≥18 years of age at baseline). Median sedentary time duration for each sedentary time 
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category was estimated and assigned a corresponding HR for each study. Categorical and 

continuous dose-response analysis was performed in the current study, with total sedentary time 

as the exposure variable and incident atherosclerotic CVD as the primary outcome of interest. The 

median durations of the pooled highest, intermediate, and lowest sedentary time categories were 

2.5 (interquartile range[IR]: 1.5-2.9), 7.5 (IR; 6.6-7.6), and 12.5 (IR:9.5-13.8) hours, respectively. 

Categorical analyses revealed that, compared with the lowest sedentary time category, participants 

in the highest sedentary time category had an increased risk for CVD (HR, 1.14, 95% CI, 1.09-

1.19), albeit no apparent risk associated with intermediate levels of sedentary time were detected. 

Continuous analyses demonstrated a nonlinear association between sedentary time levels and CVD 

risk (p for nonlinearity < 0.001), with increased risk observed only at a sedentary duration greater 

than 10 hours per day (pooled HR, 1.08; 95% CI, 1.00-1.14). The nonlinear association between 

total sedentary time and CVD risk detected by Pandey and colleagues differs from the linear 

association between TV time and CVD risk observed by Grontved and Hu (2012), which may be 

attributed to differences in the measures of sedentary behavior and pooled HRs for CVD events 

used in each study. Similar to other meta-analyses, the current study is limited by the measurement 

errors in self-reported sedentary time and variability in the scale of sitting time across studies.  

 Patterson et al. (2018) estimated the strength and shape of the dose-response relationship 

between sedentary behavior and CVD mortality and incident type 2 diabetes, adjusted for physical 

activity.  Thirty-four prospective studies with 1,331,468 unique participants that reported 

associations between total daily sedentary time or TV viewing time and ≥ one outcome of interest 

were included, yielding a total of 8 exposure-outcome combinations. Findings revealed a nonlinear 

relationship between total sedentary behavior and CVD mortality (RR per 1 hour/day: 1.01 (0.99-

1.02) ≤ 6 hour/day; 1.04 (1.03-1.04) > 6 hour/day), after adjusting for physical activity. Stronger 
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nonlinear physical activity-adjusted associations were detected for TV viewing (hour/day) and 

CVD mortality (1.02 (0.99-1.04) ≤  4 hour/day; 1.08 (1.05-1.12) > 4 hour/day). Significant linear 

associations were detected between total sedentary behavior and T2D (1.01 (1.00-1.01)) and TV 

viewing and T2D (1.09 (1.07-1.12)). These results indicate that total sitting and TV viewing time 

are associated with greater risk for CVD mortality and T2D, independent of PA. For CVD 

mortality, is appears that a threshold of 6 hour/day of total sitting and 4 hour/day of TV viewing 

exists, suggesting that exceeding these thresholds can increase risk.  

 Ekelund and colleagues (2018) conducted the most recent meta-analysis, which examined 

whether the associations between sedentary behaviors and mortality from CVD differ by different 

levels of physical activity. Nine prospective cohort studies (n=850,060 participants, median 

follow-up=10.2 years; deaths=25,730) and five studies with data on TV-viewing time (n=458,127; 

median follow-up=8.5 years; deaths=12,230) were included, as they provided individual level data 

on both sedentary behaviors and effect estimated for CVD. Data on exposure variables were 

harmonized based on predefined criteria and categorized into four groups for sedentary behaviors 

(0 to < 4 hour/day, 4 to <6 hours/day, 6-8 hour/day, and > 8 hour/day) and quartiles for physical 

activity (Quartile 1: 2.5 Met-hour/week; 5 min/day of MVPA; Quartile 2: 16 MET-hour/week; 25-

35 min/day of MVPA; Quartile 3: 30 MET-hour/week; 50-65 min/day of MVPA; Quartile 4: 35.3 

MET-hour/week; 60-75 min/day of MVPA). The association between sitting time and mortality 

were separately examined for each of the quartiles of physical activity. Results indicated that a 

dose-response association between sitting time (9%-32% higher risk; p for trend <0.001) and TV 

time (3%-59% higher risk; p for trend < 0.001) with CVD mortality was detected in the lowest 

quartile of physical activity, while associations were less consistent in the second and third 

quartiles of physical activity. Furthermore, there was no increased risk for CVD mortality with 
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increasing sedentary behaviors in the highest (i.e., most active) quartile. The authors of this study 

concluded that physical activity modifies the associations between sedentary behaviors and CVD 

mortality. However, it cannot be ignored that the top quartile, wherein no association between 

sedentary behavior and CVD mortality was detected, vastly exceeds the current physical activity 

recommendations (i.e., 60-75 min/day of MVPA vs. 21.4 min/day). Given the dearth of U.S. adults 

that meet the current physical activity recommendations of 150 min/week of MVPA, it’s unlikely 

that individuals will obtain the volume of MVPA detected in this meta-analysis necessary to offset 

the deleterious consequences of sedentary behavior.          

The existing meta-analyses have greatly increased the awareness of the adverse effects of 

sedentary behavior on CVD morbidity and mortality. Biswas and colleagues (2015) were the first 

to take into account physical activity when examining the associations between total sedentary 

time and CVD outcomes, which became standard in the methods of subsequent meta-analyses (i.e., 

Pandey et al., Patterson et al., and Ekelund et al.). However, it should be noted that a majority of 

the studies included in these meta-analyses assessed sedentary behavior by questionnaire, with few 

studies (i.e., ≤ 3) using accelerometry to objectively measure sedentary behavior. A repeated 

limitation noted by the meta-analyses is the limited data on objectively measured sedentary time 

levels. Thus, the next section will review existing literature on the associations between objectively 

measured sedentary behavior and CVD specific mortality and morbidity.  

Original Research: Accelerometer-Measured Sedentary Behavior and CVD Morbidity and 

Mortality  

To date, only 2 population-based studies have reported on the association between 

accelerometer-measured sedentary time and mortality, including U.S. adults from NHANES and 

REGARDS. Findings from accelerometer-derived sedentary time and all-cause mortality from 
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NHANES have been reported in several separate analyses (Evenson, Wen, & Herring, 2016; 

Koster et al., 2012; Loprinzi & Sng, 2016; Matthews et al., 2016; Schmid, Ricci, & Leitzmann, 

2015), with only one study reporting on the associations of accelerometry-assessed physical 

activity and sedentary behavior with CVD mortality among U.S. adults (Evenson et al., 2016). 

Furthermore, only one study from REGARDS evaluated the association between accelerometer-

derived sedentary behavior (both its total volume and accrual in prolonged, uninterrupted bouts) 

and all-cause mortality, but did not look at CVD mortality (Diaz, Howard, et al., 2017). 

Evenson et al. (2016) explored the associations between physical activity and sedentary 

behavior with CVD mortality among a cohort of U.S. adults (n=3,809; average follow-up=6.7 

years, CVD deaths=107; mean age=55.3 years; Male (%)=45.4) from the 2003-2006 NHANES 

study. MVPA (≥760 cpm), LIPA (100-759 cpm), and sedentary behavior (<100 cpm) were 

measured with a hip-worn ActiGraph accelerometer for 7 consecutive days. Sedentary behavior 

was expressed as total volume (min/day), sedentary bouts (≥30 minutes with at least 80% of the 

minutes falling below <100 cpm), and percent of the day spent in sedentary behavior (%) and split 

into quartiles for analyses. Participants were included in the analysis if they wore the accelerometer 

for ≥8 hours on ≥3 days. CVD mortality was defined based on cardiovascular deaths coded as 

International Classification of Disease-10 100-199 and no adults had congenital heart defects as 

their primary cause of death from the National Death Index provided by the National Center for 

Health Statistics, which recorded deaths through December 31,2011. This study found that the 

associations of sedentary time or percent of day spent in sedentary time with CVD mortality was 

not sustained after adjusting for LIPA and MVPA, as well as potential mediators (e.g., age, gender, 

race/ethnicity, etc.) (Highest quartile vs. lowest quartile of sedentary time: HR (95% CI)= 1.46 

(0.72, 2.93); p=0.55; Highest quartile vs. lowest quartile of percent of day in sedentary time: HR 
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(95% CI)=1.14 (0.42, 3.06); p=0.22). Interestingly, when compared with persons from the lowest 

quartile, those in the second quartile of sedentary bouts had lower risks of CVD mortality in the 

fully adjusted model (adjusted HR [95% CI]=0.46 [0.21-1.00]), albeit this association disappeared 

when those with CVD were included in the analyses. Authors of this study concluded that no 

consistent associations between accelerometer-assessed sedentary behavior (average time, bouts, 

or percent of day) and CVD mortality were observed, which may be attributed to inherent study 

limitations (e.g., short follow-up time, imperfect LIPA and MVPA cutpoints, and inability of 

accelerometer to detect postures, potentially misclassifying standing as sedentary behavior).  Thus, 

future research is needed to understand the association between accelerometer-measured sedentary 

time and CVD mortality.  

Moreover, limited data are available describing the effects of sedentary time on CVD 

morbidity, such as chronic myocardial injury. Harrington and colleagues (2017) evaluated the 

association between accelerometer-measured sedentary time and markers of chronic subclinical 

myocardial injury (i.e., high-sensitivity assays for cardiac troponin T and I) among individuals 

from the Dallas Heart Study, a longitudinal, multi-ethnic population-based probability sample of 

Dallas County residents. Sedentary time (<100 cpm) and MVPA (>1500 cpm) were assessed using 

a wrist-work Actical™ (Phillips Respironics, Bend OR) device for 7 days. Using thawed frozen 

samples, high-sensitivity assays for cardiac troponin T and I were measured with appropriate 

assays. This study found that sedentary time was strongly and inversely correlated with MVPA, 

and moderately correlated with cardiac troponin T and I . However, multivariable linear regression 

analyses revealed that associations between sedentary time and both cardiac troponin T and I 

remained significant after adjusting for select covariates and MVPA. These findings suggest that 

the association between increased sedentary time and chronic myocardial injury may be 
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independent of relevant confounders and MVPA (Harrington et al., 2017). Moreover, Kulinski and 

colleagues (2016) investigated with association between accelerometer measured sedentary 

behavior and coronary artery calcium (CAC), a measure of subclinical atherosclerosis, using data 

from the Dallas Heart Study (n=2,031 with valid accelerometer data [≥4 days wear] and CAC; 

mean age±SD= 50±10 years; Male (%)= 38). Sedentary time and MVPA were assessed and 

classified the same as previously described. After multivariable adjustment of traditional CVD risk 

factors, socioeconomic factors, and MVPA, each additional hour of sedentary time was 

significantly associated with a 12% higher odds of having subclinical atherosclerosis in 

participants without known CVD (OR [95% CI]=1.12 [1.02-1.23]; p=0.017).  Additional studies 

evaluating the adverse effects of sedentary behavior on cardiometabolic health outcomes are 

described in sections below. 

Proposed Physiological Pathways that Link Sedentary Behavior to Cardiovascular Disease 

Although strong evidence exists to support the SED-CVD link, the underlying mechanisms of 

this deleterious relationship have yet to be fully elucidated. Understanding the biological 

mechanisms that underlie the associations between prolonged sitting and adverse health outcomes 

is necessary to identify the exact causal nature of these relationships. Based on the sedentary 

behavior research to date, the strongest evidence exists for impaired glucose regulation, 

hyperlipidemia and endothelial dysfunction as potential pathways that link sedentary behavior to 

CVD.  

Impaired Glucose Regulation  

 

Impaired glucose regulation is an important cardiovascular risk factor, such that chronic 

hyperglycemia can lead to type 2 diabetes and CVD. Regular ingestion of high-calorie meals rich 

in processed carbohydrates can lead to transient exacerbated postprandial spikes in glucose, which 
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can promote an inflammatory milieu conducive for the development of atherosclerosis and CVD 

(Ceriello et al., 2008; O'Keefe & Bell, 2007). The main cellular mechanism responsible for 

reducing postprandial blood glucose levels and regulating whole body glucose homeostasis is 

insulin-stimulated transport of glucose from the blood into skeletal muscle (Huang & Czech, 

2007). The principle glucose transporter protein that facilitates this uptake is GLUT4, which 

resides within the cytoplasm of adipose and skeletal muscle cells in the form of vesicles. When 

stimulated, GLUT4 will translocate to the cell surface and allows passive diffusion of glucose 

molecules into the cell. GLUT4 can be stimulated by both insulin via insulin receptor signaling 

and skeletal muscle contraction, which is independent of insulin. GLUT4 recruitment to the cell 

surface of muscle and adipose cells can be stimulated by both insulin and skeletal muscle 

contraction.  

Regarding skeletal muscle contraction, studies have shown that increased skeletal muscle 

contraction via light- and moderate-intensity physical activity can reduce postprandial glucose and 

insulin levels (Bailey & Locke, 2015; Benatti & Ried-Larsen, 2015; Dunstan, Kingwell, et al., 

2012). In contrast, decreased skeletal muscle contractile activity reduces the translocation of 

GLUT4 to the cell surface, which impairs clearance of postprandial glucose (Richter & 

Hargreaves, 2013). This link was initially proposed from a series of rodent studies conducted by 

Booth and colleagues (Booth, Chakravarthy, Gordon, & Spangenburg, 2002).  These researchers 

used wheel lock models, which involved restricting habitual or voluntary activity to cage 

movement only for up to 7 days. These studies found that a rapid decrease in insulin-stimulated 

glucose transport was reported within 2 days of wheel lock and reduced activity (Kump & Booth, 

2005). This reduction in insulin-stimulated glucose transport was linked to reduced activation of 

the insulin-signaling pathway and reduced GLUT4 protein content. Moreover, fewer skeletal 
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muscle contractions may result in lower insulin sensitivity and less glucose-stimulated insulin 

secretion due to impairments of pancreatic beta-cell function, both which negatively impact 

glucose regulation (Healy, Matthews, et al., 2011). Since prolonged sedentary behavior promotes 

muscle inactivity, these animal studies provide a foundation to reveal a molecular pathway that 

may link sedentary behavior to CVD. Therefore, it has been proposed that prolonged sedentary 

behavior confers CVD risk, in part, through impaired glucose regulation.  

In addition to animal studies, population-based, observational studies provided a 

foundation to support impaired glucose regulation as a pathway that contributes to the sedentary 

behavior-CVD link. Initial findings from the 2004 to 2005 Australian Diabetes, Obesity and 

Lifestyle Study (AusDiab) reported that accelerometer derived sedentary time was adversely 

associated with blood glucose levels, even when accounting for MVPA (Healy, Dunstan, et al., 

2008; Healy, Wijndaele, et al., 2008). Healy and colleagues (2008) showed that adults from the 

AusDiab study whose sedentary time was accumulated in prolonged, uninterrupted periods had a 

poorer cardiometabolic health profile compared to those who frequently interrupted their sedentary 

time. These findings pioneered the concept that both the total volume and the pattern in which 

sedentary time is accumulated is important for metabolic health. Findings from the 2003 to 2004 

and 2005 to 2006 population-representative U.S. National Health and Nutrition Examination 

Survey (NHANES) study found that total sedentary time was detrimentally associated with insulin, 

beta-cell function (HOMA-%B), and insulin sensitivity (HOMA-%S), while breaks in sedentary 

time were beneficially associated with fasting plasma glucose levels (Healy, Matthews, et al., 

2011). These findings complement and build upon those from the AusDiab study, albeit NHANES 

comprised a much larger (n=4,757 vs. n=169) and more racially/ethnic diverse population. Recent 

findings from the 2008 to 2011 Hispanic Community Health Study/Study of Latinos (HCHS/SOL) 
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showed that accelerometer-measured sedentary time accumulated in prolonged, uninterrupted 

bouts was detrimentally associated with glycemic biomarker, independent of MVPA, albeit not 

independent of total sedentary time (Diaz, Goldsmith, et al., 2017). These findings suggest that 

total sedentary time and prolonged, uninterrupted sedentary bouts are jointly associated with 

poorer glucose regulation among US Hispanic/Latino adults. Together, these epidemiological 

studies, among others not mentioned here, provide a foundation for experimental studies to further 

explore the deleterious consequences of prolonged sedentary time, which can provide confirmation 

and insight of mechanisms underlying the SED-CVD link.  

Over the past decade, numerous prospective experimental studies designed to evaluate the 

short-term effects of breaking up prolonged sitting with physical activity and/or standing on the 

cardiometabolic profile have been published (Benatti & Ried-Larsen, 2015). Dunstan and 

colleagues (2012) were the first to demonstrate that breaking up prolonged sitting reduces 

postprandial glucose and insulin responses when compared to prolonged, uninterrupted sitting. 

These researchers conducted a laboratory-based study among overweight/obese middle-aged 

adults and found that both insulinemic and glycemic responses to a liquid meal test were reduced 

after light- and moderate-intensity physical activity breaks (2 minutes in duration every 20 minutes 

for 5 hours post meal consumption) when compared to 7 hours of uninterrupted sitting (Dunstan, 

Kingwell, et al., 2012). Since then, multiple laboratory-based studies have been conducted and 

showed that glycemic benefits are detected when prolonged sitting is reduced or interrupted with 

intermittent bouts ranging from 1 min and 40 secs to 8 min of light- or moderate-intensity post-

meal physical activity (i.e. walking, cycling, etc.) at frequencies ranging from every 20 min to 

every 60 mins among active-healthy, overweight/obese-sedentary, and dysglycemic populations 



 

143 
 

(Bailey & Locke, 2015; Duvivier et al., 2013; Latouche et al., 2013; Newsom, Everett, Hinko, & 

Horowitz, 2013; Peddie et al., 2013; van Dijk et al., 2013).   

In regards to standing, there are mixed findings as to whether breaking up sitting time with 

bouts of standing is a sufficient stimulus to improve postprandial glucose and insulin responses 

(Bailey & Locke, 2015; Buckley, Mellor, Morris, & Joseph, 2014; Thorp et al., 2014). For instance, 

Thorp and colleagues (2014) found that alternating standing and sitting in 30 min bouts via a sit-

stand workstation significantly attenuated the postprandial glucose responses when compared to 

seated work posture in overweight/obese office workers. In contrast, Bailey & Locke (2015) found 

that breaking up sitting time with 2-minute bouts of standing every 20 minutes in a laboratory 

setting did not significantly improve postprandial glucose responses when compared to 

uninterrupted sitting in non-obese adults. Taken together, the current acute laboratory- or office-

based studies provide considerable evidence that prolonged, uninterrupted sitting has detrimental 

effects on glucose regulation, while breaking up prolonged sitting time has positive effects on 

metabolic health. However, the optimal type, intensity, and frequency or physical activity 

necessary to counteract the deleterious effects of prolonged sitting have yet to be established.  

Dyslipidemia   

Dyslipidemia, characterized by abnormal levels of cholesterol and/or triglycerides in the 

blood, is a strong risk factor for CVD (Nelson, 2013). Regular ingestion of high-calorie meals rich 

in saturated fat can lead to transient exacerbated postprandial spikes in lipids, which can eventually 

lead to chronic hyperlipidemia (O'Keefe & Bell, 2007). Hyperlipidemia promotes oxidative stress, 

arterial inflammation, endothelial dysfunction, which can facilitate the development of 

atherosclerosis (Ceriello et al., 2004). The main cellular mechanism responsible for reducing 

postprandial blood lipid levels is lipoprotein lipase (LPL). LPL is a rate-limiting enzyme involved 
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in the hydrolysis of triglyceride-rich lipoproteins, such as very low density lipoproteins (VLDL) 

and chylomicrons, and production of substrates needed for the maturation of high density 

lipoprotein (HDL) cholesterol (Beisiegel & Heeren, 1997; Bey, Areiqat, Sano, & Hamilton, 2001). 

Defects in LPL activity has been associated with blunted plasma triglyceride uptake and reduced 

HDL levels (Hamilton, Hamilton, & Zderic, 2007). As such, research has shown that low LPL 

activity is atherogenic.  

Dyslipidemia predominantly results from unhealthy lifestyle influences, such as poor 

composition of diet (e.g., high fat), smoking habits, and lack of exercise(Expert Dyslipidemia 

Panel of the International Atherosclerosis Society Panel, 2014). In regards to exercise, previous 

studies in both rats and humans have shown that exercise increases LPL activity and expression in 

the skeletal muscle (Hamilton, Etienne, McClure, Pavey, & Holloway, 1998). In contrast, 

decreased skeletal muscle contractile activity due to physical inactivity or extreme bed rest has 

shown to suppress LPL activity, blunt clearance of triglycerides, and reduce HDL levels (Hamilton 

et al., 2007). For instance, rat studies demonstrated LPL activity associated with microvasculature 

of the most oxidative muscles was lost within 1 day of inactivity when compared to controls, with 

decreases detected after ~4 hours of inactivity. The suppression of LPL activity observed with 

inactivity may be due to the upregulation of a gene other than LPL that rapidly switches off the 

functional LPL activity found on the capillary endothelium. In 1998, a human study examining the 

effects of 20 days bed rest on LPL activity found that LPL activity was decreased, followed by 

increased very low density lipoprotein (VLDL) triglycerides and decreased HDL in healthy 

participants (Yanagibori et al., 1997). Moreover, it appears that the cellular responses to inactivity 

and exercise for LPL regulation are qualitatively different, such that the magnitude of LPL 

suppression during inactivity after reducing standing/low-intensity ambulation was much larger 
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than the increase after adding exercise. Taken together, the reduced LPL activity observed with 

physical inactivity has provided a molecular foundation to propose hyperlipidemia as a potential 

pathway that links sedentary behavior to cardiovascular disease 

Although findings from animal models of physical inactivity are consistent, findings from 

human experimental studies examining the effects of breaking up prolonged sitting on fasting and 

postprandial plasma lipid responses are less consistent. Among healthy, young adults, normal-

weight adults, and overweight/obese adults, studies demonstrated that interrupting prolonged 

sitting time with regular walking bouts of different durations (i.e., 1 min 40 secs, 2 mins, 3 mins, 

etc.) every 15-30 mins or with intermittent standing bouts of different durations (i.e., 30 minutes, 

2 mins, etc.) every 30-45 minutes did not effectively lower postprandial triglyceride responses 

when compared to uninterrupted sitting (Bailey & Locke, 2015; Miyashita, Burns, & Stensel, 

2013; Miyashita et al., 2016; Peddie et al., 2013; Thorp et al., 2014). In contrast, Kim et al. (2014) 

found that intermittent bouts of light intensity walking of various durations (e.g., 20-60 mins) 

significantly reduced postprandial triglycerides and improved whole body fat oxidation when 

compared with prolonged, uninterrupted sitting in young healthy individuals (Kim, Park, 

Trombold, & Coyle, 2014). Moreover, Dempsey and colleagues found that 3 minute bouts of 

simple resistance exercises activating large muscles of the lower extremities every 30 minutes led 

to significant reductions in postprandial triglyceride responses compared to prolonged, 

uninterrupted sitting (Dempsey et al., 2016). These findings suggest that brief bouts of light 

intensity walking (e.g., <3 mins) and standing may not be a sufficient stimulus to enhance LPL 

activity, suggesting that longer bouts of LPA or different modes of exercise may be needed to 

attenuate postprandial lipemia.  
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Moreover, findings from Kim et al. (2014) and Phillips et al. (2017) found that continuous 

MVPA and VPA were more effective in lowering postprandial triglyceride levels than intermittent 

light-or moderate-intensity physical activity, respectively (Kim et al., 2014; Phillips, Dillon, & 

Perry, 2018). The inconsistencies between studies may be due to the different populations studied 

(i.e. healthy, young adults vs. type 2 diabetics), experimental designs (i.e., concurrent vs. next-day 

effects), meals (i.e., composition of macronutrients and content), highlighting the complex 

interplay these factors may have on lipid metabolism. Moreover, the discrepancies between 

animal/bed-rest studies and human studies where prolonged sitting was interrupted may be because 

the activity stimulus or the duration of studies was not sufficient to induce changes in lipid 

metabolism.  

Endothelial Dysfunction  

 

Endothelial dysfunction, an early pathogenic process underlying atherosclerosis, is a promising 

mechanism purported to be a contributing factor to the SED-CVD link (R. Ross, 1999; Versari, 

Daghini, Virdis, Ghiadoni, & Taddei, 2009). The sitting posture (the primary sedentary posture) 

promotes muscle inactivity of the lower extremities and changes in the angles at which the femoral 

and popliteal arteries run, causing bends within the arterial tree (Restaino, Holwerda, Credeur, 

Fadel, & Padilla, 2015). These physiological conditions elicit hemodynamic changes including 

blood pooling in the legs, decreased thigh and calf blood flow, and augmented turbulent blood 

flow in the deformed arterial segments (Delp & Laughlin, 1998; Padilla, Johnson, et al., 2009; 

Padilla, Sheldon, Sitar, & Newcomer, 2009; Restaino et al., 2015). For these reasons, it is thought 

that prolonged sitting confers CVD risk by  exposing the endothelium to a pro-atherogenic milieu, 

facilitating endothelial dysfunction over time (Hamilton et al., 2007; Thosar, Johnson, Johnston, 

& Wallace, 2012).  
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Over the past decade, experimental evidence from laboratory-based studies has shown that 

prolonged exposure to the sitting posture (e.g. from 1 to 6 hours) and episodes of reduced shear 

stress blights endothelial function in the leg vasculature, including both the femoral and popliteal 

arteries (McManus et al., 2015; Morishima et al., 2016; Morishima, Restaino, Walsh, Kanaley, & 

Padilla, 2017; Padilla & Fadel, 2017; Padilla, Johnson, et al., 2009; Padilla, Sheldon, et al., 2009; 

Restaino et al., 2015; Restaino et al., 2016; Thosar, Bielko, Mather, Johnston, & Wallace, 2015). 

For instance, Thosar and colleagues (2014) found that 3 hours of uninterrupted sitting impaired 

FMD and decreased mean and antegrade shear rates in the superficial femoral artery (SFA). 

Similarly, Restaino et al. (2016) found that 6 hours of prolonged, uninterrupted sitting impaired 

both microvascular dilator function (i.e., blood flow and velocity) and macrovascular dilator 

function (i.e., FMD) of the popliteal artery. However, both of these studies found that sitting-

induced vascular impairments were fully restored when sitting time was interrupted with 

intermittent light activity breaks (5 mins @ 2mph) or a 10-minute bout of walking. Moreover, 

Morishima and colleagues found that prolonged sitting-induced endothelial dysfunction in the 

lower extremities is preventable with small amounts of leg movement while sitting, such as 

fidgeting. Collectively, these studies demonstrated that prolonged, uninterrupted sitting reduce 

blood flow and shear stress, that ultimately leads to leg endothelial dysfunction, albeit the impaired 

vasculature can be can be attenuated with light muscular activity (e.g., light-intensity walking, leg 

fidgeting, etc.). 

One of the most important findings to support the endothelial dysfunction as a proponent in 

the SED-CVD link is that sitting-induced endothelial dysfunction is specific to the lower 

extremities, such that impaired FMD does not manifest in the upper extremities (Thosar, Bielko, 

Wiggins, & Wallace, 2014). Thosar and colleagues (2014) were the first to report that prolonged, 
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uninterrupted sitting resulted in impaired FMD of the lower extremities (i.e., femoral artery), but 

not the upper extremities (i.e., brachial artery). Likewise, Restaino and colleagues (2015) found 

that prolonged sitting reduced popliteal, but not brachial, artery FMD. It has been speculated that 

the lack of a sitting-induced impairment in brachial artery FMD may be because the brachial artery 

is more resilient to reductions in shear compared to arteries of the lower extremities and/or brachial 

artery FMD may not be a sensitive measure of systemic endothelial dysfunction during prolonged 

sitting. However, future research is needed to understand that leg specific sitting vasculopathy.  

Despite supportive experimental evidence for endothelial dysfunction being a potential 

contributing factor to the sedentary behavior-CVD link; such work is limited in that acute periods 

of sitting in the lab over a single day (or in most cases a few hours) is not indicative of chronic 

conditions. Furthermore, the control condition (uninterrupted sitting for hours at a time) does not 

have real world generalizability since few adults engage in such prolonged, uninterrupted 

sedentary periods during a typical day (e.g., workday). To date, the relationship between habitual 

sedentary behavior and markers of endothelial function have yet to be explored. Thus, 

observational studies are needed to determine whether inactive sitting (volumes and prolonged, 

uninterrupted bouts) throughout a typical sitting day are linked to impairments in the leg 

vasculature. Moreover, studies conventionally define endothelial dysfunction solely as an 

impairment in endothelial-dependent vasodilation. This narrow focus provides insight concerning 

only one aspect of endothelial function. Lab-based investigations have elucidated the upstream 

processes underlying endothelial dysfunction, which include endothelial cell injury and 

diminished endothelial cell reparative capacity, in addition to impaired endothelial-dependent 

vasodilation.  A comprehensive evaluation of endothelial function thus not only includes the 

assessment of endothelium-dependent vasodilation (EDV), but also cellular measures such as 
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circulating endothelial microparticles (EMPs) and circulating endothelial progenitor cells (EPCs) 

(Deanfield, Halcox, & Rabelink, 2007). 

In order to understand physiological changes or responses to sedentary behavior, it’s 

important to understand that physical inactivity and sedentary behavior-induced physiological 

changes have been studied under several different models and contexts. The approaches used to 

date include animal models, detraining, bed rest, imposed physical inactivity and prolonged sitting 

time. However, these experimental designs fail to address real world generalizability since few 

adults engage in such prolonged, uninterrupted sedentary periods and/or bed rest during a typical 

day (e.g., workday). Thus, Intervention studies conducted in real-world settings targeting the 

feasibility, acceptability and efficacy of reducing and breaking up occupational, transit and 

domestic sedentary time are needed.  However, future research examining the skeletal muscle 

regulatory pathways at the epigenetic, gene expression and protein level are needed to better 

characterize the mechanisms underlying the impact of prolonged sitting on cardio-metabolic risk.  

Measurement and Interpretation of Endothelial Dysfunction 

Endothelial cells form a single-cell lining covering the internal walls of blood vessels 

throughout the entire vascular system, also known as the endothelium (Alberts et al., 2002; Della 

Corte et al., 2016).  The endothelium is recognized as the key regulator of vascular wall 

homeostasis due to its critical role in preserving vascular tone, vascular permeability to plasma 

elements, platelet and leukocyte adhesion and aggregation, and thrombosis (Alberts et al., 2002; 

Barac et al., 2007; Poredos & Jezovnik, 2013). The endothelium is thought to have its largest effect 

on vascular tone (Poredos & Jezovnik, 2013), such that healthy endothelium releases a balance of 

endothelium-derived relaxing (i.e. nitric oxide, prostacyclin) and constricting (i.e. endothelin, 

vasoconstrictor prostanoids) factors, which preserves a relaxed vascular tone and low levels of 
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oxidative stress (Barac et al., 2007; Della Corte et al., 2016). The imbalance between endothelial-

dependent relaxing and constricting vasoactive substances inhibits the vasodilatory response, 

indicating the presence of endothelial dysfunction. Endothelium-dependent vasodilatation (EDV) 

represents the dynamic biology and vasomotor properties of the endothelium to maintain vascular 

tone through the synthesis and release of endothelial-derived vasoactive substances. An imbalance 

between vasodilating and vasoconstricting mediators can impair EDV, indicating the presence of 

endothelial dysfunction.  

Endothelial dysfunction is a pathophysiological condition characterized by a dysregulation of 

homeostatic mechanisms necessary to maintain healthy endothelium (Barac et al., 2007). 

Endothelial dysfunction is associated with abnormal modulation of vascular tone, platelet 

activation, thrombosis, leukocyte adherence, increased oxidative stress, vascular inflammation and 

atherosclerosis (Barac et al. 2007, Della Corte et al., 2016). Thus, impairments in endothelial 

function precede the development of atherosclerosis and contributes to the configuration, 

progression and adverse complications of atherosclerotic plaque (Barac et al., 2007; R. Ross, 

1993). In addition to its role in the pathogenesis of atherosclerosis, endothelial dysfunction is an 

independent risk factor of future cardiovascular events in patients with stable ischemic heart 

disease (Halcox et al., 2002) and in patients with acute coronary syndromes (Fichtlscherer, Breuer, 

& Zeiher, 2004). The endothelium’s role in the complex and highly regulated network of 

physiological mechanisms necessary to maintain vascular homeostasis, as well as the adverse 

health effects of endothelial dysfunction, highlights the importance of endothelial function 

assessment.  

Invasive and Noninvasive Techniques 
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Over the past three decades, both invasive and noninvasive techniques have been 

developed to measure endothelial dysfunction via the assessment of EDV. Such testing requires 

pharmacological and/or physiological stimulation of the endothelium to activate the release of 

endothelial-derived vasoactive factors, which was first observed from the pioneering studies of 

Furchgott and Zwadzki. In the early 1980s, these researchers developed a method to assess 

endothelial function by means of local infusion of acetylcholine on the vessels of the coronary 

circulation of animals (i.e., rabbit, dog, etc.) (Furchgott & Zawadzki, 1980). The results from these 

experiments demonstrated that acetylcholine triggered the release of nitric oxide (NO) from 

vessels with intact endothelium, eliciting vasodilation. In 1986, Ludmer and colleagues applied 

the same intracoronary infusion technique, as well as measured vessel diameter change with 

quantitative coronary angiography, in human coronary arteries in situ. This study found that 

vasoconstriction occurred in subjects with atherosclerotic coronary arteries, while vasodilation 

occurred in healthy subjects, demonstrating that this technique can be used to detect endothelial 

dysfunction in humans (Ludmer et al., 1986). These studies laid the foundation for endothelial 

function testing, as well as offered insight to the molecule mechanisms underlying EDV. 

Due to the relationship between human coronary and peripheral circulations, the invasive 

method of intracoronary infusion has been applied to the brachial artery. As such, intracoronary 

and intrabrachial infusion of vasoactive substances, which are both invasive techniques, are 

denoted the “gold standard” method for early detection of endothelial dysfunction (Tousoulis, 

Antoniades, & Stefanadis, 2005). Although optimal from a methodological standpoint, these 

invasive techniques are not entirely feasible due to their high costs, burden to the participant, and 

inability to be used in large-scale studies and asymptomatic subjects, such as children and young 

adults at risk for cardiovascular disease.  
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To offset the limitations of invasive techniques, noninvasive methods with comparable 

results and good reproducibility have been developed to measure endothelial function. In order to 

assess EDV, most noninvasive techniques measure vascular reactivity of the conduit arteries (i.e., 

radial, brachial, femoral) in response to reactive hyperemia, which is the transient increase in blood 

flow to an organ following ischemia (Dhindsa et al., 2008). Noninvasive techniques developed to 

evaluate vascular reactivity include flow-mediated dilatation, changes in pulse wave velocity 

between the brachial and radial arteries, reactive hyperemia index assessed by fingertip peripheral 

arterial tonometry (PAT) via the EndoPAT™, temperature rebound and skin reactive hyperemia 

index. Of these techniques, flow-mediated dilatation (FMD), which was developed in 1992 by 

Celermajer and colleagues, is considered the “gold standard” noninvasive method for clinical 

research on conduit artery endothelial dysfunction (Flammer et al., 2012). Thus, an understanding 

of the measurement and interpretation of FMD is essential to comprehend vascular 

pathophysiology and its clinical implications in relation to endothelial dysfunction.  

Flow-Mediated Dilatation 

Measurement and Analysis  

FMD is a noninvasive, ultrasound-based technique designed to assess conduit artery 

vascular function in the systemic circulation (Celermajer et al., 1992). FMD is based on the 

principle that increased blood flow in an artery via reactive hyperemia causes an increase in shear 

stress parallel to the long axis of the vessel, which triggers generation of endothelial derived 

vasoactive mediators (i.e. nitric oxide), resulting in arterial vasodilation (Doshi et al., 2001; 

Raitakari & Celermajer, 2000). The ability of the endothelium to modify its biosynthetic activity 

in response to the shear stress is measured by the change in the diameter of the target conduit artery 

(i.e. brachial, radial, femoral, etc.) via ultrasound imaging (Barac et al., 2007, Raitakari & 
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Celermajer, 2000). Thus, accurate baseline and reactive hyperemia measurements of the target 

conduit artery must be obtained to assess and interpret FMD results. 

To ensure an accurate baseline assessment of the arterial diameter and blood flow, subjects 

should rest in a temperature controlled (22-24ºC), quiet room and in the position (i.e. supine, prone, 

seated, etc.) in which the study will be performed for at least 20 minutes (Corretti et al., 2002, 

Harris et al., 2010). While resting, the transducer of the ultrasound machine is placed in the 

longitudinal plane above the anatomical location necessary to identify a clear image of the target 

conduit artery (e.g., above the antecubital fossa for brachial artery; proximal to the popliteal fossa 

for the popliteal artery). Once a segment with well-defined anterior and posterior intimal surfaces 

between the lumen and vessel wall of the target artery is identified, baseline measures of the artery 

diameter and blood flow velocity are taken for at least one minute (Eskurza, Seals, DeSouza, & 

Tanaka, 2001; Flammer et al., 2012). After baseline measurements are taken, vascular occlusion 

occurs, and reactive hyperemia measurements are obtained.    

Briefly, a blood pressure cuff is placed distal to the ultrasound probe and inflated for 5 minutes 

to occlude blood flow, creating an area of ischemic tissue distal to the site of occlusion. After the 

5-minute period of ischemia, the cuff is deflated, and measurements of the target artery diameter 

and blood flow velocity are taken with the ultrasound transducer for a total of 3 minutes (180 

seconds). This 3-minute period is known as the post-ischemia and/or reactive hyperemia period. 

Blood flow measurements are taken during the first 45 seconds of the reactive hyperemia period 

(0:00-0:45) to obtain peak blood flow and shear stress.  Conduit artery diameter measurements are 

obtained immediately after the 45 seconds post-ischemia until the end of the assessment (0:45-

3:00; 135 seconds) to capture peak arterial diameter. These measurements are taken in this order 

because the peak blood flow velocity occurs within the first 15 seconds post-ischemia, while peak 
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vasodilation is expected to occur 45 to 80 seconds post-ischemia, with these times differing 

between populations (Black, Cable, Thijssen, & Green, 2008). The shear rate over time is 

calculated using the Area Under the Curve (AUC), quantifying the accumulated shear stress that 

contributed to the FMD response (Pyke & Tschakovsky, 2007). It should be noted that the reactive 

hyperemia shear stress induced by the temporary vascular occlusion is the primary stimulus for 

FMD (Celermajer et al., 1992). Thus, the temporal kinetics of arterial diameters and blood velocity 

measured via the duplex mode on the ultrasound system during reactive hyperemia are crucial for 

overall FMD analyses.   

After baseline and reactive hyperemia measurements are obtained, FMD analyses are 

conducted using edge detection software and calculations. Traditionally, FMD is calculated as a 

percentage of change in the vessel caliber (Corretti et al., 2002), reflecting the arterial vasodilatory 

response to reactive hyperemia in relation to the baseline diameter (FMD%=[peak diameter-

baseline diameter]/baseline diameter) (Harris, Nishiyama, Wray, & Richardson, 2010). More 

recently, due to potential mathematical bias and varying reactivity of smaller vs. larger vessels 

(Pyke & Tschakovsky, 2005), baseline diameters, absolute change in diameter and shear rate 

(AUC) are presented in addition to FMD percentage (Harris et al., 2010). Since FMD is triggered 

by shear stress, evidence suggests that FMD should be normalized by dividing the percentage of 

FMD by shear rate (AUC) (Harris et al., 2010). However, debate exists as to which method 

optimally normalizes FMD for shear stress (Atkinson et al., 2009). It is important to note that each 

diameter (i.e. baseline and reactive hyperemia) and blood flow measurement (i.e. blood flow 

velocity, reactive hyperemic flow, and hyperemic shear stress) via ultrasound contribute to overall 

FMD analyses, highlighting the significance of proper equipment and technique needed for this 

method. 
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Interpretation and Application  

In regard to interpretation, the magnitude of dilatation (i.e., FMD%) reflects the 

endothelium-dependent vasodilator function, serving as a surrogate marker of endothelial 

dysfunction and vascular health. Results from previous studies examining the clinical utility of 

FMD consider endothelial function to be “normal” if FMD is greater than 10% and “impaired” if 

FMD is less than 10%. As such, a FMD<10% is thought to indicate the presence of endothelial 

dysfunction (Modena, Bonetti, Coppi, Bursi, & Rossi, 2002; Vogel, 1997). Moreover, a recent 

meta-analysis found that a 1% decrease in FMD was associated with a 13% change in 

cardiovascular risk, independent of the group studied. However, multiple review studies have 

established that FMD values vary widely between studies, ranging from -1.9-19.2%, and overlap 

between populations (i.e., healthy, coronary artery disease, diabetes mellitus, etc.), hindering the 

utility of FMD reference values and interpretation (Bots, Westerink, Rabelink, & de Koning, 

2005). The variability in the FMD values may be due to technical measurement controversies, such 

as cuff placement, occlusion pressures, occlusion duration, and ultrasound techniques (Celermajer, 

2008). As such, different iterations of the FMD protocol are employed across different laboratories 

(i.e., subject preparation, cuff placement, length of vascular occlusion, etc.). For instance, if the 

environmental conditions of the room are not regulated, the FMD results can be influenced and 

potentially reflect a false negative due to a transient state vs. true pathology. Moreover, small 

changes in cuff placement can modify the endothelial-derived vasoactive substances contributing 

to the FMD response (i.e., NO vs. prostaglandins vs. hyperpolarizing factor). Thus, there is a need 

to standardize FMD protocols across laboratories to ensure meaningful and comparable results. 

Moreover, intra- and inter-observer variability, as well as time-dependent reproducibility of FMD 

are important to report because the outcome of each measurement is highly operator dependent.  
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Regarding clinical application, numerous studies demonstrated that FMD% serves as a 

strong indicator of cardiovascular disease in both diseased and healthy populations (Thijssen et al., 

2011). For instance, previous population-based studies demonstrated that FMD% is an 

independent predictor of future events and survival in patients with established CVD or CVD risk 

(Lieberman et al., 1996; Mitchell et al., 2004). FMD% has also shown to be an independent risk 

factor for future CVD in healthy men and women, potentially exceeding the predictive values of 

traditional risk factors. A recent study examining the correlations between endothelial function 

assessed by FMD and severity of coronary artery disease (CAD) demonstrated that FMD% > 10 

reliably rules out obstructive CAD and FMD < 10% predicts the presence of CAD (Sancheti, Shah, 

& Phalgune, 2018). This study further stratified FMD% values and found that FMD < 6% predicts 

obstructive CAD, while FMD 6-10% predicts the presence of CAD but non-obstructive. These 

findings confirm the clinical utility of FMD in clinical populations. However, it’s important to 

note that the prognostic role of FMD is based primarily on FMD derived from the brachial artery, 

as there are no existing data pertaining to the prognostic role of FMD derived from the popliteal 

and femoral arteries. Thus, future studies are needed to better interpret FMD results of the lower 

extremities.  

Strengths & Limitations 

Although FMD is considered the gold standard for noninvasive assessment of endothelial 

dysfunction in clinical research, this method has both strengths and limitation. The strengths of 

FMD include this technique’s validity and reproducibility relative to other noninvasive methods, 

epidemiological and clinical applications, and the ability to evaluate conduit artery endothelial 

biology across different populations and age groups (i.e., children, young adults, older adults). 

This technique can also be used in large-scale studies, contributing to vascular epidemiology. FMD 
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is also a strong predictor of cardiovascular events in patients with established CVD and is an 

endothelial function assessment recommended by the Brachial Artery Reactivity Task Force.  

Although FMD presents numerous strengths, limitations do exist. First, the ultrasound 

technique is difficult to perform and requires a highly trained sonographer. Second, due to the 

sophisticated equipment and trained technician needed to conduct each test, FMD can be 

expensive, hindering the feasibility of this technique to be used in the general public. Important to 

note is that other reviews consider FMD to be inexpensive and refer to its low cost as an advantage; 

highlighting inconsistencies in how researchers view the strengths and limitations of this method. 

Third, the normalization of FMD for shear rate is under debate. Last, FMD gives insight to only 

one aspect of endothelial dysfunction (i.e. EDV), which doesn’t take into account the complex 

nature of endothelial dysfunction (e.g., regulation of thrombosis and fibrinolysis, endothelial cell 

injury and repair, etc.).  

Controversies 

In addition to the strengths and limitations of FMD as a tool to measure endothelial 

function, controversies exist on this methods validity, generalizability, and assessment. In regards 

to validity, previous studies demonstrated that FMD is endothelium-dependent and mediated by 

NO in the radial, brachial, and superficial femoral arteries of humans, but not in other deep or 

smaller arteries (i.e., posterior tibial, popliteal, deep femoral, etc.) (Joannides et al., 1995; 

Kooijman et al., 2008). These findings suggest that vessel type and size may influence the relative 

contribution of NO to vascular reactivity, such that endothelial NO synthase differs throughout the 

arterial tree (Laughlin, Turk, Schrage, Woodman, & Price, 2003; Shimokawa et al., 1996). 

Therefore, the mediation of vasodilation may differ between conduit arteries, making this 

technique only valid for large superficial arteries in humans. Additionally, different 
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methodological approaches have shown to limit FMD’s validity as a clinical research tool for 

endothelial function.  

Regarding generalizability, controversy exists with the doctrine that FMD responses 

obtained at the brachial artery can be generalized to other vascular beds throughout the circulation. 

The concept that brachial artery FMD represents a “barometer” of systemic endothelial function 

is due to previous research reporting associations between brachial artery FMD and coronary artery 

vasomotor function. As a result, most studies measure brachial artery FMD to evaluate endothelial 

dysfunction. However, atherosclerotic lesions are distributed nonuniformly throughout the 

vasculature, with the lower limbs demonstrating a higher incidence of clinical vascular disease and 

claudication. Moreover, a plethora of studies over the past decade have demonstrated that upper 

and lower limb vasculatures demonstrate different vasomotor responses to shear and 

pharmacological vasoactive substances in humans. For instance, Thijseen and colleagues (2011) 

were the first to demonstrate that there was no correlation between brachial and superficial femoral 

artery FMD or between brachial and popliteal artery FMD. These data suggest that conduit artery 

vasodilator of the upper extremities is not predictive of that in the lower extremities. However, this 

study was conducted among young, healthy subjects, which may limit their results, such that 

subjects with cardiovascular risk factor or with endothelial dysfunction may have revealed a 

relationship between vasomotor properties of the lower and upper extremities. These findings have 

since been confirmed, albeit most studies were conducted in laboratory settings, include young, 

healthy subjects, and have shown transient effects. Given the nonexistent relationship between 

FMD of the conduit arteries in the upper and lower limbs, future studies should avoid generalizing 

brachial artery FMD as a systemic index of endothelial function in other vascular beds among 

healthy adults.  
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In regard to FMD assessment, uncertainty exists as to whether FMD should be normalized 

for shear stress and whether the current normalization methods appropriately reflect endothelial 

biology. Support for normalizing FMD for shear stress is based on the physiological and 

mechanistic basis that increased shear stress is the physiological stimulus for FMD. However, 

numerous factors can influence the physiological and mechanical transduction of shear stress into 

conduit artery dilation, such as arterial stiffness, blood viscosity, blood flow patterns and/or 

methodological variations. The uncertainty on normalizing FMD stems from the inconsistencies 

reported in the literature about the relationship between FMD and shear stress. For instance, the 

Framingham Heart Study found that local brachial artery shear stress at baseline and during 

reactive hyperemia were strongly associated with brachial artery FMD, as well as CVD risk factors 

(i.e. pulse pressure, obesity, fasting glucose, etc.) in their Offspring Cohort (n=2,045). These 

findings suggest that the shear stress response should be considered when interpreting the brachial 

artery dilatory response detected by FMD. In contrast, Dhindsa and colleagues (2008), among 

other studies, found that FMD was not significantly associated with reactive hyperemia or 

hyperemic shear stress, possibly due to the microvascular function involved with reactive 

hyperemia vs. macrovascular function detected by FMD. These conflicting results suggest that 

methods other than FMD, such as PAT, may be needed to understand the underlying physiology 

of peripheral micro-and macrovascular reactivity and its implications for endothelial function in 

healthy, at risk and diseased populations.  

Other Endothelial Function Measures  

Reactive Hyperemia Index 

Since the beginning of the 21st century, abnormalities in pulse wave amplitude (PWA) in the 

peripheral vessels have been considered an independent marker of endothelial dysfunction (Kuvin 
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et al., 2003). Given the ability to measure PWA with noninvasive techniques, peripheral arterial 

tonometry (PAT) was developed to assess PWA during reactive hyperemia with the goal to 

noninvasively study peripheral vascular endothelial function (Kuvin et al., 2003, Schnall et al., 

1999). PAT utilizes finger plethysmograph to measure changes in pulse wave amplitude (PWA) 

in response to reactive hyperemia. A most common name used for this technique is reactive 

hyperemia peripheral arterial tonometry (RH-PAT) and the most common device is called the 

EndoPAT 2000 (Itamar Medical, Caesarea, Israel). 

RH-PAT measures changes in pulse wave amplitude (PWA) in response to reactive hyperemia. 

Reactive hyperemia is induced using the same methods described for FMD. However, instead of 

using a Doppler ultrasound machine, the EndoPAT 2000 device is used to measure changes in 

peripheral arterial tone.  In order to do so, the EndoPAT 2000 uses finger plethysmography, which 

measures peripheral arterial tone from changes is PWA detected by pneumatic cuff probes placed 

on one finger of each hand (Bonetti et al., 2004). The pneumatic cuff encapsulates the middle 

finger of both hands and evaluates digital volume changes with each pulse wave (Kuvin et al., 

2003). PWA measurements are recorded continuously before, during and after cuff deflation. An 

algorithm built in the EndoPAT 2000 analyzes the data and computes the reactive hyperemia index 

(RHI). RHI is the ratio of average PWA during the one-minute period after cuff deflation to the 

average pulse wave amplitude during 210-seconds baseline period (Kuvin et al., 2003).  

Numerous studies have been conducted to show that RH-PAT is correlated with endothelial 

function, as well as other measures of endothelial function. For instance, RHI moderately 

correlates with endothelial vasodilator function in the coronary arteries (Bonetti et al., 2004) , and 

with brachial flow-mediated dilation (Kuvin et al., 2003). In regard to physiological mechanisms 

of endothelial function, pulse wave amplitude changes to RH-PAT compared to baseline have been 
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shown to be NO-dependent, suggesting that PAT is a true measure of endothelial function (Martin 

et al., 2012, 10). However, there is evidence to suggest that FMD and EndoPAT™ reflect different 

aspects of vascular function in selected vascular beds and vessel size, suggesting that FMD and 

PAT measure different aspects of the hyperemic response. For instance, FMD measures the 

dilation capability of the large conduit arteries (i.e. brachial, femoral, radial), whereas PAT 

measures flow response hyperemia, which is related to endothelial function of the small arteries 

and microcirculation (Poredos & Jezovnik, 2013). Regardless, a systematic review and meta-

analysis revealed that both FMD and RH-PAT significantly predicted cardiovascular events 

(adjusted relative risk [95% CI]: 1% increase in FMD 0.88 [0.84–0.91], P<0.001, 0.1 increase in 

natural log transformed RHI 0.79 [0.71–0.87], P<0.001), with similar prognostic magnitude 

(Matsuzawa, Kwon, Lennon, Lerman, & Lerman, 2015). Based on these findings, RH-PAT may 

be an accurate operator independent tool to identify patients with coronary microvascular 

endothelial dysfunction (Barac et al., 2007).  Further research is needed to determine if RH-PAT 

is feasible and effective in cardiovascular risk stratification.  

Endothelial Microparticles  

In recent years, endothelial microparticles (EMPs) have emerged as a novel biomarker 

that provides valuable information about the biological status of the endothelium because they 

represent a direct measure of EC injury. Previous studies indicate that peripheral EMPs expressing 

CD62E+ are phenotypic for EC activation, and EMPs expressing CD31+ are indicative of EC 

apoptosis (Bernal-Mizrachi et al., 2003; Garcia et al., 2005; Joaquin J Jimenez et al., 2003). Jenkins 

and colleagues (2013) were the first to provide in vivo experimental evidence that disturbed blood 

flow in the distal forearm acutely induced endothelial activation and apoptosis in humans, as 

reflected by release of microparticles from activated (CD62E+) and apoptotic (CD31+/CD42b-) 
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endothelial cells. Thus, one would hypothesize that the sustained reduction of shear stress during 

sitting would result in elevated circulating EMPs. To further elucidate the influence of reduced 

shear stress on endothelial cell injury, Navasiolava et al. (2010) used a model of extreme physical 

inactivity and found that circulating EMPs indicative of endothelial apoptosis (i.e., CD31+/CD42b- 

EMPs) were significantly elevated following 7 days of dry water immersion, with no changes in 

plasma concentrations of soluble CD62D protein (Navasiolava et al., 2010). Similarly, but with a 

more modest physical activity reduction approach, Boyle and colleagues (2013) found that 

reducing daily physical activity by taking <5,000 steps/day and refraining from planned exercise 

led to significant elevations in CD31+/CD42b- EMPs, with no alterations detected in CD62E+ 

EMPs (Boyle et al., 2013). These authors hypothesized that the lack of increase in CD62E+ EMPs 

and soluble CD62D protein may be because this marker is only expressed and released from 

endothelial cells when they are in an inflamed state (Boyle et al., 2013; J. J. Jimenez et al., 2003; 

Krogh-Madsen et al., 2010). 

Endothelial Progenitor Cells 

Bone marrow-derived EPCs are important biomarkers to evaluate when examining endothelial 

dysfunction because they are capable of EC repair and regeneration,(Adams et al., 2004; Mobius-

Winkler, Hollriegel, Schuler, & Adams, 2009; Umemura & Higashi, 2008; Urbich & Dimmeler, 

2004) indicating that endothelial function represents a balance between EC injury and repair. 

Detraining and inactivity have shown to play a role in reducing the vascular regenerative capacity 

of EPCs, which might suggest that chronic exposure to a sedentary life style may be associated 

with lower percentage of EPCs among adults (M. D. Ross, Malone, & Florida-James, 2016; 

Witkowski et al., 2010). Moreover, a reduced number of circulating EPCs are associated with 

traditional risk factors and the presence of atherosclerosis(Jevon, Dorling, & Hornick, 2008; 
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Mobius-Winkler et al., 2009; Werner et al., 2005), as well as predicts an increased occurrence of 

CVD events and death from cardiovascular causes.(Werner et al., 2005) 

According to Fadini et al. (2008), CD34 and KDR display an overlapping expression on stem 

cells and endothelial cells. CD34 and KDR are expressed on primary hemangioblast islets in the 

yolk sac mesoderm during early embryonic vasculogenesis, suggesting that CD34+KDR+ cells 

could be immature cells with endothelial priming (Pelosi et al., 2002). Although, CD34+KDR+ 

cells may represent putative EPCs or post-natal hemangioblast, the CD34+KDR+ phenotype may 

overlap in part with that of mature endothelial cells because CD34 is also expressed on some 

microvascular endothelia. Of the putative EPC phenotypes, CD34+KDR+ produces the highest cell 

counts and is the only phenotype to repeatedly and convincingly be demonstrated as an 

independent predictor of cardiovascular outcomes (Fadini et al., 2008).    

Although CD34+KDR+CD133+ and CD133+KDR+ phenotypes of EPCs may be more specific, 

reduced CD34+KDR+ EPCs have been associated with the earliest anatomic sign of atherosclerotic 

remodeling, increased intima-media thickness, in healthy subjects independently of CRP and 

Framingham risk score (Fadini et al., 2012, Fadini et al., 2006, Chironi et al., 2007). Moreover, 

Schmidt-Lucke et al. (2005) found that a CD34+KDR+ EPC level below the median value was 

associated with a higher incidence of composite CV end point suggestive of atherosclerotic disease 

progression (Fadini et al., 2012). Werner et al. (2005) found that CD34+KDR+ EPCs were 

predictive of a first major cardiovascular event, independent of potential confounders (Fadini et 

al., 2012). According to a review by Fadini and colleagues (2012), the CD34+KDR+ antigenic 

combination appears to be the best EPC phenotype in terms of sensitivity, specificity and reliability 

to quantify EPCs in the clinical setting.  

Future Directions 
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Methods used to assess endothelial function should be safe, noninvasive, reproducible, 

repeatable, affordable, and standardized between laboratories. Based on the existing literature and 

evidence, it appears that the measurement of endothelial function with FMD via ultrasound meets 

most of these requirements, but improvements are needed with standardization. Future studies 

should confirm the validity and reproducibility of FMD in large clinical series, as well as isolate 

and examine within and between subjects’ relationship between shear rate and FMD. The limited 

literature on FMD as a valid measure in small, deep arteries suggest that further work is needed to 

determine to role of NO in mediating FMD responses in these types of arteries. Most importantly, 

endothelial function assessment should reflect the complex biology of the endothelium throughout 

the natural history or atherosclerotic disease, suggesting that FMD assessment alone may not be 

sufficient to capture the dynamic endothelial biology. Thus, future studies should include 

simultaneous measurements of cellular (i.e., endothelial microparticles, endothelial progenitor 

cells, etc.), microvascular (i.e., PAT via EndoPAT), and macrovascular (FMD) assessments to 

fully capture the multifaceted nature of endothelial function.  

Conclusion 

Overall, multiple techniques, both invasive and noninvasive in nature, have been developed 

to measure and interpret endothelial dysfunction. Based on the existing literature and evidence to 

date, intracoronary infusion of vasoactive substances and FMD are considered the gold standard 

invasive and noninvasive methods to assess endothelial dysfunction, respectively. Given the 

limitations of invasive techniques, FMD is widely used in clinical research. FMD had proven to 

be a powerful predictor of future CVD is asymptomatic men and women, as well as an independent 

predictor of future CVD events and survival in patients with existing CVD. The validity and 

reliability of FMD are controversial when compared to invasive methods, but superior when 
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compared to other noninvasive techniques. Overall, FMD appears to be a valuable noninvasive 

technique to evaluate endothelial dysfunction via EDV, but future research is needed to improve 

the validity, standardization and interpretation of this technique. 
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APPENDIX B 

EndoPAT™ Protocol  



 

183 
 

Endothelium-dependent vasodilation  

Background. Endothelium-dependent vasodilation will be assessed by a peripheral arterial 

tonometry (PAT) device (EndoPAT™2000). The EndoPAT™2000 is a small, portable device 

that is approved by the FDA for endothelial function testing. The EndoPAT™2000 non-

invasively measures the endothelium-mediated alterations in vascular tone in peripheral arterial 

beds. The PAT probe is attached to a pressure transducer and through it to the central processing 

unit, which records the amplitude of each pulse wave as a continuous tracing, providing a 

measure of the micro-arterial smooth muscle tone in the fingertip. To induce reactive hyperemia, 

the BP cuff located on the non-dominant forearm is inflated for 5 minutes to whichever 

occlusion pressure is higher: 200 mmHg or 60 mmHg plus systolic BP. After the 5-minute 

occlusion period, the cuff is deflated, while PAT recording continues. 

RHI will be quantified using the Framingham algorithm calculated as the ratio of the average 

amplitude of the PAT signal over a 90-120 second post deflation period after cuff deflation 

divided by the average amplitude of the PAT signal of a 2-minute period before cuff inflation 

(resting).  RHI values from the study arm are normalized to the control arm. RHI is the primary 

measure of endothelial-dependent vasodilation in this study.  

 

Protocol for EndoPAT™ set up: 

1. Switch on: 

a. Laptop (password: [personal profile password entered]) 

b. EndoPAT™2000 device (at least 20 minutes prior to use) using on/off 

switch found on the back panel of the device towards the bottom.  The power 

indicator light will glow orange, indicating that the power is turned on.    

c. Ensure USB-to-COM adaptor cable is connected to the USB port closest to 

the track pad of the computer. (COM24 was established and is automatically 

selected when using this specific USB port)    

d. Connect two new probes to the EndoPAT™2000 system connectors. 

e. Launch EndoPAT™2000 software by double clicking on the Endo-PAT2000 

icon found on the desktop.  

2. When Endo-PAT™2000 software is launched, the main screen will appear and an 

automatic COM port search and communication test with the device will be 

performed. Communication with the device using COM24 is automatically 

established if the USB-to-COM adaptor cable is connected to the proper USB port 

described above. 

a. If the software is unable to establish communication with the device, a COM-

port search dialog box will open. While the dialogue box is open the system 

continues trying to establish communication with the device, going through 

COM ports 1 to 10 in a cyclical manner. This continues until communication 

is established or “Work Disconnected” is selected.  

 

EndoPAT™ Connection: 
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1. RC takes two BPTru readings on the subject’s nondominant arm (one minute apart), 

calculates the average BP reading, and uses this average BP value to create the 

EndoPAT™ patient file as follows: 

1) Click on the ‘patient information’ icon on the tool bar or activate the Patient 

information dialog box from the Test Analysis menu.  

2) All mandatory fields must be completed in order to proceed to the next step. The field 

description is as follows: Enter Patient ID (Ex. PUME1234 [SID number]), Age, 

Gender, Systolic and Diastolic BP (use the average BP calculation from the initial 

BPTru readings), Height (ft/in) and Weight (lb). Although height and weight are 

required, these values are not used for data analysis.  Standard height and weight 

values can be entered for all subjects.    

3) Once the required fields are completed, click OK. The Patient Information dialog box 

will close. 

 

Note: The data acquired during a study session is automatically stored to the 

computer’s hard disk in the following location: Local Disk (C:) > Itamar-Medical > 

Data. This data will also be saved to the Columbia University Network P-drive and 

Pume USB drive in the locations specified in the ‘EndoPAT Data Analysis’ section 

below, once the session is completed.  

 

The file name of the stored data will correspond with the Patient ID initially entered 

and file type suffix: S32 (Ex. PUME1234.S32).  This data can be subsequently 

retrieved for off-line review and analysis.  

 

2. RC inserts intravenous catheter in the participant’s dominant arm. 

3. RC places EndoPAT™ arm-supports on tables along both sides of the participant and 

inserts the PAT probes inside the arm-support sockets. 

6. RC fully deflates the probes by pressing the deflate button on the device. 

7. RC places study fingers into the probes, making sure the fingers are inserted all the 

way to the end of the probe. 

a. RC instructs participant to fit wire against fingertip (underneath fingernail) 

i. The index finger is the recommended finger for the study; however if the 

index finger is too large to comfortably fit into the probe or is otherwise 

unsuitable, another finger (except the thumb) may be used, as long as it is 

the same finger in both hands 

8. RC inflates probes by pressing the Inflate button on the device or clicking on the icon. 

9. RC lifts the participant’s probed index finger out of the arm socket, removes the arm-

support, and places the participant’s hand on the side table.  Instructions provided to 

maintain the arm with the IV straight.    

10. A blue foam anchor ring is placed on the adjacent finger (middle finger) of the probed 

finger, as near as possible to the finger’s root.  

a. The anchors should be placed as far back as possible on the finger so that they do 

not come in contact with the PAT probe (such contact may result in mechanical 

artifacts during recording). 
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11. RC pulls back the tubing stemming from the anchor and tapes it to the hand’s dorsal 

surface, ensuring probes and foam anchor are free of contact with any object, 

including the supporting surface. 

12. RC instructs the patient to refrain from moving the fingers to the extent possible. 

13. RC tapes the participant’s arm with the IV to the arm board.  

14. The EndoPAT™  BP cuff is applied snuggly, without excess pressure, on the  

      non-dominant forearm and left deflated.  

15. RC selects Standby Mode on the EndoPAT™ system, confirms PAT signals, and  

adjusts amplitude and time settings for a clear visual display of signals.   

      Note: On standby mode, data is not being recorded.   

   

EndoPAT Recording: 

21. RC ensures correct placement of participant’s hands, checks PAT signals, sets timer, 

and presses “GO” on the EndoPAT™ computer to begin the EndoPAT™ Baseline 

Period (5 minutes) 

22. RC inflates blood pressure cuff to 250mmHg (or +60mmHg above systolic BP as 

determined by the BPTru rating at baseline) to begin the Occlusion Period (5 minutes) 

23. RC deflates blood pressure cuff to begin the Post-Occlusion Period (5 minutes) 

24. RC flags mood inductor in the control room and inductor confirms readiness by 

flagging RC back. 

25. RC notates end time of Post-Occlusion Period  

 

EndoPAT Data Analysis: 

 

1. Prior to data analysis for each timepoint, refer to the ‘EndoPAT Testing Data Collection’ 

case report form for progress notes highlighting any deviations or issues encountered 

during all five EndoPAT™ sessions conducted for each laboratory visit.  These forms can 

be found in the following location by subject ID #:  P:\Study Folders\PUME\CRFs 

2. To begin analysis, open the EndoPAT software and click on the ‘Open file’ icon found on 

the main screen tool bar to acquire data automatically stored for completed study 

sessions.    

3. A dialog box titled ‘Open S32 file’ appears displaying the ‘Data’ folder   

4. Select the desired study session file from the list (Note: file name will appear as 

PUME(SID#).S32, Ex: PUME7016.S32) and copy and paste into the: 

a) Columbia Network P Drive (P:) > Desktop > EndoPAT - Shortcut > 

COMPLETED LAB VISITS 2013-2014 > RAW DATA, and 

b) USB Drive (F:) > PUME > COMPLETED LAB VISITS 2013-2014 > RAW 

DATA 

5. Once the study session file has been saved in both locations, double click on the file to 

open and view results 
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6. Adjust amplitude and time settings for a clear visual display of signals 

7. Identify and manually mark the Occlusion Period, Artifacts, and Segments (Baseline and 

Test) 

a) Occlusion Period - Find the start occlusion point (the point at which baseline 

signals fluctuate), point the mouse and right click to select ‘Set Automatic 5 min 

Occlusion’ from the popup menu.  A five minute occlusion period will be marked 

in BLUE.  The end occlusion point selected can be adjusted by clicking and 

dragging to the point desired. 

b) Artifacts – Include PAT leaks and noise/mechanical artifacts, appearing as 

abnormal signal spikes, in the baseline and test periods. Artifacts must be marked 

prior to identifying baseline and test segments to ensure exclusion from data 

analysis. 

▪ Select an artifact by selecting and dragging the mouse horizontally and 

highlighting the segment.  Mark the artifact in YELLOW by clicking on 

the ‘Mark Segment as Artifact’ icon found on the toolbar.   

c) Baseline Segment - Two minute period directly before the occlusion period. 

▪ Highlight the segment by selecting and dragging the mouse horizontally 

from the start occlusion point to the left for a two minute period.  Mark the 

segment in GREEN by clicking on the ‘Mark Segment as Baseline’ icon 

found on the toolbar.   

d) Test Segment - 90-120 second post deflation period (i.e. starting 90 seconds 

after cuff deflation point and continuing for 30 seconds until 120 seconds after 

cuff deflation).   

▪ Identify the 90 second post deflation point by dragging the mouse 

horizontally, from the end occlusion point to the right, for 90 seconds.  At 

this 90 second mark, begin selection by selecting and dragging the mouse 

horizontally to the right for a 30 second period.  Mark the segment in RED 

by clicking on the ‘Mark Segment as Test’ icon found on the toolbar. 

Note: Manual selection of segments and artifacts providing automated PAT ratios must 

be performed and notated for each individual occlusion period.  The EndoPAT™ 

software will not save these automated calculations. There are a total of five occlusion 

periods conducted during every laboratory visit.   

8. Reactive Hyperemia Index (RHI) Analysis 

a) After the baseline and test segments are manually marked, their PAT ratios are 

automatically calculated and results are displayed on the right side of the screen 

as T/B1 (Probe 1) and T/B2 (Probe 2).   

▪ During recording, T/B1 (Probe 1) and T/B2 (Probe 2) must be identified 

as the test arm and control arm in order to calculate the RHI.  

Identification of arms is documented on the ‘EndoPAT Testing Data 

Collection’ case report form mentioned earlier.  
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▪ Formula used to calculate RHI is: Test Arm/Control Arm 

b) PAT ratios must be entered into Filemaker upon completion of EndoPAT™ 

analysis for all five timepoints. 

c) Standardized RHIs are automatically calculated when PAT ratios for test arm and 

control arm are entered into the Filemaker database for each laboratory visit. 

d) PAT ratios are also notated and documented in ‘EndoPAT Results and Analysis’ 

spreadsheet located in Columbia Network P Drive (P:) 

▪ P:\Study Folders\PUME\EndoPAT\COMPLETED LAB VISITS 2013-

2014\ RHI Data Analysis 
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APPENDIX C 

Endothelial Cell Transformations 

Report prepared on March 23, 2018 by William F. Chaplin and Ipek Ensari 

Overview 

 There are three measure of endothelial function that were the primary outcome variables, 

RHI, EMP CD62, and EPC CD34/KDR.  Of these the most well-established measure is RHI.  We 

began by assessing these variables distributional properties and transformed them as appropriate. 

Specifically, we began by assessing the data for outliers by the visual inspection of boxplots (see 

below).  If outliers were detected we winsorizing the data by changing the outlying values of the 

cases to the most extreme, but non-outlying value in the data set.  For all the cases on one tail of 

the distribution that were winsorizing we changed the values of an equivalent number of cases on 

the other tail using the same procedure even if those cases were not outliers.  Once the outliers had 

been winsorizing we then assessed the distribution for non-normality and undertook a further 

transformation (e.g. natural log, square root) to reduce the skewness.   

Transformations  

RHI:  The RHI data was not highly skewed, but did contain some outlying data points.  Across 

the 5 time points the skewness values are 1.13, .844, .905, 1.17, and 1.04. To reduce the impact of 

the outliers on the analyses we winsorized these data.  Specifically, at baseline, 3 minutes and 40 

minutes we identified one case at each time that had an outlying value of 6 and these values were 

winsorized.  For 70 and 100 minutes there were no clear outlying values so no winsorization 

performed.     

 Here is the boxplot of the original RHI data at baseline (the only time point used for current 

analysis): 
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EMP62: We began by using a standard correction factor of the EMP data which was to multiply 

each value by .91441.  We then assessed these corrected data for outliers and non normality.  For 

the baseline values 19 high scores were winsorized, at 3 minutes 14 high scores were winsorized, 

at 40 minutes, 14 scores were winsorized, at 70 minutes 14 were winsorized and at 100 minutes 

14 were winsorized.  Although the winsorizing reduced the skew, the data was still substantially 

non-normal with skewness values across the 5 time points of 4.73, 6.38, 5.30, 6.86, and 5.87, 

respectively. Thus, we further used a natural log transformation on the data. This transformation 

greatly reduced the skew to .649, .464, .443, .523, and .613.  

Here is the boxplot of the original EMP62 data at baseline: 

 
 

EPC CD34 KDR: We first applied a standard correction factor to the EPC data which was to 

divide each value by 20,000 which converts the raw data into a proportion of antibody/per 

20,000 cells.  We then assessed these data for outliers and winsorized 9 cases with high scores at 

baseline, and 19, 14, 8, and 29 at time points 2 through 5 respectively.  Again, winsorizing the 

data reduced, but did not eliminate the skewness.  The skewness values were 2.49, 1.96, 2.03, 

2.51, 1.70 across the 5 time points, respectively.  We performed a square root transformation on 

these data because 0 was a possible value.  These reduced the skewness to 1.22, 1.07, .992, 1.34, 

and .941 across the time points, respectively.    

Here is the boxplot for the raw EPC data at baseline: 
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APPENDIX D 

Mean Sedentary Time Estimate Equation 
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APPENDIX E 

Study One Instruments  
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PUMÉ 

Putative Mechanism Underlying Myocardial Infarction Onset and Emotions  

Endo-PAT Testing Data Collection 

 

Date: MM/DD/YY                      Subject ID: XXXX 

 

Age: _______ Room Temp: _______      Blood Pressure: _____________ 

Amplitude: ____________   Time:  ___________   Test Arm Probe: ___________  

Forearm Cuff Inflation Pressures 

Time Point 1: ________    Time Point 2: ________    Time Point 3: _________  

Time Point 4: ________  Time Point 5: ________  

Notes: 

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________

_______________________  

RHI Analysis:  

Time Point 1 = Test Arm = _____________ = __________________ 

    Ctrl Arm     

   

Time Point 2 = Test Arm = _____________ =  __________________ 

    Ctrl Arm 

 

Time Point 3 = Test Arm = _____________ =  __________________ 

    Ctrl Arm 

 

Time Point 4 = Test Arm = _____________ =  __________________ 

    Ctrl Arm 

 

Time Point 5 = Test Arm = _____________ =  __________________ 

    Ctrl Arm 
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APPENDIX F 

Study Two and Three Instruments 
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SF-12 
This survey asks for your views about your health.  This information will help keep track of how 
you feel and how well you are able to do your usual activities.  Thank you for completing this 
survey! 
 
For each of the following questions, please mark an  in the one box that best describes your 
answer. 
 
1.    In general, would you say your health is: 
 

Excellent Very good Good Fair Poor 
  1  2  3  4  5 

 
 
2. The following questions are about activities you might do during a typical day. Does your 

health now limit you in these activities?  If so, how much? 
 

  Yes, 
limited 

a lot 

Yes, 
limited 
a little 

No, not 
limited 
at all 

a  Vigorous activities, such as running, lifting  

heavy objects, participating in strenuous 
sports 

1 2 3 

b   Moderate activities, such as moving a 
table, pushing a vacuum cleaner, bowling, 
or playing golf 

1 2 3 

 

3. During the past 4 weeks, how much of the time have you had any of the following 
problems with your work or other regular daily activities as a result of your physical 
health? 

 
 All of 

the time 
Most of 
the time 

Some of 
the time 

A little 
of the 
time 

None of 
the time 

a  Accomplished less than you would 
like 

1 2 3 4 5 

b  Were limited in the kind of work or 
other  activities 

1 2 3 4 5 
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4. During the past 4 weeks, how much of the time have you had any of the following 
problems with your work or other regular daily activities as a result of any emotional 
problems (such as feeling depressed or anxious)? 

 

 All of 
the time 

Most of 
the time 

Some of 
the time 

A little 
of the 
time 

None of 
the time 

a  Accomplished less than you would 
like 

1 2 3 4 5 

b. Did work or other activities less 
carefully than usual 

1 2 3 4 5 

 
 

 
 

5. During the past 4 weeks, how much did pain interfere with your normal work (including 
both work outside the home and housework)? 

 
Not at all Slightly Moderately Quite a bit Extremely 

 1  2  3  4  5 
 

6. These questions are about how you feel and how things have been with you during the 
past 4 weeks.  For each question, please give the one answer that comes closest to the 
way you have been feeling.  How much of the time during the past 4 weeks... 

 

 All of 
the time 

Most of 
the time 

Some of 
the time 

A little 
of the 
time 

None of 
the time 

a.  Have you felt calm and peaceful? 1 2 3 4 5 

b.  Did you have a lot of energy? 1 2 3 4 5 

c.  Have you felt downhearted and 
depressed? 

1 2 3 4 5 

 
 
 
7.  During the past 4 weeks, how much of the time has your physical health  or emotional 

problems interfered with your social activities (like visiting friends, relatives, etc.)? 
 

All of the 
time 

Most of the 
time 

Some of the 
time 

A little of the 
time 

None of the 
time 

 1  2  3   4  5 
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Pittsburgh Sleep Quality Index (PSQI) 
 
Instructions: The following questions relate to your usual sleep habits during the past month 
only. Your answers should indicate the most accurate reply for the majority of days and nights in 
the past month. Please answer all questions. 
 
1. During the past month, when have you usually gone to bed at night? 

 USUAL BED TIME
  
 
2. During the past month, how long (in minutes) has it usually take you to fall asleep each night? 

 NUMBER OF MINUTES
  
 
3. During the past month, when have you usually gotten up in the morning? 

 USUAL GETTING UP TIME
  
 
4. During the past month, how many hours of actual sleep did you get, at night? (This may be 
different than the number of hours you spend in bed.) 
 HOURS OF SLEEP PER NIGHT
  
 
 
For each of the remaining questions, check the one best response. Please answer all questions. 
 
5. During the past month, how often have you had trouble sleeping because you… 

 (a) Cannot get to sleep within 30 minutes 
Not during the  Less than   Once or   Three or more 
past month   once a week  twice a week   times a week  

  
 (b) Wake up in the middle of the night or early morning 

Not during the  Less than   Once or   Three or more 
past month   once a week  twice a week   times a week  

 
 (c) Have to get up to use the bathroom 

Not during the  Less than   Once or   Three or more 
past month   once a week  twice a week   times a week  

 
 (d) Cannot breathe comfortably 

Not during the  Less than   Once or   Three or more 
past month   once a week  twice a week   times a week  

 
 (e) Cough or snore loudly 

Not during the  Less than   Once or   Three or more 
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past month   once a week  twice a week   times a week  
 
 (f) Feel too cold 

Not during the  Less than   Once or   Three or more 
past month   once a week  twice a week   times a week  

 
 (g) Feel too hot 

Not during the  Less than   Once or   Three or more 
past month   once a week  twice a week   times a week  

 
 (h) Had bad dreams 

Not during the  Less than   Once or   Three or more 
past month   once a week  twice a week   times a week  

 
 (i) Have pain 

Not during the  Less than   Once or   Three or more 
past month   once a week  twice a week   times a week  

 
 (i) Other reason(s), please describe: 
  
 
 
  
 

How often during the past month have you had trouble sleeping because of this? 
Not during the  Less than   Once or   Three or more 
past month   once a week  twice a week   times a week  

 
6. During the past month, how would you rate your sleep quality overall? 

 Very good  
 Fairly good 
 Fairly bad 
 Very bad 

 
7. During the past month, how often have you taken medicine (prescribed or "over the counter") 
to help 
you sleep? 

Not during the  Less than   Once or   Three or more 
past month   once a week  twice a week   times a week  

 
8. During the past month, how often have you had trouble staying awake while driving, eating 
meals, or 
engaging in social activity? 

Not during the  Less than   Once or   Three or more 
past month   once a week  twice a week   times a week  

 
9. During the past month, how much of a problem has it been for you to keep up enough 
enthusiasm to 
get things done? 

 No problem at all 
 Only a very slight problem 
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 Somewhat of a problem 
 A very big problem 

 
10. Do you have a bed partner or roommate? 

 No bed partner or roommate 
 Partner/roommate in other room 
 Partner in same room, but not same bed 
 Partner In same bed 

 
If you have a roommate or bed partner, ask him/her how often in the past month you have had... 
 
(a) Loud snoring 

Not during the  Less than   Once or   Three or more 
past month   once a week  twice a week   times a week  

 
(b) Long pauses between breaths while asleep 

Not during the  Less than   Once or   Three or more 
past month   once a week  twice a week   times a week  

 
(c) Legs twitching or jerking while you sleep 

Not during the  Less than   Once or   Three or more 
past month   once a week  twice a week   times a week  

 
(d) Episodes of disorientation or confusion during sleep 

Not during the  Less than   Once or   Three or more 
past month   once a week  twice a week   times a week  

 
(e) Other restlessness while you sleep: please describe 

Not during the  Less than   Once or   Three or more 
past month   once a week  twice a week   times a week  
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Beck Depression Inventory (BDI) 

This questionnaire consists of groups of statements. Please read each group carefully, then pick out the 
one statement in each group which best describes the way you have been feeling during the Past Week, 
Including Today. Indicate your choice by crossing (X) the appropriate number. If several statements in 
the group seem to apply equally well, cross each one that applies. Be sure to read all the statements in 
each group before making your choice. 

 
  

1 .    I  do not feel sad.  

   I  feel sad.  

   I  am sad a l l  the t ime and I  can' t  snap out of  i t .  

   I  am so sad or unhappy that I  can' t  stand i t .  

  

2  .    I  am not part icu lar ly d iscouraged about the future.  

   I  feel d iscouraged about  the future.  

   I  feel I  have noth ing to look forward to.  

   
I  feel that the future is  hopeless and that  th ings cannot  

improve.  

  

3.          I  do not feel l ike a fai lure.  

   I  feel I  have fa i led more than the average person.  

   As I  look back on my l i fe,  a l l  I  can see is a lo t of  fa i lure.  

   I  feel I  am a complete fai lure as a person.  
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4.          I  get as much sat isfac t ion out of  th ings as I  used to.  

   I  don' t  enjoy th ings the way I  used to.  

   I  don' t  get  real sat isfact ion out  of  anyth ing anymore.  

   I  am dissat isf ied or  bored wi th everyth ing.  

  

5.          I  don' t  feel part icu lar ly gui l t y.  

   I  feel gui l t y a good par t of  the t ime.  

   I  feel qui te gui l t y most  of  the t ime.  

   I  feel gui l t y a l l  of  the t ime.  

  

6.  I  don' t  feel I  am being punished.  

  I  feel I  may be punished.  

  I  expect to be punished.  

  I  feel I  am being punished.  

  

7.  I  don' t  feel d isappointed in myself .  

  I  am disappointed in myself .  

  I  am disgusted wi th myself .  

  I  hate myself .  
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8.          I  don' t  feel I  am any worse than anybody e lse.  

  I  am cr i t ica l of  myself  for  my weaknesses or  mistakes.  

  I  b lame myself  a l l  the t ime for my faults .  

  I  b lame myself  for  everyth ing bad that happ ens.  

  

9.          I  don' t  have any thoughts  of  k i l l ing myself .  

  
I  have thoughts of  k i l l ing myself ,  but  I  would not carry 

them out.  

  I  would l ike to k i l l  myself .  

  I  would k i l l  myself  i f  I  had the chance.  

  

10.  I  don’t  cry any more than usual.  

  I  cry more now than I  used to.  

  I  cry a l l  the t ime now.  

  
I  used to be able to cry,  but now I  can' t  cry even though I  

want  to.  

  

11.  I  am no more ir r i tated now than I  ever am.  

  I  get annoyed or ir r i ta ted more eas i ly than I  used to.  

  I  feel ir r i ta ted a l l  the t ime now.  

  
I  don' t  get  i r r i tated at  a l l  by the things that used to ir r i tate 

me. 
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12.  I  have not  los t interest  in  other  people.  

  I  am less interested in other  people than I  used to be.  

  I  have los t most of  my interest  in  other people.  

  I  have los t a l l  of  my interest  in  other people.  

  

13.  I  make dec is ions about as wel l  as  I  ever  could.  

  I  put of f  mak ing dec is ions more than I  used to.  

  I  have greater d if f icu l ty making dec is ions than before.  

  I  can ' t  make decis ions  at a l l  anymore.  

  

14.  I  don' t  feel I  look any worse than I  used to.  

  I  am worr ied that  I  am look ing old or  unat trac t ive.  

  I  feel that there are permanent  changes in my appearance 

that  make me look unattract ive.  

  I  bel ieve that  I  look ugly.  

  

15.  I  can work  about as  well  as before.  

  I t  takes extra ef for t  to get s tarted at  doing something.  

  I  have to push myself  very hard to do anyth ing.  

  I  can’ t  do any work  at a l l .  
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16.  I  can s leep as wel l  as  usual.  

  I  don’t  s leep as wel l  as I  used to.  

  I  wake up 1-2 hours  ear l ier  than usual and f ind i t  hard to 

get back to s leep.  

  I  wake up several  hours ear l ier  than I  used to and cannot 

get back to s leep.  

  

17.  I  don’t  get more t ired than usual .  

  I  get t i red more eas i ly than I  used to.  

  I  get t i red f rom doing a lmost anyth ing.  

  I  am too t ired to do anyth ing.  

  

18.  My appet i te  is  no worse than usual .  

  My appet i te  is  not  as  good as i t  used to be.  

  My appet i te  is  much worse now.  

  I  have no appeti te at  a l l  anymore.  

  

19.  I  haven' t  los t much weight,  i f  any late ly.  

  I  have los t more than 5 pounds.  

  I  have los t more than 10 pounds.  

  I  have los t more than 15 pounds.  
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a) Approximately when did the symptoms mentioned in questions 1 through 21 start?  
 _____ / _____ / _____   
 Month     Day      Year 
 
b) If participant answered “0” to questions 1 through 22, then check here:   N/A  
 
c) Have you ever received treatment for depression? ..........................................................  Yes 
 ..............................................................................................................................................  No 
 
d) Have you ever been diagnosed by a health care professional  
 with depression? ..............................................................................................................  Yes 

  No 
 
e) How many times in the past have you had a period of 2 or more weeks in  

which you had strong feelings of depression or sadness?  
  0-1   1-3   3-5   5 or more 
 
f) In the last month has there been a period of time when you were feeling so good, “high,”  
 excited, or hyper that other people thought you were not your normal self or you were so  
 hyper that you got into trouble? ........................................................................................  Yes 

..........................................................................................................................................  No 
 
g) Have you ever been diagnosed with manic depression  
 or bipolar disorder?  .........................................................................................................  Yes 

..........................................................................................................................................  No 

  

20. I  am purposely tr ying to lose weight by eat ing less.  

 NO         YES       

  

21.  I  am no more worr ied about  my health than usual.  

  I  am worr ied about  phys ical  problems such as aches and 

pains,  or  upset s tomach or const ipat ion.  

  I  am very worr ied about  phys ical  problems and i t 's  hard to 

th ink  of  much e lse.  

  I  am so worr ied about  my physical problems that  I  cannot  

th ink  about  anyth ing e lse.  

  

22.  I  have not  not iced any recent  change in my interest  in  sex.  

  I  am less interested in sex now.   

  I  am much less interested in sex now.  

  I  have los t interest in  sex compl ete ly.  
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BDI Question #9 Form 

 

Subject score on BDI item #9:      

Suicidal ideation ( > 1): No   Yes  (If YES, ask the following questions.) 
 
 1) Has pt considered and/or had access to any specific methods of suicide? ..................... No 
 Yes  

 2) Does pt want, intend, or plan to commit suicide in the near future? ................................. No 
 Yes  

 3) Has pt rehearsed or made preparations to carry out the plan? ........................................ No 
 Yes  

 4) Does pt have a history of past suicide attempt(s)? ........................................................... No 
 Yes  

 5) Are there additional circumstances that may add to the risk of attempting or  
 completing suicide? (e.g. current alcohol abuse, social isolation,  
 hopelessness, or crisis)......................................................................................................... No 

 Yes  
 
Psychologist/Psychiatrist Contacted:  No   Yes  

 _________________________________________________________  
(Psychologist’s Name) 
 
(_____) _____ - _____ 
 (Psychologist’s Phone #) 
Patient’s Physician Contacted:  No   Yes  

 _________________________________________________________   
             (Physician’s Name) 
(_____) _____ - __________  
(Physician’s Phone #) 
 
Diagnosis: __________________________________________________________________________  
 
 ___________________________________________________________________________________  
 
 ___________________________________________________________________________________  
 
Action Taken / Outcome: ______________________________________________________________  
 
 ___________________________________________________________________________________  
 
 ___________________________________________________________________________________  
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Comments: 

 

 

 

 

 

Staff Signature: _______________________ 

  

(22 Item Version, Last Week) 

Patient ID  Staff ID  
How 

Administered: 

patient         

interviewer  

Date (mo, da, yr): __ / __ / 20__ Time  __ : __ am   pm        

Suicidal Ideation (item 9  1) No  Yes  

Notified in case of suicidal ideation: 

 

 

 

 

 

 

Total Score 

 

if item 20 = 1 (yes), 
score 1 – 22 without 
the scores of item 
19 and 20. 

if item 20 = 0 
(no), score 1 
– 22. 

Item 20  

        = 0  

        = 1  

Total Score: 

 

___________ 
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APPENDIX G 

Institutional Review Board Documents  
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