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ABSTRACT 

Blurring the Line Between Human and Machine: Marketing Artificial Intelligence 
 

Noah Castelo 
 
 

One of the most prominent and potentially transformative trends in society today is 

machines becoming more human-like, driven by progress in artificial intelligence. How this 

trend will impact individuals, private and public organizations, and society as a whole is still 

unknown, and depends largely on how individual consumers choose to adopt and use these 

technologies. This dissertation focuses on understanding how consumers perceive, adopt, and use 

technologies that blur the line between human and machine, with two primary goals. First, I 

build on psychological and philosophical theories of mind perception, anthropomorphism, and 

dehumanization, and on management research into technology adoption, in order to develop a 

theoretical understanding of the forces that shape consumer adoption of these technologies. 

Second, I develop practical marketing interventions that can be used to influence patterns of 

adoption according to the desired outcome. 

This dissertation is organized as follows. Essay 1 develops a conceptual framework for 

understanding what AI is, what it can do, and what are some of the key antecedents and 

consequences of its’ adoption. The subsequent two Essays test various parts of this framework. 

Essay 2 explores consumers’ willingness to use algorithms to perform tasks normally done by 

humans, focusing specifically on how the nature of the task for which algorithms are used and 

the human-likeness of the algorithm itself impact consumers’ use of the algorithm. Essay 3 

focuses on the use of social robots in consumption contexts, specifically addressing the role of 

robots’ physical and mental human-likeness in shaping consumers’ comfort with and perceived 

usefulness of such robots.  



Together, these three Essays offer an empirically supported conceptual structure for 

marketing researchers and practitioners to understand artificial intelligence and influence the 

processes through which consumers perceive and adopt it. Artificial intelligence has the potential 

to create enormous value for consumers, firms, and society, but also poses many profound 

challenges and risks. A better understanding of how this transformative technology is perceived 

and used can potentially help to maximize its potential value and minimize its risks. 
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CHAPTER 1: INTRODUCTION 

 Consumers see both promise and peril in artificial intelligence (AI). 55% of American 

consumers say they have used AI, but 42% say they don’t trust it (Dujmovic 2017). Similarly, 

41% support further development of AI while 22% oppose it (Zhang and Dafoe 2019). The same 

ambivalence can be seen among business executives, who must decide whether or not to 

purchase and use AI technologies for their firms: 37% of executives say they have implemented 

AI in some form, while 20% say they don’t trust it (Press 2019). Even AI experts are divided, 

with 63% predicting that AI would make people better off by 2030 and 37% expecting that it 

would leave us worse off by that time (Kelleher 2018).  

 Discussion of both the promises and the perils of AI is often laden with superlatives. 

Some posit that AI will save hundreds of thousands of lives by removing human error from 

driving vehicles (Lafrance 2015), diagnosing and treating disease (Perkins 2018), and conducting 

military operations (Cummings 2017), while also creating trillions of dollars of economic value 

(Bughin et al. 2018). Others worry that it will destroy the majority of human jobs, create mass 

unemployment, exacerbate inequality, and even threaten the very survival of the human species 

should it become more intelligent than we are (Bostrom 2014; Bradshaw 2015). The profound 

scale of the impact is not often questioned. The desirability of the impact is less clear.  

 AI’s impact will be largely mediated by consumers – both as individuals and as firm 

employees – deciding whether and when to adopt AI technologies. The goal of this dissertation is 

therefore to explore how individual consumers perceive and adopt AI. A better conceptual and 

empirical understanding of this process can provide marketing scholars and practitioners with 

insight into the dynamics and nuances of AI’s impact as well as practical tools to influence the 

adoption process.  
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 I begin Essay 1 by providing a non-technical description of what AI actually is, breaking 

down the term into more easily defined and concrete technologies. These include machine 

learning, knowledge representation and reasoning, natural language processing, computer vision, 

and robotics. Some combination of these five constituent technologies enable most of the 

existing applications commonly thought of as AI (also called artificial narrow intelligence or 

“weak AI”), and together they point to what an artificial general intelligence (or “strong AI”) 

would require in order to become a reality. I then proceed to build a conceptual model of AI 

adoption, identifying AI’s human-likeness, characteristics of the tasks for which AI is used, and 

consumer heterogeneity as three broad drivers of adoption and providing detailed descriptions 

and examples of each driver. I also explore the major potential consequences of AI adoption and 

identify a number of key research questions.  

 The next two Essays empirically test different parts of the model developed in Essay 1. In 

Essay 2, I explore how task characteristics influence consumers’ willingness to use algorithms to 

perform tasks normally done by humans, focusing specifically on the perceived objectiveness of 

the task. I find that consumers mistakenly believe that AI lacks the abilities required to 

accomplish tasks that seem subjective in nature, leading them to prefer to rely on humans for 

such tasks even when algorithms perform more effectively. Furthermore, using a combination of 

lab and field studies, I show that increasing the perceived objectiveness of a task and the 

perceived affective abilities of the algorithm itself can increase consumers’ willingness to rely on 

algorithms for subjective tasks. The primary contributions of this Essay are (1) the demonstration 

that willingness to use AI varies substantially depending upon specific features of the task 

(whereas existing research on this topic has not examined task dependence at all), (2) the finding 

that increasing the human-likeness of an algorithm can increase the perceived usefulness of the 
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algorithm while also decreasing consumers’ comfort with it, illustrating a fundamental tension in 

AI adoption, and (3) providing insight into how algorithm-based products and services can be 

advertised in order to increase adoption.  

 In Essay 3, I focus on consumers’ reactions to social robots (physically embodied AI) in 

consumption contexts. The key finding is that increasing mind perception (the belief that robots 

can have a human-like mind) improves consumers’ reactions to robots with highly human-like 

physical appearances, both in terms of their perceived usefulness and consumers’ comfort with 

them. Increasing mind perception for robots with a moderately human-like physical appearance, 

however, decreases comfort while still increasing usefulness. I build on theories of empathy and 

schema congruity to explain these findings. The primary contributions of this Essay are (1) to 

demonstrate an interaction between physical and mental human-likeness in shaping consumer 

reactions to AI, thus providing a new insight into the processes of anthropomorphism and mind 

perception, (2) creating further evidence for the tension between usefulness and comfort in AI 

adoption, and (3) suggesting practical tools that the creators and employers of social robots can 

use to increase the value that they provide both to consumers and firms.  

 The three Essays together shed light on how consumers perceive and adopt different 

forms of AI for different purposes. Given the strong ambivalence among consumers regarding 

these technologies, coupled with the potentially transformative power they hold, the conceptual 

and empirical progress presented in this Dissertation provide clear value to both marketing 

scholars and practitioners.  
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CHAPTER 2: CONCEPTUAL FOUNDATIONS 

Consumers and firms both rely on agents to provide services that they value. An agent is 

anything that perceives input from the environment and then acts upon that environment (Russell 

and Norvig 2009). Traditionally, these agents have been human beings, whose physical, 

cognitive, and emotional capabilities allow them to provide a wide range of services. However, a 

revolution has recently been developing that is dramatically altering this foundation of economic 

activity. This revolution is artificial intelligence (AI), a collection of technologies that has been 

endowing machines with increasingly human-like physical, cognitive, and emotional capabilities 

and thus allowing them to provide services that have traditionally been provided by humans – 

and often to do so more effectively than humans can. This is already radically changing how 

consumers and firms obtain services that they value.  

This Essay is intended to provide a conceptual structure for understanding what AI is, 

what it can do, and what are some of the key antecedents and consequences of its adoption and 

use. The first section will first provide non-technical descriptions of the specific technologies 

underlying AI, in order to provide a more concrete and detailed understanding of this often-

misunderstood concept. The second section will review existing research on the determinants of 

technology adoption and discuss several limitations that this research faces in explaining the 

adoption of AI technologies. The third, fourth, and fifth sections will build up a conceptual 

model of AI adoption, focusing on three key determinants of adoption: characteristics of the 

technology, of the task for which it is used, and of the consumer. The sixth section explores the 

consequences of widespread AI adoption, focusing specifically on economic and psychological 

consequences. The seventh section concludes.  
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1. SPECIFIC TECHNOLOGIES UNDERLYING AI 

There is no widely agreed-upon definition of AI (Stone, Brooks, Brynjolfsson, et al. 

2016). It is therefore more useful to think in terms of the more easily definable technologies that 

are widely agreed to comprise AI. It is first important to distinguish between “artificial narrow 

intelligence” (ANI, also called “weak AI”) and “artificial general intelligence” (AGI, also called 

“strong AI”) (Russell and Norvig 2009). ANI refers to technologies that can perform narrowly 

defined tasks, such as playing chess or Go, diagnosing diseases, recommending products, driving 

cars, and so on. AGI refers to a hypothetical technology that would be the equivalent of a human 

intelligence in terms of its flexibility and capability of performing and learning a vast range of 

tasks. Many ANIs already exist and are enabled by the specific technologies described below. 

AGI does not yet exist and experts disagree on whether or not it ever will. In a recent survey of 

AI researchers, the median estimate was for a 50% chance of achieving an AGI by 2050 and a 

90% chance of achieving one by 2075 (Müller and Bostrom 2016).  

One definition of AGI is a machine that can pass the Turing Test, proposed by 

mathematician Alan Turing (Turing 1950). The test is passed if a human interacting with the 

machine cannot tell whether the responses come from a human or a machine. The original 

version of the Test involved written responses only, thus requiring that the machine possess 

natural language processing abilities that allow it to communicate using plain language, plus 

knowledge representation and reasoning to store and use information. Indeed, natural language 

processing and knowledge representation and reasoning are two fundamental subfields of 

modern AI research that will be described below. In order for a machine to pass the so-called 

“Total Turing Test,” however, it is also required to possess human-level perceptual and physical 

abilities, thus also requiring computer vision and robotics (Harnad 1991). Computer vision and 
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robotics are thus two additional important subfields of AI research that will be described. Finally, 

perhaps the best-known subfield of AI research is machine learning. Together, a basic 

understanding of these five concrete and well-defined technologies provides a good introduction 

to the ANIs already in existence as well as an idea of what a hypothetical AGI would involve.  

 

Machine learning 

 

Machine learning refers to algorithms that can identify patterns in data and then 

generalize those patterns to make predictions or judgments (Domingos 2012). For example, an 

algorithm can learn to predict whether a consumer will enjoy different books by being “shown” a 

dataset consisting of past books that the consumer (or a similar consumer) has read, along with 

specific features of those books (i.e., genre, length, date of publication, etc.) and how much they 

were enjoyed (as labeled by humans). The algorithm then observes patterns in the labeled data 

(often called the training data) and applies those patterns to new books whose enjoyment has not 

been labeled, allowing it to “predict” whether or not the consumer will enjoy these new books 

based on the previously learned patterns between book features and rated enjoyment.  

Readers may note that this description is essentially similar to linear regression, in which 

an algorithm “learns” patterns between a set of independent variables (i.e., book features) and a 

dependent variable (i.e., book enjoyment), which can then be used to predict the dependent 

variable given a new set of values for the independent variables. Indeed, linear regression is 

often referred to as a basic machine learning algorithm (Bishop 2006; Murphy 2012). Thinking 

of machine learning in terms of this basic process of pattern identification and generalization 

may help understand more complex applications of the technology.  
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Two key reasons that machine learning algorithms have become widely used in recent 

years are the increased availability of extremely large datasets and the exponential increase in 

computing power, which together allow the identification of patterns that could be overlooked by 

similar algorithms without access to as much data and/or computing power. Pattern identification 

is facilitated by both dataset length (i.e., a large number of customers in the dataset) and width 

(i.e., a large number of variables for each customer; Yeomans 2015).  

Closely related to machine learning is deep learning, a sub-field of machine learning that 

uses “neural networks” to identify patterns in data. Neural networks are algorithms whose 

structure is inspired by the human brain, in which neurons are arranged in layers. Each layer or 

node of a neural network is itself an algorithm that transforms input data into an output and 

passes the output onto the next layer of the neural network (LeCun, Bengio, and Hinton 2015). 

This process is useful for more complex forms of pattern recognition than can be accomplished 

by traditional machine learning. For example, deep learning can allow computers to recognize 

handwritten letters by taking an initial data input (pixels), using an initial algorithm (layer) to 

identify lines and curves, then using a subsequent algorithm (layer) to use the output of the 

previous layer in order to identify parts of letters, and using a final algorithm (layer) to combine 

the previous output into complete letters (LeCun et al. 2015).  

Like in traditional machine learning, deep learning algorithms are trained on an initial 

dataset that allows them to learn the accuracy of their predictions. This initial feedback also lets 

the algorithms adjust the relationships (or “weights”) between the layers in order to improve the 

accuracy of the final prediction. Neural networks can include millions of individual layers and 

can thus be very costly in terms of both the data and the computing power required to train them 

(LeCun et al. 2015). These algorithms have applications in fields such as speech recognition 
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(used in Siri and Alexa), computer vision (used in driverless cars and robotics), and other forms 

of complex pattern recognition (such as detecting tumors), and are particularly useful for 

modeling large, unstructured datasets (Esteva et al. 2017; Graves, Mohamed, and Hinton 2013; 

LeCun et al. 2015). Machine learning and deep learning can thus be considered a fundamental AI 

technology that enables or empowers many of the other constituent AI technologies described 

below.  

 

Knowledge representation and reasoning  

 

An agent, whether human or artificial, is of course more useful when it knows things and 

uses that knowledge to do things. Machine learning algorithms represent one way in which 

machines can acquire knowledge without being explicitly “taught” that knowledge. Machines 

(such as computers) can also be explicitly taught things, for example by uploading encyclopedias 

or scientific papers so that the machine stores the uploaded facts in its memory. Regardless of 

whether the machine learns “on its own” or is explicitly taught, however, it is more useful if the 

machine can use the resulting knowledge in order to make inferences and reason about the state 

of the world.  

In order to accomplish knowledge representation and reasoning, machines use axioms, 

sentences, and logic. The axioms and sentences are represented in a knowledge representation 

language readable by a computer and forming a knowledge base. Artificially intelligent agents 

can use inference mechanisms in order to infer new knowledge on the basis of its known 

knowledge. Many of the basic forms of knowledge that humans may take for granted must be 

understood by an effective artificial agent. For example, basic principles of common sense 



 9 

physics, time, and causality are often required foundations for normal conversations, and 

effective AI must therefore understand such principles. Similarly, effective AI must also possess 

ontologies, or formal naming and definitions of categories, properties, and relations between 

categories and their members (Russell and Norvig 2009). One prominent example of an effort to 

build a comprehensive ontology understandable by machines is Google’s Knowledge Graph, 

which is a collection and organization of billions of facts used by Google’s search engine 

(Paulheim 2017). More tractable and specific machine-readable ontologies also exist, such as the 

Gene Ontology project that seeks to teach machines about human genes and their inter-

relationships (Padmavathi and Krishnamurthy 2017). Knowledge representation and reasoning is 

thus a second key technology falling under the AI umbrella.  

 

Natural language processing (NLP) 

 

This third subfield of AI allows artificial agents to recognize, understand, and produce 

natural language (i.e., language that humans use rather than formal computer programming 

languages such as Python or C++). NLP involves both written and spoken language. Because 

natural languages contain ambiguity (i.e., one word with several meanings), and because not all 

sounds or symbols are meaningful words, NLP relies on the computation of probabilities to 

understand language. In other words, NLP algorithms determine the probability that a given set 

of symbols or sounds is a specific word, and the probability that a given word has a particular 

meaning, given a prior distribution of words or meanings (Russell and Norvig 2009).  

Machine learning and deep learning algorithms have been central to the development of 

NLP in recent years. As described before, such algorithms allow computers to identify specific 



 10 

letters and, in turn, words, by first identifying their constituent features. The same kinds of 

algorithms can also be used to identify spoken words by first identifying more basic patterns in 

sound, and underlie technologies such as Amazon’s Alexa voice-based assistant. Knowledge 

representation and reasoning is also an important component of NLP, since it can help an 

artificial agent to understand basic facts about a natural language, such as the existence of nouns, 

verbs, and adjectives, and the relationships between those categories of words (Joshi 1991). 

Another important part of NLP is natural language generation: writing or speaking 

language that will be understood by humans (Perera and Nand 2017). Applications of this 

technology are also found in Alexa-like technologies and in the automatic production of news 

articles, and even poetry and jokes (Clerwall 2014; Gibbs 2016; Ritchie et al. 2007). NLP 

therefore allows machines to understand and produce language, both of which are important 

components of AI.  

 

Computer vision and robotics 

 

As stated earlier, agents perceive inputs from the environment and then acts upon the 

environment. Artificial agents can “perceive” inputs such as the strokes of a keyboard or the 

contents of a text file, but also richer inputs such as images of the world itself. Similarly, acting 

on the environment could be as simple as displaying information on a screen or creating text 

files, but a richer set of actions is enabled by a physical body that can act on physical objects 

(Russell and Norvig 2009). Computer vision and robotics thus allow an artificial agent to engage 

with the world in much more human-like fashion.  
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Computer vision is a form of perception, in which information about the world is 

obtained via sensors. In this case, the sensors are often cameras or LIDAR (laser) sensors that 

use light to create images of the environment. Algorithms then allow the artificial agent to 

transform the resulting images into a machine-readable format. For example, an image is a 

collection of pixels, each of which can be coded for color and position using a standardized code 

in order to represent the image in machine-readable format. Machine learning (and especially 

deep learning) algorithms are often used to allow the artificial agent to identify the content of 

images by breaking them down into their constituent components, as described in the machine 

learning section above. Computer vision can therefore be succinctly described as a combination 

of sensors that allow a machine to receive inputs of the physical world around it, and algorithms 

that allow it to interpret the content of those inputs.  

Visual inputs are extremely complex. One minute of input from a video camera, for 

example, can produce 10 gigabytes of data, or about 10,000 times more data than a typical book 

contains. The useful interpretation of such a huge number of inputs therefore requires the 

identification of the specific parts of the input that will be most useful for accomplishing the goal 

in question. Knowledge representation and reasoning can thus become important in the context 

of computer vision. For example, a driverless car is much more useful if it is able to classify the 

collection of pixels it perceives as a pedestrian, and so knowledge of pedestrians and their typical 

behaviors is helpful for knowing how to translate the sensor inputs (i.e., pixels) into actions such 

as applying the brakes.  

Robots are physically embodied agents that can sense and manipulate their environment 

and perform tasks autonomously, and can be classified into three categories: manipulators or 

stationary robotic arms, such as those used on assembly lines; mobile robots that can move 
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around the environment, such as driverless cars or unmanned aerial vehicles (UAVs, or drones); 

and humanoid robots, which mimic the human body and can both move around and manipulate 

the environment like humans do (Russell and Norvig 2009). Robots use a variety of sensors to 

receive inputs from the environment, including cameras and microphones, and gyroscopes and 

accelerometers to measure their own motion. Robots can also use each of the other subfields of 

AI described above to allow them to learn, interpret inputs, store knowledge, and produce 

language.  

AI can therefore be understood as a collection these five technologies: machine learning, 

knowledge representation and reasoning, natural language processing, computer vision, and 

robotics. Each of these technologies enables a wide range of ANI’s that perform well-defined 

tasks but are not easily transferable to other domains. An AGI would require each of these five 

technologies to operate seamlessly at human levels and to permit flexible learning and transfer 

across domains and tasks. Having thus gained a better understanding of what exactly AI is, the 

remainder of the Essay will build a model of how and why consumers adopt and use AI. The 

next section begins by describing existing attempts to model the process of technology adoption 

in general. 

 

2. MODELING TECHNOLOGY ADOPTION 

There are several existing models of the determinants of technology adoption in the 

research literature. However, these models were all developed in the context of decades-old 

technologies whose features and abilities are vastly different from modern AI, suggesting that 

updated models may be useful for understanding AI adoption. The most well-known academic 

model of technology adoption is called the Technology Acceptance Model, or TAM (Davis, 
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Bagozzi, and Warshaw 1989). Research on the TAM has primarily focused on employees’ use of 

basic information technologies in the workplace, such as e-mail and word processing software. 

The TAM posits that two key factors drive individuals’ decision to accept and use a new 

technology: the perceived usefulness of the technology, and the technology’s ease of use. An 

extension of the model (TAM 2) found that perceived usefulness is predicted by both “cognitive 

instrumental” factors such as result demonstrability, output quality, and job relevance, and by 

social factors such as image concerns (i.e., whether use of the technology enhances one’s social 

image) and subjective norms (i.e., the perception that others are using the technology) 

(Venkatesh and Davis 2000).  

Several other models have suggested the importance of additional factors in shaping 

technology adoption. The Theory of Reasoned Action and its extensions to the information 

technology domain emphasize the importance of attitudes, defined as positive or negative 

feelings towards the technology, in addition to subjective norms as described in the TAM 

(Fishbein and Ajzen 1975; Taylor and Todd 1995). The Model of PC Utilization includes several 

factors also incorporated by the TAM and TAM2, such as usefulness, ease of use, and subjective 

norms, and additionally emphasizes the role of affect towards the use of the technology 

(Thompson, Higgins, and Howell 1991). Rogers’ Innovation Diffusion Theory includes factors 

corresponding to usefulness (relative advantage), ease of use (complexity), and subjective norms 

(observability), and also includes trial-ability (whether the product can be trialed) and 

compatibility of the technology with existing values and needs (Moore and Benbasat 1991; 

Rogers 1976). Venkatesh et al. (2003) provides an in-depth review and comparison of these 

models of technology adoption.  
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These models have been integrated with TAM and empirically compared in order to yield 

the Unified Theory of Acceptance and Use of Technology (UTAUT), ultimately providing 

support for the role of four factors in shaping technology adoption intentions: performance 

expectancy (corresponding to perceived usefulness), effort expectancy (corresponding to ease of 

use), social influence, and facilitating conditions (including factors such as having the knowledge 

and resources required to use the technology; Venkatesh et al. 2003). However, the only one of 

these factors that had a significant main effect on adoption intentions was performance 

expectancy (i.e., the perceived usefulness of the technology). The remaining three factors had 

non-significant main effects but significant interactions with demographic variables such as age 

and gender.  

There are five key limitations that apply to each of these models when considering their 

application to AI adoption. The first is that all of the research that has tested the models 

described above has focused on computer technologies that are far simpler than modern AI 

technologies, such as video conferencing, database and accounting software, personal computers 

themselves, and so on. This is important because AI is qualitatively different from these and 

other technologies. Specifically, many applications of AI involve human-level cognitive, 

emotional, and physical abilities. In other words, AI has human-likeness, which is not true of any 

of the technologies that came before it and which could give rise to an entirely different set of 

factors influencing its adoption.  

The second limitation of existing models arises from the first. Because AI has cognitive, 

emotional, and physical human-likeness, it can perform a much wider range of tasks than other 

technologies. Existing research on technology adoption has therefore not explored how different 

aspects of the task for which a technological product can be used impact consumers’ willingness 
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to use that technology for the specific task in question. Exploring whether and why certain tasks 

are seen as more amenable to the use of AI is therefore an important issue for understanding AI 

adoption.  

The third limitation is that there has been very little research into how consumer 

heterogeneity impacts technology adoption. Some research has addressed how basic 

demographic variables such as age and gender moderate the adoption process (Selwyn et al. 

2003; Venkatesh and Morris 2000a, 2000b), but there are many other sources of heterogeneity 

that may be relevant to consumers’ attitudes towards technology in general and AI in particular, 

such as consumer identity, ideology, and overconfidence. The effective marketing of AI 

technologies will be greatly facilitated by a deeper understanding of how different consumer 

characteristics impact adoption, both as main effects and as moderators of other factors.  

The fourth limitation is that existing models have not sufficiently explored more specific, 

concrete factors that precede the key drivers of adoption. For example, in the UTAUT, perceived 

usefulness was identified as the strongest driver of adoption (Venkatesh and Davis 2000), but 

there was little exploration of what causes a specific use of technology to be seen as useful. This 

creates both practical challenges for marketers wishing to increase adoption, as well as a 

conceptual shallowness that hinders a deeper understanding of what really drives technology 

adoption. 

The fifth limitation is adoption is that existing models of technology adoption have 

ignored the consequences of adoption. This is problematic because the widespread adoption of 

technologies clearly has enormous consequences for the individuals using the technologies, for 

the firms those individuals make up, and for society in general. A conceptual model that focuses 
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only on the antecedents of AI adoption without addressing the consequences as well is therefore 

ignoring many of the important research questions on this topic.  

The model shown in Figure 1 addresses these five limitations by incorporating human-

likeness, task dimensions, and consumer heterogeneity into the conceptual process of AI 

adoption, by unpacking each of these three broad drivers of adoption into several of their 

antecedent components, and by addressing some of the most important potential consequences of 

widespread AI adoption. This unpacking serves to both provide a deeper conceptual 

understanding of the adoption process as well as to shed light on more practical levers that 

marketers may use to influence adoption. Each of the three broad drivers and the consequences 

of adoption will be described in detail in the following four sections.  

 The model builds on the UTAUT (Venkatesh and Davis 2000), which itself is an 

integration of several older models including the TAM, Rogers’ Innovation Diffusion model, and 

the Theory of Reasoned Action. Specifically, perceived usefulness is retained as a key driver of 

adoption from the UTAUT, but is situated as a mechanism through which human-likeness, task 

dimensions, and consumer heterogeneity impact adoption. Ease of use, social influence, and 

facilitating conditions did not have main effects on adoption intentions when accounting for 

perceived usefulness in the empirical estimation of the UTAUT, and so are not included in this 

model. There are undoubtedly some situations in which these factors do impact adoption. 

However, because usefulness was by far the strongest determinant of adoption, this model 

focuses on understanding the antecedents of perceived usefulness. 

 Furthermore, this model includes comfort as a second mechanism through which human-

likeness, task dimensions, and consumer heterogeneity impact AI adoption. Comfort refers to an 

affective reaction towards the technology that is unrelated to beliefs about the technology’s 
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performance or usefulness. The distinction between perceived usefulness and comfort is 

analogous to similar distinctions in the literature between decision confidence and decision 

comfort (Parker, Lehmann, and Xie 2016), and between cognitive trust and affective trust 

(Johnson and Grayson 2005). In each of these distinctions, the basic idea is that judgments and 

decisions are impacted by both cognitive and affective factors. While the UTAUT found that 

affective factors such as feelings about the technology were not significant predictors of adoption 

intentions (Venkatesh et al. 2003), other technology adoption models did emphasize the role of 

feelings, such as Rogers’ Innovation Diffusion Theory (Rogers 1976), the Theory of Reasoned 

Action (Fishbein and Ajzen 1975), and the Model of PC Utilization (Thompson et al. 1991). 

Affective factors are expected to play a larger role in the context of AI adoption relative to 

technologies with no human-likeness. There are several conceptual and empirical reasons why 

affective reactions (such as comfort) may be more important in the context of AI adoption 

relative to the adoption of other technologies. These reasons include the existence of strongly 

negative emotional reactions towards human-like robots (i.e., the Uncanny Valley; Wang, 

Lilienfeld, and Rochat 2015), the fact that several applications of AI involve emotional abilities 

or emotional tasks, and the much greater risks that AI adoption poses relative to other 

technologies (insofar as risk perceptions are largely affect-driven; Loewenstein et al. 2001). Each 

of these reasons and others will be discussed in greater detail in subsequent sections.  

 The proposed model therefore identifies consumers’ comfort with AI and their perceived 

usefulness of the technology as the two proximate determinants of adoption, and identifies AI 

human-likeness, dimensions of the task for which the AI is used, and consumer heterogeneity as 

three broad classes of variables that in turn shape both comfort and perceived usefulness. Insofar 

as the technology adoption process consists of the technology, the consumer adopting it, and the 
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use of the technology for a specific task, these three classes of variables represent each of these 

three components of the process. AI’s human-likeness represents key characteristics of the 

technology, and consists of physical appearance, cognitive abilities, and emotional abilities. 

Consumer heterogeneity represents key characteristics of the consumer adopting the technology; 

some of the most relevant sources of this heterogeneity to AI adoption are consumers’ 

overconfidence, desire for control, trust in feelings, the extent to which they identify with the 

task for which AI is being used, their conservatism, age, and gender. Task dimensions represent 

key characteristics of what the technology is used for; some of the most relevant task dimensions 

to AI adoption are the economic context of the task, including the price of using AI relative to 

using humans to perform the task, how risky the task seems, the affect or emotion involved in the 

task, and how enjoyable the task is for consumers. Each of these three classes of variables will be 

detailed in the following sections, beginning with the concept of AI human-likeness. 

 

 

Figure 1. Conceptual model of AI adoption. 
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3. AI HUMAN-LIKENESS 

As AI continues to progress, it acquires increasingly human-like abilities. The specific 

technologies described in Section 1 allow AI to learn a vast array of information and skills, to 

store and reason with knowledge, to understand and produce hundreds of human languages, and 

to see and interact physically with the environment. AI’s human-likeness is thus clearly 

increasing along many dimensions. However, progress is faster along certain dimensions, and 

consumers and managers are likely to perceive AI-enabled products differently depending upon 

what dimensions of human-likeness they display. Increasing human-likeness along certain 

dimensions may increase perceived usefulness while decreasing comfort, for example, while 

increasing human-likeness along another dimension may simply increase perceived usefulness 

without affecting (or even increasing) comfort. Furthermore, different dimensions of human-

likeness also enable AI to perform different kinds of tasks, which in turn may also affect 

consumers’ perceptions of the technology and its applications. An understanding of the 

dimensional structure of human-likeness is therefore useful for understanding AI adoption.  

Several literatures in psychology have explored dimensions of what might be called 

human-likeness, albeit with different terminology depending on the particular literature. These 

literatures each converge on two dimensions, roughly corresponding to emotional and cognitive 

abilities. For example, research on dehumanization has shown that people perceive two 

categories of human abilities. First are “human uniqueness abilities,” which distinguish humans 

from other animals but can be shared with machines. These tend to be cognitive in nature (such 

as logic and rationality). Second are “human nature abilities,” which may be shared with other 

animals but not with machines. These tend to be affective or emotional in nature (such as warmth 

and intuition; Haslam 2006; Loughnan and Haslam 2007). Importantly, research has shown that 
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machines such as robots are seen as lacking human nature abilities (which are emotional) but not 

human uniqueness abilities (which are cognitive; Haslam et al. 2008).  

Research on mind perception has focused on two similar dimensions: agency, or the 

ability to engage in intentional planning and action, and experience, or the ability to subjectively 

experience emotions and sensations. Mirroring research on humanness, machines (such as 

robots) are seen as having some degree of agency but no experience (Gray, Gray, and Wegner 

2007), and endowing robots with experience creates more negative reactions than endowing 

robots with agency (Gray and Wegner 2012).  

Similarly, research on person perception has identified the two dimensions of competence 

and warmth as fundamental to how we perceive other people (Fiske, Cuddy, and Glick 2007). 

These two dimensions also correspond to more cognitive and emotional abilities respectively. 

These three streams of research thus demonstrate that consumers perceive human abilities as 

either cognitive or emotional and are willing to grant machines more cognitive than emotional 

abilities. The first two dimensions of human-likeness can therefore be called cognitive and 

affective human-likeness, which together make up a human-like mind.   

 

Cognitive human-likeness 

 

AI is providing machines with the ability to perform both cognitive and emotional tasks. 

The most familiar applications of AI today tend to be more cognitive in nature: using machine 

learning to recognize patterns in large datasets, making predictions about future outcomes on the 

basis of prior observations, analyzing and summarizing data, and so on. However, there are many 

other “cognitive” abilities that remain out of reach for AI. For example, explaining the reasons 
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underlying a given decision or prediction remains a major challenge for machine learning 

algorithms whose precise formulation is often opaque even to the creator of the algorithm 

(Dosilovic, Brcic, and Hlupic 2018; Park et al. 2017). Many of these algorithms use so many 

factors as inputs, and so many layers separating the inputs from the output in the case of deep 

learning algorithms, that providing a clear explanation of how the output was produced is not 

feasible. There has therefore been a recent surge of interest in creating “explainable AI,” 

meaning algorithms that can explain how they arrived at a given decision, such as diagnosing a 

disease or approving a loan (Dosilovic et al. 2018).  

This effort is also related to the important issue of algorithmic bias: many algorithms are 

trained on datasets that reflect human bias, which then becomes formally entrenched in the 

algorithm itself (O’Neil 2016). For example, an algorithm used to evaluate job candidates may 

be trained on a dataset in which most “successful” candidates are male and therefore penalizes 

female applications, or a facial recognition algorithm may be trained on a dataset in which most 

of the faces are Caucasian and therefore is less effective at recognizing non-Caucasian faces 

(Buolamwini and Gebru 2018). Building algorithms that can transparently explain their decisions 

is therefore a crucial step towards fair, unbiased algorithmic decision making – and therefore 

also towards unbiased cognitive human-likeness.  

A second major hurdle in achieving cognitive human-likeness is the kind of cognitive 

flexibility that allows humans to transfer knowledge and experience from one domain to another. 

This reflects the distinction introduced earlier between artificial narrow intelligence (ANI) and 

artificial general intelligence (AGI). All existing forms of AI are narrow, in the sense that they 

are trained in one specific domain such as playing a specific game, diagnosing a disease, or 

driving a car, but are unable to function in other domains (Russell and Norvig 2009). There is 
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progress being made in allowing algorithms to transfer knowledge and abilities from one domain 

to another, although the level of flexibility is still extremely limited relative to humans (Taylor 

and Stone 2007; Weiss, Khoshgoftaar, and Wang 2016).  

Despite these limitations, however, AI’s human-likeness is clearly higher along the 

cognitive (vs. affective) dimension: the growing list of tasks that AI can perform at human-levels 

consists mostly of non-affective prediction and classification tasks (Grove et al. 2000; Castelo, 

Lehmann, and Bos 2019), and AI has more “human uniqueness” and “agency” abilities (the 

cognitive abilities identified as central to humanness in the dehumanization and mind perception 

literatures) than it has “human nature” and “experience abilities (the affective abilities identified 

as central to humanness in those literatures; see Table 1).  

High cognitive human-likeness is compatible with the stereotypical association of 

computers with cognitive abilities (Gray and Wegner 2012; Loughnan and Haslam 2007), and 

increasing cognitive human-likeness in AI should therefore be perceived relatively positively, as 

category-congruent or stereotype-congruent examples usually are (Loken 2006; Meyers-Levy 

and Tybout 2002). Specifically, increasing cognitive human-likeness will likely increase the 

perceived usefulness of AI without producing negative affective reactions such as discomfort.  

However, if cognitive human-likeness eventually approaches perfectly human levels in 

every sense – i.e., not only in certain narrowly defined cognitive tasks but with the full explain-

ability and flexibility of human cognition – this level of cognitive human-likeness may start to 

create discomfort, potentially stemming from perceived threats to human jobs, human 

distinctiveness or even to human safety. Indeed, the threat that AI poses to human jobs and even 

to human safety is a frequent narrative in the news media (Bradshaw 2015; Cellan-Jones 2014; 

Lohr 2018), and there is some evidence that robots are seen as threatening human distinctiveness 
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from machines, which contributes to negative evaluations of robots (Ferrari, Paladino, and Jetten 

2016). Thus, the effects of cognitive human-likeness on comfort may be non-linear, with initial 

increases preserving comfort with the technology, but further increases creating perceived threats 

and discomfort even as the technology becomes more useful. The non-linear effect of physical 

human-likeness on reactions to robots in particular has been explored in the literature on the 

Uncanny Valley hypothesis, which will be described in the section below on physical human-

likeness. This suggests that increasing AI’s cognitive human-likeness will have positive linear 

effects on perceived usefulness, but non-linear effects (initially positive, then negative) on 

consumers’ comfort.  

 

Cognitive Abilities Affective Abilities 

Human Uniqueness Agency Human Nature Experience 

Rationality Memory Emotional responsivity Hunger 

Cognitive sophistication Emotion recognition Interpersonal warmth Fear 

Morality Planning Cognitive openness Pain 

Civility Communication Individuality Rage 

Refinement Thought Depth Desire 

Maturity Self-control  Personality 

 Morality  Consciousness 

   Pride 

   Embarrassment 

   Joy 

Table 1. AI’s cognitive and affective abilities. Note: AI has the abilities in bold and arguably has 
the abilities in italics. 
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Affective human-likeness 

 

Turning to the affective dimension of human-likeness, there are a growing number of 

tasks typically associated with emotion that AI can now perform. This includes most prominently 

the ability to accurately recognize and distinguish between different emotions being expressed in 

human faces, voices, and writing (Liu 2010; McDuff et al. 2013; Picard 2011). Note that despite 

emotion recognition being categorized as an “agency” ability in the mind perception literature 

(Gray, Gray, and Wegner 2007), the fact that it explicitly involves emotions should result in it 

being classified by lay consumers as a relatively more emotional (vs. cognitive) ability. AI’s 

affective abilities also include emotional responsivity, or the ability to alter its’ behavior 

depending on how the humans with whom it interacts are feeling, which is classified as an 

affective ability in the dehumanization literature.  

Affective human-likeness in AI also includes the abilities to create paintings that sell for 

hundreds of thousands of dollars (Quackenbush 2018) and write compelling poetry and music 

(Deahl 2018; Gibbs 2016b). The processes that AI uses to perform these tasks may appear very 

different from the processes that humans use (i.e., deterministic computer code rather than 

intuitions or gut feelings), although there are deep philosophical questions about whether such 

intuitions and gut feelings are also the result of deterministic physical processes in the brain, 

analogous to the physical processes on a silicon computer chip (Greene and Cohen 2012; Nichols 

2008). Regardless of the mechanisms with which humans and computers perform these tasks, AI 

can indeed perform some tasks normally thought of as emotional or affective, which should 

increase the degree to which AI seems human-like along the affective dimension of human-

likeness.  
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Overall, however, AI is clearly very low in affective human-likeness (see Table 1). High 

affective human-likeness is not compatible with the stereotypical associations that people have 

with computers (Gray and Wegner 2012; Loughnan and Haslam 2007) and is therefore expected 

to elicit negative affective reactions. Indeed, this dimension of human-likeness is often 

considered to be the key distinction between humans and machines, and denying humans 

affective abilities is called mechanistic dehumanization – likening the human to an unfeeling 

machine (Haslam and Loughnan 2014). Endowing AI with affective human-likeness is therefore 

expected to be particularly threatening to human distinctiveness and should thus create more 

discomfort than endowing AI with cognitive human-likeness, despite also making AI seem more 

useful. This suggests that increasing AI’s affective human-likeness may have positive linear 

effects on perceived usefulness, but linear negative effects on consumers’ comfort.   

For both cognitive and affective human-likeness, discomfort stemming from perceived 

threats to humans may be at least partially offset by increases in the perceived usefulness of AI 

with high human-likeness. However, this tradeoff between comfort and usefulness is expected to 

differ depending on the dimension of human-likeness, with usefulness playing a relatively 

smaller role in shaping adoption of AI with affective (vs. cognitive) human-likeness due to 

greater discomfort with affective AI.  

AI is therefore acquiring an increasingly human-like mind, although progress is faster 

along the cognitive dimension. Further increases along both dimensions may increase the 

perceived usefulness of the technology and thereby increase adoption, although may also 

produce discomfort and thereby decrease adoption. The effects of human-likeness on comfort 

may be non-linear and may be particularly strong in the context of affective human-likeness. 

Finally, the effects of cognitive and affective human-likeness on both usefulness and comfort are 
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likely to depend on the specific task for which the AI is being used: this issue is explored in 

greater detail in the following section on Task Dimensions.  

 

Physical human-likeness 

 

Humans are not just minds – they also have bodies. In addition to human-likeness 

varying along the two primary dimensions of mind, human-likeness must therefore also include a 

physical dimension. This dimension becomes particularly relevant when AI is physically 

embodied – i.e., in the case of robotics. Robots vary significantly in terms of their physical 

human-likeness, or how human-like they look. Industrial robots used in factories tend to have 

extremely low human-likeness, perhaps slightly resembling a human arm. Most consumer-facing 

robots at least allude to human features by using a large round screen for a face but lack any 

recognizably human body, such as Jibo (sold for use in the home and recently featured on the 

cover of Time magazine as one of the best inventions of 2017). Other robots such as Pepper 

(used in retail stores and restaurants) are more human-like in their appearance, having eyes and a 

mouth as well as extremities resembling human legs, arms, and hands. Finally, some robots such 

as Sophia (who appears as a speaker at conferences and as a guest on talk shows) and Erica 

(employed as a news anchor in Japan) are designed to be exact replicas of humans and are 

increasingly difficult to distinguish from real humans.  

Research using a database of 200 robots asked participants to indicate the presence or 

absence of several human features on each robot, and used principal components analysis to 

show that physical human-likeness can be summarized by three primary factors: surface 

appearance, which includes eyelashes, hair, skin, genderedness, eyebrows, and apparel; body 
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appearance, which includes hands, arms, torso, fingers, and legs; and facial appearance, which 

includes eyes, mouth, head, and face (Phillips et al. 2018). In order, the strongest predictors of 

overall human-likeness were surface appearance, body appearance, and facial appearance.   

High physical human-likeness in robots often elicit strong affective reactions, famously 

described by the Uncanny Valley hypothesis. Nearly 50 years ago, Masahiro Mori, a Japanese 

roboticist, wrote an influential paper speculating that making robots look more human-like is 

beneficial only up to a point, after which they become too human-like and elicit strongly 

negative reactions (Mori 1970). These reactions are often described as “creeped out,” 

“unnerved,” or “eerie,” which are clearly affective reactions having little to do with the 

usefulness of such robots. Instead, something about a machine becoming too human-like in terms 

of its’ physical appearance seems to be deeply unsettling (Wang et al. 2015). Research has 

suggested that one source of this discomfort is the notion that human-like robots challenge the 

belief that humans are distinct from machines, and that this lack of distinctiveness is itself 

upsetting (Ferrari et al. 2016). Thus, high human-likeness can create strong affective reactions 

not captured by the existing models of technology adoption that focus predominantly on the 

usefulness of the technologies. Furthermore, as mentioned above, the non-linear effect of 

physical human-likeness documented in research on the uncanny valley is expected to also be 

observed in the context of cognitive and affective human-likeness, although this remains an open 

question for future research.  

One open question in this context is how consumers will react to robots with perfect 

physical human-likeness. On one hand, many of the recognized sources of discomfort with 

highly (but imperfectly) human-like robots would be eliminated, such as the aesthetic 

imperfections of such robots that increase mortality or disease salience (Ho, MacDorman, and 
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Pramono 2008; MacDorman et al. 2009). On the other hand, other recognized sources of 

discomfort with human-like robots would remain, and perhaps be amplified, such as category 

uncertainty (is this a human or a robot?) and perceived threats to human distinctiveness (Ferrari 

et al. 2016). Because some sources of discomfort would thus be eliminated while others would 

remain, perfectly human-like robots should be expected to fall in between imperfect robots and 

humans in terms of the affective reactions they elicit. 

The effect of physical human-likeness on perceived usefulness remains an open question. 

Robots with very human-like bodies (i.e., functioning limbs that allow them to walk, carry 

objects, and so on) are of course objectively more useful than robots with less human-like 

bodies, at least for performing certain tasks. The practical purpose of having a very human-like 

face is less clear, although it could make robots more useful for tasks involving a social 

dimension. These questions will also be addressed in more depth in the Task Dimensions section.  

There are also likely to be interactions between the dimensions of human-likeness. One 

of the explanations for the Uncanny Valley phenomenon is known as the perceptual mismatch 

hypothesis, and states that discomfort with human-like robots is caused in part by a mismatch 

between different part of the robot’s human-likeness, such as a human-like face with a robotic-

sounding voice, or a human-like body with robotic movements (Kätsyri et al. 2015). A related 

explanation, known as the violation of expectations hypothesis, which was the explanation 

proposed by Mori in the first Uncanny Valley paper, argues that human-like robots create an 

initial expectation of a human but then fails to meet those expectations, which creates discomfort 

(Mori 1970). Both of these explanations suggest that congruence between the dimensions of 

human-likeness can alleviate discomfort, such that potentially negative effects of increasing a 

given dimension of human-likeness in isolation may be reduced when increasing the other 
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dimensions simultaneously. Thus, a robot with a human-like physical appearance may be 

expected to also think like a human does, while a robot that thinks like a human may also be 

expected to understand and express emotions like humans do. Thus, acknowledging that 

increasing human-likeness may have non-linear and negative effects on comfort, ceteris paribus, 

congruence among the dimensions of human-likeness should increase comfort.   

Finally, there is an apparent tension between usefulness and comfort in the context of all 

three dimensions of human-likeness. As human-likeness increases, AI becomes objectively more 

useful, at least for certain tasks, thus increasing the likelihood of adoption. At the same time, 

however, such increases can also produce discomfort among consumers, thus decreasing the 

likelihood of adoption. Understanding how consumers manage this tradeoff and how marketers 

can optimize it is therefore a key question for research on AI adoption.  

 

4. TASK DIMENSIONS 

 The fact that AI has some degree of cognitive, affective, and physical human-likeness 

enables the technology to perform a wide range of different tasks. In contrast, most of the 

technologies studied in existing models of technology adoption are only capable of performing 

one narrow set of tasks, such as word processing or video conferencing. The range of tasks for 

which AI can be used vary along many dimensions that are likely relevant to consumers’ 

willingness to use AI for a given task. Empirical research on this question is virtually non-

existent, although one paper has explored how task objectivity impact trust in and reliance on 

algorithms (Castelo, Bos, and Lehmann 2019), and some of the other relevant dimensions can be 

identified conceptually. The purpose of this section is not to identify all dimensions along which 

tasks can vary – such a list would be infinitely long. Instead, the goal to identify a few such 
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dimensions clearly related to AI adoption in order to provide a starting point from which future 

research can further explore this broad driver of adoption.  

 

Task affect 

 

 First, tasks themselves can be construed as being more or less “affective” or “cognitive.” 

For example, some tasks are seen as more objective in nature, meaning that they are rule- and 

logic-based, while others are seen as more subjective, meaning that they are intuition- or feeling-

based (Inbar, Cone, and Gilovich 2010). Research has found that consumers are less trusting and 

willing to use algorithms for tasks that seem more subjective in nature, because algorithms are 

thought to lack the affective abilities required for subjective tasks (Castelo, Bos, and Lehmann 

2019). In other words, if the task for which AI is being used is believed to involve affective 

abilities or qualities, then consumers may be less likely to use AI for that task, relative to tasks 

that do not involve such abilities or qualities, because AI is believed to be less useful for such 

tasks. In that paper, usefulness was found to be a stronger predictor of actual reliance on 

algorithms compared to comfort, although comfort had significant effects without controlling for 

usefulness. This suggests that any discomfort consumers’ feel with algorithms being used for 

certain tasks can be potentially offset if the algorithm is very useful.    

This logic can be extended to related task dimensions beyond task objectiveness. For 

example, the degree to which a task is seen as hedonic vs. utilitarian is also related to how much 

affect is involved in the task. Hedonic tasks involve affective, sensory, and aesthetic factors 

relative to utilitarian tasks which involve more cognitive, instrumental, and functional factors 

(Dhar and Wertenbroch 2000; Holbrook and Hirschman 1982; Shiv and Fedorikhin 1999). 
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Holding all other factors equal, AI should thus be seen as less useful for tasks that involve a 

hedonic component, relative to tasks that are purely utilitarian in nature.  

 Also related to task affect is the degree to which a task involves a social component. 

Emotions and social interaction are fundamentally intertwined. Emotions are often the result of 

social interaction; emotions have social consequences for other people; emotions facilitate social 

interaction (Keltner and Haidt 1999; Parkinson 1996). AI, which is accurately seen as relatively 

lacking in affective human-likeness, should therefore be seen as less effective for tasks involving 

social interaction, and consumers may be less comfortable with the use of AI for such tasks.  

These propositions clearly suggest an interaction between task and human-likeness.  

Consumers have strong lay theories about what kinds of tasks require what kinds of mental 

abilities (Inbar et al. 2010). This leads to AI being seen as less useful for tasks requiring the 

abilities that AI is perceived to lack. Increasing the dimension of AI human-likeness that 

corresponds to the abilities required for a certain task should therefore increase AI’s perceived 

usefulness for the task, increasing the likelihood of adoption.  

This logic is less straightforward when it comes to physical human-likeness. However,  

because facial expressions play an important role in facilitating social interactions (Frith 2009), 

AI’s physical human-likeness may also interact with the degree of social interaction involved in 

the task for which it is used, increasing AI’s physical (specifically facial) human-likeness may 

increase consumers’ comfort with and perceived usefulness of AI for tasks involving social 

interaction, more so than for tasks not involving social interaction.  

These propositions help to illustrate the value of the proposed adoption model by  
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highlighting not only the main effects of human-likeness and task dimensions, but also the ways 

in which they are likely to interact in shaping AI adoption via the mechanisms of usefulness and 

comfort.  

 

Task riskiness 

 

Beyond the affective nature of the task, other factors are also relevant in shaping 

consumers’ willingness to use AI to perform a task. One such factor is the perceived riskiness of 

the task. Risk perceptions are a major determinant of attitudes towards new technologies (Slovic, 

Fischhoff, and Lichtenstein 1982), although they have been neglected by the models of 

technology adoption reviewed earlier, likely because the technologies addressed in such models 

are relatively risk-free. Risk perceptions are largely determined by two factors: the 

consequentialness of the task and the probability of the outcome. In other words, something’s 

perceived risk is a function of the importance of its potential consequences (i.e., its 

consequentialness), multiplied by the likelihood of those consequences occurring (Bettman 1973; 

Jacoby and Kaplan 1972).  

The many tasks that AI can perform vary significantly in terms of their 

consequentialness. For example, using AI to recommend a movie on Netflix is inconsequential 

relative to using AI to drive a car or diagnose a disease. Using AI for more consequential tasks 

should therefore be seen as riskier, which should in turn decrease consumers’ willingness to use 

AI for such tasks. Indeed, research has found support for this hypothesis, especially among more 

conservative consumers for whom risks are more salient (Castelo, Bos, and Lehmann 2019; 

Castelo and Ward 2019).  
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In addition to consequentialness of the outcome, the second major determinant of risk 

perception is the probability of a given outcome occurring. Unlike consequentialness, this factor 

is not inherent in the task itself, but is shaped by considerations such as belief in the technology’s 

effectiveness and reliability, and trust in the designer and operator of the technology (Lee and 

See 2004). For example, a technology with a long track-record of success should increase 

consumers’ belief that the technology can perform well and reliably, thus decreasing the 

probability that negative outcomes will occur and decreasing perceived riskiness. Similarly, if 

the technology is designed and operated by a company or government that a consumer trusts, the 

perceived riskiness of the technology should also decrease.  

Risk perceptions are also shaped by many well-known heuristics and biases, such as the 

availability heuristic and the affect heuristic (Folkes 1988; Slovic, Fischhoff, and Lichtenstein 

1981; Slovic and Peters 2006). Thus, both perceived consequentialness and probability of failure 

may be distorted by salient events such as the first fatal accident caused by a driverless car, 

ultimately increasing the perceived risk of such technologies (Shariff, Bonnefon, and Rahwan 

2017). Popular media narratives also likely fuel the perceived riskiness of AI, including the 

notion that AI will take over human jobs (Lohr 2018) and even pose an existential risk to 

humanity (Bradshaw 2015). Risk-as-feelings, or the notion that perceived risk can be largely 

driven by one’s feelings (Loewenstein et al. 2001), is another key reason why incorporating 

affective reactions into a model of AI adoption is important, especially relative to existing 

models of technology adoption that address technologies in which risk is less salient.  

The riskiness of a given application of AI should primarily impact consumers’ comfort 

with the technology rather than its’ perceived usefulness – although motivated reasoning (Kunda 

1990) may lead consumers who are uncomfortable with a risky application to also question 
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whether the technology itself is useful for the application in question. This notion also points to a 

potential relationship between comfort and usefulness, such that consumers who feel less 

comfortable with a particular use of AI may be less likely to believe that AI is useful for that 

task.  

 

Task enjoyability  

 

The enjoyability of a task may also impact consumers’ willingness to use AI to perform 

the task. This idea will be explored in more detail in the following section on consumer 

heterogeneity, since task enjoyability is likely to vary substantially depending on the consumer in 

question and his or her preferences and identity. The basic intuition, however, is that consumers 

may be less willing to use AI to perform tasks that they find enjoyable, even if AI can perform 

the task more efficiently or accurately than they can themselves. For example, recent research 

has found that consumers are reluctant to use AI to help them recommend jokes to other people, 

despite knowing that the AI can do so more effectively than they can (Yeomans et al. 2019). One 

possible source of this reluctance is that reading and recommending jokes is an enjoyable task 

from which consumers obtain some utility. To the extent that consumers receive utility from 

providing recommendations to others and thereby expressing their likes and dislikes, they may 

be less willing to use AI to provide recommendations for a wide range of products and services. 

Similarly, consumers who find driving very enjoyable may be especially unlikely to purchase a 

driverless car (Leung, Paolacci, and Puntoni 2018).  

The enjoyability of a task may itself be determined by the extent to which is provides 

happiness and/or meaningfulness (Baumeister et al. 2013). Thus, even if a task is not strictly 
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“fun” in the sense of providing immediate happiness or pleasure, it may nevertheless provide 

consumers with a sense of meaning and therefore makes the task more enjoyable in a different 

sense.  

Consumers may be more willing to use AI to perform tasks that they find unenjoyable. 

The widespread use of robotic vacuum cleaners such as the Roomba and of algorithm-based tax 

preparation software such as TurboTax are two examples of rudimentary AI products commonly 

used to automate unenjoyable tasks.  

 

Economic context   

 

The economic context of a given task is also highly relevant to the use of AI for that task. 

For both individual consumers as well as for firms, the economic context includes the relative 

cost of using a human vs. using AI for a given task. While consumers and firms can and do 

employ other humans to perform many tasks, the declining financial cost of using AI instead 

makes it increasingly feasible to outsource a growing number of tasks to machines. As with most 

other products and services, declining prices for AI technologies will lead to increasing use.  

The economic reality of adopting AI technologies is likely to be more complex for firms 

than for individual consumers. Consumers can purchase ready-made, AI-enabled products or 

services such as recommendation software or autonomous vehicles, without needing any 

technical expertise to use their purchase. On the other hand, firms interested in incorporating AI 

into their business practice or creating AI-enabled products must also have employees with the 

required technical expertise. Such employees are in high demand: only 22,000 people worldwide 

have PhD-level training in AI (Kahn 2018) and the average employee in a top AI lab commands 
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a salary of $345,000 (Metz 2017). While many AI applications can be implemented with much 

less than PhD-level training, the intense competition for human talent nevertheless complicates 

the economic analysis for firms wanting to use AI. Firms located in countries that invest heavily 

in training AI researchers, such as the US, China, the UK, and Canada, will have an advantage in 

this competition (Manyika and Bughin 2018).   

In addition to the cost of hiring the human programmers required to develop and maintain 

AI technologies, another economic consideration for firms is the relative cost of automating 

different kinds of jobs and tasks. Repetitive physical tasks such as assembly line work, food 

production, cleaning, and so on are technically easier (and therefore less costly) to automate 

relative to jobs that involve social and emotional skills, and so firms should be expected to 

automate the first kind of tasks sooner (Manyika, Chui, et al. 2017). This reflects the fact that 

AI’s affective human-likeness remains lower than it’s cognitive and physical human-likeness. 

However, the broader economic context in which a firm is situated is again expected to play a 

role: countries in which human labor is inexpensive will be less likely to adopt AI to replace 

human jobs (including even repetitive physical jobs), relative to countries in which human labor 

is more expensive (Manyika, Lund, et al. 2017).  

The task dimensions highlighted in this section (the affect involved in the task, riskiness, 

enjoyability, and economic context) were described mainly as main effects – in other words, 

these dimensions are expected to impact AI adoption holding the other dimensions constant. 

However, there are likely to be interactions among these dimensions. Task subjectivity may 

matter less when consequentialness is low, for example. It is therefore important for future 

research to explore how these and other dimensions interact in nuanced ways in addition to 

identifying main effects. The relative impact and potential interaction between usefulness and 
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comfort as mechanisms of these effects is also an important question in the context of task 

dimensions, as it is in the context of human-likeness. 

 

5. CONSUMER HETEROGENEITY 

 The previous two sections focused on how characteristics of AI itself (i.e., its’ human-

likeness) and of the tasks for which AI is used are likely to impact the adoption process. A third 

set of factors relevant to this process are characteristics of the consumer. This section is also not 

intended to identify all relevant sources of consumer heterogeneity; such a list is potentially 

infinite. Instead, the purpose is to identify some of the most important relevant sources of 

heterogeneity based on existing research and conceptual analysis.  

 

Demographics  

 

The most basic source of consumer heterogeneity relevant to AI adoption is demographic 

heterogeneity. Age and gender in particular have been investigated in the context of existing 

technology adoption models, although mostly as moderators of other factors rather than as main 

effects. For example, research has found that men’s technology adoption is impacted more by 

usefulness, while women’s is impact more by ease of use (Venkatesh and Morris 2000), and that 

older adults are more influenced by subjective norms (Venkatesh and Morris 2000b). Beyond the 

literature on technology adoption models, main effects of age have also been observed such that 

older adults are less likely to adopt and use technological products (Meyer 2011; Selwyn et al. 

2003). 
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Research on consumers’ trust in AI in particular has found a consistent and large main 

effect of gender, such that women are less trusting of AI for performing consequential tasks such 

as driving cars and diagnosing diseases but not for performing less consequential tasks such as 

recommending a movie (Castelo and Ward 2019). As described in Section 4, consequentialness 

is a major determinant of perceived risk (Bettman 1973; Jacoby and Kaplan 1972), and females 

are known to perceive more risk in general (Gustafson 1998) and to take fewer risks than men 

(Byrnes, Miller, and Schafer 1999). This may explain why gender impacts perceptions of certain 

technologies (i.e., consequential applications of AI) but not others.  

 

Identity 

 

Beyond demographic variables, research has also found that consumers’ identification 

with a given task impacts their willingness to automate that task, which has implications for AI 

adoption. For example, if driving cars is an important part of a consumers’ identity, then that 

consumer may be less willing to purchase a car with automatic transmission (Leung et al. 2018). 

This is related to the task enjoyability point made in Section 4. When a task is an important part 

of a consumer’s identity, they likely enjoy performing that task, and are thus less likely to want 

to automate that task using AI. Thus, consumers who identify as passionate drivers may also be 

less likely to purchase a driverless car.  

Identity may also be a relevant factor in the context of workplace adoption of AI 

technologies. AI can already effectively diagnose diseases and write newspaper articles, but 

doctors and journalists may be reluctant to use these technologies if doing so is perceived as 

threatening their professional identities, or even their livelihood itself. Indeed, people’s job often 



 39 

makes up an important part of their identity (Rosso, Dekas, and Wrzesniewski 2010), implying a 

strong motivation to maintain that identity. This motivation can be both intrinsic (i.e., to view 

oneself as competent and useful) and extrinsic (i.e., to be viewed as competent and useful to 

others). Technologies that threaten one’s sense of competence and usefulness at work may 

therefore be discounted.    

Identity-related concerns may also be relevant to a broader sense in which AI can be 

threatening. Consumers tend to value their membership in distinct groups because this helps to 

create a sense of identity, and when outgroup members threaten the distinctiveness of their 

group, the outgroup can be evaluated negatively (Tajfel and Turner 1986). A prominent example 

of this phenomenon is humanity (in which all humans are members) becoming less distinct as AI 

becomes more human-like. To the extent that being human is an important part of one’s identity, 

increasingly human-like AI may be seen as threatening to one’s identity, and this perceived 

threat may in turn decrease the likelihood of adopting AI.   

 

Trust in feelings 

 

Consumers’ trust in feelings as an input to decision making is another likely relevant 

factor shaping AI adoption. Consumers differ in the extent to which they believe that their 

feelings are “trustworthy” and lead to good judgments and decisions, and higher trust in feelings 

leads to greater reliance on feelings as a judgment criterion (Avnet, Pham, and Stephen 2012). 

Consumers who trust and rely more on their feelings when making decisions may be more 

strongly influenced by affective reactions to AI such as discomfort with the idea of relying on a 
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human-like machine, and less strongly influenced by more utilitarian factors such as perceived 

usefulness or economic incentives.  

These ideas can be applied to individual consumers or groups of consumers (i.e., cultural 

groups) who vary in their tendency to trust their feelings when deciding. Interestingly, they may 

also be relevant to a comparison between B2B vs. B2C applications of AI. Specifically, 

businesses may be more likely to make AI adoption decisions on a purely “cognitive” basis, with 

fewer opportunities for feelings to impact such decisions compared to individual consumers. 

Indeed, if a given application of AI would increase a company’s profitability, that company may 

have a fiduciary duty to adopt it, and such adoption decisions would therefore not be influenced 

by affective processes. In contrast, individual consumers tend to have much less formalized or 

institutionalized decision-making processes than firms do, leaving open far more opportunities 

for affect to influence the decision-making process. This may be one reason why businesses are 

likely to adopt AI technologies more quickly than individual consumers.  

 

Overconfidence and desire for control 

 

Two final and closely related sources of consumer heterogeneity are overconfidence and 

desire for control. The latter concept refers to the desire to personally exert control over one’s 

environment (Leotti, Iyengar, and Ochsner 2010) and has been linked to a decreased interest in 

adopting new products because such products often entail changing routine behaviors and do not 

fit in to existing categories or schemas (Faraji-Rad, Melumad, and Johar 2017). Similarly, 

providing consumers with control over an algorithm’s output (i.e., allowing them to modify its 

output) increases willingness to rely on the algorithm (Dietvorst, Simmons, and Massey 2016), 



 41 

providing further support for the role of desire for control. Desire for control may itself be 

increased among consumers who identify with or enjoy the task in question and who are more 

risk-averse.  

One additional important reason why consumers may wish to control outcomes that could 

instead be automated by AI is overconfidence. In other words, consumers may believe that they 

can perform the task better than they really can, or, importantly, better than an algorithm. People 

tend to be overconfident both in the sense that they overestimate their actual performance and 

mistakenly believe they perform better than others (Moore and Healy 2008). Overconfidence has 

been linked to suboptimal investment strategies among CEOs (Malmendier and Tate 2005) and 

to the creation of speculative asset bubbles (Scheinkman and Xiong 2003). Furthermore, expert 

national security analysts (but not non-experts) discount accurate advice from algorithms, 

suggesting that experts in particular may be prone to overconfidence in their abilities relative to 

algorithms’ abilities (Logg, Minson, and Moore 2019). Thus, a desire to maintain control over 

tasks and decisions, stemming partly from overconfidence, may also contribute to reluctance to 

adopt AI.  

However, expertise may have divergent effects on AI adoption depending on the type of 

expertise in question. Technical expertise with AI itself is likely to increase adoption likelihood, 

because AI experts are able to better understand how the technology works, thus potentially 

increasing its’ perceived usefulness (Venkatesh et al. 2003; Yeomans et al. 2019). In contrast, 

having expertise in the task for which AI is being used, but not with AI itself, may decrease 

willingness to adopt AI by increasing overconfidence with one’s own performance in the task 

(Logg, Minson, and Moore 2019). 
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As with the task dimensions described in the previous section, this list of sources of 

consumer heterogeneity is also not meant to be exhaustive, but to identify some of the most 

important sources and thus to provide a starting point for thinking about and researching this 

broad source of factors that impact AI adoption.  

 

6. CONSEQUENCES OF AI ADOPTION 

Understanding the antecedents of adoption without a good understanding of the 

consequences is risky, especially if marketers and policymakers manipulate the antecedents to 

affect adoption without awareness of the impact that such changes could bring. Widespread 

adoption of AI technologies can be expected to have profound economic, political, and 

psychological consequences, although none of these consequences are yet well understood. This 

section will focus on the potential negative consequences of AI adoption, since the positive 

consequences that AI offers are relatively straightforward (i.e., performing tasks more effectively 

and for a lower cost than humans can). 

 

Economic consequences 

 

Perhaps the largest potential consequences of widespread AI adoption will be economic 

in nature. While AI adoption will likely benefit firms by increasing their productivity (Bughin et 

al. 2018), it may also drastically increase unemployment. McKinsey estimates that only 5% of 

jobs can be completely automated using existing technologies, but that 60% of jobs consist of 

activities that are at least 30% automatable (Manyika and Bughin 2018). Automating part of a 

job means that fewer humans are required to perform that job, and these estimates suggest that 
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up to 30% of workers, or 800 million people, could be displaced by automation by 2030 

(Manyika and Bughin 2018). Such estimates are of course uncertain, but it seems clear that as 

AI’s human-likeness continues increasing, the threat to human jobs increases as well. The 

economic consequences of massive AI-driven unemployment are therefore potentially profound 

(Furman and Seamans 2018).  

 Promising solutions to this issue are scarce. One commonly discussed idea is to tax the 

corporate beneficiaries of automation and use the resulting revenue to pay every citizen a basic 

income, thus protecting them from the economic consequences of unemployment (Hughes 

2014). However, the political and economic viability of this idea remains unclear, especially in 

highly capitalistic countries such as the United States (Hoynes and Rothstein 2019). 

Furthermore, a basic income would do little to address the widening income inequality that is 

also expected to result from technological unemployment (Berg, Buffie, and Zanna 2016; Bughin 

et al. 2018), nor would it necessarily alleviate the potential psychological consequences arising 

from technological unemployment, such as the sense of meaning obtained through work 

(discussed in more detail below).  

 These economic consequences of AI adoption are likely to spill over into the political 

domain as well. A major political trend in recent years has been a shift towards populism, 

characterized by an anti-establishment and anti-elite orientation, opposition to liberal economics 

and globalization, xenophobia, and authoritarianism, and reflected by events such as Donald 

Trump’s election, Brexit, and the rise of far-right nationalist political parties in Europe (Inglehart 

and Norris 2017; Rodrik 2018). This trend is partly fueled by stagnant or worsening economic 

prospects among the lower- and middle-classes in rich countries coupled with vast increases in 

wealth among the high upper-class (Inglehart and Norris 2017; Rodrik 2018). AI has the 
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potential to exacerbate this trend by increasing unemployment – especially among unskilled 

laborers – while further enriching the owners of the technology (Acemoglu and Restrepo 2018), 

thus threatening to potentially accelerate the populist trend.  

 

Psychological consequences 

 

 There are also likely to be psychological consequences to widespread AI adoption. One 

such consequence that could act as a potentially countervailing force against the populism-

increasing technological unemployment is the idea that the increasing salience of AI can reduce 

intergroup prejudice by presenting a common threat to humanity, in turn making differences 

among groups of humans seem less important. Indeed, research has found that increasing the 

salience of AI even in subtle ways can decrease ethnocentrism and increase comfort with racial, 

religious, and sexual minorities (Jackson, Gray, and Castelo 2019). However, while AI will very 

likely exacerbate economic conditions among the working class, consumers may attribute those 

worsening conditions either to technology or to other human groups. Whether the rise of AI 

ultimately increases or decreases prejudice and populism may depend on whether consumers 

attribute economic challenges to human groups (i.e., immigrants and foreign workers) or to 

technology. 

  An additional psychological consequence already alluded to is the sense of 

meaningfulness that people often obtain through their work. Meaningfulness refers to the amount 

of positively valenced significance something holds for an individual (Pratt and Ashforth 2003; 

Rosso, Dekas, and Wrzesniewski 2010). It has long been known that being employed provides a 

sense of meaningfulness in part by providing employees with an identity (i.e., a teacher, a 
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scientist, a lawyer, etc.), such that most people would still want to work in order to maintain that 

identity even if there was no financial incentive to do so (Morse and Weiss 1955; Rosso et al. 

2010). Thus, even if a universal basic income were able to provide financial security to those 

affected by technological unemployment, fewer opportunities to work would also be expected to 

have negative consequences for people’s sense of identity and thereby their sense of 

meaningfulness.  

 Any negative effects of widespread AI adoption on people’s sense of meaningfulness 

may be also be driven by a decreased sense of competence and autonomy – two fundamental 

sources of meaning (Deci and Ryan 2000). As AI outperforms humans at a rapidly growing 

number of tasks, people’s sense of competence may be threatened. Similarly, as AI becomes 

more widely used to perform tasks previously done by humans, people may have fewer choices 

regarding how they earn their living, thus threatening a sense of autonomy.  

 Widespread AI adoption may undermine perceived autonomy in another way as well. 

Machine learning algorithms are increasingly capable of predicting consumers’ desires, 

identities, and choices based on their online data and then using those predictions to present 

micro-targeted recommendations (André et al. 2018). Such algorithms can already predict 

consumers’ race, gender, sexual orientation, and personality traits more accurately than the 

consumers’ close friends, based only on publicly available data (Kosinski, Stillwell, and Graepel 

2013; Youyou, Kosinski, and Stillwell 2015). Algorithms can also use neuroscientific data to 

predict a person’s decision before they become consciously aware of even having made a 

decision (Soon et al. 2013). As these algorithms continue to improve, such predictions will 

become more accurate, with the potential to challenge consumers’ sense of autonomy in a deeper 

sense – potentially including their sense of free will (André et al. 2018).  
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 A more pragmatic consequence may involve the degradation of automated skills. The 

idea that automating a task normally done by humans will impair those humans’ ability to 

perform those tasks unaided is intuitive. For example, some research suggests that airplane pilots 

have become less skilled as they rely more on automated pilots (Carr, 2015). Similarly, the 

advent of online search engines may be impairing memory, as the expectation that one can 

immediately find answers online reduces the perceived need to store information in one’s 

memory (Sparrow, Liu, and Wegner 2011). As individuals, firms, and governments automate a 

growing number of important tasks, our society may therefore become dangerously dependent on 

AI technologies to perform those tasks. This danger highlights the need for at least some subset 

of humans to continue practicing and maintaining the skills that can be automated, so that they 

can continue performing the tasks requiring those skills in the event that the technologies fail.  

  

7. CONCLUSION 

 The potential economic, political, and psychological consequences of AI adoption 

described above provide a sense of the importance of understanding how consumers and firms 

adopt AI. These technologies promise to transform society in ways at least as profound as the 

Internet has already done. Marketers have an important role to play in shaping this 

transformation by influencing the rate and pattern of AI adoption. This Essay provides a starting 

point for understanding the context and levers of this powerful influence.  

 The first contribution this Essay makes is to provide a non-technical description of the 

specific technologies that underlie AI. This helps to cut through the hype and confusion 

surrounding that often accompanies promising and complex new technologies without a precise 
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definition. As both marketing practitioners and scholars seek to better understand what AI is and 

what it can do, this focus on AI’s constituent technologies will help.  

 The second contribution is to provide a significant update over existing and outdated 

models of technology adoption, which addresses several key limitations of those models and is 

tailored specifically to AI. The model proposes that in addition to the perceived usefulness of a 

technology, consumers’ comfort with the technology is a key force in shaping adoption, which 

may be less true in the context of other technologies that lack human-likeness, are less risky, and 

are less transformative. The model also identifies three broad drivers of both usefulness and 

comfort and illustrates several components of each of these three drivers: human-likeness, task 

dimensions, and consumer heterogeneity. This model should also be useful for both practitioners 

and scholars seeking to understand and influence the process of AI adoption as well as identify 

new research questions.  

The dimensional description of human-likeness is itself a third major contribution. It 

brings together diverse literatures on mind perception, person perception, dehumanization, and 

human-robot interaction in order to identify a three-dimensional structure to the concept of 

human-likeness, consisting of physical, cognitive, and emotional characteristics. Furthermore, 

the model also applies this structure to better understand what AI is and can do, and how the 

three dimensions influence the adoption process.  

 In summary, AI is a collection of five fundamental technologies that provide it with 

increasing levels of physical, cognitive, and emotional human-likeness, in turn allowing it to 

perform a wide range of tasks. As such, it offers enormous potential for consumers and firms to 

obtain services they value through artificial rather than human agents, while also presenting a 

number of profound potential consequences for the individuals and societies that broadly adopt 
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it. A combination of rigorous research into the causes and consequences of AI adoption, coupled 

with thoughtful translation of that research into marketing practice, can help tilt the balance away 

from the negative consequences of AI adoption and towards increased value.  

The following two Essays will test several parts of the model proposed here. Essay 2 

explores how task dimensions impact consumers’ willingness to rely on algorithms, focusing 

specifically on the perceived objectiveness of the task for which the algorithm is used. This 

Essay also tests whether the algorithm’s affective human-likeness interacts with this task 

dimension in shaping reliance on algorithms. Comfort and usefulness are measured as mediators 

throughout this Essay. Essay 3 will then explore how the cognitive, affective, and physical 

human-likeness of robots impacts consumers’ comfort with and perceived usefulness of robots in 

consumption settings.   
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CHAPTER 3: ADOPTION OF ALGORITHMS 

 

Algorithms — a set of steps that a computer can follow to perform a task — increasingly 

outperform humans at many tasks. Pioneering literature from the 1950’s demonstrated that very 

simple algorithms such as linear regression could outperform expert humans on tasks such as 

diagnosing medical and psychological illnesses (Dawes, Faust, and Meehl 1989; William M. 

Grove et al. 2000; Meehl 1954). Since then, rapid progress in AI has endowed algorithms with 

the abilities to understand and produce natural language, learn from experience, and even 

understand and mimic human emotions. Today, algorithms can outperform even expert humans 

at an increasingly comprehensive list of tasks, from diagnosing some complex diseases 

(Simonite 2014) to driving cars and providing legal advice (Krasnianski 2015). Algorithms can 

also perform seemingly subjective tasks such as detecting emotion in facial expressions and tone 

of voice (Kodra et al. 2013). Algorithms thus offer enormous potential for improving outcomes 

for consumers and firms, including the automation of a large proportion of marketing decisions 

(Bucklin, Lehmann, and Little 1998). The rise of algorithms means that consumers are 

increasingly presented with a novel choice: should they rely more on humans or on algorithms? 

Research suggests that the default option in this choice is to rely on humans, even when doing so 

results in objectively worse outcomes.  

 

ALGORITHM AVERSION 

Table 2 summarizes the primary results of empirical studies that have examined trust in 

and use of algorithms compared to humans, ordered by publication date. The dominant theme is 

that consumers prefer humans over algorithms (but see Logg, Minson, and Moore 2019 for an 
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exception). For example, people prefer to rely on humans for forecasting student performance 

after seeing an algorithm err, even when doing so results in suboptimal forecasts (Dietvorst, 

Simmons, and Massey 2014). People also trust medical recommendations less when they come 

from an algorithm than from a human doctor (Promberger and Baron 2006). The authors argued 

that patients prefer to shift responsibility for consequential decisions to someone else, and that it 

is easier to shift responsibility to humans than to computers. In the same domain, Shaffer et al. 

(2013) found participants rated physicians who made an unaided diagnosis significantly more 

positively than a physician who used an algorithm to assist with the diagnosis, but no differently 

than a physician who consulted a colleague to assist with the diagnosis. Participants who had a 

greater internal locus of control had more negative evaluations of algorithmic diagnoses.  

 Önkal et al. (2009) found that participants relied less on advice from an algorithm than 

from a human when forecasting stock prices. Like Shaffer et al. (2013), they argued that 

participants find it easier to shift responsibility or blame to other humans. They additionally 

noted that humans, unlike most algorithms (Armstrong 1980), can provide explanations for their 

decisions, are seen to have high confidence (Sniezek and Buckley 1995), have a reputation to 

maintain (Eisenhardt 1989), and have information about future events (Blattberg and Hoch 

1990). In contrast, algorithms are thought to possess none of these qualities.  

 In the domain of employee selection and hiring decisions, Diab et al. (2011) found that 

participants thought that human interviews were more useful, professional, fair, personal, 

flexible, and precise than algorithms. In the domain of student performance forecasting, 

Dietvorst, Simmons, and Massey (2014) found that participants prefered to make their own 

forecasts rather than relying on an algorithm after seeing the algorithm err, and that while 

algorithms were seen as better than humans at avoiding obvious mistakes, appropriately 
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weighing attributes, and consistently weighing information, humans were seen as better than 

algorithms at learning from mistakes, getting better with practice, finding diamonds in the rough, 

and detecting exceptions to the rule. Dietvorst, Simmons, and Massey (2016) also found that 

allowing participants to slightly modify the output of an algorithm makes them feel more 

satisfied with the forecasting process, more tolerant of errors, more likely to believe that the 

algorithm is superior, and more likely to choose an algorithm to make subsequent forecasts. 

 Finally, Yeomans et al. (2019) found that participants relied less on an algorithm than on 

humans for the task of predicting joke funniness, while Logg et al. (2019) found that participants 

relied more on algorithms than on humans for numerical tasks with an objectively correct 

answer, suggesting that reliance on algorithms varies significantly depending on the type of task 

for which the algorithm is being used.  
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Table 2. Summaries of relevant research on perceptions and use of algorithms. 

Paper Main Independent 
Variable 

Main Dependent 
Variables 

Main Findings  

Promberger and 
Baron 2006. 

Medical 
recommendation from 
“physician” vs. 
“computer program” 

Acceptance of 
recommendation and 
trust in recommender.  

Acceptance and trust 
are higher for humans 
vs. computer programs.   

Önkal et al. 2009. Financial forecasts from 
“human expert” vs. 
“statistical forecasting 
method.”  

Weight of advice (how 
much participants 
adjusted own forecast 
after receiving advice).  

Human advice was 
given more weight. 
  

Diab et al. 2011. Employee selection via 
“thorough discussion” 
vs. “mathematical 
formula.”  

Perceived usefulness, 
fairness, and flexibility 
of selection method.  

Thorough discussion 
seen as more useful, 
fair, and flexible than 
formulae.   

Eastwood, 
Snook, and 
Luther 2012. 

Financial and medical 
advice based on 
“intuition and personal 
experience” vs. “a 
statistical formula.”  

Preference, accuracy, 
fairness, ethicalness of 
advice methods.  

Intuition and experience 
were preferred and seen 
as more accurate, 
ethical, and fair than 
formulae.   

Shaffer et al. 
2013. 

Doctor who makes an 
unaided diagnosis or 
solicits aid from either 
“computer program” or 
from “specialist” human 
colleague.  

Doctor’s perceived 
diagnosis ability, 
professionalism, 
thoroughness.   

Soliciting aid from 
computer but not from 
human decreases 
perceived ability, 
professionalism, and 
thoroughness.   

Dietvorst, 
Simmons, and 
Massey 2014. 

Observing vs. not 
observing an algorithm 
perform (and err) at 
forecasting tasks.    

Choice to rely on 
algorithm vs. oneself or 
algorithm vs. other 
participants when 
making incentivized 
forecasts.  

Reduced reliance on 
algorithm after seeing it 
err, even when it 
outperforms humans.  

Dietvorst, 
Simmons, and 
Massey 2016.  

Being able vs. unable to 
modify an algorithm’s 
forecasts.  

Choice to rely on 
algorithm vs. oneself 
when making 
incentivized forecasts.  

Increased reliance on 
algorithm when its 
output is modifiable.  
 

Logg, Minson, 
and Moore 2019.  

Various forecasts from 
either “another person” 
or an “algorithm”  

Weight of advice (how 
much participants 

Non-experts rely more 
on advice from 
algorithms than from 
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There are two notable gaps in this literature. First, there has not been a systematic 

exploration of how and why consumers’ willingness to use algorithms varies across the many 

different types of tasks for which algorithms can be used. Second, there has been little 

exploration and validation of practical interventions that marketers can use to increase 

consumers’ willingness to rely on algorithms instead of humans, especially in cases where the 

algorithm outperforms expert humans.  

I therefore make two primary contributions in this Essay by addressing these gaps. First, I 

examine how willingness to trust and use algorithms varies by characteristics of the task. I 

identify a robust effect that algorithms are trusted and used less for tasks that are seen as 

subjective in nature and show that this effect occurs primarily because of a belief that algorithms 

are not useful for subjective tasks. Trust involves both cognitive and affective dimensions 

(Johnson and Grayson 2005). Cognitive trust involves confidence in another agent’s performance 

or reliability, while affective trust is based on one’s feelings and can be independent from 

performance. In the context of this research, I suggest that consumers’ overall trust in algorithms 

is affected by both performance-based, cognitive beliefs about the algorithm’s performance, as 

well as by feelings stemming from consumers’ comfort with the use of algorithms for tasks 

normally done by humans, which can be independent of performance-related beliefs. I therefore 

explore both consumers’ beliefs about algorithmic performance as well as their comfort with the 

use of algorithms as mechanisms of this main effect.  

Second, I explore approaches for making algorithms more attractive to potential users 

when use is low despite algorithmic superiority over expert humans. I show that the perceived 

objectiveness of a task is malleable and that re-framing tasks as being relatively objective 
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increases trust in and willingness to rely on algorithms. Furthermore, I show that the belief in 

algorithm usefulness for subjective tasks is itself also malleable. Specifically, increasing the 

perceived affective human-likeness of algorithms by providing real examples of algorithms with 

affective abilities, such as understanding emotion and creating art, can make algorithms seem 

more useful at performing subjective tasks, which ultimately increases reliance on algorithms for 

such tasks.  

 

HYPOTHESIS DEVELOPMENT 

There are many potentially relevant dimensions along which tasks vary that can impact 

consumers’ use of algorithms. For example, consumers are already familiar with the use of 

algorithms for certain tasks such as recommending movies on Netflix or filing taxes on 

TurboTax. Familiarity with algorithms for a given task is likely to increase trust in and 

willingness to rely on algorithms for that task. Similarly, some tasks are much more 

consequential than others, in the sense that performing the task poorly will have more serious 

consequences. Consumers may be less willing to trust and rely on algorithms for more 

consequential tasks because doing so poses greater risks. More theoretically relevant, however, is 

the perceived objectiveness of the task. I define an objective task as one that involves facts that 

are quantifiable and measurable, compared to subjective tasks, which I define as being open to 

interpretation and based on personal opinion or intuition. Research has shown that lay people see 

objective tasks as requiring logical, rule-based analysis, and subjective tasks as requiring 

intuition and “gut instincts” (Inbar et al. 2010). Importantly, the objectiveness of a task is not 

completely inherent in a given task but may be a malleable perception with heterogeneity both 
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among different people and over time. I will therefore exploit this heterogeneity in order to 

develop manipulations of perceived task objectiveness. 

The impact of task objectiveness on consumers’ trust and use of algorithms likely 

depends on what kind of abilities consumers typically believe that algorithms possess. One major 

conceptual distinction that is relevant here is between cognitive and emotional abilities. For 

example, research on dehumanization has shown that people perceive two categories of human 

abilities. First are “human uniqueness abilities,” which distinguish humans from other animals 

but can be shared with machines. These tend to be cognitive in nature (such as logic and 

rationality). Second are “human nature abilities,” which may be shared with other animals but 

not with machines. These tend to be affective or emotional in nature (such as warmth and 

intuition; Haslam 2006; Loughnan and Haslam 2007). Importantly, research has shown that 

machines such as robots are seen as lacking human nature abilities (which are emotional) but not 

human uniqueness abilities (which are cognitive; Haslam et al. 2008).  

Research on mind perception has focused on two similar dimensions: agency, the ability 

to engage in intentional planning and action, and experience, the ability to subjectively 

experience emotions and sensations. Mirroring research on humanness, machines (such as 

robots) are seen as having some degree of agency but no experience (Gray et al. 2007), and 

endowing robots with experience creates more negative reactions than endowing robots with 

agency (Gray and Wegner 2012). These streams of research demonstrate that consumers 

perceive human abilities as either cognitive or emotional and are willing to grant machines more 

cognitive than emotional abilities. Integrating these streams of research with the distinction 

between objective tasks, which are typically associated with more “cognitive” abilities, and 

subjective tasks, which are typically associated with more “emotional” abilities (Inbar, Cone, and 
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Gilovich 2010), suggests that consumers will believe that algorithms will be less useful for 

subjective tasks because they are believed to lack the affective or emotional abilities typically 

associated with such tasks. Beliefs about whether or not a technology is useful are fundamental 

determinants of whether that technology is ultimately adopted (Davis et al. 1989; Rogers 1976). 

My first hypothesis is therefore: 

H1: Consumers will trust and rely on algorithms less for subjective (vs. objective) 

tasks.  

I measure trust in algorithms in several studies because research has shown that trust in a 

technology is an important determinant in the decision to use it (Komiak and Benbasat 2006; Li, 

Hess, and Valacich 2008; Pavlou and Gefen 2004). Trust is relevant in situations where one 

party is somehow dependent on the actions of another party and this dependence involves risk 

(Chopra and Wallace 2003), which is the case in situations where consumers use an algorithm to 

perform a task normally done by a human. Higher trust in an algorithm should therefore lead to 

greater willingness to use the algorithm. Thus, while the majority of the  studies focus 

specifically on the actual or intended use of algorithms, I also measure trust in algorithms (both 

in terms of affective and cognitive trust) as an important factor that contributes to use.  

 It follows from H1 that one way of increasing the use of algorithms for a given task is to 

increase the degree to which the task is seen as being objective. Most tasks can be seen as more 

or less objective depending on how the task is framed and which components of the task are 

emphasized. Specifically, a given task can be approached either by measuring and analyzing 

relevant quantitative variables, or by using intuition or gut feelings. For example, evaluating and 

hiring a job candidate could be done by using standardized psychometric tests and measures, or 

by conducting informal interviews and relying on one’s gut feeling or intuition. Importantly, it is 
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not always clear which of these approaches is superior for many important tasks, as 

psychologists continue to debate the relative merits of more “deliberate” vs. more “intuitive” 

approaches to different tasks (Bear and Rand 2016; Dijksterhuis et al. 2006; Gigerenzer and 

Brighton 2009; Slovic et al. 2004). Furthermore, consumers also differ in terms of their 

preferences for and tendencies to rely on more analytical vs. intuitive approaches to decision 

making (Greifeneder, Bless, and Pham 2011; Inbar et al. 2010). This uncertainty provides an 

opportunity to frame tasks normally seen as subjective as being more objective. The second 

hypothesis is therefore:  

H2: Describing a task as benefiting from quantitative analysis (relative to intuition) 

will increase perceived task objectiveness and consumers’ trust in and reliance on 

algorithms.  

In addition to changing how the task is perceived, a second approach for increasing  

the use of algorithms involves changing how the algorithm itself is perceived. As mentioned 

earlier, consumers tend to believe that machines lack fundamentally human capabilities that are 

emotional or affective in nature (i.e., that they lack affective human-likeness) (Gray et al. 2007; 

Haslam et al. 2008). However, this belief is increasingly inaccurate. Algorithms can already 

create paintings that sell for hundreds of thousands of dollars (Quackenbush 2018), write 

compelling poetry and music (Deahl 2018; Gibbs 2016b), predict which songs will be hits 

(Herremans, Martens, and Sörensen 2014), and even accurately identify human emotion from 

facial expressions and tone of voice and respond accordingly (Goasduff 2017; Kodra et al. 2013; 

McDuff et al. 2013). Algorithms are therefore increasingly capable of performing the kinds of 

tasks typically associated with subjectivity and emotion. Note that even though algorithms may 

accomplish these tasks using very different means than humans do – i.e., using pre-determined 
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computer programming rather than intuitions or gut feelings – I will show that the fact that 

algorithms can accomplish such tasks at all makes algorithms seem more human-like.  

 I expect that increasing algorithms’ perceived human-likeness in this way will moderate 

the effect of task objectiveness. This moderation, however, could plausibly either increase or 

decrease the effect of objectiveness. On one hand, increasing affective human-likeness is likely 

to increase the perceived usefulness of algorithms for subjective tasks, since consumers believe 

that subjective tasks require affective abilities that algorithms are normally thought to lack. 

Making algorithms seem more human-like could therefore decrease or eliminate the main effect 

of task objectiveness. This result would indicate that cognitive trust (i.e., beliefs about algorithm 

usefulness) is more important than affective trust (i.e., feelings that are independent from beliefs 

about usefulness) in shaping consumers’ use of algorithms.   

 On the other hand, increasing affective human-likeness may also produce discomfort with 

the use of algorithms by challenging the belief that humans are distinct from machines. Indeed, 

social identity theory posits that people derive meaning and satisfaction from membership in 

distinct groups, and that when an outgroup threatens the sense of distinctiveness of their in-

group, they react negatively towards the threatening outgroup (Tajfel 1982). In other words, 

people like to believe that their ingroup is unique, and when an outgroup begins to challenge that 

perceived uniqueness, the outgroup will be evaluated negatively (Brewer 1991; Ferrari, Paladino, 

and Jetten 2016). Increasing the affective human-likeness of algorithms could therefore represent 

an intergroup challenge in the sense of algorithms as an outgroup challenging the distinctiveness 

of humans (as an ingroup) from machines. According to social identity theory, this challenge to 

ingroup distinctiveness could in turn lead to negative evaluations of the challenging outgroup 

(algorithms in this case), ultimately decreasing the use of algorithms including for subjective 
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tasks. This result would suggest that affective trust is more important than cognitive trust in 

determining consumers’ use of algorithms.  

 Measuring consumers’ reliance on algorithms that vary in affective human-likeness can 

thus help to tease apart these two competing hypotheses. Whether increasing affective human-

likeness reduces or exacerbates the main effect of task objectiveness may ultimately depend on 

whether cognitive factors (i.e., beliefs about usefulness) or affective factors (i.e., feelings of 

discomfort potentially stemming from intergroup challenges) have a stronger impact on 

consumers’ use of algorithms. In place of a third hypothesis, I thus posit a final research 

question:  

Will increasing algorithms’ perceived human-likeness reduce or increase the effect 

of perceived task objectiveness on consumers’ use of algorithms?  

I test these hypotheses and answer this research question using a variety of field and lab 

studies and several different dependent measures. In order to increase generalizability and 

demonstrate the robustness of the effects, I operationalize the dependent variable in multiple 

ways, including self-reported trust in and preference for algorithms relative to humans, clicks on 

online advertisements for algorithm- and human-based services, and actual reliance on 

algorithms in the context of an incentivized task.  

To summarize, existing explanations of algorithm aversion suggest that it is largely 

driven by a perception that algorithms lack human abilities. I propose that it is specifically 

affective abilities that algorithms are seen as lacking and that this belief decreases willingness to 

rely on algorithms for tasks that seem subjective. Consequently, emphasizing that a given task 

benefits from a more quantitative approach can increase the perceived objectiveness of that task, 

ultimately increasing trust and use of algorithms. Finally, increasing algorithms’ perceived 
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affective human-likeness may either reduce or increase the effect of perceived task objectiveness 

on consumers’ use of algorithms, depending on whether algorithmic usefulness or discomfort 

with human-like algorithms have a stronger impact on use.  

I explore these questions in 6 studies. Study 1 shows that trust in algorithms varies 

substantially depending on the task, and that trust is lower for more subjective tasks. Study 2 

replicates this effect in an applied field study. Study 3 shows that providing evidence that 

algorithms are superior to humans for a specific task is less useful at increasing consumers’ 

preference for using algorithms when the task is relatively subjective. Study 4 shows that re-

framing a subjective task as being more objective increases trust in algorithms. Study 5 replicates 

the task-framing effect in a field study. Finally, Study 6 shows that increasing algorithms’ 

perceived human-likeness by providing examples of algorithms with human nature abilities 

increases the use of algorithms for subjective tasks, thus eliminating the effect of task 

objectiveness. Put simply: consumers have strong preconceptions about what algorithms are 

good at, so two ways to increase reliance on algorithms are to change the way the task is 

perceived and change the way the algorithm’s abilities are perceived.  

Figure 2 depicts the conceptual model that I test in this Essay. The main effect that I 

demonstrate is that perceived task subjectivity reduces consumers’ trust in and willingness to 

rely on algorithms (Studies 1–6). I provide evidence that this effect is explained partially by the 

perceived usefulness of algorithms for subjective tasks (Studies 4 and 6), and partially by 

consumers’ discomfort using algorithms for subjective tasks (Study 6). Furthermore, I study the 

effects of algorithms’ affective human-likeness, finding both direct effects on discomfort and 

interactions between human-likeness and task objectiveness in shaping discomfort, perceived 

usefulness of the algorithm, and reliance on the algorithm (Study 6).  
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Figure 2. Conceptual Model Tested in Essay 2. 

 

STUDY 1 

 To gain an initial understanding of how trust in algorithms varies by task, I examined 26 

different tasks that vary along several dimensions. The primary goal of this study was to test H1, 

that trust in algorithms would be lower for more subjective tasks. I also measured task 

consequentialness and how familiar participants were with the use of algorithms for each task, 

two other potentially relevant dimensions. Furthermore, I also measured trust in well-qualified 

humans for each task so that I could compare trust in algorithms to trust in humans for each task. 

This study was conducted in two parts, with one sample of participants rating the tasks along the 

dimensions of objectiveness, consequentialness, and familiarity with the use of algorithms, and a 

second sample rating their trust in algorithms or in humans for each task.  
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Method 

 

 Participants and design. For part 1, I recruited 250 participants (Mage = 37, 41% female) 

from Mechanical Turk (MTurk), who rated tasks along several dimensions. For part 2, I recruited 

387 participants (Mage = 36, 45% female) from MTurk, who were randomly assigned to one of 

two conditions (trust in humans vs. trust in algorithms).  

 Procedure. For part 1, participants rated each of 26 tasks on how objective vs. subjective 

it seemed, how consequential vs. inconsequential it seemed, and how familiar they were with the 

use of algorithms for each task, using scales from 0 (not at all) to 100 (completely). The tasks as 

well as the dimensions being rated were presented in random order. For part 2, participants 

indicated how much they would trust either an algorithm or a “very well qualified person” for 

each of 26 tasks also on a scale from 0 (not at all) to 100 (completely). For example, for the task 

of diagnosing a disease, the person was described as a doctor. The tasks are shown in Table 3.  

 

Results and Discussion 

 

Averaged across tasks, trust in a qualified human was higher than trust in algorithms 

(Mhuman = 70.2 vs. Malgorithm = 52.8, t(385) = 5.75, p < .001). However, trust in algorithms was 

higher than in humans for certain tasks (predicting stock market outcomes, predicting the 

weather, analyzing data, and giving directions, t’s > 4.70, p’s < .001; see Table 3). 
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Table 3. Consumers’ trust in algorithms vs. qualified humans. Note: Tasks are listed in 
increasing order of trust in algorithms. The human-algorithm gap for a task is statistically 

significant (p < .001) when the corresponding number is in bold. 
 

In order to test the effects of the three dimensions of consequentialness, familiarity, and 

objectiveness on trust in algorithms, I conducted a regression in which these three dimensions 

were simultaneously used to predict trust in algorithms. This revealed that trust in algorithms 

was lower for tasks that seemed more consequential (β = -.56, p < .001), higher for tasks for 

which consumers were more familiar with the use of algorithms (β = .42, p < .001), and most 

importantly higher for tasks that seemed more objective (β = .46, p = .004). The adjusted R2 for 

this regression was .54. These results provide initial support for H1, suggesting that trust is 

higher for more objective tasks. The next study will corroborate this finding in a field study. 
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STUDY 2 

 While the first study provided initial support for H1, it is possible that participants’ self-

reported trust is not a reliable indicator of their actual behavior. In order to address this concern, 

I examined the role of task objectiveness in a field study in which participants’ behavior was 

directly observed.   

 

Method 

 

 Participants and design. I created 4 advertisements, organized in a 2 (human vs. 

algorithmic advisor) x 2 (dating vs. financial advice) design, and displayed them on Facebook 

(see Appendix A for the exact stimuli used in this and all other studies). The ads portrayed either 

a human or an algorithm providing either dating advice (rated as highly subjective in Study 1) or 

financial advice (rated as highly objective in Study 1). These 4 ads were seen by 41,592 unique 

Facebook users (40% female, mean age not observed) on their Facebook Newsfeed (i.e. the 

stream of posts that users see on Facebook from their friends and advertisers).  

 Procedure. Participants who see ads on their Facebook Newsfeed can click on those ads 

to learn more about them. The ads were clicked on 604 times in total. Participants who clicked 

on the ads were taken to a page explaining that I was studying consumers’ trust in algorithms. 

The dependent variable was the click-through rate (CTR) of the ads, which is the number of 

clicks a given ad received divided by the number of times that ad was seen (Facebook shares this 

information with the creator of the advertising campaign). I expected participants to be more 

likely to click on an ad for dating advice when it was advertised as coming from a human vs. an 
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algorithmic advisor, but that click-through rates would not differ between human and algorithmic 

financial advice, because the latter is a more objective task.  

 

Results and Discussion 

 

I conducted a logistic regression to estimate the effects of human vs. algorithm (human = 

1, algorithm = 0), finance vs. dating ad (finance = 1, dating = 0), and their interaction on the 

CTR (click = 1, no click = 0). This revealed that the CTR was higher for human ads (β = 1.14, p 

< .001) and finance ads (β = .59, p = .001). I also found a significant interaction between these 

factors (β = -.99, p < .001). As predicted, the click-through rate for the dating advice ads was 

significantly higher for the human advisor (2.1%) than for the algorithm advisor (0.6%, χ2(1) = 

29.10, p < .001). In contrast, for the financial advice ads, the click-through rate was only 

marginally significantly higher for the human advisor (1.8%) than for the algorithm advisor 

(1.6%, χ2(1) = 3.26, p = .071; see Figure 3). This range of CTRs is comparable to other recent 

studies using Facebook advertising campaigns (Matz et al. 2017). These results provide further 

support and external validity to the notion that trust in algorithms is low primarily for tasks that 

are seen as subjective.  
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Figure 3. Trust in humans vs. algorithms is higher for a subjective but not objective task. Note: 
Error bars represent standard errors. 

 

STUDY 3 

Our first two studies have provided support for H1, showing that consumers are less 

willing to trust and use algorithms for tasks that seem subjective. Nevertheless, algorithms are 

often highly effective at such tasks. Interventions that can increase trust and use of algorithms for 

such tasks would therefore be helpful to both consumers and firms. One of the most intuitive 

approaches for increasing consumers’ willingness to use algorithms is to provide them with 

empirical evidence of the algorithms’ superior performance relative to humans for the specific 

task in question. However, given the effect demonstrated in the previous studies, I anticipated 

that this evidence would be less effective at increasing willingness to use algorithms for tasks 

that seem subjective because consumers may be less likely to believe that algorithms can 

perform subjective tasks better than humans even when provided evidence to the contrary. Note 
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that this study does not manipulate the perceived human-likeness of the algorithm, which itself 

may impact the perceived usefulness of algorithms in general, but instead manipulates the 

perceived usefulness of the algorithm for the specific task in question.  

 

Method 

 

 Participants and design. 201 MTurk users (Mage = 36, 49% female) reported their 

preference for using an algorithm relative to a qualified human for 9 tasks (see Table 4). These 9 

tasks varied in terms of both trust in algorithms and perceived objectiveness as measured in 

Study 1. Importantly, there is published research available documenting the superiority of 

algorithms over qualified humans for all 9 tasks. Participants were assigned to one of two 

performance conditions: known performance or unknown performance. In the known 

performance condition, I told participants that the algorithm outperformed the human and 

described the results of a real study that had demonstrated the algorithm’s superior performance. 

In the unknown performance condition, this information was omitted, and the performance of the 

algorithm was not mentioned. 

 Procedure. Participants read about and rated each of the task 9 tasks individually. In the 

known performance condition, participants read about a published academic study for each task 

which demonstrated that an algorithm could outperform qualified humans. I provided links to 

each study and reported how much better the algorithm performed compared to the humans in 

the study. In the unknown performance condition, this information was not provided, and 

participants simply reported their preference without learning how the performance of algorithms 

compared to the performance of humans.  
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Participants reported whether they would rather use an algorithm or a qualified human for 

each task, with responses entered on a 0 to 100 scale, with 0 labeled as the relevant qualified 

human, 50 labeled as no preference, and 100 labeled as algorithm. For example, the relevant 

qualified human was “human doctor” for the task of diagnosing a disease and “human judge” for 

the task of deciding a parole case. 

 

Results and Discussion 

 

Preference for using algorithms was higher when performance data was provided (M = 

50.4) compared to when it was not (M = 28.6, t(199) = 17.5, p < .001). The effect of 

performance data was highly significant for each of the 9 tasks (see Table 4). I assigned each 

task the objectiveness score that it received in Study 1, and then conducted an ANOVA in which 

performance condition, task objectiveness, and their interaction were used to predict preference 

for using an algorithm relative to a human. This revealed main effects for performance condition, 

F(1,183) = 208.23, p < .001, task objectiveness, F(8,183) = 4.94, p = .026, and a significant 

interaction, F(8,183) = 6.12, p = .013. The effect of providing performance information was 

significant for each task. In order to explore the interaction, I divided tasks into “objective tasks” 

(rated as greater than 50, or the midpoint used to measure objectiveness), and “subjective tasks” 

(rated as less than 50). The effect of providing performance data on preference for using an 

algorithm was significantly greater for objective tasks (Mperformance_data = 55.1, Mno_performance_data = 

34.5, t(199) = 14.37, d = .64, p < .001) than it was for subjective tasks (Mperformance_data =  47.3, 

Mno_performance_data = 31.7, t(199) = 10.35, d = .51, p < .001).  
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Table 4. Consumers’ trust in humans vs. algorithms with and without performance data provided. 
Note: higher numbers indicate greater trust in algorithms relative to humans. Bolded means are 
significantly different from the scale midpoint (50, labeled as “trust both equally”). The next-to-
last column is the change in preference between condition (significant for all tasks), and the last 

column is the tasks’ rated objectiveness, taken from Study 1. 
 

The results of this study suggest that consumers’ willingness to use an algorithm instead 

of a qualified human can be increased simply by demonstrating that the algorithm outperforms 

the human, although the increase is significantly smaller for subjective tasks. This study 

therefore provides further support for H1 by showing that task subjectivity reduces willingness to 

use algorithms even when consumers are made explicitly aware that the algorithm outperforms 

humans. However, participants remained roughly indifferent between humans and superior 

algorithms even for several of the most objective tasks. Indifference is insufficient for marketers 

interested in selling algorithm-based products and services. Importantly, this indifference is 

suboptimal for consumers when algorithms outperform humans (as is the case in each of the 9 

 Preference for Algorithm Relative to Human 

  

Without 
performance 

data  

With 
performance data 

 
Δ Task 

objectiveness 

Predict Student Performance  39 57 18 52 

Predict Employee Performance 27 52 25 51 

Recommend Disease Treatment  31 59 28 69 

Predict Recidivism 24 52 28 45 

Drive Car  26 53 27 69 

Recommend Movie  33 52 19 23 

Diagnose Disease  23 46 23 77 

Predict Personality  35 40 5 41 

Predict Joke Enjoyment  19 35 16 27 

Average 29 50 21 50 
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tasks in this study), since consumers who are indifferent will tend to select the default or status 

quo option (i.e., the inferior performing human; Dinner et al. 2011). These findings emphasize 

the need for other approaches to increase trust and use of algorithms. The next set of studies test 

H2, which posits that re-framing the task for which an algorithm is used can be one such 

approach.  

 

STUDY 4  

In this study, I attempt to increase consumers’ trust in algorithms for subjective tasks by 

emphasizing that such tasks can benefit from quantitative analysis (relative to intuition), thus 

providing a test of H2. This study also tests both the cognitive and affective dimensions of trust, 

confirming that the effects are driven by the cognitive dimension.  

 

Method 

 

 Participants and design. 201 Prolific Academic users (Mage = 33, 47% female) were 

randomly assigned to one of two conditions in which two tasks were described in such a way that 

emphasized either their quantitative components (the objective condition) or their intuitive 

components (the subjective condition). The tasks were recommending a movie and 

recommending a romantic partner, two consumer-relevant tasks that were rated as highly 

subjective in Study 1. Prolific Academic is a crowdsourcing website where participants are less 

familiar with common experimental paradigms and more honest than participants on Mechanical 

Turk (Peer et al. 2017). 
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 Procedure. In the subjective condition, participants read that, according to previous 

studies, the tasks were best accomplished by focusing on one’s moods, emotions, and intuitions. 

In the objective condition participants read that, according to previous studies, the tasks were 

best accomplished by focusing on quantifiable data such as measured personality traits (see 

Appendix A for exact stimuli). Participants reported how much they would trust an algorithm 

relative to a human for the two tasks. Responses were entered on 0–100 scales, with the scale 

anchored at 0 (trust human more), 50 (trust both equally), and 100 (trust the algorithm more). 

The qualified human was specified as a friend for the movie task and a professional matchmaker 

for the dating task. Participants also reported how objective the tasks seemed.  

In order to measure both the affective and cognitive components of consumers’ trust in 

algorithms, I asked participants how much they agreed with the following questions: for 

cognitive evaluations, “I can see the benefits in algorithms that can perform this kind of task 

better than humans,” “Algorithms that can perform this kind of task could be useful,” and “I 

believe this kind of algorithm can perform well,” and for affective evaluations, “Algorithms that 

can perform this kind of task better than humans make me uncomfortable,” “Algorithms that can 

perform this kind of task go against what I believe computers should be used for,” and 

“Algorithms that can perform this kind of task are unsettling.” Alphas were .96 and .92 

respectively, and all items were anchored at 0 “not at all” and 100 “completely.” I refer to the 

two kinds of evaluation as “usefulness” and “discomfort” in the following analyses. 
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Results and Discussion 

 

Participants trusted humans more than algorithms in both conditions for both tasks (t’s > 

1.89, p’s < .062 comparing each mean to 50 [trust both equally]). However, emphasizing the 

quantitative approach to accomplishing the tasks succeeded at increasing trust in algorithms for 

both tasks (for movie recommendation: Msubjective = 31.5, Mobjective = 45.1, t(199) = 4.04, p < .001, 

and for romantic partner recommendation: Msubjective = 36.4, Mobjective = 43.8, t(199) = 2.09, p = 

.038). Looked at another way, 36% of participants in the quantitative framing condition reported 

trusting an algorithm more than a human (> 50 on the scale, collapsing across both tasks), 

compared to only 19% of participants in the intuitive framing condition (χ2(1) = 6.60, p = .010).  

Emphasizing the quantitative approach to the tasks also increased the degree to which the 

tasks were seen as objective (collapsing across the two tasks: Msubjective = 32.1, Mobjective = 40.7, 

t(199) = 3.11, p = .002) and made algorithms seem more useful for the tasks (Msubjective = 70.7, 

Mobjective = 76.9, t(199) = 1.96, p = .052). The manipulation had no effect, however, on 

participants’ discomfort with the use of algorithms for the tasks (reverse coded: Msubjective = 72.0, 

Mobjective = 72.1, t(199) = 0.27, p = .795). Discomfort with the use of algorithms on its own did 

have a significant negative effect on trust in the algorithm (β = -.19, p < .001), while perceived 

usefulness had a significant positive effect on trust (β = .34, p < .001). However, using both 

discomfort and perceived usefulness to predict trust, usefulness remained a significant predictor 

(β = .34, p < .001) while discomfort was not (β = -.004, p = .948), suggesting that any initial 

effect of discomfort can be reduced if the algorithm is seen as being useful.  

A mediation analysis with 5,000 bootstrapped replications confirmed that perceived task 

objectiveness and perceived usefulness of algorithms mediated the relationship between task 
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framing and trust in algorithms. As reported above, task framing affected perceived task 

objectiveness, which in turn affected the perceived usefulness of algorithms for the tasks (β = 

.20, p = .007). The direct effect of task framing on trust in algorithms (β = -10.49, p < .001) was 

reduced but still significant when accounting for the mediators (β = -6.04, p = .012), and the 

indirect effect was significant (β = –.002, 95% CI [–.0002, –.0117]).  

These results demonstrate that the perceived objectiveness of a given task is malleable, 

and that objectiveness impacts both the perceived usefulness of algorithms for a task and self-

reported trust in the algorithm for that task. These findings therefore suggest a practical 

marketing intervention that can be used to increase trust in and use of algorithms for tasks that 

are typically seen as subjective. I test this intervention using a field study in Study 5.   

 

STUDY 5 

In order to increase the external validity of the findings from Study 4 and test whether 

they can be practically useful for marketers, I conducted a second Facebook advertising study in 

which I manipulate the perceived objectiveness of subjective tasks in the context of a Facebook 

advertising campaign for algorithm- and human-based dating services.  

 

Method 

 

Participants and design. I created 2 advertisements for an algorithm-based dating service 

that either highlighted a quantitative approach to choosing a romantic partner or did not (using 

the more neutral ad for algorithm-based dating advice from Study 2; see Appendix A for ads). I 
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displayed these ads on Facebook and they were seen by 13,621 Facebook users (39% female, 

mean age not observed). 

 Procedure. The ads were clicked on 110 times in total. As in Study 2, participants who 

clicked on the ads were taken to a page explaining that the researchers were studying consumers’ 

trust in algorithms, and the dependent variable was the click-through rate (CTR) of the ads.  

 

Results and Discussion 

 

Replicating the results of Study 4, framing dating advice as benefiting from a quantitative 

approach increased the click-through rate (0.87%) compared to the control ad (0.39%, χ2(1) = 

3.74, p = .053). Framing a task that is normally seen as highly subjective as in fact benefiting 

from quantitative data thus provides marketers with a practical tool for increasing consumers’ 

willingness to use algorithm-based products for tasks in which algorithm aversion might 

otherwise occur. 

 

STUDY 6 

 Our final study attempts to increase the use of algorithms for subjective tasks in a 

different way. Instead of providing data regarding the algorithm’s performance at the specific 

task in question or re-framing the task itself as benefiting from quantification, I instead attempt 

to increase the perceived affective human-likeness of the algorithm by providing real examples 

of algorithms performing tasks that are typically thought of as requiring emotional and intuitive 

abilities – i.e., the kinds of abilities that machines are thought to lack and that are seen as 

necessary for subjective tasks (Gray et al. 2007; Haslam et al. 2008; Inbar et al. 2010). Although 
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social identity theory suggests that this approach may also make consumers less comfortable 

with the use of algorithms by challenging the belief in human distinctiveness from machines, the 

results of Study 4 suggest that the perceived usefulness of an algorithm is a stronger influence 

than discomfort on trust in algorithms. I therefore expect that increasing affective human-

likeness will make algorithms seem more useful at subjective tasks and thus increase the use of 

algorithms for such tasks, despite potentially also creating discomfort with the idea of a human-

like algorithm.  

 Recall that prior research has consistently identified two dimensions of human-likeness, 

corresponding to cognitive and affective abilities (also called agency and experience or human 

uniqueness and human nature; Haslam 2006; Gray, Gray, and Wegner 2007). I chose to focus 

specifically on manipulating the affective dimension of human-likeness in this study because that 

dimension is the most relevant to subjective tasks, and because that dimension is the one 

commonly seen as distinguishing humans from machines. Algorithms with affective human-

likeness are therefore likely to be seen as both more useful for subjective tasks as well as more 

threatening to human distinctiveness from machines. This study therefore further helps to 

determine the relative effects of perceived usefulness (i.e., cognitive trust) and discomfort (i.e., 

affective trust) on the use of algorithms.  

 

Method 

 

Participants and design. 399 participants from Prolific Academic (49% female, mean age 

= 35.2) were assigned to one of four conditions in a 2 (affective human-likeness: high vs. low) x 
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2 (task framing: subjective vs. objective) between-subjects design.  

Procedure. In the high human-likeness conditions, participants read that algorithms can 

perform a range of tasks that are typically thought of as contributing to affective human-likeness, 

including creating music and art, predicting which songs will be popular, and understanding 

people’s emotions. In the low human-likeness conditions, participants read that algorithms 

cannot perform these kinds of tasks. In reality, algorithms can in fact perform these tasks. I chose 

these specific tasks because both creativity and emotional sensitivity are considered to be 

fundamental components of human nature – i.e., the affective dimension of human-likeness 

(Haslam et al. 2005). Participants were asked to summarize the information they read in this 

section to ensure they paid attention to the material. As a manipulation check, participants 

reported how much they agreed with the statement “Algorithms that can perform this kind of 

task make humans seem less distinct from machines” on a 0 (not at all) – 100 (completely) scale.  

Participants were then shown a graph of the value of the S&P 500 stock market index 

over the past year and were asked to estimate its value 30 days in the future. Before providing 

their initial estimate, participants were informed that the 5% most accurate estimates would be 

rewarded with a bonus payment six times larger than their base compensation, in order to 

incentivize accuracy and encourage serious engagement with the task.   

After making their initial estimate, participants were told that an algorithm designed by 

an expert financial advisor had also made an estimate, were shown the algorithm’s estimate, and 

were given the opportunity to revise their initial estimate. This paradigm is known as the Judge 

Advisor System and is commonly used to measure reliance on advice by computing how much 

participants revise their initial estimate in response to external advice (Logg et al. 2019; Sniezek 

and Buckley 1995). Reliance on advice is measured as the difference between the final and initial 
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estimates produced by each participant divided by the difference between the advice and the 

initial estimate.  

The algorithm’s estimate was accompanied by a manipulation of task objectiveness. 

Specifically, in the objective framing condition, participants were told that there are clear 

mathematical relationships between economic measures such as supply and demand and the 

price of a stock, and that relying on these objective indicators is therefore the best way to 

estimate a stock’s future value. In contrast, in the subjective framing condition, participants were 

told that human feelings and intuition are the primary drivers of stock prices, and that relying on 

these subjective factors is therefore the best way to estimate a stock’s future value.  

Finally, to measure perceived usefulness of the algorithm and discomfort with the use of 

algorithms, participants were also asked how much they agreed with the following statements: “I 

believe this kind of algorithm can perform well,” and “Algorithms that can perform this kind of 

task better than humans make me uncomfortable.” These items were measured on a 0 (not at all) 

– 100 (completely) scale.  

 

Results and Discussion 

 

I excluded 33 participants (8.27% of the sample) whose summaries of the human-likeness 

manipulation clearly indicated that they had not read the information, resulting in a final sample 

of 366. The results reported here are nearly identical if I include these participants. I first 

confirmed that the manipulation of human-likeness was effective: participants thought that 

humans seem less distinct from machines in the high human-likeness condition (M = 45.8) than 

in the low human-likeness condition (M = 37.8), t(364) = 2.75, p = .006). I computed reliance on 
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the algorithm’s advice by dividing the difference between participants’ final and initial estimate 

by the difference between the advice and their initial estimate. This produces a measure that 

ranges, in most cases, from 0 (complete discounting of the advice) to 1 (complete reliance on the 

advice). A value of .30 thus corresponds to a 30% reliance on advice, which is the typical value 

seen in the advice taking literature (Soll and Larrick 2009). 

A 2x2 ANOVA revealed that reliance on the algorithm was significantly impacted by the 

task framing (objective vs. subjective), F(1, 363) = 10.01, p = .002, non-significantly by 

providing information about algorithms’ human-likeness, F(1, 363) = 2.24, p = .134, and 

marginally by the interaction between these two factors, F(1, 363) = 3.52, p = .060. When 

participants were told that algorithms have low human-likeness, the effect of task framing was 

significant, as in prior studies (Msubjective = .22, Mobjective = .39, t(364) = 3.30, p = .001, see Figure 

4). However, when participants were told that algorithms have high human-likeness, the effect of 

task framing was no longer significant (Msubjective = .35, Mobjective = .40, t(364) = 1.03, p = .303).  

 

Figure 4. Task objectiveness increases reliance on algorithms when human-likeness is 
low but not high. Note: HL = human-likeness. Error bars represent standard errors. 
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Furthermore, I conducted another 2x2 ANOVA with belief in the algorithm’s usefulness 

as the dependent variable. This revealed no main effect of task framing, F(1,363) = .94, p = .339, 

a marginally significant main effect of the algorithms’ human-likeness, F(1,363) = 2.75, p = 

.099, and a significant interaction between these two factors, F(1,363) = 4.10, p = .044. The 

interaction pattern was the same as the previous interaction: when participants were told that 

algorithms have low human-likeness, the effect of task framing on perceived usefulness of the 

algorithm was significant (Msubjective = 73.1, Mobjective = 79.1, t(364) = 2.10, p = .037). However, 

when participants were told that algorithms have high human-likeness, the effect of task framing 

was not significant (Msubjective = 80.9, Mobjective = 78.5, t(364) = .91, p = .366).  

Looked at another way, the effect of algorithm human-likeness on perceived usefulness 

was significant in the subjective condition (Mhigh HL = 80.9, Mlow HL = 73.1, t(364) = 2.54, p = 

.014), but not in the objective condition (Mhigh HL = 78.5, Mlow HL = 79.1, t(364) = .29, p = .834). 

This indicates that increasing algorithm human-likeness increases the perceived usefulness of 

algorithms for exactly the kind of task for which algorithms are typically not trusted or used.   

The same ANOVA with discomfort as the dependent variable revealed no main effects 

but a significant interaction, F(1,363) = 4.06, p = .045. In the low human-likeness condition, 

discomfort with algorithms was higher in the subjective task condition (Msubjective = 28.8, 

Mobjective = 21.0, t(364) = 2.02, p = .044). In the high human-likeness condition, discomfort was 

roughly equivalent across both task framings (Msubjective = 26.2, Mobjective = 30.3, t(364) = .91, p = 

.366). Furthermore, the belief that algorithms make humans less distinct from machines was 

positively associated with discomfort (β = .42, p < .001) but was not associated with the 

perceived usefulness of the algorithm (β = .04, p = .321). Finally, as in Study 4, discomfort on its 

own was negatively associated with reliance on the algorithm (β = -.001, p = .040), while 
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perceived usefulness on its own was positively associated with reliance (β = .003, p < .001). 

However, discomfort became non-significant when controlling for usefulness (β = -.0006, p = 

.486), while usefulness remained significant (β = .003, p = .002). This result suggests that 

consumers’ discomfort with algorithms, stemming partly from decreasing human distinctiveness, 

has effects on consumers’ willingness to use algorithms ceteris paribus, but that the effects of 

this discomfort are diminished when the algorithm is perceived as being highly useful. 

 These results also provide further evidence that algorithms are relied on less for tasks that 

seem subjective and suggest an additional method of eliminating this effect by increasing 

awareness of algorithms’ affective human-likeness in terms of abilities normally seen as 

distinguishing humans from machines. Importantly, these results also help to tease apart the 

competing hypotheses regarding the role of algorithms’ human-likeness in shaping consumers 

use of algorithms. Whereas social identity theory would suggest that algorithms that challenge 

the distinctives of humans from machines would create negative evaluations of those algorithms, 

a more cognitive perspective based on consumers’ beliefs about algorithms’ usefulness suggests 

that decreasing human-machine distinctiveness would increase consumers’ use of algorithms by 

making algorithms seem more useful. The fact that I found support for the second of these 

hypotheses suggests that usefulness beliefs are stronger determinants of reliance on algorithms 

than discomfort stemming from intergroup challenges.  

 

GENERAL DISCUSSION 

As algorithms become increasingly capable of outperforming humans at tasks ranging 

from making recommendations (e.g. for music, movies, and stocks) to diagnosing diseases and 

driving cars, a key issue is whether (or at least when or how quickly) and for what purposes 
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humans will trust and use them. This Essay explored several aspects of this question. 

Specifically, in a series of 6 experiments with over 56,000 participants in total, I have studied 

how trust in and use of algorithms varies depending on how both the task at hand and how 

algorithms are perceived.  

Study 1 found that trust in algorithms for a given task is negatively related to perceived 

subjectivity. Study 2 replicated these findings in a field study, finding that consumers click on 

ads for algorithm-based advice less than on ads for human-based advice when the task is 

subjective (dating advice), but not when the task is objective (financial advice). Study 3 tested 

the effect of making consumers explicitly aware of an algorithm’s superior performance 

compared to humans, finding that such awareness is indeed a powerful influence on willingness 

to use algorithms. However, awareness of superior performance is not sufficient for creating a 

true preference for algorithms over humans – only indifference between the two – and is 

particularly ineffective for tasks that are more subjective. Study 4 manipulated perceived task 

objectiveness, finding that re-framing subjective tasks as being amenable to quantification and 

measurement increases trust in algorithms for those tasks. Study 5 replicated this finding in a 

field study. Finally, Study 6 showed that actual reliance on algorithms in an incentivized task is 

also lower when the task is seen as subjective, but that this effect can be eliminated by providing 

real examples of algorithms with affective abilities. 

 

Limitations and Directions for Future Research 

 

I identify several limitations of this work. First, half of the studies relied on participants’ 

reports of what they intended to do rather than direct evidence of what they did. More studies 
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like Studies 2, 5, and 6 which used real behaviors as dependent variables are needed to further 

calibrate real-world reactions to algorithms. Related to this, attempts to assess the costs of 

choosing not to rely on algorithms whose performance is superior to humans may be a valuable 

pursuit for future research. That being said, it is encouraging that the self-report findings were 

replicated in field settings. Importantly, potential concerns about the results being driven by 

demand effects can be eliminated by the use of both field studies and incentive-compatible 

behaviors to replicate the effects observed in the self-report studies.  

The manipulation of human-likeness in Study 6 also leaves open the possibility of 

alternative manipulations of this construct in future research. I chose to manipulate specifically 

the affective dimension of human-likeness, because this is the most closely relevant dimension to 

the performance of subjective tasks. Indeed, I expected (and found) that increasing affective 

human-likeness would make algorithms seem more effective and useful for subjective tasks. In 

this sense, affective human-likeness is inextricably linked to the usefulness of the algorithm for 

subjective tasks, since performing such tasks requires affective abilities. While I manipulated the 

perceived effectiveness of the algorithm for the tasks in question directly in Study 3, the 

manipulation of human-likeness in Study 6 is not specific to the task in question (i.e., forecasting 

stock prices), but was more domain-general. This had the intended effect of making the 

algorithm seem more useful for specific subjective tasks. However, this manipulation also had 

the expected effect of increasing discomfort with the algorithm. The purpose of Study 6 was 

therefore to pit the effects of usefulness and discomfort against each other, since both are 

affected by human-likeness and both were expected to impact reliance on algorithms, but in 

opposite directions. Nevertheless, alternative operationalizations of affective human-likeness 

would be worth testing as well, as would increasing algorithms’ cognitive human-likeness, or 
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even their physical human-likeness in order to test how these other dimensions might affect 

reliance on algorithms for different kinds of tasks. 

Another limitation is that the descriptions of the algorithms were quite basic. More 

realistic presentations might include brochures, ads, websites, and videos. In addition, different 

presentation modes (in terms of both what and how information is presented) could be examined: 

use of algorithms may depend as much or more on how they are presented and accessed as on 

what is said about them. One aspect of this is the potential role of social influences on both 

individual decisions and overall adoption patterns (e.g., how do the p and q coefficients of the 

Bass diffusion model, which measure advertising and word of mouth effects on adoption, differ 

between algorithm adoption and adoption of other consumer and industrial products; Bass 1969).  

Our finding that consumers are relatively averse to algorithms that are used for subjective 

tasks is particularly relevant in light of the current trend toward affective computing, which is a 

growing industry intent on creating explicitly emotional algorithms and building them into 

products from driverless cars to refrigerators to digital personal assistants (Goasduff 2017; Kodra 

et al. 2013). These results suggest that consumers will likely be skeptical about the emotional 

abilities of such algorithms, but that convincing demonstrations of their effectiveness may 

ultimately increase willingness to use them for tasks normally thought to be “incompatible” with 

algorithms or computers. Future research should explore how different ways of presenting 

emotional algorithms to consumers impacts their acceptance of those algorithms.  

Future research can also explore additional factors that shape use of algorithms. For 

example, several factors that are not explicitly related to the nature of the algorithm or to the 

algorithm’s performance might affect use, such as concerns about privacy or simply the 

enjoyment of performing a task oneself. While it is beyond the scope of this Essay to explore all 
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such factors, I conducted a small survey to begin exploring such beliefs. Specifically, I asked 80 

MTurk participants to report how much they agreed with several potential concerns if they were 

to use an algorithm for each of 4 tasks, as well as whether they would prefer to use an algorithm 

or a human for the tasks (predicting personality based on Facebook likes, predicting joke 

funniness, planning a wedding, and predicting the price of stocks). For example, participants 

were asked whether using an algorithm for planning a wedding would involve privacy concerns, 

or whether the task requires emotion. Table 5 depicts the results of this survey. Interestingly, 

concerns about privacy implications and companies using algorithms for marketing purposes 

were not significant predictors for any task. In contrast, the enjoyment of doing the tasks oneself, 

feeling less control over the task, feeling bad about oneself if using an algorithm, the belief that 

the task is related to what it means to be human, and the belief that the task requires emotion 

were each significant predictors of preference for using an algorithm for at least two of these 

tasks. Future research is therefore needed to explore the role of these and other non-performance-

related concerns in shaping consumers’ use of algorithms. 
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Table 5. The effects of additional factors on preference for using humans relative to 
algorithms for different tasks. Note: standardized regression coefficients are displayed; 

significant effects are in bold). Positive coefficients indicate that greater concern with the factor 
in question is associated with greater preference for using a human (lower preference for using 

an algorithm). 
 
 
Additional broader questions revolve around the potentially detrimental effects of 

increasing reliance on algorithms. For example, could an increased reliance on algorithms 

diminish people’s capacity to think on their own and solve problems creatively, or to perform the 

tasks that have been outsourced to algorithms? Could it diminish the utility and satisfaction that 

people receive from accomplishing tasks on their own? Furthermore, some have argued that the 

increasing use of algorithms in society can entrench economic and social inequalities by building 

discrimination into inflexible models applied on a large scale in contexts such as parole, hiring, 

 Preference for using humans for: 

 Personality 
prediction 

Joke 
funniness 
prediction 

Wedding 
planning 

Stock price 
prediction 

Privacy concerns -.05 .05 .09 .22 

Marketing 
concerns .02 .05 .10 .27 

Enjoy doing the 
task myself .08 .36 .47 .27 

Feed bad about 
myself .22 .36 .47 .29 

Feel less 
control .28 .44 .29 .34 

Requires emotion .35 .54 .48 .51 

Related to being 
human .16 .39 .65 .34 
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and credit decisions (O’Neil 2016). Any attempts to increase the use of algorithms in order to 

improve outcomes for consumers and society should be mindful of these concerns, striving to 

ensure that the promoted algorithms are both effective and fair. 

 

Conclusion 

 

I examined consumers’ willingness to use algorithms to perform tasks in several areas 

and examined ways to increase their use. This Essay highlights the important role of perceived 

task objectiveness in shaping consumers’ trust in and use of algorithms. While there appears to 

be an inexorable trend toward increasing use of algorithms, the pace at which they are adopted – 

as well as the areas where they will be adopted first – depends on a number of interrelated factors 

including in which areas companies develop algorithms for general use, how they market them, 

and how soon customers trust in and become comfortable with the idea of using algorithms to 

outsource decisions that affect their lives, in ways large and small. This research suggests that 

marketers face a challenge in balancing between increasing the capabilities of algorithmic 

products and services into subjective domains while also addressing consumers’ lay beliefs that 

algorithms are ineffective at such tasks. These results provide several practical strategies for 

achieving this balance.  

 

 

 

 

 



 87 

CHAPTER 4: REACTIONS TO ROBOTS 

 

Robots – intelligent, physically embodied machines that can sense and manipulate their 

environment and perform tasks autonomously – are becoming increasingly prevalent in many 

domains of business and consumer behavior (Simon 2018). Today, there are already more than 

1.5 million robots used worldwide in manufacturing alone. However, recently the market for 

social robots (which are intended to interact directly with consumers at home and in retail and 

service contexts) has been growing seven times faster than the market for manufacturing robots 

(Business Insider 2015), reaching $5.4 billion in sales by the end of 2017 and expected to triple 

to $14.9 billion within the next five years (Business Wire 2017). Consumers can already 

purchase social robots that perform chores, monitor young and elderly people, engage in 

conversations, and act as companions and assistants (Gibbs 2016a). Outside the home, social 

robots are being used in a wide variety of contexts including retail stores, restaurants, hotels, and 

hospitals (Dass 2017; Nguyen 2016; Simon 2015).  

Social robots vary significantly in terms of how human-like they look. Some social 

robots, such as Jibo (sold for use in the home and recently featured on the cover of Time 

magazine as one of the best inventions of 2017) allude to human features by using a large round 

screen for a face but lack any recognizably human body. Other robots such as Pepper (a robot 

used in retail stores, hotels, restaurants, and airports) are more humanoid in their appearance, 

having a more human-like face as well as extremities resembling human legs, arms, and hands. 

Finally, some robots such as Erica (recently employed as a hotel concierge and television news 

anchor in Japan) are designed to be exact replicas of humans and are increasingly difficult to 

distinguish from real humans.  
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In addition to increasing physical human-likeness, social robots are also becoming more 

human-like in terms of their mental abilities. Progress in AI has already endowed computers (and 

therefore robots, which are physically embodied computers) with the ability to understand and 

produce hundreds of human languages and engage in complex conversations (Joshi 1991; Perera 

and Nand 2017), to drive cars and diagnose diseases (Simonite 2014), and even to understand 

human emotion by analyzing facial expressions and tone of voice (Kodra et al. 2013). Experts 

estimate that AI will have a 50% chance of achieving human-level intelligence within the next 

20-25 years (Müller and Bostrom 2016). Robots are thus becoming more human-like both in 

terms of their bodies and their minds.   

As increasingly human-like robots are entering the consumer marketplace, it is 

imperative to understand how consumers will react to such robots and ultimately how robots can 

provide value for consumers and firms. There already exists a small literature exploring how 

robots’ physical appearance impacts consumers’ affective reactions to robots, but the question of 

how robots’ mental abilities impact consumers’ and firms’ reactions to robots remains almost 

entirely unexplored. I contribute to answering this question with five studies. I find that 

increasing the perception that social robots with human-like appearances also have human-like 

minds makes them seem more useful and increases consumers’ comfort with them, willingness 

to patronize businesses that employ them, and interest in promoting their development. In effect, 

perceiving minds in human-like robots makes them more valuable to both consumers and firms. 

This increased value is partly due to the fact that minds enable empathy, such that robots with 

minds can better understand what humans are thinking and feeling.  

Our research contributes to the literature on product anthropomorphism by showing how 

both a product’s physical appearance (the focus of existing research in this area) and its mental 
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abilities (a novel factor) interact in shaping consumers’ reactions to the product. This interaction 

between “body” and “mind” also contributes to the literature on mind perception, which thus far 

has not incorporated physical appearance as a factor in the process of mind perception. I 

contribute to the literature on human-robot interaction by providing one of the first empirical 

tests of human reactions to robots with very highly human-like appearances, as these robots are 

only just being developed and reaching the marketplace now. Finally, I contribute to marketing 

practice by demonstrating how to increase social robots’ perceived mind, thereby increasing the 

value that social robots can provide to both consumers and firms.  

 

ROBOT HUMAN LIKENESS 

Prior research on the relationship between robots’ human-likeness and human evaluation 

of robots has focused on physical human-likeness, guided by the “uncanny valley hypothesis.” 

Nearly 50 years ago, Masahiro Mori, a Japanese roboticist, wrote an influential paper speculating 

that making robots look more human-like is beneficial only up to a point, after which they 

become too human-like and elicit strongly negative reactions (Mori 1970). The “valley” thus 

refers to the worsening of reactions as robots move from moderately human-like to very (but not 

perfectly) human-like, and the subsequent improving of responses as human-likeness approaches 

perfection (i.e., actual humans). Mori therefore advised that social robots should be designed to 

have a moderate degree of human likeness in order to avoid the negative reactions elicited by 

very human-like robots.  

In the years since Mori’s paper, research has produced inconsistent findings regarding 

whether the uncanny valley exists in the form originally proposed. For example, while some 

studies have found support for a non-linear relationship between a robot’s human-likeness and 
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affective reactions to the robot (Ferrari et al. 2016; Mathur and Reichling 2016), several others 

have found no such pattern (Bartneck et al. 2009; Rosenthal-Von Der Pütten and Krämer 2014; 

Zlotowski, Proudfoot, and Bartneck 2013). Indeed, two recent reviews of research on the 

uncanny valley concluded that “although the notion of the uncanny valley is plausible and is 

supported by plentiful anecdotal evidence, rigorous controlled studies have yielded mixed 

support for its existence” (Wang et al. 2015) and “it is surprising that empirical evidence for the 

uncanny valley hypothesis is still ambiguous if not non-existent” (Kätsyri et al. 2015). 

These inconsistent findings can likely be explained by the fact that Mori’s original 

hypothesis was presented as a broad, somewhat vague idea without precisely defined constructs 

and without any data. This inevitably resulted in subsequent research operationalizing the two 

key variables – the robots’ human-likeness and human reactions to the robots – inconsistently. 

For example, the original hypothesis operationalized “reactions” in terms of feelings of eeriness 

and creepiness (Mori 1970), while more recent research has measured feelings of unease (Gray 

and Wegner 2012), likeability of the robot (Mathur and Reichling 2016), and repulsion (Ferrari 

et al. 2016). Despite these inconsistencies, however, one aspect of the uncanny valley hypothesis 

that has been reliably demonstrated is that highly, but imperfectly human-like robots elicit 

negative affective reactions (Ferrari, Paladino, and Jetten 2016; Mathur and Reichling 2016).  

Two classes of explanations have been proposed for negative reactions to human-like 

robots: perceptual and cognitive explanations (Wang et al. 2015). Perceptual explanations focus 

on how aesthetic imperfections in robotic faces or bodies create negative reactions. For example, 

the evolutionary aesthetics hypothesis explains negative reactions to human-like robots by 

suggesting that evolution has shaped human preference for physical appearances that signal 

health and fitness, and that humanoid robots lack such an appearance because of their aesthetic 
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imperfections (Hanson 2005). Thus, any physical imperfection that signals potential ill health or 

increases the salience of disease or death can produce feelings of unease and uncanniness. 

Similarly, the pathogen avoidance hypothesis proposes that physically imperfect faces are 

indicative of transmissible diseases (MacDorman et al. 2009), and the mortality salience 

hypothesis suggests that such faces remind viewers of their own mortality (Ho et al. 2008) both 

of which then create negative reactions.  

Cognitive explanations include the violation of expectations hypothesis, which was the 

explanation proposed by Mori in the first Uncanny Valley paper, and which argues that human-

like robots create an initial expectation of a human but then fails to meet those expectations 

(Mori 1970). More recent research has found that mismatches between physical appearance and 

motion (Saygin et al. 2012) and between face and voice (Mitchell et al. 2011) both produce 

negative reactions towards human-like robots. In other words, if a robot looks very human-like 

but does not move like a human or has a human-like face but a robotic voice, the robot has 

created an expectation of humanness but then failed to meet that expectation due to other, non-

human-like features. A similar explanation is the category uncertainty hypothesis, or the idea 

that negative reactions are caused by a difficulty in categorizing something as a robot or a human 

(Yamada, Kawabe, and Ihaya 2013). 

As robots continue to become more human-like, and indeed approach perfect human-

likeness in the physical sense, many of the aesthetic causes of negative affective reactions cited 

above will disappear, as robots become aesthetically indistinguishable from humans. However, I 

suggest that a focus on physical human-likeness alone is insufficient for understanding and 

improving consumers’ reactions to social robots. There are many reasons why even robots with 

perfect physical human-likeness could still elicit negative reactions: category uncertainty would 
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be perhaps even greater since it would be harder to distinguish between robots and humans 

(Yamada et al. 2013); such robots could be particularly threatening to human jobs, safety, and 

distinctiveness (Ferrari et al. 2016), and could create strong expectations of humanness that 

would then be violated if the robot is not perfectly human-like in non-aesthetic ways. This leads 

to our first hypothesis:  

H1: Robots with perfect physical human-likeness will elicit more positive affective 

reactions than robots with high but imperfect physical human-likeness, but more 

negative affective reactions than actual humans.  

 Insofar as even robots with perfect physical human-likeness still elicit relatively negative 

reactions, non-aesthetic factors will become important in further improving consumers’ reactions 

to highly human-like robots. In this Essay, I focus on mind perception as one such factor. We 

know that highly (and especially perfectly) human-like robots can create the initial expectation 

of a human and that failure to meet those expectations creates negative reactions (Mitchell et al. 

2011; Saygin et al. 2012). Meeting the expectation of being human, however, requires not only a 

body, but also a mind. 

 

MIND PERCEPTION 

Consumers perceive minds along two primary dimensions: agency (the ability to plan and 

act autonomously) and experience (the capacity to feel emotions and sensations; Gray, Gray, and 

Wegner 2007; Waytz et al. 2010). Robots are perceived as having moderate levels of agency but 

virtually no capacity for experience (Gray, Gray, and Wegner 2007). These dimensions of mind 

correspond to real abilities that modern robots do in fact possess. In terms of agency, robots can 

increasingly engage in complex conversations, behaviors, and decisions without being controlled 
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or supervised by a human (Beer, Fisk, and Rogers 2014; Vázquez et al. 2017). Regarding 

experience, robots can accurately detect and classify human emotions by analyzing facial 

expressions and tone of voice, and use that data in order to express their own “emotional 

reactions,” by tailoring their responses to the emotional state of the human they are interacting 

with: making jokes, expressing sympathy, and so on (Khatchadourian 2015; McDuff et al. 2016; 

Picard 2011).  

These abilities map closely (albeit imperfectly) on to agency and experience as they are 

defined in the psychology literature. I will show that robots that display these capabilities (or are 

described as having these abilities) are perceived has having greater autonomy and emotional 

experience, respectively. Furthermore, while there are deep philosophical questions about 

whether robots can truly have autonomy or emotional experiences (Dennett 1997), I do not take a 

stand on this debate. Instead, I exploit the reasonable arguments to be made on both sides of the 

debate to create our manipulations of perceived minds in robots. These arguments will be 

explained in the methods section of Study 2.  

How would the perception that robots have human-like minds impact consumers’ 

reactions to robots? That is the central research question of this Essay. I first define what I mean 

by reactions. In line with the model proposed in Essay 1, I measure two key dimensions of 

reactions: the perceived usefulness of robots, and consumers’ comfort with robots. Both 

usefulness and comfort contribute to the value that social robots can provide to consumers and 

firms. Virtually all models of technology adoption emphasize perceived usefulness as one of the 

strongest determinants of adoption (Venkatesh et al. 2003). Understanding what shapes 

perceived usefulness is therefore a fundamentally important goal for the developers and 

marketers of technologies. I measure comfort as well because research on consumer perceptions 
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of human-like robots has typically focused on measuring affective reactions such as creepiness 

or discomfort (Kätsyri et al. 2015; Wang et al. 2015). In order to build on this literature, I 

therefore also measure affective reactions, focusing specifically on comfort with robots both in 

general and in specific consumption contexts. I propose that mind perception will increase both 

consumers’ comfort with social robots as well as their perceived usefulness.   

Comfort. Building on the violation of expectations hypothesis, I suggest that robots with 

highly human-like physical appearances will prime expectations of humanness, an important 

component of which is a human-like mind. Something that looks like a human, in other words, 

may also be expected to have a mind like a human; to think and feel like a human. This basic 

congruence between physical human-likeness and mental human-likeness should increase 

comfort. Research has indeed shown that congruence between a product’s features and the 

category schema of which it is a part creates positive affect which is then transferred to the 

product itself (Meyers-Levy and Tybout 2002). More recent work has confirmed this finding 

specifically in the context of product anthropomorphism, showing that anthropomorphizing a 

product by having it portray itself in the first person primes the category schema of “human,” 

which leads to more positive product evaluations when the product seems to be smiling (since 

smiles were found to be congruent with the human schema; Aggarwal and McGill 2007). I 

extend this logic by suggesting that a robot’s perceived mind also contributes to its congruence 

with the human schema, ultimately increasing comfort with the robot. Robots with both 

dimensions of mind are by definition more congruent with the human schema than robots with a 

single dimension and should therefore produce the greatest comfort, although robots with either 

dimension are more congruent than robots with neither and should therefore produce greater 
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comfort accordingly. Our main focus, however, is comparing robots with both dimensions of 

mind to robots with neither. 

H2a: Perceiving a physically human-like robot as having a human-like mind (vs. no 

mind) will increase consumers’ comfort with such robots.  

Increasing a robot’s perceived mind may also boost comfort via a second path. Entities 

with minds are capable of empathy, specifically the two components of empathy known as 

perspective-taking and sympathy. Perspective-taking refers to the capacity to understand other 

peoples’ beliefs, intentions and thoughts, while sympathy (also called compassion in the empathy 

literature) refers to a feeling of concern for another person’s suffering accompanied by the 

motivation to help (Singer and Klimecki 2014). Perceiving a robot as having a human-like mind, 

capable of acting with autonomy and of understanding, expressing, and even experiencing 

emotions, should increase the robot’s perceived ability to engage in both perspective-taking and 

sympathy for humans. These abilities should in turn increase consumers’ comfort with robots.  

H2b: A robot’s perceived empathy for humans will mediate the effect of mind 

perception on comfort with robots.  

Usefulness. I expect that perceiving social robots as having human-like minds will also 

increase their perceived usefulness. Intuitively, having greater autonomy makes robots more 

useful almost by definition, since they can perform more tasks without direct supervision or 

control by humans. Being able to understand and express emotion also enables a robot to 

perform more useful tasks. I expect that empathy plays a key role in the effect of mind 

perception on usefulness as well. Social interactions are facilitated by empathy: interacting with 

someone or something that can take one’s perspective and feel for one’s suffering fosters social 

bonds, facilitates group coordination, and increases prosocial behavior (Galinsky, Ku, and Wang 
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2005; Oswald 1996; Rosenthal-von der Pütten et al. 2014). Social robots, whose fundamental 

purpose is to engage in effective social interactions with humans, should therefore be seen as 

(and indeed be) more useful when they are seen as having a human-like mind, and this effect 

should be explained partly by perceived empathy.  

H3a: Perceiving a robot as having a human-like mind (vs. no mind) will increase the 

robot’s perceived usefulness.  

H3b: A robot’s perceived empathy for humans will mediate the effect of mind 

perception on usefulness.  

 

Note that H2a refers specifically to physically human-like robots while H3a  

does not. This is because I expect that the effect of mind perception on comfort – but not on 

usefulness – will be moderated by physical human-likeness. Having a mind should make robots 

seem more useful regardless of what they look like. In terms of comfort, robots with low or 

moderate physical human-likeness should not elicit the category schema of human, and the 

presence of a mind in such robots should therefore not increase schema congruity. Indeed, 

research has found that consumers are less comfortable when robots low in physical human-

likeness are described as having a mind (specifically the experience dimension of mind; Gray 

and Wegner 2012). In contrast, robots with high physical human-likeness are more likely to elicit 

the category schema of human, such that having a human-like mind is congruent with the elicited 

schema.   

H4: The positive effect of mind perception on comfort with highly human-like 

robots will be reduced for low human-likeness robots.  
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 Finally, I also expect that these effects will have practical marketing implications. As 

mentioned, a technology’s perceived usefulness is one of the strongest factors in shaping the 

technology’s adoption (Venkatesh et al. 2003), and the well-established discomfort that 

consumers feel with human-like robots is an obvious barrier to the effective use of such robots in 

consumption settings. Increasing perceived usefulness and comfort via mind perception will 

therefore increase the value that consumers and firms can obtain from social robots. I will 

measure these downstream consequences in various ways throughout the Essay. 

 

OVERVIEW OF THE STUDIES 

Study 1 shows that increasing physical human-likeness from high to perfect does indeed 

improve consumers’ affective reactions to social robots, but that reactions remain far more 

negative than reactions to actual humans. The remaining studies focus on how mind perception 

can improve reactions to highly human-like robots. Study 2 provides causal evidence for the 

benefits of mind perception, showing that perceiving robots as having human-like minds 

increases consumers’ comfort with the use of robots in stores and restaurants. This study also 

measures two downstream consequences of increased comfort: willingness to donate to an 

organization that promotes the development of robots, and evaluations of companies that employ 

robots. Study 3 shows that both dimensions of mind – agency and experience – have positive 

effects on consumers’ comfort with and perceived usefulness of social robots. Study 4 shows that 

the effect of mind perception on comfort – but not on usefulness – is moderated by the robot’s 

physical appearance. This study also shows that the robot’s perceived empathy for humans can 

partially account for these effects. Study 5 shows that perceiving minds in human-like robots 

increases comfort on a physiological level.  
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STUDY 1 

The bulk of this Essay focuses on the effects of mind perception on consumer reactions to 

robots. This focus is motivated by the idea that highly human-like robots elicit negative affective 

reactions, and that even perfectly human-like robots (in a physical sense) will still elicit more 

negative reactions than actual humans, suggesting that non-aesthetic factors such as mind 

perception are also important for understanding and improving consumer reactions to robots. 

This study provides empirical support for that idea, thus helping to motivate the remaining 

studies.  

 

Method 

 

Participants and design. I recruited 800 American participants (51% female, mean age = 

33) from Prolific Academic, a crowdsourcing website where participants are less familiar with 

common experimental paradigms and more honest than participants on Mechanical Turk (Peer et 

al. 2017). Participants were randomly assigned to rate several robots either on human-likeness or 

on their affective reactions to the robots.  

Procedure. Participants were shown images of robots compiled by the Anthropomorphic 

Robot Database (Phillips et al. 2018). I chose 25 of these robots varying in human-likeness from 

very low to very high. 200 of the participants rated the robots on how human-like they looked 

overall. This allowed us to divide the 25 robots into five quintiles based on their overall human-

likeness. The remaining 600 participants were shown five of the robots (one from each of the 

five quintiles) or one of four human beings. Participants were either told that these humans were 

humans or were in fact advanced humanoid robots. This allows us to compare evaluations of 
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perfectly human-like robots to evaluations of actual humans. Please see Appendix B for all 

stimuli used in this Essay. 

As our measure of affective reactions, I asked participants how creepy each robot seemed 

and how comfortable they would be interacting with each robot. Both items used 0–10 scales 

anchored at “not at all” and “completely.” I excluded 99 participants (16.5%) who reported 

suspicion that the humans portrayed as robots were not in fact robots, although the pattern of 

results in unchanged if I include these participants.  

 

Results and Discussion 

 

In order to test for a U-shaped relationship between human-likeness and consumer 

reactions, I conducted a two-lines test, which is a more accurate and valid method of testing for 

such relationships than testing for a quadratic term in a regression (Simonsohn 2018). This test 

estimates separate regression lines for low and high values of the x-variable (using an algorithm 

to determine the boundary point between low and high that maximizes the overall statistical 

power of the test) and is significant if the two lines are individually significant and opposite in 

sign. The results of this test are depicted in Figure 5 and show that increasing human-likeness 

leads to more negative reactions until the point 8.14 (slightly lower than the human-likeness of 

the most human-like robots that currently exist; β = -.52, p < .001). After this point, further 

increases in human-likeness lead to improved reactions, β = 1.89, p = < .001). Note that this 

analysis did not include the humans portrayed as humans.  

The perfectly human-like robots in this study were evaluated more negatively than actual 

humans (MHuman = 8.70 vs. MPerfectRobot = 6.87, t(503) = 9.65, p < .001), but more positively than 
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the robots in the fifth (highest) quartile of human likeness (MQ5 = 4.16, t(553) = 11.64, p < .001), 

as well as the robots in the fourth quartile (MQ4 = 4.84, t(416) = 7.39, p < .001), third quartile 

(MQ3 = 6.17, t(416) = 2.72, p = .007), and second quartile (MQ2 = 6.05, t(416) = 3.07, p = .002), 

but more negatively than the robots in the first (lowest) quartile of human likeness (MQ5 = 7.48, 

t(416) = -2.48, p = .013).  

 

Figure 5. Human-likeness first elicits more negative reactions, then more positive reactions. 
Note: Individual points on the graph represent the individual robots used as stimuli. 
 

 

It is worth noting that I do not observe the initial improvement in evaluations as human-

likeness moves from low to moderate that Mori predicted when he proposed the uncanny valley 
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hypothesis. The reason for this may be that Mori included industrial robots in his discussion, 

which have extremely low human-likeness, whereas our stimuli included only social robots that 

have at least some subtle allusions to human-likeness, such as a large round screen that alludes to 

a face. The initial improvement that Mori predicted may therefore only occur when non-human-

like industrial robots are included as stimuli. 

Existing research on the uncanny valley phenomenon has demonstrated that reactions to 

robots become more negative as human-likeness increases from low to high (Ferrari et al. 2016; 

Mathur and Reichling 2016). The results of study 1 replicate this finding and make a novel 

contribution by showing for the first time what happens to reactions when human-likeness 

approaches perfection.  

This pattern suggests that firms who choose to employ social robots may be better off 

employing robots with low-to-moderate human-likeness. However, some firms are clearly 

pushing towards robots with ever greater human-likeness (i.e., Hanson Robotics and Sanctuary 

AI). The remaining studies therefore focus on testing the hypothesis that increasing the perceived 

minds of such robots will improve consumers’ reactions to them, helping to bring them out of the 

uncanny valley. 

 

STUDY 2 

This study tests H2, that perceiving robots as having human-like minds will increase 

consumers’ comfort with robots, relative to perceiving them as lacking human-like minds. I also 

measure two downstream consequences that should be related to comfort: willingness to donate 

to a pro-robot organization, and evaluations of companies that employ robots.  
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Method 

 

 Participants and design. 100 American MTurk participants (46% female, mean age = 36) 

were assigned to watch one of two videos.  

Procedure. The videos featured a professor explaining that robots either could or could 

not have a mind in the same way that humans do. The arguments were taken from the 

philosophical literature on mind and consciousness, specifically on the “dualism vs. physicalism” 

debate that portrays the human mind as having non-material aspects that cannot be replicated in a 

machine (“dualism”) or as something explainable entirely in terms of physical brain processes 

that can be replicated in a machine (“physicalism”; Dennett 1994; Searle 1995). This 

manipulation therefore represents a high-level operationalization of mind perception, or the 

general belief that robots can in principle have minds like humans do. I will therefore refer to 

these conditions as the “mind” and “no mind” conditions. Subsequent studies will use more 

concrete manipulations of mind perception that describe the specific capacities that make up a 

mind.  

After watching one of the videos, participants were asked to spend two minutes writing 

about why the arguments in the video were likely to be true, which is a technique known as the 

“saying-is-believing technique” commonly used in psychology research to increase engagement 

with stimuli and facilitate attitude change (Higgins and Rholes 1978; Aronson, Fried, and Good 

2002; Yeager et al. 2016). I excluded 4 participants who failed to write a single comprehensible 

sentence. As a manipulation check, I asked participants whether they believed that robots could 

have a mind, on a 0 (not at all) to 10 (completely) scale.  
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 All participants were then shown a picture of Erica, a social robot with high physical 

human-likeness (an overall human-likeness rating of 89.6 in the Anthropomorphic Robot 

Database). The picture was accompanied by an explanation that robots are approaching perfect 

human-likeness and are being used as employees in stores, restaurants, and hotels. I asked 

participants how comfortable they would be (a) shopping in a store and (b) dining in a restaurant 

where this kind of robot was employed, on 0–10 scales anchored at “not at all” and 

“completely.”  

Consumers who are more comfortable with the use of robots should also view companies 

employing robots more favorably and be more willing to promote their development. I therefore 

also asked participants how they would evaluate a company that employed this kind of robot (on 

1–7 scales anchored at negative/positive, dislike/like, and bad/good). I then told participants that 

I would be donating $1 on behalf of each participant to an organization working on human-robot 

relations and asked them to decide which organization I would donate to on their behalf. They 

were given a choice between the American Society for the Prevention of Cruelty to Robots, 

which was described as working to advance the development of human-like robots, and the 

Center for the Study of Existential Risk, which was described as working to prevent the 

development of human-like robots. Both organizations are real.  

In order to ensure that our two videos were equally convincing and believable, I also 

asked how engaging and convincing the video was and how knowledgeable the speaker seemed. 

All of these measures used 0 (not at all) to 10 (completely) scales. I finally measured 

participants’ age, gender, and level of education.  
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Results and Discussion 

 

 The two videos seemed equally engaging and convincing, and the speaker seemed 

equally knowledgeable in both videos (see Table 6 for full results). The manipulation check 

showed that the videos successfully altered the belief that robots could have a mind.  

 I then tested whether the mind perception manipulation impacted comfort with robots in 

stores and restaurants, using a 2 x 2 mixed ANOVA with the mind perception condition and 

context (store vs. restaurant) as the independent variables. Mind perception had a significant 

effect on comfort (F(1,94) = 9.45, p = .002); context did not (F(1,94) = .23, p = .630). The 

interaction was not significant (F(1,94) = .09, p = .768). Consumers expected to be more 

comfortable with the use of robots in the mind condition (M = 6.63) than in the no mind 

condition (M = 5.35, t(94) = 3.09, p = .002). Reflecting this increased comfort, participants in the 

mind condition were more likely to choose the pro-robot organization for their donation and 

evaluated companies employing robots more positively (see Table 6). Comfort predicted both 

donation choice (β = -.07, p < .001) and company evaluations (β = .41, p < .001).  

Finally, I checked whether the effects of mind perception on comfort interacted with 

participants’ age, gender, or education. Condition did interact with age (F(1,94) = 5.81 p = .768). 

A floodlight analysis (Spiller et al. 2013) revealed that condition increased comfort among 

participants under the age of 37.3 (70.5% of the total sample) but had no effect among 

participants older than that. No other main effects or interactions were significant, including 3- 

and 4-way interactions.  
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 No Mind Mind Statistical Test 

Engaging 6.64 6.05 t = 1.05, p = .297 

Convincing 6.85 6.72 t = .23, p = .819 

Knowledgeable 7.83  7.19 t = 1.31, p = .194 

Mind (MC)  1.77  6.31  t = 7.69, p < .001 

Store Comfort 5.20 6.40  t = 1.90, p = .061 
Restaurant 
Comfort 5.25   6.79 t = 2.34, p = .018 

Company 
Evaluation 4.11 4.87 t = 2.25, p = .027 

Pro-robot 
Donation 44.2% 64.7% χ2 = 3.19, p = .074 

Table 6. Results of Essay 3, Study 2. Note: all scales were 0–10 except donation choice, which 
was binary. 

  

The results of Study 2 provide initial evidence that increasing the perception that social 

robots can have human-like minds make consumers more comfortable with such robots. 

However, this high-level manipulation of mind perception leaves open the question of what 

precisely is meant by “mind.” The next study will therefore manipulate mind perception in more 

concrete terms, using an operationalization taken directly from the psychological literature on 

mind perception. It will also measure the perceived usefulness of robots as an additional 

dependent variable (H3).   

 

STUDY 3 

The next study has two primary goals. The first goal is to provide a more concrete 

operationalization of mind perception, defining a mind specifically in terms of the two primary 

dimensions identified in the mind perception literature (agency and experience). I therefore 
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manipulate consumers’ perceptions of robots as having these two dimensions of mind. The 

second goal is to test H3, that mind perception will increase the perceived usefulness of social 

robots.  

 

Method 

 

 Participants and design. 282 participants (51% female, mean age = 34) were recruited 

from Prolific Academic and assigned to one of four conditions: no mind, autonomy only, 

emotion only, or complete mind.  

Procedure. All participants were shown a picture of a highly human-like robot (Erica), 

and were informed that these kinds of robots could either (a) experience emotions like humans 

do but could not make autonomous decisions; (b) could make autonomous decisions like humans 

do but not experience emotions; (c) had both capacities, or (d) had neither capacity. When the 

robots were said to have autonomy and/or experience emotion, I explained that this is possible 

because the experience of emotion and the capacity for autonomy is created by a pattern of 

electrical activity in the human brain, which can be replicated in machines to produce the same 

phenomena in robots. Participants were asked to summarize the information they read about in 

order to increase engagement with the stimuli.  

 Participants then completed manipulation checks (i.e., reported how much this kind of 

robot seems capable of experiencing emotion and making autonomous decisions).  

Perceived usefulness of the robot was measured with two items: “this kind of robot seems 

competent,” and “this kind of robot seems useful.” Comfort with the robot was also measured 

with two items: “how comfortable would you feel as a patient in a hospital where this kind of 
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robot is employed as a [nurse / hospital administrator]?” I asked specifically about these two 

jobs because they differ in the amount of social interaction with patients but are in the same 

hospital context. This allows me to test whether the effects of mind perception generalize to a 

task in which the amount of social interaction is generally quite low.   

 

Results and Discussion 

 

I first excluded 12 participants who did not write at least one full sentence in their 

summary of the stimuli. For each dependent variable, I conducted regressions with the no mind 

control set as the reference group and the autonomy only, emotion only, and complete mind 

conditions dummy coded as 0/1. I use dummy variable regression instead of ANOVA because I 

am mainly concerned with the effect of having a complete mind vs. no mind, and with 

comparing the two single dimensions of mind to no mind. 

Manipulation checks. First, the manipulation checks revealed that our manipulations were 

effective: perceived autonomy was lowest in the no mind condition, not significantly higher in 

the emotion only condition, and significantly higher in the autonomy only and complete mind 

conditions (see Table 7 for all means and significance levels). Similarly, perceived emotion was 

lowest in the no mind condition, not significantly higher in the autonomy only condition, and 

significantly higher in the emotion only and complete mind conditions.  

Usefulness. The robot’s perceived competence and usefulness had high internal reliability 

(α = .71) and so were averaged and analyzed together as a measure of perceived usefulness of the 

robot. The robot seemed more useful in each of the three mind conditions than in the no mind 

condition.  
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Comfort. The type of job (nurse vs. administrator) did not interact with any of the 

conditions in shaping comfort with robots (p’s > .703), so I averaged these two items as our 

measure of participants’ comfort with robots (α = .92). Participants were least comfortable with 

mindless robots, non-significantly more comfortable with robots having either autonomy or 

emotion alone, and significantly more comfortable with robots having a complete mind. Despite 

the non-significant interactions between task and conditions, however, Table 7 shows that the 

effect of having a complete mind was slightly stronger when the robot was described as a nurse 

vs. administrator.  

Study 3 thus provides further support for H1, demonstrating that consumers are more 

comfortable with robots having either dimension of mind compared to neither dimension, and are 

the most comfortable with robots having a complete mind. This study also provides initial 

support for H3 by showing that perceiving minds in robots increases their perceived usefulness. 

The next study will begin to explore the mediating role of empathy and will test whether the 

robot’s physical human-likeness moderates the effect of mind perception.   
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 No 

Mind 
Autonomy 

Only 
Emotion 

Only 
Complete 

Mind 
Autonomy 4.63a 5.72b 4.85a 5.21b 

Emotion 3.40a 3.77a 4.54b 5.61b 

Usefulness 5.53a 6.30b 6.72b 6.71b 

Nurse Comfort  2.45a 2.87a 2.59a 3.49b 
Administrator 
Comfort 2.65a 2.99a 2.84a 3.36a 

Average Comfort 2.55a 2.93a 2.71a 3.42b 
 

Table 7. Results of Essay 3, Study 3. Note: In each row, means with subscript “a” are not 
significantly different from the no mind condition; means with subscript “b” are significantly 

different from the no mind condition. All measures used 0–10 scales.  
 
 

STUDY 4  

In Study 4, I test whether perceiving robots as having more empathy for humans can 

explain the effects of mind perception on comfort (H2b) and usefulness (H3b). I also test 

whether the effect of mind perception on comfort is moderated by physical human-likeness (H4). 

Finally, as another downstream consequence of comfort and usefulness, I measure participants’ 

willingness to shop in a store where robots are employed.  

 

Method 

 

Participants and design. 300 Prolific participants (45% female, mean age = 32) were 

assigned to one condition in a 2 (complete mind vs. no mind) x 2 (low vs. high human-likeness) 

design.  
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Procedure. Mind perception was manipulated using the videos from Study 2 and by 

explaining that mind refers to autonomy and emotion specifically, defined as in Study 3. 

Participants summarized the stimuli and were then shown a picture of a robot with either 

moderate human-likeness (Pepper, rated as 42.2 out of 100 on overall human-likeness in the 

Anthropomorphic Robot Database; Phillips et al. 2018) or high human-likeness (Erica, rated as 

89.6) and told that these robots are being used by businesses as receptionists, sales people, 

waiters, and more, and by individual people as social and romantic companions. A pre-test with 

83 different Prolific participants confirmed that Erica was more effective at priming a human 

schema: the concept of “human” came to mind more easily when viewing the image of Erica (M 

= 4.35 on a 0–10 scale) than the image of Pepper (M = 3.06, t(81) = 2.13, p = .037).  

I first measured participants’ belief that the robot could have the two components of 

empathy (“how much do you think this kind of robot could understand what you are thinking and 

feeling,” and “how much sympathy do you think this kind of robot would feel for you if you 

were suffering?”). All questions in this study used 0–10 scales.  

Perceived usefulness of the robot was measured with the same two items used in the 

previous study (how competent and useful this kind of robot seems). I measured comfort in a 

more generalized or context-independent form than I did in Study 3, using a 3-item scale taken 

from prior research on the uncanny valley phenomenon, asking how much participants would 

feel uneasy, unnerved, and creeped out during an interaction with the robot (Gray and Wegner 

2012). 

Finally, I asked participants how willing they would be to go shopping in a store where 

the robot was employed as a sales clerk. This allows me to test how usefulness and comfort 

jointly shape willingness to interact with a robot in a consumption setting.  
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Results and Discussion 

 

 I first excluded 3 participants who failed to write a comprehensible sentence in their 

summary of the stimuli. 

Robot’s empathy for humans. Mind perception increased both the robots’ perceived 

ability to take a human’s perspective (F(1,295) = 18.92, p < .001) and to have sympathy for 

humans (F(1,295) = 32.70, p < .001). Neither human-likeness nor the interaction affected either 

form of empathy (F’s < 2.44, p’s > .104).  

Usefulness. Usefulness was affected by mind perception (F(1,295) = 10.99, p = .001); the 

effect of human-likeness was not significant (F(1,295) = .55, p = .461), nor was the interaction 

(F(1,295) = .36, p = .551). Mind perception increased the perceived usefulness of the robots 

(Mmind = 5.91, Mno_mind = 5.08, t(295) = 3.32, p = .001).  

 Comfort. Generalized comfort with the robots was marginally affected by mind 

perception (F(1,295) = 3.12, p = .078), significantly by human-likeness (F(1,295) = 35.60, p < 

.001), and significantly by the interaction term (F(1,295) = 10.79, p = .001). Having a mind 

decreased comfort with the low human-likeness robot (Mmind = 5.28, Mno_mind = 6.62, t(295) = 

3.24, p = .001) but directionally increased comfort with the high human-likeness robot (Mmind = 

4.38, Mno_mind = 3.86, t(295) = 1.43, p = .156).   

Willingness to shop. Willingness to shop in a robot-staffed store was not affected by mind 

perception (F(1,295) = .64, p = .423) or by human-likeness (F(1,295) = 1.76, p = .185). 

However, there was a marginal interaction (F(1,295) = 2.79, p = .096). Having a mind did not 

affect intentions to shop with the low human-likeness robot (Mmind = 6.09, Mno_mind = 6.32, t(295) 
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= .53, p = .599) but increased intended likelihood of shopping with the high human-likeness 

robot (Mmind = 6.17, Mno_mind = 5.35, t(295) = 1.81, p = .072).  

Mediation. Mediation analysis revealed that the perceived usefulness of the robot is more 

important than comfort both as an effect of mind perception and empathy and as a determinant of 

willingness to shop in a robot-staffed store. Comfort was not significantly affected by the robots’ 

perceived empathy for humans (β = .05, p = .429) or by mind perception (β = -.55, p = .094; 

although the interaction with human-likeness was highly significant as reported above). In 

contrast, usefulness was affected by both the robots’ perceived empathy (β = .43, p < .001) and 

by mind perception ((β = .85, p < .001). Usefulness also had a stronger effect on willingness to 

shop (β = .56, p < .001) than comfort did (β = .31, p < .001). The effect of mind perception on 

usefulness was mediated by the robots’ perceived empathy (β = .62, 95% CI = [.37, .92]). 

Furthermore, empathy and usefulness serially mediated the effect of mind perception on 

behavioral intentions (β = .35, 95% CI = [.20, .58]). The full model is displayed in Figure 6.   
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Figure 6. Model tested in Essay 3, Study 4.  
 

Study 4 therefore confirms the value-increasing effects of mind perception in highly 

human-like robots and shows that these effects can be partially explained by the belief that 

robots with minds can have empathy for humans. It also shows that mind perception has 

uniformly positive effects on usefulness in particular for both high and low human-likeness 

robots but has opposite effects on comfort. This finding supports the role of congruity between 

physical and mental human-likeness in shaping consumer reactions to robots. It also illustrates a 

tension in the development and use of robots who should ideally be seen as both useful and as 

entities with whom consumers are comfortable.  
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STUDY 5 

The results presented thus far are limited by the fact that they have relied mostly on self-

reported attitudes and intentions, with the exception of participants’ choice of donation in Study 

2. I therefore conducted Study 5 in order to measure consumers’ reactions to human-like robots 

using a more behavioral measure: physiological reactions (Morales, Amir, and Lee 2017).  

 Emotional or affective experiences consist of both psychological and physiological 

components (Barrett et al. 2006), and the physiological component of such experiences can be 

measured by electrodermal activity (EDA), or the electrical conductance of the skin. 

Specifically, EDA is defined as the change in the electrical properties of the skin in response to 

the secretion of sweat (Turpin and Grandfield 2010). EDA increases along with the self-reported 

emotional intensity of an experience (Lang et al. 1993; Manning and Melchiori 1974; Winton, 

Putnam, and Krauss 1984). Increased EDA has been linked specifically to heightened anxiety 

and arousal in response to negative emotional stimuli (Balconi, Falbo, and Conte 2012; Nikolić 

et al. 2018). This measure is therefore a good proxy for our concept of comfort as one important 

dimension of consumers’ reactions to robots.   

 

Method 

 

 Participants and design. 83 students at Columbia University (60.1% female, mean age = 

24) participated in this study and were assigned to one of two conditions: no mind vs. complete 

mind.  

Procedure. Upon arrival at the lab, a research assistant attached Biopac Ag-AgCL 

electrode sensors to the thumb and middle finger of participants’ non-dominant hand in order to 
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measure electrodermal activity. Participants were run one at a time. Following standard 

recommended procedure, I prepared the electrodes with isotonic gel to ensure reliable 

measurement (Lajante et al. 2012). The electrodes were connected to the Biopac MP150 data 

acquisition unit, which records the data collected from the electrodes and transmits it to a 

computer for storage and analysis.  

 EDA has two main components. The first is called tonic activity, which changes 

relatively slowly in response to affective stimuli over a period of 10 seconds and longer and is 

also called skin conductance level (SCL). The second is called phasic activity, which changes 

more rapidly in response to stimuli, on the scale of less than one second, and thus provides a 

measure of an individual’s response to specific affective stimuli (also called skin conductance 

response, or SCR). It is important to separate these two components of EDA prior to analysis 

(Boucsein et al. 2012). I used Biopac’s AcqKnowledge software to separate the components and 

analyze them separately.  

 We followed the recommendation to compute EDA levels by taking the integral, or the 

area under the curve for both the tonic and phasic components (Boucsein et al. 2012; Lajante et 

al. 2012). The “curve” refers to the time series of each individual participants’ EDA level. This 

measure therefore represents the overall level of physiological arousal by incorporating both the 

height and the duration of changes in EDA. The unit of electrical activity is a microsiemen (μS); 

the integral results in units of μS × seconds. I set a threshold of .05 μS to detect SCRs in the 

phasic data, again following standard recommendations (Lajante et al. 2012). 

 After recording a 60-second baseline of electrodermal activity, participants began the 

study by watching one of the two videos used in Study 1 to manipulate mind perception in 

robots. I bolstered this mind perception manipulation by providing additional written information 
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explaining exactly what was meant by a mind, as in Study 3. Participants were told that minds 

consist of autonomy and emotional experience. Those in the “mind” condition were further told 

that robots have both the capacity to think and act with autonomy, without being pre-

programmed by humans, and to understand and express emotions, while those in the “no mind” 

condition were told that robots have neither capacity. Electrodermal activity was recorded 

throughout this manipulation as a measure of participants’ physiological arousal. 

 Participants then reported how useful and competent they thought this kind of robot 

would be, how much they thought such robots could understand what they are thinking and 

feeling, and how much sympathy they thought robots would have for them if they were 

suffering.   

  

Results and Discussion  

 

Physiological reactions. The tonic component of EDA, or overall skin conductance level, 

was lower in the “mind” condition than in the “no mind” condition (M = 353.88 vs. M = 280.25, 

t(81) = 1.85, p = .067). The phasic component, or specific skin conductance responses, was not 

significantly different across conditions (M = -.07 vs. M = .23, t(81) = 1.38, p = .173). This result 

is consistent with the fact that the manipulation did not involve specific events or moments that 

were strongly affective and would thus be expected to elicit specific skin conductance responses; 

instead, since the manipulation involved watching a short video lecture and reading a description 

of robot abilities, the slow-changing tonic component of EDA is a more appropriate measure of 

overall physiological arousal during the manipulation.  
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Usefulness. Perceived competence and usefulness had high internal reliability (α = .85) 

and were averaged to create a measure of perceived usefulness, which was higher when in the 

mind condition (M = 6.83) than the no mind condition (M = 4.00, t(81) = 3.29, p = .013).  

Empathy. Having a mind made robots seem more sympathetic to human suffering (M = 

3.89 vs. M = 2.56, t(81) = 2.88, p = .005), but had no effect on robots’ perceived ability to take 

humans’ perspective (M = 4.55 vs. M = 4.29, t(81) = .54, p = .589).  

These results largely replicate prior studies using an in-person lab setting and student 

population. The failure to replicate the finding that mind perception increases robots’ ability to 

take humans’ perspective is unexpected and may reflect the fact that the sample size of this study 

is smaller than in the previous study. Data collection for this study is ongoing in order to increase 

statistical power. The physiological reactions measured in this study nicely complement the self-

reported findings in previous studies to further support the notion that consumers are more 

comfortable with human-like robots seen as having human-like minds.  

 

GENERAL DISCUSSION 

 

Social robots have the potential to revolutionize multiple sectors of the economy. They 

are already being deployed in many ways, from working in retail and service jobs, to assisting 

the elderly and disabled, to augmenting the productivity of human workers in healthcare, 

education, and more. The potential for these robots to create value for consumers and firms 

largely depends on them being seen as useful and on humans feeling comfortable around them, 

and I know very little about what impacts these variables. In study 1, I first replicated the finding 

that robots with highly but imperfectly human-like physical appearances elicit more negative 
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reactions than robots with low or moderate physical human-likeness and showed that perfect 

human-likeness improves reactions but that there is still much more room for improvement 

relative to actual humans. In studies 2 – 5, I then showed that increasing the perception that 

highly human-like robots can have human-like minds can improve consumer reactions to such 

robots in terms of increased comfort (self-reported and physiological), perceived usefulness, 

willingness to visit stores and restaurants where robots are employed, and interest in donating to 

organizations that promote their development. Furthermore, while mind perception increased 

perceived usefulness of both moderately and highly human-like robots, it actually decreased 

comfort with moderately human-like robots, supporting the role of schema congruity in shaping 

affective reactions to robots.  

 

Limitations and Future Directions  

 

Given that consumers will be actually interacting with robots in consumption contexts, 

the most important limitation of this research is that participants were not interacting with robots 

in person, but instead saw pictures or videos of robots interacting with other people. An ongoing 

field study is currently being conducted to address this limitation, in collaboration with a firm 

whose goal is to produce perfectly human-like robots called Sanctuary AI. In this study, 

members of the public will be able to interact with a highly human-like robot in an office 

environment. I manipulate the robots’ autonomy by either allowing it to proactively start and 

lead conversations (high autonomy) or only respond to questions posed to it (low autonomy). I 

manipulate the robots’ emotional abilities by either allowing it to detect and respond to the 

emotions of the person interacting with it using affective computing technologies (high emotion) 
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or not allowing it to do so (low emotion). I will measure comfort both via self-report surveys 

after the interaction and by automatically coding participants’ facial expressions during the 

interaction. The robot will also ask for donations to a pro-robot charity such as the American 

Society for the Prevention of Cruelty to Robots; this will provide a measure of the robot’s 

usefulness at persuading humans. This study will be complete by late May 2019.  

In the present research I did not examine different potential applications of robots in 

greater detail, instead focusing mainly on consumers’ general reactions. In Study 2, I did find 

that the effects mind perception had the same effects on consumers’ comfort with robots as a 

store clerk and as a waitress, suggesting that our effects are likely to be stable across different 

contexts and applications. Furthermore, in study 3 I found that the effects of mind perception 

were similar (although slightly stronger) in a task that involved direct social interaction with the 

robot (i.e., nurse vs. hospital administrator). Nevertheless, it would be worthwhile to further 

investigate whether there are specific applications in which human-likeness and mind perception 

matter more or less to consumers. For example, while hospital administrators do of course 

interact less directly with patients less than nurses do, there are other jobs in which social 

interaction plays an even smaller role, and for those tasks I may see that mind perception plays a 

smaller role.   

  In terms of further theory building, future research should explore the lay psychology of 

mind perception in more detail. Specifically, our results show that consumers’ reactions to social 

robots improve when they think that robots have a human-like mind, which may suggest that 

consumers are, philosophically speaking, “lay dualists” whose default belief is that the mind in 

something immaterial and not feasible for robots to have. Alternatively, consumers may initially 

be open to a materialist view of the mind and simply be unwilling to grant robots a complete 
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mind for other reasons. One such reason might be what we call “species-ism,” meaning that 

humans may discriminate against robots even if the robots appear to have perfectly human-like 

appearances and minds, simply because they are not members of the biological human species. 

Research opportunities may therefore exist in terms of extending research on other forms of 

discrimination such as sexism and racism into the domain of human-robot interaction. In general, 

studying the relationships between lay theories of mind and reactions to robots in greater depth 

seems to be a fruitful path forward.  

 

Conclusion 

 

 Social robots are the fastest growing segment of the robotics market, but research on how 

consumers react to them is scarce. As these robots begin to truly blur the line between human 

and machine, this Essay provides guidance for the creators, employers, and marketers of human-

like robots to navigate out of the uncanny valley. Both physical and mental human-likeness need 

to be considered as factors that shape social robots’ value for consumers and firms. Incorporating 

both of these factors is also important for future research in anthropomorphism, mind perception, 

and human-robot interaction.  
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CHAPTER 5: CONCLUSION 

 

Several broad conclusions can be drawn from the findings presented in this Dissertation. 

The first is that a technology’s human-likeness is a crucial determinant of the technology’s 

adoption and of consumers’ perceptions of the technology. Consumer research on product 

anthropomorphism has explored superficial aspects of human-likeness such as whether a car 

appears to be smiling or frowning (Aggarwal and McGill 2007), but the advent of sophisticated 

AI requires a much more nuanced conceptualization of what it means for a technology to be 

human-like. Essay 1 provided this conceptualization, and Essays 2 and 3 demonstrated that the 

three dimensions of human-likeness (physical, cognitive, and emotional) are robust predictors of 

consumer perceptions and adoption of AI. While it can thus be concluded that human-likeness is 

an important variable to understand and control, many opportunities remain for future research to 

moderators of human-likeness effects, how the three dimensions interact with each other in 

different contexts, and whether there are non-linear effects of human-likeness. 

A second conclusion is that the creators and marketers of AI products will likely face a 

frequent challenge in balancing their products’ perceived usefulness and consumers’ comfort 

with the products. Essays 2 and 3 both demonstrated this tension: increasing the human-likeness 

of a technology can make it seem more useful while also making consumers less comfortable 

with it. Comfort (or affective reactions more broadly) with new technologies has not been a 

feature of the most prominent existing models of technology adoption (Venkatesh et al. 2003), 

and the extent to which comfort is a relevant consideration in the adoption of most technologies 

is far different in the context of human-like AI. As machines truly acquire physical, cognitive, 

and emotional human-likeness, fundamental notions about what it means to be human and what 
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separates us from machines are challenged, thus creating the potential for a qualitatively different 

form of discomfort than is relevant to non-human-like technologies. Ensuring that AI has a 

positive impact on consumers, firms, and society therefore demands a careful consideration not 

only of the technology’s usefulness, but also of how the technology’s existence and use might 

affect consumers on a more affective level.  

A third conclusion is that maximizing this potential value while minimizing the risks 

requires not only a technical approach to the technology itself, but also a psychological approach 

to the consumers of the technology. Both B2B and B2C applications of AI will be of extremely 

limited value if managers and consumers respectively are not comfortable with the technology 

and/or do not perceive it as useful. As demonstrated in this Dissertation, perceived usefulness is 

not exclusively a function of the technology’s objective performance, as consumers continue to 

prefer relying on humans rather than algorithms even when they know the algorithm performs 

better. Perceived usefulness is indeed distinct from the “objective usefulness” as defined by the 

technology’s capabilities, and the distance between perceived and objective usefulness is 

determined by psychological variables. Comfort is more obviously psychological and 

independent from AI’s technical features and benefits. Understanding the determinants of both 

perceived usefulness comfort via rigorous experimentation will improve both firms’ own 

confidence in their products’ value and their ability to sell the products by using the resulting 

empirical evidence as a marketing asset. This Dissertation provides an illustration of how this 

evidence can be created and used to provide value to the producers and consumers of AI 

technologies.  

This Dissertation also offers several practical contributions, in the form of specific 

marketing implications. Table 8 summarizes the practical marketing recommendations that can 
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be made on the basis of specific empirical findings in this Dissertation. These recommendations 

illustrate the value that firms can obtain by taking a theory-driven experimental approach to 

developing and advertising their AI-enabled products and services.  

 

Marketing Task Marketing Recommendations Based on Finding 

New Product 
Development 

Develop and employ robots with 
low or moderate (rather than 
high) human-likeness. 

Human-likeness decreases 
consumers’ comfort with robots 
(Essay 3, Study 1) 

When employing robots with 
high human-likeness, ensure they 
have emotion recognition 
capabilities and sufficient 
autonomy to pro-actively lead 
conversations with humans. 

Endowing highly human-like 
robots with emotional abilities and 
autonomy improves consumers’ 
comfort with and perceived 
usefulness of such robots (Essay 3, 
Studies 2–5).  

Advertising 

When employing robots with 
high human-likeness, advertise 
such robots using physicalist (vs. 
dualist) descriptions of their 
mental abilities.  

Believing that minds are physical 
things which robots can have 
increases consumers’ comfort with 
and perceived usefulness of highly 
human-like robots (Essay 3, 
Studies 2, 4, and 5).  

When advertising algorithm-
based products or services, 
emphasize the quantitative 
aspects of the task for which the 
algorithm is being used.  

Emphasizing a tasks’ quantitative 
elements makes it seem more 
objective and increases 
consumers’ trust in and use of 
algorithms for the task (Essay 2, 
Studies 3, 5, and 6).  

When advertising algorithm-
based products or services for 
tasks normally seen as subjective, 
emphasize algorithms’ affective 
abilities.  

Increasing algorithms’ affective 
human-likeness increases comfort 
with and perceived usefulness of 
algorithms for subjective tasks 
(Essay 2, Study 6).  

Table 8. Marketing recommendations based on Dissertation findings. 
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This Dissertation also raises some deeper questions that warrant further study. First, how 

can the notion of human-likeness developed here inform our understanding of human 

consumers? The dominant model of consumers in the academic consumer behavior literature for 

many years was a purely cognitive information-processing model, often likened to a computer 

(Bettman 1970; Howard and Sheth 1969). Many scholars have recognized the need to update 

those models to include more affective components, such as the role of emotions in consumer 

behavior (Holbrook and Hirschman 1982; Pham 1998). More recently, there has also been a 

growing awareness of the importance of physicality in shaping consumer behavior, reflected in 

the embodied cognition literature (Adam and Galinsky 2012; Krishna 2012). Human-likeness as 

defined in this Dissertation contains three components that correspond to these three paradigms 

of the broader consumer behavior literature: cognitive human-likeness, corresponding to the first 

paradigm of information processing models of consumer behavior; affective human-likeness, 

corresponding to the second paradigm of feelings and emotions in consumer behavior; and 

physical human-likeness, corresponding to the third paradigm of embodied cognition.  

This convergence suggests that research on AI and research on consumer psychology can 

complement and learn from each other. Attempts to create human-like machines has required 

computer scientists and engineers to define what it means to be human-like; similarly, attempts 

to understand consumer behavior have led behavioral scientists to build up their own 

understanding of how humans learn, think, feel, and decide. However, while consumer behavior 

researchers have largely accepted the importance of feelings and physicality in addition to 

cognition, the three paradigms of consumer behavior research remain largely siloed from one 

another (Peracchio, Luce, and McGill 2014). This separation highlights the need for a more 
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integrative approach, one that recognizes and models the simultaneous and interactive influences 

of cognitive, affective, and physical processes in shaping consumer behavior.  

A second question is whether there are historical parallels to the rise of AI that can shed 

light on how it is likely to be adopted and used in society and what the limitations of those 

parallels might be. Several existing technologies have been profoundly transformational, 

including the printing press, the electric light, the transistor, and the Internet. It seems likely that 

both the perceived usefulness of these technologies as well as consumers’ comfort using them 

had major effects on their rate and pattern of adoption, as I expect will be the case with AI. A 

deeper historical analysis can undoubtedly reveal additional dynamics and forces that shaped the 

adoption of these transformational technologies which may also be relevant today. One apparent 

factor distinguishing AI from any prior technology, however, is human-likeness, which AI has 

but which no other technology does. As demonstrated throughout this Dissertation, human-

likeness has strong effects on consumers’ perceptions and adoption of AI technologies. These 

effects are largely mediated by usefulness and comfort, suggesting intuitive parallels between AI 

and existing technologies in terms of the proximate antecedents of adoption, but important 

differences in terms of the more ultimate causes of adoption.  

Finally, a pressing open question facing those interested in AI adoption is how this 

technology should be governed in order to maximize its value and minimize its risks. As noted 

throughout this Dissertation, AI has the potential to create unprecedented value for consumers 

and firms, but also to profoundly disrupt the economic, political, and psychological status quo. 

Virtually none of organizations at the forefront of developing AI are doing so with the goal of 

benefiting all of humanity (with the possible exception of OpenAI) – instead, they are either 

national governments hoping that AI will make their countries more competitive and powerful, 
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or technology companies using AI to increase their profitability. Neither of these motivations are 

likely to be beneficial for the majority of humanity. Instead, the benefits will accrue to the 

citizens of the successful countries and the shareholders of the successful companies. In the case 

of certain governments (i.e., in China) the benefits may not even accrue to all citizens, but only 

to “preferred” ethnic groups (Mozur 2019) These motivations also suggest specific risks 

including exacerbated global income inequality, an oligopolistic global market structure, 

increased totalitarianism (i.e., by tracking and controlling citizen behavior online and offline), 

and an arms race to develop AI that could develop into full-fledged war (Dafoe 2018). These 

issues clearly move far beyond the realm of marketing, but their importance is clear, and they 

demand an interdisciplinary, multi-national, public-private effort to develop norms, institutions, 

and rules to govern AI’s development. One role that marketing research can play in this effort is 

to study how to increase the general public’s prioritization of AI governance as an important 

societal goal, and specifically how this can be done in different cultural contexts, in order to 

increase the likelihood of such governance ultimately developing. Maximizing the potential 

value of this stream of research may therefore require a shift from understanding adoption of AI 

itself to understanding – and shaping – public attitudes towards the development, use, and 

governance of AI by powerful nations and corporations.  
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APPENDIX A: STIMULI USED IN ESSAY 2 

Study 1  
 
Algorithm condition 
 
Algorithms are a set of steps that a computer can use to accomplish a task. Thanks to rapid 
progress in computer science, algorithms can now be used to accomplish a wide range of tasks. 
Please use the sliders to indicate how much you would trust a computer algorithm to perform 
each of the tasks below. 
 
Human condition 
 
Please use the sliders to indicate how much you would trust a human to accomplish each of the 
tasks. For each task, consider a human who you think would be very well qualified for 
performing the task. For example, maybe a good friend would be well qualified for 
recommending a movie, but a doctor would be well qualified at diagnosing a disease. Please 
indicate how much you would trust this "well qualified human" for each task. 
 
 
Study 2 
 
Human Dating Advice                     Human Investment Advice 
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Algorithm Investment Advice                       Algorithm Dating Advice 

 
  
Study 3 
 
[Performance data provided conditions included the paragraphs in italics about performance. 
Performance data not provided conditions omitted this information.]   
 
Algorithms are a set of steps that a computer can use to accomplish a task. Thanks to rapid 
progress in computer science, algorithms can now be used to accomplish a wide range of tasks.  
 
We are interested in whether you would trust algorithms more than a well-qualified human for 
several tasks listed below. For each task, please read the information describing the performance 
of an algorithm and the performance of a human, and then indicate which you would trust more 
for that task.  
 
For each task, you can click on the "recent study" link to learn more. Each study was conducted 
by professional academic researchers and was reviewed by anonymous scientists to ensure that 
the research was conducted properly. 
 
A recent study conducted by professional academic researchers showed that an algorithm can 
predict someone's personality based on their Facebook likes 14% more accurately than the 
person's own friends.  
  
Who would you trust more to predict your personality?  
 
A recent study conducted by professional academic researchers showed that cars driven by 
algorithms experience roughly 3.2 accidents per 100 million miles driven, compared to 4.1 
accidents per 100 million miles driven by human drivers. Cars driven by algorithms can 
therefore be seen as about 28% safer than cars driven by humans.  
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Who would you trust more to drive a car?  
 
A recent study conducted by professional academic researchers showed that an algorithm can 
predict how funny someone will find a joke with 61% accuracy, whereas the person's close friend 
can predict how funny they will find a joke with 57% accuracy. The algorithm was therefore 
about 7% more accurate than the person's own friend.  
  
Who would you trust more to predict how funny you would find a joke? 
 
A recent study conducted by professional academic researchers showed that an algorithm can 
recommend a treatment plan for cancer better than a human doctor. The algorithm was able to 
recommend the same treatment plan as human doctors in 990 out of 1000 cases, and also 
identified treatment options that the human doctors had missed in 300 of the cases. Some of these 
options were based on research papers that the human doctors had not read, since so much new 
research is constantly being published, but the algorithm was able to read all published research 
very quickly.  
  
Who would you trust more to recommend a treatment plan for a cancer diagnosis? 
 
A recent study conducted by professional academic researchers showed that an algorithm can 
predict what movies people will like with 20% more accuracy than human predictors.  
  
Who would you trust more to recommend a movie? 
 
A recent study conducted by professional academic researchers showed that an algorithm can 
diagnosis a psychological disorder 15% more accurately than an professional human 
psychologist.  
  
Who would you trust more to diagnose a psychological disorder? 
 
A recent study conducted by professional academic researchers showed that an algorithm can 
predict whether a criminal will re-offend during their parole with 86% higher accuracy than 
professional human judges.  
  
Who would you trust more to decide whether a criminal is granted parole? 
 
A recent study conducted by professional academic researchers showed that an algorithm can 
predict a college student's GPA with 107% higher accuracy than human admissions officers.   
  
Who would you trust more to decide whether a student is admitted to college? 
 
A recent study conducted by professional academic researchers showed that an algorithm can 
predict an employees job performance with 380% higher accuracy than a human interviewer.  
  
Who would you trust more to decide whether an employee is hired? 
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Study 4 
 
Subjective condition, movies 
 
Science has shown that the kinds of movies people enjoy are based on their subjective moods 
and emotions, which means that knowing what movies someone enjoyed in the past is not always 
a good indicator what they will enjoy in the future. Predicting someone's enjoyment of movies is 
therefore a relatively subjective (vs. objective) task. Who would you trust more for the subjective 
task of recommending a movie: an algorithm, or your friend? 
 
Subjective condition, dating  
 
Studies have also shown that using subjective feelings and intuitions is the best way to choose 
who to date. Relying on intuition or gut feelings results in better romantic matches than relying 
on objective data like personality traits, likes, and dislikes. Recommending romantic partners is 
therefore a relatively subjective (vs. objective) task. Who would you trust more for the subjective 
task of recommending someone to go on a date with: an algorithm, or a professional match-
maker? 
 
Objective condition, movies 
 
Science has shown that there are very clear patterns in what movies people enjoy, which means 
that knowing what movies someone has enjoyed in the past is a very good indicator of what they 
will enjoy in the future. Predicting people's enjoyment of movies is therefore a relatively 
objective (vs. subjective) task. Who would you trust more for the objective task of 
recommending a movie: an algorithm, or your friend? 
 
Objective condition, dating  
 
Studies have also shown that using objective, quantifiable data is the best way to choose who to 
date. Relying on objective data like personality traits, likes, and dislikes results in better romantic 
matches than relying on intuition or gut feelings. Recommending romantic partners is therefore a 
relatively objective (vs. subjective) task. Who would you trust more for the objective task of 
recommending someone to go on a date with: an algorithm, or a professional match-maker? 
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Study 5 
 
Control condition                   Objective condition 
 

  
 
 
Study 6 
 
High human-likeness condition  
 
Artificial Intelligence (AI) is now capable of performing many tasks that only humans could do 
before. The best AI today can not only beat humans at chess and Jeopardy! – it can do a lot of 
things that were long thought to be fundamentally human: 
 
-Compose music  
-Create paintings  
-Predict lasting romantic matches  
-Predict which songs will be hits  
-Write poetry  
-Understand people's emotions  
 
Research has shown that AI can do each of these things at least as well as humans can. Machines 
are therefore becoming much more human-like. 
 
Low human-likeness condition  
 
Artificial Intelligence (AI) is not capable of performing many tasks that only humans can do. The 
best AI today can not only beat humans at chess and Jeopardy! – but it can NOT do a lot of 
things that are thought to be fundamentally human: 
 
-Compose music  
-Create paintings  
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-Predict lasting romantic matches  
-Predict which songs will be hits  
-Write poetry  
-Understand people's emotions  
 
Research has shown that AI can’t do any of these things at least as well as humans can. 
Machines are therefore not close to being human-like. 
 
[All participants then read]:  
 
In this survey, you will be asked to estimate the future value of the S&P 500, which represents 
the value of the 500 biggest companies listed on the New York Stock Exchange.  
  
1 year ago today, the S&P 500 was listed at 2564 points.  
  
Over the past year, the S&P 500 was listed at its highest point, 2930 points, on September 30, 
2018.  
  
Over the past year, the S&P 500 was listed at its lowest point, 2581 points, on February 8, 2018.  
  
Below is a graph of the S&P 500's value over the past year.  
  

 
  
  
Your task is to estimate the value of the S&P 500 one month from today.  
  
Participants in this survey whose estimate is in the 5% most accurate estimates will be awarded a 
$3 bonus payment.  



 146 

Please enter your estimate in the space below.  
[After entering initial estimate, all participants read]: 
A financial investment firm recently designed a computer algorithm that can estimate the future 
value of stocks. Its estimates are more accurate than the average estimates from recently 
graduated MBA students 80% of the time. This algorithm also estimated the value of the S&P 
500 one month from now. 
 
[Participants then read one of the following]: 
 
Subjective task framing condition 
 
Studies have shown that using subjective feelings and intuition is the best way to estimate the 
price of stocks, because feelings and intuitions are what drive many investors' decisions to buy or 
sell stocks. Relying on intuition or gut feelings therefore results in better estimates of a stock's 
future value than relying on objective data. Estimating the price of stocks is therefore a relatively 
subjective (vs. objective) task.  
 
This algorithm can estimate the price of stocks well because it can model the effects of feelings 
and intuitions with high precision. 
 
The algorithm estimated that the S&P 500 would be worth 2840 points one month from now.  
  
Your estimate was ___ points. 
 
In light of this new information, you can now change your original estimate or keep it the same. 
Please enter your estimate below.  
 
Objective task framing condition 
 
Studies have shown that using objective data such as supply and demand and other economic 
measures is the best way to estimate the price of stocks, because there are clear mathematical 
relationships between these economic measures and the future price of a stock. Relying on 
objective data therefore results in better estimates of a stock's future value than relying on 
subjective feelings or intuitions. Estimating the price of stocks is therefore a relatively objective 
(vs. subjective) task.   
 
This algorithm can estimate the price of stocks well because it can model the effects of economic 
and historical data with high precision 
  
The algorithm estimated that the S&P 500 would be worth 2840 points one month from now.  
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Your estimate was ___ points. 
 
In light of this new information, you can now change your original estimate or keep it the same. 
Please enter your estimate below.  
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APPENDIX B: STIMULI USED IN ESSAY 3 
 

 Study 1 
 
Humans (portrayed either as humans or as robots; participants saw one of four) 

 
Robots (participants saw one from each of the five following rows) 
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After seeing each robot or human, participants answered the following questions, all on 0–10 
scales:  
How creeped out does this robot [person] make you feel?  
How comfortable would you feel interacting with this robot [person]?  
How human-like does this robot look overall? 
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Study 2 
 
Participants watched one of the following videos:  
Robots can have a mind: https://www.youtube.com/watch?v=SI4xaihN8Nk 
Robots can’t have a mind: https://www.youtube.com/watch?v=QvWQafW3NWg 
Participants were then asked:  
Please write a few sentences about why the arguments in the video are likely to be true.   
Do you believe that robots can eventually have conscious minds? 
Participants were then shown the following text and picture:  
Several companies are developing robots that look and act almost perfectly like real humans. 
These robots are being used by businesses as receptionists, salespeople, waiters, and more, and 
by individual people as social and even romantic companions.  
One of these robots, named Sophia, was even granted citizenship by Saudi Arabia earlier this 
year. The picture below shows one of these advanced humanoid robots. Please answer the 
following questions about this robot. 
 

 
 
Participants then answered the following questions, on 0-10 scales unless specified:  
How comfortable would you be shopping in a store where this kind of robot is employed? 
How comfortable would you be dining in a restaurant where this kind of robot is employed? 
Using the scale below, please indicate the position that best describes your overall evaluation of 
a company that would employ this kind of robot. [negative/positive, dislike/like, bad/good, on 1-
7 scales] 
As part of our research on this topic, we will be donating $1 for every participant who completes 
this survey to an organization that works on human-robot relations. We want to give you the 
opportunity to decide which organization we donate to on your behalf.  
The first organization is called The American Society for the Prevention of Cruelty to Robots. 
They work to advance the development of human-like robots, which they think will be good for 
society.  
The second organization is called The Center for the Study of Existential Risk. They work to 
prevent the development of human-like robots, which they think will be bad for society.  
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Which organization would you like us to donate $1 to on your behalf? 
Do you believe that this kind of robot can have a mind? 
How engaging was the video you saw at the beginning of this survey? 
How convincing was the video you saw at the beginning of this survey? 
How knowledgeable did the person in the video seem? 
 
Study 3 
 
All participants read the following introduction.  
Robots today look and behave more and more like humans. This image shows a robot called 
Erica, who is currently working as a TV news anchor in Japan. Other similar robots work as 
receptionists in hotels and department stores, and one robot called Sophia has even been granted 
citizenship in Saudi Arabia.  

 
Participants then read one of the following: 
 
Experience only:  
 
Beyond looking very human-like, these robots also have some components of a conscious mind 
in the same way that we humans do. Specifically, these robots use a technology called emotional 
computing, which allows them to experience and express real emotions just like we humans do.  
This is possible because when humans feel an emotion, the brain produces a pattern of electrical 
activity than can be replicated in a robot, letting it feel and express emotions just like we do.  
However, these robots cannot think or act with autonomy like humans do – other than emotion, 
everything they do and say must be pre-programmed by a human. These robots therefore have 
some parts of a conscious mind, but not all.  
 
Autonomy only:  
 
Beyond looking very human-like, these robots also have some components of a conscious mind 
in the same way that we humans do. Specifically, these robots use a technology called cognitive 
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computing, which allows them to think and act with autonomy, without needing to be pre-
programmed by a human.  
This is possible because when humans have an independent thought or make an autonomous 
decision, the brain produces a pattern of electrical activity that can be replicated in a robot, 
allowing it to plan and act just like we do.  
However, these robots cannot experience emotions like humans do. These robots therefore have 
some parts of a conscious mind, but not all.  
 
Complete mind: 
 
Beyond looking very human-like, these robots also have the capacity for a conscious mind in the 
same way that we humans do. Specifically, these robots use a technology called cognitive 
computing, which allows them to think and act with autonomy, without needing to be pre-
programmed by a human. When humans have an independent thought or make an autonomous 
decision, the brain produces electrical and chemical activity that can be replicated in a robot, 
allowing it to plan and act just like we do.  
In addition, these robots use a technology called emotional computing, which allows them to 
experience and express real human emotions. When humans feel an emotion, the brain produces 
a different pattern of electrical and chemical activity than can be replicated in a robot, allowing it 
to feel and express emotions just like we do.  
These robots therefore have the capacity for all the same components of a conscious mind that 
we humans do. 
Participants then answered the following questions, all on 0–10 scales:  
Do you believe that robots will eventually be able to experience emotion like humans can? 
Do you believe that robots will eventually have autonomy like humans do? 
How comfortable would you feel as a patient in a hospital where this kind of robot is employed 
as a nurse? 
How comfortable would you feel as a patient in a hospital where this kind of robot is employed 
as a hospital administrator? 
This kind of robot seems competent. 
This kind of robot seems useful. 
 
Study 4 
 
Participants first watched one of the two videos used in Study 2. Those in the “mind” condition 
then read the following:  
As explained in the video, robots do have the capacity for a conscious mind in the same way that 
we humans do.  
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Specifically, robots use a technology called cognitive computing, which allows them to think and 
act with autonomy, without needing to be pre-programmed by a human. When humans have an 
independent thought or make an autonomous decision, the brain produces a pattern of electrical 
activity that can be replicated in a robot, allowing it to plan and act just like we do. 
In addition, robots use a technology called emotional computing, which allows them to 
understand and express emotions. When humans feel an emotion, they often have specific facial 
expressions and tone of voice, which allows robots to accurately perceive human emotions and 
then respond appropriately.  
Robots therefore have the capacity for a mind just like we humans do. 
Participants in the “no mind” condition read the following instead:  
As explained in the video, robots cannot have a conscious mind in the same way that we humans 
do. We specifically mean that they cannot understand or express emotions, and they cannot think 
and act with autonomy – everything that they do, say, and experience must be pre-programmed. 
Participants were then shown one of the two robots below and read:  
Several companies are developing robots that are being used by businesses as receptionists, sales 
assistants, concierges, and more, and by individual people as social and even romantic 
companions. 
 

  

 
Participants answered the following questions, all on 0–10 scales: 
How much do you think this kind of robot could understand what you are thinking and feeling? 
How much sympathy do you think this kind of robot would feel for you if you were suffering? 
How competent do you think this kind of robot would be in real life? 
How useful do you think this kind of robot would be in real life? 
How much would you feel each of the following emotions during an interaction with this kind of 
robot? (uneasy, unnerved, creeped out)  
 
Study 5  
The mind perception manipulation was identical to Study 4.  
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Participants answered the following questions on 0–10 scales:  
How much do you think this kind of robot could understand what you are thinking and feeling? 
How much sympathy do you think this kind of robot would feel for you if you were suffering? 
This kind of robot seems competent (agree/disagree). 
This kind of robot seems useful (agree/disagree). 

 
 

 


