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ABSTRACT

A Three-Paper Dissertation on Longitudinal Data Analysis in Education and

Psychology

Hedyeh Ahmadi

In longitudinal settings, modeling the covariance structure of repeated measure data is

essential for proper analysis. The first paper in this three-paper dissertation presents a survey

of four journals in the fields of Education and Psychology to identify the most commonly

used methods for analyzing longitudinal data. It provides literature reviews and statistical

details for each identified method. This paper also offers a summary table giving the benefits

and drawbacks of all the surveyed methods in order to help researchers choose the optimal

model according to the structure of their data. Finally, this paper highlights that even when

scholars do use more advanced methods for analyzing repeated measure data, they very

rarely report (or explore in their discussions) the covariance structure implemented in their

choice of modeling. This suggests that, at least in some cases, researchers may not be taking

advantage of the optimal covariance patterns. This paper identifies a gap in the standard

statistical practices of the fields of Education and Psychology, namely that researchers are

not modeling the covariance structure as an extension of fixed/random effects modeling. The

second paper introduces the General Serial Covariance (GSC) approach, an extension of the

Linear Mixed Modeling (LMM) or Hierarchical Linear Model (HLM) techniques that models

the covariance structure using spatial correlation functions such as Gaussian, Exponential,

and other patterns. These spatial correlations model the covariance structure in a continuous

manner and therefore can deal with missingness and imbalanced data in a straightforward

way. A simulation study in the second paper reveals that when data are consistent with



the GSC model, using basic HLMs is not optimal for the estimation and testing of the fixed

effects. The third paper is a tutorial that uses a real-world data set from a drug abuse

prevention intervention to demonstrate the use of the GSC and basic HLM models in R

programming language. This paper utilizes variograms (a visualization tool borrowed from

geostatistics) among other exploratory tools to determine the covariance structure of the

repeated measure data. This paper aims to introduce the GSC model and variogram plots

to Education and Psychology, where, according to the survey in the first paper, they are

not in use. This paper can also help scholars seeking guidance for interpreting the fixed

effect-parameters.
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PREFACE

This dissertation consists of three papers that are intended to be submitted to three

different journals. It therefore departs from the standard dissertation structure of sequen-

tial chapters. Each paper has its own abstract, table of contents, main body, discussion,

appendix, and references in accordance with Columbia University’s formatting guidelines.

The structure of the three papers may change upon submission to the respective relevant

journals, so readers interested in the most updated version of the three papers can contact

me for updated versions of the papers.
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ABSTRACT 

Paper 1: A Comprehensive Review of Methods for Analyzing Repeated 

Measure Data in Education and Psychology 

Hedyeh Ahmadi 

 

This paper presents a comprehensive review of longitudinal data analysis methods in both 

qualitative and quantitative formats. The qualitative review can help researchers find examples of 

methods of interest in the Education and Psychology literature. The quantitative survey and methods 

sections can help researchers to identify the most commonly used methods in specific journals and 

in these disciplines overall. For each journal, detailed statistical summaries, including frequency of 

each method, sample sizes, and number of repeated measurements per study, are provided as well. 

Recommendations are offered based on these observations that can improve the data collection and 

analysis methods in Education and Psychology research. The longitudinal methods are surveyed and 

broken down into two categories to demonstrate how many researchers continue to use traditional 

methods with rigid and unrealistic assumptions when advanced models can offer improved statistical 

properties and more realistic assumptions. To better understand the strengths and limitations of each 

method, this paper also presents a brief statistical methods section for every model reviewed. A 

summary table of all the reviewed methods is also presented to help scholars consider the pros and 

cons of each approach and select the optimal method. 
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A Comprehensive Review of Methods for Analyzing Repeated 

Measure Data 

1. Introduction to the Review of Longitudinal Data Analysis in Education and 

Psychology 

Longitudinal analyses are studies in which the response of the same individual is measured 

on multiple occasions (Fitzmaurice, Laird, & Ware, 2004). Therefore, the independent assumption 

of observations in longitudinal studies is violated. In modeling these types of data, the researcher 

needs to account for potential correlation within each subject’s measurement and between-subject 

heterogeneity. Assessing longitudinal data allows researchers to: 

1. Investigate changes of outcome(s) over time (i.e., whether/how individuals change 

over time) and their relations to study variables of interest,  

2. Examine interindividual similarities/differences (i.e., whether individuals’ 

respective changes are similar or different), 

3. Make claims about causal effects with a better statistical foundation than cross-

sectional studies allow for (Fitzmaurice et al., 2004; Gustafsson, 2010; Liang & 

Zeger, 1993). 

Although longitudinal studies offer more information than cross-sectional studies, there are 

challenges inherent in longitudinal data. These include:  

1. Population heterogeneity that leads to subject-specific deviations from the overall 

trend in response,  

2. Correlated errors of measurement due to close measurement intervals,  

3. Presence of missing data due to subjects not remaining for the entire study, 

4. Irregularly spaced measurement occasions due to dropout or different individuals’ 

availability,  
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5. An additional source of correlation caused by the clustering of individuals, such as 

in schools and classrooms (Gibbons, Hedeker, & DuToit, 2010; Verbeke, Fieuws, 

Molenberghs, & Davidian, 2014).  

To overcome the challenges of longitudinal data and accommodate the complications that 

may arise during data analysis, a variety of models has been introduced in the statistical literature 

during the last few decades (Verbeke et al., 2014). 

Over time, many different methods and models have been developed to address these various 

problems. However, methods addressing one problem may not address another problem, and 

methods developed in one field may predominate there while rarely being applied elsewhere. For 

this reason, this paper provides a review of methodological developments and models related to 

longitudinal models. To begin, the longitudinal research literature was reviewed in order to identify 

the commonly used methods for analyzing longitudinal data quantitatively. This literature included 

Liang and Zeger (1993); Muthén and Curran (1997); Verbeke and Molenberghs (2009); Diggle, 

Heagerty, Liang, and Zeger (2002); Menard (2002); Twisk (2003); Fitzmaurice, Laird, and Ware 

(2004); Molenberghs and Verbeke (2005); Hedeker and Gibbons, (2006); Gibbons, Hedeker, and 

DuToit (2010); Gustafsson (2010); and Verbeke, Fieuws, Molenberghs, and Davidian (2014).  

According to the results of the review, several analytical approaches were identified and 

categorized into two broad classes, namely, traditional versus advanced. Traditional techniques 

include paired t-test, analysis of covariance (ANCOVA), analysis of variance (ANOVA), regression 

analysis, derived variable approach, and repeated measures univariate/multivariate analysis of 

variance (RM ANOVA, MANOVA). More advanced analytical techniques include mixed effects 

modeling (including multilevel modeling, heterogeneity models, and generalized linear mixed 

models), marginal models using generalized estimating equations (GEE), conditional models 
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(specifically, the transition models), autoregressive models and latent growth curve modeling within 

the structural equation modeling (SEM) framework, mixture models, time series analysis, non-

linear, and non-parametric modeling. 

This review focuses on the fields of Education and Psychology. The categories developed 

above were used to classify relevant longitudinal studies in Education and Psychology (i.e., studies 

in which the dependent variable(s) have been quantitatively measured on the same subject(s) on two 

occasions or more, irrespective of the length of the study). Electronic searches of the analysis 

approaches for longitudinal data in Education and Psychology were then conducted via Google 

Scholar (DeGraff, DeGraff, & Romesburg, 2013; Martin-Martin, Orduna-Malea, Harzing, & 

Delgado López-Cózar, 2017) using the previous list of statistical methods in combination with terms 

such as education, psychology, repeated measures, and longitudinal data as key words. The search 

covered the period 2008 to 2018 (i.e., a period of 11 years). Identified studies were reviewed to 

determine whether they were in fact longitudinal studies and, if so, which methods were employed 

to analyze the longitudinal data. Studies conducted in disciplines other than Education and 

Psychology were excluded. Furthermore, because of restrictions in length, only a selection of these 

publications are examined in detail in the following review sections. 

According to this review, while longitudinal models arise frequently in Education and 

Psychology, and many different models are readily available, the decision to use one model over 

another is not often explicitly addressed or justified in the literature. The goal of this paper, therefore, 

is to both provide a review of current practices regarding longitudinal models and to identify the best 

methods available, highlighting those that are over- and under-used. The paper begins with a survey 

of longitudinal data analysis in four well-known journals in Education and Psychology. Then, for 

each statistical method, a general review of longitudinal data in Education and Psychology 
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publications is provided, followed by a section on the statistical details of each reviewed 

methodology.1 Finally, after reviewing these available methods, a summary table is provided in the 

discussion section which is intended to help researchers choose an appropriate model for their data. 

2. A Survey of Longitudinal Analysis Related Articles  

In order to investigate the gap between current practices (i.e., the most prominent analysis 

methods for longitudinal data) and all methods available in longitudinal research, a survey was 

conducted of relevant articles in the following journals: 

• Journal of Research on Educational Effectiveness (JREE), 

• Journal of Applied Psychology (JAP), 

• Developmental Psychology (DP), 

• Educational Evaluation and Policy Analysis (EEPA). 

The survey was conducted through each journal’s website. The length of the search (shown 

in the first column of Table 1) for each journal varied based on library access, number of articles 

identified, and duration of the journal’s existence (for example, JREE has been published since 

2008). For JAP, the length of search was set to be 30 years (1988-2018) in order to yield a sufficient 

number of articles. For JREE and JAP, the search was conducted on December 8, 2018. Due to the 

large number of articles available in DP and EEPA, the length of the search in each journal was set 

to the past 10 years (2010-2019). These searches were conducted on March 7, 2019. For all of the 

journals, the key word used for search was “longitudinal” (in all fields).  

Note that for JREE and JAP, all the searched articles were reviewed due to the small number 

of yielded articles. However, 650 articles for DP and 154 for EEPA fitted the search criteria. These 

                                                           
1 Note that the main reference(s) for each statistical method can be identified in Table 7 in the Discussion Section. The 

statistical notations for each method are heavily borrowed from these references. 
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articles were sorted by date in descending order (the most recent to the least recent) and numbered 

accordingly (from 1 to 650 for DP and from 1 to 154 for EEPA). Random numbers were generated 

in EXCEL using the function RAND(). Then the list was sorted ascendingly according to random 

numbers (smallest to largest). The first 100 articles for each journal were reviewed. The search 

results are presented in Table 1; note the wide range of terminologies for the same methods in these 

journals (e.g., multilevel modeling has been called Hierarchical Linear Modeling (HLM), random 

coefficient, Linear Mixed Modeling (LMM), etc.). 

For JREE, 90 articles were reviewed and 13 were determined not to be related to longitudinal 

analysis. The mixed-effects modeling approach (including HLM (N = 8, 10.4%), mixed-effects 

models (N = 7, 9.1%), and multilevel modeling (N = 17, 22.1%)) was the most popular analysis 

method utilized for longitudinal data, accounting for 41.6% (N = 32) of the analysis methods used. 

Among the 32 articles using mixed-effects modeling approaches, one article, Language and Reading 

Research Consortium by Arthur and Davis (2016), specified that the within-subjects error covariance 

matrix was modeled using an independence structure, and the remaining 31 articles did not mention 

what specific covariance structure(s) were utilized in their data analysis. Note that within the 31 

articles that did not specify what specific covariance structure(s) were utilized, three articles, 

including August, Branum-Martin, Cardenas-Hagan and Francis (2009); Long (2016); and Edmunds 

et al. (2017), had applied the Huber-White sandwich estimate to obtain cluster-robust standard 

errors.  

For JAP, 82 articles were reviewed and 7 were determined not to be related to longitudinal 

study. SEM-related approaches were the most popular analysis approach utilized for longitudinal 

data, accounting for 45.3% of the analysis methods used in JAP. There were 18 articles (24.0%) 

utilizing mixed-effects modeling approach (including HLM (N = 5, 6.7%), mixed-effects model (N 
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= 5, 6.7%), multilevel modeling (N = 4, 5.3%), and random-coefficients model (N = 4, 5.3%)). 

Among these 18 articles utilizing mixed effects modeling approaches, one article by Sitzmann and 

Ely (2010) had described in detail how the proper error structure of the random effects was identified. 

In particular, the error structure was compared against the following three covariance structures, 

including autoregressive and heterogeneous, first-order autoregressive, and unstructured (Sitzmann 

& Ely, 2010). The change in deviance statistics was used to choose which error pattern leads to an 

optimal fit. Sitzmann and Ely (2010) had chosen autoregressive and heterogeneous as the covariance 

structure used in the data analysis. The remaining 17 articles did not mention what specific 

covariance structure(s) were utilized in their data analysis. 

For DP, 100 articles were reviewed and 6 were determined not to be related to longitudinal 

study. SEM-related methods were the most popular analysis approach utilized for longitudinal data, 

accounting for 54.3% (N = 51) of the analysis methods used. There were 12 articles utilizing mixed-

effects modeling approaches (including HLM (N = 4, 4.3%), mixed-effects models (N = 3, 3.2%), 

and multilevel modeling (N = 5, 5.3%)). Even though the mixed-effects modeling approach was the 

second most popular method (tied with Linear Regression), none of the articles specified the 

covariance structure used in the analysis.  

For EEPA, 100 articles were reviewed and 20 were determined not to be related to 

longitudinal study. Mixed-effects modeling approaches (including HLM (N = 6, 7.5%), mixed-

effects models (N = 16, 20.0%), and multilevel modeling (N = 5, 6.3%)) were the most popular 

analysis method utilized for longitudinal data, accounting for 33.8% (N = 27) of the analysis methods 

used. Even though mixed-effects modeling was the most popular approach, none of the articles 

specified the covariance structure used in the analysis.  
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Journal 

Name 

Number of 

Relevant 

Articles 

Year Analysis Method Used 

JREE 77 2008-2018 - ANCOVA (6, 7.8%) 

- (Fuzzy) Regression discontinuity (3, 3.9%) 

- Hierarchical linear model (HLM) (8, 10.4%) 

- Linear regression (7, 9.0%) 

- MANCOVA / MANOVA / multivariate linear regression / 

repeated-measures ANOVA (5, 6.5%) 

- Mixed-effects models (7, 9.1%) 

- Multilevel modeling (17, 22.1%) 

- SEM-related (7, 9.1%) 

- Time-series analysis (1, 1.3%) 

- Power analysis (2, 2.6%) 

- Propensity score (5, 6.5%) 

- t-test (1, 1.3%) 

- Others (9, 11.7%) 

JAP 75 2009-2018 - Cox regression model (3, 4.0%) 

- Exponential random graph (ERG) model (2, 2.7%) 

- Hierarchical linear model (HLM) (5, 6.5%) 

- Linear regression (14, 18.7%) 

- Logistic regression (1, 1.3%) 

- Longitudinal Probit model (1, 1.3%) 

- Meta analysis (2, 2.7%) 

- Mixed-effects model (5, 6.7%) 

- Multilevel modeling (4, 5.3%) 

- Random coefficients model (4, 5.3%) 

- SEM-related (34, 45.3%) 

DP 94 Randomly 

chosen 

articles in 

2010-2019 

- ANCOVA (2, 2.1%) 

- Hierarchical linear model (HLM) (4, 4.3%) 

- Linear regression (12, 12.8%) 

- MANOVA (4, 4.3%) 

- Mixed-effects models (3, 3.2%) 

- Multilevel modeling (5, 5.3%) 

- Repeated measures ANOVA (4, 4.3%) 

- SEM related (51, 54.3%) 

- Paired t-test (1, 1.1%) 

- Others (8, 11.7%) 

EEPA 80 Randomly 

chosen 

articles in 

2010-2019 

- Difference-in-differences (DiD) analytical approach (5, 6.3%) 

- GEE (1, 1.3%) 

- Hierarchical linear model (HLM) (5, 6.3%) 

- Instrumental variables models (3, 3.8%) 

- Time-series analysis (2. 2.5%) 

- Logit model (i.e., Generalized Linear Mixed Model) (8, 10.0%) 

- MANOVA (1, 1.3%) 
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- Mixed-effects model (16, 20.0%) 

- Multilevel modeling (5, 6.3%) 

- Ordinary least squares (OLS) regression (6, 7.5%) 

- Qualitative data analysis (2, 2.5%) 

- Regression discontinuity (5, 6.3%) 

- SEM-related (1, 1.3%) 

- Time-to-event data analysis (3, 3.8%) 

- Two-stage least squares approach (2SLS) (3, 3.8%) 

- Value-added model (4, 5.0%) 

- Others (10, 12.5%) 

Table 1. Journal survey results 

In all of the surveyed journals, the mixed-effects modeling approach was among the top two 

methods used. While it is encouraging that researchers are using more advanced methods, in all but 

a few cases the covariance structure of the repeated measure data was not reported. This could mean 

that scholars are simply implementing the default methods in the programming language and might 

not be considering the assumptions that are applied to the structure of the repeated measure data in 

the background. 

As discussed in the next section, the same set of surveyed articles was used to identify the 

average sample size and number of time points in longitudinal studies in Education and Psychology. 

2.1.  Sample Size and Number of Repeated Measures for Reviewed Articles 

Further review of sample size and number of time points (i.e., number of repeated measures) 

was conducted for the articles published in JREE, JAP, DP, and EEPA. This information can help 

researchers to identify the disciplines’ norms for sample size and number of repeated measures. 

Identifying these norms is essential for several reasons, including when running simulation studies 

to test the properties of certain longitudinal models. 

For JREE, articles that were systematic reviews (N = 3), meta-analyses (N = 2), simulation 

studies (N = 1), related to power analysis (N = 2) or not related to longitudinal studies (N = 13) were 

not considered in this further investigation. One article that did not indicate sample size for the 
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archived data used, but did indicate the data sources, was also excluded in this investigation. The 

final number of articles in JREE reviewed for sample size and number of repeated measures was 68.  

For JAP, articles that were meta analyses (N = 2), or not related to longitudinal studies (N = 

7) were not considered in this further investigation. The final number of articles in JREE reviewed 

for sample size and number of repeated measure was 73.  

For DP, articles that were not related to longitudinal studies (N = 6) were not considered in 

this further investigation. The final number of articles in DP reviewed for sample size and number 

of repeated measures was 94.   

For EEPA, the following articles were not included in the further investigation for sample 

size: 

• Articles that were not related to longitudinal studies (N = 20),  

• One article that did not indicate sample size for the archived data used, but did 

indicate the data sources (N = 1), 

• One article for meta-analysis (N = 1), 

• One article that used four data sets to demonstrate formula for effect size 

computation (N = 1), 

• Articles that only provided information for total number of observations for the 

entire study period (e.g. 10 subjects observed four times, so total number of 

observations = 40) (N = 9). 

The final number of articles in EEPA reviewed for sample size was 68.  

 

 



15 
 

For EEPA, the following articles were not included in the further investigation for number 

of time points: 

• Articles that were not related to longitudinal studies (N = 20),  

• One article that did not specify number of time points used as “because this project 

focuses on college choice, I limit my data to American citizens or permanent 

residents who were accepted to at least two of the sampled colleges in the spring of 

2009” (N = 1), 

• One article that used four data sets to demonstrate formula for effect size 

computation (N = 1), 

• One article using meta-analysis (N = 1). 

The final number of articles in EEPA reviewed for number of time points was 77.  

Table 2 presents the descriptive statistics of sample size and number of time points for articles 

reviewed in JREE, JAP, DP, and EEPA. For JREE, the sample size of the articles ranged from 44 to 

1905147, with a median sample size of 1116; the number of time points for studies ranged from 2 

to 15, with a median number of repeated measures equal to 2. For JAP, the sample size of the articles 

ranged from 20 to 49242, with a median sample size of 458; the number of time points for studies 

ranged from 2 to 48, with a median number of repeated measures equal to 3. For DP, the sample size 

of the articles ranged from 18 to 38017, with a median sample size of 541.5; the number of time 

points for studies ranged from 2 to 17, with a median number of repeated measures equal to 3. For 

EEPA, the sample size of the articles ranged from 30 to 4109265, with a median sample size equal 

to 5832.5; the number of time points for studies ranged from 2 to 33, with a median number of 

repeated measures equal to 4. 
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Table 3 shows the frequency distribution of sample size and number of repeated measures 

for articles reviewed in JREE, JAP, DP, and EEPA. For JREE, sample sizes from 1001-10000 were 

the most commonly adopted (29.41%) in the articles reviewed. For JAP and DP, sample sizes from 

101-500 were the most commonly adopted (45.21%, 36.17%) in the articles reviewed. For EEPA, 

sample sizes of 10000+ were the most commonly adopted (39.71%) in the articles reviewed. For all 

the reviewed journals, the majority of the articles were studies with 2-5 time points (95.59% for 

JREE, 86.30% for JAP, 80.85% for DP, and 58.44% for EEPA).  

Figures 1 to 4 present the bar graphs of the results from Table 3 for easier visual inspection. 

These figures suggest that scholars either are not collecting a sufficient number of time points (i.e. 

repeated measures) or they are using the longitudinal data partially. This means literature in 

Education and Psychology can benefit from collecting more repeated measurements of the same 

units and/or from using all available time points when analyzing data longitudinally. If either 

procedure is implemented, researchers could then use more advanced methods with better statistical 

properties. Finally, although there exist small sample sizes (i.e. smaller than 30), the majority of 

sample sizes are in an acceptable range. 

Journal  Mean (SD) Median (Range) Min Max 

JREE Sample size 36464.10 (230975.34) 1116 (1905103) 44 1905147 

 Number of time points 3.13 (2.12) 2 (13) 2 15 

JAP Sample size 2050.33 (6342.26) 458 (49222) 20 49242 

 Number of time points 4.41 (6.26) 3 (46) 2 48 

DP Sample size 1974.96 (5586.46) 541.5 (37999) 18 38017 

 Number of time points 4.01 (2.36) 3 (15) 2 17 

EEPA Sample size 124092.10 (562955.10) 5832.5 (4109235) 30 4109265 

 Number of time points 5.90 (5.29) 4 (31) 2 33 

Table 2. Descriptive statistics of sample size and number of repeated measures for articles 

reviewed in JREE, JAP, DP and EEPA 
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  JREE 

𝑵𝑺𝒂𝒎𝒑𝒍𝒆𝑺𝒊𝒛𝒆 = 𝟔𝟖 

𝑵𝑻𝒊𝒎𝒆𝑷𝒐𝒊𝒏𝒕𝒔 = 𝟔𝟖 

JAP 

𝑵𝑺𝒂𝒎𝒑𝒍𝒆𝑺𝒊𝒛𝒆 = 𝟕𝟑 

𝑵𝑻𝒊𝒎𝒆𝑷𝒐𝒊𝒏𝒕𝒔 =  𝟕𝟑 

DP 

𝑵𝑺𝒂𝒎𝒑𝒍𝒆𝑺𝒊𝒛𝒆 = 𝟗𝟒 

𝑵𝑻𝒊𝒎𝒆𝑷𝒐𝒊𝒏𝒕𝒔 =  𝟗𝟒 

EEPA 

𝑵𝑺𝒂𝒎𝒑𝒍𝒆𝑺𝒊𝒛𝒆 = 𝟔𝟖 

𝑵𝑻𝒊𝒎𝒆𝑷𝒐𝒊𝒏𝒕𝒔 = 𝟕𝟕 

Sample 

size 

1-100 7 (10.29%) 6 (8.22%) 10 (10.64%) 4 (5.88%) 

 101-500 19 (27.94%) 33 (45.21%) 34 (36.17%) 4 (5.88%) 

 501-1000 8 (11.76%) 16 (21.92%) 17 (18.09%) 9 (13.24%) 

 1001-10000 20 (29.41%) 15 (20.55%) 30 (31.91%) 24 (35.29%) 

 ≥10000 14 (20.59%) 3 (4.11%) 3 (3.19%) 27 (39.71%) 

Number of 

time points 

2-5 65 (95.59%) 63 (86.30%) 76 (80.85%) 45 (58.44%) 

 6-10 2 (2.94%) 6 (8.22%) 15 (15.96%) 22 (28.57%) 

 ≥10 1 (1.47%) 4 (5.48%) 3 (3.19%) 10 (12.99%) 

Table 3. Count (percentages) of sample size and number of repeated measures for articles 

reviewed in JREE, JAP, DP and EEPA 

 

 

 

 

Figure 1. % of sample size and % of number of repeated measures for JREE 
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Figure 2. % of sample size and % of number of repeated measures for JAP 
 

 

Figure 3. % of sample size and % of number of repeated measures for DP 
 

 

Figure 4. % of sample size and % of number of repeated measures for EEPA 
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3. Data Analysis Review and Methods for Longitudinal Data in Education and 

Psychology 

While a survey of four journals indicates that sophisticated models such as Linear Mixed 

Modeling (LMM) techniques are commonly used, traditional models such as ANOVA continue to 

appear in the literature. Although traditional models are easy to understand and implement, they 

come with rigid assumptions that are unrealistic in most cases in Education and Psychology. The 

statistical details of these assumptions will be covered shortly.  

This section reviews longitudinal models in Education and Psychology and provides 

references for scholars who seek further examples. Following each model’s review section, there 

follows a concise methods section that can help researchers to identify the statistical strengths and 

weaknesses of each method. 

All methods are categorized as either “traditional” or “advanced.” Traditional methods 

include methods such as ANOVA and simple linear regression (which generally analyzes 

longitudinal data cross-sectionally), among many others. Advanced methods include LMMs and 

GEEs, among many others. 

3.1. Traditional Approaches 

The review and methods details of traditional approaches will be discussed in this section. 

Traditional approaches to analyzing longitudinal data include the paired t-test, analysis of variance 

(ANOVA), analysis of covariance (ANCOVA), regression analysis, derived variable approach, and 

repeated measures univariate/multivariate analysis of variance (RM ANOVA and RM MANOVA). 

Note that the derived variable approach is here considered as a subtopic of each analytical method.  
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In a study with two time points such as pretest and posttest, the main purpose may be to 

determine whether: 

1. The outcome variable changes significantly over time, 

2. The posttest score is related to the intervention after controlling for the pretest score, 

3. The change over time is associated with the intervention and the fixed features of 

subjects (Twisk, 2003). 

These three objectives will be addressed sequentially in the following sections. 

3.1.1. Review: Paired t-test  

This first objective mentioned in section 3.1. could be addressed utilizing the paired t-test with 

time as the independent factor. For instance, using data on bullying collected from March to April, 

2012 (i.e. Time 1) and from March to April, 2013 (i.e. Time 2), Hellfeldt, Gill, and Johansson (2018) 

utilized four separate paired t-tests made for four victimization profiles during the study period:  

1. Never bullied subjects throughout the measurement period were defined as “non-

victims,” 

2. Subjects whose status changed from victim to non-victim (from Time 1 to Time 2) 

were defined as “ceased victims,” 

3. Subjects whose status changed from non-victim to victim (from Time 1 to Time 2) 

were defined as “new victims,” 

4. Subjects who were bullied at both measurement points were defined as “persistent 

or continuing victims.” 

The researchers used these paired t-tests to determine changes in psychological well-being 

for the four types of bullying victims among pupils from 44 elementary schools, from 4th to 9th 

grade, in a medium-sized Swedish city. More examples of the applications of the paired t-test on 
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longitudinal data in the field of Education and Psychology can be found in Bartl, Hagl, Kotoučová, 

Pfoh, and Rosner (2018); Bensley, Crowe, Bernhardt, Buckner, and Allman (2010); Hwang and 

Chang (2011); Konishi, Hymel, Danbrook, and Wong (2018); Martin and Calvert (2018); and 

Pittman and Richmond (2008). 

The paired t-test can in fact be seen as one of the simplest longitudinal analysis methods as 

it represents the case of a single group of subjects, each of which has been measured on two 

occasions; it can be used to measure whether there has been significant average change between the 

two time points. 

3.1.1.1. Method: Paired t-test  

The paired t-test is a statistical method used to examine the equality of the means of two sets 

of related or matched observations, or (what amounts to the same thing) assessing whether the 

observed difference in mean between the two sets of values is zero. This method is also called the 

dependent sample t-test. 

Let us assume our data consist of N participants. Pre- and post-test variables measured for 

participant 𝑖 are shown as 𝑦𝑖1 and 𝑦𝑖2, respectively. Then 𝑑𝑖 = 𝑦𝑖2 − 𝑦𝑖1 is the difference between 

the two measures, or change score, for subject 𝑖.   

Hypotheses and test statistic - The null hypothesis assumes that the true mean difference 

between the pre-test and post-test measurements is zero and can be written as: 

𝐻0: 𝜇1 = 𝜇2  or, equivalently as 𝐻0: (𝜇2 − 𝜇1) = 𝜇𝑑 = 0 

The alternative hypothesis can be written in a few different ways depending on the question 

of interest, as follows: 

𝐻1: 𝜇1 ≠ 𝜇2  or   𝐻1: 𝜇𝑑 ≠ 0  (two-tailed) 

𝐻1: 𝜇2 > 𝜇1  or  𝐻1: 𝜇𝑑 > 0  (upper-tailed) 
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𝐻1: 𝜇2 < 𝜇1  or  𝐻1: 𝜇𝑑 < 0  (lower-tailed) 

The test statistic is calculated as: 

𝑡 =
𝑑̅

(
𝑠𝑑
√𝑁
)
=

𝑑̅

(

 
 
 √

[∑ 𝑑𝑖
2

𝑖 −
(∑ 𝑑𝑖𝑖 )2

𝑁
]

𝑁 − 1
√𝑁

)

 
 
 

 ~ 𝑡𝑁−1 

which, under the null hypothesis, follows a Student’s 𝑡(𝑁 − 1), where 𝑑̅ =
∑ 𝑑𝑖𝑖

𝑁
. 

Although normal distribution of the response is assumed in a paired t-test, it is fairly robust 

to departures from the normality assumption. Note that in this setting the outcome variable should 

be continuous (interval/ratio). The paired t-test is equivalent to conducting a simple linear regression 

where the change score is the outcome variable 𝑑𝑖 = 𝛽0 + 𝑒𝑖 and testing 𝐻0: 𝛽0 = 0, whose 

corresponding statistic is  
𝛽̂0

𝑠𝑒(𝛽̂0)
, which follows a Student’s 𝑡(𝑁 − 1). 

3.1.2. Review: Analysis of Covariance (ANCOVA)  

The second objective mentioned in section 3.1—determining whether posttest score is related 

to the intervention after controlling for the pretest score—is typically addressed using ANCOVA. 

An ANCOVA can be conducted to measure the effects of an experiment on the variables of interest. 

This approach both provides higher power and handles the effects of pre-test scores in the assessment 

of the differences between treatment groups when evaluating change resulting from formal 

interventions (Dimitrov & Rumrill, 2003). In ANCOVA, the pre-test score is used as a covariate. 

These analyses partial out the pre-test scores and then examine differences between the groups on 

the post-test. The study conducted by Piro and Ortiz (2009) used ANCOVA to explore “the effects 

of a scaffolded music instruction program on the vocabulary and verbal sequencing skills of two 

cohorts of second-grade students” from two public elementary schools in the same middle-class area 
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of New York City. During the study period, the experimental group of 𝑁 =  46 studied piano 

formally for 3 successive years as part of the experiment, and the control group of 𝑁 =  57 had no 

experience with music lessons. It was shown that “the experimental group had significantly better 

vocabulary and verbal sequencing scores at post-test than did the control group” (Piro & Ortiz, 

2009). Other examples of more recent studies that also employed ANCOVA to examine the effect 

of an intervention on post-test measure while adjusting for pre-test measure include: Hwang and 

Chang (2011); Vos, van der Meijden, and Denessen (2011); Uhls et al. (2014); Hermanto and Zuroff 

(2018); Bartl et al. (2018); and Martin and Calvert (2018). 

3.1.2.1. Method: Analysis of Covariance (ANCOVA) 

The ANCOVA can be seen as an extension of an ANOVA (which will be covered shortly) 

where a continuous variable (sometimes called covariates) has been added to the model. It is 

equivalent to a multiple regression (when there are no repeated measures). When there are repeated 

measures, in the simplest case, the ANCOVA is equivalent to a LMM. 

In the context of longitudinal data, it is important to consider that a covariate can be time 

variant (i.e. it varies across subject and time points) or time invariant (i.e. the covariate values are 

the same across time for a given subject). An example of a time variant characteristic would be salary 

and of a time invariant covariate gender. 

One of the simplest examples of an ANCOVA is the model for the post-test scores. In this 

model, there are two repeated measures per subject, pre- and post-test scores, but the post-test is 

used as a response variable and the pre-test is used as a covariate. This model can be written as: 

𝑦𝑖2 = 𝛽0 + 𝛽1𝑥𝑖 + 𝛽2𝑦𝑖1 + 𝑒𝑖 

where  𝑥𝑖 is the dummy variable for treatment (this model assumes only two groups: control vs. 

treatment),  𝑦𝑖1 represents the pre-test scores and 𝑦𝑖2 the post-test scores. The focus of this model is 
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testing 𝐻0: 𝛽1 = 0 (i.e. whether the mean of post-test is the same for both groups, after controlling 

for the pre-test). 

The multiple group RM ANCOVA with one covariate and two groups can be written as: 

𝑦𝑖𝑗 = 𝛽0 + 𝛽1𝑥1𝑖 + 𝛽2𝑡2𝑗 + 𝛽3𝑡3𝑗 + 𝛽4𝑥2𝑖𝑗 + 𝜋𝑖 + 𝑒𝑖𝑗 

where, 

• 𝑖 =  1, … ,𝑁 corresponds to subject index,  

• 𝑗 =  1, … , 𝑛 corresponds to measurement index (note, 𝑛 = 3),  

• 𝑦𝑖𝑗 denotes the outcome for subject 𝑖 at time 𝑗, 

• 𝑥1𝑖 denotes the dummy for treatment (which is equal to 1 if subject 𝑖 belongs to 

treatment and equals 0 if subject 𝑖 belongs to control), 

• 𝑡2𝑗 represents the dummy for time = 2 (which is equal to 1 for all observations 

measured at time point 2 (𝑗 = 2) and 0 elsewhere), 

• 𝑡3𝑗 represents the dummy for time = 3 (which is equal to 1 for all observations 

measured at time point 3 (𝑗 = 3) and 0 elsewhere), 

• 𝑥2𝑖𝑗 represents the value of the time variant variable for subject 𝑖 at time 𝑗, 

• 𝜋𝑖 denotes the subject-specific component (i.e. random intercept), 

• 𝑒𝑖𝑗 denotes the error term for subject 𝑖 at time 𝑗. 

Note that, for the sake of simplicity, this model assumes no interaction between time and 

group. 

The assumptions for the ANCOVA model include all those for the RM ANOVA, which will 

be covered shortly, with the additional assumptions that the relationship between y and the variable 

is linear and the slope (between variable and response) is equal across groups. 
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3.1.3. Review: Analysis of Variance (ANOVA)  

The third objective mentioned in section 3.1—determining whether change over time is 

associated with the intervention and the fixed features of subjects—can be addressed using 

approaches such as ANOVA and regression analysis with the change score (e.g.: posttest score – 

pretest score) as the outcome, and the variable(s) of interest (e.g.: intervention and demographic 

factors) as the independent variable(s). Change scores offer an unbiased estimate of true change 

irrespective of baseline value, and analysis using change scores is considered statistically similar to 

a repeated measures analysis (Zumbo, 1999). In a study conducted by Schonert-Reichl and Lawlor 

(2010), “pre- and early adolescent students in the 4th to 7th grades (N=246) drawn from six 

[Mindfulness Education] ME program classrooms and six comparison classrooms (wait-list 

controls) completed pretest and posttest self-report measures assessing optimism, general and school 

self-concept, and positive and negative affect.” The researchers were interested in exploring the 

direction of change in students’ “well-being and social and emotional competence” from pretest to 

posttest, and hence a series of ANOVAs were conducted using change score (computed as posttest 

score minus pretest score using the self-report measures) as the outcome, group (ME program vs. 

Control) as the independent variable, and students’ gender, age, and first language learned as control 

variables (Schonert-Reichl & Lawlor, 2010). The analysis results revealed that pre- and early youths 

who participated in the ME program had significant increases in optimism from pretest to posttest 

compared to those who did not participate (Schonert-Reichl & Lawlor, 2010). A similar application 

of ANOVA can be seen in Bensley et al. (2010). Statistical details of this type of ANOVA are similar 

to those of ANCOVA and will not be covered independently here. However, all details related to 

the four RM ANOVA methods (i.e. univariate or multivariate, and with single or multiple sample) 

will be covered shortly. 
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3.1.4. Review: Regression Analysis  

Because change scores (i.e. the dependent variables) are inclined to have greater 

measurement error and lower reliability compared to the original measurement scores (Allison, 

1990; Zumbo, 1999), a slightly different form of change score analysis was used by some 

researchers. For example, Konishi et al. (2018) estimated residualized difference scores using the 

regression analysis (i.e. ordinary least square) of Time 2  on Time 1 for all of the outcome variables 

(i.e., number of friends inside and outside school separately, competitiveness, self-worth, and 

bullying). The residualized difference scores then served as the outcome variables of the regression 

models to study changes in bullying behavior in relation to friends, competitiveness, and self-worth 

among students in Grades 5 to 7 in Canada (Konishi et al., 2018). They found that children’s beliefs 

about their self-worth were vital in predicting changes in bullying behavior where increased self-

worth was associated with a decrease in reported bullying behavior (Konishi et al., 2018). Similar 

application of the residualized difference scores can also be seen in Pittman and Richmond, (2008) 

and Rubin, Evans, and Wilkinson (2016). Since regression analysis is a very broad umbrella, 

methods related to regression approaches for repeated measure data will be covered in detail in 

several different sections below. 

3.1.5. Review: Derived Variable Approach  

The derived variable approach reduces the repeated measurements into a summary variable 

(Hedeker & Gibbons, 2006). That is, given a vector of observations on a particular subject, a derived 

variable is a scalar-valued function of the vector of observations (Diggle et al., 2002). According to 

Hedeker and Gibbons (2006), examples of the derived variables approach for longitudinal data 

include but are not limited to: 

• Carrying the last observation forward, 
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• Change score, 

• Average over time,  

• Linear trend over time,  

• Area under the curve.  

A key motivation for applying the derived variable approach on longitudinal data is that 

standard methods, such as 2-sample t-test, ANOVA, and regression analysis, can be used for 

inference (Diggle et al., 2002; Hedeker & Gibbons, 2006). Though convenient, this approach has 

several limitations (Diggle et al., 2002; Hedeker & Gibbons, 2006). For example, this approach is 

not applicable if there are any incomplete data, since individuals with incomplete data will need to 

be omitted or other missing data methods must be used. Also, uncertainty in the derived variable 

approach is proportional to the number of measurement occasions. When attrition or dropout (i.e. 

unbalanced data) leads different units to have different numbers of observations, different 

uncertainties arise. This means the homoscedasticity assumption is violated. Additionally, collapsing 

multiple repeated measurements to a single summary statistic may result in lower statistical power. 

Finally, due to removing the temporal aspect of the data, it is not possible to include time-varying 

variables. Regardless, the derived variable approach has been used in Education and Psychology 

longitudinal research. See Rapport et al. (2008), Oxford and Lee (2011), and Russell, Lee, Spieker, 

and Oxford (2016) for examples of the application of this approach. 

3.1.5.1. Method: Derived Variable Approach  

One of the simplest methods of treating longitudinal data is called the derived variable 

approach. As mentioned before, this approach reduces the repeated measures into a single summary 

variable. This summary variable can be the average across time, linear trend, change score, or area 

under the curve. This method transforms the data into independent observations where there will be 
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a single observation, the summary measurement, per individual. In this way, the traditional non-

longitudinal statistical methods can be applied to the transformed data. 

The following example demonstrates the case in which there are two repeated measures per 

subject and the summary measurement is the difference between the pre and post values of the 

dependent variable, also known as change score. The regression model for the change score can be 

presented as: 

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝑒𝑖, 

𝑒𝑖~𝑁(0, 𝜎
2) 

where 𝑦𝑖 is defined as the difference between the occasions for subject  𝑖, (i.e.  𝑦𝑖 = 𝑦𝑖2 − 𝑦𝑖1),  𝑥𝑖 

equals 1 for the treatment group and 0 for the control group. 

Note that this model characterizes an ordinary regression model so it is subject to the 

assumptions of the linear regression model where additional covariates could be easily added to the 

model. Note that the disadvantages of the derived variable approach mentioned in the previous 

section still stand. 

3.1.6. Review: Repeated Measures Univariate and Multivariate Analysis of 

Variance (RM ANOVA and RM MANOVA)  

When outcome variables are collected at two or more time points on the same subjects, RM 

ANOVA and RM MANOVA can be used to compare the means of the time points. These methods 

can be utilized to evaluate whether the outcome has changed significantly across time points. Yet 

neither method provides information about subject-specific pattern over time (Newsom, 2012). 

Questions often asked in analyses using RM ANOVA and RM MANOVA include: 

1. Is there a difference in the dependent variable between the groups, regardless of 

time?  
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2. Is there a difference in the dependent variable between different time points, 

regardless of groups? 

3. Does the difference in the dependent variable between groups vary over time? 

(Newsom, 2012). 

The use of RM ANOVA and RM MANOVA are restricted due to the limiting missing data 

assumptions across time and the specific covariance pattern of the time points (Hedeker & Gibbons 

2006). RM ANOVA requires all subjects to be measured the same number of time points, and RM 

MANOVA allows no missingness. Furthermore, a disadvantage of RM ANOVA is the assumption 

that the outcome measures have equal variances and covariances over time (i.e., compound 

symmetry), which might be unrealistic because most of the time variance increases with time and 

covariance decreases with increasing time lags. On the other hand, the RM MANOVA model 

imposes no assumptions on the variance-covariance structure of the repeated measurements. 

RM ANOVA and RM MANOVA have been widely used to analyze longitudinal data in the 

fields of Education and Psychology. For example, Fuchs, Compton, Fuchs, Bryant, and Davis (2008) 

employed RM ANOVA to explore differences in groups for measures of reading at pre-test, mid-

year, and post-test for data collected from 252 first-grade children in middle Tennessee. The 

individuals were randomly assigned into the following tutoring groups, each 𝑛 = 84: 

• Fall tutoring group: All students were part of small-group tutoring during the fall 

semester for 9 weeks; 

• Spring tutoring group: Participants non-responsive to fall semester training were 

assigned to small-group tutoring during the spring semester for 9 weeks;  

• Control group: Students were matched to the non-responding participants in the 

spring tutoring group. 
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 Lee and Zentall (2015) conducted a 3-year longitudinal study to investigate reading 

motivation and achievement. The authors used the RM MANOVA to assess the between-group 

factor of disability (reading disabilities, attention deficit hyperactivity disorder, and no disabilities) 

and the within-group time factor (elementary to middle school levels) for outcomes such as self-

efficacy, social motivation, and work avoidance. Other examples of RM MANOVA applications in 

Education and Psychology include: Cemalcilar and Falbo (2008) and Myers (2017). Other examples 

of RM ANOVA applications in Education and Psychology include Blonigen, Carlson, Hicks, 

Krueger and Iacono (2008); Kim et al. (2015); Breeman, Jaekel, Baumann, Bartmann and Wolke 

(2016); Aelterman, Vansteenkiste, Van Keer and Haerens (2016). 

3.1.6.1. Methods: RM ANOVA and RM MANOVA  

Although more advanced statistical techniques (such as multilevel or mixed-model analyses) 

now exist that can better analyze longitudinal data, the ANOVA offers two classical approaches to 

longitudinal data analysis: the repeated measures ANOVA (RM ANOVA) and the multivariate 

ANOVA (RM MANOVA or just MANOVA). These models are worth reviewing to set up a basis 

for understanding more advanced methods. 

The limitations of these two ANOVA approaches are that the repeated measures are assumed 

to be fixed across subjects (i.e. time 1 for subject 1 needs to be the same as time 1 for subject 2 and 

so on). An example of a longitudinal study where time points are not “fixed occasions” is when 

students take computerized exams in a certain month on a first-come, first-served basis. Another 

limitation shared by both methods is the use of least squares estimation, which makes them more 

vulnerable to the presence of outliers and missing data. More specifically, although the RM ANOVA 

can be used with unbalanced data (i.e. missing data), the MANOVA cannot handle missing data, 
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forcing the researcher to delete all incomplete cases from the study. Needless to say, this can 

introduce an unwanted bias to the model estimates. 

3.1.6.1.1. Method: Single-Sample RM ANOVA 

This model represents one of the simplest repeated measures design, where there is only one 

sample of participants measured over time and no groups of subjects being compared (e.g. 

intervention vs. control groups). 

Let 𝑦 denote the dependent variable, 𝑖 =  1, … ,𝑁 corresponds to subject index and 𝑗 =

 1, … , 𝑛 is the time index or occasions. The model can be written as: 

𝑦𝑖𝑗 = 𝜇 + 𝜋𝑖 + 𝜏𝑗 + 𝑒𝑖𝑗, 

𝜋𝑖 ∼ 𝑁(0, 𝜎𝜋
2) 

𝑒𝑖𝑗|𝜏𝑗 ∼ 𝑁(0, 𝜎𝑒
2) 

where, 

• 𝜇 denotes the overall mean or model intercept, 

• 𝜋𝑖 denotes the subject-specific deviation from the overall mean (i.e. random 

intercept),  

• 𝜏𝑗 denotes the time effect, assumed the same for all subjects,  

• 𝑒𝑖𝑗 denotes the error corresponding to subject 𝑖 measured on occasion 𝑗,   

• 𝜎𝜋
2 denotes the between-subject variance,  

• 𝜎𝑒
2 denotes the within-subject variance. 

The subject-specific error term 𝜋𝑖 remains constant across time points for a single individual, 

while the second error term or residual 𝑒𝑖𝑗 is occasion-specific and varies between subjects 𝑖 and 

occasions 𝑗 . 

Model assumptions – are as follows: 
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1. Normality of the outcome variable: This assumption is an extension of the 

assumption that the 𝑒𝑖𝑗s are normally distributed within each level of the within-

subject factor (time point). The RM ANOVA is quite robust to the violation of the 

normality assumption. 

2. Sum of the 𝑛 time parameters is constrained to be zero (i.e. ∑ 𝜏𝑗 = 0
𝑛
𝑗=1 ). 

3. The random components and the error terms both have a zero mean. From this 

assumption it follows that the expectation of 𝑦𝑖𝑗 is the grand mean plus the time 

effect (i.e. 𝐸(𝑦𝑖𝑗) = 𝜇 + 𝜏𝑗). 

4. The random components 𝜋𝑖 are independent of the residuals 𝑒𝑖𝑗. From this 

assumption it follows that 𝑉𝑎𝑟(𝑦𝑖𝑗) = 𝑉𝑎𝑟(𝜇 + 𝜋𝑖 + 𝜏𝑗 + 𝑒𝑖𝑗) = 𝜎𝜋
2 + 𝜎𝑒

2. 

5. Independence between subjects are also assumed which translates to 

𝐶𝑜𝑣(𝑦𝑖𝑗 , 𝑦𝑖′𝑖) = 0  𝑓𝑜𝑟  𝑖 ≠ 𝑖
′. 

6. Constant covariance between observations within the same subject (i.e. 

𝐶𝑜𝑣(𝑦𝑖𝑗 , 𝑦𝑖𝑗′) = 𝜎𝜋
2  𝑓𝑜𝑟  𝑗 ≠ 𝑗′). 

E(.), Var(.) and Cov(.) represent the expectation, variance, and covariance functions, 

respectively. 

Assumptions 5 and 6 induces the following variance-covariance pattern: 

[
 
 
 
 
 
 

    𝜎𝜋
2 + 𝜎𝑒

2 𝜎𝜋
2  𝜎𝜋

2

    𝜎𝜋
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2 + 𝜎𝑒
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2 𝜎𝜋
2  ⋮ 
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2       

      ⋱ ⋮ ⋮
𝜎𝜋
2 + 𝜎𝑒

2 𝜎𝜋
2

  … 𝜎𝜋
2 𝜎𝜋

2 + 𝜎𝑒
2]
 
 
 
 
 
 

 

This structure is known as compound symmetry (CS) or exchangeable. The variance is 

homogeneous or constant across time, represented by the diagonal of terms 𝜎𝜋
2 + 𝜎𝑒

2 and the 
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covariances are homogeneous across time, represented by 𝜎𝜋
2.  As mentioned before, this assumption 

is not very realistic since one would expect that variances change over time and covariances of 

responses closer in time should be more correlated, compared to responses that are more distant in 

time. 

Intra-class correlation (ICC) - The covariance defined under assumption 6 can be written in 

the form of the following correlation: 

𝐶𝑜𝑟(𝑦𝑖𝑗, 𝑦𝑖𝑗′) =
𝐶𝑜𝑣(𝑦𝑖𝑗, 𝑦𝑖𝑗′)

√𝑉𝑎𝑟(𝑦𝑖𝑗)√𝑉𝑎𝑟(𝑦𝑖𝑗′)
=

𝜎𝜋
2

√ 𝜎𝜋2 + 𝜎𝑒2√ 𝜎𝜋2 + 𝜎𝑒2
=

𝜎𝜋
2

 𝜎𝜋2 + 𝜎𝑒2
 

The ICC represents the magnitude of the within-subject correlation or the between-subject 

heterogeneity. Since the elements of both numerator and denominator are variances (i.e. always 

positive), then the ICC ranges from 0 to 1. The extreme case of ICC being equal to 0 happens when 

there is no between-subject variance (i.e. 𝜎𝜋
2 = 0) and the case in which ICC equals 1 is when the 

between-subject variance explains all the variance, in other words, there is no heterogeneity in the 

repeated measures of the same subject. The ICC can be defined as the proportion of unexplained 

variation that is due to subjects. 

Sphericity - CS is a sufficient assumption to ensure that the F-test of the RM ANOVA follows 

an F distribution but is not necessary. Sphericity or circularity is a less restrictive assumption 

imposed on the structure of the covariance matrix compared to the CS assumption; it is a sufficient 

and necessary condition of the RM ANOVA. Sphericity is defined as the equality of all the variances 

of the differences between any two levels of the within-subject factor (i.e. time points). Note that 

sphericity only has a meaning when there are more than two levels of the within-subjects factor or 

time points. 

𝑉𝑎𝑟(𝑦𝑖𝑗 , 𝑦𝑖𝑗′) = 𝑉𝑎𝑟(𝑦𝑖𝑗) + 𝑉𝑎𝑟(𝑦𝑖𝑗′) − 2𝐶𝑜𝑣(𝑦𝑖𝑗, 𝑦𝑖𝑗′) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, ∀ 𝑗 𝑎𝑛𝑑 𝑗′ 

Note that if the CS condition is met, it implies that the sphericity condition is satisfied. 
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The chi-square goodness-of-fit test developed by Mauchly (1940), known as Mauchly’s 

sphericity test, is generally used to test for sphericity. Researcher caution is required since this test 

is not very reliable for small samples and tends to be too sensitive for large samples (i.e., it may 

show significance even when there is a minor departure from sphericity). This test also is sensitive 

to the presence of outliers and deviations from normality. Knowing all the disadvantages of 

Mauchly’s test, researchers should not use it as a strict rule but as a guide. 

Solutions to the violation of sphericity – Alternatively, when the sphericity assumption is 

rejected, the use of adjusted p-values for the F-tests is recommended. These corrections were 

developed by Greenhouse and Geisser (1959) and Huynh and Feldt (1976). Both corrections work 

in a very similar way and tend to be very conservative. 

Another solution is the use of the multivariate repeated measures analysis, which allows a 

more general structure of the variance-covariance matrix (i.e., it does not assume sphericity). 

However, recall that MANOVA can only work with complete data across time. 

Table 4 introduces the ANOVA table corresponding to a balanced design to be used for 

testing; it is also a good baseline for future sections. 

Source df SS MS 

Subjects 𝑁 −  1 
𝑆𝑆𝑆 = 𝑛∑ (𝑦̅𝑖. − 𝑦̅..)

2
𝑁

𝑖=1
 

𝑆𝑆𝑆
𝑁 − 1

 

Time 𝑛 −  1 
𝑆𝑆𝑇 = 𝑁∑ (𝑦̅.𝑗 − 𝑦̅..)

2
𝑁

𝑖=1
 

𝑆𝑆𝑇
𝑛 − 1

 

Residual (𝑁 −  1)  × (𝑛 −  1) 
𝑆𝑆𝑅 =∑ ∑ (𝑦𝑖𝑗−𝑦̅𝑖. − 𝑦̅.𝑗 + 𝑦̅..)

2
𝑛

𝑗=1

𝑁

𝑖=1
 

𝑆𝑆𝑅
(𝑁 − 1)(𝑛 − 1)

 

Total 𝑁𝑛 −  1 
𝑆𝑆𝑦 =∑ ∑ (𝑦𝑖𝑗 − 𝑦̅..)

2
𝑛

𝑗=1

𝑁

𝑖=1
 

 

 

Table 4. “SS” stands for sum of squares, “MS” stands for mean squares, “𝑦̅..” represents the 

overall mean, “𝑦̅𝑖.” the mean for subject i, and “𝑦̅.𝑗” the mean for time point j 
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Hypothesis testing – For this simple model, there are only two types of tests, namely, testing 

time and subject effect. The focus of the model will be testing the significance of the time effect 

which means testing whether there is a trend over time for the response variable. 

Testing for Subject effect – The null hypothesis for testing the subject-specific effect can be 

written as: 

𝐻0: 𝜎𝜋
2 = 0 

This is the test of whether there is significant variance due to differences between subjects. 

The statistic corresponding to the subject effect, 𝐹𝑆 =
𝑀𝑆𝑆

𝑀𝑆𝑅 
 , follows an 𝐹(𝑁 − 1, (𝑁 − 1)(𝑛 − 1)). 

Testing for Time effect – The omnibus test of no difference over time is as follows: 

𝐻0: 𝜏1 = 𝜏2 = ⋯ = 𝜏𝑛 = 0 

The corresponding test statistic, 𝐹𝑇 =
𝑀𝑆𝑇

𝑀𝑆𝑅 
 ,  follows a 𝐹(𝑛 − 1, (𝑁 − 1)(𝑛 − 1)). 

Commonly used contrasts for time – Let us define a set of 𝑛 − 1 contrasts  𝐿𝑗′  as: 

 𝐿𝑗′ = ∑ 𝑐𝑗′𝑗𝑦̅.𝑗
𝑇
𝑗=1 ,  𝑗′ = 1,⋯𝑛 − 1 

where 𝑦̅.𝑗 represents the time-point mean and 𝑐𝑗′𝑗  represents the contrast coefficients. For any given 

contrast  𝐿𝑗′ , the sum of the contrast coefficient must be 0 across the total number of occasions or 

time points (i.e. ∑ 𝑐𝑗′𝑗
𝑇
𝑗=1 = 0). 

The statistic used to test a contrast with null hypothesis  𝐿𝑗′ = 0 is defined as: 

𝐹𝑗′ =
𝑀𝑆𝑗′

𝑀𝑆𝑅
~𝐹1,(𝑁−1)(𝑛−1) 

where 𝑀𝑆𝑗′ = 𝑆𝑆𝑗′ =
𝑁𝐿

𝑗′
2

∑ 𝑐
𝑗′𝑗
2𝑇

𝑗=1

  and  𝑀𝑆𝑅 =
𝑆𝑆𝑅

(𝑁−1)(𝑛−1)
=
∑ ∑ (𝑦𝑖𝑗−𝑦̅𝑖.−𝑦̅.𝑗+𝑦̅..)

2𝑇
𝑗=1

𝑁
𝑖=1

(𝑁−1)(𝑛−1)
. 
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Assuming time can be decomposed in 𝑛 − 1 independent sets of contrasts, also called 

orthogonal contrasts, then the sum of squares for time can be written as the contrasts sum of squares 

as follows: 

𝑆𝑆𝑡𝑖𝑚𝑒 =∑𝑆𝑆𝑗

𝑇−1

𝑗=1

 

Depending on the different partitions of time one is interested in testing, different types of 

contrasts, expressed by their corresponding coefficients 𝑐𝑗′𝑗, can be used. A brief review of the most 

commonly used contrasts is as follows: 

Trend analysis – This type of contrast expresses the 𝑛 − 1 partitions as orthogonal 

polynomials. For instance, if one assumes that the model has 𝑛 = 4 time points, then the contrast 

matrix is 

𝐶 = [

−3/√20 −1/√20

      1/√4  −1/√4

−1/√20   3/√20

    

   1/√20 3/√20

  −1/√4 1/√4

−3/√20 1/√20

] 

with the first row of the matrix representing the linear trend contrast, and the second and third rows 

representing the contrasts for quadratic and cubic trends. Note that the above matrix assumes that 

the time points are equally spaced. 

Change relative to baseline – This is the contrast of any significant change over time 

compared to baseline, as measured by testing the difference between each time point and the first 

time point. The corresponding matrix for a model where 𝑛 = 4 (i.e. 4 time points) is as follows: 

𝐶 = [
−1    1    0
−1    0    1
−1    0    0

        
0
0
1
] 

The four time points can be presented as T1, T2, T3, and T4; the contrasts in the rows 

represent the difference between T2 and T1 (baseline), between T3 and T1 and between T4 and T1, 
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respectively. Note that the reference point in this example is the first time point. If, for instance, the 

researcher would be interested in using the last time point as a reference, then the first columns of -

1 would move to column 4 and columns 1, 2, and 3 would each move one position to the left. Also, 

note that this is not a set of orthogonal contrasts. 

Consecutive time comparisons – This is a useful contrast if one is interested in knowing 

whether the outcome at each time point is significantly different from the outcome at the immediately 

previous time point. The matrix corresponding to this type of contrasts for 𝑛 = 4, which are 

sometimes called profile contrasts, is as follows: 

𝐶 = [
−1    1    0
   0 −1    1
   0    0 −1

        
0
0
1
] 

where the rows test the difference between T1 and T2, the difference between T2 and T3, and the 

difference between T3 and T4. Also, note that this is not a set of orthogonal contrasts. 

Contrasting each time point to the mean of the subsequent time points – Also known as 

Helmert contrasts, here the researcher is interested in comparing each time point to the average of 

all subsequent time points. The matrix for a 𝑛 = 4 model is as follows: 

𝐶 = [
   1   −1/3    −1/3
   0           1   −1/2
   0           0           1

        
−1/3
−1/2
    −1

] 

where the rows compare T1 to the mean of T2, T3, and T4; T2 to the mean of T3 and T4; and T3 

versus T4. Note that Helmert contrasts are orthogonal. 

Correction to multiple comparisons –  Making multiple comparisons results in inflating the 

Type I error (or 𝛼 level) or, in other words, increasing the probability of rejecting a true null 

hypothesis. The Bonferroni correction offers a relatively conservative way of adjusting the 𝛼 level. 

The adjusted 𝛼 level consists of dividing the original 𝛼 level by the number of contrasts (i.e. 𝛼∗ =
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𝛼

𝑛−1
). For instance, following previous examples, with three multiple comparisons, the original 

𝛼 level of .05 will become 𝛼∗ =
0.05

3
= 0.017. There are other corrections to multiple comparisons 

such as Scheffe, Sidak, or Tukey’s method. 

A less conservative alternative is to first test the overall test 𝐻0: 𝜏1 = 𝜏2 = ⋯ = 𝜏𝑇, and if 

this is rejected, then to test each individual contrast using the uncorrected 𝛼 level. 

3.1.6.1.2. Method: Multiple-Sample RM ANOVA  

This model is more commonly used than the previous one because it incorporates different 

groups of subjects that the researcher has an interest in comparing. This statistical design is 

commonly used in randomized-controlled clinical trials, where participants are randomly assigned 

to various experimental groups and their outcomes are tracked over time. 

Model assumptions – Let us assume there exist ℎ = 1,⋯ , 𝑠 groups with 𝑖 = 1, … ,𝑁ℎ subjects 

in group h, and 𝑗 = 1,⋯ , 𝑛 time points. The total sample size 𝑁 is the sum of the sample sizes for 

each group ( 𝑁 = ∑ 𝑁ℎ 
𝑠
ℎ=1 ). The model is written as: 

𝑦ℎ𝑖𝑗 = 𝜇 + 𝛾ℎ + 𝜏𝑗+(𝛾𝜏)ℎ𝑗 + 𝜋𝑖(ℎ) + 𝑒ℎ𝑖𝑗, 

𝜋𝑖(ℎ) ∼ 𝑁(0, 𝜎𝜋
2) 

𝑒ℎ𝑖𝑗 ∼ 𝑁(0, 𝜎𝑒
2) 

where, 

• 𝑦ℎ𝑖𝑗  denotes the observation for individual 𝑖 in group ℎ at time 𝑗, 

• 𝜇 denotes the overall mean or model intercept, 

• 𝛾ℎ denotes the effect of group ℎ, with constraint ∑ 𝛾ℎ
𝑠
ℎ=1 = 0, 

• 𝜏𝑗 denotes the time effect, with constraint ∑ 𝜏𝑗
𝑛
𝑗=1 = 0, 
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• (𝛾𝜏)ℎ𝑗 denotes the interaction effect between time 𝑗 and group ℎ, with constraint 

∑ ∑ (𝛾𝜏)ℎ𝑗 = 0𝑗ℎ , 

• 𝜋𝑖(ℎ) denotes the subject-specific deviation component for participant 𝑖 nested in 

group ℎ (subjects are considered random effects), 

• 𝑒ℎ𝑖𝑗  denotes the error term for subject 𝑖 in group ℎ measured at time 𝑗. 

Note that the assumptions on the distribution of the error terms (𝜋𝑖(ℎ) and 𝑒ℎ𝑖𝑗), which leads 

to the CS for V(.), are the same as in the previous model (i.e. single-sample RM ANOVA). The 

definitions of sphericity and intra-class correlation are likewise the same as in the previous model. 

In this model, the design is assumed to be balanced with respect to the number of repeated measures 

per subject. The focus of the model will be testing the significance of the time effect, i.e. testing 

whether there is a trend over time in the outcome. 

Hypothesis testing: Testing for Group by Time Interaction - The most important test in this 

model is the one corresponding to the interaction term between group and time as it will determine 

whether the differences between groups are not equal across time (i.e. 𝐻0: (𝛾𝜏)11 = ⋯ = (𝛾𝜏)𝑠𝑛 ). 

In other words, this test will determine whether the between-group trend lines across time are parallel 

or whether one treatment was more effective than others. The statistics for this test can be expressed 

as: 

𝐹𝐺𝑟𝑜𝑢𝑝𝑥𝑇𝑖𝑚𝑒 =

𝑆𝑆𝐺𝑇
(𝑠 − 1)(𝑛 − 1)

𝑆𝑆𝑅
(𝑁 − 𝑠)(𝑛 − 1)

~𝐹(𝑠−1)(𝑛−1),(𝑁−𝑠)(𝑛−1) 

where SSGT represents the Sum of Squares for the group by time interaction, 

𝑆𝑆𝐺𝑇 =∑ ∑ 𝑁ℎ(
𝑛

𝑗=1

𝑠

ℎ=1
𝑦̅ℎ.𝑗 − 𝑦̅ℎ.. − 𝑦̅..𝑗 + 𝑦̅…)

2 

and SSR the Sum of Squares for the residuals, 
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𝑆𝑆𝑅 =∑ ∑ ∑ (𝑦ℎ𝑖𝑗 − 𝑦̅ℎ.𝑗 − 𝑦̅ℎ𝑖. + 𝑦̅ℎ..)
2

𝑛

𝑗=1

𝑁ℎ

𝑖=1

𝑠

ℎ=1
. 

Note that the dot in the subscript is representative of the unit being averaged. If the 𝐻0 is 

rejected, then one can conclude that there is no single overall group effect because it differs over 

time. Additionally, there is no single overall time effect since it varies across groups. However, if 

𝐻0 cannot be rejected, the following main effects tests should be conducted: 

Hypothesis testing: Testing for Time effect - As in the previous model, this is the overall test 

with null hypothesis being no difference over time, expressed as follows: 

𝐻0: 𝜏1 = 𝜏2 = ⋯ = 𝜏𝑛 = 0 

with, 

𝐹𝑇𝑖𝑚𝑒 =

𝑆𝑆𝑇
𝑛 − 1
𝑆𝑆𝑅

(𝑁 − 𝑠)(𝑛 − 1)

~𝐹𝑛−1,(𝑁−𝑠)(𝑛−1) 

where 𝑆𝑆𝑇 represents the Sum of Squares for time, 𝑆𝑆𝑇 = 𝑁∑ (𝑛
𝑗=1 𝑦̅..𝑗 − 𝑦̅…)

2. 

Hypothesis testing: Testing for Group effect –  The null hypothesis is that there is no group 

effect, expressed as follows: 

𝐻0: 𝛾1 = 𝛾2 = ⋯ = 𝛾𝑠 = 0, 

and the statistic is written as: 

𝐹𝐺𝑟𝑜𝑢𝑝 =
𝑆𝑆𝐺/(𝑠 − 1)

𝑆𝑆𝑆(𝐺)/(𝑁 − 𝑠)
~𝐹𝑛−1,(𝑁−𝑠) 

where 𝑆𝑆𝐺 represents the Sum of Square for group,  𝑆𝑆𝐺 = 𝑛∑ 𝑁ℎ(
𝑠
ℎ=1 𝑦̅ℎ.. − 𝑦̅…)

2 and SSS(G)  

denotes the Sum of Squares for subjects in groups, 𝑆𝑆𝑆(𝐺) = 𝑛∑ ∑ (
𝑁ℎ
𝑖=1

𝑠
ℎ=1 𝑦̅ℎ𝑖. − 𝑦̅ℎ..)

2. 

Hypothesis testing: Testing for subject effect – This is the test of whether the random subject 

effects are different from zero. The null hypothesis is defined as: 
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𝐻𝑂: 𝜎𝜋
2 = 0 

The corresponding statistic is defined as: 

𝐹𝑆𝑢𝑏𝑗𝑒𝑐𝑡(𝐺𝑟𝑜𝑢𝑝) =

𝑆𝑆𝑆(𝐺)
𝑁 − 𝑠
𝑆𝑆𝑅

(𝑁 − 𝑠)(𝑛 − 1)

~𝐹𝑁−𝑠,(𝑁−𝑠)(𝑛−1) 

where SSS(G) and SSR have been defined above. 

Commonly used contrasts for time – The time contrasts discussed in the single-group model 

are also of interest in the multiple-group model. Orthogonal polynomial contrasts will be discussed 

here. 

Orthogonal Polynomial Partition of 𝑆𝑆 – Let us define a set of 𝑛 − 1 contrasts with 𝒄𝑗  

representing the 1 by 𝑛 vector of contrasts of order 𝑗 (linear, quadratic, …) and in which  𝒚̅.. is the 𝑛 

by 1 vector of means at each time point (over groups and subjects). 

The F-statistic corresponding to the linear trend can be expressed as: 

𝐹𝑇1 =
𝑆𝑆𝑇1
𝑀𝑆𝑅

~𝐹1,(𝑁−𝑠)(𝑛−1) 

where 𝑆𝑆𝑇1 = 𝑁𝒄1 𝒚̅..𝒚̅..
′𝒄𝟏
′ , 𝑀𝑆𝑅 =

𝑆𝑆𝑅

(𝑁−𝑠)(𝑛−1)
  and, as already discussed in the single-sample model, 

for a design with four time points  𝒄1 = [−3 −1 1 3]
1

√20
 . 

Note that this expression in terms of vectors is equivalent to that seen in the previous model 

where a contrast  𝐿𝑗′  was denoted as a linear combination of coefficients and time point averages 

 𝐿𝑗′ = ∑ 𝑐𝑗′𝑗𝑦̅.𝑗
𝑇
𝑗=1 . 

Likewise, the statistic to test the quadratic trend can be expressed as: 

𝐹𝑇2 = ~𝐹1,(𝑁−𝑠)(𝑛−1) 

where 𝑆𝑆𝑇2 = 𝑁𝒄2 𝒚̅..𝒚̅..
′𝒄𝟐
′  and, for a four time point design, 𝒄2 = [1 −1 −1 1]

1

√4
 . 
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The contrast to test a trend of order 𝑛 − 1 can then be generalized as: 

𝐹𝑇𝑛−1 = ~𝐹1,(𝑁−𝑠)(𝑛−1) 

where  𝑆𝑆𝑇𝑛−1 = 𝑁𝒄𝑛−1 𝒚̅..𝒚̅..
′𝒄𝒏−𝟏
′ . 

In order to find the polynomial of least degree, one can start by testing the polynomial of the 

highest degree and work backwards towards the lowest degree or linear trend. The SS for the Group 

by Time interaction can be decomposed as follows: 

• 𝑆𝑆𝐺𝑇1 = ∑ 𝑁ℎ
𝑠
ℎ=1 𝒄1 𝒚̅𝒉.𝒚̅𝒉.

′ 𝒄𝟏
′ − 𝑆𝑆𝑇1 (linear trend), 

• 𝑆𝑆𝐺𝑇2 = ∑ 𝑁ℎ
𝑠
ℎ=1 𝒄2 𝒚̅𝒉.𝒚̅𝒉.

′ 𝒄𝟐
′ − 𝑆𝑆𝑇2 (quadratic trend), 

• 𝑆𝑆𝐺𝑇𝑛−1 = ∑ 𝑁ℎ
𝑠
ℎ=1 𝒄𝑛−1 𝒚̅𝒉.𝒚̅𝒉.

′ 𝒄𝒏−𝟏
′ − 𝑆𝑆𝑇𝑛−1 ((𝑛 −  1)𝑡ℎ trend). 

Note that now the degrees of freedom corresponding to these sum of squares is (𝑠 −  1).  

The corresponding F-statistics are given by, 

𝐹𝐺𝑇𝑛−1 =

𝑆𝑆𝑇𝑛−1
𝑠 − 1
𝑀𝑆𝑅

~𝐹𝑠−1,(𝑁−𝑠)(𝑛−1), ⋯ , 𝐹𝐺𝑇1 =

𝑆𝑆𝑇1
𝑠 − 1
𝑀𝑆𝑅

~𝐹𝑠−1,(𝑁−𝑠)(𝑛−1) 

3.1.6.1.3. Method: One-Sample MANOVA  

Before presenting the methodological details for one-sample MANOVA, the data 

arrangement in the ANOVA versus MANOVA framework will be reviewed so readers can 

familiarize themselves with the data formatting and indexing of the following sections. 

As discussed in the previous models, the main advantage of using MANOVA for 

longitudinal data is that it assumes a general form for the covariance pattern for the repeated 

measurements. On the other hand, the main disadvantage is that it requires complete data, i.e. data 

for all the repeated occasions on which subjects are measured. 

The main distinction between ANOVA and MANOVA pertains to the format of the data. In 

the ANOVA model, each subject-occasion represents one row or observation in the data set. For 
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instance, in a model with 𝑛 = 3 repeated measurements each subject occupies 3 rows in the data set. 

There may be more variables in the data set, but the purpose of Table 5 is to illustrate that the 

repeated measures are arranged under one dependent variable 𝑦 (also called data in long format). 

Subject Time 𝒚 

1 1 𝑦11 

1 2 𝑦12 

1 3 𝑦13 

2 1 𝑦21 

2 2 𝑦22 

2 3 𝑦23 

⋮ ⋮ ⋮ 

Table 5. Data structure in long format under ANOVA framework 

The data structure under the MANOVA model differs from the ANOVA in that each subject 

is represented by only one observation (or row) in the dataset (also called data in wide format). This 

is achieved by representing the dependent variable using 𝑛 different variables (or columns). Using 

the same example, Table 6 represents the case of 3 repeated measures in wide format. 

Subject 𝒚𝟏 𝒚𝟐 𝒚𝟑 

1 𝑦11 𝑦21 𝑦31 

2 𝑦12 𝑦22 𝑦32 

⋮ ⋮ ⋮ ⋮ 

Table 6. Data structure in wide format under MANOVA framework 

It is easy to observe that time is not a variable, but the number of repeated measures is implicit 

in the number of dependent variables. In fact, the repeated measures are treated as a data vector, 

hence the multivariate nature of MANOVA. Having covered the MANOVA data format, the one-

sample MANOVA is discussed below. 

Model assumptions – Let  𝒚𝑖 be a 𝑛 by 1 vector representing the 𝑛 repeated measures of the 

response variable. The one-sample MANOVA can be presented as: 

𝒚𝑖 = 𝝁 + 𝜺𝑖 
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where, 

• 𝝁  is the 𝑛 by 1 vector representing the mean for each time point or repeated measure, 

• 𝜺𝑖 represents the 𝑛 by 1 vector of errors, distributed as 𝑁(0, 𝚺). 

• The variance-covariance matrix 𝚺 of the error term can be of a general form. In other 

words, there is no such assumption as the CS seen in the univariate case. 

Note that in the univariate case, the 𝚺 matrix can be expressed as: 

𝚺 = σ𝜋
2𝟏𝑛𝟏𝑛

′ +σ𝑒
2𝑰𝑛 , 

where, 𝟏𝑛𝟏𝑛
′   represents the 𝑛 by 𝑛 matrix of ones and 𝑰𝑛 is the 𝑛 by 𝑛 identity matrix. Likewise, 

the mean vector can be expressed as 𝝁 = 𝜇 + 𝝉 ,where 𝜇  denotes the grand mean and 𝝉 represents 

the time effects vector. Therefore, all the ANOVA results can be pulled out from the MANOVA 

model. 

Growth curve analysis – Growth curve analysis, also called polynomial representation, 

consists of modeling the mean vector as a polynomial function of time: 

[

𝜇1
𝜇2
⋮
𝜇𝑛

] = [

1
1
⋮
1

] 𝛽0 + [

𝑡1
𝑡2
⋮
𝑡𝑛

] 𝛽1 ++

[
 
 
 
𝑡1
2

𝑡2
2

⋮
𝑡𝑛
2]
 
 
 
𝛽2 +⋯+

[
 
 
 
 𝑡1
𝑞−1

𝑡2
𝑞−1

⋮

𝑡𝑛
𝑞−1
]
 
 
 
 

𝛽𝑞−1 

where 𝑡1, 𝑡2, …, 𝑡𝑛 represents time point values and 𝑞 ≤ 𝑛 indicates the degree of the polynomial. 

The model equation can therefore be written using matrix notation as: 

𝒚𝑖 = 𝑻
′𝜷 + 𝜺𝑖 

It is recommended to orthogonalize T by expressing the mean vector as 𝝁 = 𝑷′𝜽 where P is 

the 𝑞 by 𝑛 matrix of orthogonal polynomials with the first row representing the constant term, the 

second row, the linear, the third, the quadratic, and so on. This is obtained through the use of the 

Cholesky decomposition which yields a 𝑞 by 𝑞 lower triangular matrix 𝑺 such that 𝑷 = 𝑺−1𝑻 and 
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𝑺𝑺′ = 𝑻𝑻′. See Pearson and Hartley (1976) for orthogonal polynomial contrasts using equal time 

intervals. 

Some statistical packages such as SAS have procedures that give matrix 𝑇 into an orthogonal 

polynomial matrix. For instance, if one were to use this procedure with the following time matrix 

for 𝑛 = 4, 

𝑇 = [

1 1
0 1

 
1 1
2  3

0 1
0 1

  
2 9
8 27

] 

The corresponding orthogonal polynomial matrix would be: 

𝑃 = [

   1
−3
   1
−1

     1
  −1

  
−1
   3

  1
   1
−1
  −3   

 

1
3
1
1

]

÷ √4

÷ √20

÷ √4

÷ √4

 

Note that the elements of each row are divided by the sum of the squares of the row elements, 

indicated by the division sign on the right of the matrix. 

Each row, after being divided by its corresponding square root value, represents the 

coefficients corresponding to the polynomial contrasts that were presented in the previous models. 

In this case, the first row represents the constant term, the second row, the linear term, and so on. 

The orthogonal polynomial trend model can be written as: 

𝑷𝒚𝑖 = 𝑷𝝁 + 𝑷𝜺𝑖 = 𝜽 + 𝜺𝒊
∗ 

where,  

• 𝜽 is the 𝑛 by 1 vector of transformed population means, estimated by the transformed 

sample means vector 𝜃 = 𝑷𝒚̅. ,  

▪ 𝒚̅. indicates the 𝑛 by 1 vector of time point means,  

•  𝜺𝒊
∗~𝑵(𝟎, 𝚺∗)  represents the transformed vector of residuals where 𝚺∗ = 𝑷𝚺𝑷′.   
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Notice that the test of sphericity seen in the ANOVA models is equivalent to testing whether 

the lower (𝑛 − 1) × (𝑛 − 1)  partition of the 𝑛 × 𝑛 matrix  𝑷𝚺𝑷′ has constant diagonal elements 

and zero off-diagonal elements. 

Moreover, the MANOVA table is usually presented by the following three elements: 

1. Sum of Squares for Time: 

𝐒𝐒𝐓∗ = 𝑁𝑷𝒚̅.𝒚̅.
′𝑷′ 

𝑆𝑆𝑇∗ represents the sum of squares and cross-product matrix with dimensions 𝑛 by 𝑛. 

The first element of its diagonal equals 𝑁𝑛𝑦̅..
2, and is a function of the grand mean. 

The other 𝑛 −  1 elements of the diagonal of 𝑆𝑆𝑇∗ correspond to the orthogonal 

polynomial partition of Time into 𝑆𝑆𝑇1for the linear trend, 𝑆𝑆𝑇2 for the quadratic 

term, and so on. (Note that this has already been explained in the ANOVA case). 

2. Residual Sum of Squares: 

𝐒𝐒𝐑∗ = 𝑷(𝒀′𝒀 − 𝑁𝒚̅.𝒚̅.
′)𝑷′ 

𝒀 is the 𝑁 by 𝑛 matrix that contains all data. The first diagonal element of the 𝑛 by 𝑛, 

𝑆𝑆𝑅∗ matrix corresponds to the subjects 𝑆𝑆 and the other 𝑛 − 1 diagonal elements 

correspond to the orthogonal polynomial decomposition of Error or Subject by Time 

𝑆𝑆. 

3. Total Sum of Square: 

𝐒𝐒𝐘∗ = 𝑷𝒀′𝒀𝑷′ 

If the sphericity assumption is met, it is possible to extract the univariate repeated 

measures ANOVA results from the 𝑆𝑆𝑇∗ and 𝑆𝑆𝑅∗  matrices (for further details refer 

to Hedeker and Gibbons, 2006). 
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Multivariate test of the time effect – Testing the null hypothesis of no time effect is equivalent 

to testing whether all elements of the 𝑛 by 1 mean vector 𝝁 are equal, or whether the 𝑛 by 1 vector 

of time effects equals a vector of zeros  𝐻0: 𝝉 = 𝟎.  In order to test this hypothesis, the elements of 

the lower (𝑛 − 1) × (𝑛 − 1) submatrices of 𝑆𝑆𝑇∗ and 𝑆𝑆𝑅∗ need to be extracted. Under the null 

hypothesis, both submatrices have the same expectation. Therefore, the same logic used in the 

univariate F-test (where the mean squares for time and residual are compared) is used here with the 

corresponding 𝑆𝑆 matrices. The equivalent to a ratio of 𝑀𝑆 is solving the following determinant: 

|SST(𝑛−1)
∗ − 𝜆 SSR(𝑛−1)

∗ | = 0 

which has a nonzero eigenvalue (or latent root) 𝜆1. This eigenvalue will be equal to one if 𝐻0 is 

“true” (i.e. when SST(𝑛−1)
∗ = SSR(𝑛−1)

∗ ). 

Solving this equation yields a series of overall tests statistics such as Wilk’s Lambda, the 

Hotelling-Lawley trace, and the Pillai-Barlett trace. Under the null hypothesis, all these test statistics 

approximately follow an F-distribution. 

Test of Specific Time Elements –  If sphericity holds, then one can use the univariate RM 

ANOVA tests, whose numerators can be extracted from the lower 𝑛 –  1 diagonal elements of 𝑆𝑆𝑇∗. 

The 𝑀𝑅𝑅 would be used as common denominator for all trend contrasts: 

𝐹1 =
𝑆𝑆𝑇1
𝑆𝑆𝑅

(𝑁 − 1)(𝑛 − 1)

, 𝐹2 =
𝑆𝑆𝑇2
𝑆𝑆𝑅

(𝑁 − 1)(𝑛 − 1)

,… , 𝐹𝑛−1 =
𝑆𝑆𝑇𝑛−1
𝑆𝑆𝑅

(𝑁 − 1)(𝑛 − 1)

 

If sphericity is not met and the MANOVA is conducted, the test of the specific trend 

components are built using their corresponding error term extracted from the 𝑆𝑆𝑅∗ submatrix. 

𝐹1 =
𝑆𝑆𝑇1
𝑆𝑆𝑅1
𝑁 − 1

, 𝐹2 =
𝑆𝑆𝑇2
𝑆𝑆𝑅2
𝑁 − 1

,… , 𝐹𝑛−1 =
𝑆𝑆𝑇𝑛−1
𝑆𝑆𝑅𝑛−1
𝑁 − 1
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Note that now each denominator has only 𝑁 − 1 degrees of freedom. This is the reason why, 

if sphericity holds, the ANOVA tests are more powerful compared to those corresponding to the 

MANOVA. 

3.1.6.1.4. Method: Multiple Samples MANOVA 

Model assumptions –  Let us assume that there exist: 

• ℎ = 1,⋯ , 𝑠 groups,  

• 𝑖 = 1, … ,𝑁ℎ subjects in group h, 

• 𝑗 = 1,⋯ , 𝑛 time points.  

The total number of subjects is defined by 𝑁 = ∑ 𝑁ℎ 
𝑠
ℎ=1 . Notice that the number of subjects 

per group 𝑁ℎ can vary, but the number of time points a subject is measured, 𝑛, is the same across 

subjects. 

This model can then be expressed as: 

𝒚ℎ𝑖 = 𝝁+ 𝜸ℎ + 𝜺ℎ𝑖 

where, 

• 𝝁  represents the 𝑛 by 1 vector of time point means, 

• 𝜸ℎ represents the 𝑛 by 1 vector of group representing the effect of group ℎ, 

• 𝜺ℎ𝑖 represents the 𝑛 by 1 vector of errors with distribution 𝑁(𝟎, 𝚺) for each of the 

populations (i.e. the population from which each group ℎ of subjects is drawn). 

One important assumption of the multiple groups MANOVA is the homogeneity of variance-

covariance assumptions. This means that the same general 𝚺 is assumed for all groups. Applying the 

orthogonal transformation for time, the model can be rewritten as: 

𝑷𝒚ℎ𝑖 = 𝑷𝝁 + 𝑷𝜸ℎ + 𝑷𝜺ℎ𝑖 

𝜺ℎ𝑖~𝑁(𝟎, 𝑷𝚺𝑷
′) 
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As seen in the one-sample MANOVA, the following step would be to test the transformed 

𝚺∗ = 𝑷𝚺𝑷′ for sphericity. If sphericity is satisfied then the univariate tests are recommended; 

otherwise, the MANOVA tests should be used. 

The MANOVA formulation is given by: 

a. Sum of Squares for Time: 

𝐒𝐒𝐓∗ = 𝑁𝑷𝒚̅..𝒚̅..
′𝑷′ 

where the n by n matrix 𝐒𝐒𝐓∗is a function of the cross-product matrix from the overall 

mean vector of repeated measures 𝒚̅..𝒚̅..
′ 

b. Sum of Squares for Group: 

𝐒𝐒𝐆∗ = 𝑷(∑ 𝑁ℎ 
𝑠

ℎ=1
𝒚̅𝒉.𝒚̅𝒉.

′ − 𝐒𝐒𝐓)𝑷′  = 𝑷(∑ 𝑁ℎ 
𝑠

ℎ=1
𝒚̅𝒉.𝒚̅𝒉.

′ − 𝒚̅..𝒚̅..
′)𝑷′ 

where 𝑛 by 𝑛 matrix 𝐒𝐒𝐆∗ is a function of the sum of cross-product matrices from the 

group mean vectors of repeated measures ∑ 𝑁ℎ 
𝑠
ℎ=1 𝒚̅𝒉.𝒚̅𝒉.

′  

c. Residual Sum of Squares: 

𝐒𝐒𝐑∗ = 𝑷(𝑺𝑺𝒀 − 𝑺𝑺𝑮 − 𝑺𝑺𝑻)𝑷′ 

d. Total Sum of Square: 

𝐒𝐒𝐘∗ = 𝑷𝒀′𝒀𝑷′=𝑷SSY𝑷′ = 𝑷(∑ ∑ 𝒚𝒉𝒊𝒚𝒉𝒊
′

𝒊𝒉 )𝑷′ 

Following the orthogonal polynomial parameterization, the statistics in the cross-product 

matrices can be written as: 

Time (𝑑𝑓 = 1): 

𝐒𝐒𝐓∗ =

[
 
 
 
 
𝑆𝑆𝑇0

𝑆𝑆𝑇1
𝑆𝑆𝑇2

⋯

⋮ ⋱ ⋮
⋯ 𝑆𝑆𝑇𝑛−1]

 
 
 
 constant

linear 
quatric
⋮

(𝑛 − 1)th time

     

Between groups (𝑑𝑓 = 𝑠 − 1): 
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𝐒𝐒𝐆∗ =

[
 
 
 
 
𝑆𝑆𝐺0

𝑆𝑆𝐺1
𝑆𝑆𝐺2

⋯

⋮ ⋱ ⋮
⋯ 𝑆𝑆𝐺𝑛−1]

 
 
 
 

groups
groups ×  linear 
groups ×  quatric

⋮
groups × (𝑛 − 1)th time

 

Subjects within groups (𝑑𝑓 = 𝑁 − 𝑠): 

𝐒𝐒𝐑∗ =

[
 
 
 
 
𝑆𝑆𝑅0

𝑆𝑆𝑅1
𝑆𝑆𝑅2

⋯

⋮ ⋱ ⋮
⋯ 𝑆𝑆𝑅𝑛−1]

 
 
 
 

subjects in groups
subjects in groups ×  linear 
subjects in groups ×  quatric

⋮
subjects in groups × (𝑛 − 1)th time

 

Note that each of the lower 𝑛 − 1 diagonal elements in 𝐒𝐒𝐓∗ corresponds to the orthogonal 

𝑆𝑆 partition of Time. The first diagonal element in 𝐒𝐒𝐆∗is used to test for group effect and the lower 

𝑛 − 1 diagonal elements are utilized for testing the interaction effect between groups and each of 

the time trends. 

All three matrices 𝑆𝑆𝑇∗, 𝑆𝑆𝐺∗, and 𝑆𝑆𝑅∗ are symmetric. As in the one-sample case, if 

sphericity is met, the univariate repeated measures results can be pulled out from these matrices (see 

Hedeker & Gibbons, 2006, for further details). 

Multivariate tests – There are two multivariate tests in this MANOVA model, the first being 

the group by time interaction test. This is achieved by pulling out the lower (𝑛 − 1) × (𝑛 − 1) 

submatrices of 𝑆𝑆𝐺∗ and 𝑆𝑆𝑅∗ and solving the following matrix expression: 

|SSG(𝑛−1)
∗ − 𝜆 SSR(𝑛−1)

∗ | = 0 

Common statistics provided by software are Wilk’s Lambda, Hotelling-Lawley Trace, and 

Pillai’s Trace. A non-significant overall group by time test means that the overall test of time effect 

will be conducted in the same fashion that was seen in the one-sample MANOVA. 



51 
 

Test of Specific Group by Time and Time Components – In contrast to the one-sample case, 

where the pooled 𝑀𝑆𝑅 was used as the denominator, in this model testing for time effects and group 

by time effects involves using separate denominators. 

Following the multivariate Time by Group test, the individual components are tested using 

the following statistics: 

𝐹𝐺𝑇2 =

𝑆𝑆𝐺2
𝑠 − 1
𝑆𝑆𝑅2
𝑁 − 𝑠

 (group by linear trend)                              

𝐹𝐺𝑇2 =

𝑆𝑆𝐺2
𝑠 − 1
𝑆𝑆𝑅2
𝑁 − 𝑠

 (group by quadratic trend)                        

⋯ 

Notice that each of above tests follows an 𝐹(𝑠−,𝑁 − 𝑠) under the null hypothesis. 

3.2.  Advanced Analysis Approaches for Longitudinal Data 

In this section, the more advanced methods for analyzing longitudinal data are discussed. 

The first three models reviewed are the families for the analysis of continuous and discrete repeated 

measure data using the extensions of generalized linear models (Diggle et al., 2002; Verbeke & 

Molenberghs, 2009; Fitzmaurice et al., 2004; Molenberghs & Verbeke, 2005). The three model 

families are: 

1. Marginal models: Outcomes are modeled marginalized over all other variables. 

2. Subject-specific models: Outcomes are assumed independent, given a collection of 

subject-specific parameters. The subject-specific methods that will be discussed here 

are the mixed-effects models (including heterogeneity models and generalized 

LMMs). 
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3. Conditional models: Any outcomes within the sequence of measurement occasions 

are modeled conditionally on other past outcomes. The specific conditional model 

that will be discussed here is the transition models. 

The final models discussed in this section will be advanced analytical techniques for 

longitudinal data, such as autoregressive models and latent growth curve modeling (including latent 

class growth models and latent growth mixture models) within the SEM framework, time-series 

analysis, non-linear and non-parametric modeling. 

3.2.1. Review: Marginal Models via Generalized Estimating Equations   

Marginal approaches are used when the focus of a study is to examine the effects of variables 

on the population mean (Edwards, 2000). The marginal model analyzes the relationship between the 

outcome and the predictors without accounting for between-subject heterogeneity, and the 

coefficients of the marginal models have a population-level interpretation (rather than an individual-

level interpretation); the model is therefore also referred to as the population-average model 

(Molenberghs & Verbeke, 2005). The term “marginal” indicates that the mean response of the 

marginal model depends solely on the variables of interest, but not on any random effects and/or 

past outcomes (Fitzmaurice et al., 2004). This is in contrast to mixed-effects models (discussed in 

Section 3.2.2.), where the mean response of the model depends on both the variables of interest and 

the random effects (Fitzmaurice et al., 2004). 

Marginal models do not impose distributional assumptions, which is advantageous as very 

often the outcome variables may be discrete and the usual normality assumption would be hard to 

attain (Fitzmaurice et al., 2004). A variety of marginal models exist; however, they are 

computationally expensive due to high dimensional vectors of correlated data making parameter 

estimation via the maximum likelihood undesirable (Fitzmaurice et al., 2004). As a consequence, an 
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alternative estimating method, the GEEs, was proposed by Liang and Zeger (1986). Within the GEE 

framework, the dependency correction of observations is done by implementing a certain “working” 

covariance pattern for the repeated measurements of the outcome (Liang & Zeger, 1986). Note that, 

even when the working covariance structure is incorrect, the GEE method would still yield unbiased 

parameter estimates (Liang & Zeger, 1986). In sum, the two main advantages of the GEE modeling 

are its robustness to misspecification of the repeated measures’ covariance pattern and the simplicity 

of its computations (Fitzmaurice et al., 2004; Molenberghs & Verbeke, 2005). 

Estimating marginal models for longitudinal data via GEE has been widely used in Education 

and Psychology. For example, Cardozo et al. (2012) fitted GEE longitudinal models to study whether 

there were any associations between the outcome variables (i.e., anxiety, depression, burnout, 

emotional exhaustion, burnout depersonalization, burnout personal accomplishment, and life 

satisfaction) and predictive factors of interest (e.g., gender, age, marital status, job function, hardship 

assignment, mental illness history, trauma exposure, social support, motivation, child trauma, 

extraordinary stress, health habits index, and adult trauma) over the study period (i.e., pre-

deployment, post-deployment, and 3–6 months after deployment) for international humanitarian 

assistance employees providing care in crises. Other examples of the GEE applications for 

longitudinal data in the field of Education and Psychology included Kent et al. (2011); Van Nguyen, 

Laohasiriwong, Saengsuwan, Thinkhamrop and Wright (2015); Lee et al. (2016); Boden, Van 

Stockum, Horwood and Fergusson (2016); and Moskowitz et al. (2017). 

3.2.1.1. Method: Generalized Estimating Equations 

Generalized Linear Models (GLMs) – Since GEE is an extension of GLM for correlated data 

(e.g. longitudinal data), it is necessary to revisit the Generalized Linear Models (GLMs) before 

introducing the GEE models. GLMs develop a family of models, under which various regression 
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methods can be defined as special cases. These different forms of regression models can vary with 

regard to their outcome variable, which is assumed to originate from a class of distributions called 

the exponential family. Therefore, this unitary framework includes linear regressions (continuous 

response variable), Logistic regressions (binary response variable), and Poisson or negative binomial 

regressions (count response variable). 

Model specifications - A GLM is defined by: 

1. A linear predictor, 𝜂𝑖 = 𝑥𝑖
′𝛽. In other words, a linear combination of covariates, 𝑥𝑖

′, 

and regression coefficients 𝛽 for subject 𝑖. 

2. A link function g(.). This translates the expected value of the dependent variable, 

𝜇𝑖 = 𝐸(𝑦𝑖), into the linear predictor 𝑔(𝜇𝑖) = 𝜂𝑖. For instance, in the linear multiple 

regression, the link function happens to be the identity link since 𝑔(𝜇𝑖) = 𝜇𝑖 = 𝜂𝑖 . 

In other words, for linear regression, the expected value of the outcome variable is a 

linear combination of the predictors. The Logistic regression, used when the 

dependent variable is a binary outcome, can be written as: 

𝑙𝑜𝑔 [
𝑃(𝑦𝑖 = 1)

1 − 𝑃(𝑦𝑖 = 1)
] = 𝑥𝑖

′𝛽 

Note that since 𝑃(𝑦𝑖 = 1) = 𝐸(𝑦𝑖) = 𝜇𝑖, the Logistic regression uses the following link 

function 𝑔(𝜇𝑖) = log (
𝜇𝑖

1−𝜇𝑖
). Poisson regression is used when the outcome variable is 

count and is written as 𝜇𝑖=exp(𝑥𝑖
′𝛽). The link function is 𝑔(𝜇𝑖) = log 𝜇𝑖. 

3. The form of the conditional variance of outcome given the predictors 𝑉(𝑦𝑖) =

𝜙𝜐(𝜇𝑖), where, 

a.  𝜐(𝜇𝑖) denotes a variance function which is known,   

b. 𝜙 denotes the scale parameter, which can either be known or estimated.  
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For instance, for the linear regression model 𝜐(𝜇𝑖) = 1 and 𝜙 represents the error 

variance. For the Logistic regression, 𝜐(𝜇𝑖) = 𝜇𝑖(1 − 𝜇𝑖) and 𝜙  is set to 1. In the 

case of the Poisson distribution, where the mean and variance are equal, 𝜐(𝜇𝑖) = 𝜇𝑖 

and 𝜙 is again set to 1. An exception is for methods that account for under- or over-

dispersion, such as the negative binomial regression. For these models, 𝜙 is 

estimated. 

The GEE Models – An important characteristic of the GEE models is that only the marginal 

distribution of 𝑦 at each time point needs to be specified. Therefore, it avoids the need of using 

multivariate distributions. A very attractive aspect of the GEE models is that, even when the 

covariance structure of the repeated measures is mis-specified, they produce consistent and 

asymptotically normal estimates of the regression coefficients.  

Model specifications for the GEE model – As with the GLMs, first the linear predictor is 

specified as a linear combination of the variables, 𝜂𝑖𝑗 = 𝑥𝑖𝑗
′ 𝛽, where 𝑥𝑖𝑗

′  indicates the vector of 

variables for subject 𝑖 at time 𝑗. It follows a link function, 𝑔(𝜇𝑖𝑗) = 𝜂𝑖𝑗, which will depend on the 

type of response (continuous, binary, or count). A third specification shared with the GLMs is that 

the variance is defined as a function of the mean 𝑉(𝑦𝑖𝑗) = 𝜙𝜐(𝜇𝑖𝑗). 

An additional specification of the GEE models is the working correlation structure for the 

repeated measures which is an 𝑛 by 𝑛 correlation matrix, where 𝑛 is the number of time points. 

Subjects do not need to be measured at all time points, therefore each subject will have his/her own 

correlation matrix 𝑹𝑖 of size 𝑛𝑖 × 𝑛𝑖 with 𝑛𝑖 ≤ 𝑛. The individual correlation matrix 𝑹𝑖 is written as 

a function of a vector of parameters 𝒂. Although GEE is robust to misspecifications of the covariance 

pattern, it is recommended to choose an 𝑹 consistent with the observed correlations. If the choice of 

𝑹 is incorrect, the estimators are less efficient. 
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Common working correlation forms can be listed as follows: 

1. Independence: The simplest form is represented by an 𝑛 by 𝑛 identity matrix, 

𝑹𝑖(𝑎) = 𝑰 

As the name indicates, the independence form assumes that the repeated measures are 

not correlated. This assumption is not realistic for longitudinal data. 

2. Exchangeable: This form is the second simplest and it assumes that all correlations 

are equal across time, 

𝑹𝑖(𝑎) = 𝜌 

This assumption is equivalent to the compound symmetry (CS) for Covariance Pattern 

Modeling (covered in section 3.2.8.1.). 

3. 𝐴𝑅(1): The first-order autoregressive form is less restrictive than the previous one 

because it assumes that the correlation between repeated measures is an exponential 

function of the lag, 

𝑹𝑖(𝑎) = 𝜌
|𝑗−𝑗′|    for   𝑗 ≠ 𝑗′ 

4. Toeplitz or m-dependent: This structure assumes that all correlations within a time 

lag are equal, but, in contrast to 𝐴𝑅(1), here lags of different orders have no 

functional relationships between them. This form is written as, 

𝑹𝑖(𝑎) = 𝜌|𝑗−𝑗′|
   if     𝑗 − 𝑗′ < 𝑚 

𝑹𝑖(𝑎) = 0            if     𝑗 − 𝑗
′ > 𝑚 

where the fullest structure in which all lagged correlations are estimated is when 𝑚 =

𝑛 − 1. Notice that this structure is less restrictive than the 𝐴𝑅(1) for which only one 

term, 𝜌,  is estimated. 
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5. Unstructured: Under this structure, 
𝑛(𝑛−1)

2
  parameters are estimated. This structure 

is the most efficient, but only useful when there are few time points. For large 𝑛 and 

under the presence of missing data, the estimation of 𝑹 can become quite 

complicated. 

GEE Estimation – Let us define 𝑨𝑖 as an 𝑛 by 𝑛 diagonal matrix with diagonal elements 

𝑉(𝜇𝑖𝑗) and 𝑹𝑖(𝑎) as the working correlation matrix. Then the working variance-covariance matrix 

for subject 𝑖 is expressed as: 

𝑉(𝑎) = 𝜙𝑨
𝒊

𝟏
𝟐𝑹𝑖(𝑎)𝑨𝒊

𝟏
𝟐 

The GEE estimator of 𝛽 is attained by solving the following equation: 

∑𝑫𝑖
′[𝑉(𝑎̂)]−1

𝑁

𝑖=1

(𝑦𝑖 − 𝜇𝑖) = 𝟎 

where 𝑎̂ is a consistent estimate of 𝑎 and 𝐷𝑖 =
𝜕𝜇𝑖

𝜕𝛽
. 

Solving GEE, which is done as an iterative process, involves repeating the following steps 

until convergence is achieved: 

1. Compute estimates of 𝛽 given the estimates of 𝑹𝑖(𝑎) and 𝜙 using iteratively 

reweighted least squares (IRLS). 

2. Based on the obtained estimates of 𝛽, compute estimates of 𝑎 and 𝜙. This is achieved 

by calculating the standardized residuals, 

𝑟𝑖𝑗 =
(𝑦𝑖𝑗 − 𝜇̂𝑖𝑗)

√[𝑉(𝑎̂)]
𝑗𝑗
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Once convergence is achieved, the standard errors associated with the estimated 𝛽 are of 

interest to conduct hypothesis testing. Two versions of standard errors can be computed for GEE 

models (see Hedeker & Gibbons, 2006 for further details). 

3.2.2. Review: Mixed-Effects Models  

A more advanced but general treatment of repeated measure data requires more rigorous 

approaches; these methods have been developed by researchers over the past 30 to 40 years. The 

most commonly used method is the mixed-effects regression model (Laird & Ware, 1982). Mixed-

effects modeling is essentially regression analysis that allows two kinds of effects: (a) fixed effects, 

which can be used to describe the population, and (b) random effects, which can be used to capture 

correlations of repeated measures and describe the variability across subgroups of the sample and/or 

the cluster-specific trends over time (Fitzmaurice et al., 2004). Mixed-effects models are subject-

specific methods, which are differentiated from marginal models (or population-averaged models) 

by the inclusion of subject-specific parameters (Molenberghs & Verbeke, 2005). Subject-specific 

approaches are most beneficial when the focus of the research is to make inferences about individuals 

rather than the population average (Diggle et al., 2002). The premise of a mixed-effects model (for 

both Gaussian continuous responses or discrete/non-Gaussian responses) is that there is a naturally 

occurring heterogeneity across individuals, which can be represented by a probability distribution 

(Diggle et al., 2002). 

The versatility of mixed-effects modeling has led to a variety of terms for the models it makes 

possible in different disciplines. Because of the simultaneous development of mixed-effects models 

across many fields, the models have been known under many different names, including random 

coefficient models, random-effects models, random intercept models, random regression models, 

mixed-effects models, multilevel models, hierarchical linear models (HLMs), and variance 
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component models (Holden, Kelley, & Agarwal, 2008; Gibbons et al., 2010; Garson, 2013; 

Woltman, Feldstain, MacKay, & Rocchi, 2012; Ker, 2014; Lininger, Spybrook, & Cheatham, 2015). 

In spite of many different labels, the commonality of these methods is the inclusion of random-

subject effects into the regression to account for subject-specific effect. This allows for the 

description of an individual’s trend across time, explains the degree of individual variation that exists 

in the population of individuals, and yields the correlational structure of the repeated measure data 

(Gibbons et. al, 2010; Garson, 2012). It should be also noted that in a linear mixed-effects model, it 

is assumed that the conditional distribution of each observation, given a vector of random effects, 

has a normal distribution (Fitzmaurice et al., 2004). In addition, the random-effects of the mixed-

effects models are assumed to have a multivariate normal distribution (Fitzmaurice et al., 2004). 

Examples of mixed-effects models in Education and Psychology include Sitzmann and Ely (2010); 

Brown et al. (2012); Shephard et al. (2015); and Sullivan, Kohli, Farnsworth, Sadeh and Jones 

(2017). 

The primary advantages of mixed-effects models include:  

1. The ability to include both time-invariant predictors such as country of birth and 

time-varying predictors such as age in the modeling process;  

2. Participants are not expected to be observed on the same number of time points, and 

hence individuals with missing data across repeated measures are included in the 

analysis (that is, irregularly timed and missing data can be handled by the models 

without the need for explicit imputation);  

3. Such models allow multilevel hierarchical modeling which enables predictions at 

each hierarchy level (Gibbons et al., 2010; Woltman et al., 2012; Lininger et al., 

2015). 
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Hierarchical data or multilevel data are a commonly occurring phenomenon in Educational 

and Psychological research (Woltman et al., 2012; Ker, 2014). Hierarchical data means that 

measurements at lower levels are nested within higher level units (Ker, 2014). For example, in the 

education sector, data can be collected and organized at student, classroom, school, and district 

levels. Each subject’s observations collected over time are nested within the individual is another 

type of hierarchical data; the repeated measures are nested within each person (Ker, 2014). 

Mixed-effects models for multilevel analysis address hierarchically nested data structures, 

which often are termed HLM. These models account for the fact that subjects within a specific group 

may be more similar than subjects in other groups (Garson, 2013). Additionally, these models can 

investigate both lower- and higher-level unit variance corresponding to the outcome (Ker, 2014). In 

sum, HLMs allow the researchers to explore the associations within a certain hierarchical level, as 

well as associations between (or across) hierarchical levels, at the same time (Woltman et al., 2012; 

Ker, 2014). HLMs/Mixed effects models are essential tools for analyzing hierarchically structured 

data in Psychological and Educational research (Ker, 2014). Jang, Reeve, and Deci (2010) collected 

hierarchically structured data for students’ individual self-reported engagement, where the self-

reported engagement questionnaires were completed by 1584 students in 84 classrooms within nine 

schools. To analyze these data, “on the first level (between students’ level), using HLM, regression 

equations were modeled to detect engagement differences among students sitting in the same 

classroom. At the second level (between-teachers level), regression equations were modeled for 

characteristics that differed between teachers (autonomy support, structure). At the third level 

(between-schools level), regression equations were modeled for the different schools in which the 

teachers taught” (Jang, Reeve, & Deci, 2010). Other examples of mixed-effects models for 

multilevel analysis addressing hierarchical data in Education and Psychology can be found in Han, 



61 
 

Capraro and Capraro (2015); Baker, Tichovolsky, Kupersmidt, Voegler-Lee and Arnold (2015); 

Kisa and Correnti (2015); and Kwok et al. (2018). 

3.2.2.1. Methods: Linear Mixed Models  

We have seen that traditional models, such as RM ANOVA and RM MANOVA, have 

important limitations including restrictive covariance structures (e.g. CS) and the inability to handle 

missing data. Another common limitation is that individuals are supposed to be measured at the same 

time points. On the other hand, the Mixed-effects Regression Models (MRMs) overcome these 

limitations by modeling specific individual trends using what is called a random effect. These types 

of models are very useful in longitudinal data analysis since subjects with incomplete data can be 

included in the model. 

This section will focus only on models that have a continuous response outcome, also called 

Linear Mixed Models (LMMs). 

A natural way to introduce the LMM is by starting from a simple linear regression model: 

𝑦𝑖𝑗 = 𝛽0 + 𝛽1𝑡𝑖𝑗 + 𝑒𝑖𝑗 

where 𝑦 represents the response variable and 𝑡 the time variable, which is considered to be 

continuous. The subscripts 𝑖 and 𝑗 indicate that both the response and time variables vary across 

subjects 𝑖 = 1,2⋯𝑁 and occasions 𝑗 = 1,2⋯𝑛𝑖. 

Under the linear regression approaches, the error terms are assumed to be distributed 

independently under 𝑁(0, 𝜎2). Given that subjects are measured on more than one occasion, the 

independence assumption is unreasonable for repeated measure data. This model also assumes the 

slope for time is the same for all individuals, which is not realistic either. LMMs add a specific-

individual effect to account for the clustering in the data (occasions nested within individuals) and 

allow the estimation of individual time trends. 
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3.2.2.1.1. Model: Random Intercept  

The simplest extension of the regression model consists of adding a specific-subject 

intercept to the model: 

𝑦𝑖𝑗 = 𝛽0 + 𝛽1𝑡𝑖𝑗 + 𝜍0𝑖 + 𝑒𝑖𝑗, 

𝑒𝑖𝑗| 𝜍0𝑖~𝑁(0, 𝜎
2) 

where 𝜍0𝑖 represents the deviation of individual 𝑖 from the population average. It can also be 

understood as the influence of individual 𝑖 on his/her own repeated measures. 

The formulation above, into one single equation, is known as reduced form. The model can 

also be expressed in a hierarchical form or two-stage formulation, where the model is split into a 

within-subjects or level-1 model, 

𝑦𝑖𝑗 = 𝑏0𝑖 + 𝑏1𝑖𝑡𝑖𝑗 + 𝑒𝑖𝑗 

and the between-subject or level-2 model, 

𝑏0𝑖 = 𝛽0 + 𝜍0𝑖 

𝑏1𝑖 = 𝛽1 

The reduced form indicates that the outcome for subject 𝑖 at time 𝑗 is explained by that 

subject’s baseline level 𝑏0𝑖 and a time trend indicated by the slope 𝑏1𝑖. The level-2 model provides 

an equation for the baseline level for subject 𝑖 which is determined by a population baseline level 𝛽0 

plus the specific subject 𝑖 contribution 𝜍0𝑖. 

Therefore, this model allows a specific initial level for each individual, represented by 𝑏0𝑖.  

However, the model assumes that the slope is the same for all individuals. One way to conceptualize 

this is to imagine that each individual is represented by a regression line, which is parallel to the 

population trend, the only difference between the individual trends being determined by 𝜍0𝑖. 

Note that if level-1 and level-2 models are combined, one obtains the reduced form equation. 
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Model assumptions – The subject-specific effects, 𝜍0𝑖, are treated as random effects since the 

sample of subjects is assumed to be representative of a larger population. 

The error term 𝑒𝑖𝑗 is assumed to follow 𝑁(0, 𝜎𝜍
2). Particularly, the error term is conditionally 

independent and 𝑁(0, 𝜎2). Note that conditional independence means conditional on the random 

subject-specific effect 𝜍0𝑖. 

The error terms 𝜍0𝑖 and 𝑒𝑖𝑗 are sometimes referred to as permanent and transitory 

components as 𝜍0𝑖 represents the time invariant characteristics of the individuals and 𝑒𝑖𝑗 the 

moment’s random deviation. 

A random-intercept model with assumed independent errors, as in the one presented here, 

implies a CS pattern for the variance and covariance matrix. In other words, both variance and 

covariance are assumed constant across time: 

𝑉(𝑦𝑖𝑗) = 𝜎𝜍
2 + 𝜎2 

𝐶(𝑦𝑖𝑗, 𝑦𝑖𝑗′  ) = 𝜎𝜍
2,  for 𝑗 ≠ 𝑗′ 

The intraclass correlation is expressed as the ratio of the random intercept variance 𝜎𝜍
2 to the 

total variance 𝜎𝜍
2 + 𝜎2. The interpretation of the ICC is the same as the one seen for the RM ANOVA 

model; it denotes the proportion of variance due to individuals. Note that this model allows the use 

of less restrictive assumptions for the variance-covariance matrix, such as autoregressive, moving 

averages structures, or an unstructured form. 

Finally, it is worth highlighting again that in LMMs, each individual is measured on 𝑛𝑖 

occasions, which means that individuals with missing data for some time points are still included in 

the analysis. Also, the subscript 𝑖 for the time variable indicates that each individual can be measured 

at different occasions. In other words, each subject can be measured at his/her own individual 

schedule (e.g. follow-up visits). 
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3.2.2.1.2. Model: Random Coefficient 

The random intercept model may be not suitable for repeated measure data since it assumes 

that the rate of change is the same for all subjects and that all measurements of the same subject 

will have the same degree of correlation, regardless of their proximity in time. An extension of the 

random intercept model is therefore to allow both intercept and slope (time trend) to vary across 

subjects. This can be expressed in the level-2 model by adding another error term to the time slope 

as follows: 

𝑏0𝑖 = 𝛽0 + 𝜍0𝑖 

𝑏1𝑖 = 𝛽1 + 𝜍1𝑖 

The level-1 equation does not change with respect to the random intercept model, hence 

𝑦𝑖𝑗 = 𝑏0𝑖 + 𝑏1𝑖𝑡𝑖𝑗 + 𝑒𝑖𝑗 

This new error component term, 𝜍1𝑖, also known as random coefficient, can be interpreted as 

the slope deviation for subject 𝑖, in the same way that 𝜍0𝑖 is considered the intercept deviation for 

subject 𝑖. The reduced form can be obtained by substituting the level-2 model in the level-1 model: 

𝑦𝑖𝑗 = 𝛽0 + 𝛽1𝑡𝑖𝑗 + 𝜍0𝑖 + 𝜍1𝑖𝑡𝑖𝑗 + 𝑒𝑖𝑗 

Model assumptions - The errors 𝑒𝑖𝑗 are conditionally independently distributed as 𝑁(0, 𝜎2). 

Their independence is conditional on 𝜍0𝑖 and 𝜍1𝑖. 

The random intercept and the random coefficient are assumed to follow a bivariate normal 

distribution with random-effect variance and the following covariance matrix: 

Σ𝜍 = [
𝜎𝜍0
2 𝜎𝜍0𝜍1

𝜎𝜍0𝜍1 𝜎𝜍1
2 ] 

The variance component 𝜎𝜍0
2  specifies the amount of heterogeneity in the individual 

intercepts or deviation from the population intercept. Likewise, the variance term 𝜎𝜍1
2  indicates the 
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heterogeneity in slopes, i.e. how much individual slopes differed from the population slope 

represented by 𝛽1. The covariance term 𝜎𝜍0𝜍1 indicates how the random intercept and slope vary 

together. For instance, a positive covariance is suggestive that subjects with greater baseline 

measurements are expected to have greater positive slopes. 

The exact manner in which time is coded is important since it will affect the interpretation 

of the model coefficients. For example, if time is coded starting with 0 for baseline and followed by 

unit increments for follow-up measurements (i.e. 0, 1, 2, 3, 4, …), the intercept parameters in the 

model 𝛽0 and 𝜍0𝑖 refer to the baseline population and individual values. However, if time is centered 

(i.e. the average of time is subtracted from each time value), then the interpretation of the intercept 

parameters refers to the midpoint. 

3.2.2.1.3. Model: Random Coefficient with a Time-Invariant Covariate 

In the previous model, time was defined as a continuous and, needless to say, time-variant 

covariate. Let us assume that one is interested in adding a time-invariant covariate 𝑥𝑖 (e.g. gender). 

Any level-2 covariates (i.e. characteristics that do not vary across time) will be included in the level-

2 model. For simplicity,  𝑥𝑖 is assumed to be a binary variable. (Note that for categorical variables 

with 𝑘 groups with 𝑘 >  2, 𝑘 − 1 dummies need to be included in the model.)  The level-2 model 

equation corresponding to the intercept can be written as: 

𝑏0𝑖 = 𝛽0 + 𝛽2𝑥𝑖 + 𝜍0𝑖 

If the time-invariant covariate 𝑥𝑖 only affects the individual intercept (e.g. assuming that the 

baseline salary for women is lower than that of men, but that the trend is the same for both), this 

would be the only change to the level-2 model. The reduced form for this model can be written as: 

𝑦𝑖𝑗 = 𝛽0 + 𝛽1𝑡𝑖𝑗+ 𝛽2𝑥𝑖 + 𝜍0𝑖 + 𝜍1𝑖𝑡𝑖𝑗 + 𝑒𝑖𝑗 



66 
 

However, it seems more realistic to consider that the individual slope will be also affected 

by the covariate 𝑥𝑖. So in the prior example, it seems realistic to assume that men’s salaries will grow 

at a greater rate than that of women. In this case, the level-2 second equation will be written as: 

𝑏1𝑖 = 𝛽1 + 𝛽3𝑥𝑖 + 𝜍1𝑖 

Substituting the level-2 equations in the level-1 model leads to what is called cross-level 

interaction in the reduced form: 

𝑦𝑖𝑗 = 𝛽0 + 𝛽2𝑥𝑖 + 𝜍0𝑖⏟          
𝑏0𝑖

+ (𝛽1 + 𝛽3𝑥𝑖 + 𝜍1𝑖)⏟          
𝑏1𝑖

𝑡𝑖𝑗 + 𝑒𝑖𝑗 

= 𝛽0 + 𝛽1𝑡𝑖𝑗+ 𝛽2𝑥𝑖+ 𝛽3𝑥𝑖𝑡𝑖𝑗⏟                
𝑓𝑖𝑥𝑒𝑑

+ 𝜍0𝑖 + 𝜍1𝑖𝑡𝑖𝑗 + 𝑒𝑖𝑗⏟          
𝑟𝑎𝑛𝑑𝑜𝑚

 

3.2.3. Review: Two Extensions of Mixed-Effects Models  

Recall that in a mixed-effects approach, it is assumed that (a) the conditional distribution of 

each observation, given a vector of random effects, has a normal distribution; and (b) the random 

effects are assumed to have a multivariate normal distribution (Fitzmaurice et al., 2004). Two 

extensions of mixed-effects models are discussed in this section, including Generalized LMM and 

Heterogeneity models, to relax these two assumptions. 

3.2.3.1. Review: Generalized Linear Mixed Models  

Many outcome variables that are of interest in Education and Psychology are nominal 

variables with two or more categories, such as school achievement, dropout status, or self-reported 

satisfaction level. The generalized LMM is the most commonly used random effects model in the 

context of discrete repeated measurement (Molenberghs & Verbeke, 2005). In a generalized LMM, 

it is assumed that (a) the conditional distribution of each observation, given a vector of random 

effects that belongs to the class of exponential family; and (b) the random effects are assumed to 

have some type of multivariate distribution (multivariate normal distribution is commonly assumed 
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in practice) (Fitzmaurice et al., 2004). The generalized LMM is also an extension of a GLM to 

include both fixed and random effects, thus the distribution of the response is defined conditionally 

on the random effects (Molenberghs & Verbeke, 2005). Methods for estimating generalized LMMs 

have appeared in the literature (Hartzel, Agresti, & Caffo, 2001), and some statistical details will be 

covered shortly. Yet because the procedures for estimations are complex (and beyond the scope of 

this dissertation), full statistical details of this method will not be provided here. Examples of the 

utilization of generalized LMMs in the fields of Education and Psychology include Neighbors et al. 

(2010); Christens and Speer (2011), Piasecki et al. (2014); Monfort, Howe, Nettles and Weihs 

(2015); and Kinnunen et al. (2016). 

3.2.3.1.1. Methods: Generalized Mixed Models (GMM)  

GMM is the extension of LMMs to categorical dependent variables. It has become an active 

area of research, particularly in medical fields where categorical outcomes are very common. This 

section will review the Logistic regression, a popular choice for binary/dichotomous outcomes, and 

the Poisson model, which is used for count data. 

3.2.3.1.1.1. Method: Logistic Regression Model and Mixed-Effects Logistic 

Regression  

In order to introduce the mixed-effects generalization of the Logistic regression model, the 

traditional Logistic regression (i.e. the fixed-effects Logistic regression) is reviewed first. 

Let 𝑝𝑖 indicate the probability of an event of interest (𝑌𝑖 = 1) for subject 𝑖. The probability 

of the event not happening (𝑌𝑖 = 0) is 1 − 𝑝𝑖. 

Let  𝒙𝑖 = (1, 𝑥𝑖1, ⋯ , 𝑥𝑖𝑝)
′  denote the (𝑝 + 1) by 1 vector of predictors for subject 𝑖 with its 

corresponding regression coefficients 𝜷 = (𝛽0, 𝛽1, ⋯ , 𝛽𝑝)
′. The Logistic regression model can be 

presented as: 
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𝑝𝑖 = Pr(𝑌𝑖 = 1) =
exp (𝒙𝑖

′𝜷)

1 + exp (𝒙𝑖
′𝜷)

 

Another way to write this model is in terms of the log odds (or Logit of the probabilities) as 

follows: 

log [
𝑝𝑖

1−𝑝𝑖
] = 𝒙𝑖

′𝜷 

The advantage of the Logit function, also known as the link function, is that the log odds is 

linear in its relationship with the explanatory variables and, as such, it shares some of the attractive 

features of a linear regression model. 

Because the model is linear in terms of the Logit, the interpretation of the model coefficients 

is also expressed in terms of Logits. Therefore, the intercept 𝛽0 is understood as the log odds of the 

event of interest for a subject with all covariates set to zero (𝒙𝑖 = 𝟎), and the coefficient 𝛽𝑝 

represents the change in the log odds for a unit change in the explanatory variable  𝑥𝑝, holding all 

other variables constant. More commonly, the coefficients are expressed as odds ratios by using the 

exponential transformation exp(𝛽𝑝). The transformed coefficient exp(𝛽𝑝) is then interpreted as the 

ratio of the odds of the event 𝑌 = 1 for a unit change in  𝑥𝑝. 

Latent variable model – Binary response regression models can also be expressed using the 

threshold concept, which assumes that a continuous latent variable y lies beneath the measured 

dichotomous outcome 𝑌. The values of 𝑌 are then determined by a threshold 𝑐 in the following way: 

𝑌 equals 1 if 𝑦 > 𝑐 and 𝑌 equals 0 if 𝑦 ≤ 𝑐. 

The binary response regression model in terms of the latent variable 𝑦 can be expressed as: 

𝑦𝑖 = 𝒙𝑖
′𝜷 + 𝑒𝑖 

Note that in this formulation, the error term is included. This error term follows a standard 

Logistic distribution with mean equal to 0 and a variance of  
𝜋2

3
 in the case of the Logistic regression, 
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and 𝑁(0, 1) in the case of the Probit regression (the Probit regression is an alternative to model 

binary response, which is less common than the Logistic regression). In particular, given the 

different distributions of the error terms, the regression coefficients attained from the Logistic 

regression are approximately 1.7 times those obtained from the Probit regression (J. S. Long, 1997). 

Finally, it is important to highlight that although the formulation above seems identical to 

that of a regression model for a continuous outcome, the error variance in the latent variable model 

is fixed, not estimated. 

Having provided the necessary background for the Logistic regression, the Mixed-Effects 

Logistic Regression will now be covered. One of the assumptions of the fixed-effect Logistic 

regression is that the observations are independent. As mentioned before, this is not the case in 

longitudinal data, where repeated measures are obtained from a single subject or with clustered data 

(where individuals are grouped in clusters such as schools, clinics, etc.). In this context of data 

dependency, the Logistic regression is generalized by adding a random effect to account for the 

correlation between measurements of the same cluster (note that a subject can be also considered to 

be a cluster). 

The mixed-effects Logistic regression is important because it sets the foundation for models 

with ordinal or model dependent variables, which can be seen as a generalization of the Logistic 

regression. 

Let 𝑖 indicate the level-2 units (subjects or clusters) and 𝑗 the level-1 units (occasions or 

nested units). Also let 𝑖 = 1,⋯ ,𝑁 be the level-2 units (e.g. subjects), and within each level-2 unit 

are nested 𝑗 = 1,⋯ , 𝑛𝑖  level-1 units. Therefore, the total number of level-1 units across all clusters 

is computed as 𝑛 = ∑ 𝑛𝑖
𝑁
𝑖=1 . Let 𝑌𝑖𝑗 equal the value of the binary outcome, which can take 1 if the 

event of interest is present and 0 if not, corresponding to level-1 unit 𝑗 nested within level-2 unit 𝑖. 
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The Logistic regression model can be expressed in terms of Logit and can include a random intercept 

as follows: 

log [
𝑝𝑖𝑗

1 − 𝑝𝑖𝑗
] = 𝒙𝑖

′𝜷 + 𝜍𝑖 

where 𝒙𝑖𝑗 = (1, 𝑥𝑖𝑗1, ⋯ , 𝑥𝑖𝑗𝑝)
′  denotes the (𝑝 + 1) by 1 vector of covariates for level-1 unit 𝑗 within 

cluster, 𝜷 the corresponding (𝑝 + 1) by 1 vector of regression coefficients, and 𝜍𝑖 is the random 

intercept specific to each level-2 unit (or cluster). These random effects are assumed to be 𝑁(0, 𝜎𝜍
2). 

Expressing the random effects in standardized form, the model can be expressed as: 

log [
𝑝𝑖𝑗

1 − 𝑝𝑖𝑗
] = 𝒙𝑖

′𝜷 + 𝜎𝜍𝜃𝑖 

where 𝜃𝑖 is the standardized random intercept or  𝜃𝑖 =
𝜍𝑖

𝜎𝜍
 . 

The same model in terms of the latent variable 𝑦 can be expressed as: 

𝑦𝑖𝑗 = 𝒙𝑖𝑗
′ 𝜷 + 𝜎𝜍𝜃𝑖 + 𝑒𝑖 

Looking at this formulation, it is easy to understand that the regression coefficients obtained 

from the mixed-effects model will differ from the ones obtained from the fixed-effects model. While 

the conditional variance of 𝑦 given as set of covariates 𝒙 equals 𝜎𝜍
2 + 𝜎𝑒

2, the conditional variance 

equals 𝜎𝑒
2 in the fixed-effects model. 

The estimates obtained from the mixed-effects model are usually called “subject-specific” 

since they are conditional on the random effect (note that subject is the level-2 unit). On the other 

hand, estimates from the fixed-effects or GEE models are termed population averaged estimates (i.e. 

marginal), indicating that the effect of a predictor is averaged over the population of individuals.  

The intraclass correlation, which denotes the unexplained variance due to differences 

between subjects, equals 
𝜎𝜍
2

𝜎𝜍
2+

𝜋2

3

  in the mixed-effects regression model. 
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Multilevel formulation – Let us assume a model with one level-1 variable 𝑥𝑖𝑗 and a level-2 

variable 𝑥𝑖. Notice that in the case of repeated measure data, level-1 covariates are called time variant 

and level-2 covariates time invariant. 

The level-1 model can be expressed in terms of the log odds as: 

log [
𝑝𝑖𝑗

1 − 𝑝𝑖𝑗
] = 𝛽0𝑖 + 𝛽1𝑖𝑥𝑖𝑗 

The level-2 model, assuming a random intercept only, is written as: 

𝛽0𝑖 = 𝛽0 + 𝛽2𝑥𝑖 + 𝜍0𝑖 

𝛽1𝑖 = 𝛽1 

and assuming a random coefficient for 𝑥𝑖𝑗 (i.e. allowing a subject-specific slope for covariate 𝑥𝑖𝑗) 

level-2 model is written as: 

𝛽0𝑖 = 𝛽0 + 𝛽2𝑥𝑖 + 𝜍0𝑖 

𝛽1𝑖 = 𝛽1 + 𝛽3𝑥𝑖 + 𝜍1𝑖 

The respective reduced forms, which are obtained by substituting the level-2 model in the level-1 

model, are: 

log [
𝑝𝑖𝑗

1 − 𝑝𝑖𝑗
] = 𝛽0 + 𝛽1𝑥𝑖𝑗 + 𝛽2𝑥𝑖⏟            

𝑓𝑖𝑥𝑒𝑑

+ 𝜍0𝑖⏟
𝑟𝑎𝑛𝑑𝑜𝑚

 

and, 

log [
𝑝𝑖𝑗

1 − 𝑝𝑖𝑗
] = 𝛽0 + 𝛽1𝑥𝑖𝑗 + 𝛽2𝑥𝑖 + 𝛽3𝑥𝑖𝑗𝑥𝑖⏟                  

𝑓𝑖𝑥𝑒𝑑

+ 𝜍0𝑖 + 𝜍1𝑖𝑥𝑖𝑗⏟      
𝑟𝑎𝑛𝑑𝑜𝑚

 

Following this formulation, these models can be easily generalized to include multiple level-

1 or level-2 covariates. 

Finally, one should take into account that, contrary to the multilevel models for continuous 

outcomes, the level-1 variance in the mixed-effects Logistic regression is fixed and not estimated. 
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One of the implications of this is that the level-1 variance cannot be reduced by adding level-1 

covariates. 

3.2.3.1.1.2. Method: Mixed-Effects Poisson Regression Model  

Let us assume that y is the number of events occurring in a time interval of length 𝑡 and is 

said to follow a Poisson distribution. The incidence rate is denoted by 𝜆 and the expectation of 𝑦 is 

given by 𝜇 = 𝜆𝑡. The Poisson regression is frequently utilized in modeling count data. 

Fixed-effects Poisson regression – When counts are observed for different subjects 𝑖, the 

expectation of 𝑦𝑖 can be modeled using a log-linear model as: 

𝜇𝑖𝑗 = 𝐸(𝑦𝑖|𝒙𝑖
′) = exp(𝒙𝑖

′𝜷) 

or written as an additive log-linear model: 

ln(𝜇𝑖) = 𝒙𝑖
′𝜷, 

where 𝑦𝑖 is a non-negative integer value or count variable (e.g. number of doctor visits) with 

expectation 𝜇𝑖𝑗 given covariates 𝒙𝑖
′ = (1, 𝑥𝑖1, ⋯ , 𝑥𝑖𝑝)

′. Notice that for the sake of simplicity this 

model assumes that the length of interval 𝑡 is the same for all individuals. The exponentiated 

regression coefficients of a Poisson model are interpreted as rate ratios, or ratios of expected counts. 

A desirable property of this type of modeling is that if 𝑡 is the same for all subjects, the exponentiated 

coefficient exp(𝛽𝑘) can be interpreted as the incidence-rate ratio for a unit increase in covariate 𝑥𝑖𝑘. 

Random Intercept Poisson regression – In the ordinary Poisson regression, the independence 

assumption is not met when data are longitudinal or clustered. In such cases, the multilevel or mixed-

effects models offer an alternative to address the dependence of the observations within 

subjects/clusters. 
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Let us assume that a total of 𝑛 = ∑ 𝑛𝑖𝑖  nonnegative integer values 𝑦𝑖𝑗 are measured for  𝑖 =

1,⋯ ,𝑁  subjects and  𝑗 = 1,⋯ , 𝑛𝑖 observations for subject 𝑖. The vector of covariates is denoted by 

𝒙𝑖𝑗 = (1, 𝑥𝑖𝑗1, ⋯ , 𝑥𝑖𝑗𝑝)
′ and 𝜷 represents the corresponding vector of regression coefficients. 

The random intercept Poisson model includes a subject-specific random intercept  𝜍𝑖   to 

account for the clustering in the data: 

𝜇𝑖𝑗 = 𝐸(𝑦𝑖𝑗|𝒙𝑖𝑗
′ , 𝜍𝑖) = exp(𝒙𝑖𝑗

′ 𝜷 + 𝜍𝑖) 

= exp (𝛽0 + 𝛽1𝑥𝑖𝑗1 +⋯+ 𝛽𝑝𝑥𝑖𝑗𝑝 + 𝜍𝑖) 

= exp (𝜍𝑖)exp (𝛽0 + 𝛽1𝑥𝑖𝑗1 +⋯+ 𝛽𝑝𝑥𝑖𝑗𝑝) 

where 𝜍𝑖 is assumed to follow 𝑁(0, 𝜎𝜍
2). 

The model where the random effect is expressed in standardized form is written as: 

𝜇𝑖𝑗 = 𝐸(𝑦𝑖𝑗|𝒙𝑖𝑗
′ , 𝜍0𝑖) = exp(𝒙𝑖𝑗

′ 𝜷+ 𝜎𝜍𝜃𝑖) 

where 𝜃𝑖 is the standardized random intercept or  𝜃𝑖 =
𝜍𝑖

𝜎𝜍
. 

3.2.3.2. Review: Heterogeneity Models  

The mixed models covered up to this point assume normality of the random effects, which 

implies that they are sampled from a homogeneous population of random effects. However, it has 

been shown that misspecification of random effects distribution can lead to biased parameter 

estimates. Therefore, methods that relax this distributional assumption for the random effects are 

necessary (Molenberghs & Verbeke, 2005). Substituting the normality assumption of the random 

effects by a mixture of normal distributions leads to the heterogeneity approaches (Verbeke & 

Molenberghs, 2009; Molenberghs & Verbeke, 2005). This method assumes that the random effects 

are drawn from a mixture of normal distributions, not just one single normal distribution, which 
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reflects the assumed presence of unobserved heterogeneity (Verbeke & Molenberghs, 2009; 

Molenberghs & Verbeke, 2005). Several advantages arise from the heterogeneity model:  

1. Using the finite mixtures of normal distributions will result in a flexible model;  

2. The mixture distributions can be utilized to model unobserved heterogeneity in the 

random effects;  

3. The mixture distributions can be used for the purpose of classification and hence are 

useful for cluster/discriminant analysis for longitudinal data (Verbeke & 

Molenberghs, 2009; Molenberghs and Verbeke, 2005).  

Despite the usefulness of this model, this review found no applications of heterogeneity 

models in Education and Psychology research during the past 9 to 10 years. It remains a useful tool 

for future research. 

3.2.3.2.1. Method: The Heterogeneity Model  

The heterogeneity model was introduced by Verbeke and Lesaffre (1996 ) as an extension of 

the LMMs to cases in which the distribution of the random effects was not from a single normal 

distribution. This model is an accepted method for classifying longitudinal profiles. 

Let us consider the following LMM: 

𝑦𝑖𝑗 = 𝛽0 + 𝛽1𝑡𝑖𝑗 + 𝜍0𝑖 + 𝜍1𝑖𝑡𝑖𝑗 + 𝑒𝑖𝑗 

Making a small change in the notation of the random-effects, one can rewrite it as: 

𝑦𝑖𝑗 = 𝛽0 + 𝛽1𝑡𝑖𝑗 + 𝑏0𝑖 + 𝑏1𝑖𝑡𝑖𝑗 + 𝑒𝑖𝑗 

This model can be generalized to a LMM with more covariates and random-effects, and 

expressed in matrix form as: 

𝒀𝒊 = 𝑋𝑖𝜷+ 𝑍𝑖𝒃𝒊 + 𝒆𝒊 

where, 
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• 𝒃𝒊 represents the vector of random effects, 

• 𝜷 represents the vector of parameters corresponding to the fixed-effects part of the 

model. 

Substituting the normality assumption of the random-effects by a mixture of 𝐾, q-

dimensional normal distributions will result in a heterogeneity model with random effects that have 

mean vectors 𝝁𝒌 and covariance matrices 𝐷𝑘 as follows: 

𝒃𝒊~∑𝑝𝑘𝑁(𝝁𝒌,

𝐾

𝑘=1

𝐷𝑘) 

where ∑ 𝑝𝑘
𝐾
𝑘=1 = 1. The additional constraint ∑ 𝑝𝑘

𝐾
𝑘=1 𝝁𝒌 = 0 is needed to ensure that 𝐸(𝒚𝒊) = 𝑋𝑖𝛽. 

One can assume that all covariance matrices are the same, 𝐷𝑘 = 𝐷 for all 𝑘.  Notice that  𝑘 denotes 

group membership to latent group or class 𝑘. 

The heterogeneity model is then specified as: 

𝒀𝒊 = 𝑋𝑖𝛽 + 𝑍𝑖𝒃𝒊 + 𝒆𝒊, 

𝒃𝒊~∑𝑝𝑘𝑁(𝝁𝒌, 𝐷),

𝐾

𝑘=1

 

                                                    
∑ 𝑝𝑘
𝐾
𝑘=1 = 1,     ∑ 𝑝𝑘

𝐾
𝑘=1 𝝁𝒌 = 0    
 

 

𝒆𝒊~𝑁(𝟎, Σ𝑖) 

𝑏1, ⋯ , 𝑏𝑁 𝑎𝑛𝑑 𝑒1, ⋯ , 𝑒𝑁 𝑎𝑟𝑒 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 

This model assumes that the population of random-effects consists of a mixture of 𝐾 

subpopulations or latent classes with mean vectors 𝝁𝒌 and covariance matrix D. Note that in 

comparison, the LMM assumed that the random effects had mean zero,  𝒃𝒊~𝑁(0, 𝐷). 

To illustrate the heterogeneity model with a simple example, let us go back to the LMM with 

equation: 
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𝑦𝑖𝑗 = 𝛽0 + 𝛽1𝑡𝑖𝑗 + 𝑏0𝑖 + 𝑏1𝑖𝑡𝑖𝑗 + 𝑒𝑖𝑗 

and let us assume that the random coefficient for time, 𝑏1𝑖, has different means across two latent 

classes or subpopulations. Therefore, 𝑏1𝑖 will no longer follow a 𝑁(0, 𝜎𝜍
2), but it will follow a 

mixture of two normal distributions as follows: 

𝑏1𝑖~𝑝1𝑁(𝜇1, 𝜎1𝜍
2 ) + 𝑝1𝑁(𝜇2, 𝜎2𝜍

2 ), 

where 𝜇1, 𝜇2 and 𝜎1𝜍
2 , 𝜎2𝜍

2  (note that one can have 𝜎1𝜍
2 = 𝜎2𝜍

2 ) represents the means and variances of 

the random coefficient 𝑏1𝑖 for each subpopulation, respectively, and where 𝑝1 is the unknown 

proportion of subjects in subpopulation 1 in the dataset and 𝑝2 = 1 − 𝑝1 is the proportion of subjects 

in subpopulation 2. 

Notice that since the covariate in this model is time, this mixture model also receives the 

name of mixture growth model. One of the goals of the mixture growth model is identifying clusters 

of individuals with similar growth parameters. 

Model estimation: the EM algorithm – The marginal distribution of 𝒀𝒊 under the 

heterogeneity model is given by: 

𝒀𝒊~∑𝑝𝑘𝑁(𝑋𝑖𝛽 + 𝑍𝑖𝝁𝒌, 𝑉𝑖)

𝐾

𝑘=1

 

where 𝑉𝑖 = 𝑍𝑖𝐷𝑍𝑖
′ + Σ𝑖. The estimation of the parameters 𝛽, 𝝁𝒌, 𝑝𝑘, 𝐷 and the parameters in Σ𝑖 can 

be done using maximum likelihood estimation. In this context of mixture problems, the Expectation-

Maximization (EM) algorithm is very useful since it can happen that when a model is fitted with too 

many parameters due to having a g too large, the likelihood function can be maximal anywhere on 

a ridge and, therefore, not able to find a solution. The EM algorithm can find convergence in some 

particular point on that ridge. 

Let us assume the following specifications: 
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• 𝝅 represents the vector of probabilities, i.e., 𝝅′ = (𝑝1, ⋯ , 𝑝𝐾), 

• 𝜸 represents the vector comprising the parameters 𝛽, 𝐷, the covariance components 

in Σ𝑖 and the means in 𝝁𝒌, 

• 𝜽′ = ( 𝝅′, 𝜸′) represents the vector of all parameters in the marginal heterogeneity 

model, 

• 𝑓𝑖𝑘(𝒚𝒊| 𝜸) represents the density function of 𝑁(𝑋𝑖𝛽 + 𝑍𝑖𝜇𝑘 , 𝑉𝑖). 

The corresponding likelihood function can be expressed as: 

𝐿(𝜽|𝒚) =∏{∑𝑝𝑘𝑓𝑖𝑘(𝒚𝒊| 𝜸)

𝐾

𝑘=1

}

𝑁

𝑖=1

 

where 𝒚′ = (𝒚𝟏
′ , ⋯ , 𝒚𝑵

′ ) is the vector that contains the measured outcome variables for the N 

subjects. 

Let us define 𝑧𝑖𝑘 such that the prior probability that a subject belongs to component or group 

𝑘  is  𝑃(𝑧𝑖𝑘 = 1) = 𝑝𝑘. The log-likelihood for the observed 𝒚 and for the vector 𝒛  of the unobserved 

indicators 𝑧𝑖𝑘 can be written as: 

ℓ(𝜽|𝒚, 𝒛) =∑∑𝑧𝑖𝑘{ln 𝑝𝑘 + ln𝑓𝑖𝑘 (𝒚𝒊| 𝜸)}

𝐾

𝑘=1

𝑁

𝑖=1

 

While maximizing ℓ(𝜽|𝒚, 𝒛) is easier than maximizing ℓ(𝜽|𝒚), it yields estimates which 

depend on the unobserved 𝑧𝑖𝑘. The EM algorithm solves this problem by maximizing the conditional 

expectation of ℓ(𝜽|𝒚, 𝒛) instead of ℓ(𝜽|𝒚, 𝒛) itself. In the expectation step (i.e. E), the conditional 

expectation of ℓ(𝜽|𝒚, 𝒛) given the observed vector 𝒚 is computed. Then, in the maximization step 

(i.e. M), the conditional expectation of ℓ(𝜽|𝒚, 𝒛) is maximized with respect to 𝜽, and finally an 

updated estimate for 𝜽 is recorded. The above algorithm iterates between the steps E and M until 

convergence is achieved. 
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3.2.4. Review: Conditional Models/Transition Models  

The parameters of conditional approaches describe a feature of a set of responses given 

certain values for the other responses (Cox, 1972). The mentioned feature could be odds, logits, 

probabilities, and so on. Thus, conditional models refer to methods that model the mean and time 

dependence simultaneously by means of conditioning a response variable on other responses (or on 

a subset of other responses) (Diggle et al., 2002; Molenberghs & Verbeke, 2005; Fitzmaurice & 

Molenberghs, 2009). Diggle at al. (2002, pp. 142–144) have criticized the use of conditional models 

since these methods have difficulty interpreting the fixed-effect parameters, such as the treatment 

effect of one outcome as it is modeled conditionally on other outcomes for the same participant, the 

responses of other participants, and the number of repeated measures. (Note that when adding or 

deleting an observation for an individual, the value and interpretation of the parameter would 

change.) 

Nonetheless, a particular case of the conditional models is so-called transition, or Markov, 

models (P. Diggle, Diggle, et al., 2002; Fitzmaurice & Molenberghs, 2009; Molenberghs & Verbeke, 

2005). Transition models are useful for repeated measure data because in such approaches the 

conditional distribution of each outcome is written as an explicit function of the previous outcomes 

and variables (P. Diggle, Diggle, et al., 2002; Fitzmaurice & Molenberghs, 2009; Molenberghs & 

Verbeke, 2005). Transition approaches can be thought of as conditional models where one models 

the conditional distribution of the dependent variable at any time point given the past outcomes and 

variables. Transition or Markov models are a specific type of conditional model which accounts for 

dependence among the repeated measures by conditioning a response variable on the other responses 

of the same subject that allows the past measurements to influence the present values of the subject 

(P. Diggle, Diggle, et al., 2002). The most useful transition models are Markov chains for discrete 
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response variables, where the conditional distribution of each response depends on the 𝑞 prior 

observations (P. Diggle, Diggle, et al., 2002; Fitzmaurice & Molenberghs, 2009). The integer 𝑞 

represents the order of a transition model, i.e., the number of past measurements that can influence 

the current one. 

Transition models have their own limitations for the analysis of repeated measure data. For 

instance, transition models require time points that are equally spaced in time, and hence it is difficult 

to utilize transition models when data are missing or when intervals between repeated measures are 

irregularly spaced (Fitzmaurice & Molenberghs, 2009). Note that the interpretation of parameters 

changes with the order of the serial dependence (P. Diggle, Diggle, et al., 2002; Fitzmaurice & 

Molenberghs, 2009). Finally, conditioning on the past outcomes may lessen the effects of variables 

of interest (Fitzmaurice & Molenberghs, 2009). Regardless, transition (Markov) models have been 

utilized for analyzing repeated measure data in Education and Psychology; see, for example, 

Berridge, Penn and Ganjali (2009); Facal, Guàrdia-Olmos, and Juncos-Rabadán (2015); and Allik 

and Kearns (2017). 

3.2.4.1. Method: Conditional Linear Mixed Models  

In repeated measure data, particularly in observational studies, baseline differences between 

subjects need to be taken into account. In other words, the longitudinal changes need to be corrected 

for potential confounders such as age, gender, etc. These subject characteristics are called the cross-

sectional component, which is usually treated as a nuisance since the primary interest when 

analyzing repeated measure data is generally the longitudinal or time effects. 

Let us consider the following LMM: 

𝑦𝑖𝑗 = 𝛽0 + 𝛽1𝑥1𝑖 + 𝛽2𝑥1𝑖
2 + 𝛽3𝑡𝑖𝑗 + 𝛽4𝑥1𝑖𝑡𝑖𝑗 + 𝜍0𝑖 + 𝜍1𝑖𝑡𝑖𝑗 + 𝑒𝑖𝑗 

where, 
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• 𝛽0 is the grand mean,  

• 𝑥1𝑖 is a time-invariant covariate (e.g. age at study entry),  

• 𝑡𝑖𝑗 denotes the time point at which the 𝑗th measurement from subject 𝑖 is taken,  

• 𝜍0𝑖 represents the random intercept,  

• 𝜍1𝑖 the random coefficient or slope for time.  

• 𝑒𝑖𝑗 represents the measurement error.  

One can rearrange the equation in terms of the cross-sectional and longitudinal components 

as follows: 

𝑦𝑖𝑗 = (𝛽0 + 𝛽1𝑥1𝑖 + 𝛽2𝑥1𝑖
2 + 𝜍0𝑖) + (𝛽3 + 𝛽4𝑥1𝑖 + 𝜍1𝑖)𝑡𝑖𝑗 + 𝑒𝑖𝑗 

Then, to simplify notation we will replace 𝜍0𝑖 and 𝜍1𝑖 by 𝑏0𝑖 and 𝑏1𝑖, respectively: 

𝑦𝑖𝑗 = (𝛽0 + 𝛽1𝑥1𝑖 + 𝛽2𝑥1𝑖
2 + 𝑏0𝑖) + (𝛽3 + 𝛽4𝑥1𝑖 + 𝑏1𝑖)𝑡𝑖𝑗 + 𝑒𝑖𝑗. 

Misspecifications in the cross-sectional component, such as omitting a relevant covariate, 

can carry negative effects for the estimates of the longitudinal effects, including inflated random-

intercept variance and bias in the estimation of the random effect covariance. 

Verbeke and Lesaffre (1999) and Verbeke, Spiessens and Lesaffre (2001) introduced the 

conditional LMMs as an alternative to analyzing repeated measure data without the need to specify 

any cross-sectional variables. 

The LMM above can be reformulated as: 

𝑦𝑖𝑗 = 𝑏𝑖
∗ + (𝛽3 + 𝛽4𝑥1𝑖 + 𝑏1𝑖)𝑡𝑖𝑗 + 𝑒𝑖𝑗 

where, 

• The parameters of interest are fixed slopes 𝛽3, 𝛽4,  

• 𝑏𝑖
∗ represents the cross-sectional component for subject 𝑖 under the original model,  

• The subject-specific slope 𝑏1𝑖, 
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• The residual variance 𝜎2.   

Notice that in this model, the cross-sectional effect  𝑏𝑖
∗ is considered a nuisance. This model 

can be expressed using the following form: 

𝒀𝑖 = 𝟏𝑛𝑖𝑏𝑖
∗ + 𝑋𝑖𝛽 + 𝑍𝑖𝒃𝒊 + 𝑒𝑖 

where the matrices 𝑋𝑖, 𝑍𝑖 and vectors 𝛽 and 𝑏𝑖 correspond to the sub-matrices and sub-vectors of 

their original counterparts obtained by deleting those elements corresponding to the cross-sectional 

effect (i.e. the time-invariant variables) from the original presentation of the method. 

Model estimation – Estimating the conditional LMMs consists of two steps. The first step of 

the estimation consists of conditioning on sufficient statistics for the nuisance parameters 𝑏𝑖
∗. The 

second step is utilizing the maximum likelihood (ML) or the restricted maximum likelihood 

estimation (REML) to estimate the rest of the parameters using the conditional distribution of the 

vector of responses 𝑌𝑖 on the sufficient statistics. 

Let us consider 𝑦̅𝑖 = ∑
𝑦𝑖𝑗

𝑛𝑖
𝑗    to be a sufficient statistic for 𝑏𝑖

∗. The distribution of 

𝒀𝒊 , conditional on 𝑦̅𝑖   and the subject-specific random effects 𝒃𝒊, can be written as: 

𝑓𝑖(𝒚𝒊|𝑦̅𝑖 , 𝒃𝒊) =
𝑓𝑖(𝒚𝒊|𝑏𝑖

∗, 𝒃𝒊)

𝑓𝑖(𝑦̅𝑖|𝑏𝑖
∗, 𝒃𝒊)

. 

After some matrix algebra, it follows that the distribution above is proportional to: 

(2𝜋𝜎2)−
𝑛𝑖−1
2 exp {−

1

2𝜎2
(𝐴𝑖

′𝒚𝒊 − 𝐴𝑖
′𝑋𝑖𝛽 − 𝐴𝑖

′𝑍𝑖𝒃𝒊)
′(𝐴𝑖

′𝐴𝑖)
−1 

        × (𝐴𝑖
′𝒚𝒊 − 𝐴𝑖

′𝑋𝑖𝛽 − 𝐴𝑖
′𝑍𝑖𝒃𝒊)} 

for any set of 𝑛𝑖 × (𝑛𝑖 − 1) matrices 𝐴𝑖 of rank 𝑛𝑖 − 1 which satisfy 𝐴𝑖
′𝟏𝑛𝑖 = 0.  If one also adds 

the condition that 𝐴𝑖
′𝐴𝑖 = 𝐼𝑛𝑖−1, then the conditional approach is equivalent to estimating the 

transformed model: 

𝒀𝒊
∗ ≡ 𝐴𝑖

′𝒀𝑖 = 𝐴𝑖
′𝑋𝑖𝛽 + 𝐴𝑖

′𝑍𝑖𝒃𝒊 + 𝐴𝑖
′𝑒𝑖 
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= 𝑋𝒊
∗𝛽 + 𝑍𝒊

∗𝒃𝒊+ 𝑒𝑖
∗, 

where 𝑋𝒊
∗, 𝑍𝒊

∗ and 𝑒𝑖
∗ are 𝑁(0, 𝜎2𝐼𝑛𝑖−1). One can see that the only parameters in the transformed 

model shown above are the longitudinal effects and the residual variance. This transformed LMM 

can be estimated via ML or REML methods. 

The simplest case of a conditional LMM is that of balanced data with only two measurements 

per participant; here the only time-variant variable of interest is the occasion in which the 

measurement was taken (pre, post). The conditional model in this context is the same as analyzing 

the difference between pre and post for each participant. Therefore, conditional LMMs can be seen 

as an extension of the paired t-test to more than two measurements per subject and unbalanced data. 

The main advantage of conditional LMMs is that the inference is simpler than with traditional 

LMMs because the first conditional step decreases the complexity of the algorithms for model 

fittings. Also, the second step of the approach lifts the normality assumption for the random 

longitudinal effects. A disadvantage of this method is that all subject-specific cross-sectional 

information from the variables is lost. 

3.2.4.2. Method: The Transition Model  

Transition models belong to the family of conditional models. Conditional models can be 

understood as the extension of GLMs to the case of repeated measure data. This is done by modeling 

the time dependency simultaneously by conditioning a response on other responses. In other words, 

outcomes are modeled conditionally on the value of a subset of other responses of the same cluster. 

In the longitudinal data context such a subset can either include all measurements taken previous to 

the measurement being modeled, or only the most recent measurements. These models are called 

transition models. 
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For transition models, the conditional distribution of the outcome at any time point is 

modeled using the past outcomes and variables. Therefore, the dependence/correlation among the 

repeated measures of a subject is assumed to be due to the influence of past measurements of the 

response in the present value. This model can be written as: 

𝑔−1{𝐸(𝑌𝑖𝑗|𝑿𝑖𝑗 , 𝑯𝑖𝑗)} = 𝑿𝑖𝑗
′ 𝛽 +∑𝛼𝑟𝑓𝑟(

𝑠

𝑟=1

𝑯𝑖𝑗), 

where 𝑯𝑖𝑗 = (𝑌𝑖1, ⋯ , 𝑌𝑖𝑗−1)  represents the vector of past responses corresponding to the 𝑗th 

occasion; 𝑓𝑟(𝑯𝑖𝑗) represents a function, not necessarily linear, of the past responses; and g denotes 

the link function (already introduced in the GEE models). 

Note that a particular case of transition models is the first-order autoregressive (i.e. 𝐴𝑅(1)), 

GLM, which is obtained when: 

∑𝛼𝑟𝑓𝑟(

𝑠

𝑟=1

𝑯𝑖𝑗) = 𝛼1𝑓1(𝑯𝑖𝑗) = 𝛼1𝑌𝑖𝑗−1 

In this model, the current outcome is assumed to depend only on the previous response 

besides the variables and the link function is the identity. The 𝐴𝑅(1) model can be expanded to an 

autoregressive of order 𝑠, 𝐴𝑅(𝑠), where the 𝑠 previous responses are taken into account, 

∑𝛼𝑟𝑓𝑟(

𝑠

𝑟=1

𝑯𝑖𝑗) = 𝛼1𝑌𝑖𝑗−1 +⋯+ 𝛼𝑠𝑌𝑖𝑗−𝑠 

In general, these types of conditional models, where the outcome in occasion 𝑗 depends only 

on the 𝑠 prior outcomes, are called Markov models of order 𝑠. More specifically, these models are 

called Markov chain models for discrete outcomes.  

Markov chain models have been extensively used in discrete repeated measures that are 

equally spaced with a finite number of states 𝑆 = {𝑠1, 𝑠2, ⋯ , 𝑠𝑟}. The process starts in one of these 
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states and moves successively from one state to another. The transition probabilities, 𝑝𝑖𝑗 represent 

the probability that the chain currently in state 𝑠𝑖 moves to state 𝑠𝑗. Note that, the conditional 

probability of going into each state, given the previous state, is called the transition probability. 

The process can also remain in the current state and the probability associated with this event 

is 𝑝𝑖𝑖. Usually a particular state is specified as the starting state. 

In the simplest case which is a first-order Markov chain, the model can be expressed in terms 

of the initial state and a set of transition probabilities; they are assumed to be the same for each time 

interval. Note that since the model is first order, dependence is present only on the immediately 

previous state.  

In more general models, one can incorporate higher orders to implement dependence on more 

than the immediately previous measurements. Additionally, the transition probabilities are permitted 

to change across occasions. 

An attractive feature of transition modeling is the following presentation for the conditional 

likelihood, given a set of 𝑠 initial measurements; note that the joint distribution of the outcome 

vectors is written as a product of conditional distributions: 

𝑓(𝑌𝑖1,⋯ , 𝑌𝑖𝑛; 𝜷, 𝜶) =∏𝑓(𝑌𝑖𝑗|

𝑛

𝑗=1

𝑌𝑖𝑗−𝑠, ⋯ , 𝑌𝑖𝑗−1; 𝜷, 𝜶), 

Though Markov chain and autoregressive models have been applied to longitudinal data, 

there are some limitations. First, transition models assume that the time points are equally distant in 

time. Second, the presence of missing measurements complicates the use of transition models. 

Finally, these models are not recommended when the target of inference is the regression parameters 

𝜷 since their estimation is very sensitive to the order of dependence established in the model. In 
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other words, incorporating the history of past responses may attenuate the effect of covariates of 

interest. 

3.2.5. Review: Structural Equation Modeling (SEM) Approaches  

SEM approaches are utilized for specifying and estimating models of the nature and strength 

of the relationships among observed and latent variables (i.e., theoretical constructs that cannot be 

directly measured) (MacCallum & Austin, 2000). There are two main components in SEM:  a 

measurement model and structural model. A measurement model describes and estimates the 

associations between the observed variables and the latent constructs. A structural model defines 

and estimates the hypothesized relationships between the latent constructs themselves (Little, 2013). 

SEM is heavily used to analyze longitudinal data in studies of developmental psychology and aging 

(MacCallum & Austin, 2000). There are two core approaches in modeling repeated measure data 

within the SEM framework, namely, autoregressive and latent growth curve approaches (Bollen & 

Curran, 2004, 2006). Both methods have the following advantages of SEM (Bollen & Curran, 2004, 

2006): 

1. They estimate and correct for time-specific measurement error,  

2. They use multiple indicators per latent variable,  

3. They model mediating and moderating effects, 

4. They explore measurement invariance across time. 

However, because SEM is considered to be an independent set of statistical techniques (when 

compared to ANOVA or regression-like models), the statistical methods related to SEM approaches 

will not be reviewed here. Hoyle (1995) and   Kline (2015) are two great resources for readers 

interested in the statistical details of SEM approaches. 

 



86 
 

3.2.5.1. Review: SEM Autoregressive Models  

Autoregressive models utilize the same variable’s previous observation to predict its future 

measurement. In other words, for an autoregressive approach that has one latent variable, the value 

of the latent variable at each occasion is mainly influenced by (and therefore modeled on) the value 

of that same latent variable at the previous occasion (Selig & Little, 2012). An autoregressive cross-

lagged model could be utilized for studies with more than one latent variable. In this case, it would 

model the unique effect of one variable measured at an earlier time point (e.g. Time 1) on another 

variable observed at a later time point (e.g. Time 2), while accounting for the autoregressive effects 

of that variable at Time 1 on itself at Time 2 (Selig & Little, 2012). Autoregressive models test how 

between-person differences in levels of a variable at one occasion are predicted by between-person 

differences in the same variable at a previous occasion based on a SEM framework (Selig & Little, 

2012). The autoregressive models are particularly useful when the purpose of the study is to detect 

the relations between variables over time and to examine the direction of causation over time (Selig 

& Little, 2012). The models are also well suited to repeated measure data strings with sequential 

transmission; when values of the variable of interest at Time 3 rest on the values at Time 2, which 

in turn rest on the values at Time 1 (Selig & Little, 2012). Brock, Nishida, Chiong, Grimm and 

Rimm-Kaufman (2008) had conducted a series of auto-regressive cross-lagged models (using SEM 

context) to examine the relation between responsive classroom teacher practices, children’s 

perceptions, and their academic and social competence (in terms of social skills, academic 

performance, standardized reading and math scores), using data collected over a 3-year period from 

520 children attending Grades 3-5 in one of six chosen schools in the northeast United States. More 

recent applications of autoregressive (cross-lagged) models in the Educational and Psychological 
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research can be seen in Abbott, Berninger and Fayol (2010); Hong, Yoo, You and Wu (2010); Li 

and Lerner (2013); Guo, Sun, Breit-Smith, Morrison and Connor (2015); and Ciarrochi et al. (2016). 

3.2.5.2. Review: SEM Latent Growth Curve Models  

Latent growth curve models using the SEM framework allow scholars to model and estimate: 

• A mean growth trajectory for a cluster of interest on an outcome,  

• Variability in subject patterns around the mean pattern,  

• The degree to which certain time-invariant and time-varying variables predict 

subject variability (Curran, Obeidat, & Losardo, 2010). 

The process of latent growth curve modeling consists of two stages. In the first stage, 

parameters of individual growth patterns, such as intercepts and slopes along with differences in 

these patterns, are described and estimated. In the second stage, predictors are utilized to describe 

the variance in individual growth patterns (Bollen & Curran, 2006). In other words, latent growth 

curve modeling permits the estimation of inter-individual variance in intra-individual structure of 

change across time (Bollen & Curran, 2006). Questions that can be addressed by latent growth curve 

modeling include:  

1. Concerns regarding the characteristics such as rate and shape of the overall pattern 

of the sample,  

2. The influence of different predictors on the variability of individual growth 

trajectories, 

3. Individual differences in trajectories (Bollen & Curran, 2006).  

The primary advantages of latent growth curve models using the SEM framework are the 

models’ high flexibility; they can incorporate a variety of complexities such as partly missing data, 

unequally spaced time measure, time-varying covariates, complex non-linear or compound-shaped 
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trajectories, non-normally distributed or discrete repeated measures, and multivariate growth 

processes (Curran et al., 2010). Furthermore, many simulation studies have shown that latent growth 

curve models usually have higher statistical power compared to similar traditional methods (Curran 

et al., 2010). Applications of the latent growth curve models under the SEM framework are widely 

adopted in the literature. For example, Brailean et al. (2017) used a series of latent growth curve 

models, as a function of time, for each dependent variable including but not limited to depressed 

affect, positive affect, immediate recall, and inductive reasoning. This allowed the authors to 

examine: 

1. The intercept, i.e. the initial level of a specific response, 

2. The slope, i.e. the rate and form of change (which could be linear or non-linear latent 

growth trajectories), 

3. The relation between the intercept and slope.  

Other examples of the applications of latent growth curve models under the SEM framework 

in Education and Psychology include Caprara et al. (2008); Simons-Morton and Chen (2009); 

Mäkikangas, Bakker, Aunola and Demerouti (2010); Ng, Feldman and Lam (2010); King (2015); 

Ciarrochi et al. (2016); and Ladd, Ettekal, and Kochenderfer-Ladd (2017). As mentioned before, 

SEM approaches are distinct from RM ANOVA and LMM, so the methodological details of SEM 

Latent Growth Curve modeling will not be covered here. 

3.2.6. Review: Mixture Models for Longitudinal Data  

For mixed-effects models with a single-component multivariate normal distribution (for 

more details see Section 3.2.2.), the assumption of random effects is that the participants originate 

from a homogeneous population and can therefore be described by one mean and variance-

covariance structure (Fitzmaurice et al., 2004). However, this assumption might not be realistic when 
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different subpopulations of participants exist, each with its own pattern (Molenberghs & Verbeke, 

2005). Mixture models have been widely used in many disciplines due to their ability to capture the 

subgroup heterogeneity (Tang & Qu, 2016). Finite-mixture approaches can be viewed as latent-

variable methods that can model the distribution of a variable as a mixture of a finite number of 

distributions (McLachlan & Peel, 2000). 

Mixture models have been utilized for repeated measure data in different setups. For 

example, in the heterogeneity models discussed in Section 3.2.2.2, heterogeneity is allowed by 

relaxing the random-effects normality assumption to incorporate mixtures of normal components 

(Molenberghs & Verbeke, 2005; Verbeke & Molenberghs, 2000). Other examples of mixture 

modeling for repeated measure data are the latent class growth model (LCGM) and the latent growth 

mixture model (LGMM) (Jung & Wickrama, 2008; Vermunt, 2010; Berlin, Williams, & Parra, 

2014). The primary goals of LCGM and LGMM are: 

1. To understand subject variability in parameters reflecting individual change in the 

dependent variable across measurement occasions,  

2. To probabilistically allocate subjects into subpopulations; this can be done by 

assigning each subject to a latent class, where the observed distribution of 

measurements may be a mixture of two or more subpopulations (Berlin et al., 2014).  

Although the LCGM and LGMM are closely related, the main distinction between them is 

the values which are permitted to differ within and between latent classes (Berlin et al., 2014; Jung 

& Wickrama, 2008). LGMM allows researchers to control which parameters can vary both within 

and between classes; these parameters include latent variables’ means, variances, covariances, 

residuals, and so on. On the other hand, in LCGM, the variance of latent slope and intercept within 

each class are fixed to zero, but they are permitted to vary between classes (Berlin et al., 2014; Jung 
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& Wickrama, 2008). Therefore, fewer parameters need to be estimated for LCGM than for LGMM. 

Additionally, LCGM assumes that all subject growth patterns are homogeneous within classes 

(Berlin et al., 2014; Jung & Wickrama, 2008). Besides these three applications of mixture models 

(heterogeneity models, LCGM, and LGMM), researchers have proposed different methods to 

incorporate mixture models into longitudinal data analysis. For example, Muthén and Shedden 

(1999) proposed a variation of mixture modeling that permits the joint estimation of the following: 

1. A Logistic regression of binary outcomes on classes,  

2. A finite-mixture growth model where distinct shaped curves are presented by class 

varying random-coefficient means.  

Sun, Rosen, and Sampson (2007) proposed a multivariate Bernoulli mixture model by 

employing random effects for mixing proportion in the GLM framework. 

Mixture models have been utilized in Education and Psychology research for repeated 

measure data. For example, Hart, Musci, Slemrod, Flitsch and Ialongo (2018) fitted a latent class 

growth model to explore the developmental patterns of aggressive-disruptive symptoms. Ladd et al. 

(2017) performed latent growth mixture modeling to classify children with similar victimization 

patterns from kindergarten to 12th grade. 

There exist three types of mixture models for repeated measure data, namely, the mixture 

growth, Mixture Markov, and latent Markov models. Only the Mixture Markov model will be 

covered below. 

3.2.6.1. Method: The Mixture Markov Model  

In section 3.2.4., the transitional model was introduced, and the case of the first-order 

Markov model was discussed. This model assumes that 𝑌𝑖𝑗  depends only on 𝑌𝑖𝑗−1. One of the 

limitations of such a model is that it assumes that the transition probabilities are homogeneous. The 
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mixture Markov model is introduced to take into account unobserved heterogeneity, i.e. to allow 

transition probabilities to differ across unobserved subgroups of subjects. 

The first-order mixture Markov model can be expressed as: 

𝑓(𝑌𝑖1, ⋯ , 𝑌𝑖𝑛) = 𝑓(𝒀𝒊) =∑𝑃(

𝐿

𝓵=𝟏

𝑤𝑖 = 𝓵)𝑓(𝑌𝑖0|𝑤𝑖 = 𝓵)∏𝑓(𝑌𝑖𝑗|

𝑛

𝑗=1

𝑌𝑖𝑗−1, 𝑤𝑖 = 𝓵) 

where L denotes the  𝓵 = 1,⋯ , 𝐿  latent classes. These latent classes are assumed to vary regarding 

the initial-state and transition densities. The probability 𝑃(𝑤𝑖 = 𝓵) indicates that subject 𝑖 belongs 

to class 𝓵. 

For categorical response variables, the model can be expressed as: 

𝑃(𝒀𝒊) =∑𝑃(

𝐿

𝓵=𝟏

𝑤𝑖 = 𝓵)𝑃(𝑌𝑖0 = 𝑚0|𝑤𝑖 = 𝓵)∏𝑃(𝑌𝑖𝑗 = 𝑚𝑗|

𝑛

𝑗=1

𝑌𝑖𝑗−1 = 𝑚𝑗−1, 𝑤𝑖 = 𝓵) 

Special cases of the mixture Markov model – By implementing restrictive conditions on the 

transition probabilities one can obtain various special cases of the mixture Markov approach. For 

example, a “mover-stayer” model (Goodman, 1961) is a two-class model (𝐿 = 2) characterized by 

the fact that subjects in one of the classes - for instance, the second - have zero probability of making 

a changeover. In other words: 

𝑃(𝑌𝑖𝑗 = 𝑚𝑗|𝑌𝑖𝑗−1 = 𝑚𝑗−1, 𝑤𝑖 = 2) = 0    for  𝑚𝑗 ≠ 𝑚𝑗−1. 

Another example entails a Markov model in which the measurements for a random latent 

class are independent across occasions, that is: 

𝑃(𝑌𝑖𝑗 = 𝑚𝑗|𝑌𝑖𝑗−1 = 𝑚𝑗−1, 𝑤𝑖 = 2) = 𝑃(𝑌𝑖𝑗 = 𝑚𝑗|𝑤𝑖 = 2). 

In other words, the probability of a subject’s response on a particular occasion is independent 

of the previous response if the subject belongs to, say, the second latent class. 
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Extensions of the mixture Markov model –  The most common extension of the simple 

mixture Markov model incorporates independent variables that affect class membership, the initial 

state, and transition probabilities. For instance, one can write regression models for 𝑌𝑖0 and 𝑌𝑖𝑗 to 

include variables that affect the initial state and the transitions, respectively. 

3.2.7. Review: Time-Series Approaches  

Time-series analysis is an important analytical technique to understand and predict the 

behavior of variables in different disciplines (Jebb, Tay, Wang, & Huang, 2015). Unlike longitudinal 

data that frequently contain numerous measurements from many subjects, data from a time series 

contain several observations originating from very few sources, or just one. Furthermore, the length 

of time-series is generally at least 20 observations long, which is often longer than the length of 

longitudinal data, and to obtain precise estimation, many time series modeling approaches require 

50 or more observations (McDowall, McCleary, Meidinger, & Hay, 1980, p. 20). Time series studies 

exhibit a unique structure that often demonstrates characteristics that are seldom observed in the 

repeated measure data typically collected in psychological research. Generally, time series studies 

have four components: 

• Trend: Trend in time series data means any systematic long-term change/direction 

in the series level (Hyndman & Athanasopoulos, 2018; McDowall et al., 1980). 

• Seasonality: The seasonal element of a time series is an increase/decrease trajectory 

that consistently reoccurs during the series. In other words, it is a cyclical or 

repeating structure of the measure within a certain time interval that is ascribed to 

seasonal aspects (Hyndman & Athanasopoulos, 2018). 

• Cycles: A cycle in a time series is an isolating pattern such as increase or decrease 

that reoccurs over a certain time interval. Note that seasonal effects have fixed 
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intervals between occurrences which are related to some calendar feature, the 

patterns of cyclical effects do not have fixed intervals, which means that their length 

frequently differs from one cycle to another and cannot be attributed to any naturally 

occurring time periods (Hyndman & Athanasopoulos, 2018). 

• Irregular variation (randomness): While trend, seasonality, and cycles all 

characterize systematic structure of variability in time series, there exist irregular 

components that characterize statistical noise and represent any leftover variation in 

a time series that was not accounted for with the three mentioned systematic 

components. 

While performing any time-series analysis, if a systematic pattern (e.g. trend, seasonality, or 

cycles) has been observed, it must either be explicitly modeled or removed using transformations 

such as detrending or seasonal adjustments (Hyndman & Athanasopoulos, 2018). An effective 

statistical model accounts for all the mentioned systematic components (i.e. trend, seasonality, and 

cycles), translating the residuals to white noise (i.e. mean zero and constant variance). 

In Education and Psychology research, the current observation may partly depend on its 

previous states, which means many educational/psychological variables often display 

autocorrelation (Jebb et al., 2015). Time-series approaches are designed to account for the effect of 

previous measurements by including this source of variance that might be potentially significant 

(Hyndman & Athanasopoulos, 2018). Essentially, time-series analysis assumes that the observations 

contain a systematic pattern along with a random noise that makes identifying this systematic pattern 

difficult (Hyndman & Athanasopoulos, 2018; Menard, 2002). Examples of the application of time-

series analysis in the field of Education and Psychology include Webb, Sheeran and Luszczynska 

(2009); Smith, Handler and Nash (2010); Shelton, Hung and Baughman (2016); Markowitz (2018); 
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and Pennings et al. (2018). Due to the high technicality of time-series approaches, further discussion 

of this topic is not presented here. The references in this section provide useful resources for readers 

interested in the methodological details of time-series modeling. 

3.2.8. Review: Covariance Structure Modeling  

A primary limitation of mixed effects modeling is its dependence on correctly specifying the 

mean and correlation patterns of the repeated measure outcomes to ensure valid hypothesis testing 

and the correct conclusions (Fitzmaurice et al., 2004). Thus, it is crucial to consider methods for 

appropriately accounting for the correlation between the repeated measures from the same subjects 

(Fitzmaurice et al., 2004). Only after implementing an appropriate covariance structure can valid 

standard errors be estimated, which will result in correct inferences. Note that accounting for the 

correlation among repeated measures could increase efficiency of parameter estimation. In other 

words, not accounting for the correlation among the measurement occasions would cause incorrect 

estimates of the sampling variability; this could cause misleading inferences and consequently wrong 

conclusions (Wolfinger, 1993, 1996; Keselman, Algina, Kowalchuk, & Wolfinger, 1998; Littell, 

Pendergast, & Natarajan, 2000; Fitzmaurice et al., 2004; Kwok et al., 2007; Dedrick et al., 2009; 

Barnett, Koper, Dobson, Schmiegelow, & Manseau, 2010; Pusponegoro, Notodiputro, & Sartono, 

2017). 

An extensive number of covariance patterns has been introduced in literature, including but 

not limited to:   

• Diagonal (I),  

• Compound symmetry (CS),  

• Variance components (VC),  

• Banded (UN(2)),  
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• Toeplitz (TOEP),  

• Banded Toeplitz (TOEP(2)),  

• Compound symmetry with heterogeneous groups (CS*GROUP),  

• First-order autoregressive (AR(1)),  

• 𝐴𝑅(1) plus, diagonal (𝐴𝑅(1) + I),  

• 𝐴𝑅(1) plus, common covariance (𝐴𝑅(1) + J),  

• Spatial power law (SP(POW)), 

• Unstructured (UN) (R. D. Wolfinger, 1996).  

Wolfinger (1996) further provided a set of heterogeneous covariance patterns for 

longitudinal data that includes: 

• Heterogeneous counterparts of the CS and 𝐴𝑅(1) structures,  

• The independent-increments pattern,  

• The first-order antedependence model,  

• The Huynh-Feldt pattern,  

• Correlated random coefficients models,  

• A simplified factor-analytic construction.  

Among the available covariance pattern models for accounting/explaining variability, the 

most common ones are I, CS, UN, and 𝐴𝑅(1) (Barnett et al., 2010; R. Wolfinger, 1993; R. D. 

Wolfinger, 1996). These correlation patterns can be defined as: 

• The I covariance pattern assumes no correlation between observations, and it is used 

when none of the outcomes are correlated.  

• The CS covariance pattern assumes that the correlation between any two 

observations is the same, regardless of the time lag between them.  
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• The 𝐴𝑅(1) covariance pattern assumes a stable decrease in correlation with 

increasing time lag or distance between measurements.  

• The UN covariance pattern assumes that no two observations have the same 

correlation, and no structure is defined between adjacent measurements. 

With the rising acknowledgment of the importance of the covariance pattern selection, 

methods have been established that permit researchers to make decisions about which covariance 

structure to apply according to the method used. Often the underlying correlation pattern of the 

repeated measure is not known in advance. Thus, researchers are forced to investigate various 

patterns and depend on fit criteria to choose among different conceivable covariance patterns (R. 

Wolfinger, 1993). Two common fit indices are Akaike’s Information Criterion (AIC) (Akaike, 1974) 

and Schwarz’s Bayesian Information Criterion (BIC) (Schwarz, 1978). Both the AIC and the BIC 

start with the loglikelihood function and penalize for the number of parameters to be estimated. It is 

known that the BIC implements a firmer penalty (Fitzmaurice et al., 2004). For both AIC and BIC, 

values closer to zero represent better fit (Fitzmaurice et al., 2004). Using an example longitudinal 

data set in medicine, Littell, Pendergast, and Natarajan (2000) illustrated how to model the 

covariance structures. They also examined the effects of choosing a covariance pattern on fixed-

effects testing and on estimation/standard error of differences between treatment means. 

3.2.8.1. Methods: Covariance Pattern Models 

Covariance Pattern Models (CPM) can be understood as an extension of the RM MANOVA. 

Similar to MANOVA, for commonly used CPMs, timing of the repeated measures is fixed (i.e. 

subjects are measured at the same occasions). However, unlike MANOVA, incomplete data across 

the fixed time measurements are allowed. 
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Let us assume 𝑖 = 1,⋯𝑁 is the index for individuals, and  𝑗 = 1,⋯𝑛𝑖  represents the number 

of observations for subject 𝑖 (notice that in MANOVA,  𝑛𝑖 = 𝑛  for all subjects). 

The model, written as a regression model in matrix form, is as follows: 

𝒚𝑖 = 𝑿𝑖𝜷 + 𝒆𝒊 

where, 

• 𝒚𝑖 denotes the  𝑛𝑖  ×  1 vector representing the response for subject 𝑖, 

• 𝑿𝑖 denotes the 𝑛𝑖  ×  𝑝 matrix representing the values of the 𝑝 predictors for subject 

𝑖, 

• 𝜷  denotes the  𝑝 ×  1  vector of regression parameters, 

• 𝒆𝒊 denotes the  𝑛𝑖  ×  1 error vector for subject 𝑖, 

Model assumptions – All of the assumptions can be summarized as  𝒆𝒊~𝑁(𝟎, 𝚺𝑖), which 

implies 𝒚𝒊~𝑁(𝑿𝑖𝜷, 𝚺𝑖). 

Each individual matrix 𝚺𝑖 can be treated as a submatrix of the overall 𝑛 ×  𝑛 matrix 𝚺. 

Therefore, if 𝑛𝑖 < 𝑛 , then the rows and columns in 𝚺 corresponding to the missing time points for 

individual have been removed resulting in matrix 𝚺𝑖. 

In this section the assumption is that the n time points are equally spaced (see Núñez-Antón 

& Woodworth, 1994) on how this constraint can be relaxed). 

The matrix 𝚺, and each individual matrix 𝚺𝑖, can be written as a function of a vector 𝜽 of 𝑞 

parameters. Each of the forms that the variance-covariance matrix can take is expressed by a 

different number of parameters. The mathematical presentations of the most common structures for 

𝚺 are reviewed next. 
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Compound Symmetry is one of the simplest variance-covariance structures and assumes 

equal variances ( 𝜎1
2 + 𝜎2) and covariances (𝜎1

2) for the repeated measures. It only requires the 

estimation of two parameters (i.e. 𝑞 =  2). The matrix form is written as the following: 

𝚺 =

[
 
 
 
 
 
 
       𝜎1

2 + 𝜎2    𝜎1
2  𝜎1

2

       𝜎1
2     𝜎1

2 + 𝜎2  𝜎1
2

        𝜎1
2     𝜎1

2     𝜎1
2 + 𝜎2

…     𝜎1
2           𝜎1

2

…     𝜎1
2           𝜎1

2

…     𝜎1
2           𝜎1

2

             ⋮       ⋮     
              𝜎1

2 𝜎1
2   ⋮ 

          𝜎1
2     𝜎1

2          𝜎1
2       

      ⋱  ⋮ ⋮
  𝜎1

2 + 𝜎2 𝜎1
2

  … 𝜎1
2   𝜎1

2 + 𝜎2]
 
 
 
 
 
 

 

As mentioned before, under this form, the variance of the outcome variable is the same, 𝜎1
2 +

𝜎2, at every occasion and the covariance between any two occasions is also the same, 𝜎1
2. While the 

advantage of this form is that it only requires two parameters, the assumption that measurements 

further away in time will have the same level of association as two consecutive measures is not very 

realistic. 

First-Order Autoregressive Structure form (𝐴𝑅(1)), like CS, only depends on the estimation 

of two parameters (i.e. 𝑞 =  2). However, this structure is more suitable for longitudinal data as it 

allows for the correlation between two measurement occasions to be a function of the lag between 

them. The covariance for time points 𝑗 and 𝑗′ is expressed as the following: 

𝜎𝑗𝑗′ = 𝜎
2𝜌|𝑗−𝑗

′| 

where 𝜌 denotes the first-order autoregressive parameter and 𝜎2 is the error variance. 

The matrix representation of this structure can be written as: 

𝚺 = 𝜎2

[
 
 
 
 
1
𝜌

𝜌2

⋮
𝜌𝑛−1

𝜌
1
𝜌
⋮

𝜌𝑛−2

𝜌2

𝜌
1
⋮

𝜌𝑛−3

…
……
⋱
…

𝜌𝑛−1

𝜌𝑛−2

𝜌𝑛−3

⋮
1 ]
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As we can see, this form assumes homogeneous variance 𝜎2 across all repeated measures. It 

also assumes that the covariance between measurements of the same participant decays 

exponentially as a function of the time lags. Though an improvement over the CS, this structure is 

still restrictive since it assumes that the covariance between time points decreases according to an 

𝐴𝑅(1). The next type of structure relaxes this condition. 

Toeplitz or Banded Structure also represents diminishing correlations across time point lags, 

but is less restrictive than the 𝐴𝑅(1) since a specific parameter is assigned to each lag, namely 𝜎𝑗𝑗′ =

𝜃𝑘 , where 𝑘 = |𝑗 − 𝑗′| + 1. 

The matrix form can be written as: 

𝚺 =

[
 
 
 
 
𝜃1
𝜃2
𝜃3
⋮
𝜃𝑛

𝜃2
𝜃1
𝜃2
⋮

𝜃𝑛−1

𝜃3
𝜃2
𝜃1
⋮

𝜃𝑛−2

…
……
⋱
…

𝜃𝑛
𝜃𝑛−1
𝜃𝑛−2
⋮
𝜃1 ]
 
 
 
 

 

Note that this form still assumes homogeneous variance 𝜃1 across time points. However, 

unlike the 𝐴𝑅(1) form, the correlations between observations measured at different time points are 

not restricted and can take any value. In cases where 𝑛 is large, this form also provides the freedom 

to set the correlations for the higher-order lags to zero to minimize the number of estimated 

parameters. Another disadvantage of the 𝐴𝑅(1) and Toeplitz forms is that they are not well suited 

for cases in which the time intervals are not the same or similar. 

Unstructured Form, as its name indicates, is the least restrictive of all forms. The restriction 

that was present in the Toeplitz form, that variance be equal across time, is now lifted. This form is 

also suitable if time intervals are not similar. The matrix representing the unstructured form can be 

written as: 
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𝚺 =

[
 
 
 
 
𝜃11
𝜃21
𝜃31
⋮
𝜃𝑛1

𝜃12
𝜃22
𝜃32
⋮
𝜃𝑛2

𝜃13
𝜃23
𝜃33
⋮
𝜃𝑛3

…
……
⋱
…

𝜃1𝑛
𝜃2𝑛
𝜃3𝑛
⋮
𝜃𝑛𝑛]

 
 
 
 

 

Each covariance is given a specific parameter. Because 𝚺 , being a covariance matrix, is 

symmetric, there are 𝑞 =
𝑛(𝑛+1)

2
  unique parameters to be estimated under this form.  Notice that this 

is the same structure assumed by the MANOVA, but with the difference that under the CPM models 

incomplete data are allowed. Although this form represents a more reasonable representation of 

reality, it uses more degrees of freedom and therefore requires a larger sample size. 

3.2.9. Review: Non-Linear Models  

Considerable attention has been paid in the longitudinal data analysis literature to linear and 

GLMs for model fitting, estimation procedures, and hypothesis testing (Molenberghs & Verbeke, 

2005; Verbeke & Molenberghs, 2000). Despite the usefulness and flexibility offered by the linear 

and generalized linear models, they are subject to constraints (Molenberghs & Verbeke, 2005). The 

term “linear model” represents functional forms that depend on parameters in a linear fashion 

(Molenberghs & Verbeke, 2005; Serroyen, Molenberghs, Verbeke, & Davidian, 2009). For GLMs, 

the formulations contain more complex non-linear dependence on parameters; parameters are 

included linearly at the level of a functions for predictors such as the Logit or Probit. However, 

parameters are transformed via a non-linear link function (for example, the Logit or Probit link) to 

describe the mean (Molenberghs & Verbeke, 2005; Serroyen et al., 2009). 

While suitable transformations of the outcome and predictors can result in models that are 

appropriate in many practical scenarios, some data are essentially too non-linear in nature to be 

modeled linearly (e.g. using LMMs, GLMMs, and GEEs) (Molenberghs & Verbeke, 2005). 

Analyses of this kind concern a diverse spectrum of applied sciences such as pharmaceutical sciences 
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(pharmacodynamics - pharmacokinetics), agriculture/forestry, manufacturing, education, and 

psychology, among others, where a common issue arising in data analysis is that the mechanisms 

governing the relation between the response variable and time cannot be modelled via the class of 

linear models. 

In Educational and Psychology research, many researchers use research participants’ (e.g.: 

students and patients) work, test scores, and progress to monitor skills development and to identify 

discrepancies in (academic) performance levels and trajectories between individuals over time. The 

research objective would be looking at the description of the functional form of growth (e.g.: linear 

or non-linear, increase or decrease, accelerate or decelerate) to model the correct functional form of 

growth (Nese, Lai, & Anderson, 2013). Growth curves depict the evolution of the quantity of a 

certain characteristic in time and are difficult to model linearly. Although it is possible to obtain an 

“approximate” fit by adopting a high-order polynomial approach or a generalization of linear models 

via (generalized) linear mixed-effect modeling or latent growth curve modeling (Blozis, Conger, & 

Harring, 2007; Molenberghs & Verbeke, 2005; Nese et al., 2013), an attempt like this would prove 

unsatisfactory, due to the non-linear nature of the observations. It is hence more appropriate to utilize 

a fully non-linear method, including but not limited to the Logistic growth curve model (Vonesh, 

1992), the Gompertz model (Panik, 2014), the Weibull model (Panik, 2014), the power model 

(Panik, 2014), non-LMMs (Molenberghs & Verbeke, 2005; Serroyen et al., 2009), marginal non-

linear models (Serroyen et al., 2009), and conditional non-linear models (Serroyen et al., 2009), and 

non-linear latent curve models (Blozis et al., 2007). 

Although in linear and linear-mixed models, the parameter estimation must account for the 

correlation among measurement occasions (for the same subject), the interpretation is independent 

of the implemented covariance pattern (Serroyen et al., 2009). However, with non-linear models, 
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various assumptions on the variability and correlation can lead to widely varying magnitudes and 

distinct interpretations for the regression parameters (P. Diggle, Heagerty, et al., 2002; Molenberghs 

& Verbeke, 2005). In addition, fitting non-linear models could be challenging due to the choice of 

starting values, convergence issues, and diagnostics (Molenberghs & Verbeke, 2005; Vonesh, 1992). 

Examples of non-linear modeling for repeated measure data in the Education and Psychology 

include Caprara et al. (2008); Cameron et al. (2014); Mok et al. (2015); and Dumas and McNeish 

(2017). 

3.2.9.1. Methods: Non-Linear Models  

Throughout this paper, we have seen examples of the three main approaches to analyzing 

longitudinal data: marginal (e.g. GEE), conditional (e.g. transitional models for categorical response 

or conditional LMMs for continuous response), and subject-specific or growth models (e.g. LMMs).  

The focus of marginal models is on the change in the marginal expectation or mean response over 

subpopulations that have the same values for 𝑋. In conditional models, the repeated measures are 

modeled conditionally on a subset of previous measurements. For growth models, the study of 

individual-level change across time is the focus. 

All the models discussed so far have been considered in the setting of linear or GLMs. Note 

that the non-linear model is not the same as the GLM. Non-linear models refer to any function whose 

parameters are non-linear; in GLMs, by contrast, parameters are included linearly at the level of 

predictors after being transformed by link functions such as the Logit function for binary response 

data. 

Most common applications of non-linear models are in pharmacokinetics and 

pharmacodynamics. These fields implement non-linear models due to the specific nature of the data 

they collect. As mentioned before, while in the linear and generalized linear context the parameter 
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interpretation is the same regardless of the approach used (marginal, conditional, or random-effects), 

non-linear methods can lead to different interpretations of the regression parameters. 

Although subject-specific or mixed-effects models are the approaches most broadly used for 

non-linear methods, in order to introduce these models one needs to revisit all three approaches using 

the following non-linear function of time (𝑡) that approximates the ‘S’ shape commonly seen in 

growth data in nature, 

𝛽1

1 + 𝑒
−
𝑡−𝛽2
𝛽3  

 

In particular, this Logistic function was used to analyze growth curves of trunk 

circumferences in orange tree data (Serroyen et al., 2009). In the orange tree example, authors 

specify the parameters interpretations as follows: 

• 𝛽1 represents “the asymptotic circumference,”  

• 𝛽2 represents “the time at which half of the asymptotic value is reached,”   

• 𝛽3 represents “the curvature at the time half of the asymptotic value is reached.” 

A non-linear random-effects model for a response 𝑌𝑖𝑗 at measurement 𝑗 for subject 𝑖, is 

represented by: 

𝐸(𝑌𝑖𝑗|𝒃𝑖 , 𝒙𝑖𝑗, 𝒛𝑖𝑗) = ℎ(𝒙𝑖𝑗, 𝛽, 𝒛𝑖𝑗, 𝒃𝑖), 

where, 

• 𝒃𝑖 represents the vector of random-effects,  

• 𝒙𝑖𝑗 represents the vector of fixed effects variables,  

• 𝒛𝑖𝑗 represents the variables corresponding to the random coefficients,   

• 𝛽 represents the vector of fixed-effects regression parameters,  

• ℎ represents a non-linear link function. 
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The following non-linear, mixed model is suggested to reflect the non-linear function in the 

example: 

𝑌𝑖𝑗 =
𝛽1+𝑏𝑖

1+exp [−
𝑡𝑖𝑗−𝛽2

𝛽3
]
+ 𝑒𝑖𝑗, 

𝑏𝑖~𝑁(0, 𝜎1
2), 

𝑒𝑖𝑗~𝑁(0, 𝜎
2) 

where 𝑏𝑖 allows each ‘intercept’ 𝛽1 + 𝑏𝑖 to vary across each subject (i.e. it allows the asymptotic 

circumference to vary across the different trees). While this approach is non-linear with respect to 

the fixed-effects, it is linear with respect to the random effects 𝑏𝑖. 

This formula can be extended by adding the random effects, 𝑏𝑖2 and/or 𝑏𝑖3, corresponding to 

the other two fixed-effects parameters. For example, the following formula also includes a random 

effect for the second parameter: 

𝑌𝑖𝑗 =
𝛽1 + 𝑏𝑖1

1 + exp [−
𝑡𝑖𝑗 − 𝛽2 − 𝑏𝑖2

𝛽3
]

+ 𝑒𝑖𝑗 

A marginal non-linear model for a response 𝑌𝑖𝑗 at measurement 𝑗 for subject 𝑖, is represented 

by 

𝐸(𝑌𝑖𝑗|𝒙𝑖𝑗) = ℎ(𝒙𝑖𝑗, 𝛽), 

where, 

• 𝑥𝑖𝑗 represents a vector of covariates,   

• 𝛽 represents the regression parameter vector,  

• ℎ represents the non-linear link function. 
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Following with the initial example, let us assume a marginal model with serially correlated 

errors that follow a functional form exp(−𝜙𝑢), where u represents the lag between two 

measurements, 𝑢𝑗𝑘 = |𝑡𝑖𝑗 − 𝑡𝑖𝑘|. The resulting model is written as: 

𝑌𝑖𝑗 =
𝛽1

1+exp [−
𝑡𝑖𝑗−𝛽2

𝛽3
]
+ 𝑒(1)𝑖𝑗 + 𝑒(2)𝑖𝑗, 

where, 

• The first error term 𝑒(1)𝑖𝑗~𝑁(0, 𝜎
2) is independent across subjects, 

• The second error term 𝑒(2)𝑖𝑗~𝑁(0, 𝜏
2𝐻𝑖),  

▪ With the elements of matrix 𝐻𝑖 being  ℎ𝑖,𝑗𝑘 = exp(−𝜙𝑢𝑗𝑘),  represents the 

correlation between measurements of a same subject. 

A conditional non-linear model will incorporate the subset of outcomes 𝑌̅𝑖𝑗 as a component 

of h: 

𝐸(𝑌𝑖𝑗|𝑌𝑖𝑘,𝑘≠𝑗 , 𝒙𝑖𝑗) = ℎ(𝒙𝑖𝑗, 𝛽, 𝑌̅𝑖𝑗, 𝛼), 

where 𝛼 is the vector of parameters corresponding to both the autoregressive effects and the 

variance-component parameters. Further restricting the conditioning to previous observations 

warrants a complete specification for this model. 

A conditional model for the orange tree data can be achieved by assuming a transition model 

where 𝑏𝑖 in the previous formula for the non-linear random-effects model is now replaced by the 

prior observations. This model is written as: 

𝑌𝑖𝑗 =
𝛽1 + 𝛾𝑌𝑖,𝑗−1

1 + exp [−
𝑡𝑖𝑗 − 𝛽2
𝛽3

]

+ 𝑒𝑖𝑗 
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3.2.10. Review: Non-Parametric Linear Models  

Recent challenges in analyzing complex longitudinal data have encouraged the evolution of 

more complex yet flexible methods for modeling repeated measure data. Non-parametric analysis 

approaches are more data-adaptive while less restrictive compared to parametric methods. Non-

parametric approaches can offer a promising alternative for dealing with repeated measure data, 

though they are not the focus of this review. Researchers seeking more information on non-

parametric approaches should see Ramsay and Silverman (2002) for an introduction to this topic. 

4. Discussion 

Change over time is an inherent property of data in Education and Psychology that is 

frequently examined in observational and/or experimental settings. This paper has offered a review 

of current practices regarding longitudinal models, an overview of the statistical details of each 

method, and an identification of the best methods available. All methods have been classified into 

traditional versus advanced models. 

To come up with a comprehensive list of longitudinal analysis methods used in Education 

and Psychology, a survey of four journals was conducted. The survey conveyed that multilevel 

modeling approaches (i.e. HLM, LMM, and random-effect models) for longitudinal data are 

consistently among the top two most commonly used models in these disciplines. However, the 

covariance structures of repeated measure data implemented in this category of models are almost 

always not reported. This might mean scholars are using the default methods without considering 

the covariance structure of their repeated measure data. If this is the case, researchers may be 

choosing models that lack the precision in testing and estimation required for modeling longitudinal 

data.  
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The survey further showed that SEM-related approaches are commonly used; because this 

type of modeling falls into an entirely different category of model, it has not been discussed in detail 

in this paper. Methods such as GEE and CPM are barely used in the journals surveyed, even though 

(as shown in Table 7) GEEs have optimal properties and CPMs are an essential part of analyzing 

longitudinal data. 

Traditional models such as ANOVA and simple linear regression also were well represented 

in the surveyed journals, even though software such as R and STATA are capable of running more 

advanced models and the required methodologies are detailed in many longitudinal data analysis 

books (P. Diggle, Diggle, et al., 2002; Fitzmaurice, Davidian, Verbeke, & Molenberghs, 2009; 

Singer & Willett, 2003; Verbeke et al., 2014). While these methods can sometimes deliver adequate 

properties for smaller data sets with simple covariance structures, about 91% of the studies surveyed 

had sample sizes over 100 (see Figures 1-4 and Table 3), meaning that advanced models would 

perform better in these cases. Furthermore, traditional methods, although easy to understand, 

implement rigid and unrealistic assumptions (e.g. CS) that are often not satisfied. A quick look at 

each methods section can clarify where the assumptions of each method tend to fall apart. 

The survey revealed that most of the reviewed articles had two to five time points. Although 

choosing the number of time points could depend on the question of interest, studying the trend of 

an intervention with advanced methods requires a larger number of repeated measures. In terms of 

sample size, most of the reviewed papers had a sufficient number; however, sample sizes smaller 

than 30 do show up. To be able to utilize advanced models and implement covariance pattern 

modeling along with LMMs, a larger number of time points (i.e. 10 or more) with larger sample 

sizes (i.e. 150 or more) is preferable.  
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Table 7 presents a summary of all reviewed models and corresponding references used in 

this paper. Information summarized in Table 7 is intended to help researchers choose an appropriate 

model out of the most commonly used options. It can help scholars to identify the optimal methods 

relative to their data structure and the assumptions that can be made.  

A quick look at the first and second columns of Table 7 reveals that most models cannot 

handle missing and unequally spaced data in a straightforward way. This problem can be alleviated 

by using a General Serial Covariance (GSC) model. A GSC model is an LMM with a random 

intercept that can incorporate the covariance structure in a continuous way (i.e. the use of spatial 

correlation structure). This allows the GSC model to handle missingness in a straightforward way. 

This model was first introduced by Diggle (1988). The GSC model is not listed in Table 7 as it was 

not one of the models found in the survey of Education and Psychology literature; however, this 

approach will be covered in detail in the next paper. The GSC model can implement time-varying 

covariates and is relatively robust to violation of assumptions and small sample sizes. 

Although most models in Table 7 account for the covariance structure of the data, most 

covariance structures such as CS and Toeplitz have rigid and unrealistic assumptions. On the other 

hand, covariance structures such as UN are very flexible, but with a large number of time points, 

these covariance structures struggle with estimating too many parameters.  

Table 7 can also help researchers to explore model characteristics such as the ability to 

account for the hierarchical structure of data, robustness to small sample size, and violation of 

assumptions. Other factors such as the type of outcome variables and whether time-varying 

covariates are allowable are listed as well. 

Overall, looking at Table 7, LMM/HLM can be chosen as one of the most flexible models 

discussed here. The model assumptions of LMM/HLM are also relatively simple compared to 
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models such as heterogeneity and mixture models. In the next paper, an extension of LMM (i.e. the 

GSC) will be explored using a simulation study that evaluates the testing and estimation properties 

of this model. The third paper is a tutorial paper that can guide researchers seeking to implement and 

interpret the GSC model using a real-world data set.  
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ABSTRACT

Paper 2: A Simulation Study of Linear Mixed Modeling with Spatial Correlation for Longitudinal

Data

Hedyeh Ahmadi

Choosing the best covariance structure in the analysis of repeated measure data is essential

for properly analyzing the data in hand. However, a survey of longitudinal publications in Educa-

tion and Psychology in the previous paper showed that most scholars do not report the covariance

structures used, which suggests that either researchers are exploring the covariance structure of

the repeated measure but not reporting it or simply using software defaults. Furthermore, even

though the data might be consistent with spatial covariance structure, researchers in Education and

Psychology mainly use Hierarchical Linear Models (HLM) with only random intercept or HLM

with random intercept/slope. This simulation study explored the effect of running these HLMs

when the data are consistent with the General Serial Covariance models (GSC) with spatial co-

variance patterns (i.e. Exponential, Gaussian, and Linear). In addition, the effect of sample size

and data type was explored in terms of modeling properties using three different types of simulated

repeated measure data, namely, balanced discrete, unbalanced discrete, and unbalanced continuous

with three types of spatial covariance patterns (i.e. Exponential, Gaussian, and Linear). A detailed

comparison of the GSC model with spatial covariance patterns (i.e. Exponential and Gaussian) to

two HLMs (i.e. random intercept only and random intercept/slope models) is presented in terms

of estimation and testing properties, when the data are consistent with the GSC model with spa-

tial covariance patterns. An examination of bias, standard error (SE), coverage probability, and

power showed that, regardless of data type, the GSC model with either Gaussian or Exponential

covariance structures yielded the best estimation (mostly in terms of SE since all the estimated
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parameters were unbiased) and testing properties, when data are consistent with the GSC model

with Exponential, Gaussian, and Linear covariance patterns. A HLM with random intercept/slope

model can be labeled as the next best model, keeping in mind the relatively low power (although

still in acceptable range even with sample size of 150) and the mathematical limitations of its co-

variance structure as derived in this paper. A random intercept-only model had a SE furthest from

the “true” standard error and the coverage probabilities were consistently outside the confidence

interval. Model convergence issues in R were also explored briefly.
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Introduction

Longitudinal studies are a type of research in which data are collected from the same indi-

viduals over time. Measuring the same individual over time results in non-independence of the

collected measures. In practice, as categorized in the first paper, there exist two groups of models

that can account for the correlation between the repeated measures. The first group of models are

categorized as traditional approaches such as Repeated Measure ANOVA (RM ANOVA) and Mul-

tivariate ANOVA (MANOVA); these models are less flexible but can account for the mentioned

correlation structure in a very rigid way. The second group of models such as Linear Mixed Mod-

eling (LMM) and Generalized Estimating Equations (GEE) are categorized as complex/advanced

and are very flexible; these modeling approaches can model the correlation structure in a more

realistic way.

Modeling covariance structure is often a critical part of longitudinal data analysis. Accurate

inference calls for appropriate correlation pattern modeling. There are many different ways to

model the correlation pattern. One can use Hierarchical Linear Modeling (HLM) to account for

this covariance structure, or model the covariance pattern itself. These two strategies can also be

used together, which are called the General Serial Covariance (GSC) model. The GSC models are

the focus of this simulation study.

Add-on methods have been developed to improve the statistical properties of the more ad-

vanced modeling approaches. For example, the GSC model can be thought of as an LMM where

one can plug in different correlation structures. The common existing covariance structures such

as Compound Symmetry (CS), Toeplitz, and Unstructured treat the covariance structure in a dis-

crete way. However, each of these frequently used covariance structures has shortcomings. For
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example, CS, which is the simplest pattern, assumes that correlations are the same for each set of

time lags, regardless of the length of each measurement interval. Toeplitz covariance does account

for the time lag, but it assumes all time lags have their own correlation, and that this correlation is

different for each time lag. One can say that Toeplitz is more realistic than CS, but increasing the

number of parameters remains an issue—the same concern one has when using the Unstructured

covariance pattern.

Furthermore, these covariance structures also cannot deal with missingness and irregularly

spaced data in a straightforward way. On the other hand, spatial correlation structures (such as Ex-

ponential and Gaussian) model the covariance structure in a continuous way, thus missingness and

irregularly spaced data are no longer problems. The spatial correlation structures also incorporate

time lag into the covariance pattern, and only one parameter is estimated for the serial correlation

pattern.

One can use HLM alone to account for the covariance pattern, but HLM with only random

intercept induces a CS structure. On the other hand, HLM with random intercept and random

slope induces an unrealistic covariance structure (derived in Appendix C) where the covariance is

an increasing function of time lag.

The focus of this simulation study is on having continuous outcomes in which one can use

LMM along with covariance structure modeling to account for within- and between-subject vari-

ation in repeated measure data analysis. This type of modeling, called the GSC model, was first

introduced by Diggle (1988).

A survey of four journals in Education and Psychology in the first paper showed that although

longitudinal research and multilevel modeling (i.e. HLM/LMM) are relatively common in these
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fields, it is not common to use multilevel models while also modeling the covariance structure

to improve the model’s statistical properties. The purpose of this paper is to introduce the GSC

model to the fields of Psychology and Education by performing a simulation study to explore how

the GSC model can improve testing and estimation properties over currently used methods. It will

be assumed throughout this paper that the simulated data sets are consistent with the GSC model

with spatial covariance structures (i.e. Gaussian, Exponential, and Linear covariance structure).

The simulation study section has two main purposes. First, it studies the estimation proper-

ties of the fixed effect by exploring bias and standard error (SE) of estimates. Second, it studies

the testing properties by examining coverage probability of 95% confidence interval and the power

of the Wald test to detect meaningful difference. The GSC models with spatial covariance patterns

(i.e. Gaussian and Exponential) will be compared to HLM models with random intercept only and

random intercept/slope. In addition, this paper also explores the effect of sample size and data type

for these models.

Finally, while it may come as no surprise that GSC models with spatial covariance structures

perform better when the data simulated are consistent with these types of models, it has already

been shown in the first paper that scholars in Education and Psychology still use traditional meth-

ods or basic HLM models even when their data might exhibit a spatial correlation structure. This

simulation study demonstrates just how poorly the basic HLMs perform when the data are con-

sistent with the GSC model with a spatial covariance pattern. This paper therefore reaffirms the

importance of checking the covariance structure before running any models (in the third paper in

this dissertation, the variogram will be introduced as a tool for doing precisely this).
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The General Serial Covariance Model

The GSC model can be seen as an LMM that can incorporate correlation pattern modeling.

The GSC model can be specified as follows:

Yi j = µi j +αi +Wi(ti j)+ εi j (1)

where i = 1, ...,N is the subject index and j = 1, ...,ni is the measurement index. The GSC model

assumptions and specifications can be listed as follows:

• The fixed part of the GSC model is embedded in the µi j where µi j = Xij
Tβ.

• The person-specific random intercept is defined as αi
iid∼ N(0,ν2) .

• The leftover error (also called measurement error) is defined as εi j
iid∼ N(o,σ2).

• The serial correlation within the repeated measure is defined as intrinsic stationary Gaussian

process, Wi(ti j), where,

– E(Wi(ti j)) = 0

– cov(Wi(ti j),Wi(tik)) = τ2ρ(|ti j − tik|) = τ2ρ(u) where u is the time lag between mea-

surements for the same subject.

– For example, one can specify ρ(u) = e(−(
u
φ )

c) where c = 1 induces an Exponential se-

rial correlation structure and c = 2 induces a Gaussian serial correlation structure. The

rate of exponential decrease (sometimes called the range) is 1
φ . Note that for equally

distanced measurements, an Exponential serial correlation is the same as AR(1); deriva-

tion of this equivalency is shown in Appendix A.

– Another example would be a Linear serial correlation structure, which is defined as
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ρ(u) = 1− u
d for u < d and zero otherwise. The range for the Linear serial correlation

structure is defined as d, after which the correlation is assumed to be zero.

– Note that Exponential, Gaussian, and Linear correlation patterns are all called spatial

correlation structures and the terminology was borrowed from spatial statistics.

• Thus, the GSC model has three sources of variation, namely, variation in the random inter-

cept which comes from αi; variation in the serial process which comes from Wi(ti j); and

variation in the measurement error which comes from εi j. In addition, it is often assumed

that all these parameters are independent with:

– var(αi) = ν2

– cov(Wi(ti j),Wi(tik)) = τ2ρ(|ti j− tik|)

– var(εi j) = σ2

• cov(Yi j,Yik) = ν2 + τ2ρ(u)+σ2I j=k

• var(Yi j−µi j) = var(Ri j) = ν2 + τ2 +σ2

Note that an HLM random intercept-only model can be considered a GSC model without

the serial correlation. Furthermore, an HLM random intercept/slope model is also a GSC model

without the serial correlation, with the addition of a random slope. Using the serial correlation

component in addition to a random intercept model (i.e. the GSC model) can improve some of

the statistical properties of a random intercept HLM model. Furthermore, using the additional

serial correlation is an alternative and more flexible way to account for the existing correlation

pattern as compared to a random intercept/slope HLM model (which again can improve some of

the statistical properties of a random intercept HLM model). In this paper, the former and latter

claims will be explored using a simulation study.
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Simulation Study Design

Literature Review

Electronic searches of simulation studies regarding the covariance structures in longitudi-

nal data analysis (in particular, using the mixed-effects models and multilevel modeling) were

conducted via Google Scholar (DeGraff, DeGraff, & Romesburg, 2013; Martin-Martin, Orduna-

Malea, Harzing, & López-Cózar, 2017), using key terms such as longitudinal, covariance structure,

simulation, mixed-effects models, and multilevel modeling. No date range or study fields were

specified. Studies identified through online searches were then reviewed to determine whether they

were simulation studies for covariance structures in longitudinal research. Four simulation studies

were identified for studying the impact of mis-specifying the within-subject covariance structure in

longitudinal data analysis (in particular, using the mixed-effects models and multilevel modeling),

including Keselman, Algina, Kowalchuk, and Wolfinger (1998)(Field of Statistics); Kwok, West,

and Green (2007) (Field of Educational Psychology); Barnett, Koper, Dobson, Schmiegelow, and

Manseau (2010) (Field of Ecology); and Pusponegoro, Notodiputro, Sartono, et al. (2017) (Field

of Statistics/Developmental Psychology).

Keselman et al. (1998) compared Akaike Information Criterion (AIC) and Baysian Infor-

mation Criterion (BIC) to examine their effectiveness in detecting different covariance patterns

for equal/unequal group sizes, and covariance matrices with unbalanced (across groups) in non-

spherical repeated measure designs (with normal and non-normal data). They concluded that AIC

and BIC were not effective in identifying the correct covariance pattern; on average, for all of the

the 26 investigated distributions, the AIC criterion only chose the correct structure 47% of the time

while the BIC resulted in the correct structure 35% of the time (Keselman et al., 1998).
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The Monte Carlo study conducted by Kwok et al. (2007) explored the effect of mis-

specifying the covariance structure in longitudinal data analysis under the multilevel modeling

and mixed-modeling frameworks. Three types of misspecification were examined: (a) under-

specification arises within nested covariance matrices when the true covariance matrix is more

complex than the chosen covariance matrixs (b) over-specification arises within nested covariance

matrices when the true covariance matrix is more constrained than the chosen covariance matrix;

and (c) general mis-specification arises when the true covariance matrix and the chosen covariance

matrix are not nested (Kwok et al., 2007). It was discovered that, with the multilevel model, under-

specification and general-misspecification of the covariance pattern usually lead to overestimation

of the variances of the random effects and standard errors of the growth parameter estimates, which

resulted in lower statistical power for testing of the corresponding growth parameters (Kwok et al.,

2007). An unstructured covariance pattern under the mixed-model framework usually resulted in

underestimation of standard errors for the growth parameter estimates, which led to increased type

I error for tests of the corresponding growth parameters(Kwok et al., 2007).

Using a simulation dataset for exploring effects of forest fragmentation on avian species

richness over 15 years, Barnett et al. (2010) compared three methods for choosing the covariance

pattern, namely, the AIC, the Quasi-Information Criterion (QIC), and the Deviance Information

Criterion (DIC). The overall success rate for choosing the correct covariance structure was 80.6%

for the AIC, 29.4% for the QIC and 81.6% for the DIC.

Pusponegoro et al. (2017) applied linear mixed-effects models and modeled different types of

covariance structures (i.e. Unstructured (UN), Compound Symmetric (CS), Heterogeneous Com-

pound Symmetric (CSH), First-order Autoregressive (AR(1)) and Heterogeneous First-order Au-
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toregressive (ARH(1)) in a simulation study of children’s growth differences based on different

feeding methods. The selection criteria were the three fit indices: Negative 2-Residual Loglike-

lihood (-2RLL), AIC, and Schwarz’s Bayesian Criterion (SBC). It was reported that the UN co-

variance pattern always produced the best fit, however considering the large number of parameters

UN is very inefficient. On the other hand, authors reported that ARH(1) is a suitable alternative

covariance pattern that is easier for interpretation purposes (Pusponegoro et al., 2017).

These simulation studies confirmed that failure to take account of the covariance among the

repeated measures would result in incorrect estimates of standard errors of the parameters and

could lead to misleading inferences. However, there was no consensus regarding which fit indices

should be used for covariance structure selection and which covariance structure should be applied

during the modeling process.

Finally, note that this simulation study does not use any model selection criteria, but instead

evaluates the actual estimates using confidence bands or by simply comparing the estimates. This

literature review did not identify any simulation study that evaluated the effect of data type, sample

size, and covariance pattern of repeated measure data on the testing and estimation properties of the

fixed-effect estimation (when data are consistent with the GSC model with Exponential, Gaussian,

and Linear covariance structure); this simulation study therefore addresses this gap in the literature.

General Simulation Specifications

The description of simulations in this paper is divided into two sections: data simulation

specifications and model specifications. These two sections will be presented separately; the reader

is therefore cautioned not to confuse the correlation pattern implemented in the data simulation

process with the correlation structure applied to the LMM in the modeling process.
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Due to extended time needed for running all four models for each of the 27000 simulations,

Columbia University’s Habanero Shared High Performance Computing (HPC) Cluster was used

with R software (R Core Team, 2018), version R.3.5.0. More details about HPC operating system

and specifications can be found at https://cuit.columbia.edu/shared-research-computing-facility.

Using different HPC systems can affect the estimation, depending on the internal operating

system and its specifications. Therefore, to ensure the results are replicable, the necessary informa-

tion and the R code are presented in Appendix D. Although the causes for these slight differences

observed in the results using personal computers versus HPC were investigated, the findings of this

exploration are not included in this paper but are available upon request. This question offers an

interesting subject of future research as scholars increasingly use HPC systems.

The R codes used for this simulation study along with seed specifications are included in

Appendix D. Convergence issues raised from model fitting were resolved as follows:

• In using lme() function in nlme package in R, the lme control option opt="optim" was

used in which, according to the R manual, uses the optimization method called "L-BFGS-B,"

which was introduced by Byrd, Lu, Nocedal, and Zhu (1995). The method “allows box

constraints, that is each variable can be given a lower and/or upper bound.” Nocedal and

Wright (1999) is a reference that can be used to learn more about this method. It is often

impossible or difficult to know a priori which optimization function would work best for

a specific data set. In this simulation study, the method "L-BFGS-B" provided a higher

convergence rate.

• If all four models converged for a specific seed, that seed was recorded and used for the

estimations; all four models needed to converge for the seed to be used. Otherwise, that seed
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would be replaced by the next seed in the sequence.

• Note that the option of running a GSC model with a Linear covariance pattern was also

explored. The results are not reported and are reserved for another paper due to high non-

convergence issues and volatile behavior of the GSC model with a Linear covariance struc-

ture. Furthermore, because in Education and Psychology it is not realistic for the correlation

within the repeated measure to go to zero, a GSC model with a Linear covariance structure

would not be an appropriate choice in most cases.

One gray area that requires further consideration is whether there is a systematic bias when

the non-convergence data are ignored. Due to relatively large sample sizes and the small number of

problematic seeds, the fixed-effect parameter estimations were all virtually unbiased. For smaller

sample sizes, however, it might be essential to find a way to check for this systematic bias. Ignoring

the non-convergence data may induce bias for covariance parameters as well. This is an area that

requires further study, and future research would benefit from an improved understanding of the

topic, especially if testing for covariance parameters is of main interest to researchers. Because

the main focus of this paper is to explore the testing and estimation properties of the fixed-effect

component, these questions are reserved for another study.

Data Simulation Specifications

Overall, 1000 simulations for each of the 27 data settings were used, which is a three-way

combination of the following specifications:

• Three different data types (which will be defined shortly) called Balanced Discrete, Unbal-

anced Discrete, and Unbalanced Continuous.

• Three different covariance structures, namely, Exponential, Gaussian, and Linear.
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• Three different sample sizes, namely 150, 350, and 500.

The choice of sample size was based on the paper by Rochon (1991), which presents multiple

tables with different specifications of repeated measure data and their corresponding sample sizes

for two-group repeated measure experiments.

The data were simulated using the following GSC model:

Yi j =µi j +αi +Wi(ti j)+ εi j

µi j =10+0.5Time+6Treatment +2Time×Treatment

(2)

where all model specifications and assumptions remain the same as in the previous section. All the

coefficients in the above equation were borrowed from Table 5.7 in Singer and Willett (2003) book

with slight modifications.

Throughout this paper, balanced data is defined as observations taken at equal intervals

where the number of observations are the same across individuals.Unbalanced data is defined as

observations taken at unequal intervals and in which the number of observations are not the same

across subjects.

Data and more specifically time have been simulated using three different structures as fol-

lows:

• Balanced discrete data, defined as observations made at equal intervals and at the same time

for all individuals. For this data type, each individual has 15 repeated measures.

• Unbalanced discrete data, defined as observations still made at specific times but in which

some individuals might have missing data. For this design, each individual has 10 to 15

repeated measures.
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Variance Implemented
Parameters Values

ν 1.5
τ 2
σ 1
φ 3
d 3.5

Table 1. Implemented variance parameters.

• Continuous data, defined as observations not made at the same time and not at equal inter-

vals. For this design, each individual has 10 to 15 repeated measures, and data are sporad-

ically missing. However, since the data are simulated as continuous, an additional uniform

distribution of (0, 0.25) is added to the original unequally spaced measurements. The rea-

soning behind choosing unif(0, 0.25) is that if, for example, a student missed more than 1
4 of

the test time, this student would have to take the next exam.

The specified variance components corresponding to the GSC model specification formula

are shown in Table 1. The numerical values have been chosen according to our toy data explo-

rations, using the Opposite Naming Score data set, first used by Willett (1988) and also presented

in Chapter 7 of Singer and Willett (2003). Diggle (1988) was used for parameter estimations to

adjust and to make an educated choice for all our covariance structure parameters. In choosing

these variance components, a set of variances were chosen such that they were not too close to

zero (so the likelihood function is not too flat) in order for the R program to be able to converge.

Model Specifications for Simulations

To summarize, there are three different types of data, namely balanced discrete, imbalanced

discrete, and continuous. For each of these data structures, there are three different covariance

structures, namely Exponential, Gaussian, and Linear. Then for each of these settings, sample
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sizes of 150, 350, and 500 are included. Overall, then, there are 27 data sets with 1000 simulations

for each of them. Then for each of the 27000 simulated data sets, the following four models were

fitted:

• The GSC model with Exponential covariance structure, here called CorEXP.

• The GSC model with Gaussian covariance structure, called CorGauss.

• HLM with only random intercept, called HLM1 (which will induce CS correlation structure).

• HLM with random intercept and random slope, called HLM2.

The focus of this simulation study is exploring spatial covariance patterns mainly because

correlation structures such as CS, Toplitz, AR(1), and Unstructured are frequently used in Educa-

tion, Psychology, and many other disciplines. By employing different data structures, the simula-

tion explores the usefulness of the addition of spatial serial correlation patterns compared to the

simplest form of HLM, which only implements a random intercept (i.e. CS), and a slightly more

complex version of HLM that implements random intercept along with random slope of time.

In choosing the best covariance structure or HLM model, one can use criteria such as AIC,

BIC, LR, or visualization methods such as variograms. While the use of these criteria is controver-

sial, other tools such as variograms are informative for choosing the type of covariance structure to

be modeled. However, for simulation purposes, variograms are not as practical because they would

need to be visually inspected for all 27000 simulations. However, an inspection of randomly se-

lected variograms showed that the visualization can distinguish between Exponential, Gaussian,

and Linear covariance structures. The random intercept, measurement error, and serial correla-

tion were also clearly showing up in the examined plots. Though this paper does not focus on

model comparison using variogram visualization or numerical criteria such as AIC, BIC, and LR
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to choose the best model, the subject merits further research.

Metrics of Comparisons

Full numerical results of the simulations are reported in Tables B1 to B27 in Appendix B.

Using Gelman, Pasarica, and Dodhia (2002) guidelines, these 27 tables were converted to 16 plots,

each composed of a 3-by-3 matrix plot. Figures 1 to 16 show the results of the simulations; what

follows are the guidelines on how to read and interpret each of the 16 plots:

• The first row corresponds to the balanced discrete data, the second row corresponds to the

unbalanced discrete data, and the third row corresponds to the continuous data (see Simula-

tion Specifications section for definitions).

• The first, second, and third columns correspond to data simulated with Exponential, Gaus-

sian, and Linear covariance structures, respectively.

• Each plot contains four color-coded lines corresponding to four different models, defined in

the previous section. One of these models is the “right” model; this means if, for example,

the data have been simulated using an Exponential covariance structure, then the GSC model

with Exponential covariance pattern is the right model and the rest of the models are mis-

specified models.

• Each 3-by-3 plot is the estimation for the following quantities for each coefficient of the

intercept, time, treatment, and interaction:

– Bias

– Standard error (SE)

147



– Coverage probability

– Power

• The color-coded dotted lines in Bias plots are confidence intervals (i.e. zero±2× SETrue√
1000

) for

each model; throughout this paper, these confidence intervals are called confidence bands for

bias estimates. The horizontal black line is drawn at zero to help the reader navigate through

the Bias plots.

• The dotted black line for the SE plots is drawn at one since the SE is presented as the ratio

of the estimated SE to the “true SE” (i.e. the Monte Carlo SE).

• The middle dotted black line for the coverage probability plots are drawn at the 95% nominal

value. The two lines above and below the nominal value line are the confidence intervals (i.e.

0.95±2×
√

0.95×(1−0.95)
1000 ) for each model; throughout this paper, these confidence intervals

are called confidence bands for coverage probability estimates.

One of the most challenging steps in this simulation study was to extract the parameters from

R output and then to match them to this paper’s parametrization. There exist at least four different

parametrizations of the spatial correlation structures and user caution is required in extracting the

correct parameters. Guidelines shown in Martinussen, Skovgaard, and Sorensen (2012) were used

to derive all of the equivalency formulas. The function shown in Appendix D will enable readers

to extract parameters consistent with the parametrizations shown in this paper.

For calculating coverage probability, the simulation uses a 95% confidence interval with

Normal distribution. The same confidence interval was used to calculate the power of a two-sided

Wald test for each coefficient. The β values under the null and alternative hypotheses were defined
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as follows:

βH0 = (β0,β1,β2,β3) = (10,0.5,6,2)

βH1 = (β0,β1,β2,β3) = (11,0.6,7,2.1)

The logic behind choosing the null hypothesis values is explained in the Data Simulation

Specifications section above. βH1 were used to simulate data under the alternative hypothesis for

the power calculations. The alternative hypothesis values, which are related to the magnitude of

the effect sizes, were chosen using the following rationale:

• The intercept coefficient under the null hypothesis was 10. An effect size of 1 was chosen

for this coefficient, thus the alternative hypothesis was 11. To be conservative, 1
10 of the

null hypothesis was chosen as an effect size. Note that choosing an effect size based on

standardization was not possible since the design matrix contains a column of all ones for

the intercept.

• The effect size for the time coefficient was chosen based on standardization of the coeffi-

cient where one can detect a standardized effect size of 0.5, which is considered a medium

standardized effect size. For illustration purposes, a short proof on how to choose an effect

size using standardization for a continuous variable in the simplest case is provided below:

Yi = β0 +β1Xi

Yi = β̂0 + β̂1
(Xi−µ)

σ
= (β̂0− β̂1

µ
σ
)+

β̂1

σ
Xi

=⇒ β1 ∼
β̂1

σ
=⇒ β̂1 ∼ β1σ
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Hence, for example, if the standardized effect size of 0.5 (i.e. a medium standardized effect

size) is of practical interest, then one can complete the calculations as follows, where σ is

the standard deviation of the covariate Xi:

β̂1H1
− β̂1H0

= 0.5

=⇒ σβ1H1
−σβ1H0

= 0.5

=⇒ β1H1
=

0.5
σ

+β1H0

The last line of the above derivation was used to come up with the value 0.1 as an effect size

to get to 0.6 for the alternative hypothesis value of β1.

• A similar process to the above derivation was used to calculate the effect size to be added to

the treatment and the interaction coefficient (in order to detect the standardized effect size of

0.5).

What follows is the detailed interpretation of the simulation results shown in Figures 1 to 16.

Simulation Results

The simulation results will be evaluated based on estimation (i.e. bias and SE) and testing

properties (i.e. coverage probability and power). Annotated R codes corresponding to all of the

simulations are shown in Appendix D.

Before presenting the results, it is worth mentioning a few general statistical details:

• It is known that when using LMM, the fixed-effect estimates are mainly unbiased but, for

completeness, Bias plots are presented along with the relative confidence intervals.
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• The effect of an under-powered study can be very problematic because the test might not

pick up on a meaningful effect (i.e. type I error). The effect of Type I error will be more

pronounced with small sample sizes, which will not be an issue for this simulation study

since all of our sample sizes are relatively large.

• On the other hand, having an over-powered study might means finding significant results

for negligible effect sizes that are not practically important. However, this should not be

an issue if one is careful about the magnitude of a meaningful effect size. Additionally, if

working with human or animal subjects, an over-powered study with a large sample size

might raise ethical concerns. Otherwise, for a cautious researcher who interprets the results

while keeping statistical significance separate from practical significance, having an over-

powered study does not present a statistical problem.

Intercept Simulation Results

Intercept: Bias. In general, it is understood that fixed-effect estimations are unbiased and

Figure 1 confirms this theory. Looking at the range of the y-axes for all of the plots, one can observe

that all of the bias estimates are from −0.01 to 0.01, which is within the estimated confidence

bands. Regardless of whether the model is right or wrong, the fixed-effect estimates of intercepts

are unbiased, as expected. Note that one would expect that as sample size increases, the bias

decreases. However, this pattern is not consistently observed. One explanation could be that all of

the estimates are unbiased (i.e. very close to the horizontal dotted line at zero) and the magnitude

of bias is so small that the effect of sample size is not as prominent. Also, note that the magnitude

of the y-axes are so small that, in reality, this observed increase or decrease is not as pronounced as

shown in Figure 1. Finally, all of the lines stand close to one another with similar patterns (in each
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plot) for all data types, so in terms of bias for intercept all models are performing equally well,

regardless of data type.

Intercept: Standard Error Ratio. Figure 2 shows the SE ratio (i.e.EstimatedSE
TrueSE ) for the

intercept with different data structures. Regardless of data type and sample size, one can observe

that HLM1 consistently has an SE ratio of less than one. This means that HLM1’s estimated SE is

smaller than the true SE for the intercept coefficient. The SE ratios of the three other models are

generally close to one, regardless of sample size and data type. This means that all of the models

except HLM1 are very close to the true SE.

Intercept: Coverage Probability. As Figure 3 shows, HLM1 consistently has the lowest

coverage probability, which is very much outside the confidence band. In all of the plots (except

for the continuous and balanced Gaussian data), Gaussian/Exponential GSC and HLM2 models

follow the same pattern and they are all very close to or above the nominal value of 95%. Thus,

regardless of data type and sample size, coverage probability for the intercept coefficient is almost

always close to the nominal value (and within the confidence band) for HLM2, Exponential, and

Gaussian GSC models.

Intercept: Power. As Figure 4 shows, the pattern of the power for all four models follows

the same trajectory: the power plateaus toward 100% power between sample sizes of 350 and

500. Note that with sample size of 150, HLM1 consistently performs the best, regardless of data

covariance structure, however because HLM1 had the lowest coverage probability it is not fair to

compare its power with the other models here. Ignoring the HLM1 model, the Gaussian models

have the highest power for all data types by up to 9%. On the other hand, HLM2 consistently has
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the lowest power by up to 9%. However, all models have relatively high power for the in-

tercept estimates. Thus, in general, all models perform very well in terms of power for all sample

sizes regardless of data type.
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Figure 1. Bias for intercept with different data specifications

153



●

●

●

0.
80

0.
85

0.
90

0.
95

1.
00

1.
05

1.
10

Balance Discrete Exponential Data

Sample Size

S
E

: I
nt

er
ce

pt

●

●

●

●

●

●

●

●

●

150 350 500

corExp corGaus HLM1 HLM2

●

●

●

0.
80

0.
85

0.
90

0.
95

1.
00

1.
05

1.
10

Balance Discrete Gaussian Data

Sample Size

S
E

: I
nt

er
ce

pt
●

●

●

●

●

●

●

●

●

150 350 500

corExp corGaus HLM1 HLM2

●

●

●

0.
80

0.
85

0.
90

0.
95

1.
00

1.
05

1.
10

Balance Discrete Linear Data

Sample Size

S
E

: I
nt

er
ce

pt

●

●

●

●

●

●

●

●

●

150 350 500

corExp corGaus HLM1 HLM2

●
●

●

0.
80

0.
85

0.
90

0.
95

1.
00

1.
05

1.
10

Unbalance Discrete Exponential Data

Sample Size

S
E

: I
nt

er
ce

pt ●

●

●

●
●

●

●

●

●

150 350 500

corExp corGaus HLM1 HLM2

●

●

●

0.
80

0.
85

0.
90

0.
95

1.
00

1.
05

1.
10

Unbalance Discrete Gaussian Data

Sample Size

S
E

: I
nt

er
ce

pt

●
●

●

●

●

●

●

●

●

150 350 500

corExp corGaus HLM1 HLM2

● ●

●

0.
80

0.
85

0.
90

0.
95

1.
00

1.
05

1.
10

Unbalance Discrete Linear Data

Sample Size

S
E

: I
nt

er
ce

pt

● ●

●

● ●

●

●
●

●

150 350 500

corExp corGaus HLM1 HLM2

●

●

●

0.
80

0.
85

0.
90

0.
95

1.
00

1.
05

1.
10

Continuous Exponential Data

Sample Size

S
E

: I
nt

er
ce

pt

●

● ●

●
●

●

●

● ●

150 350 500

corExp corGaus HLM1 HLM2

●

●

●

0.
80

0.
85

0.
90

0.
95

1.
00

1.
05

1.
10

Continuous Gaussian Data

Sample Size

S
E

: I
nt

er
ce

pt

●

●

●

●

●
●

●

●

●

150 350 500

corExp corGaus HLM1 HLM2

●

●

●

0.
80

0.
85

0.
90

0.
95

1.
00

1.
05

1.
10

Continuous Linear Data

Sample Size

S
E

: I
nt

er
ce

pt

●

●

●

●

●

●

●

●

●

150 350 500

corExp corGaus HLM1 HLM2

●

●

●

0.
80

0.
85

0.
90

0.
95

1.
00

1.
05

1.
10

Continuous Linear Data

Sample Size

S
E

: I
nt

er
ce

pt

●

●

●

●

●

●

●

●

●

150 350 500

corExp corGaus HLM1 HLM2

Figure 2. Standard error ratio for intercept with different data specifications
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Figure 3. Mean coverage for intercept with different data specifications
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Figure 4. Mean power for intercept with different data specifications
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Time Coefficient Simulation Results

Time Coefficient: Bias. Figure 5 shows that all the estimations for the time coefficient

are unbiased. Note that, despite the volatility of some of the plots, all the y-axes are from −0.003

to 0.002. Thus, in terms of time coefficient, all estimates are virtually unbiased and within the

presented confidence bands, regardless of data type, sample size, and choice of modeling.

Time Coefficient: Standard Error. Figure 6 shows that HLM1 consistently has the low-

est SE ratio below one, regardless of data type and sample size; this means that again HLM1’s

estimated SE is smaller than the true SE for the Time coefficient. Overall, other than HLM1, all

models’ SE ratio estimates are close to one, which means in terms of SE, all the estimates are close

to the “true” SE, regardless of data type and sample size. However, as expected, it is noticeable

that when the data generating process matches the modeling technique the SEs are closer to the

“true” SE. For the GSC with Linear covariance structure data (the last column of plots), all models

except for HLM1 are following nearly the same trajectory.

Time Coefficient: Coverage Probability. Figure 7 shows that HLM1 consistently has the

lowest coverage, making it the worst model for time coefficient in terms of coverage probability.

As expected, when the data generating process matches the choice of modeling, the estimation of

coverage probability falls very close to the nominal value of 95% and within the shown confidence

band. Furthermore, for the GSC Exponential data, the GSC Gaussian model has the lowest cover-

age probability, which is sometimes slightly outside the confidence band for Time coefficient. For

the GSC Linear data, the GSC models and HLM2 have acceptable coverage probabilities. Over-

all, in terms of Time coefficient, Exponential GSC, Gaussian GSC, and especially HLM2 are all

acceptable models for coverage probability, regardless of data type and sample size.
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Time Coefficient: Power. Figure 8 shows that for all data types, the power plateaus at

sample sizes of 350 and 500. Again, HLM1 will be excluded from our discussion here since

its coverage probability was not in an acceptable range. The Gaussian GSC consistently has the

highest power and HLM2 consistently has the lowest power for sample sizes of 150; the difference

between the former and the latter model can be up to 5%. In general, both GSC models and the

HLM2 model have high mean power for the Time coefficient, regardless of data type and sample

size (with HLM2 having the lowest among the three models).
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Figure 5. Bias for the time coefficient with different data specifications
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Figure 6. Standard error for the time coefficient with different data specifications
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Figure 7. Mean coverage for the time coefficient with different data specifications
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Figure 8. Mean power for the time coefficient with different data specifications
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Treatment Coefficient Simulation Results

Treatment Coefficient: Bias. Figure 9 shows that all of the estimates for treatment coeffi-

cient have very small to negligible bias and thus are within the shown confidence bands. Although

one would expect bias to decrease as sample size increases, this is not true for some of our plots;

the magnitude of the y-axes is so small that the observed abnormal behavior is not as pronounced as

it looks. In general, all estimates are unbiased, regardless of data type, sample size, and modeling

choice.

Treatment Coefficient: Standard Error. Figure 10 shows that HLM1 consistently has

the smallest SE ratio (less than one), regardless of data type and sample size. This means that

again HLM1’s estimated SE is smaller than the true SE for the Time coefficient. Overall, the

three models other than HLM1 have SE ratio estimates that are close to one, which means that

all the estimates are close to the “true” SE, regardless of data type and sample size. However, as

expected, it is noticeable that when the data generating process matches the modeling technique

the estimated SEs are closer to the “true” SE. For the GSC with Linear covariance structure

data (the last column of plots), all models excepting HLM1 are following nearly the same

trajectory.Finally, note that for all data types, Exponential GSC, Gaussian GSC, and HLM2

models are clustered together with a similar pattern close to the ratio of one. Thus, in terms of

estimated SE for treatment coefficient, these three models are performing well, regardless of data

type and sample size.
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Treatment Coefficient: Coverage Probability. Figure 11 shows that, overall, HLM1 con-

sistently has the lowest coverage (it falls below the lower confidence band). The rest of the models,

with one exception (the Exponential GSC model for continuous Gaussian data), are all close to or

above the nominal value of 95% and within the drawn confidence bands, for all data types and

sample sizes.

Treatment Coefficient: Power. Figure 12 shows that the power increases as sample size

increases. With a sample size of 150, all of the tests consistently have low power. Regardless

of data type, HLM1 has the highest power; however, because HLM1 consistently had the lowest

coverage probability it will be excluded from the present discussion. HLM2 consistently has the

lowest power across all data types and sample sizes; only for sample sizes of 350 and 500 does this

low power still fall within an acceptable range. Surprisingly, the Gaussian model has the highest

power, regardless of data type and sample size. Although the increase in power compared to other

models might be small, this effect can be more pronounced for smaller sample sizes. In general,

all models have acceptable mean power for Treatment coefficient for sample sizes of 350 and 500

regardless of data type. Although sample sizes of 500 lead to extremely over-powered tests, being

over-powered is not necessarily problematic if one can separate the practical importance from the

statistical importance.
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Figure 9. Bias for the treatment coefficient with different data specifications
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Figure 10. Standard error for the treatment coefficient with different data specifications
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Figure 11. Mean coverage for the treatment coefficient with different data specifications
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Figure 12. Mean power for the treatment coefficient with different data specifications
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Time by Treatment Coefficient Simulation Results

Time by Treatment Coefficient: Bias. Figure 13 shows that all of the interaction coeffi-

cients are unbiased and within the shown confidence bands. Note that the observed increases/de-

creases are not as pronounced as they appear in the plots due to the very small range of the y-axes.

Thus, all estimates of interaction coefficients are unbiased, regardless of data type and sample size.

Time by Treatment Coefficient: Standard Error. Figure 14 shows that HLM1 consis-

tently has the smallest SE ratio (≤ 1), regardless of data type and sample size; this means that again

HLM1’s estimated SE is smaller than the “true” SE for the interaction coefficient. However, the

other three models’ SE ratio estimates are close to one, which means all the estimates are close to

the “true” SE, regardless of data type and sample size. Surprisingly, HLM2’s SE ratio estimates

are very close to one regardless of data type and sample size. In general, the GSC models and

HLM2 all have acceptable estimated SE for the interaction term.

Time by Treatment Coefficient: Coverage Probability. Figure 15 shows that HLM1

consistently has the lowest mean coverage. However, all models (except HLM1) either reach the

nominal coverage probability of 95% or are very close to it, regardless of data type and sample

size. Ignoring the HLM1 model, the Exponential GSC model almost consistently has the highest

coverage probability, with the only exception being continuous Exponential data (which the HLM2

model is barely outperforming). In general, all models except HLM1 demonstrate adequate cover-

age probability for the interaction term, regardless of data type and sample size.

Time by Treatment Coefficient: Power. Figure 16 shows that for the power of the inter-

action term, there is an upward trend as sample size increases. With sample sizes of 350 and 500,

high power is observed. Again, HLM1 will not be included in the discussion in this section since
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it did not have appropriate power. The Gaussian GSC model usually has the highest power and

HLM2 almost consistently has the lowest. Overall, all models have acceptable power for interac-

tion term for sample sizes of 350 and 500. Even for sample sizes of 150, the lowest power for

interaction term is not severely under-powered.
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Figure 13. Bias for the interaction between time and treatment coefficient with different data

specifications
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Figure 14. Standard error for the interaction between time and treatment coefficient with different

data specifications
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Figure 15. Mean coverage for the interaction between time and treatment coefficient with

different data specifications
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Figure 16. Mean power for the interaction between time and treatment coefficient with different

data specifications
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Model Convergence Issues in R

When running this simulation, one of the most time consuming issues was the problem of

non-convergence with parameter estimation in R. The non-convergence issues were partially alle-

viated by using the "L-BFGS-B" optimization method (explained in the Simulation Specifications

section) and skipping the leftover non-convergence seeds. Table 2 shows the number of problem-

atic seeds, per 1000 simulations, categorized by model and data type.

HLM1 and HLM2 have no problematic seeds. The GSC model with an Exponential covari-

ance structure has only 38 problematic seeds out of the total of 27000, which makes it a stable

GSC model. On the other hand, the Gaussian GSC model has 512 problematic seeds, however

267 of these are produced by one data type, namely, bal_dis_n500_linear_data which is a mis-

match between the data simulation process and model fitting. Ignoring this data type, the Gaussian

GSC model has only 245 problematic seeds out of 27000 data sets, an acceptable non-convergence

rate. Note that when this issue were explored by increasing the parameter d in the Linear GSC

data, the number of problematic seeds for bal_dis_n500_linear_data decreased to double digits.

This convergence issue could therefore be due to the parameter d being too small in Linear data

for the Gaussian GSC model to converge. Thus, this simulation study shows that Gaussian and

Exponential GSC models are, on the whole, stable spatial correlation models.

Note that according to Table 2, when the covariance structure from the data matches the

models, there exist a very low number of problematic seeds per 1000 simulations.

Additionally, the effect of increasing the parameter d in data simulations of a Linear covari-

ance structure was briefly explored. The results were not particularly sensitive to increases in the

value of d (at least across the different data types), and the number of problematic seeds sporadi-
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cally increased and decreased among different data types. However, for sample sizes of 500, there

was a consistent decrease in the problematic number of seeds when d increased. Note that in real-

ity, adjusting the parameter d is not an option since this value is dictated by the data. That said, it

is important to observe that convergence issues can increase or decrease depending on data type.

Finally, to explore the effect of sample size on convergence issues in R, the problematic

seed counts by sample size and data type were tabulated; the results are shown in Table 3. No

pronounced systematic increase or decrease was observed.

Discussion

It was surprising to observe that with spatial correlation structures, running the model that

matches the data simulation process (i.e. having the “right" model) did not always produce the

best estimation of bias, SE, coverage probability, and power. This is an interesting and positive

observation in the sense that if the data in hand is consistent with the GSC model with spatial

correlation structure, using a partially mis-specified model is not a serious concern as long as the

researcher chooses the right category of model. The following interesting patterns were observed

comparing the four models of interest, namely, the Gaussian and Exponential GSC models, the

random intercept-only model (HLM1), and the random intercept and random slope model (HLM2):

• All the estimates were unbiased, regardless of data type, sample size, and choice of model-

ing.

• In terms of SE, HLM1 consistently had the estimated SE the furthest below the “true” value,

regardless of data type and sample size. The estimated SEs for the rest of the models were

very close to the “true” SE, regardless of data type and sample size.

• In terms of coverage probability, HLM1 was outside the confidence band for all the coeffi-
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GSC Exp GSC Gaus HLM1 HLM2
Model Model Model Model

bal_dis_n150_gaussian 0 0 0 0
bal_dis_n150_exponential 2 16 0 0
bal_dis_n150_linear 3 6 0 0
bal_dis_n350_gaussian 3 1 0 0
bal_dis_n350_exponential 0 12 0 0
bal_dis_n350_linear 0 11 0 0
bal_dis_n500_gaussian 0 0 0 0
bal_dis_n500_exponential 0 63 0 0
bal_dis_n500_linear 0 267 0 0
unbal_dis_n150_gaussian 0 6 0 0
unbal_dis_n150_exponential 0 8 0 0
unbal_dis_n150_linear 0 0 0 0
unbal_dis_n350_gaussian 0 0 0 0
unbal_dis_n350_exponential 18 1 0 0
unbal_dis_n350_linear 1 1 0 0
unbal_dis_n500_gaussian 0 0 0 0
unbal_dis_n500_exponential 0 11 0 0
unbal_dis_n500_linear 0 11 0 0
cts_n150_gaussian 1 14 0 0
cts_n150_exponential 0 8 0 0
cts_n150_linear 0 8 0 0
cts_n350_gaussian 5 0 0 0
cts_n350_exponential 0 21 0 0
cts_n350_linear 1 5 0 0
cts_n500_gaussian 0 0 0 0
cts_n500_exponential 4 41 0 0
cts_n500_linear 0 1 0 0
Total Problematic Seeds 38 512 0 0

Table 2. Number of problematic seeds per data set by model
Note: Here bal=“balanced”, unbal=“unbalanced”, cts=“continuous”, dis=“discrete”, n150=“sample size
of 150” (similar notation is used for sample sizes of 350 and 500). Linear, exponential and gaus-
sian denote the implemented covariance structure of the data. GSC Exp and GSC Gaussian repre-
sent the GSC model with Exponential and Gaussian covariance structure, respectively. HLM1 de-
notes the random intercept only model. HLM2 denotes the random intercept and slope model.

Balance Unbalance Unbalance
Discrete Discrete Continuous

Sample Size 150 350 500 150 350 500 150 350 500
Exponential GSC Data 18 12 63 8 19 11 8 21 45
Gaussian GSC Data 0 4 0 6 0 0 15 5 0
Linear GSC Data 9 11 267 0 2 11 8 6 1

Table 3. Number of problematic seeds per data set by model, separated by sample size

cients, regardless of data type and sample size. The rest of the models were very close or

within the confidence band for coverage probability.
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• Of those with adequate coverage, the GSC Gaussian model had slightly higher power than

the others. HLM2 almost consistently had the lowest power (although still in acceptable

range) for all the coefficients, regardless of data type and sample size.

According to the simulation study, researchers can best estimate bias, SE, coverage proba-

bility, and power by choosing a sample size of 350 to 500 for individual repeated measures of 10 to

15 (assuming resource allocation and ethical considerations are not issues). However, for a given

sample size of 150 or lower, researchers must be more cautious when selecting the covariance

structure to assure reliable inference and estimation.

In terms of choice of modeling, HLM1 consistently has the lowest coverage probability,

making it one of the low performing models. On the other hand, the HLM2 and the GSC Gaus-

sian/Exponential models perform well for all of the coefficients with sample sizes of 350 and 500,

regardless of data type. The GSC model with a Gaussian covariance structure has the highest

power for all coefficients, regardless of data type and sample size. This high performance is es-

pecially notable for extending to the smallest sample size of 150. Conversely, HLM2 consistently

has the lowest power. Although HLM2’s relatively low power was generally in acceptable range,

this effect can be magnified with sample sizes smaller than 150. Thus, because it is likely that

researchers are working with a sample size of 150 and possibly smaller, choosing either Gaus-

sian GSC, Exponential GSC, or HLM2 would make sense in most scenarios, keeping in mind that

HLM2 has the lowest power among these models and a possibly unrealistic covariance pattern,

derived in Appendix C.

In choosing the best model, researchers working with a preset sample size should keep in

mind the assumptions that all these models make by implementing different covariance structures.
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For example, HLM1 induces CS, which is the only covariance model that is both an LMM and a

covariance pattern model. Thus, in HLM1, as in CS, distance in time (i.e time lag) is not taken

into account and the model assumes equal measurement intervals with no missingness; with real

data, these assumptions are usually not met. Similarly, AR(1) needs equal time lags (note: in

the simulated balanced discrete data set, AR(1) is the same as Exponential covariance structure).

Due to these unrealistic assumptions and the inferior performance of HLM1 in terms of coverage

probability, researchers should be cautious when choosing a random intercept model.

HLM2, the GSC Gaussian, and Exponential models can all handle unequally spaced data

and distinguish within- and between-variability. HLM2 did consistently have the lowest power,

though HLM2’s power generally remains in an acceptable range even for this simulation study’s

smallest sample size of 150. The problem of low power might be more pronounced with smaller

sample sizes.

Moreover, in HLM2, the implementation of random effects (i.e. random intercept and ran-

dom slope) induces a more difficult correlation structure than spatial correlation structures. Math-

ematically speaking, Appendix C shows the derivation of the variance/covariance structures of the

GSC and HLM2 models. Looking at equations 6 and 7, which correspond to the variance and

covariance of the GSC model, one can observe that if the Gaussian serial correlation is chosen,

these equations result in a decrease in correlation as time lag increases. However, equations 8 and

9 show that the variance and covariance of the HLM2 model both most of the time increases as

time lag increases. In general, this assumption is not realistic and needs to be closely examined

before choosing HLM2.

Overall, judging based on bias, SE, coverage probability, and power, HLM1 was the lowest

177



performing model, though the three other models presented in this simulation study performed

well. The performances of HLM2, Exponential GSC, and Gaussian GSC models were all accept-

able, with HLM2 having the lowest power (although still in an acceptable range) and the Gaussian

GSC having the highest power (since the HLM1 was already discarded as one of the lowest per-

forming models).

Conclusion

Commonly used multilevel modeling approaches in longitudinal research such as

HLM/LMM can be improved in Education and Psychology by taking the additional step of mod-

eling the covariance structure. The GSC model can be defined as an extension of LMM where one

inserts the covariance pattern into the modeling process. As shown in the first paper, this model is

very under-used in Education and Psychology and would be a useful addition to the longitudinal

literature in these fields.

The focus of this paper was to introduce the GSC model to the fields of Education and Psy-

chology. A simulation study was performed to investigate how the GSC model might improve

on regularly used basic HLM methods when the data are consistent with the GSC model with

spatial covariance structures. The simulation study itself had two main purposes. First, the estima-

tion properties of the fixed effect were explored by looking at bias and standard error of estimates.

Second, the testing properties were examined by looking into the coverage probability of 95% con-

fidence interval and the power of the Wald test to detect meaningful difference. The under-used

GSC models with spatial covariance patterns (i.e. Exponential and Gaussian) were compared to

standard HLM models with random intercept (HLM1) and random intercept/slope (HLM2) using

data consistent with the GSC model with Exponential, Gaussian, and Linear covariance structure.
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The simulation results can be summarized in four main points. First, in terms of bias, as

expected, all models produced unbiased estimates. Second, unless there is strong evidence that

HLM1 should be used, it should be disregarded as a modeling choice (specially when spatial

covariance structure is observed) since it had the lowest coverage probability. Third, the GSC

model with Gaussian and Exponential covariance structures were the most stable models, with

good testing and estimation properties regardless of sample size and data type. Fourth, HLM2 can

be chosen as the third best model, however it consistently had the lowest power (although still in

an acceptable range) and this effect can be magnified with fewer repeated measures and smaller

sample sizes. Thus, researchers in Education and Psychology can greatly benefit from employing,

when appropriate, the GSC model with Gaussian and Exponential covariance patterns. Simple

exploratory tools such as the variogram can assist researchers in determining when these GSC

models are suitable. To introduce this tool to researchers in Education and Psychology, the final

paper of this dissertation will include a tutorial on how to use variograms to select the best model.

Despite its unrealistic covariance structure (derived in Appendix C), the relatively strong

performance of the HLM2 model compared to the GSC Exponential and Gaussian methods merits

further exploration. HLM2 consistently had the smallest power, even though it was unbiased and

its SE was generally close to the “true” SE; this observation should be investigated further in future

drafts of this dissertation.

In this simulation study, the effect of choosing the “right" model was not explored in terms of

the estimation of covariance structure. Although all of the estimations of the covariance structures

have been saved, the task of testing and exploring the covariance parameters is reserved for another

paper.
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Exploring R’s convergence issue for the “right” and “wrong” models is another subject that

deserves its own study. Although R convergence issues have been explored to some extent, the

mathematics of the likelihood functions and the connection with R’s optimization process are two

areas only briefly discussed here; these subjects merit further attention.

All of the estimations in this study were based on Maximum Likelihood (ML) estimates; the

use of Restricted Maximum Likelihood (REML) was not explored. Comparing the estimation and

testing properties of ML versus REML for different models and sample sizes would be beneficial

for future research. Additional avenues of study related to this paper might further investigate (a)

how smaller effect sizes affect estimating power and (b) the feasibility of smaller sample sizes in

combination with differing numbers of repeated measures.

Finally, instead of exploring all of the plotted simulation results visually, one could use

ANOVA and logistic regression to identify the statistical significance of specific plots using inter-

action terms. These methods entail exploring the statistical significance of the four-way interaction

between covariance structure of data, sample size, choice of model, and data type with all the lower

level interactions. Note that these methods would use bias, SE, coverage probability, or power as

an outcome measure. Due to time constraints, this analysis was not performed, but this option was

considered in detail and remains an interesting topic that deserves more attention.
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Appendices

Appendix A
Exponential to AR(1) Equivalency Derivation

The AR(1) covariance structure is here defined as follows:

ρ(u) = ψu (3)

where u = |ti j− tik| which is the time lag between the two different measurements for the same
subject. Note that usually the Greek letter ρ is used for AR(1) parameter, but to prevent confusion
with the name of the serial correlation function ψ was used for the AR(1) correlation parameter.
The Exponential covariance structure is here defined as follows:

ρ(u) = e−
u
φ (4)

Then equation 3 is equivalent to equation 4 such that:

ρ(u) = e−
u
φ = (e−

1
φ )u = ψu ⇐⇒ ψ = e−

1
φ (5)
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Appendix B
Numerical Results

Note that for all the tables in this appendix (i.e. Tables B1 to B27) the column names are defined
as follow:
• corExp denotes the GSC model with Exponential covariance structure.
• corGaus denotes the GSC model with Gaussian covariance structure.
• HLM1 denotes the random intercept only model.
• HLM2 denotes the random intercept and slope model.

Each row name represents the name of the parameter followed by the name of estimation. For
example, “Time: Bias” means the estimation of the bias for the Time parameter. The respective
data type is written in each table caption.

corExp corGaus HLM1 HLM2
Intercept: Bias -0.0009 -0.0021 -0.0085 -0.0085
Intercept: SE of Coefficient 0.3034 0.2916 0.2431 0.3049
Intercept: Coverage Probability 0.9530 0.9410 0.8680 0.9500
Intercept: Power 0.9050 0.9150 0.9440 0.8880
Time: Bias -0.0007 -0.0006 -0.0000 -0.0000
Time: SE of Coefficient 0.0267 0.0247 0.0137 0.0268
Time: Coverage Probability 0.9630 0.9440 0.6730 0.9480
Time: Power 0.9720 0.9840 0.9970 0.9680
Treatment: Bias 0.0016 0.0025 0.0087 0.0087
Treatment: SE of Coefficient 0.4291 0.4123 0.3439 0.4312
Treatment: Coverage Probability 0.9460 0.9350 0.8690 0.9430
Treatment: Power 0.6440 0.6790 0.7730 0.6470
Time by Treatment Interaction: Bias 0.0006 0.0006 0.0001 0.0001
Time by Treatment Interaction: SE of Coefficient 0.0378 0.0349 0.0193 0.0380
Time by Treatment Interaction: Coverage Probability 0.9620 0.9520 0.6830 0.9420
Time by Treatment Interaction: Power 0.7880 0.8310 0.9470 0.7600

Table B1. Balanced discrete data with sample size 150 and Gaussian correlation

184



corExp corGaus HLM1 HLM2
Intercept: Bias -0.0031 -0.0033 -0.0051 -0.0051
Intercept: SE of Coefficient 0.2870 0.2777 0.2438 0.2937
Intercept: Coverage Probability 0.9500 0.9410 0.8850 0.9460
Intercept: Power 0.9310 0.9380 0.9530 0.9200
Time: Bias -0.0003 -0.0002 -0.0000 -0.0000
Time: SE of Coefficient 0.0236 0.0217 0.0136 0.0247
Time: Coverage Probability 0.9510 0.9240 0.7150 0.9430
Time: Power 0.9890 0.9910 0.9980 0.9860
Treatment: Bias 0.0116 0.0114 0.0128 0.0128
Treatment: SE of Coefficient 0.4059 0.3927 0.3448 0.4154
Treatment: Coverage Probability 0.9520 0.9470 0.9140 0.9570
Treatment: Power 0.6970 0.7230 0.7840 0.6790
Time by Treatment Interaction: Bias 0.0001 0.0001 -0.0001 -0.0001
Time by Treatment Interaction: SE of Coefficient 0.0334 0.0307 0.0192 0.0349
Time by Treatment Interaction: Coverage Probability 0.9490 0.9270 0.7190 0.9440
Time by Treatment Interaction: Power 0.8610 0.8920 0.9570 0.8200

Table B2. Balanced discrete data with sample size 150 and Exponential correlation

corExp corGaus HLM1 HLM2
Intercept: Bias -0.0018 -0.0018 -0.0056 -0.0056
Intercept: SE of Coefficient 0.2826 0.2778 0.2353 0.2802
Intercept: Coverage Probability 0.9380 0.9330 0.8770 0.9250
Intercept: Power 0.9320 0.9410 0.9560 0.9300
Time: Bias -0.0005 -0.0006 -0.0002 -0.0002
Time: SE of Coefficient 0.0244 0.0236 0.0144 0.0238
Time: Coverage Probability 0.9520 0.9460 0.7270 0.9310
Time: Power 0.9810 0.9840 0.9980 0.9770
Treatment: Bias 0.0058 0.0059 0.0116 0.0116
Treatment: SE of Coefficient 0.3997 0.3929 0.3327 0.3963
Treatment: Coverage Probability 0.9440 0.9420 0.8910 0.9440
Treatment: Power 0.7110 0.7220 0.8130 0.7130
Time by Treatment Interaction: Bias -0.0001 -0.0001 -0.0006 -0.0006
Time by Treatment Interaction: SE of Coefficient 0.0346 0.0334 0.0203 0.0336
Time by Treatment Interaction: Coverage Probability 0.9630 0.9540 0.7460 0.9470
Time by Treatment Interaction: Power 0.8400 0.8540 0.9600 0.8350

Table B3. Balanced discrete data with sample size 150 and Linear correlation
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corExp corGaus HLM1 HLM2
Intercept: Bias 0.0076 0.0062 0.0037 0.0037
Intercept: SE of Coefficient 0.2025 0.1911 0.1593 0.2004
Intercept: Coverage Probability 0.9740 0.9670 0.9030 0.9650
Intercept: Power 1.0000 1.0000 1.0000 1.0000
Time: Bias -0.0007 -0.0007 -0.0005 -0.0005
Time: SE of Coefficient 0.0190 0.0162 0.0090 0.0177
Time: Coverage Probability 0.9760 0.9460 0.6920 0.9480
Time: Power 0.9990 0.9990 1.0000 0.9980
Treatment: Bias -0.0055 -0.0048 -0.0059 -0.0059
Treatment: SE of Coefficient 0.2863 0.2702 0.2253 0.2835
Treatment: Coverage Probability 0.9650 0.9590 0.9020 0.9620
Treatment: Power 0.9420 0.9620 0.9790 0.9450
Time by Treatment Interaction: Bias 0.0003 0.0003 0.0006 0.0006
Time by Treatment Interaction: SE of Coefficient 0.0268 0.0229 0.0127 0.0250
Time by Treatment Interaction: Coverage Probability 0.9790 0.9490 0.6850 0.9450
Time by Treatment Interaction: Power 0.9810 0.9940 0.9980 0.9770

Table B4. Balanced discrete data with sample size 350 and Gaussian correlation

corExp corGaus HLM1 HLM2
Intercept: Bias 0.0088 0.0090 0.0073 0.0073
Intercept: SE of Coefficient 0.1885 0.1824 0.1602 0.1936
Intercept: Coverage Probability 0.9450 0.9400 0.8990 0.9480
Intercept: Power 1.0000 1.0000 1.0000 1.0000
Time: Bias -0.0007 -0.0007 -0.0005 -0.0005
Time: SE of Coefficient 0.0155 0.0143 0.0089 0.0163
Time: Coverage Probability 0.9470 0.9210 0.7220 0.9450
Time: Power 1.0000 1.0000 1.0000 0.9990
Treatment: Bias -0.0082 -0.0085 -0.0081 -0.0081
Treatment: SE of Coefficient 0.2666 0.2579 0.2266 0.2738
Treatment: Coverage Probability 0.9500 0.9450 0.9070 0.9490
Treatment: Power 0.9590 0.9650 0.9770 0.9570
Time by Treatment Interaction: Bias 0.0005 0.0006 0.0005 0.0005
Time by Treatment Interaction: SE of Coefficient 0.0219 0.0202 0.0126 0.0230
Time by Treatment Interaction: Coverage Probability 0.9460 0.9250 0.7300 0.9450
Time by Treatment Interaction: Power 0.9940 0.9950 0.9990 0.9900

Table B5. Balanced discrete data with sample size 350 and Exponential correlation
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corExp corGaus HLM1 HLM2
Intercept: Bias 0.0020 0.0012 -0.0014 -0.0014
Intercept: SE of Coefficient 0.1852 0.1820 0.1542 0.1840
Intercept: Coverage Probability 0.9580 0.9590 0.8940 0.9550
Intercept: Power 1.0000 1.0000 1.0000 1.0000
Time: Bias -0.0002 -0.0002 0.0001 0.0001
Time: SE of Coefficient 0.0160 0.0154 0.0094 0.0156
Time: Coverage Probability 0.9670 0.9630 0.7610 0.9510
Time: Power 1.0000 1.0000 1.0000 1.0000
Treatment: Bias 0.0002 0.0007 0.0022 0.0022
Treatment: SE of Coefficient 0.2619 0.2575 0.2181 0.2602
Treatment: Coverage Probability 0.9520 0.9500 0.8890 0.9430
Treatment: Power 0.9680 0.9700 0.9810 0.9670
Time by Treatment Interaction: Bias -0.0004 -0.0004 -0.0005 -0.0005
Time by Treatment Interaction: SE of Coefficient 0.0226 0.0218 0.0133 0.0221
Time by Treatment Interaction: Coverage Probability 0.9670 0.9590 0.7540 0.9430
Time by Treatment Interaction: Power 0.9980 0.9980 1.0000 0.9980

Table B6. Balanced discrete data with sample size 350 and Linear correlation

corExp corGaus HLM1 HLM2
Intercept: Bias 0.0082 0.0081 0.0075 0.0075
Intercept: SE of Coefficient 0.1663 0.1600 0.1335 0.1680
Intercept: Coverage Probability 0.9630 0.9590 0.8890 0.9560
Intercept: Power 1.0000 1.0000 1.0000 1.0000
Time: Bias -0.0001 -0.0001 -0.0000 -0.0000
Time: SE of Coefficient 0.0146 0.0135 0.0075 0.0148
Time: Coverage Probability 0.9630 0.9520 0.6870 0.9550
Time: Power 1.0000 1.0000 1.0000 1.0000
Treatment: Bias -0.0054 -0.0058 -0.0078 -0.0078
Treatment: SE of Coefficient 0.2352 0.2263 0.1888 0.2376
Treatment: Coverage Probability 0.9580 0.9580 0.8920 0.9480
Treatment: Power 0.9890 0.9910 0.9960 0.9860
Time by Treatment Interaction: Bias -0.0003 -0.0003 -0.0001 -0.0001
Time by Treatment Interaction: SE of Coefficient 0.0207 0.0191 0.0106 0.0209
Time by Treatment Interaction: Coverage Probability 0.9620 0.9500 0.6980 0.9480
Time by Treatment Interaction: Power 0.9960 0.9980 1.0000 0.9940

Table B7. Balanced discrete data with sample size 500 and Gaussian correlation
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corExp corGaus HLM1 HLM2
Intercept: Bias 0.0028 0.0036 0.0033 0.0033
Intercept: SE of Coefficient 0.1601 0.1526 0.1341 0.1620
Intercept: Coverage Probability 0.9600 0.9500 0.9010 0.9570
Intercept: Power 1.0000 1.0000 1.0000 1.0000
Time: Bias -0.0002 -0.0002 -0.0000 -0.0000
Time: SE of Coefficient 0.0137 0.0119 0.0074 0.0136
Time: Coverage Probability 0.9570 0.9270 0.7230 0.9580
Time: Power 1.0000 1.0000 1.0000 1.0000
Treatment: Bias 0.0013 -0.0001 -0.0010 -0.0010
Treatment: SE of Coefficient 0.2265 0.2158 0.1897 0.2292
Treatment: Coverage Probability 0.9580 0.9440 0.9020 0.9520
Treatment: Power 0.9910 0.9940 0.9970 0.9960
Time by Treatment Interaction: Bias -0.0002 -0.0002 -0.0002 -0.0002
Time by Treatment Interaction: SE of Coefficient 0.0194 0.0168 0.0105 0.0192
Time by Treatment Interaction: Coverage Probability 0.9580 0.9370 0.7390 0.9490
Time by Treatment Interaction: Power 0.9980 1.0000 1.0000 0.9990

Table B8. Balanced discrete data with sample size 500 and Exponential correlation

corExp corGaus HLM1 HLM2
Intercept: Bias 0.0028 0.0028 0.0025 0.0025
Intercept: SE of Coefficient 0.1551 0.1524 0.1292 0.1540
Intercept: Coverage Probability 0.9610 0.9540 0.9000 0.9550
Intercept: Power 1.0000 1.0000 1.0000 1.0000
Time: Bias 0.0001 0.0002 0.0002 0.0002
Time: SE of Coefficient 0.0134 0.0129 0.0079 0.0131
Time: Coverage Probability 0.9700 0.9660 0.7830 0.9550
Time: Power 1.0000 1.0000 1.0000 1.0000
Treatment: Bias 0.0004 0.0002 -0.0000 -0.0000
Treatment: SE of Coefficient 0.2194 0.2156 0.1827 0.2178
Treatment: Coverage Probability 0.9610 0.9590 0.8950 0.9510
Treatment: Power 0.9960 0.9970 0.9980 0.9980
Time by Treatment Interaction: Bias -0.0006 -0.0006 -0.0006 -0.0006
Time by Treatment Interaction: SE of Coefficient 0.0189 0.0182 0.0111 0.0185
Time by Treatment Interaction: Coverage Probability 0.9700 0.9630 0.7670 0.9490
Time by Treatment Interaction: Power 1.0000 1.0000 1.0000 1.0000

Table B9. Balanced discrete data with sample size 500 and Linear correlation
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corExp corGaus HLM1 HLM2
Intercept: Bias 0.0048 0.0048 0.0064 0.0057
Intercept: SE of Coefficient 0.3064 0.2957 0.2494 0.3100
Intercept: Coverage Probability 0.9540 0.9470 0.8770 0.9480
Intercept: Power 0.9150 0.9300 0.9490 0.9010
Time: Bias -0.0010 -0.0010 -0.0012 -0.0011
Time: SE of Coefficient 0.0272 0.0253 0.0150 0.0275
Time: Coverage Probability 0.9540 0.9420 0.7330 0.9490
Time: Power 0.9590 0.9700 0.9950 0.9500
Treatment: Bias -0.0065 -0.0058 -0.0091 -0.0097
Treatment: SE of Coefficient 0.4348 0.4198 0.3544 0.4395
Treatment: Coverage Probability 0.9610 0.9560 0.8870 0.9510
Treatment: Power 0.6330 0.6540 0.7320 0.6060
Time by Treatment Interaction: Bias 0.0002 0.0001 0.0007 0.0008
Time by Treatment Interaction: SE of Coefficient 0.0387 0.0361 0.0216 0.0391
Time by Treatment Interaction: Coverage Probability 0.9590 0.9380 0.6890 0.9390
Time by Treatment Interaction: Power 0.7520 0.7950 0.9300 0.7200

Table B10. Unbalanced discrete data with sample size 150 and Gaussian correlation

corExp corGaus HLM1 HLM2
Intercept: Bias 0.0063 0.0065 0.0061 0.0055
Intercept: SE of Coefficient 0.2927 0.2834 0.2499 0.2993
Intercept: Coverage Probability 0.9560 0.9470 0.8970 0.9570
Intercept: Power 0.9290 0.9430 0.9600 0.9170
Time: Bias -0.0012 -0.0012 -0.0010 -0.0010
Time: SE of Coefficient 0.0246 0.0227 0.0149 0.0254
Time: Coverage Probability 0.9530 0.9360 0.7550 0.9450
Time: Power 0.9780 0.9840 0.9970 0.9670
Treatment: Bias -0.0183 -0.0173 -0.0145 -0.0157
Treatment: SE of Coefficient 0.4156 0.4024 0.3551 0.4246
Treatment: Coverage Probability 0.9520 0.9480 0.9070 0.9500
Treatment: Power 0.6490 0.6730 0.7500 0.6370
Time by Treatment Interaction: Bias 0.0017 0.0016 0.0012 0.0014
Time by Treatment Interaction: SE of Coefficient 0.0351 0.0324 0.0215 0.0362
Time by Treatment Interaction: Coverage Probability 0.9540 0.9250 0.7400 0.9500
Time by Treatment Interaction: Power 0.8210 0.8630 0.9430 0.8000

Table B11. Unbalanced discrete data with sample size 150 and Exponential correlation
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corExp corGaus HLM1 HLM2
Intercept: Bias 0.0116 0.0111 0.0120 0.0112
Intercept: SE of Coefficient 0.2869 0.2820 0.2423 0.2854
Intercept: Coverage Probability 0.9500 0.9470 0.8940 0.9450
Intercept: Power 0.9400 0.9450 0.9700 0.9340
Time: Bias -0.0017 -0.0017 -0.0019 -0.0018
Time: SE of Coefficient 0.0250 0.0242 0.0158 0.0246
Time: Coverage Probability 0.9650 0.9610 0.8090 0.9570
Time: Power 0.9860 0.9870 0.9980 0.9840
Treatment: Bias -0.0160 -0.0151 -0.0156 -0.0158
Treatment: SE of Coefficient 0.4075 0.4006 0.3446 0.4052
Treatment: Coverage Probability 0.9640 0.9620 0.9070 0.9590
Treatment: Power 0.6800 0.6940 0.7760 0.6670
Time by Treatment Interaction: Bias 0.0012 0.0012 0.0014 0.0014
Time by Treatment Interaction: SE of Coefficient 0.0357 0.0345 0.0227 0.0351
Time by Treatment Interaction: Coverage Probability 0.9690 0.9660 0.7740 0.9520
Time by Treatment Interaction: Power 0.8210 0.8410 0.9450 0.8040

Table B12. Unbalanced discrete data with sample size 150 and Linear correlation

corExp corGaus HLM1 HLM2
Intercept: Bias -0.0015 -0.0008 -0.0005 0.0007
Intercept: SE of Coefficient 0.2066 0.1943 0.1640 0.2036
Intercept: Coverage Probability 0.9580 0.9470 0.8850 0.9480
Intercept: Power 1.0000 1.0000 1.0000 1.0000
Time: Bias -0.0001 -0.0001 -0.0001 -0.0002
Time: SE of Coefficient 0.0198 0.0167 0.0099 0.0181
Time: Coverage Probability 0.9760 0.9500 0.7090 0.9500
Time: Power 1.0000 1.0000 1.0000 1.0000
Treatment: Bias 0.0022 0.0016 0.0019 0.0001
Treatment: SE of Coefficient 0.2922 0.2747 0.2318 0.2878
Treatment: Coverage Probability 0.9640 0.9510 0.8930 0.9520
Treatment: Power 0.9450 0.9560 0.9740 0.9420
Time by Treatment Interaction: Bias -0.0005 -0.0005 -0.0006 -0.0004
Time by Treatment Interaction: SE of Coefficient 0.0280 0.0236 0.0140 0.0255
Time by Treatment Interaction: Coverage Probability 0.9790 0.9510 0.7080 0.9550
Time by Treatment Interaction: Power 0.9640 0.9930 0.9980 0.9760

Table B13. Unbalanced discrete data with sample size 350 and Gaussian correlation
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corExp corGaus HLM1 HLM2
Intercept: Bias -0.0038 -0.0038 -0.0056 -0.0047
Intercept: SE of Coefficient 0.1911 0.1865 0.1645 0.1966
Intercept: Coverage Probability 0.9500 0.9470 0.9000 0.9570
Intercept: Power 1.0000 1.0000 1.0000 1.0000
Time: Bias -0.0003 -0.0003 -0.0002 -0.0003
Time: SE of Coefficient 0.0159 0.0150 0.0098 0.0167
Time: Coverage Probability 0.9490 0.9360 0.7340 0.9540
Time: Power 1.0000 1.0000 1.0000 1.0000
Treatment: Bias 0.0027 0.0028 0.0056 0.0039
Treatment: SE of Coefficient 0.2702 0.2637 0.2326 0.2780
Treatment: Coverage Probability 0.9530 0.9420 0.8930 0.9560
Treatment: Power 0.9580 0.9620 0.9770 0.9470
Time by Treatment Interaction: Bias -0.0004 -0.0004 -0.0005 -0.0003
Time by Treatment Interaction: SE of Coefficient 0.0224 0.0212 0.0139 0.0236
Time by Treatment Interaction: Coverage Probability 0.9590 0.9430 0.7570 0.9550
Time by Treatment Interaction: Power 0.9950 0.9980 1.0000 0.9910

Table B14. Unbalanced discrete data with sample size 350 and Exponential correlation

corExp corGaus HLM1 HLM2
Intercept: Bias 0.0038 0.0037 0.0020 0.0025
Intercept: SE of Coefficient 0.1886 0.1854 0.1594 0.1877
Intercept: Coverage Probability 0.9590 0.9560 0.9140 0.9540
Intercept: Power 1.0000 1.0000 1.0000 0.9990
Time: Bias -0.0004 -0.0004 -0.0003 -0.0003
Time: SE of Coefficient 0.0166 0.0159 0.0104 0.0162
Time: Coverage Probability 0.9520 0.9480 0.7740 0.9370
Time: Power 1.0000 1.0000 1.0000 1.0000
Treatment: Bias -0.0086 -0.0085 -0.0070 -0.0072
Treatment: SE of Coefficient 0.2667 0.2621 0.2254 0.2654
Treatment: Coverage Probability 0.9590 0.9570 0.8980 0.9470
Treatment: Power 0.9610 0.9660 0.9790 0.9590
Time by Treatment Interaction: Bias 0.0003 0.0003 0.0002 0.0002
Time by Treatment Interaction: SE of Coefficient 0.0234 0.0225 0.0147 0.0229
Time by Treatment Interaction: Coverage Probability 0.9550 0.9490 0.7770 0.9470
Time by Treatment Interaction: Power 0.9950 0.9970 1.0000 0.9960

Table B15. Unbalanced discrete data with sample size 350 and Linear correlation
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corExp corGaus HLM1 HLM2
Intercept: Bias -0.0027 -0.0026 -0.0039 -0.0033
Intercept: SE of Coefficient 0.1683 0.1624 0.1372 0.1708
Intercept: Coverage Probability 0.9570 0.9510 0.8830 0.9520
Intercept: Power 1.0000 1.0000 1.0000 1.0000
Time: Bias -0.0000 -0.0001 0.0000 -0.0000
Time: SE of Coefficient 0.0150 0.0139 0.0082 0.0152
Time: Coverage Probability 0.9660 0.9510 0.7480 0.9340
Time: Power 1.0000 1.0000 1.0000 1.0000
Treatment: Bias 0.0044 0.0047 0.0066 0.0063
Treatment: SE of Coefficient 0.2390 0.2306 0.1945 0.2419
Treatment: Coverage Probability 0.9540 0.9490 0.8890 0.9530
Treatment: Power 0.9910 0.9950 0.9960 0.9870
Time by Treatment Interaction: Bias -0.0007 -0.0008 -0.0009 -0.0009
Time by Treatment Interaction: SE of Coefficient 0.0213 0.0198 0.0118 0.0215
Time by Treatment Interaction: Coverage Probability 0.9630 0.9470 0.7140 0.9500
Time by Treatment Interaction: Power 1.0000 1.0000 1.0000 0.9990

Table B16. Unbalanced discrete data with sample size 500 and Gaussian correlation

corExp corGaus HLM1 HLM2
Intercept: Bias -0.0044 -0.0043 -0.0048 -0.0040
Intercept: SE of Coefficient 0.1605 0.1558 0.1376 0.1649
Intercept: Coverage Probability 0.9530 0.9480 0.9030 0.9570
Intercept: Power 1.0000 1.0000 1.0000 1.0000
Time: Bias -0.0000 -0.0000 0.0000 -0.0001
Time: SE of Coefficient 0.0134 0.0125 0.0082 0.0140
Time: Coverage Probability 0.9430 0.9280 0.7650 0.9480
Time: Power 1.0000 1.0000 1.0000 1.0000
Treatment: Bias -0.0010 -0.0009 0.0019 0.0006
Treatment: SE of Coefficient 0.2279 0.2212 0.1950 0.2336
Treatment: Coverage Probability 0.9610 0.9520 0.9030 0.9590
Treatment: Power 0.9950 0.9950 0.9970 0.9930
Time by Treatment Interaction: Bias -0.0002 -0.0002 -0.0005 -0.0004
Time by Treatment Interaction: SE of Coefficient 0.0191 0.0178 0.0117 0.0199
Time by Treatment Interaction: Coverage Probability 0.9600 0.9430 0.7460 0.9570
Time by Treatment Interaction: Power 1.0000 1.0000 1.0000 0.9990

Table B17. Unbalanced discrete data with sample size 500 and Exponential correlation
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corExp corGaus HLM1 HLM2
Intercept: Bias 0.0006 0.0009 0.0004 0.0004
Intercept: SE of Coefficient 0.1573 0.1550 0.1333 0.1574
Intercept: Coverage Probability 0.9510 0.9510 0.8920 0.9500
Intercept: Power 1.0000 1.0000 1.0000 1.0000
Time: Bias -0.0005 -0.0005 -0.0004 -0.0004
Time: SE of Coefficient 0.0137 0.0133 0.0087 0.0136
Time: Coverage Probability 0.9580 0.9540 0.7940 0.9600
Time: Power 1.0000 1.0000 1.0000 1.0000
Treatment: Bias 0.0058 0.0052 0.0037 0.0039
Treatment: SE of Coefficient 0.2234 0.2201 0.1891 0.2231
Treatment: Coverage Probability 0.9560 0.9480 0.9060 0.9470
Treatment: Power 0.9970 0.9970 0.9990 0.9960
Time by Treatment Interaction: Bias -0.0004 -0.0004 -0.0002 -0.0002
Time by Treatment Interaction: SE of Coefficient 0.0195 0.0189 0.0124 0.0193
Time by Treatment Interaction: Coverage Probability 0.9550 0.9530 0.7760 0.9480
Time by Treatment Interaction: Power 0.9980 0.9980 0.9990 0.9970

Table B18. Unbalanced discrete data with sample size 500 and Linear correlation

corExp corGaus HLM1 HLM2
Intercept: Bias 0.0020 0.0026 0.0056 0.0052
Intercept: SE of Coefficient 0.3081 0.2972 0.2499 0.3119
Intercept: Coverage Probability 0.9520 0.9420 0.8790 0.9370
Intercept: Power 0.9150 0.9260 0.9500 0.8980
Time: Bias 0.0002 0.0002 -0.0001 0.0000
Time: SE of Coefficient 0.0270 0.0252 0.0149 0.0275
Time: Coverage Probability 0.9480 0.9290 0.6820 0.9450
Time: Power 0.9600 0.9680 0.9870 0.9400
Treatment: Bias -0.0053 -0.0062 -0.0088 -0.0085
Treatment: SE of Coefficient 0.4382 0.4227 0.3556 0.4426
Treatment: Coverage Probability 0.9590 0.9530 0.8770 0.9470
Treatment: Power 0.6310 0.6620 0.7570 0.6290
Time by Treatment Interaction: Bias -0.0012 -0.0011 -0.0007 -0.0008
Time by Treatment Interaction: SE of Coefficient 0.0387 0.0361 0.0216 0.0390
Time by Treatment Interaction: Coverage Probability 0.9550 0.9450 0.7020 0.9480
Time by Treatment Interaction: Power 0.7280 0.7720 0.9340 0.6890

Table B19. Continuous data with sample size 150 and Gaussian correlation
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corExp corGaus HLM1 HLM2
Intercept: Bias 0.0056 0.0069 0.0114 0.0105
Intercept: SE of Coefficient 0.2945 0.2849 0.2508 0.3011
Intercept: Coverage Probability 0.9520 0.9420 0.9000 0.9540
Intercept: Power 0.9250 0.9310 0.9520 0.9150
Time: Bias -0.0011 -0.0012 -0.0015 -0.0014
Time: SE of Coefficient 0.0245 0.0226 0.0149 0.0254
Time: Coverage Probability 0.9520 0.9280 0.7390 0.9500
Time: Power 0.9840 0.9910 0.9980 0.9730
Treatment: Bias -0.0165 -0.0172 -0.0206 -0.0206
Treatment: SE of Coefficient 0.4189 0.4053 0.3568 0.4275
Treatment: Coverage Probability 0.9570 0.9500 0.9000 0.9520
Treatment: Power 0.6540 0.6710 0.7310 0.6280
Time by Treatment Interaction: Bias 0.0010 0.0011 0.0014 0.0015
Time by Treatment Interaction: SE of Coefficient 0.0351 0.0324 0.0215 0.0361
Time by Treatment Interaction: Coverage Probability 0.9560 0.9310 0.7420 0.9570
Time by Treatment Interaction: Power 0.8290 0.8630 0.9470 0.7910

Table B20. Continuous data with sample size 150 and Exponential correlation

corExp corGaus HLM1 HLM2
Intercept: Bias -0.0034 -0.0031 -0.0029 -0.0034
Intercept: SE of Coefficient 0.2879 0.2830 0.2426 0.2873
Intercept: Coverage Probability 0.9610 0.9570 0.8950 0.9470
Intercept: Power 0.9350 0.9410 0.9630 0.9340
Time: Bias -0.0003 -0.0003 -0.0003 -0.0002
Time: SE of Coefficient 0.0249 0.0240 0.0157 0.0245
Time: Coverage Probability 0.9670 0.9610 0.7890 0.9480
Time: Power 0.9860 0.9920 0.9980 0.9830
Treatment: Bias 0.0048 0.0045 0.0024 0.0026
Treatment: SE of Coefficient 0.4097 0.4027 0.3455 0.4082
Treatment: Coverage Probability 0.9590 0.9550 0.8980 0.9470
Treatment: Power 0.6990 0.7120 0.7950 0.6890
Time by Treatment Interaction: Bias -0.0008 -0.0007 -0.0004 -0.0005
Time by Treatment Interaction: SE of Coefficient 0.0356 0.0344 0.0227 0.0350
Time by Treatment Interaction: Coverage Probability 0.9620 0.9560 0.7820 0.9510
Time by Treatment Interaction: Power 0.8010 0.8230 0.9350 0.8010

Table B21. Continuous data with sample size 150 and Linear correlation
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corExp corGaus HLM1 HLM2
Intercept: Bias -0.0032 -0.0004 0.0004 0.0007
Intercept: SE of Coefficient 0.1911 0.1963 0.1646 0.2061
Intercept: Coverage Probability 0.9230 0.9540 0.8820 0.9520
Intercept: Power 0.9990 0.9980 0.9980 0.9980
Time: Bias 0.0001 -0.0005 -0.0004 -0.0005
Time: SE of Coefficient 0.0227 0.0167 0.0099 0.0181
Time: Coverage Probability 0.9760 0.9460 0.7090 0.9380
Time: Power 0.9880 1.0000 1.0000 1.0000
Treatment: Bias 0.0049 0.0015 0.0016 0.0011
Treatment: SE of Coefficient 0.2709 0.2783 0.2334 0.2919
Treatment: Coverage Probability 0.9210 0.9510 0.8740 0.9540
Treatment: Power 0.9520 0.9510 0.9720 0.9280
Time by Treatment Interaction: Bias -0.0006 -0.0000 -0.0002 -0.0001
Time by Treatment Interaction: SE of Coefficient 0.0323 0.0237 0.0140 0.0257
Time by Treatment Interaction: Coverage Probability 0.9840 0.9480 0.7040 0.9500
Time by Treatment Interaction: Power 0.8670 0.9890 0.9990 0.9630

Table B22. Continuous data with sample size 350 and Gaussian correlation

corExp corGaus HLM1 HLM2
Intercept: Bias -0.0050 -0.0048 -0.0052 -0.0046
Intercept: SE of Coefficient 0.1931 0.1877 0.1649 0.1985
Intercept: Coverage Probability 0.9500 0.9440 0.8960 0.9530
Intercept: Power 0.9980 0.9980 0.9990 0.9980
Time: Bias -0.0001 -0.0002 -0.0001 -0.0002
Time: SE of Coefficient 0.0160 0.0149 0.0098 0.0168
Time: Coverage Probability 0.9440 0.9280 0.7400 0.9520
Time: Power 1.0000 1.0000 1.0000 1.0000
Treatment: Bias 0.0100 0.0100 0.0093 0.0083
Treatment: SE of Coefficient 0.2739 0.2661 0.2339 0.2813
Treatment: Coverage Probability 0.9530 0.9460 0.9010 0.9510
Treatment: Power 0.9630 0.9630 0.9780 0.9520
Time by Treatment Interaction: Bias -0.0010 -0.0009 -0.0009 -0.0007
Time by Treatment Interaction: SE of Coefficient 0.0227 0.0212 0.0140 0.0237
Time by Treatment Interaction: Coverage Probability 0.9450 0.9260 0.7680 0.9440
Time by Treatment Interaction: Power 0.9870 0.9920 0.9990 0.9860

Table B23. Continuous data with sample size 350 and Exponential correlation
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corExp corGaus HLM1 HLM2
Intercept: Bias -0.0014 -0.0003 -0.0016 -0.0015
Intercept: SE of Coefficient 0.1950 0.1873 0.1601 0.1900
Intercept: Coverage Probability 0.9620 0.9540 0.9110 0.9510
Intercept: Power 0.9990 0.9990 1.0000 1.0000
Time: Bias -0.0002 -0.0003 -0.0001 -0.0001
Time: SE of Coefficient 0.0180 0.0159 0.0104 0.0163
Time: Coverage Probability 0.9670 0.9540 0.7830 0.9420
Time: Power 1.0000 1.0000 1.0000 1.0000
Treatment: Bias 0.0053 0.0042 0.0030 0.0025
Treatment: SE of Coefficient 0.2766 0.2656 0.2272 0.2692
Treatment: Coverage Probability 0.9530 0.9530 0.9000 0.9480
Treatment: Power 0.9590 0.9690 0.9850 0.9640
Time by Treatment Interaction: Bias -0.0007 -0.0006 -0.0004 -0.0004
Time by Treatment Interaction: SE of Coefficient 0.0256 0.0226 0.0148 0.0231
Time by Treatment Interaction: Coverage Probability 0.9680 0.9460 0.7920 0.9480
Time by Treatment Interaction: Power 0.9830 0.9940 0.9970 0.9870

Table B24. Continuous data with sample size 350 and Linear correlation

corExp corGaus HLM1 HLM2
Intercept: Bias 0.0048 0.0047 0.0042 0.0047
Intercept: SE of Coefficient 0.1700 0.1640 0.1378 0.1717
Intercept: Coverage Probability 0.9540 0.9460 0.8840 0.9490
Intercept: Power 1.0000 1.0000 1.0000 1.0000
Time: Bias -0.0007 -0.0007 -0.0007 -0.0008
Time: SE of Coefficient 0.0150 0.0140 0.0083 0.0152
Time: Coverage Probability 0.9600 0.9480 0.7400 0.9400
Time: Power 1.0000 1.0000 1.0000 1.0000
Treatment: Bias 0.0026 0.0026 0.0033 0.0023
Treatment: SE of Coefficient 0.2403 0.2318 0.1952 0.2430
Treatment: Coverage Probability 0.9530 0.9430 0.8930 0.9480
Treatment: Power 0.9850 0.9880 0.9930 0.9830
Time by Treatment Interaction: Bias -0.0005 -0.0004 -0.0005 -0.0004
Time by Treatment Interaction: SE of Coefficient 0.0212 0.0198 0.0117 0.0215
Time by Treatment Interaction: Coverage Probability 0.9630 0.9480 0.7320 0.9510
Time by Treatment Interaction: Power 0.9980 0.9980 1.0000 0.9970

Table B25. Continuous data with sample size 500 and Gaussian correlation
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corExp corGaus HLM1 HLM2
Intercept: Bias -0.0011 -0.0009 -0.0026 -0.0014
Intercept: SE of Coefficient 0.1586 0.1571 0.1382 0.1659
Intercept: Coverage Probability 0.9560 0.9560 0.9080 0.9570
Intercept: Power 1.0000 1.0000 1.0000 0.9990
Time: Bias -0.0003 -0.0003 -0.0001 -0.0003
Time: SE of Coefficient 0.0128 0.0125 0.0082 0.0140
Time: Coverage Probability 0.9350 0.9350 0.7570 0.9470
Time: Power 1.0000 1.0000 1.0000 1.0000
Treatment: Bias -0.0001 -0.0003 0.0021 0.0009
Treatment: SE of Coefficient 0.2243 0.2221 0.1959 0.2349
Treatment: Coverage Probability 0.9520 0.9500 0.9060 0.9550
Treatment: Power 0.9950 0.9950 0.9960 0.9930
Time by Treatment Interaction: Bias -0.0006 -0.0006 -0.0010 -0.0008
Time by Treatment Interaction: SE of Coefficient 0.0181 0.0177 0.0117 0.0199
Time by Treatment Interaction: Coverage Probability 0.9420 0.9350 0.7550 0.9620
Time by Treatment Interaction: Power 1.0000 1.0000 1.0000 1.0000

Table B26. Continuous data with sample size 500 and Exponential correlation

corExp corGaus HLM1 HLM2
Intercept: Bias -0.0013 -0.0011 -0.0015 -0.0007
Intercept: SE of Coefficient 0.1583 0.1565 0.1341 0.1585
Intercept: Coverage Probability 0.9470 0.9460 0.8880 0.9380
Intercept: Power 1.0000 1.0000 1.0000 1.0000
Time: Bias -0.0002 -0.0003 -0.0002 -0.0003
Time: SE of Coefficient 0.0136 0.0133 0.0087 0.0136
Time: Coverage Probability 0.9630 0.9560 0.7880 0.9510
Time: Power 1.0000 1.0000 1.0000 1.0000
Treatment: Bias 0.0014 0.0011 -0.0003 -0.0011
Treatment: SE of Coefficient 0.2239 0.2214 0.1901 0.2244
Treatment: Coverage Probability 0.9560 0.9520 0.9020 0.9440
Treatment: Power 0.9950 0.9950 0.9970 0.9920
Time by Treatment Interaction: Bias -0.0001 -0.0001 0.0000 0.0001
Time by Treatment Interaction: SE of Coefficient 0.0193 0.0189 0.0123 0.0192
Time by Treatment Interaction: Coverage Probability 0.9540 0.9520 0.7810 0.9380
Time by Treatment Interaction: Power 1.0000 1.0000 1.0000 1.0000

Table B27. Continuous data with sample size 500 and Linear correlation
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Appendix C
Derivation of the Covariance Structure for the GSC and HLM2

For the GSC model, consistent with our model specification in the The General Serial Covariance
Model section, the derivation can be written as follows:

var(Yi j) = var(µi j +αi +wi(ti j)+ εi j)

= var(αi +wi(ti j)+ εi j)

= ν2 + τ2 +σ2
(6)

and for j 6= k,

cov(Yi j,Yik) = cov(µi j +αi +wi(ti j)+ εi j,µik +αi +wi(tik)+ εik)

= cov(αi,αi)+ cov(αi,wi(tik))+ cov(αi,εik)+

cov(wi(ti j),αi)+ cov(wi(ti j),wi(tik)+ cov(wi(ti j),εik)+

cov(εi j,αi)+ cov(εi j,wi(tik))+ cov(εi j,εik)+

= ν2 + τ2ρ(ti j− tik),

(7)

where the function ρ can be any spatial covariance function such as Exponential, Gaussian, or
Linear, as defined in the text.

Additionally, let Yi j = µi j +θi1 +θi2ti j + εi j where µi j is the fixed effect similar to the fixed
effect in the GSC model defined in-text. The HLM2 model assumptions are as follows:

(
θi1
θi2

)
∼MVN

[(
0
0

)
,

(
σ2

1 σ12
σ12 σ2

2

)]
and εi j ∼ N(0,σ2)

where θi1 and θi2 are independent of εi j. Additionally, the εi js are independent for all the repeated
measures (i.e. for all js). Then a random intercept and slope model (i.e. HLM2) induces the
following variance/covariance structure:

var(Yi j) = var(µi j +θi1 +θi2ti j + εi j)

= var(θi1 +θi2ti j + εi j)

= var(θi1)+ var(θi2ti j)+ var(εi j)+

2cov(θi1,θi2ti j)+2cov(θi1,εi j)+2cov(θi2ti j,εi j)

= σ2
1 +σ2

2t2
i j +σ2 +2σ12ti j

= σ2
1 +σ2

2t2
i j +σ2 +2σ12ti j

(8)
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For j 6= k,

cov(Yi j,Yik) = cov(θi1 +θi2ti j + εi j,θi1 +θi2tik + εik)

= cov(θi1,θi1)+ cov(θi1,θi2tik)+ cov(θi1,εik)+

cov(θi2ti j,θi1)+ cov(θi2ti j,θi2tik)+ cov(θi2ti j, tik,εik)+

cov(εi j,θi1)+ cov(εi j,θi2tik)+ cov(εi j,εik)

= σ2
1 +σ12tik +σ12ti j +σ2

2ti jtik
= σ2

1 +σ12(tik + ti j)+σ2
2ti jtik.

(9)

Taking the derivative of the var(Yi j) with respect to time results in:

∂var(Yi j)

∂ti j
= 2σ2

2ti j +2σ12





> 0 if ti j >−σ12
σ2

2

= 0 if ti j =−σ12
σ2

2

< 0 if ti j <−σ12
σ2

2
.

(10)

From (10), one can observe the following:

• When σ12 is positive then ∂var(Yi j)
∂ti j

indicates that var(Yi j) is an increasing function of time.

• When σ12 is negative then var(Yi j) is first a decreasing function of time then as time increases
var(Yi j) will eventually be an increasing function of time.

Moreover, taking the partial derivative of the cov(Yi j,Yik) with respect to time (i.e. ti j and tik
separately) results in:

∂cov(Yi j,Yik)

∂ti j
= σ12 +σ2

12tik





> 0 if tik >−σ12
σ2

2

= 0 if tik =−σ12
σ2

2

< 0 if tik <−σ12
σ2

2
.

(11)

Looking at (11), a similar argument as (10) implies here. Taking the partial derivative with
respect to tik is similar to above derivations and results.
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Appendix D
R Code

#--------------------------------------------------------------------------

# Functions to be used for the GSC simulations and estimations

#--------------------------------------------------------------------------

# Extracting parameters for GSC ------------------------------------

extract_lme = function(fit) {

nugget = coef(fit$modelStruct$corStruct, unconstrained = F)[2]

residual = fit$sigma

sigma_hat = sqrt(residual^2*nugget)

tau_hat = sqrt(residual^2 - sigma_hat^2)

phi_hat = coef(fit$modelStruct$corStruct, unconstrained = F)[1]

nu_hat = as.numeric(VarCorr(fit)[1, 2])

value = c(as.numeric(summary(fit)$tTable[, 1]),

as.numeric(summary(fit)$tTable[, 2]),

nu_hat, sigma_hat, tau_hat, phi_hat)

names(value) = c(rownames(summary(fit)$tTable), paste0(rownames(summary(fit)

$tTable), "_se"),

"nu", "sigma", "tau", "phi")

return(value)

}

# Extracting parameters for HLM -----------------------------------

extract_HLM = function(fit) {

value = c(as.numeric(summary(fit)$tTable[, 1]),

as.numeric(summary(fit)$tTable[, 2]))

names(value) = c(rownames(summary(fit)$tTable), paste0(rownames(summary(fit)

$tTable), "_se"))

return(value)

}

# find the index for each person-------------------------------------

# return a list, with each element being the indexes for the person

find_index_for_person = function(ni) {

n = length(ni)

cumsum_ni = cumsum(ni)

index_for_person = list()

for (i in 1:n) {

if (i==1) {
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index_for_person[[i]] = 1:cumsum_ni[i]

} else {

index_for_person[[i]] = (cumsum_ni[i-1] + 1):cumsum_ni[i]

}

}

return(index_for_person)

}

#--------------------------------------------------------------------------

# Simulating data from the GSC model which has

# random intercept, serial correlation and measurement error

# sim_SIG function specifications are as follows:

# n = number of individuals

# ni = the number of observations of each person

# time = collection of all the time indices - it's time but not the index per

person!

# X = design matrix

# beta = coefficent vector

# nu = SD of random intercept

# sigma = SD of measurment error

# cor_str = type of serial correlation, can be "linear", "spatial", "gaussian", "

exponential"

# tau = SD component corresponding to the serial correlation

# phi = rate of decay, used for gaussian and exponential corr structure (look at

formulas in the next function)

# d = used with linear correlation structure (look at formulas in the next function

)

sim_GSC = function(n, ni, time, X, beta, nu, sigma, cor_str, tau, phi = NA, d = NA)

{

index_for_person = find_index_for_person(ni)

# Covariance matrix of the serial correlated noise

V = list()

for (i in 1:n) {

tk <- matrix(time[index_for_person[[i]]], ncol = ni[i], nrow = ni[i], byrow = F

)

tj <- matrix(time[index_for_person[[i]]], ncol = ni[i], nrow = ni[i], byrow = T

)

#using R parametrization here written in blue notebook under extracting

parameters in R

V[[i]] = tau^2*switch(cor_str,

exponential = exp(-abs(tk-tj)/phi),

gaussian = exp(-(tk-tj)^2/phi^2),

linear = (1-abs(tk-tj)/d)*(abs(tk-tj) <d))

}
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# Simulation

# beta is the regression parameters for the covariates

Y = X%*%beta # first assign the mean (X%*%beta) to the Y

for (i in 1:n) {

alpha_i = rnorm(1, 0, sd = nu) #random intercept

epsilon = rnorm(ni[i], 0, sd = sigma) # measurment error

Y[index_for_person[[i]]] = Y[index_for_person[[i]]] + alpha_i + epsilon +

mvrnorm(1, mu = rep(0, ni[i]), Sigma = V[[i]])

}

data = data.frame(indv = rep(1:n, ni), time = time, Y = Y, treatment = X[, 3],

time_treatment = X[, 4])

return(data)

}

# Creating X matrix for balance and imbalance data--------------

sim_X <- function(n, balance, cts){

set.seed(9292018)

if (balance) {

ni = rep(15, n) #balance design

} else {

# no. of observations

ni = sample(10:15, n, replace = T) # unbalance design

}

X = matrix(0, nrow = sum(ni), ncol = 4) # design matrix

time = rep(0, sum(ni)) # vector of length sum^n_i=1(ni)

index_for_person = find_index_for_person(ni)

# balance=TRUE

for (i in 1:n) {

if (cts) {

# uniform missing from 1:15, no. of observations = ni[i]

time[index_for_person[[i]]] = sort(sample(1:15, ni[i], replace = FALSE)) +

runif(ni[i],0, 0.25)

} else {

time[index_for_person[[i]]] = sort(sample(1:15, ni[i], replace = FALSE))

}

X[index_for_person[[i]], 1] = 1 # intercept

X[index_for_person[[i]], 2] = time[index_for_person[[i]]] # time

if (i <= n/2) {

X[index_for_person[[i]], 3] = 1 #treatment 0/1

}

}

X[, 4] = X[,2]*X[,3] #interaction between time and treatment

colnames(X)=c("Intercept","time","Treatment","TimeXTreatment")
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output = list()

output[[1]] = X

output[[2]] = time

output[[3]] = ni

names(output) = c("X", "time", "ni")

return(output)

}

find_bias_se_covg = function(n, ni, time, X, beta, nu, sigma,

cor_str, tau, phi = NA, d = NA, no_sim, save_data =

FALSE, save_data_name = NA) {

name_str = c("corExp", "corGaus","HLM1","HLM2")

#HLM1=Random intercept, HLM2=Random intercept and random slope

estimate = list()

estimate[[1]] = data.frame(matrix(0, nrow = no_sim*10, ncol = 12))

estimate[[2]] = data.frame(matrix(0, nrow = no_sim*10, ncol = 12))

estimate[[3]] = data.frame(matrix(0, nrow = no_sim*10, ncol = 8))

estimate[[4]] = data.frame(matrix(0, nrow = no_sim*10, ncol = 8))

names(estimate) = name_str

colnames(estimate[[1]]) = c("Beta0", "Beta1", "Beta2", "Beta3","SE.Beta0", "SE.

Beta1", "SE.Beta2", "SE.Beta3", "nu", "sigma", "tau", "phi")

colnames(estimate[[2]]) = c("Beta0", "Beta1", "Beta2", "Beta3","SE.Beta0", "SE.

Beta1", "SE.Beta2", "SE.Beta3", "nu", "sigma", "tau", "phi")

colnames(estimate[[3]]) = c("Beta0", "Beta1", "Beta2", "Beta3","SE.Beta0", "SE.

Beta1", "SE.Beta2", "SE.Beta3" )

colnames(estimate[[4]]) = c("Beta0", "Beta1", "Beta2", "Beta3","SE.Beta0", "SE.

Beta1", "SE.Beta2", "SE.Beta3")

choose_right_model = rep(0, no_sim*10)

problematic_seed_model = matrix(1, no_sim*10, length(name_str))

colnames(problematic_seed_model) = c("Exp", "Gaus", "HLM1", "HLM2")

i=0

common_index=0

while(length(common_index)<no_sim){

i=i+1

set.seed(i)

data =sim_GSC(n, ni, time, X, beta, nu, sigma, cor_str, tau, phi, d)

if (save_data) {

write.csv(data$Y, paste0(save_data_name, "_", i, ".csv"))

}

tryCatch({
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fit = lme( Y ~ time + treatment + time_treatment, method = "ML", random =

reStruct( ~ 1 | indv, pdClass="pdSymm"),

correlation = corExp( form = ~ time| indv, nugget=TRUE),

data = data, control=lmeControl(opt="optim"))

problematic_seed_model[i, 1] = 0 # meaning no problem

# print(paste(i, "corExp is finished"))

estimate$corExp[i, 1:(dim(estimate[[1]])[2])] = extract_lme(fit)

}, error = function(e) {

print(paste("Seed ", i, ": Fitting with corExp() does not converge", sep ="")

)

})

tryCatch({

fit = lme( Y ~ time + treatment + time_treatment, method = "ML", random =

reStruct( ~ 1 | indv, pdClass="pdSymm"),

correlation = corGaus( form = ~ time| indv, nugget=TRUE),

data = data, control=lmeControl(opt="optim"))

problematic_seed_model[i, 2] = 0 # meaning no problem

# print(paste(i, "corGaus is finished"))

estimate$corGaus[i, 1:(dim(estimate[[1]])[2])] = extract_lme(fit)

}, error = function(e) {

print(paste("Seed ", i, ": Fitting with corGaus() does not converge", sep

=""))

})

tryCatch({

HLM1 = lme( Y ~ time + treatment + time_treatment, method = "ML", random =

reStruct( ~ 1 | indv, pdClass="pdSymm"),

data = data, control=lmeControl(opt="optim"))

problematic_seed_model[i, 3] = 0 # meaning no problem

estimate$HLM1[i, ] = c(extract_HLM(HLM1))

}, error = function(e) {

print(paste("Seed ", i, ": Fitting with HLM with only random intercept does

not converge", sep =""))

})

tryCatch({

HLM2 = lme( Y ~ time + treatment + time_treatment, method = "ML", random =

reStruct( ~ 1 +time | indv, pdClass="pdSymm"),

data = data, control=lmeControl(opt="optim"))

problematic_seed_model[i, 4] = 0 # meaning no problem

estimate$HLM2[i, ] = c(extract_HLM(HLM2))
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}, error = function(e) {

print(paste("Seed ", i, ": Fitting with HLM with random intercept & slope

does not converge", sep =""))

})

print(paste("Trial: ", i, sep =""))

# Determining when to stop the while loop

can_estimate = list()

for (j in 1:length(name_str)) {

#index of the times that can be estimated is equivqlent to the index of the

non-zero intercepts

can_estimate[[j]] = which(estimate[[j]][, 1]!=0)

}

common_index = Reduce(intersect, can_estimate)

print(length(common_index))

} # End of while

# This part is to find common index after the loop

can_estimate = list()

for (j in 1:length(name_str)) {

can_estimate[[j]] = which(estimate[[j]][, 1]!=0)

}

common_index = Reduce(intersect, can_estimate)

for (j in 1:length(name_str)) {

estimate[[j]] = estimate[[j]][common_index, ]

}

choose_right_model = choose_right_model[common_index]

#--------------------------------------------------------------------------

bias = matrix(0, nrow = length(name_str), ncol= length(beta))

se = matrix(0, nrow = length(name_str), ncol = length(beta))

est_sd = matrix(0, nrow = length(name_str), ncol = length(beta))

IC = matrix(0, nrow = length(name_str), ncol = 2)

colnames(bias) = c("Beta0", "Beta1", "Beta2", "Beta3")

colnames(se) = c("SE.Beta0", "SE.Beta1", "SE.Beta2", "SE.Beta3")

colnames(est_sd) = c("SD.Beta0", "SD.Beta1", "SD.Beta2", "SD.Beta3")

rownames(bias) = name_str

rownames(se) = name_str

rownames(est_sd) = name_str
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rownames(IC) = name_str

for (j in 1:length(name_str)) {

bias[j, ] = colMeans(estimate[[j]][, 1:length(beta)])-beta

se[j, ] = colMeans(estimate[[j]][, (1:length(beta))+ length(beta) ]) # this is

just col mean of all SEs for each parameter

est_sd[j, ] = apply(estimate[[j]][, 1:length(beta)], 2, sd) # this is SD of

estimated parametrs beta0 to beta3

}

# Calculating Coverage Probability

coverage = list()

for (m in 1:length(name_str)) {

coverage[[m]] = matrix(0, nrow = no_sim, ncol = length(beta))

colnames(coverage[[m]]) = c("coverage.Beta0", "coverage.Beta1", "coverage.Beta2

", "coverage.Beta3")

for (j in 1:no_sim) {

for (k in 1:length(beta)) {

L = estimate[[m]][j, k] - abs(qnorm(0.025))*estimate[[m]][j, k+4]

U = estimate[[m]][j, k] + abs(qnorm(0.025))*estimate[[m]][j, k+4]

coverage[[m]][j, k] = as.numeric(beta[k] > L & beta[k] < U)

}

}

}

names(coverage)= name_str

mean_coverage = matrix(0, nrow = length(name_str), ncol =4)

rownames(mean_coverage) = name_str

colnames(mean_coverage) = c("coverage.Beta0", "coverage.Beta1", "coverage.Beta2",

"coverage.Beta3")

for (s in 1:length(name_str)) {

mean_coverage[s, ] = colMeans(coverage[[s]])

}

#--------------------------------------------------------------------------

value = list()

value[[1]] = estimate

value[[2]] = bias

value[[3]] = se

value[[4]] = problematic_seed_model[1:i, ]

value[[5]] = i

value[[6]] = coverage

value[[7]] = mean_coverage
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value[[8]] = est_sd

names(value) = c("estimate", "bias", "se", "problematic_seed_model",

"number_trial", "coverage", "mean_coverage", "est_sd")

return(value)

}

#Function for finding power of two tail test ------------------------

find_power = function(n, ni, time, X, beta, beta1, nu, sigma, cor_str, tau, phi =

NA, d = NA,

no_sim, save_data = FALSE, save_data_name = NA) {

name_str = c("corExp", "corGaus", "HLM1", "HLM2")

#HLM1=Random intercept, HLM2=Random intercept and random slope

estimate = list()

estimate[[1]] = data.frame(matrix(0, nrow = no_sim*10, ncol = 12))

estimate[[2]] = data.frame(matrix(0, nrow = no_sim*10, ncol = 12))

estimate[[3]] = data.frame(matrix(0, nrow = no_sim*10, ncol = 8))

estimate[[4]] = data.frame(matrix(0, nrow = no_sim*10, ncol = 8))

names(estimate) = name_str

colnames(estimate[[1]]) = c("Beta0", "Beta1", "Beta2", "Beta3","SE.Beta0", "SE.

Beta1", "SE.Beta2", "SE.Beta3", "nu", "sigma", "tau", "phi")

colnames(estimate[[2]]) = c("Beta0", "Beta1", "Beta2", "Beta3","SE.Beta0", "SE.

Beta1", "SE.Beta2", "SE.Beta3", "nu", "sigma", "tau", "phi")

colnames(estimate[[3]]) = c("Beta0", "Beta1", "Beta2", "Beta3","SE.Beta0", "SE.

Beta1", "SE.Beta2", "SE.Beta3")

colnames(estimate[[4]]) = c("Beta0", "Beta1", "Beta2", "Beta3","SE.Beta0", "SE.

Beta1", "SE.Beta2", "SE.Beta3")

choose_right_model = rep(0, no_sim*10)

problematic_seed_model = matrix(1, no_sim*10, length(name_str))

colnames(problematic_seed_model) = c("Exp", "Gaus", "HLM1", "HLM2")

i=0

common_index = 0

while(length(common_index) < no_sim){

i=i+1

set.seed(i)

data =sim_GSC(n, ni, time, X, beta1, nu, sigma, cor_str, tau, phi, d )

if (save_data) {

write.csv(data$Y, paste0(save_data_name, "_", i, ".csv"))

}

tryCatch({
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fit = lme( Y ~ time + treatment + time_treatment, method = "ML", random =

reStruct( ~ 1 | indv, pdClass="pdSymm"),

correlation = corExp( form = ~ time| indv, nugget=TRUE),

data = data, control=lmeControl(opt="optim"))

problematic_seed_model[i, 1] = 0 # meaning no problem

# print(paste(i, "corExp is finished"))

estimate$corExp[i, 1:(dim(estimate[[1]])[2])] = extract_lme(fit)

}, error = function(e) {

print(paste("Seed ", i, ": Fitting with corExp() does not converge", sep ="")

)

})

tryCatch({

fit = lme( Y ~ time + treatment + time_treatment, method = "ML", random =

reStruct( ~ 1 | indv, pdClass="pdSymm"),

correlation = corGaus( form = ~ time| indv, nugget=TRUE),

data = data, control=lmeControl(opt="optim"))

problematic_seed_model[i, 2] = 0 # meaning no problem

# print(paste(i, "corGaus is finished"))

estimate$corGaus[i, 1:(dim(estimate[[1]])[2])] = extract_lme(fit)

}, error = function(e) {

print(paste("Seed ", i, ": Fitting with corGaus() does not converge", sep

=""))

})

tryCatch({

HLM1 = lme( Y ~ time + treatment + time_treatment, method = "ML", random =

reStruct( ~ 1 | indv, pdClass="pdSymm"),

data = data, control=lmeControl(opt="optim"))

problematic_seed_model[i, 3] = 0 # meaning no problem

estimate$HLM1[i,] = c(extract_HLM(HLM1))

}, error = function(e) {

print(paste("Seed ", i, ": Fitting with HLM with only random intercept does

not converge", sep =""))

})

tryCatch({

HLM2 = lme( Y ~ time + treatment + time_treatment, method = "ML", random =

reStruct( ~ 1 +time | indv, pdClass="pdSymm"),

data = data, control=lmeControl(opt="optim"))

problematic_seed_model[i, 4] = 0 # meaning no problem

estimate$HLM2[i,] = c(extract_HLM(HLM2))

}, error = function(e) {

print(paste("Seed ", i, ": Fitting with HLM with random intercept & slope

does not converge", sep =""))

})
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print(paste("Trial: ", i, sep =""))

can_estimate = list()

#index of the times that can be estimated is equivalent to the index of the non

-zero intercepts

for (j in 1:length(name_str)) {

can_estimate[[j]] = which(estimate[[j]][, 1]!=0) # using only intercept non-

zero

}

common_index = Reduce(intersect, can_estimate) # the index for which all the

models can be estimated

print(length(common_index))

} # End of while

can_estimate = list()

for (j in 1:length(name_str)) {

can_estimate[[j]] = which(estimate[[j]][, 1]!=0)

}

common_index = Reduce(intersect, can_estimate)

for (j in 1:length(name_str)) {

estimate[[j]] = estimate[[j]][common_index, ]

}

choose_right_model = choose_right_model[common_index]

## Calculating power----------------------------------------------------

## Data is simulated under alternative hypothesis

power = list()

for (m in 1:length(name_str)) {

power[[m]] = matrix(0, nrow = no_sim, ncol = length(beta1))

colnames(power[[m]]) = c("power.Beta0", "power.Beta1", "power.Beta2", "power.

Beta3")

for (j in 1:no_sim) {

for (k in 1:length(beta1)) {

L = estimate[[m]][j, k] - abs(qnorm(0.025))*estimate[[m]][j, k+4]

U = estimate[[m]][j, k] + abs(qnorm(0.025))*estimate[[m]][j, k+4]

power[[m]][j, k] = as.numeric(beta[k] < L | beta[k] > U)

}

}

}

names(power)= name_str
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mean_power = matrix(0, nrow = length(name_str), ncol =4)

rownames(mean_power) = name_str

colnames(mean_power) = c("power.Beta0", "power.Beta1", "power.Beta2", "power.

Beta3")

for (s in 1:length(name_str)) {

mean_power[s, ] = colMeans(power[[s]])

}

#--------------------------------------------------------------------------

value = list()

value[[1]] = estimate

value[[2]] = problematic_seed_model[1:i, ]

value[[3]] = i

value[[4]] = power

value[[5]] = mean_power

names(value) = c("estimate", "problematic_seed_model",

"number_trial","power", "mean_power")

return(value)

}

#--------------------------------------------------------------------------

# To run the following on cluster computing

#--------------------------------------------------------------------------

# Estimation of bias, SE, convergence and power------------------

# Source code for functions above is needed to run this code

rm(list=ls())

arg = Sys.getenv("SLURM_ARRAY_TASK_ID")

arg = as.numeric(arg)

uni = "place holder"

.libPaths(paste("/rigel/home/",uni,"/packages2",sep=""))

library(MASS)

library(nlme)

source(paste0("/rigel/home/", uni, "/GSC/program/functions.R"))

setting_matrix = matrix(0, nrow = 18, ncol = 4)

colnames(setting_matrix) = c("data_setting", "sample_size", "data_cor_str", "

cp_or_power")

setting_matrix[, 1] = "bal_dis"

setting_matrix[1:6, 2] = 150
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setting_matrix[7:12, 2] = 350

setting_matrix[13:18, 2] = 500

setting_matrix[, 3] = rep(c("gaussian", "exponential", "linear"), 6)

setting_matrix[, 4] = rep(c("cp", "cp", "cp", "power", "power", "power"), 3)

setting_matrix = rbind(setting_matrix, setting_matrix, setting_matrix)

setting_matrix[19:36, 1] = "unbal_dis"

setting_matrix[37:54, 1] = "cts"

data_setting = as.character(setting_matrix[arg, 1])

n = as.numeric(setting_matrix[arg, 2])

cor_str = as.character(setting_matrix[arg, 3])

cp_or_power = as.character(setting_matrix[arg, 4])

# source(".../functions.R")

beta = c(10, 0.5, 6, 2)

beta1 = c(11, 0.6 , 7, 2.1)

nu = 1.5

sigma = 1

tau = 2

phi = 3

d = 3.5

no_sim = 1000

## Extracting the seed -----------------------------------------------

#rownames(unbal_dis_power_lin$estimate$HLM1)

if (data_setting == "bal_dis") {

temp = sim_X(n, balance = TRUE, cts = FALSE)

}

if (data_setting == "unbal_dis") {

temp = sim_X(n, balance = FALSE, cts = FALSE)

}

if (data_setting == "cts") {

temp = sim_X(n, balance = FALSE, cts = TRUE)

}

X = temp$X

ni = temp$ni
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time = temp$time

dir = paste0("/rigel/home/", uni, "/GSC/", data_setting, "/n", n, "/", cor_str,

"/")

name = paste0(data_setting, "_n", n, "_", cor_str, "_", cp_or_power)

if (cp_or_power == "cp") {

summary_fit = find_bias_se_covg(n, ni = ni, time = time, X = X, beta, nu, sigma,

cor_str, tau, phi , d , no_sim, save_data = FALSE,

save_data_name = paste0(dir, cp_or_power, "_data/data"))

write.csv(summary_fit$bias, paste0(dir, name, "_bias.csv"))

write.csv(summary_fit$se, paste0(dir, name, "_se.csv"))

write.csv(summary_fit$est_sd, paste0(dir, name, "_est_sd.csv"))

write.csv(summary_fit$mean_coverage, paste0(dir, name, "_mean_coverage.csv"))

}

if (cp_or_power == "power") {

summary_fit = find_power(n, ni = ni, time = time, X = X, beta, beta1, nu, sigma,

cor_str, tau, phi , d , no_sim, save_data = FALSE,

save_data_name = paste0(dir, cp_or_power, "_data/data"))

write.csv(summary_fit$mean_power, paste0(dir, name, "_mean_power.csv"))

}

write.csv(summary_fit$problematic_seed_model, paste0(dir, name, "_problematic_seed.

csv"))

write.csv(summary_fit$estimate$corExp, paste0(dir, name, "_est_corExp.csv"))

write.csv(summary_fit$estimate$corGaus, paste0(dir, name, "_est_corGaus.csv"))

write.csv(summary_fit$estimate$HLM1, paste0(dir, name, "_est_HLM1.csv"))

write.csv(summary_fit$estimate$HLM2, paste0(dir, name, "_est_HLM2.csv"))

write.csv(as.numeric(rownames(summary_fit$estimate$HLM1)), paste0(dir, name, "_seed

.csv"))

212



Paper 3: A Tutorial on Using Linear Mix Modeling and
Spatial Correlation with an Online Drug Abuse

Prevention Intervention Data in R

Hedyeh Ahmadi

Teachers College, Columbia University

213



ABSTRACT

Paper 3: A Tutorial on Using Linear Mix Modeling and Spatial Correlation with an Online Drug

Abuse Prevention Intervention Data in R

Hedyeh Ahmadi

Modeling the correlation structure in repeated measure data is essential for proper data

analysis. A survey of longitudinal methods in the first paper showed that this correlation structure

is not being modeled optimally in Education and Psychology literature. A simulation study in the

second paper showed that when data are consistent with a General Serial Covariance (GSC) model

with different spatial correlations, using basic random intercept or random intercept/slope models

does not produce optimal estimation and testing properties. A drug abuse prevention intervention

data set was analyzed in detail using R programming language. This tutorial first offers a concise

exploratory data analysis (EDA) using various tables and plots. As a part of the EDA for longi-

tudinal data, the use of variogram plots is introduced to identify the functional form and different

variability components of the covariance structure of the repeated measure. The paper then dis-

cusses model fitting and model comparison. Finally, the fixed effect of the GSC model is presented

using splines.
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Introduction

Modeling the covariance structure of repeated measure data is critical for longitudinal data

analysis because it increases the precision of estimates and improves testing properties. Although

the modeling of longitudinal data is prevalent in Education and Psychology, a survey of literature

in these disciplines (presented in the first paper) demonstrated that researchers in these fields fre-

quently omit exploring, reporting, and modeling the correlation pattern of the repeated measure

data. This means scholars are either not exploring the covariance structure or they are simply us-

ing the program defaults. Models such as repeated measure ANOVA and basic Hierarchical Linear

Models (HLM) are widely used without any exploratory analysis of the covariance structure of the

repeated measure.

Methods such as the General Serial Covariance (GSC) can be used to model the covariance

pattern and fixed effects at the same time; the GSC model can be thought of as an HLM model that

incorporates the appropriate covariance structure. This model can answer questions such as:

• What is the usual time course of seeing the desired result (such as increased test score or

decreased refusal score) after an intervention?

• What are the factors predicting the outcome of interest?

• What are the characteristics of heterogeneity within and across subjects in terms of the out-

come of interest?

A detailed introduction to the GSC model was presented in the second paper. A simulation

study, also in the second paper, confirmed that running basic HLMs for data consistent with the

GSC model with spatial correlation can have a negative effect on the power and the standard error

(SE) of the estimates. More specifically, this simulation study showed that when data are consistent
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with the GSC model with spatial correlation (i.e. Linear, Exponential, and Gaussian), a random

intercept-only model has an SE furthest from the true Monte Carlo SE. The study further showed

that the random intercept/slope model has the lowest power compared to running a GSC model

with Exponential and Gaussian covariance structure.

Although there are many books on longitudinal data analysis in Education and Psychology,

simple and easy-to-follow tutorials (using R programming language) on the GSC model that ex-

plore the specifications of the repeated measure correlation structure are non-existent. The focus

of this tutorial is to teach users how to perform exploratory data analysis (EDA) for longitudinal

data by introducing count tables, spaghetti plots, cross-sectional smoothers of the residuals, and

variograms. Special attention is given to plotting and interpreting the variograms in the context of

the GSC model to explore the covariance pattern of the repeated measure for modeling purposes.

HLM and GSC model fitting and model comparison are also presented using plots and tables

along with the necessary R functions and command snapshots. Additionally, a short description of

splines as a more flexible way of modeling the fixed-effect part of the GSC model is offered. All

the necessary R codes for using and presenting the results from Basis Splines and Natural Splines

are also provided. Assumption checking and model diagnostics are very important steps that are

reserved for future papers.

Data Description

A nationwide (48 states and the District of Columbia) longitudinal online drug abuse preven-

tion program recruited 797 adolescent girls (13 to 14 years old) through Facebook advertisements.

Girls who enrolled in the program were randomly assigned to the intervention or control group.

All the girls completed the pretest forms online. After nine sessions of the gender-specific drug
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abuse prevention web-based program, the intervention group was assigned to complete the post-

test measures. The control group completed the post-test measures 14 weeks after their pre-test

date. Finally, all of the girls completed three follow-up measures, each about 1 year apart. For

more details on the data collection, sample characteristics, and Facebook advertisement process,

see Schwinn, Hopkins, Schinke, and Liu (2017).

Variable Descriptions

The end time and date of each measurement were converted to one continuous scale and used

as the time variable. Note that the end time and date were used in all of the measurements in order

for all of the girls to have finished the treatment. Using the R built-in function as.POSIXct(),

the variable date/time were converted to the number of seconds from January 1st, 1970. Then the

minimum of the time variable was subtracted from the continuous time variable to yield the final

version of the continuous time variable.

Each wave of the data was recorded separately. The treatment arm variable was merged from

the different waves to reduce the missingness for the treatment variable for each individual.

Missing observations were deleted, but all of the individuals were kept in the analysis. There

was only one individual with two rows of data (in one of the rows she switched between treatment

and control). This was an obvious data recording mistake so it was deleted.

All of the R libraries (R Core Team, 2017) and functions used to produce this tutorial are

shown in Appendix A. The data cleaning process for longitudinal data is not shown in this tutorial.

Readers should be cautioned that the data was used in either wide or long format, depending on

the command requirements in R.

Three refusal skill variables (i.e. cigarette, alcohol, and marijuana refusal skills) were used
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to create a composite refusal variable score. Table 1 represents the description of the variables

used in this tutorial. Table B1 in Appendix B shows the coding scheme and the questionnaire for

the mean cigarette, alcohol, and marijuana refusal skills.

Variable Name Variable Description
ID Participant ID number.
time The observation wave number.
TRT Treatment: 0 = Control and 1 = Intervention.
CTS.TIMEDATE Continuous time variable (in year) in which each participants were measured.
MEAN.CIG.ALC.POT Total mean refusal skill.

Table 1. Variable descriptions

Table 2 can be used to look at all the variable summaries. There are five waves of measure-

ments under the time wave column. The CTS.TIMEDATE variable ranged from 0 to 3.8; mean

and median for this variable are around 1.5. There were 1900 observations for the treatment group

versus 1829 observations for the control. Finally, the MEAN.CIG.ALC.POT variable ranged from

0 to 5, with mean and median close to 1.8. Note that total mean refusal skill was reverse coded so

the lower score means higher refusal skill for cigarette, alcohol, and marijuana.

ID time CTS.TIMEDATE TRT MEAN.CIG.ALC.POT
1 54824 : 5 1:775 Min. :0.000 0:1900 Min. :1.00
2 54868 : 5 2:756 1st Qu.:0.469 1:1829 1st Qu.:1.00
3 54896 : 5 3:752 Median :1.499 Median :1.67
4 54919 : 5 4:731 Mean :1.590 Mean :1.85
5 54927 : 5 5:715 3rd Qu.:2.496 3rd Qu.:2.33
6 54945 : 5 Max. :3.811 Max. :5.00
7 (Other):3699

Table 2. Summary Table of the Clean Data

Exploratory Analysis and Variograms

After cleaning and merging the data, 786 individuals were left in the data set. Note that not

all individuals had all of the five measurements and there was only one obvious data recording
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error. Table 3 that there were 123 individuals with fewer than five observations. Most subjects had

all five measurements, and only 10 individuals had one measurement out of five.

1 2 3 4 5 6
Number of Observation 0 1 2 3 4 5

Number of Subjects 1 10 16 17 79 664

Table 3. Number of subjects with a given observations for each subject

The following code chunk shows a basic way to print the total subject number, total obser-

vation number, and number of subjects per observation number (shown in Table 3) for data in long

format.

cat(paste("Total number of subjects:", sum(table(unique(H145.long.comp$ID)))))

cat(paste("Total number of observations: ", length(H145.long.comp$ID)))

cat("Number of subjects with a given observations for each subject:")

table(table(H145.long.comp$ID))

After looking at the basic descriptives shown above, a good start for longitudinal EDA is

to look at spaghetti plots for treatment and control groups separately. The following code chunk

shows a simple way of creating spaghetti plots for treatment versus control groups.

## Spagetti plot of randomly chosen subjects for control group

## Randomly chosen seed for replicability purposes

set.seed(777)

plot( H145.long.comp$CTS.TIMEDATE[H145.long.comp$TRT==0],

H145.long.comp$MEAN.CIG.ALC.POT[H145.long.comp$TRT==0],

xlab="Time Lag in Number of Years",
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ylab="Control: Total Refusal", type="n")

## Sampleing 30 subjects

uid <- unique( H145.long.comp$ID[H145.long.comp$TRT==0] )

subset <- sample( uid, 30 )

for( j in 1:30 ){

lines( H145.long.comp$CTS.TIMEDATE[ H145.long.comp$ID==subset[j] ],

H145.long.comp$MEAN.CIG.ALC.POT[ H145.long.comp$ID==subset[j] ],

col=sample(rainbow(30)) )

}

## Spagetti plot of randomly chosen subjects for treatment group

plot( H145.long.comp$CTS.TIMEDATE[H145.long.comp$TRT==1],

H145.long.comp$MEAN.CIG.ALC.POT[H145.long.comp$TRT==1],

xlab="Time Lag in Number of Years",

ylab="Treatment: Total Refusal", type="n")

## Sampleing 30 subjects

uid <- unique( H145.long.comp$ID[H145.long.comp$TRT==1] )

subset <- sample( uid, 30 )

for( j in 1:30 ){

lines( H145.long.comp$CTS.TIMEDATE[ H145.long.comp$ID==subset[j] ],

H145.long.comp$MEAN.CIG.ALC.POT[ H145.long.comp$ID==subset[j] ],

col=sample(rainbow(30)))

}
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Figure 1. Spagetti plot of comparison between the treatment versus control group shows that the

treatment group might have less variability and lower refusal score; which means the treatment

group might be refusing more drug and alcohol

Figure 1 shows that the variability of all the measurements for the control group was more

pronounced compared to the treatment group. Also, in general, the refusal score was lower for

the treatment group compared to the control; since total mean refusal skill was reverse coded, this

means that the treatment group might be refusing drug and alcohol more often. To explore this

phenomenon further, let us look at this observation more closely, first using a scatter plot along

with smoothers, and second using the mean of each time lag for treatment and control groups

(shown in the following code chunk).

# Higher df more detailed line, lower df closer to a line

plot( H145.long.comp$CTS.TIMEDATE, H145.long.comp$MEAN.CIG.ALC.POT,

xlab="Number of Years",ylab="Total Refusal", pch=".")
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lines( smooth.spline( H145.long.comp$CTS.TIMEDATE[H145.long.comp$TRT==1],

H145.long.comp$MEAN.CIG.ALC.POT[H145.long.comp$TRT==1],

df=5 ), col="green", lwd=3)

lines( smooth.spline( H145.long.comp$CTS.TIMEDATE[H145.long.comp$TRT==0],

H145.long.comp$MEAN.CIG.ALC.POT[H145.long.comp$TRT==0],

df=5 ), col="red", lwd=3)

legend("topright",legend=c("Treatment", "Control"),

col=c("green", "red"), lty=1, cex=0.8, bg="white")

## Calculating the mean of each lag

mc=c()

mt=c()

for(i in 1:5){

mc[i]<- mean(H145.long.comp$MEAN.CIG.ALC.POT[H145.long.comp$TRT==0&

H145.long.comp$time==i])

mt[i]<- mean(H145.long.comp$MEAN.CIG.ALC.POT[H145.long.comp$TRT==1&

H145.long.comp$time==i])

}

## Plotting Means for Data Binned by Time Point

## for Treatment and Control Group separately

plot(mt, col="green", lwd=3,xlab="Measurement Wave",ylab="Total Refusal",

type="b", ylim=c(0,5),pch=".")

points(mc, col="red", lwd=3, type = "b")
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Figure 2. Both of above plots shows that treatment group has consistently slightly lower refusal

score (i.e. refusing more drug and alcohol)

legend("topright",legend=c("Treatment", "Control"),

col=c("green", "red"), lty=1, cex=0.8, bg="white")

To explore the systematic component of the total refusal score, one can examine the plots

shown in Figure 2. Figure 2(a) is a scatter plot of total refusal over continuous time. The green

smooth line is a spline with five degrees of freedom for the treatment group. The red smooth

line is a spline with five degrees of freedom for the control group. These smooth splines fit a

cubic smoothing spline between the knots to the total refusal score, forcing continuity at knots;

this smooth spline can be thought of as a cross-sectional mean of total refusal score over time.

Figure 2(b) shows the mean total refusal score at each time wave connected by lines. Both plots in

Figure 2 show the same systematic pattern using two different methods. One can observe that the

treatment and control groups start at pre-intervention with virtually the same refusal score; then the
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treatment group has a slight reduction all the way to the end. At the last measurement, the distance

between the treatment and control groups decreases, which means the treatment effect might be

disappearing.

Both cross-sectional plots in Figure 2 show the same rise and fall, so the researchers cannot

be certain that the decrease in refusal score is due to the intervention. However, there could be

a social or historical event affecting both groups around, for example, year 2 or 3 (i.e. the 4th

measurement).

Another important part of the data to be explored is the number of observations at each

measurement wave, as the accuracy of the estimations of different statistics at each time point

depends on the number of observations. Sparse data issues can be investigated using Table 4; the

R code corresponding to this table is as follows.

# Number of subjects per wave of measurements

obs.per.wave = matrix(NA, nrow = 1, ncol = 5)

colnames(obs.per.wave)<- c("Time1","Time2","Time3","Time4","Time5")

for(i in 1:5){

obs.per.wave[1,i] = sum(table(unique(H145.long.comp$ID[H145.long.comp$time==i])))

}

Time1 Time2 Time3 Time4 Time5
1 775 756 752 731 715

Table 4. Number of subjects per wave of measurements

Table 4 shows that we do not have sparse data issues since we have more than 700 observa-

tions at each time wave.
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Introduction to Variogram Plots

The General Serial Covariance (GSC) model and its residual variabilities need to be under-

stood in depth in order to plot and interpret a variogram. The GSC model was introduced in detail

in the second paper, thus only a quick summary is provided here. The GSC model can be specified

as follows:

Yi j = µi j +αi +Wi(ti j)+ εi j (1)

where i = 1, ...,N is the subject index and j = 1, ...,ni is the measurement index. Thus the GSC

model has three sources of variation, namely, variation in the random intercept which comes from

αi, variation in the serial process which comes from Wi(ti j), and variation in the measurement error

which comes from εi j. In addition, it is often assumed that all these parameters are independent

with:

var(αi) = ν2 (2)

cov(Wi(ti j),Wi(tik)) = τ2ρ(|ti j− tik|) (3)

var(εi j) = σ2 (4)

The serial correlation within the repeated measure is defined as an intrinsic stationary Gaussian

process, Wi(ti j), where,

• E(Wi(ti j)) = 0

• cov(Wi(ti j),Wi(tik)) = τ2ρ(|ti j−tik|) = τ2ρ(u) where u is the time lag between measurements

for the same subject.

For example, one can specify ρ(u) = e(−(
u
φ )

c) where c= 1 induces an Exponential serial correlation
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structure and c= 2 induces a Gaussian serial correlation structure. The rate of exponential decrease

(sometimes called the range) is 1
φ . Another example would be a Linear serial correlation structure,

which is defined as ρ(u) = 1− u
d for u < d and zero otherwise. The range for the Linear serial

correlation structure is defined as d, after which the correlation is assumed to be zero.

Note that all the spatial correlation formulas are presented using time lag u or time t and not

in terms of space/location. The spatial correlation terminology was borrowed from geostatistics,

where scholars deal with space/location. In order to use these spatial correlation functions, the

concept of space is being converted to time for repeated measure data.

Many other functional forms can be defined for the serial correlation function. However,

the Linear, Gaussian, and Exponential serial correlations are the most commonly used functions.

The functional forms of the Exponential and Gaussian correlation structures are highly consistent

with the data in Education and Psychology since in these disciplines, the correlation between

the repeated measure decreases as the time lag increases. The Linear covariance structure, on the

other hand, might not be as realistic for these disciplines since the correlation between the repeated

measure will rarely go to zero abruptly. EDA for the covariance structure of the outcome utilizes

these functional forms and the variabilities shown in Equations 2 to 4.

Before model fitting, it is essential to explore the covariance pattern using a variogram. Var-

iograms offer an alternative function to autocorrelation function (ACF) plots that describe associ-

ations among repeated observations with irregular observation time. It is an exploratory tool that

allows researchers to examine two aspects of the covariance structure, namely, functional form and

the three variance components coming from the residual of the GSC model (shown in Equations 2
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to 4). Given a stochastic process R, and time lag u, the variogram is defined as:

v(u) =
1
2

E[{R(t)−R(t−u)}2],u≥ 0 (5)

The function v(u) is estimated by smoothing the scatter plot of the 1
2(Ri j−Rik)

2 over u jk = |ti j−

t jk|. Note that for the GSC model shown in Equation 1, the residuals are defined as:

Ri j(u) = Yi j−µi j = αi +Wi(ti j)+ εi j (6)

If R(u) is stationary (i.e. the residual mean zero and equal variance of time points), the variogram

is directly related to the autocorrelation function ρ(u) via the following expression:

v(u) = σ2 + τ2{1−ρ(u)} (7)

Equation 7 reveals:

• When the autocorrelation function ρ(u) increases, the variogram v(u) increases.

• As u→ 0 then v(u)→ σ2.

• As u→ ∞ then v(u)→ σ2 + τ2.

The total process variance for all individuals in the data can be written as:

1
2

E[Ri j−Rkl] = ν2 + τ2 +σ2, i 6= k (8)
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Thus, the total process variance shown in Equation 8 is estimated using the following expression:

ν̂2 + τ̂2 + σ̂2 =
1

2N∗ ∑
i 6=k

ni

∑
i=1

nl

∑
l=1

[Ri j−Rkl]
2 (9)

where N∗ is the number of terms in the sum. The estimate of total variance together with the

variogram will be used for deciding which of the three stochastic components (shown in Equations

2 to 4) will be included in the model, and for selecting an appropriate serial correlation function

ρ(u). The former and latter are illustrated in Figures 3 and 4, respectively.

As shown in Figure 3, the shape of the variogram can help to identify the functional form

of the covariance structure. A round increasing shape, an S-shape, and a linear shape are the

most commonly occurring patterns that, respectively, indicate Exponential, Gaussian, and Linear

covariance structures. Figure 4 illustrates that the height of the variogram can help with visualizing

different components of the covariance structure. Looking at Figure 4 from bottom to top, one can

label the variability in the measurement error, serial correlation, and random intercept as σ2, τ2,

and ν2, respectively. Note that the top horizontal dotted line in Figure 4 has been plotted using the

total process variance estimated in Equation 9.

Note that there exist many complex spatial correlation structures, such as Rational Quadratic,

Matern, and Spherical Correlation Structures, that are not presented in this paper. Readers who

encounter variogram plots with shapes not covered in this paper can consult spatial data literature

such as Carlin, Gelfand, and Banerjee (2014) to identify the structure of the repeated measure

data shown in their variogram. Researchers can also combine and create new functions (Simpson,

Edwards, Muller, Sen, & Styner, 2010) that suit their repeated measure correlation structure.

The next code chunk presents how to plot the variogram for the drug abuse prevention in-
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(a) Exponential Variogram (b) Gaussian Variogram

(c) Linear Variogram

Figure 3. Variograms of different spatial correlation structures

Figure 4. Sample variograms, showing σ2, τ2, and ν2, which represent measurement error, serial

correlation, and random intercept, respectively. Adopted from Verbeke and Molenberghs (2000,

p. 143)
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tervention data. First, the outcome needs to be de-trended using a naive model such as a natural

spline model (shown as ns() in the next code chunk). Second, the residuals are extracted from this

linear spline model. Third, these residuals are used to explore the autocorrelation pattern. Note

that the knots in the ns() function need to be chosen in terms of the time variable. One can place

the knots at the 1st quantile, Median, and 3rd quantile of the CTS.TIMEDATE variable.

To compute an empirical variogram, the function lda.variogram() (written by P. Heagerty,

shown in Appendix A) is used to plot the variogram shown in Figure 5. The shape of the variogram

in Figure 5 can be judged as falling somewhere in between an Exponential and a Gaussian autocor-

relation. If the middle dent in the variogram were deeper and S-shaped, this would be a variogram

corresponding to the Gaussian serial correlation. On the other hand, if the middle dent were more

rounded, this would be a variogram corresponding to the Exponential serial correlation.

The variability in the middle part of the plot (i.e. τ2) shows that there is definitely some

autocorrelation. The space between the top part of the variogram and the total variance dashed line

(i.e. ν2), shows that the model needs a random intercept. Finally, the gap between the bottom of the

x-axis and the start of the plot (i.e. σ2) shows that there is some leftover error (i.e. measurement

error).

To sum up, in terms of model fitting, this variogram would indicate that the researcher should

run two GSC models (both with random intercept and measurement error), one using a Gaussian

serial correlation and one using Exponential. Then one can use ad-hoc criteria such as AIC, BIC,

and Log-Likelihood to decide which serial correlation is optimal. However, before moving on to

model fitting, one needs to check the variogram stationarity assumptions (i.e. residual mean zero

and residual variances equal to each other).
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fit.3knots <- lm(MEAN.CIG.ALC.POT ~ ns(CTS.TIMEDATE,

knots = c(quantile(H145.long.comp$CTS.TIMEDATE, na.rm = TRUE)[2],

quantile(H145.long.comp$CTS.TIMEDATE, na.rm = TRUE)[3],

quantile(H145.long.comp$CTS.TIMEDATE, na.rm = TRUE)[4])),

data = H145.long.comp, na.action = NULL)

resids.3 <- residuals(fit.3knots)

H145.long.comp$resids.3 <- residuals(fit.3knots)

vario <- lda.variogram(id = H145.long.comp$ID, y = H145.long.comp$resids.3,

x = H145.long.comp$CTS.TIMEDATE)

dr <- vario$delta.y

du <- vario$delta.x

tot.var.est <- var(H145.long.comp$resids.3)

plot(du, dr, pch = ".", ylim = c(0, 1.2 * tot.var.est),

xlab = "Time Lag in Number of Years", ylab = "Variogram")

lines(smooth.spline(du, dr, df = 5), lwd = 3)

abline(h = tot.var.est, lty = 2, lwd = 2)

title("Total Refusal Residual Variogram")

The next code chunk illustrates one way to look into the covariance structure of the data,

check the stationarity assumptions, and explore the sparse data issues; Table 5 to Table 7 show the

output for this code chunk. Note that in order to use the commands in this code chunk, residuals

need to be in wide format.

Table 5, which is the mean of residuals for each time point, shows that the means of residual

time lags are all close to zero; this means the residual mean zero of the stationarity assumption

is satisfied. The diagonal elements of the Table 6 show that the variance of the time lags are

all roughly equal, thus the equal variance requirement of the stationarity assumption is satisfied as
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Figure 5. Variogram of the residuals using a 3-knot natural spline. This looks like an Exponential

or Gaussian correlation structure with measurement error, random intercept and

auto-correlation. Note that the the y-limit has been manipulated for better resolution

well. Together, Table 5 and Table 6 show that stationarity assumption is satisfied for the variogram.

Note that Table 6 also indicates that as the time lag increases, the covariance between the repeated

measure decreases, which is consistent with the Exponential/Gaussian covariance pattern shown

in the variogram. Carlin et al. (2014) is a great in-depth source for researchers who are interested

in studying variograms in more detail.

Finally, Table 7 shows the number of observations used to calculate each covariance shown

in Table 6; the smallest number in this table is 685, which means sparse data issues are non-existent

in this data set.
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## Residual mean equal 0?

colMeans(resids.wide, na.rm = TRUE)

## Residual variance equal to each other?

cov(resids.wide, use = "na.or.complete")

## Sparse data?

crossprod(!is.na(resids.wide))

Resid.1 Resid.2 Resid.3 Resid.4 Resid.5
Mean -0.0004 -0.0042 0.0147 -0.0272 0.0172

Table 5. Mean of each lag is close to zero thus the mean zero part of the stationarity assupmtion

is roughly satisfied

Resid.1 Resid.2 Resid.3 Resid.4 Resid.5
Resid.1 0.67 0.47 0.37 0.24 0.22
Resid.2 0.47 0.75 0.42 0.29 0.28
Resid.3 0.37 0.42 0.76 0.40 0.38
Resid.4 0.24 0.29 0.40 0.62 0.34
Resid.5 0.22 0.28 0.38 0.34 0.72

Table 6. Covariance of residuals using a 3-knot natural spline. Looking at the diagonal elements,

the variances are all roughly equal thus the equal variance part of the stationarity assumption is

satisfired

Resid.1 Resid.2 Resid.3 Resid.4 Resid.5
Resid.1 775 756 752 720 708
Resid.2 756 756 743 711 698
Resid.3 752 743 752 712 696
Resid.4 720 711 712 731 685
Resid.5 708 698 696 685 715

Table 7. Sparse data issues are not observed so the covarience parameters can be estimated well
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How to Run and Compare Different Models

In the previous section, it was established by using a variogram that a GSC model with

either an Exponential or Gaussian covariance structure would be a good choice for the drug abuse

prevention intervention data set. Table 8 shows the coefficients, standard errors (SE), and p-values

from a random intercept model (i.e. HLM1), a random intercept and slope model (i.e. HLM2), a

GSC model with Exponential covariance structure (i.e. Fit.Exp), and a GSC model with Gaussian

covariance structure (i.e. Fit.Gauss). Detailed descriptions of HLM1 and HLM2 can be found in

Singer and Willett (2003).

The next code chunk shows the R code corresponding to models shown in Table 8. The

following are the model specifications used in this code chunk:

• lme() command can be used to run both the GSC and HLM models.

• The argument method = "ML" identifies that the log-likelihood is maximized. Alternatively,

one can use restricted log-likelihood by utilizing the option method = "REML".

• The argument random = reStruct(~1 + CTS.TIMEDATE |ID, pdClass = "pdSymm")

is where random intercept and slope of time are defined. By eliminating the

+CTS.TIMEDATE , one would be left with a random intercept-only model.

• The argument data = H145.long.comp defines which data set is being used. Note that in

the lme() command, one needs to use the data in long format.

• The control = lmeControl(opt = "optim") option defines the estimation algorithm.

Many different estimation algorithms are available in this option and users should choose

the one that gives the least convergence issues.

• summary() command can be used to look at the details of the model fitting outcome.
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• Readers who need more information about a specific method can type ? in the console along

with a given command to learn more (e.g. ?lme()).

All the coefficient estimates of the models shown in Table 8 are known to be unbiased. The

simulation study in Paper 2 indicated that HLM2 had lower power compared to the other three

models, which can be inferred by referring to Table 8: looking at the p-values for HLM2, none

of the variables other than intercept are significant. HLM1, on the other hand, has two significant

variables out of three. However, one should not trust the SE from the HLM1 model since according

to the simulation study, this model had a SE estimate furthest from the "true" SE (it was under-

estimating).

Furthermore, the variogram identified the appropriateness of the GSC model with either

Exponential or Gaussian covariance structures. AIC, BIC, and Log-Likelihood in Table 8 unani-

mously confirm that a GSC with Exponential covariance structure is an optimal choice; AIC and

BIC are the smallest for this model, and Log-Likelihood is smallest in absolute value. Using these

same criteria, the GSC model with a Gaussian covariance structure is the second best model; note

that for these two models that we trust the most (since according to the simulation study they have

the correct SE and are more powerful), we only have two significant coefficients.

## Running different models The variogram looked like

## a exponential covariance structure Thus the

## corEXP() should be performin the best

## Random intercept only model called HLM1

HLM1 = lme(MEAN.CIG.ALC.POT ~ CTS.TIMEDATE + TRT + CTS.TIMEDATE *

TRT, method = "ML", random = reStruct(~1 | ID, pdClass = "pdSymm"),

data = H145.long.comp, control = lmeControl(opt = "optim"))
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summary(HLM1)

## Random intercept and slope model called HLM2

HLM2 = lme(MEAN.CIG.ALC.POT ~ CTS.TIMEDATE + TRT + CTS.TIMEDATE *

TRT, method = "ML", random = reStruct(~1 + CTS.TIMEDATE |

ID, pdClass = "pdSymm"), data = H145.long.comp, control = lmeControl(opt = "optim"))

summary(HLM2)

## Random intercept model plus Linear correlation

## structure

fit.lin = lme(MEAN.CIG.ALC.POT ~ CTS.TIMEDATE + TRT +

CTS.TIMEDATE * TRT, method = "ML", random = reStruct(~1 |

ID, pdClass = "pdSymm"), correlation = corLin(form = ~CTS.TIMEDATE |

ID, nugget = TRUE), data = H145.long.comp, control = lmeControl(opt = "optim"))

summary(fit.lin)

## Random intercept model plus Exponential correlation

## structure

fit.exp = lme(MEAN.CIG.ALC.POT ~ CTS.TIMEDATE + TRT +

CTS.TIMEDATE * TRT, method = "ML", random = reStruct(~1 |

ID, pdClass = "pdSymm"), correlation = corExp(form = ~CTS.TIMEDATE |

ID, nugget = TRUE), data = H145.long.comp, control = lmeControl(opt = "optim"))

summary(fit.exp)

## Random intercept model plus Gaussian correlation

## structure

fit.gaus = lme(MEAN.CIG.ALC.POT ~ CTS.TIMEDATE + TRT +

CTS.TIMEDATE * TRT, method = "ML", random = reStruct(~1 |

ID, pdClass = "pdSymm"), correlation = corGaus(form = ~CTS.TIMEDATE |

ID, nugget = TRUE), data = H145.long.comp, control = lmeControl(opt = "optim"))

summary(fit.gaus)

226



Appendix A shows functions that can be used to extract parameters from the lme() function.

If the variance parameters are of interest, one can use the equivalency formulas derived in Appendix

C to extract the parameters manually. These formulas have been implemented in the function

shown in Appendix A called extract_HLM and extract_lme. The next code chunk shows how to

extract the estimated coefficient and variance parameters from the above output using the functions

shown in Appendix A; corresponding formulations are derived in Appendix C. For more details on

how to extract parameters from the R output, see Martinussen, Skovgaard, and Sorensen (2012).

extract_HLM(HLM1)

extract_HLM(HLM2)

extract_lme(fit.exp)

extract_lme(fit.gaus)

The GSC model was introduced in the Introduction to Variogram Plots section. The fixed-

effect part (i.e. µi j) of the GSC model for this analysis can be written as:

Yi j =µi j +αi +Wi(ti j)+ εi j

µi j =β0 +β1Time+β2Treatment +β3Time×Treatment

(10)

The coefficients of the model shown above are estimated with different models in Table 8. Using

the estimations from the GSC model with an Exponential covariance structure, the fixed-effect

coefficients can be interpreted as follows:

• Since there is interaction in the model, readers need to be careful when interpreting the main

effects as the interaction might be driving the main effect.

• The estimated intercept β0 = 1.8809 refers to the population total refusal score when Time =
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HLM1 HLM2 Fit.Exp Fit.Gauss
(Intercept) Estimate 1.8917∗∗∗ 1.8932∗∗∗ 1.8809∗∗∗ 1.8757∗∗∗

SE 0.0399 0.0448 0.0431 0.0425
P-Value 0.0000 0.0000 0.0000 0.0000

CTS.TIMEDATE Estimate 0.0278∗ 0.0255 0.0342∗ 0.0374∗

SE 0.0128 0.0157 0.0157 0.0150
P-Value 0.0291 0.1044 0.0289 0.0127

TRT1 Estimate −0.1150∗ −0.1147 −0.1130 −0.1161
SE 0.0567 0.0637 0.0611 0.0603

P-Value 0.0430 0.0721 0.0649 0.0544

CTS.TIMEDATE:TRT1 Estimate −0.0162 −0.0160 −0.0144 −0.0148
SE 0.0181 0.0223 0.0222 0.0212

P-Value 0.3708 0.4729 0.5152 0.4866
AIC 8458.9342 8341.3526 8320.7047 8334.5976
BIC 8496.2776 8391.1437 8370.4958 8384.3888
Log Likelihood -4223.4671 -4162.6763 -4152.3523 -4159.2988
Num. obs. 3729 3729 3729 3729
Num. groups 786 786 786 786
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 8. Comparison of the statistical models with respect to the estimates, standard error (SE)

and P-values. Note that HLM1 denotes the random intercept only model and HLM2 denotes the

random intercept and slope model. Fit.Exp and Fit.Gauss denote the GSC model with

Exponential and Gaussian covariance structures, respectively

0 and Treatment = 0. In other words, in the population, at time zero for the control group,

the estimated refusal score is 1.8809.

• The estimated parameter β1 = 0.0342 refers to the population yearly rate of change in total

refusal score for the control group. For the treatment group (i.e. Treatment = 1), the effect

of Time is β1×Time+β3×Time = (β1 +β3)×Time.

• The estimated parameter β2 = −0.1130 refers to the population average difference in total

refusal score at time zero, comparing the treatment group to the control group. For all other
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times, the population average difference in total refusal score, comparing the treatment group

to the control group, is β2 +β3×Time.

• The estimated parameter β3 = −0.0144 can be interpreted in two different ways: (a) the

effect of treatment on the total refusal score is estimated to be varying over time by−0.0144

in the population; and (b) the population rate of change of total refusal score over time com-

paring the treatment to the control group has been estimated to be −0.0144 (this coefficient

is the difference in the slope parameter as time varies between the treatment and control

groups).

Note that each parameter’s interpretation is using a conditional expectation; each parameter’s

interpretation is contingent on keeping other variables constant. For more details on interpretation

of the multilevel modeling coefficients see Chapter 5 of Singer and Willett (2003).

Table 8 can also be used to compare the estimated coefficients, SEs, and p-values of each

variable across the different models. For example, comparing the estimations corresponding to

CTS.TIMEDATE for HLM2 and Fit.Exp, one can observe the following:

• Regarding the parameter estimation, we observe an approximate 34% (from 0.0255 to

0.0342) increase when comparing HLM2 to Fit.Exp. However, the corresponding confi-

dence intervals do overlap (i.e. HLM2=[-0.0059, 0.0569] versus Fit.Exp=[0.0028, 0.0656]).

• From the simulation study, we know that the SE for both models is about 0.0157–close to

the "true" SE.

• In the simulation study, we have observed that HLM2 has lower power compared to the

GSC models. Here, the p-value corresponding to HLM2 is non-significant and the p-value

corresponding to the Fit.Exp model is significant.
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By making similar observations for all the coefficients and estimations, one can conclude

that the choice of modeling can affect the estimation and testing of the fixed-effect parameters.

Utilizing the variogram and the all of the model fit criteria, it is now established that the GSC

model with Exponential covariance structure is the optimal model. Figure 6 corresponds to the

next code chunk, which is the plot of the fixed-effect linear trend corresponding to the GSC model

with an Exponential covariance structure. Researchers can refer to Figure 6 to explore the linear

trend visually. The total refusal score for the control group is consistently higher, compared to the

treatment group, with a slightly increasing pattern overall. This linear trend would be relatively

restrictive if researchers believe that the effect of treatment might be different in various time

intervals. For example, the effect of treatment on refusal score might be steeper in the first year

compared to the last year, but this model estimates one slope for the entire time. As shown in the

next section, using different polynomial regression curves for different time intervals can model the

fixed effect in a more flexible way, but this method renders the parameter estimates uninterpretable.

# Plot of fitted values from the GSC model with Exponential covariance structure

plot(H145.long.comp$CTS.TIMEDATE, H145.long.comp$MEAN.CIG.ALC.POT,

xlab="Time in Number of Years", ylab="Total Refusal Score",pch=".")

fitted.mean.GSC.Exp <- fit.exp$fitted[, 1]

lines( sort(H145.long.comp$CTS.TIMEDATE[H145.long.comp$TRT==0]),

sort(fitted.mean.GSC.Exp[H145.long.comp$TRT==0]), col="red", lwd=2 )

lines( sort(H145.long.comp$CTS.TIMEDATE[H145.long.comp$TRT==1]),

sort(fitted.mean.GSC.Exp[H145.long.comp$TRT==1]), col="green", lwd=2 )

legend("topright",legend=c("Control", "Treatment"),

col=c("red","green"), lty=1, cex=0.7, bg="white")
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Figure 6. Plot of the fitted values of the GSC model with Exponential covariance structure for

treatment and control group separately

Modeling the Fixed Effect More Flexibly

So far, a multiple linear regression formulation was used to model the fixed effect of the GSC

model. The fixed-effect part can be modeled more flexibly using spline models; these approaches

use a set of basis functions to fit a parametric model. Although there are many different types

of splines, in this section Basis Splines (i.e. B-splines) and Natural Splines (N-Splines) will be

covered. A brief discussion of splines is provided in this section. Readers interested in more
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details on these types of modeling techniques can refer to books such as Chambers, Hastie, et al.

(1992); Friedman, Hastie, and Tibshirani (2001); Maindonald and Braun (2006); Yee (2015); and

Dunn and Smyth (2018).

A spline curve can be thought of as joining different piece-wise polynomials together at

different thresholds called knots. Knots can be defined systematically or intuitively; one can choose

the knots to be at different quantiles or decide where to put the knots based on the data. The piece-

wise polynomial that runs between the knots can be of any degree, however, the focus of this

section will be on degree three polynomials. This is because degree three polynomials are not too

complex for Education and Psychology data, yet are flexible and widely used. To prevent rigidness

at the knots (where the splines are connected), B-splines and N-splines constrain the first and

second derivatives. While B-splines do not implement constraints at the boundaries (i.e. min and

max of the data), N-splines implement constraints such that linearity is assured beyond boundaries.

The N-splines are usually a better choice in terms of their behavior at boundaries and, due to the

boundary constraints, N-splines have two extra degrees of freedom compared to B-splines.

There exist different formulations for presenting B-splines, N-splines, and the implemented

constraints. Note that an N-spline is just a B-spline with extra boundary conditions. Using B-

splines or N-splines of the time variable in the GSC Exponential model is the same as transforming

the time variable into a set of B-splines. Using this basis matrix instead of the original variable

adds flexibility to the modeling of the fixed effect. Given k interior knots and d, the degree of the

piece-wise polynomial, the general form of the basis function can be written as follows:

f (x) = β0 +
k+d

∑
j=1

β jB j(x) (11)
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The focus of this section is on cubic splines (i.e. d = 3).

The next code chunk shows the details of running a GSC model with Exponential covariance

structure and splines of the time variable in the fixed part. The biggest trade-off in using splines is

that the coefficients of this model are not interpretable, whereas those of a regular multiple linear

regression are. The plot of the fixed effect is mainly used to visually analyze the pattern of the

data.

The next code chunk shows one way of adding spline basis to the GSC model with an Ex-

ponential covariance structure. The R code description is similar to the previous section. The only

difference is that now, instead of having the time variable, one uses the B-spline (i.e. bs()) or

N-spline (i.e. ns()) of the time variable with knots defined at the 25%, 50%, and 75% quantiles.

The argument intercept = FALSE indicates that the defined basis does not need to include the

intercept since the lme() command already includes it in the model. The degree of B-spline ba-

sis is simply the degree of the piece-wise polynomial to be fit, which is defined as a degree three

polynomial here. However, one can use a higher or lower degree polynomial if needed. For the

N-spline, this degree is automatically set to three so it is not defined in the R code.

## Random intercept model plus Exponential correlation structure

## plus B-Spline and N-Spline for CTS.TIMEDATE

## Implementing four knots at using the quantiles of CTS.TIMEDATE

fit.exp.bs.4knots = lme( MEAN.CIG.ALC.POT ~ bs(CTS.TIMEDATE,

knots=c(0.469, 1.590, 2.496, 3.411),

degree=3, intercept = FALSE ) + TRT +

bs(CTS.TIMEDATE, knots=c(0.469, 1.590, 2.496, 3.411),

degree=3, intercept = FALSE)*TRT,

method = "ML", random = reStruct( ~ 1 | ID, pdClass="pdSymm"),
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correlation = corExp( form = ~ CTS.TIMEDATE | ID, nugget=TRUE),

data = H145.long.comp, control=lmeControl(opt="optim"))

summary(fit.exp.bs.4knots)

fit.exp.ns.4knots = lme( MEAN.CIG.ALC.POT ~ ns(CTS.TIMEDATE,

knots=c(0.469, 1.590, 2.496, 3.411),

intercept = FALSE )

+ TRT + ns(CTS.TIMEDATE,

knots=c(0.469, 1.590, 2.496, 3.411),

intercept = FALSE)*TRT,

method = "ML", random = reStruct( ~ 1 | ID, pdClass="pdSymm"),

correlation = corExp( form = ~ CTS.TIMEDATE | ID, nugget=TRUE),

data = H145.long.comp, control=lmeControl(opt="optim"))

summary(fit.exp.ns.4knots)

The next code chunk shows the details of how to plot the B-spline and the N-spline for

comparison and analysis purposes. Figure 7 is the resulting plot from this code chunk. The blue

vertical lines are the knots chosen at the 25%, 50%, and 75% quantiles. Figure D1 in Appendix D

shows the same model but with a different set of knots. In Figure D1 the knots are chosen based

on the different waves of data collection (i.e. at 0.268493, 1.268493, 2.268493, 3.268493 years).

The choice of knots did not change the results; the former and latter plots are almost identical and

both show a constant increase in total refusal score between the knots and overall. However, the

initial increase between knots is less steep and the slope gets steeper as we get to the final waves

of data. Researchers can use the knots to identify at which points an intervention booster might be

appropriate.
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fitted.mean.bs.4knots <- fit.exp.bs.4knots$fitted[,1]

plot(H145.long.comp$CTS.TIMEDATE, H145.long.comp$MEAN.CIG.ALC.POT,

xlab="Time in Number of Years", ylab="Total Refusal Score", pch=".")

lines( sort(H145.long.comp$CTS.TIMEDATE[H145.long.comp$TRT==0]),

sort(fitted.mean.bs.4knots[H145.long.comp$TRT==0]), col="red", lwd=2, lty=2 )

lines( sort(H145.long.comp$CTS.TIMEDATE[H145.long.comp$TRT==1]),

sort(fitted.mean.bs.4knots[H145.long.comp$TRT==1]), col="red", lwd=2 )

fitted.mean.ns.4knots <- fit.exp.ns.4knots$fitted[,1]

lines( sort(H145.long.comp$CTS.TIMEDATE[H145.long.comp$TRT==0]),

sort(fitted.mean.ns.4knots[H145.long.comp$TRT==0]), col="green", lwd=2, lty=2 )

lines( sort(H145.long.comp$CTS.TIMEDATE[H145.long.comp$TRT==1]),

sort(fitted.mean.ns.4knots[H145.long.comp$TRT==1]), col="green", lwd=2 )

abline(v=c(0.469, 1.590, 2.496, 3.411), col="blue")

legend("topright",legend=c("Control.bs", "Treatment.bs","Control.ns", "Treatment.ns"),

col=c("red", "red","green","green"), lty=c(2,1,2,1), cex=0.7,bg="white")

Note that all the information needed for model comparison is given in the summary() out-

put. However, for a concise model comparison along with testing nested models, one can use the

anova() command as shown in the following code chunk.

# Model comparison

# Note Because you want to maximize the log-likelihood, the higher value is better.

# For example, a log-likelihood value of -3 is better than -7.

anova(HLM1, HLM2, fit.lin, fit.exp, fit.gaus, fit.exp.bs.4knots, fit.exp.ns.4knots)

Finally Table 9 is a quick comparison of B-splines versus N-splines. A fun fact from Yee

(2015) about splines is a great way to end this section:

The word ’spline’ comes from a thin flexible strip used by engineers and architects in the
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Figure 7. Plot of the fitted values of the B-spline and N-spline for treatment and control group

separately. Knots are placed at second, third and fourth quantiles.

pre-computer days to construct ship hulls and the hydrofoils of wings. Splines were attached to
important positions on a 2-dimensional plan (e.g., floor of a design loft or on enlarged graph paper)
using lead weights called "ducks"and then released. The resting shapes assumed by the splines
would minimize the strain energy according to some calculus of variations criterion. Splines were
used by ancient Greek mathematicians (including Diocles) for drawing curves in diagrams (e.g.,
conic sections). In more modern times, I. J. Schoenberg is attributed to be the first to use ’splines’
in the mathematical literature, and is known as the father of splines. The physical meaning of
splines is especially relevant to the smoothing spline, where it is related to curvature and Hooke’s
Law for elastic bodies such as springs.
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B-spline N-Spline
Definition Generates a B-spline basis Generates a B-spline basis

for a polynomial spline for a natural cubic spline

Degree Any degree of piece-wise polynomial Only degree 3 piece-wise polynomial

Degrees of Freedom Number of regression coefficients Number of regression coefficients
used to fit a regression spline used to fit a regression spline
= number of internal knots +3 = number of internal knots +1

Constraints at Knots Smoothness at knots is assured by Smoothness at knots is assured by
constraining the d−1 derivatives to constraining the first two derivatives to
be continuous at the knots when d be continuous at the knots

is the degree of the piece-wise polynomial

Boundary Constrains No constraints at boundaries Second derivative forced to zero at end points
thus unpredictable behavior at the end points thus linear at the end points

Table 9. Comparison of the B-spline versus N-spline

Discussion

It is important to use HLM approaches in order to explicitly take into account the structure

of the data. In addition to accounting for the multilevel of the data when repeated measure data

are used, the covariance structure of the repeated measure needs to be incorporated thoughtfully

into modeling in order to perform proper analysis. The EDAs (implemented in R) presented in

this tutorial can help the reader to explore the covariance structure of the data at hand before

diving into modeling. This paper has suggested that researchers utilize the GSC model with a

spatial covariance structure, and consult a variogram to identify the functional form and variability

components of the covariance structure. Finally, model fitting and ad-hoc model comparison have

been presented with an additional step to model the fixed effect more flexibly using splines.

Undoubtedly, the GSC and HLM models have more to offer than this tutorial has covered.

However, this paper is a good starting point for researchers interested in using the GSC model in R.

Note that the focus of this paper is on EDA (and the use of variograms), model fitting, and ad-hoc
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model comparison. However, assumption checking and model diagnostics are essential steps that

are reserved for a future paper.
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Appendices

Appendix A
Preliminary Steps Before Running Analysis

# Clearing the R memory

rm(list=ls())

# Options to be used through out the analysis

options(width=60)

options(scipen=1, digits=4)

# Setting working directory

setwd("C:/Users/SONY/Desktop/Paper3-V2")

# What's in the directory?

dir()

# Libraries used to create this document

library(knitr)

library(xtable)

library(pander)

library(MASS)

library(nlme)

library(splines)

library(joineR)

library(doBy)

library(stats)

library(dplyr)

library(graphics)

library(formatR)

library(rdd)

library(texreg)

# Loading the data

load("C:/Users/SONY/Desktop/Paper3-V2/H1.Rdata")

load("C:/Users/SONY/Desktop/Paper3-V2/H4.Rdata")

load("C:/Users/SONY/Desktop/Paper3-V2/H5.Rdata")

# What just have been loaded?

ls()

#-------------------------------------------------------------------

# Function to compute empirical variogram for continuous longitudinal data

# Author: Dr.Patrick Heagerty, retrieved from Dr. Daniel Gillen's lecture notes

# INPUT: id = (nobs x 1) id vector

# y = (nobs x 1) response (residual) vector

# x = (nobs x 1) covariate (time) vector

#

# RETURN: delta.y = vec( 0.5*(y_ij - y_ik)^2 )

# delta.x = vec( abs( x_ij - x_ik ) )
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lda.variogram <- function( id, y, x ){

uid <- unique( id )

m <- length( uid )

delta.y <- NULL

delta.x <- NULL

did <- NULL

for( i in 1:m ){

yi <- y[ id==uid[i] ]

xi <- x[ id==uid[i] ]

n <- length(yi)

expand.j <- rep( c(1:n), n )

expand.k <- rep( c(1:n), rep(n,n) )

keep <- expand.j > expand.k

if( sum(keep)>0 ){

expand.j <- expand.j[keep]

expand.k <- expand.k[keep]

delta.yi <- 0.5*( yi[expand.j] - yi[expand.k] )^2

delta.xi <- abs( xi[expand.j] - xi[expand.k] )

didi <- rep( uid[i], length(delta.yi) )

delta.y <- c( delta.y, delta.yi )

delta.x <- c( delta.x, delta.xi )

did <- c( did, didi )

}

}

out <- list( id = did, delta.y = delta.y, delta.x = delta.x )

out

}

# Function for extracting parameters for GSC ---------------------------

extract_lme = function(fit) {

nugget = coef(fit$modelStruct$corStruct, unconstrained = F)[2]

residual = fit$sigma

sigma_hat = sqrt(residual^2*nugget)

tau_hat = sqrt(residual^2 - sigma_hat^2)

phi_hat = coef(fit$modelStruct$corStruct, unconstrained = F)[1]

nu_hat = as.numeric(VarCorr(fit)[1, 2])

value = c(as.numeric(summary(fit)$tTable[, 1]),

as.numeric(summary(fit)$tTable[, 2]),

nu_hat, sigma_hat, tau_hat, phi_hat)

names(value) = c(rownames(summary(fit)$tTable),

paste0(rownames(summary(fit)$tTable), "_se"),

"nu", "sigma", "tau", "phi")

return(value)

}

# Function for extracting parameters for HLM -------------------------

extract_HLM = function(fit) {
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value = c(as.numeric(summary(fit)$tTable[, 1]),

as.numeric(summary(fit)$tTable[, 2]))

names(value) = c(rownames(summary(fit)$tTable),

paste0(rownames(summary(fit)$tTable), "_se"))

return(value)

}
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Appendix B
Refusal Skill Questionnaire

The outcome variable (i.e. total refusal skill) has been created taking the average of the TotAL-
CREF, TotCIGREF, and TotPOTREF, using the questionnaires shown in Table B1.

ALCOHOL REFUSAL SKILLS
AlcRef1 Tell them "no" or "no thanks?"
AlcRef2 Tell them not now?
AlcRef3 Change the subject?
AlcRef4 Tell them you don’t want to do it?
AlcRef4 Make up an excuse and leave?
TotALCREF Mean of AlcRef1, AlcRef4, and AlcRef5
CIGARETTE REFUSAL SKILLS
CigRef1 Tell them "no" or "no thanks?"
CigRef2 Tell them not now?
CigRef3 Change the subject?
CigRef4 Tell them you don’t want to do it?
CigRef5 Make up an excuse and leave?
TotCIGREF Mean of CigRef1, CigRef4, and CigRef5
MARIJUANA REFUSAL SKILLS
PotRef1 Tell them "no" or "no thanks?"
PotRef2 Tell them not now?
PotRef3 Change the subject?
PotRef4 Tell them you don’t want to do it?
PotRef5 Make up an excuse and leave?
TotPOTREF Mean of PotRef1, PotRef4, and PotRef5

Table B1. Original questionnaires for data collection regarding cigarette, alcohol, and marijuana

refusal skills.

The answers to all of the questions shown in Table B1 were inverse coded as follows:
• -99999 = Prefer not to answer.
• 1 = Definitely would.
• 2 = Most likely would.
• 3 = Not sure.
• 4 = Most likely would not.
• 5 = Definitely would not.
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Appendix C
Equivalency Formulas for Variance Components

The random effects section of the output has the following two components:
• StdDev of the Intercept which is the estimated square root of the variance associated with

the random intercept (i.e. ν).
• StdDev of the Residual which is the estimated square root of τ2 +σ2.

Parameter estimate(s) section of the output has the following two components:
• Range which is the estimated parameter φ in the functional form of the serial correlation.

• Nugget which is the estimated quantity for σ2

τ2+σ2 .
The estimated Nugget and StdDev of the Residual together are used to derive the variance associ-
ated with the measurement error as follows:

nugget =
σ2

τ2 +σ2 =⇒ σ2 = nugget× (τ2 +σ2) (12)

Finally, utilizing σ2, which was derived in Equation 12, the variance associated with the
serial correlation (i.e. τ2) can be extracted by substituting σ2 in the Residuals StdDev (which was
given in the output) as follows:

ResidualsStdDev =
√

τ2 +σ2 =⇒ τ2 = (ResidualsStdDev)2−σ2 (13)
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Appendix D
Knot Selection Based on Data Collection Time
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Figure D1. Plot of the fitted values of the B-spline and N-spline for treatment and control group

separately. Knots are placed based on data collection waves
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