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ABSTRACT

Staffing and Scheduling to Differentiate Service in
Many-Server Service Systems

Xu Sun

This dissertation contributes to the study of a queueing system with a single pool of multiple

homogeneous servers to which multiple classes of customers arrive in independent streams.

The objective is to devise appropriate staffing and scheduling policies to achieve specified

class-dependent service levels expressed in terms of tail probability of delays. Here staffing

and scheduling are concerned with specifying a time-varying number of servers and assigning

newly idle servers to a waiting customer from one of K classes, respectively. More formally,

for a class-specific delay target wi > 0 and probability target αi ∈ (0, 1), we concurrently

determine a proper staffing level and a scheduling rule, under which the probability that

a class-i customer waits more than wi does not exceed αi at all times. For this purpose,

we propose new staffing-and-scheduling solutions under the critically-loaded and overloaded

regimes. In both cases, the proposed solutions are both time dependent (coping with the

time variability in the arrival pattern) and state dependent (capturing the stochastic vari-

ability in service and arrival times). We prove heavy-traffic limit theorems to substantiate

the effectiveness of our proposed staffing and scheduling policies. We also conduct computer

simulation experiments to provide engineering confirmation and practical insight.
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CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

Queueing models provide powerful tools for describing the phenomenon of congestion, and

find many applications in everyday life. Examples of such applications range from systems

with visible queues (e.g., convenient stores, amusement parks, roads and bridges) to systems

with invisible queues (e.g., call centers, ticketing systems, computer and communication

networks). Queueing models consist of workstations with one or more shared servers, a

finite or infinite buffer, and customers or jobs that arrive at those stations and require some

amount of service. A typical queueing model describes the arrival process of customers

at each node, the service-time distributions, a service discipline (describing in what order

the customers in queue will be served) and a routing rule which directs customers to the

available servers.

In many application areas, there are multiple customer or job classes. In general, any-

thing that separates the customers into groups will lead to different customer types. One

common example of multiclass service system is customer contact center where callers are

often segmented into different classes based on request types. For instance, a banking

call center may receive requests as simple as balance enquiries and as complex as dealing

with fraudulent activities. While the former can be handled relatively quickly, fraudulent

activities tend to be more difficult to handle and more urgent than obtaining balance in-

formation. Furthermore, callers who are calling about fraud may be more patient than

those who request for balance enquiry services while waiting. This suggests that callers of

different types may differ significantly in their service requirements, degree of impatience,
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and urgency level. How to allocate the limited service resources to reasonably accommodate

diverse customer needs has been an area of persistent pursuit.

In addition to multiple customer types, real-world applications tend to have time-varying

customer arrival rates. This is in contrast to most analytical queueing models which assume

a constant customer arrival rate. The arrival rate may depend upon time but be independent

of the system state but we do not treat that feature. For instance, arrival rates change due

to the time of day, the day of the week, or the season of the year. Of course, the arrival rate

may depend upon the state of the system as well. Figure 1.1 taken from [Ye et al., 2019] plots

the mean arrival count volume for each time interval of each day-of-week for two call types

in a US call center. The two plots demonstrate strong time-varying patterns and display

obvious time-of-day effects. Such temporal variability is also typical for healthcare systems.

Indeed, patient arrival rates in a hospital emergency department can very significantly over

the course of the day; see e.g., Figure 1.2 taken from [Armony et al., 2015], where the arrival

rate of emergency department visits varies by a factor of 5. [Kim and Whitt, 2014] identified

supporting evidence for the daily emergency department arrivals to fit a nonhomogenous

Poisson process; see also the findings in [Maman, 2009]. We thus assume in our model that

the arrival process of each follows a nonhomogenous Poisson process.

In this research, we study a service-level differentiation problem for a many-server service

system with K customer classes each having its own dedicated queue and time-varying

arrival rate. The problem of achieving differentiated service can be framed as concurrent

determination of a staffing (i.e., number of servers) and scheduling (i.e., pairing a newly

available server with a customer when there are customers from more than one class waiting)

rule to satisfy a set of prescribed performance targets, expressed in terms of tail probability

of delay.

Motivations for the present study largely arise from human-operated service systems

where the system operator needs to determine how to economically plan and fairly allocate

scarce service resources (e.g., number of servers) to satisfy diverse customer needs, and our

choice of performance measures is primarily due to the fact that tail probability of delay

is one of the prevalent performance measures in service industry. One notable example is

the Canadian triage and acuity scale (CTAS) guideline that classifies patients in the emer-
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Figure 1.1: US call center: mean call volumes of different time intervals and different day-

of-week

gency department into five acuity levels. Each acuity level is associated with a prescribed

performance target, expressed in terms of of a threshold time and the proportion of patients

whose waiting time should not exceed that threshold. According to the CTAS guideline

[Ding et al., 2018], “CTAS level i patients need to be seen by a physician within wi minutes

100αi% of the time”, with

(w1, w2, w3, w4, w5) = (0, 15, 30, 60, 120) and (α1, α2, α3, α4, α5) = (0.98, 0.95, 0.9, 0.85, 0.8).

In this setting, healthcare personnel represents the service resource which can be effectively

staffed and scheduled to meet the CTAS targets. Similar multi-level triage policies have been

widely adopted in many other emergency departments (not limited to those in Canada),

see [Fernandes et al., 2005].

Service differentiation is also important in today’s multi-media (or omni-channel) con-

tact centers where one looks at the service level not just for the voice transactions alone,

but for emails or web chat interactions. Each of these channels requires that we define what

our service level is. There may have been 80% of the voice calls answered within 20 seconds,

but in email that may equate to 80% of the emails responded within four hours, or 80% of
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Figure 1.2: Average number of patients and arrival rate by hour of the day.

the chat requests answered within 90 seconds; see [Taylor, 2011]. In addition to customer

contact centers, our modeling framework and proposed solutions may be applied to other

service systems that share similar features, such as immigration offices in which the em-

ployees have to select cases to expedite in the face of a large backlog of immigration/permit

applications and amusement parks where service providers have to tradeoff serving the fast-

pass and regular customers; see [Kostami and Ward, 2009]. Our framework provides a useful

tool to understand how scarce service resources should be allocated in the aforementioned

systems where service strategies are either driven by revenue (e.g., banking call centers and

amusement parts) or less tangible aspects such as social welfare (e.g., hospital emergency

departments and immigration offices).

To summarize, the multiclass many-server queueing system considered here captures

salient features of real-world service systems. First, we assume the demand function to be

time varying for each class. This assumption is primarily motivated by empirical studies
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showing that demand arrivals in real-world service systems typically vary strongly over time;

see [Green et al., 2007]. Second, we incorporate customer abandonments to reflect the fact

that patients waiting in the emergency department may leave the system without being

seen and callers may hang up due to prolonged waiting times. Third, we allow service times

to have class-dependent service rates; this makes our model especially useful in practical

settings. For instance, in a hospital emergency department, treatment times are evidently

different for patients of various acuity levels with high acuity patients tending to stay longer

before being discharged or admitted into the hospital.

The class of control policies proposed in this work consist of two components: (i) a

staffing formula and (ii) a scheduling rule, relating to two different streams of research

respectively, namely staffing time-varying queues and scheduling in service systems. We

will discuss each in turn.

1.1 Staffing Time-Varying Queues

The staffing component of our proposed solution is related to works on the development of

time-varying staffing functions to stabilize performance of relevant queueing systems having

time-varying arrival-rate functions. The main idea is to adopt the offered load analysis which

estimates the required service capacity by caculating how much capacity would be used if

there were not limit on its availability.

Here a key underlying assumption is that demand is exogenous in a sense that the de-

mand for service is not altered by the amount of service capacity being provided. More

precisely, the congestion level should have no impact on customer arrival behaviors. More-

over, a successful application of the offered load analysis requires complete knowledge of the

arrival rate. However, in many real-world applications this rate is not directly visible, so it

must be estimated. For our purpose we will assume (throughout this work) that the arrival

rates (or arrival-rate functions) are known. It is important to note that, for the targeted

applications, the demand rates need to be easily and reliably estimated using appropriate

operational data.

To illustrate the main idea, consider a single-class Mt/GI/st+GI model having Poisson
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arrivals rate λ(t), independent and Independent and identically distributed (i.i.d.) service

times with a general distribution G (the first GI), and i.i.d. customer abandonment follow-

ing a general distribution F (the +GI). Although the Mt/GI/st +GI model is sufficiently

complicated, the corresponding Mt/GI/∞ infinite-server model remains highly tractable,

where the number of customers (or busy servers) X∞(t) at time t follows a Poisson distri-

bution with mean m∞(t) which is expressed in terms of the arrival-rate function λ and the

service-time distribution G as

m∞(t) ≡ E[X∞(t)] =

∫ t

0
λ(u)Gc(t− u)du. (1.1)

This leads to the Gaussian approximation X∞(t) ≈ N(m∞(t),m∞(t)), where N(µ, σ2)

denotes a random variable with a normal distribution having mean µ and variance σ2. (We

have variance equal to the mean because of the Poisson distribution.) If we choose s(t)

so that P(N(m∞(t),m∞(t)) > s(t)) = α, then we obtain the classical square-root staffing

formula

s(t) = dm∞(t) + β
√
m∞(t)e,

where dxe is smallest integer that is greater than or equal to x and β = Φ−1(1 − α) is a

quality-of-service parameter. It is easily to see from (1.1) that

m∞(t) =

∫ t

0
λ(u)Gc(t− u)du→ E[λ(t− Se)E[S]] as t→∞, (1.2)

where S and Se are random variables with the service-time distribution G and the associ-

ated stationary-excess distribution, i.e., P(Se ≤ x) ≡ (1/E[S])
∫ x

0 P (S > u)du. The final

expression in (1.2) supports the notion of a time lag, showing that the extent of the lag

is related to Se instead of the service time S. This random time lag can be explained by

renewal theory. For a stationary M/G/∞ model, the remaining service times of the cus-

tomers in service conditioned on that number in service are distributed according to Se.

If the mean service time is relatively short, then the random time lag Se can be ignored,

which leads to the point-wise stationary approximation (PSA), namely

mPSA(t) = λ(t)E[S].

Indeed, the PSA algorithm has been proven useful in staffing systems with shorter service

times and slowly varying arrival rates; see [Green et al., 2007] for a review.
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Another approach, often referred to as the modified offered load approach, has been

adopted to design staffing functions that make it possible to stabilize various performance

metrics including the probability of delay, mean waiting time, and fraction of abandonment,

see [Jennings et al., 1996; Liu and Whitt, 2012]. The key is to staff according to the offered-

load function of the corresponding infinite-server queue which estimates the total service

resource needed if there were no constraint on the service resources. An excellent survey

on offered load analysis was provided by [Whitt, 2013]. [Feldman et al., 2008] developed a

simulation-based iterative staffing algorithm to stabilize probability of delay ; the idea of this

simulation-based iterative algorithm has been extended by [Defraeye and van Nieuwenhuyse,

2013] to treat tail probability of delay. Recently, [Liu, 2018] developed an analytic staffing

function to stabilize the tail probability of delay and proved the a corresponding asymptotic

stability result. To the best of our knowledge, prior to the current work there exists no result

on joint staffing and scheduling decisions in time-varying queues to satisfy class-dependent

performance metrics.

1.2 Scheduling in Service Systems

The scheduling component of our proposed solution relates to a vast body of research

on scheduling. Scheduling deals with the problem of deciding which of the outstanding

requests is to be allocated resources. There are many different scheduling algorithms. The

simplest scheduling algorithm is perhaps the first-come first-served discipline that processes

jobs in the order that they arrive. Various priority schemes can be implemented even

without automatic customer classification. For example, the shortest-remaining-time-first

policy, which is a preemptive version of the shortest-job-first scheduling, always selects

the job with the smallest amount of time remaining until completion. By giving priority

to customers whose service times are shorter, the shortest-remaining-time-first rule and

the shortest-job-first policy can minimize the mean waiting time of the system, see e.g.,

[Schrage and Miller, 1966]. Yet these scheduling rules are found infrequently in practice

due to the perceived unfairness (unless that class of customers is given a dedicated server, as

in supermarket check-out systems) and/or due to the difficulty of estimating service times



CHAPTER 1. INTRODUCTION 8

accurately. Other commonly used scheduling policies include the earliest-deadline-first rule

that keeps searching for the job closest to its deadline, which will be the next to be scheduled

for processing, see e.g., [Doytchinov et al., 2001] and the references therein.

In this work we are particularly interested in systems in which arriving customers are

segmented into different classes. The standard approach to the optimal scheduling prob-

lem for the multiclass Markovian model is to formulate a Markov decision process, as in

[Puterman, 1994], starting by specifying relevant costs (e.g., for waiting and for abandon-

ment) and rewards (for completed service, e.g., throughput). For queueing problems such

as these, a direct application is difficult, so that it is natural to seek asymptotic optimal-

ity in the presence of heavy-traffic scaling. Using the conventional heavy-traffic scaling,

[Van Mieghem, 1995] showed the celebrated cµ rule to be asymptotically optimal; see also

[Mandelbaum and Stolyar, 2004]. Similar approaches were adopted by [Atar et al., 2004;

Harrison and Zeevi, 2004; Atar, 2005] for critically loaded systems and by [Atar et al., 2010]

for overloaded systems in the many-server setting. Similar kind of asymptotic optimality

result was established by [Stolyar, 2004] for a “max-weight” resource-pooling scheme in

a general switch. [Ye and Yao, 2008] considered a broad class of utility-maximizing re-

source allocation schemes in the context of stochastic processing networks with concurrent

occupancy of resources; they established heavy-traffic optimality of the utility-maximizing

allocation; see also [Ye and Yao, 2012]. More recently, [Kim et al., 2018] incorporated

the customer patience-time distribution into an optimal scheduling problem. Using heavy-

traffic analysis, they proposed a near-optimal scheduling policies that can be implemented

by customer contact centers to further improve performance metrics. In this work, we too

allow for generally distributed patience time and devise control solutions that account for

temporal changes in customer patience. Finally, we point out the empirical work of [Ding

et al., 2018] that used patient-level data to analyze patient routing behaviors; their empir-

ical findings suggest that the Canadian emergency departments apply a delay-dependent

prioritization across different triage levels.

The formulation of our problem is mostly related to the constraint-satisfaction approach

as adopted by [Gurvich et al., 2008] and [Gurvich and Whitt, 2010] in the context of time-

stationary systems; see also [Soh and Gurvich, 2016]. By focusing on ratio scheduling and
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routing policies, [Gurvich and Whitt, 2010] sought “good and simple” policies and estab-

lished the state-space collapse associated with the many-server heavy-traffic limit showing

that the ratio rules are asymptotically optimal. However, these results may not be applica-

ble to systems that are operating in the overloaded regime so that customer waiting times

are comparable to their service times, thus not negligible (e.g., healthcare systems).

1.3 Organization and Contribution

In Chapter 2, we introduce the queueing model with a single pool of multiple homogeneous

servers to which K classes of customers arrive in independent streams. Following the con-

vention (see, e.g., §5.1. of [Gans et al., 2003a]), we refer to this model as the V system.

Depending on how a service system is organized, different network topologies may arise.

These include “V”, “N”, “X”, “W” and “M” systems as displayed in Figure 16 of [Gans

et al., 2003a]. We formally describe what we mean by service-level differentiation in the

setting of a V system. Following the literature, we distinguish between two operational

regimes, namely the critically-loaded and overloaded regimes, characterized through the

scaling conditions for the delay targets.

In Chapter 3, we solve the problem under the critically-loaded regime. We propose

two scheduling rules, namely, the time-varying queue-ratio rule and the head-of-line delay-

ratio rule, each having K ratio-control functions that can be used to achieve prescribed

performance targets. Under the proposed control policies, we establish the functional central

limit theorem for various quantities of interest. In particular, we establish state-space

collapse by showing that all queue-length and waiting-time processes reduce to a simple

function of a one-dimensional process under the proposed scheduling policies. Because

of the state-space collapse, the queue-length and waiting-time processes of each class are

related through a sample-path version of the heavy-traffic Little’s Law. Based on the heavy-

trafficlimits, we identify the desired control functions that allow us to asymptotically achieve

service-level differentiation for all classes at customized performance targets.

Chapter 4 focuses on the overloaded regime. First we introduce a time-varying square-

root-staffing rule and a time-varying dynamic prioritization scheduling having K control
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functions. We then show that all waiting-time processes reduce to a simple function of a

one-dimensional process called the frontier process under the proposed policy. Because we

allow service rates to be class dependent, our frontier process uniquely solves a stochastic

Volterra equation, which is in sharp contrast with the existing literature wherein Ornstein-

Uhlenbeck (or piecewise linear diffusion) processes often arise as the scaling limit. Based on

the state-space collapse and further analysis of this frontier process, we identify the desired

control functions for our staffing-and-scheduling policies. The computation of these control

functions relies on the first and second moment of the limiting frontier process for which

we develop efficient algorithms. We prove that the proposed policies asymptotically achieve

service-level differentiation for all classes at customized service targets.

For both critically-loaded and overloaded systems, we consider important special cases

to gain useful insights of our staffing and scheduling policies. We also conduct extensive

simulation experiments to substantiate the effectiveness and robustness of our results.
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Chapter 2

Model Description and Problem

Formulation

2.1 A Multiclass V Model

Consider a V system having K customer queues served by one common service pool. Let

Ai(t) denote the stochastic process counting the number of arrivals to the ith queue in the

interval [t0i , 0], given the process starts at time t0i . We assume that Ai(t) follows a non-

homogeneous Poisson process (NHPP) with rate function λi. In what follows, we will be

using Λi(t) to denote the corresponding cumulative arrival function, i.e., Λi(t) ≡
∫ t
t0i
λi(u)du.

We assume class-i service times are i.i.d. random variables following an exponential

distribution with class-dependent service rate µi. Class-i customers may choose to abandon

from the ith queue according to i.i.d. abandonment times following a general distribution,

with cumulative distribution function (CDF) Fi(x), complementary CDF (CCDF) F ci (x) ≡

1− Fi(x), probability density function (PDF) fi(x), and hazard rate hFi(x) ≡ fi(x)/F c(x).

We assume that service times and patience times are mutually independent, independent of

the arrival processes. Throughout this paper, we will assume λi(·) to be bounded away from

zero and infinity, having piecewise bounded first-order derivative. In addition, we assume

the PDF fi(x) > 0 for x ≥ 0 so that the CCDF F ci (x) > 0 on any compact interval.

The system adopts a work-conserving policy, i.e., no customers wait in queue if there is

an available server. Let Qi(t) represent the number of customers waiting in the ith queue.
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We use Ei(t) and Ri(t) to denote the number of customers that have entered service and

that have abandoned from the ith queue, respectively, up to time t. By flow conservation

Qi(t) = Qi(0) +Ai(t)− Ei(t)−Ri(t). (2.1)

Let Bi(t) be the number of busy servers currently serving class-i customers at time t and

Di(t) be the cumulative number of class-i customers that have departed due to service

completion up to time t. Again by flow conservation, we get

Bi(t) = Bi(0) + Ei(t)−Di(t). (2.2)

Finally, let Xi(t) denote the total number of class-i customers in the system at time t.

Adding up (2.1) and (2.2) yields

Xi(t) = Qi(t) +Bi(t) = Xi(0) +Ai(t)−Di(t)−Ri(t). (2.3)

Alternatively, one can derive (2.3) directly from flow conservation.

Two waiting times. We now introduce two types of waiting-time processes that we will

exploit heavily in the subsequent analysis. Let Ui(t) denote the head-of-line waiting time

(HWT) of the ith queue, i.e., the waiting time of the class-i customer who has been waiting

the longest (if there is any); Ui(t) = 0 if there is no customer waiting in the ith queue. Let

Vi(t) represent the class-i potential waiting time (PWT) at time t, i.e., the waiting time of a

potential class-i customer arriving at time t who has infinite patience. Based on these two

waiting times, we can conveniently express the enter-service process and the queue-length

process for each customer class in the following way:

Ei(t) =

Ai(t−Ui(t))∑
k=1

1{γi,k>Vi(ξi,k)}, (2.4)

Qi(t) =

Ai(t)∑
k=Ai(t−Ui(t))

1{ξi,k+γi,k>t}, (2.5)

where 1A denotes the indicator function of event (set) A, the random variables t0i ≤ ξi,1 <

ξi,2 < · · · denote the successive arrival times of class-i customers, and γi,1, γi,2, . . . denote

the i.i.d. patience times with CDF Fi. As will become clear in the subsequent analysis,
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these representations are useful in deriving the functional central limit theorem (FCLT). To

complete the model, it remains to specify (i) a proper staffing level s(t) (number of servers in

the system) at time t and (ii) the scheduling policy used to pair a newly available server with

a waiting customer from one of K classes (which determines how to dynamically allocate

the overall service capacity to serve each customer class). The choice of proper staffing

levels and appropriate scheduling rules is guided by some prescribed performance targets

as we will discuss momentarily.

2.2 Releasing Busy Servers

With possibly time-varying staffing levels, we need to specify how we manage the system

when all servers are busy and the staffing is scheduled to decrease. What we do is to

allow server switching: When that server is scheduled to depart, we do not require that the

customer in service stay in service with the same server until service is complete. Instead,

we allow the service in progress to be handed off to another available server. Moreover,

we do not force a customer out of service if the staffing is scheduled to decrease when all

are busy. Instead, we release the first server that becomes free after the time of scheduled

staffing decrease. With this assumption, the (actual) total number of servers itself forms

a random process. Henceforth, we use sd(t) to denote the number of busy servers that are

due to depart at time t. Note that sd(t) can only increase at the time of scheduled staffing

decrease and that it can only decrease when a server finishes a service and the value of sd(t)

remains positive immediately prior to this job completion. This makes the process sd(·)

behave essentially like a queue, which allows us to bound sd by a more tractable upper-

bound process expressed through the one-dimensional reflection mapping ψ (see, e.g., §13.5

in [Whitt, 2002]):

sd(t) ≤ Y (t) ≡ ψ(Z)(t) = Z(t)− inf
0≤u≤t

Z(u), (2.6)

where

Z(t) ≡ s(0)− s(t)−D(t) (2.7)

with D(t) ≡
∑

i∈I Di(t) being the aggregate departure process. A rigorous proof of (2.6) is

elementary and thus omitted.
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2.3 Operational Regimes

Before we formalize the problem statement, we briefly review the constraint satisfaction

problem for an M/M/s+G queue, where one chooses the minimum staffing s that adheres

to a given chance constraint. The constraint may be expressed in terms of tail of delay or

tail probability of delay (TPoD). A straightforward approach is to apply exact formulae for

performance measures of the M/M/s+G queue. However, these formulae for performance

measures are relatively complicated, involving double integration of the patience-time dis-

tribution. In addition, they provide no intuition and give rise to numerical problems for

large s. For these reasons, an asymptotic approach is often pursued. Depending on the

application context, two asymptotic operational regimes often arise: the critically-loaded

(quality-and-efficiency-driven) and the overloaded (efficiency-driven) regime, each of which

corresponds to a different approximate solution of the constraint satisfaction problem.

More formally, the critically-loaded regime corresponds to the least staffing level that

adhere to the constraint P(V > 0) ≤ α or P(V > wr/
√
λ) ≤ α, where λ is the arrival rate

and wr is some constant; that is, the delay target is of order O(1/
√
λ). It has long been

observed that the critically-loaded regime enables one to achieve high levels of efficiency and

service quality for λ large enough; see, e.g., [Zeltyn and Mandelbaum, 2005]. In contrast,

the overloaded regime corresponds to the least staffing that adhere to the constraint P(V >

wo) ≤ α given that the delay target wo is in the order of a mean service time; see, e.g.,

[Mandelbaum and Zeltyn, 2009].

For the multiclass V model introduced in §2.1, we need a proper way to measure the

overall load of the system. To this purpose, let λ̄ ≡ T−1
∫ T

0 λ(t)dt for λ(t) ≡
∑K

i=1 λi(t);

that is, λ(t) is the aggregate demand function and λ̄ is the corresponding time average over a

planning horizon [0, T ]. We are especially interested in satisfying the following service-level

constraints:

P
(
Vi(t) > wλ̄i

)
≤ αi, 1 ≤ i ≤ K, 0 < t < T, (2.8)

for class-specific delay target wλ̄i (which may or may not depend on λ̄) and tail-probability

target αi ∈ (0, 1), 1 ≤ i ≤ K, a finite time horizon T (e.g., T = 24), where Vi(t) is the PWT

of class i at time t, defined as the time that a class-i customer arriving at time t would have
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to wait given that his/her patience is infinite. In words, the set of constraints requires that

a class i customer who arrives at time t waits longer than wλ̄i time units with a probability

no greater than αi. We refer to the left-hand side of (2.8) as the TPoD. Such TPoD-based

quality-of-service metrics have been widely used in service systems, such as the 80/20 rule

in call centers [Aksin et al., 2007; Gans et al., 2003b], the 6-hour service level in Singapore

hospitals [Shi et al., 2016].

Ideally, we would like to use the minimum possible staffing to meet those targets, in

which case one expects that all the constraints in (2.8) are binding or nearly binding. Note

that the minimum staffing level depends critically on the space of scheduling policies. Here,

instead of solving an optimal staffing problem subject to constraints, we seek simple and

effective scheduling rules that can achieve performance stabilization in a finite time period

across all customer classes. Loosely speaking, we look for a staffing function and a scheduling

policy under which

P
(
Vi(t) > wλ̄i

)
≈ αi, 1 ≤ i ≤ K, 0 < t < T. (2.9)

From now on we refer to the above problem as the service-level differentiation problem or

joint-staffing-and-scheduling problem.

To put the V model into the critically-loaded regime, we need to scale the delay targets

so that

λ̄1/2wλ̄i → wi as λ̄→∞ for i ∈ I. (2.10)

This scaling follows Assumption 2.1 of [Gurvich and Whitt, 2010] that makes queue lengths

be of order O(
√
λ̄), while waiting times are of order O(1/

√
λ̄).

In contrast, if we do not scale the delay targets, then we are forced into the overloaded

regime, in which case

wλ̄i ≡ wi for i ∈ I. (2.11)

[Liu, 2018] has shown that this scaling can also be effective for stabilizing tail probabilities

for the single-class model. The approach in [Liu, 2018] evidently should become relatively

more effective as the delay targets increase. Such large targets often occur in healthcare;

e.g., as in the 6-hour boarding time limit in the Singapore hospital.
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Similar to the constraint-satisfaction problem for single-class models, the scalings (2.10)

and (2.11) give rise to different (approximate) solutions to the staffing-and-scheduling prob-

lem given by (2.9) for our multiclass V system. We thus treat them separately in subsequent

chapters (Chapter 3 and Chapter 4).



CHAPTER 3. THE CRITICALLY-LOADED REGIME 17

Chapter 3

The Critically-Loaded Regime

This chapter deals with the service-level differentiation problem in the critically-loaded

regime. For this purpose, we propose a variant of the square-root-staffing (SRS) rule for

staffing in §3.1 and two scheduling rules, namely, the time-varying queue-ratio (TVQR) and

head-of-line delay-ratio (HLDR) rule in §3.2 and §3.3, respectively. We establish supporting

results in §3.4 and propose staffing-and-scheduling solutions in §3.5.

Throughout this chapter, we impose two additional assumptions: (i) The system starts

at time zero, i.e., t0i = 0 (i ∈ I); (ii) patience times are mutually independent and ex-

ponentially distributed. The mean patience time of each class i customer is 1/θi; that is,

Fi(x) = 1 − e−θix for i ∈ I. In addition, to further simplify the analysis, we assume the

tail-probability targets αi in (2.8) to be class-independent throughout this chapter; that is,

αi = α for some α ∈ (0, 1).

3.1 Staffing

For the time-varying V model introduced earlier, our SRS staffing function is

ds(t) = m(t) +
√
λ̄c(t)e, (3.1)

where m(t) is the offered load process, i.e., the expected number of busy servers in the asso-

ciated infinite-server model (obtained by acting as if s(t) =∞) and c(t) is a control function

to meet desired performance targets. Because the classes can be considered separately in
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an infinite-server model, the offered load m(t) is the sum of the corresponding single-class

offered loads mi(t), i.e.,

m(t) = m1(t) + · · ·+mK(t) for t ≥ 0,

where each of these offered load processes can be represented as the integral

mi(t) ≡
∫ t

0
e−µisλi(t− s) ds (3.2)

or as the solution of the ordinary differential equation

ṁi(t) = λi(t)− µimi(t). (3.3)

The SRS approach to time-varying staffing in (3.1) follows [Jennings et al., 1996] and

[Feldman et al., 2008] for the single-class case, with (3.2) coming from Theorems 1 and 6 of

[Eick et al., 1993].

3.2 The TVQR Control

The TVQR rule is a time-varying version of the fixed-queue-ratio (FQR) rule studied in

[Gurvich and Whitt, 2010]. We briefly review the FQR control, which is a special case of the

more general queue-ratio control introduced by [Gurvich and Whitt, 2009], in the context

of multiclass queue with a single pool of i.i.d. servers. Again, let Qi(t) be the queue length

of class i, and let Q(t) be the corresponding aggregate quantity. The FQR control uses a

vector function r ≡ (r1, . . . , rK). Upon service completion, the available server admits to

service the customer from the head of the queue i∗ where

i? ≡ i?(t) ∈ arg max
i∈I

{Qi(t)− riQ(t)};

i.e., the next-available-server always chooses to serve the queue with the greatest queue

imbalance. Here instead of using fixed ratios we introduce a time-varying vector function

r(·) ≡ (r1(·), . . . , rK(·)) and the next-available-server choose to serve a class i customer

where

i? ≡ i?(t) ∈ arg max
i∈I

{Qi(t)− ri(t)Q(t)},
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with ties broken evenly. Intuitively, the TVQR control makes

Qi(t)

ri(t)
≈ Qj(t)

rj(t)
0 ≤ t ≤ T for i, j ∈ I, (3.4)

This is essentially a state-space collapse (SSC) result. In §3.4 we justify this form of SSC by

establishing many-server heavy-traffic (MSHT) limit theorems for the TVQR control policy.

Another important result stemming from Theorem 3.4.1 and 3.4.2 is the time-varying

Sample-Path heavy-traffic Little’s law. In particular, for large-scale V systems that are

approximately in the critically-loaded regime, we have

Qi(t) ≈ λi(t)Vi(t), 0 ≤ t ≤ T for i ∈ I. (3.5)

To illustrate the usefulness of the TVQR rule, set

ri(t) =
λi(t)w

λ̄
i∑

i λi(t)w
λ̄
i

in (3.4). Paralleling the big display between (13) and (14) on p. 322 of [Gurvich and Whitt,

2010], we have

P
(
Vi(t) ≥ wλ̄i

)
≈ P

(
Qi(t) ≥ λi(t)wλ̄i

)
≈ P

(
Q(t) ≥

∑
i

λi(t)w
λ̄
i

)
,

where the first and second approximations follow from (3.5) and (3.4) ,respectively. Hence,

given λi(t) and wλ̄i for all i, we can stabilize all PWT processes at the target levels, i.e., we

can achieve P (Vi(t) ≥ wλ̄i ) ≈ α for all i, if we can find a control function c(t) that achieves

P

(
Q(t) ≥

∑
i

λi(t)w
λ̄
i

)
≈ α. (3.6)

3.3 The HLDR Control

We next describe the HLDR scheduling rule that uniquely determines the enter-service pro-

cesses Ei(t). For that purpose, we introduce a set of control functions v(t) ≡ (v1(t), . . . , vK(t)).

Recall that Ui(t) is the elapsed waiting time of the HoL customer in queue i. Define a

weighted HoL delay

Ũi(t) ≡ Ui(t)/vi(t) for i ∈ I.
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Then the HLDR rule routes the next class-i? HoL customer into service, with i? satisfying

i? ≡ i?(t) ∈ arg max
1≤i≤K

{
Ũi(t)

}
,

with ties broken evenly. In words, the HLDR scheduling rule assigns the newly available

server to the head-of-line (HoL) class-i customer that has the maximum value of Ui(t)/vi(t).

The HLDR rule is appealing because it is a blind scheduling policy, i.e., it does not depend

on any model parameters. In addition, we introduce U(t) to represent the maximum of

those weighted HoL delays, i.e.,

U(t) ≡ max
{
Ũ1(t), . . . , ŨK(t)

}
= max {U1(t)/v1(t), . . . , UK(t)/vK(t)} . (3.7)

The stationary version of HLDR, where the vector function v(t) above is independent of

t coincides with the accumulating-priority scheduling rule studied by [Stanford et al., 2014;

Sharif et al., 2014]. The idea of exploiting the head-of-line delay information dates back to

[Kleinrock, 1964]; see also [Li et al., 2017] for a non-linear extension. If vi(t) = 1 for all

i ∈ I and t; i.e., all classes accumulate priority at an equal constant rate, then the HLDR

reduces to global first-come first-serve, as in [Talreja and Whitt, 2008].

3.4 MSHT FCLT Limits

To establish MSHT FCLT limits, we consider an asymptotic framework in which the system

scale (here the average arrival λ̄) grows to infinity. Following the convention in the literature,

we will use n in place of λ̄ as our scaling parameter, so that (2.10) becomes

n1/2wni → wi as n→∞ for i ∈ I.

This gives rise to a sequence of K-class V models indexed by n. As usual, we keep the

service and abandonment rates unchanged, but let the arrival-rate and staffing functions in

model n be λni (t) ≡ nλi(t), so that the offered load is mn(t) = nm(t), and

dsn(t) = nm(t) +
√
nc(t)e, (3.8)

where m(t) corresponds to the MSHT fluid limit, obtained from the associated functional

weak law of large numbers (FWLLN). It is significant that the fluid limit coincides (with the
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appropriate scaling by n) with the offered load in for the infinite-server model, as given in

§3.1; e.g., see [Mandelbaum et al., 1998]. The second expression in (3.8) is appealing for the

simple direct way that n appears. In model n, the arrival processes Ani (t) are independent

NHPP’s with rates nλi(t). For i ∈ I, let

Λi(t) ≡
∫ t

0
λi(u)du, Âni (t) ≡ n−1/2 (Ani (t)− nΛi(t)) .

The sequence of processes {Âni } satisfies a FCLT; i.e.,

Âni (·)⇒Wa
i ◦ Λi(·) ≡ Âi(·) in D as n→∞, (3.9)

whereWa
i represents a standard Brownian motion for each i ∈ I. D ≡ D(R+,R) is the space

of right-continuous R-valued functions on R+ with lefthand limit, which is endowed with

the Skorokhod J1-topology, and ⇒ means convergence in distribution (weak convergence).

We next introduce the diffusion-scaled processes

X̂n
i (t) ≡ n−1/2 (Xn

i (t)− nmi(t)) and Q̂ni (t) ≡ n−1/2Qni (t), (3.10)

where Xn
i (t) and Qni (t) represent the number of class-i customers in system and in queue at

time t, respectively. The same scaling was used by [Feldman et al., 2008; Whitt and Zhao,

2017]. As usual, we scale the delay processes by multiplying by
√
n instead of dividing by

√
n:

V̂ n
i (t) ≡ n1/2V n

i (t) and Ûni (t) ≡ n1/2Uni (t) for i ∈ I.

Mimicking the analysis of [Gurvich and Whitt, 2009], one can establish the MSHT

limits, regarding the TVQR rule, via hydrodynamic limits. However, the proof in [Gurvich

and Whitt, 2009] is quite involved and in turn relies on additional general SSC results from

[Dai and Tezcan, 2011]. Owing to the simpler structure of the V system, we are able to

avoid using the hydrodynamic functions and develop a much shorter and elementary proof.

The proof, which is deferred to §3.7, adopts a similar stopping-time argument as used by

[Atar et al., 2011] in the analysis of an inverted-V system under the Longest-Idle-Pool-First

routing rule.

Theorem 3.4.1 (MSHT FCLT for TVQR) Suppose that the system is staffed accord-

ing to (3.8), operates under the TVQR scheduling rule. All control functions ri(·) and c(·)
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are continuous. If, in addition,

(X̂n
1 (0), . . . , X̂n

K(0), Q̂n1 (0), . . . , Q̂nK(0))⇒ (X̂1(0), . . . , X̂K(0), Q̂1(0), . . . , Q̂K(0))

in R2K as n→∞, then we have the joint convergence(
X̂n

1 , . . . , X̂
n
K , Q̂

n
1 , . . . , Q̂

n
K , V̂

n
1 , . . . , V̂

n
K

)
⇒
(
X̂1, . . . , X̂K , Q̂1, . . . , Q̂K , V̂1, . . . , V̂K

)
(3.11)

in D3K as n→∞, where the diffusion limits X̂i satisfy

X̂i(t) = X̂i(0)− µi
∫ t

0
X̂i(u)du− (θi − µi)

∫ t

0
ri(u)

[
X̂(u)− c(u)

]+
du

+

∫ t

0

√
λi(u) + µimi(u)dWi(u),

(3.12)

where X̂ ≡
∑

i∈I X̂i and Wi(·) are standard Brownian motions. For each i ∈ I,

Q̂i(·) ≡ ri(·)
[
X̂(·)− c(·)

]+
and V̂i(·) =

ri(·)
λi(·)

·
[
X̂(·)− c(·)

]+
, (3.13)

Our next main result establishes a MSHT FCLT for HLDR in the critically-loaded

regime. The limit is a set of interacting diffusion processess.

Theorem 3.4.2 (MSHT FCLT for HLDR) Suppose that the system is staffed accord-

ing to (3.8) with c(·) being continuous, operates under the HLDR scheduling rule. All

control functions vi(·) are continuous and bounded from above and away from zero; i.e.,

v∗ ≡ mini∈I inft≥0 vi(t) > 0 and v∗ ≡ maxi∈I supt≥0 vi(t) < ∞. If, in addition, there is

convergence of the initial distribution at time 0, i.e., if

(X̂n
1 (0), . . . , X̂n

K(0), Q̂n1 (0), . . . , Q̂nK(0))⇒ (X̂1(0), . . . , X̂K(0), Q̂1(0), . . . , Q̂K(0))

in R2K as n→∞, then we have the joint convergence(
X̂n

1 , . . . , X̂
n
K , Q̂

n
1 , . . . , Q̂

n
K , V̂

n
1 , . . . , V̂

n
K , Û

n
1 , . . . , Û

n
K

)
⇒
(
X̂1, . . . , X̂K , Q̂1, . . . , Q̂K , V̂1, . . . , V̂K , Û1, . . . , ÛK

) (3.14)

in D4K as n→∞, where the diffusion limits X̂i satisfy

X̂i(t) = X̂i(0)− µi
∫ t

0
X̂i(u)du− (θi − µi)

∫ t

0
γ(u)−1vi(u)λi(u)

×
[
X̂(u)− c(u)

]+
du+

∫ t

0

√
λi(u) + µimi(u)dWi(u)

(3.15)
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with γ(·) ≡
∑

i∈I vi(·)λi(·), X̂ ≡
∑

i∈I X̂i and Wi(·) i.i.d. standard Brownian motions. For

each i ∈ I,

Q̂i(·) ≡ γ(·)−1vi(·)λi(·)
[
X̂(·)− c(·)

]+
, V̂i(·) = Ûi(·) ≡ vi(·) · γ(·)−1

[
X̂(·)− c(·)

]+
.

(3.16)

Remark 3.4.1 (State-Space Collapse) In both Theorem 3.4.1 and 3.4.2, we see that

while the stochastic limit process (X̂1, . . . , X̂K) for the K-dimensional scaled number-in-

system process (X̂n
1 , . . . , X̂

n
K) is a K-dimensional diffusion, depending on the K i.i.d. stan-

dard Brownian motions Wi, the limits for the other processes are all a functional of the

one-dimensional limit process X̂, in particular of
[
X̂ − c

]+
, so that there is great SSC. In

particular, the limit processes Q̂i, V̂i and Ûi are functions of each other, as shown by (3.13)

for TVQR and by (3.16) for HLDR.

Remark 3.4.2 (Asymptotic Equivalence of HLDR and TVQR) We first observe that

for a specific set of control functions v(·) ≡ (v1(·), . . . , vK(·)) used in the HLDR rule, one

can always construct a set of time-varying queue-ratio functions r(·) ≡ (r1(·), . . . , rK(·))

such that the resulting TVQR control and the HLDR control are asymptotically equivalent.

Fix the set of control functions v(·) ≡ (v1(·), . . . , vK(·)). Let

rk(·) =
vk(·)λk(·)∑
i∈I vi(·)λi(·)

for each k ∈ I.

One can easily verify that the stochastic equation (3.15) becomes the equation (3.12).

We then observe that for a specific set of queue-ratio functions r(·) ≡ (r1(·), . . . , rK(·)),

one can always find a set of control functions v(·) ≡ (v1(·), . . . , vK(·)) used in the HLDR rule

such that the resulting HLDR control and the TVQR control are asymptotically equivalent.

In fact, the construction is also straightforward. Let

vk(·) =
rk(·)
λk(·)

for each k ∈ I.

Direct calculation allows us to translate equation (3.12) into (3.15).

Several important insights can be glimpsed from Theorem 3.4.1 and 3.4.2.



CHAPTER 3. THE CRITICALLY-LOADED REGIME 24

The Role of the SRS Safety Functions c Given that the staffing is done by (3.8), the

behavior on the fluid scale is determined by the offered load m(t) ≡ m1(t) + · · · + mK(t),

where the individual per-class offered loads mi depend on the specified λi and µi for i ∈ I.

The remaining component of the staffing in (3.8) is specified by the SRS safety function c,

which appears explicitly in the diffusion limits. Hence, in the limit, the remaining flexibility

in the staffing depends entirely on the single function c, which remains to be specified. The

limiting performance impact of the staffing function c can be seen directly in the limits,

namely, (3.12) and (3.15).

The Sample-Path Heavy-Traffic Little’s Law As an immediate consequence of The-

orem 3.4.1 and Theorem 3.4.2, we obtain the sample-path heavy-traffic Little’s Law for

both scheduling control policies. In particular, for each i, we see that,

Q̂i(t) = λi(t)V̂i(t) for all t ≥ 0.

For the nth system, we have

Q̂ni (t) = λi(t)V̂
n
i (t) + o(1) or Qni (t) = λni (t)V n

i (t).

That is, the limit tells us that Qn1 (t) is O(
√
n), while the error is of a smaller order.

In what follows, we discuss several important special cases. We will primarily focus

on the HLDR rule. The discuss for TVQR is similar. First, Theorem 3.4.2 applies to the

stationary model as an important special case.

Corollary 3.4.1 (the stationary case) Let λi(t) = λi, vi(t) = vi and c(t) = c for t ≥ 0.

If, in addition,

(X̂n
1 (0), . . . , X̂n

K(0), Q̂n1 (0), . . . , Q̂nK(0))⇒ (X̂1(0), . . . , X̂K(0), Q̂1(0), . . . , Q̂K(0))

in R2K as n→∞, then we have the joint convergence(
X̂n

1 , . . . , X̂
n
K , Q̂

n
1 , . . . , Q̂

n
K , V̂

n
1 , . . . , V̂

n
K , Û

n
1 , . . . , Û

n
K

)
⇒
(
X̂1, . . . , X̂K , Q̂1, . . . , Q̂K , V̂1, . . . , V̂K , Û1, . . . , ÛK

)
in D4K as n→∞, where the diffusion limits X̂i satisfy

X̂i(t) = X̂i(0)− µi
∫ t

0
X̂i(u)du− (θi − µi)

∫ t

0
γ−1viλi

[
X̂(u)− c

]+
du+

√
2λiWi(t),
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in which γ =
∑

i∈I viλi and X̂ ≡
∑

i∈I X̂i; for each i ∈ I,

Q̂i(·) ≡ viλiγ−1
[
X̂(·)− c

]+
and V̂i(·) = Ûi(·) ≡ vi · γ−1

[
X̂(·)− c

]+
. (3.17)

Corollary 3.4.1 is in agreement with Theorem 4.3 in [Gurvich and Whitt, 2009] if one

replaces the (state-dependent) ratio function p̃i there by a fixed ratio parameter γ−1viλi.

Theorem 4.3 in [Gurvich and Whitt, 2009] has [X̂]+ and [X̂]− in the equation (6) whereas

(3.15) in the present paper uses [X̂−c]+ and [X̂−c]−. The discrepancies are due to different

centering component being used. In [Gurvich and Whitt, 2009] the number of customers

in system is centered by the number of servers whereas we use nm(t) to be the centering

term.

If µi = µ and θi = θ, u ∈ I ,then the limit of the aggregate content process X̂ is a one-

dimensional diffusion. Hence, the limit is essentially the same as that for the single-class

Mt/M/st + M model as considered by [Whitt and Zhao, 2017] where the analysis draws

upon [Puhalskii, 2013].

Corollary 3.4.2 (class-independent services) Suppose that the conditions in Theorem

3.4.2 are satisfied and µi = µ, i ∈ I. Then(
X̂n, Q̂n1 , . . . , Q̂

n
K , V̂

n
1 , . . . , V̂

n
K , Û

n
1 , . . . , Û

n
K

)
⇒
(
X̂, Q̂1, . . . , Q̂K , V̂1, . . . , V̂K , Û1, . . . , ÛK

)
where

X̂(t) = X̂(0)− µ
∫ t

0
X̂(u)du−

∑
i∈I

(θi − µ)

∫ t

0
γ(u)−1vi(u)λi(u)

×
[
X̂(u)− c(u)

]+
du+

∫ t

0

√
λ(u) + µm(u)dW(u).

(3.18)

For each i ∈ I,

Q̂i(·) ≡ γ(·)−1vi(·)λi(·)
[
X̂(·)− c(·)

]+
, V̂i(·) = Ûi(·) ≡ vi(·) · γ(·)−1

[
X̂(·)− c(·)

]+
.

(3.19)

If we assume further that θi = µ in Corollary 3.4.2, then the aggregate model is known

to behave like an Mt/M/∞ model. Let θ = µ = 1 in (3.18). From 3.18 it holds that

X̂(t) = X̂(0)− µ
∫ t

0
X̂(u)du+

∫ t

0

√
λ(u) + µm(u)dW(u).

Hence the diffusion limit of the aggregate content process X̂ is an Ornstein-Uhlenbeck (OU)

process with time-varying variance.
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3.5 The Proposed Solution

We propose a solution that consists of a staffing component and and a scheduling component.

Recall that v and r are the ratio functions in the HLDR and TVQR rule respectively and

c is the TV safety staffing function.

. staffing: Choose c∗ that satisfies P
(
X̂(t) > ϑ(t) + c∗(t)

)
= α with

ϑ(t) ≡
∑
i∈I

λi(t)wi. (3.20)

. scheduling: (a) Apply HLDR with ratio functions

v∗ ≡ (v∗1(t), . . . , v∗K(t)) = (w1, . . . , wK), (3.21)

or (b) use TVQR with ratio functions

r∗ ≡ (r∗1(t), . . . , r∗K(t)) = (λ1(t)w1, . . . , λK(t)wK)/ϑ(t). (3.22)

Informally, our FCLT supports the use of the following approximation:

P (V n
i (t) > wni ) ≈ P

(
V̂i(t) > wi

)
= P

([
X̂(t)− c∗(t)

]+
> ϑ(t)

)
.

Given that we are taking advantage of the SSC provided by TVQR and HLDR, the

form of the limit reveals how difficult is the overall control problem. The difficulty depends

critically upon the model parameters µi and θi.

In this work, we identify three cases. Case 1 is the general model with parameters µi

and θi depending on the class i, for which Theorems 3.4.1 and 3.4.1 show that the limit

in reduction above is Q̂(t) = [X̂(t) − c(t)]+, where X̂(t) is a sum of the components of

a K-dimensional diffusion process. We obtain the other two cases by imposing additional

conditions on the service and abandonment rates. Case 2 has θi = µi for all i; then

the limit process has the structure of a time-varying K-dimensional OU diffusion process,

complicated by a time-varying variance. The K-dimensional structure of the limit process

in cases 1 and 2 reveals inherent challenges in analyzing the multiclass model.

The strongest positive conclusions are for case 3. Case 3 has µi = µ for all i; then

the limit process is a 1-dimensional diffusion process. In Case 3, we can effectively reduce
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the staffing component to the staffing problem for the associated single-class Mt/M/st+M

model. It remains to solve the 1-dimensional diffusion control problem to find the staffing

function. For practical applications, this result strongly supports applying TVQR or HLDR

together with heuristic staffing algorithms for the single-class Mt/M/st + M model, such

as the modified-offered-load approximation or the iterative-staffing-algorithm in [Feldman

et al., 2008]; these are surveyed in [Whitt and Zhao, 2017].

3.6 Numerical Studies

Successful application of the proposed solutions to the joint-staffing-and-scheduling problem

in §3.5 requires effective computation of the minimum safety staffing function c∗. In this

section we illustrate how the function c∗ can be calculated explicitly for a special case where

θi = µi = µ for all i. Then we present results of simulation experiments to show how HLDR

and TVQR perform.

To calculate the minimum safety staffing function c∗ for the tail-probability formulation,

let

α = P
(
X̂(t) > c(t) + ϑ(t)

)
.

We apply Corollary 3.4.2 and the following remark, which identifies X̂(t) as an OU process.

Because X̂(t) is normally distributed with mean 0 and variance m(t), it holds that

c∗(t) = Φ−1(1− α)
√
m(t)− ϑ(t). (3.23)

For our simulation experiments, we start by considering a two-class Markov V model.

The arrival-rate functions are given by

λi(t) = ai + bi sin(dit) for 0 ≤ t ≤ T, i = 1, 2,

where (a1, b1, d1) = (60,−20, 2/5) and (a2, b2, d2) = (90, 30, 2/5). We assume that µi =

θi = 1, i = 1, 2. In addition, we stipulate that the delay targets for class-1 and class-2 are

wn1 ≡ 1/6 and wn2 ≡ 1/3 respectively.

Figure 3.1 plots the tail probabilities over the time interval [0, 50] for the HLDR rule

(plots at the top) and the TVQR rule (plots at the bottom) with c∗ derived from (3.23).
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Here we tested three different tail-probability targets, α = 0.25, 0.5, 0.75. We plot the

tail probabilities for both classes. All estimates were obtained by averaging over 2000

independent replications. Figure 3.1 shows that, for all three cases, both HLDR and TVQR

stabilize the tail probabilities of each class at the desired level.
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Figure 3.1: Tail probabilities for a two-class Mt/M/st+M queue with arrival-rate functions

λ1(t) = 60− 20 sin(2t/5), λ2 = 90 + 30 sin(2t/5), common service rate µ = 1, abandonment

rate θ = 1 and minimum staffing function c∗ derived from (3.23).

3.7 Proofs of Theorem 3.4.1 - 3.4.2

We now provide the proofs for Theorem 3.4.1 and Theorem 3.4.2.

Proof of Theorem 3.4.1.

The proof proceeds in four steps.

1. Stochastic Boundedness of {X̂n
i (·);n ∈ N} and {Q̂n(·);n ∈ N} Here we exploit a

martingale decomposition, as in [Pang et al., 2007] and [Puhalskii, 2013]. Specifically the
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processes

D̂n
i (t) ≡ n−1/2

[
Dn
i (t)− µi

∫ t

0
Bn
i (u)du

]
and R̂ni (t) ≡ n−1/2

[
Rni (t)− θi

∫ t

0
Qni (u)du

]
are square-integrable martingales with respect to a proper filtration. The associated quadratic

variation processes are

〈D̂n
i 〉(t) =

µi
n

∫ t

0
Bn
i (u)du and 〈R̂ni 〉(t) =

θi
n

∫ t

0
Qni (u)du.

Both {D̂n
i (·);n ∈ N} and {R̂ni (·);n ∈ N} are stochastically bounded due to Lemma 5.8 of

[Pang et al., 2007], which is based on the Lenglart-Rebolledo inequality, stated as Lemma

5.7 there.

From (3.3), it follows

mi(t) = mi(0) +

∫ t

0
λi(u)du− µi

∫ t

0
mi(u)du. (3.24)

Scaling both sides of (3.24) by n, subtracting it from (2.3), and dividing both sides by n1/2

yields

X̂n
i (t) = X̂n

i (0)− µi
∫ t

0
X̂n
i (u)du− (θi − µi)

∫ t

0
Q̂ni (u)du+ Âni (t)− D̂n

i (t)− R̂ni (t).

(3.25)

Let ā ≡ maxi µi ∨maxi θi and

M̂n
i (t) ≡ Âni (t)− D̂n

i (t)− R̂ni (t). (3.26)

Note that {Mn
i ;n ∈ N} is stochastically bounded. Using (3.25) - (3.26), we have∣∣∣X̂n

i (t)
∣∣∣ ≤ ∣∣∣X̂n

i (0)
∣∣∣+ ā

∫ t

0

[∣∣∣X̂n
i (u)

∣∣∣+ Q̂ni (u)
]

du+
∣∣∣M̂n

i (t)
∣∣∣ . (3.27)

Adding up (3.27) over i ∈ I and letting X̂n ≡
∑

i∈I

∣∣∣X̂n
i

∣∣∣, we obtain

X̂n(t) ≤ X̂n(0) + ā

∫ t

0

[
X̂n(u) + Q̂n(u)

]
du+

∑
i∈I

∣∣∣M̂n
i (t)

∣∣∣ . (3.28)

To proceed, define ŝnd (t) ≡ n−1/2snd (t) and note that

Q̂n(t) =
[
X̂n(t)− c(t)− ŝnd (t)

]+
≤ X̂n(t) +

∣∣∣c(t)∣∣∣, (3.29)
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where the inequality follows from the nonnegativity of snd (t). Plugging (3.29) into (3.28)

gives us

X̂n(t) ≤ X̂n(0) + ā

∫ t

0
|c(u)|du+ 2ā

∫ t

0
X̂n(u)du+

∑
i∈I

∣∣∣M̂n
i (t)

∣∣∣ . (3.30)

An application of the Gronwall’s inequality with (3.30) establishes the stochastic bounded-

ness of
{
X̂n;n ∈ N

}
. Thus for i ∈ I the sequence {X̂n

i ;n ∈ N} is stochastically bounded.

Then the stochastic boundedness of {Q̂n;n ∈ N} follows easily by (3.29). In addition,

{B̂n;n ∈ N} is also stochastically bounded due to the relation X̂n
i = B̂n

i + Q̂ni .

We next use the established stochastic boundedness to derive the fluid limit for the

number of customers in system and the number of busy servers, as in [Pang et al., 2007].

Indeed, by (3.10) we must have

(
X̄n
i , Q̄

n
i

)
≡ n−1 (Xn

i , Q
n
i )⇒ (mi, 0) in D2K as n→∞ (3.31)

and thus

B̄n
i ≡

Bn
i

n
=
Xn
i −Qni
n

⇒ mi in D as n→∞. (3.32)

Applying the continuous mapping theorem (CMT) with integration in (3.32), we have

D̄n
i (t) ≡ µi

∫ t

0
B̄n
i (u)du⇒ µi

∫ t

0
mi(u)du in D as n→∞. (3.33)

Then apply the CMT with composition in (3.33) to obtain

D̂n
i (t) ≡ n−1/2

[
Dn
i (t)− µi

∫ t

0
Bn
i (u)du

]
⇒Wµ

i

(
µi

∫ t

0
mi(u)du

)
in D (3.34)

as n → ∞ where we have used Wµ
i to denote a standard Brownian motion. Similarly, we

have

R̂ni (t) ≡ n−1/2

[
Rni (t)− θi

∫ t

0
Qni (u)du

]
⇒ 0 in D (3.35)

as n→∞.

2. Asymptotic Negligibility of {ŝnd ;n ∈ N} The argument required here is a variant of

Theorem 13.5.2 (b) in [Whitt, 2002], but the extra term needed to get convergence is non-

linear instead of cne there and we exploit stochastic boundedness rather than convergence,

so we give the direct argument
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To establish the uniform asymptotic negligibility of {ŝnd ;n ∈ N}, we first argue that

Ŷ n ≡ n−1/2Y n, where Y n is defined by (2.6), vanishes as n→∞. For that purpose, define

Ẑn ≡ n−1/2Zn for Zn given in (2.7). Some algebraic manipulation leads easily to

Ẑn(t) = −n1/2

∫ t

0
λ(u)du−X n(t) (3.36)

where

X n(t) ≡ D̂n(t) +
∑

µi

∫ t

0
B̂n
i (u)du,

for D̂n(t) ≡
∑

i∈I D̂
n
i (t). By the C-tightness of D̂n and the stochastic boundedness of B̂n,

we deduce that {X n(·);n ∈ N} is stochastically bounded and C-tight. By (2.6),

Ŷ n
0 (t) = Ẑn(t) + sup

u≤t

{
−Ẑn(u)

}
. (3.37)

Define

un(t) ≡ arg max
u≤t

{
−Ẑn(u)

}
= arg max

u≤t

{
n1/2

∫ t

0
λ(u)du+ X n(t)

}
.

From (3.36) - (3.37) it follows

Ŷ n
0 (t) = −n1/2

∫ t

un(t)
λ(u)du−X n(t) + X n(un(t)) ≥ 0 (3.38)

Combining the inequality in (3.38) and the stochastic boundedness of X n(·) allows us to

conclude

sup
t≤T
{t− un(t)} = Op(n

−1/2). (3.39)

For a cadlag (right continuous with left limits) function x(·), define |x|∗T ≡ supt≤T |x(t)|.

Using (3.38), we can easily deduce

P
(∣∣∣Ŷ n

∣∣∣∗
T
> ε
)
≤ P

(
sup
t≤T
{−X n(t) + X n(un(t))} ≥ ε

)
.

In virtue of the established C-tightness of X n and (3.39),

P

(
sup
t≤T
{−X n(t) + X n(un(t))} ≥ ε

)
→ 0 as n→∞.

Since ε is arbitrarily chosen, we have proven

Ŷ n ≡ n−1/2Y n ⇒ 0 in D as n→∞.

Hence, we must have

ŝnd ⇒ 0 in D as n→∞. (3.40)
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3. State Space Collapse Define for each i ∈ I the imbalance process

∆n
i (·) ≡ Q̂ni (·)− ri(·)Q̂n(·). (3.41)

At each decision epoch, the QR rule chooses a class with maximum positive imbalance and

assign the head-of-line customer from that queue to the next available server.

Suppose that ∆n
i (0) 6= 0. Our analysis below indicates that it takes infinitesimally small

time for the imbalance process ∆n
i to hit zero. Hence, assume without loss of generality

that ∆n
i (0) = 0. We aim to show that, for each i ∈ I, the process Q̂ni (·) is infinitely close

to Q̂ni (·) as n grows. More precisely, we aim to show that, for each i ∈ I and ε > 0,

P (|∆n
i |∗T > ε)→ 0 as n→∞. (3.42)

Define a stopping time (depending on ε)

τ̃ni ≡ inf {t > 0 : |∆n
i (t)| > ε}

Then to establish (3.42), it suffices to show P (τ̃ni ≤ T ) → 0 as n → ∞. Note that∑
i∈I ∆n

i (·) = 0. Thus the problem further boils down to showing

P (τni ≤ T )→ 0 as n→∞

where τni ≡ inf {t > 0 : ∆n
i (t) < −ε}. On the event C ≡ {τni ≤ T}, let us define another

random time σni

σni ≡ sup {t ≥ 0|t < τni ,∆
n
i (t) ≥ −ε/2} .

With the initial condition ∆n
i (0) = 0, such a random time σni is guaranteed to exist on the

event C.

Working with the notation x(t1, t2] ≡ x(t2)−x(t1) for a function x(·) in t and exploiting

(2.3), one can easily derive∑
i∈I

Ani (σni , τ
n
i ]−Dn(σni , τ

n
i ]−

∑
i∈I

Rni (σni , τ
n
i ] = sn(σni , τ

n
i ] + snd (σni , τ

n
i ] +

∑
i∈I

Qni (σni , τ
n
i ]

(3.43)

Moreover, no customer enters service from the kth queue over [σni , τ
n
i ] and so

Qnk(σni , τ
n
i ] = Ank(σni , τ

n
i ]−Rnk (σni , τ

n
i ]. (3.44)
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Combining (3.43) and (3.44) yields

∑
i 6=k

Ani (σni , τ
n
i ]−Dn(σni , τ

n
i ]−

∑
i 6=k

Rni (σni , τ
n
i ] = sn(σni , τ

n
i ] + snd (σni , τ

n
i ] +

∑
i 6=k

Qni (σni , τ
n
i ].

(3.45)

From (3.45) it follows easily

n1/2

∫ τni

σn
i

=
∑
i 6=k

Âni (σni , τ
n
i ]− D̂n(σni , τ

n
i ]−

∑
i 6=k

R̂ni (σni , τ
n
i ]

−
∑
i 6=k

θi

∫ τni

σn
i

Q̂ni (u)du− c(σni , τni ]− ŝnd (σni , τ
n
i ]−

∑
i 6=k

Q̂ni (σni , τ
n
i ].

That all terms on the right side are stochastically bounded implies the stochastic bounded-

ness of the sequence {n1/2(τni − σni );n ∈ N}.

Define Γni (t1, t2] ≡ ri(t2)Q̂n(t2) − ri(t1)Q̂n(t1) and let ε′ = ε/4, using union bound, we

obtain

P (τni ≤ T ) ≤ P (∆n
i (τni ) < −ε,∆n

i (σni ) ≥ −ε/2)

≤ P
(
Q̂ni (τni )− Q̂ni (σni )− Γni (σni , τ

n
i ] < −ε/2

)
≤ P

(
Q̂ni (τni )− Q̂ni (σni )− Γni (σni , τ

n
i ] < −ε/2,Γni (σni , τ

n
i ] ≤ ε′

)
+ P

(
Q̂ni (τni )− Q̂ni (σni )− Γni (σni , τ

n
i ] < −ε/2,Γni (σni , τ

n
i ] > ε′

)
≤ P

(
Q̂ni (τni )− Q̂ni (σni ) < −ε/4

)
+ P (Γni (σni , τ

n
i ] > ε/4)

(3.46)

Recall that our goal is to show P (τni ≤ T ) goes to zero as n → ∞. To that end, we argue

that both terms at the right end of (3.46) converge to zero as n grows to infinity.

For the first term, notice that no customer entered service from queue i under the TVQR

rule over [σni , τ
n
i ]. Thus, if no customer abandoned the queue, then we must have

P
(
Q̂ni (τni )− Q̂ni (σni ) < −ε/4

)
= 0

by the fact that Qni is nondecreasing over [σni , τ
n
i ]. With customer abandonments, we have

P
(
Q̂ni (τni )− Q̂ni (σni ) < −ε/4

)
≤ P

(
n−1/2Rni (τni )− n−1/2Rni (σni ) < −ε/4

)
, (3.47)

because only abandonments can cause Qni to decrease over [σni , τ
n
i ]. The following lemma

plays a crucial role in the rest of proof.
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Lemma 3.7.1 Both {Q̂n;n ∈ N} and {n−1/2Rni ;n ∈ N} are C-tight under the assumptions

of Theorem 3.4.1.

Because {n−1/2Rni (·);n ∈ N} is C-tight and τni − σni = Op(n
−1/2),

P
(
n−1/2Rni (τni )− n−1/2Rni (σni ) < −ε/4

)
→ 0 as n→∞.

Combining the above with (3.47) allows us to conclude that

P
(
Q̂ni (τni )− Q̂ni (σni ) < −ε/4

)
→ 0 as n→∞. (3.48)

Similarly, by the C-tightness of {Q̂n(·);n ∈ N} and that τni − σni = Op(n
−1/2), we have

P (Γni (σni , τ
n
i ] > ε/4)→ 0 as n→∞. (3.49)

Combining (3.46), (3.48) and (3.49) yields

P (τni ≤ T )→ 0 as n→∞

which in turn implies

∆n
i (·) ≡ Q̂ni (·)− ri(·)Q̂n(·)⇒ 0 in D as n→∞ (3.50)

for all i ∈ I.

4. Diffusion Limits An application of Theorem 4.1 of [Pang et al., 2007] together with

(3.9), (3.34), (3.35), (3.40) and (3.50) allows us to establish the many-server heavy-traffic

limit for {X̂n
i ;n ∈ N}:(

X̂n
1 , . . . , X̂

n
K

)
⇒
(
X̂1, . . . , X̂K

)
in DK as n→∞,

where X̂i satisfies the differential equation (3.12). Then apply the convergence-together

lemma with (3.50) we conclude(
X̂n

1 , . . . , X̂
n
K , Q̂

n
1 , . . . , Q̂

n
K

)
⇒
(
X̂1, . . . , X̂K , Q̂1, . . . , Q̂K

)
in D2K as n→∞,

(3.51)

where the limiting processes Q̂i are given in (3.13). The FCLT for the PWT processes

follows by applying the two-parameter version of Puhalskii’s invariance principle for first

passage time; see Theorem 2.9 in [Talreja and Whitt, 2009]. �
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Proof of Theorem 3.4.2.

It suffices to show the SSC associated with the HLDR rule. The rest of proof resembles

that of Theorem 3.4.1. Let ani (t) denote the inter-arrival time between the HoL customer

in queue i and the most recent class-i customer who entered service. By the way the HLDR

control operates,

Un(t)− ani (t)/vi(t) < Uni (t)/vi(t) ≤ Un(t). (3.52)

Without customer abandonments, it is clear that ani (t) is first-order stochastically domi-

nated by exponential random variable with rate nλ↓i . In the presence of impatient customers,

ani (t) is stochastically dominated by an exponential random variable with rate nλ↓iF
c
i (T ).

To proceed, we would like to establish a uniform bound for ani (t) over all t ≤ T . For this pur-

pose, we make the following observation: (i) For each class, the number of arrivals over any

compact time interval is Op(n); and (ii) the maximum of n i.i.d. exponential random vari-

ables is Op(log n). As an immediate consequence, we have supt≤T {ani (t)} = O(n−1 log n).

Combining with (3.52) yields

Uni (t)/vi(t) = Un(t)−Op(n−1 log n),

or, equivalently,

Ûni (t) = vi(t)Û
n(t)−Op(n−1/2 log n), (3.53)

where we defined Ûn(t) ≡ n1/2Un(t).

For any x ∈ D, let x[t1, t2] ≡ x(t2)− x(t1−). In addition, let Rn,ti (s) denote the number

of class-i customers who arrived after time t but have abandoned in the interval [t, s]. With

the HLDR control, the queue-length processes satisfy

Qni (t) = Ani [t− Uni (t), t]−Rn,t−U
n
i (t)

i [t− Uni (t), t]. (3.54)

Define R̂n,ti (s) ≡ n−1/2Rn,ti (s). By (3.54) we have

Q̂ni (t) = Âni [t− Uni (t), t] + n1/2

∫ t

t−Un
i (t)

λi(u)du− R̂n,t−U
n
i (t)

i [t− Uni (t), t]

= Âni [t− Uni (t), t] + λi(t)Û
n
i (t)− R̂n,t−U

n
i (t)

i [t− Uni (t), t] + eni (t)

(3.55)

where

eni (t) ≡ n1/2

∫ t

t−Un
i (t)

λi(u)du− n1/2λi(t)U
n
i (t).
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By using the first equality in (3.55), we conclude the stochastic boundedness of {n1/2Uni ;n ∈

N}; in particular, we have Uni ⇒ 0 as n → ∞, which in turn implies the asymptotic

negligibility of Âni [t− Uni (t), t], R̂
n,t−Un

i (t)
i [t− Uni (t), t] and eni (t) over [0, T ]. In view of the

second equality in (3.55), we get

Q̂ni (·)− λi(·)Ûni (·)⇒ 0 in D as n→∞. (3.56)

Next, combining (3.53) and (3.56) yields

Q̂ni (·)− λi(·)vi(·)Ûn(·)⇒ 0 in D as n→∞.

This is essentially the desired SSC result; that is,

Q̂ni (·)− γ(·)−1vi(·)λi(·)Q̂n(·)⇒ 0 in D as n→∞, for i ∈ I.

�
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Chapter 4

The Overloaded Regime

In this chapter, we study the service-level differentiation problem in the overloaded regime.

For mathematical convenience, we assume that arrival process for the class-i customers Ai

starts at time −wi; i.e., t0i = −wi. This assumption facilitates the mathematical treatment,

because the proposed scheduling policy (to be specified later) can be simply implemented

at time 0. We discuss how this assumption can be relaxed in Remark 4.2.2.

4.1 A Time-Varying Square-Root Staffing Rule

We now introduce the TV-SRS rule, which consists of two terms: (i) the nominal staffing

level (first-order term) and (ii) the safety staffing level (second-order term).

First-order nominal staffing term. Because the objective is to stabilize the expected

delay at any given point in time at a target w, we will need to set the staffing levels to a

modified version of (3.2), namely,

mDIS(t) ≡
∫ t

0
F c(w)λ(u− w)︸ ︷︷ ︸
effective arrival rate

Gc(t− u)du, (4.1)

where we have used DIS to denote the “delayed-infinite-server approximation”, as in [Liu

and Whitt, 2012]. The effective arrival rate can be justified by the fact that, if every arrival

who does not elect to abandon waits w time units, then a fraction F (w) of arrivals will

abandon the queue before entering service. In other words, one can think of mDIS(t) as the
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mean number of busy servers needed to serve all customers who are willing to wait for w

time units.

For our multiclass V model with class-dependent delay wi, we follow the above offered-

load analysis by setting the nominal staffing level as

m(t) ≡
K∑
i=1

mi(t), where mi(t) ≡
∫ t

0
F ci (wi)λi(u− wi)︸ ︷︷ ︸

effective class-i arrival rate

e−µi(t−u)du, (4.2)

where each term in the sum of (4.2) is obtained by replacing (F,w,G, λ) in (4.1) with the

class-dependent primitives (Fi, wi, exp(µi), λi).

Second-order safety staffing term. Unfortunately, m(t) is not effective for stabilizing

class-dependent TPoDs, because m(t) does not include the class-dependent probability tar-

gets αi. Our strategy is to refine the staffing level by adding a second-order safety staffing

term that is a function driven by the class-dependent probability targets αi. We envision a

staffing function consisting of two pieces, namely,

s(t) =
⌈
m(t) +

√
λ̄c(t)

⌉
. (4.3)

where c(t) ≡ c(t, α1, . . . , αK) is a time-varying and (α1, . . . , αK)-dependent piecewise con-

tinuous control function, which will be determined later. We refer to such a staffing formula

(4.3) as time-varying square-root-staffing (TV-SRS).

Remark 4.1.1 (Role of the Safety Staffing Functions c) Note that the first-order nom-

inal term m(t) in (4.3) lives on the order of λ̄, while the second-term term lives on the order
√
λ̄. Given that the offered load m(t) depends on delay target wi, arrival rate λi(t), service

rate µi and patience-time distribution Fi, the remaining flexibility in the staffing formula

depends entirely on the single control function c, which will be determined to satisfy the

performance targets, as specified by (2.8). Hence, the overall staffing level s depends on

probability targets (α1, . . . , αK) only through c.

4.2 A Time-Varying Dynamic Prioritization Scheduling Rule

We next introduce a delay-based dynamic scheduling rule which is both time dependent and

state dependent. To implement such a scheduling policy, we track the elapsed waiting time
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of all waiting customers. Because customers are served under first-come first-serve within

each class, it suffices to track the HWTs, namely, (U1(t), . . . , UK(t)).

We route the next class-i∗ HoL customer (if any) into service, with i∗ satisfying

i? ∈ arg max
1≤i≤K


Ui(t)

wi︸ ︷︷ ︸
normalized HWT

+
1√
λ̄
κi(t)

 , (4.4)

where the first term Ui(t)/wi is the HWT scaled by the delay target, and κi(t) ≡ κi(t, αi),

referred to as the second-order class-i prioritization regulator, is a time-varying and αi-

dependent piecewise continuous control function to be specified later. We refer to such

a scheduling rule as the time-varying dynamic prioritization scheduling (TV-DPS) policy.

Furthermore, we define what we call the frontier process as

U(t) ≡ Ui?(t)

wi?
+

1√
λ̄
κi?(t). (4.5)

Remark 4.2.1 (Understanding TV-DPS) The first-order term Ui(t)/wi is designed to

guarantee that the class-i delay is close to its target wi (it is controlling the relative delay

imbalance (Ui(t)−wi)/wi, rather than the absolute delay imbalance). The second-order term

(1/
√
λ̄)κi(·) helps accomplish the class-dependent probability target αi. Intuitively, such a

control function κi should satisfy the following properties:

(i) Monotonicity. For fixed time t, κi(t) should be a decreasing function of αi, because

a bigger value of αi means a lower service quality, which yields a lower prioritization

level for class i;

(ii) Sign. For a class i with probability target αi > 0.5 (αi ≤ 0.5), the fine-tuning priori-

tization regulator κi should satisfy κi(t) < 0 (κi(t) ≥ 0) (Benchmarking with the case

αi = 0.5, κi should base on the value of αi to adjust the priority levels by adding a

positive or negative weight to Ui(t)/wi).

Our TV-DPS rule is both time dependent (accounting for time variability in the arrival

processes) and state dependent (dynamically capturing the system’s stochasticity). To the
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best of our knowledge, this is a feature unique to the present study and absent from previous

research. Moreover, our proposed scheduling policy is in alignment with the current practice

of Canadian EDs where patients are routed not only by triage level (static) priorities but

also by their actual (dynamic) wait time, as documented by [Ding et al., 2018]. This makes

this rule especially appealing as the intrinsic fairness of the TV-DPS policy helps achieve

ethical expectations set forth by the CTAS guideline. Furthermore, when wi = w and αi = α

for all 1 ≤ i ≤ K, TV-DPS degenerates to the global first-come first-serve scheduling policy.

Remark 4.2.2 (Relaxation of the assumption on arrival times) We assumed that each

class-i arrival process begins at a different (negative) time −wi, so that by time 0 (at which

we begin to serve all customers following TV-SRS and TV-DPS) we already have enough

candidate customers. More important, each class-i HoL customer is “old” enough (meaning

they have reached the specific class-i delay target wi). This provide a clean condition for

our mathematical treatment.

We now briefly discuss the situation where customers of each class start to arrive at

time zero. Suppose there are three classes with delay targets w1, w2 and w3, respectively.

Without loss of generality, we assume w1 < w2 < w3. Then a modified version of the

TV-DPS rule proceeds as follows. Over the period [0, w1), we do not serve any customers.

During [w1, w2), we act as if there is one customer class, namely, class 1. During [w2, w3),

we pretend that there are only two classes, namely class 1 and 2 (i.e., choose to serve the

first two classes only), and apply the rule (4.5) for K = 2. At time w3 and beyond, the

TV-DPS rule is implemented in the usual way for all classes.

In the next section, we will first establish an MSHT FCLT result under our TV-SRS and

TV-DPS rules with unknown control parameters c and κi; using the FCLT limit, we will

next obtain the exact formulas of c and κi so that the TPoD-based service-level constraints

are asymptotically satisfied as the scale increases.

4.3 Achieving Service-Level Differentiation

In this section, we present our main results. §4.3.1 gives the asymptotic framework and

states the MSHT FCLT and FWLLN results for the multiclass V model operating under
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the TV-SRS and TV-DPS policies introduced in §§4.1–4.2. In §4.3.2 we utilize the FCLT

results to obtain the desired control factors κi and c and show that they asymptotically

achieve TPoD-based service-level differentiation and performance stabilization. All proofs

are given in the appendix.

4.3.1 Many-Server FCLT Limits

Again, we consider an asymptotic framework in which the system scale (here the average

arrival λ̄) grows to infinity. Following the convention in the literature, we will use n in place

of λ̄ as our scaling parameter. This gives rise to a sequence of K-class V models indexed by

n. Let Ani (t) be the class-i NHPP arrival process in the nth model, having a rate function

nλi(·) where, by slight abuse of notation, we used λi(t) to denote the baseline arrival rate

at time t. Our TV-SRS function satisfies

sn(t) = dnm(t) +
√
nc(t)e, (4.6)

where m and c are the offered-load function in (4.2) and safety staffing term (yet to be

determined).

Let Uni and V n
i be the class-i HWT and PWT in the nth model. Our TV-DPS satisfies

i∗ ∈ arg max
1≤i≤K

{
Uni (t)

wi
+

1√
n
κi(t)

}
, (4.7)

where κi is a control function yet to be determined.

For 1 ≤ i ≤ K, let

Λi(t) ≡
∫ t

−wi

λi(u)du, Āni (t) ≡ n−1Ani (t) and Âni (t) ≡ n−1/2 (Ani (t)− nΛi(t)) . (4.8)

The sequence of processes Āni and Âni satisfy a FWLLN and FCLT, namely,

(Āni (·), Âni (·))⇒ (Λi(·), Âi(·)) in D2 as n→∞, (4.9)

for Âi(·) ≡ Wλi ◦ Λi(·), where x ◦ y(t) ≡ x(y(t)), Wλi being a standard Brownian motion.

Remark 4.3.1 (More general Gt arrivals) Our main results below can be easily ex-

tended to more general Gt arrival processes (which are not necessarily NHPPs), as long
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as their CLT-scaled versions satisfy the FCLT

Âni (·)⇒ cλiWλi ◦ Λi(·) in D as n→∞,

for some cλi > 0. These types of Gt arrival processes can be used to model over-dispersed

and under-dispersed arrival processes (i.e., when the variance-to-mean ratio of the number

of arrivals is not close to 1). In this case, our FCLT limits in Theorem 4.3.1 can be easily

adjusted by simply multiplying Wλj by the constant cλi. For NHPPs, cλi = 1.

Following the notations in §2.1, we use Qni (t) and Bn
i (t) to denote the number of class-i

customers in queue and in service at time t, respectively in the nth V model. Their sum,

denoted by Xn
i (t), represents the total number of class-i customers in system at time t. We

now define their corresponding CLT-scaled versions

B̂n
i (t) ≡ n−1/2 (Bn

i (t)− nmi(t)) , Q̂
n
i (t) ≡ n−1/2 (Qni (t)− nqi(t))

and X̂n
i (t) ≡ n−1/2 (Xn

i (t)− nxi(t))

where mi is given by (4.2), qi(t) ≡
∫ t
t−wi

F ci (t − u)λi(u)du, and xi ≡ mi + qi. In addition,

let

Ûni (t) ≡ n1/2 (Uni (t)− wi) and V̂ n
i (t) ≡ n1/2 (V n

i (t)− wi) (4.10)

be the CLT-scaled HWT and PWT processes, respectively. Finally, we define the CLT-

scaled frontier process

Ûn(t) ≡ n1/2 (Un(t)− 1) .

Theorem 4.3.1 (MSHT FCLT limits under TV-SRS and TV-DPS) Suppose the sys-

tem operates under TV-SRS in (4.6) and TV-DPS in (4.7). Then there is a joint conver-

gence for the CLT-scaled processes:(
Ûn, B̂n

1 , . . . , B̂
n
K , Û

n
1 , . . . , Û

n
K , V̂

n
1 . . . , V̂ n

K , X̂
n
1 , . . . , X̂

n
K , Q̂

n
1 , . . . , Q̂

n
K

)
⇒
(
Û , B̂1, . . . , B̂K , Û1, . . . , ÛK , V̂1 . . . , V̂K , X̂1, . . . , X̂K , Q̂1, . . . , Q̂K

)
(4.11)

in D5K+1 as n→∞, where the FCLT limits on the right-hand side are well-defined stochas-

tic processes.
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(i) The limiting processes (Û , B̂1, . . . , B̂K) jointly satisfy the following set of K OU type

stochastic integral equations and one linear equation, namely,

B̂i(t) + ηi(t)Û(t) = −
∫ t

0
µiB̂i(u)du−

∫ t

0
ψi(u)Û(u)du+

∫ t

0
ψi(u)κi(u)du

+ ηi(t)κi(t) +Gi(t) for i = 1, . . . ,K, and
K∑
i=1

B̂i(t) = c(t),

(4.12)

where ηi(t) ≡ wiλi(t− wi)F ci (wi), ψi(t) ≡ wiλi(t− wi)fi(wi),

Gi(t) ≡ Êi,1(t) + Êi,2(t)− D̂i(t), Êi,1(t) ≡ F ci (wi)

∫ t−wi

−wi

√
λi(u)dWλi(u),

Êi,2(t) ≡
√
F ci (wi)Fi(wi)

∫ t−wi

−wi

√
λi(u)dWθi(u), D̂i(t) ≡

∫ t

0

√
µimi(u)dWµi(u),

(4.13)

and Wλi ,Wθi ,Wµi are independent standard Brownian motions.

(ii) The FCLT limits for all HWT and PWT processes are deterministic functionals of a

one-dimensional process Û , namely,

Ûi(t) ≡ wi(Û(t)− κi(t)), and V̂i(t) = wi(Û(t+ wi)− κi(t+ wi)). (4.14)

(iii) The FCLT limit for each queue-length process is the sum of three terms, namely,

Q̂i(t) ≡ Q̂i,1(t) + Q̂i,2(t) + Q̂i,3(t), where

Q̂i,1(t) ≡
∫ t

t−wi

F ci (t− u)
√
λi(u)dWλi(u),

Q̂i,2(t) ≡
∫ t

t−wi

√
F ci (t− u)Fi(t− u)λi(u)dWθi(s),

Q̂i,3(t) ≡ λi(t− wi)F ci (wi)Ûi(t).

(iv) Finally, the FCLT limit for number in system is given by X̂i(t) = B̂i(t) + Q̂i(t).

Remark 4.3.2 (SSC and Separation of Variability) Theorem 4.3.1 provides the FCLT

limits for waiting times and queue lengths under TV-SRS and TV-DPS with the second-

order terms c and κi yet to be determined. Such FCLT results will be used later to achieve

asymptotic performance differentiation and stabilization. Part (ii) of Theorem 4.3.1 gives

a nice SSC result: The diffusion limits (Û , B̂1, . . . , B̂K) satisfy the (K + 1)-dimensional
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stochastic differential equation (SDE), and according to (4.14), both limiting HWT and

PWT processes are deterministic functionals of the one-dimensional limiting frontier process

Ĥ. The intuition behind the SSC is that all these normalized HWTs (plus the second-order

prioritization regulator) in (4.5) do not differ much from each other under the TV-DPS

policy. In addition, there are 3K independent Brownian motions Wλi ,Wθi ,Wµi, stemming

from the independent random sources (arrival, abandonment and service) of all K cus-

tomer classes. We will see later in Proposition 4.3.1, these sources of randomness jointly

contribute to the variability of the one-dimensional process Û .

We next provide an FWLLN result for the V model operating under the TV-SRS and

TV-DPS rule. For that purpose, we define the LLN-scaled processes as follows

B̄n
i (t) ≡ n−1Bn

i (t), Q̄ni (t) ≡ n−1Qni (t), X̄n
i (t) ≡ n−1Xn

i (t) for 1 ≤ i ≤ K. (4.15)

The next result is a direct consequence of Theorem 4.3.1.

Corollary 4.3.1 (FWLLN) Suppose that the system operates under TV-SRS in (4.6) and

TV-DPS in (4.7). Then we have the joint convergence for the LLN-scaled processes(
B̄n

1 , . . . , B̄
n
K , Q̄

n
1 , . . . , Q̄

n
K , X̄

n
1 , . . . , X̄

n
K , U

n
1 , . . . , U

n
K , V

n
1 , . . . , V

n
K

)
⇒ (m1, . . . ,mK , q1, . . . , qK , x1, . . . , xK , w1e, . . . , wKe, w1e, . . . , wKe) in D5K

(4.16)

as n→∞, where the function e(t) = 1.

Below we provide a proof sketch of the theorem. The details are given in §4.6.

Proof sketch of Theorem 4.3.1. Step 1: We first show that each component within

the curly bracket in (4.7) is at most O(n−1 log n) away from the frontier process, that is,

Uni (t)/wi + n−1/2κi(t) = Un(t) +O(n−1 log n). This is essentially a SSC result and follows

from a key observation that, at any given point in time, the number of total departures

required for a HoL customer to enter service under the TV-DPS policy is of order O(1).

Step 2: We then use (2.4) to obtain a simple relation between Ûni and B̂n
i . Based on

the fact that the difference between Ûni (t) and wi(Û
n(t) − κi(t)) can be made arbitrarily

small for n large enough, we are able to establish a set of K differential equations and one

linear equation jointly satisfied by (B̂n
1 , . . . , B̂

n
K , Û

n). This allows us to apply the Gronwall’s
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inequality to establish the stochastic boundedness of the sequence {(B̂n
1 , . . . , B̂

n
K , Û

n);n ∈

N}, which in turn enables us to deduce the desired FWLLN results. Step 3: An application

of the continuous mapping theorem with the established FWLLN allows us to establish the

Brownian limits given in (4.13) for the corresponding CLT-scaled processes. Applying the

continuous mapping theorem again with these Brownian limits yields the joint convergence

of {(B̂n
1 , . . . , B̂

n
K , Û

n)}. Next, the FCLT for the HWT and PWT processes follows by

converging-together lemma with the established FCLT for the frontier process. Step 4:

Finally, the FCLT for the queue-length processes follows by first exploiting the relation

between Qni and Uni and then applying the continuous mapping theorem. �

We next take a closer look at the dynamics of the limit frontier process Û . Define

η(t) ≡
K∑
i=1

ηi(t) =
K∑
i=1

wiλi(t− wi)F ci (wi). (4.17)

Asymptotically, a customer enters service at t only when he arrived at t−wi, and that the

fraction of customers who do not abandonment during wi is F ci (wi). Hence, according to

Little’s law, η(t) can be interpreted as the time-varying number of customers (of all types)

waiting to be processed at t, excluding those who will later abandon.

Note that each equation in (4.12) allows us to write B̂i as a function of Û . Plugging

them into the equation
∑K

i=1 B̂i(t) = c(t) plus some algebraic simplifications yields the

result below.

Proposition 4.3.1 (Distribution of the frontier process Û) The process Û uniquely

solves the following stochastic Volterra equation (SVE)

Û(t) =

∫ t

0
L(t, s)Û(s)ds+

∫ t

0
J(t, s)dW(s) +K(t), (4.18)

where

L(t, s) ≡
∑K

i=1 ηi(s)e
µi(s−t) (µi − hFi(wi))

η(t)
, (4.19)

J(t, s) ≡

(∑K
i=1 e

2µi(s−t)
(
F ci (wi)λi(s− wi) + µimi(s)

))1/2

η(t)
,

K(t) ≡

∑K
i=1

(
ηi(t)κi(t)−

∫ t
0 ηi(s)e

µi(s−t) (µi − hFi(wi))κi(s)ds
)
− c(t)

η(t)
, (4.20)

W is a standard Brownian motion. In addition, Û is a Gaussian process with



CHAPTER 4. THE OVERLOADED REGIME 46

(i) mean M
Û

(t) ≡ E[Û(t)], 0 ≤ t ≤ T , uniquely solving the fixed-point equation (FPE)

M
Û

= Γ(M
Û

), where Γ(M
Û

)(t) ≡
∫ t

0
L(t, s)M

Û
(s)ds+K(t), (4.21)

(ii) covariance C
Û

(t, s) ≡ Cov(Û(t), Û(s)), 0 ≤ s, t ≤ T , uniquely solving the FPE

C
Û

= Θ(C
Û

),

where the operator Θ is defined as

Θ(C
Û

)(t, s) ≡ −
∫ t

0

∫ s

0
L(t, u)L(s, v)C

Û
(u, v)dvdu

+

∫ t

0
L(t, u)C

Û
(u, s)du+

∫ s

0
L(s, v)C

Û
(t, v)dv (4.22)

+

∫ s∧t

0
J(t, u)J(s, u)du. (4.23)

The FCLT for Û satisfies a SVE rather than an ordinary SDE which is more commonly

seen in the literature. This is solely because the service rates are assumed to be class-

dependent. We summarize our key findings regarding the SVE in Remark 4.3.3.

Remark 4.3.3 (A closer look at the SVE (4.18))

(i) Analytic solutions in special cases. Such an SVE (4.18) in general has no an-

alytic solution, except for some special cases. For example, if µi = hFi(wi) for all

1 ≤ i ≤ K so that the drift term L(t, s) = 0, then the SVE (4.18) is a simple Brown-

ian integral which admits an analytic solution. Another important case is when L(t, s)

and J(t, s) are separable functions in t and s, which is the case when service rates are

class independent (see §4.4 for discussions of this important special case).

(ii) Variability. The SVE is driven by the Brownian motion W, which rises from aggre-

gating all 3K independent Brownian motions Wλi ,Wθi ,Wµi, 1 ≤ i ≤ K in (4.13); see

the proof of Proposition 4.3.1 for details. Indeed, the stochastic variability of the fron-

tier waiting time process is collectively determined by the randomness in the arrivals,

service times and abandonment times.
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(iii) Dependence on control functions. The terms L and J are functions of model

inputs (λi, Fi, µi, wi) only, thus independent of the control functions κi and c, which

only appears in K. Hence, varying κi and c will affect the mean of Û , but not its

variance. This is a crucial observation, because as will become clear later in §4.3.2,

(i) computing the variance of Û (which is uncontrollable via c and κi) and (ii) ap-

propriately shifting the mean of Û (by adjusting our control functions) are critical in

achieving desired class-dependent service levels.

(iv) Algorithms. We prove Proposition 4.3.1 by showing that the operators Γ and Θ are

both contractions in appropriate functional spaces. In addition, our proof naturally

leads to effective numerical algorithms for computing M
Û

and C
Û

(in fact, our algo-

rithms converge geometrically fast). It is obvious that M
Û

(t) = 0 if K(t) = 0 (because

a zero function now solves the FPE (4.21)). This will indeed be the case considered

later in §4.3.2.

4.3.2 The Proposed Solution

Given the SSC achieved by TV-SRS and TV-DPS, we now focus on investigating the one-

dimensional process Û . When n is large we hope to satisfy

αi ≡ P(V n
i (t) > wi) = P(V̂ n

i (t) > 0)

≈ P(V̂i(t) > 0) = P(Û(t+ wi)− κi(t+ wi) > 0)

= P
(
N
(
M
Û

(t+ wi), σ
2
Û

(t+ wi)
)
> κi(t+ wi)

)
= P

(
N (0, 1) >

κi(t+ wi)−MÛ
(t+ wi)

σ
Û

(t+ wi)

) (4.24)

for all t ≥ −wi, where N (µ, σ2) is a normal random variable with mean µ and variance σ2,

σ
Û

(t) =

√
Var(Û(t)) =

√
C
Û

(t, t) is the standard deviation of Û(t) at t. Equation (4.24)

further simplifies to

P
(
N (0, 1) >

κi(t)−MÛ
(t)

σ
Û

(t)

)
≈ αi, t ≥ 0, (4.25)

in which case we should choose appropriate control functions κi and c so that

κi(t)−MÛ
(t) = z1−αiσÛ (t), (4.26)
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where zα is the α-quantile of a standard Gaussian random variable, that is, zα satisfies

P(N (0, 1) ≤ α) = zα.

One obvious solution to (4.26) is that, for any κi, we can choose c appropriately so that

K(t) in (4.20) is set to 0, so that M
Û

(t) = 0 for all t (note that FPE (4.21) now has a

unique solution M
Û

(t) = 0 when K(t) = 0), and this leads to the control formulas below in

(4.27)–(4.28). We next show that these control functions are indeed the unique solutions

to (4.26).

Proposition 4.3.2 (Asymptotically unique control functions) The condition (4.26)

is satisfied if and only if

c(t) =
K∑
i=1

{
ηi(t)κi(t)−

∫ t

0
ηi(s)e

µi(s−t) (µi − hFi(wi))κi(s)ds

}
, (4.27)

κi(t) = z1−αiσÛ (t), 1 ≤ i ≤ K. (4.28)

See the appendix for the proof for Proposition 4.3.2. The safety staffing term c is indeed

uniquely given by (4.27). However, to be rigorous, we should say that the prioritization

regulators κ1, . . . , κK are unique up to adding any common function ∆, that is, applying

any κ̃i(t) = κi(t) + ∆(t) for 1 ≤ i ≤ K which will not make a difference in our TV-DPS

rule.

Remark 4.3.4 (Structure of the control functions) The main idea here is that we

choose appropriate control functions c and κi to tilt the mean of the error term V̂ n
i (t)

(rather than the mean of V n
i (t)), so that asymptotically the probability mass of {V̂ n

i (t) > 0}

(or {V n
i (t) > wi}) can be set to desired αi at all time t. We observe from (4.27) that the

second-order safety staffing term c depends on αi through the second-order prioritization reg-

ulator κi, and κi depends on αi through zαi. Consistent with Remark 4.2.1, κi is decreasing

in αi, and its sign depends on how αi compares with 0.5, that is, κi(t) > 0 (κi(t) < 0)

if αi < 0.5 (αi > 0.5). When the probability target αi = 0.5 for all 1 ≤ i ≤ K, we have

c(t) = κi(t) = 0 so that we lose the second-order terms in both TV-SRS and TV-DPS

formulas. Another interesting observation is that a bigger system variability leads to more

contrasting prioritization standards. To elaborate, consider the case α1 < 0.5 < α2 so that

z1−α1 > 0 > z1−α2 and κ1(t) > 0 > κ2(t), the difference of the two prioritization regulators
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κ1(t)− κ2(t) > 0 is increasing in σ
Û

(t), which characterizes the system’s overall stochastic

variability (recall from Remark 4.3.3 that the variability of Û captures the randomness of

all events, including arrivals, service times and abandonment times). This implies that in

a more random environment, we rely less (more) on the state-dependent portion (deter-

ministic control regulator) of TV-DPS to inform the scheduling decision; as the the system

environment becomes more volatile, information of the system state becomes less useful.

Finally, we emphasize that wi (αi) is the first-order (second-order) QoS target, because a

slight change in wi (αi) affects the first-order (second-order) term in both the TV-SRS and

TV-DPS formulas.

The next theorem establishes the asymptotic effectiveness of our methods.

Theorem 4.3.2 (Asymptotic service differentiation and performance stabilization)

Under TV-SRS (4.6) and TV-DPS (4.7) with ci(·) and κi(·) specified in (4.27) and (4.28),

we have the following asymptotic stability results: TPoDs for PWT and HWT are both

asymptotically stabilized for all classes:

P(V n
i (t) > wi)→ αi and P(Uni (t) > wi)→ αi as n→∞ (4.29)

for 1 ≤ i ≤ K, 0 < t ≤ T .

4.4 The Case of Class-Independent Service Rate

This section provides a more detailed discussion of the important case of class-independent

service rate. It is well known that the case of class-dependent service rate can be more

complex, see [Kim et al., 2018] for example. In this subsection, we assume that service

rates are class independent, that is, µi = µ for all 1 ≤ i ≤ K. Under this assumption, we

show that the results are simplified significantly; indeed, the functions L and K are now

separable in t and s so that the SVE in (4.18) degenerates to a much more tractable OU

process with time-varying drift and volatility. We summarize our results below.

Corollary 4.4.1 (Frontier process Û when service rates are class independent) Suppose

µi = µ, 1 ≤ i ≤ K, then
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(i) the limiting frontier process Û satisfies the one-dimensional OU type SDE

η(t)Û(t) = −
∫ t

0
η(u)Û(u)du+ S(t) +G(t), (4.30)

where G(t) ≡
∑K

i=1Gi(t), for Gi(t) being the Brownian-driven terms given in Theorem

4.3.1, and

S(t) ≡
K∑
i=1

ηi(t)κi(t) +

∫ t

0

K∑
i=1

ηi(u)hFi(wi)κi(u)du− c(t)− µ
∫ t

0
c(u)du.

(ii) The SDE (4.30) has a unique solution

Û(t) =
1

R(t)

(∫ t

0
e
∫ t
u

L̃(v)
R(v)

dv
J̃(u)dW(u) +

∫ t

0
e
∫ t
u

L̃(v)
R(v)

dv
R(u)dK(u) +

∫ t

0
e
∫ t
u

L̃(v)
R(v)

dv
K(u)dR(u)

)
,

(4.31)

where W is a standard Brownian motion,

R(t) = eµtη(t), L̃(t) = eµt
K∑
i=1

ηi(t) (µ− hFi(wi))

and J̃(t) = eµt

√√√√ K∑
i=1

(F ci (wi)λi(t− wi) + µmi(t)).

(iii) The variance of Û(t) is

σ2
Û

(t) ≡ Var
(
Ĥ(t)

)
=

1

R2(t)

∫ t

0
e

2
∫ t
u

L̃(v)
R(v)

dv
J̃2(u)du. (4.32)

We next consider some special cases to obtain insights.

Corollary 4.4.2 (Constant arrival rates) When λi(t) = λi, we have

mi(t) ∼ mi ≡
λiF

c
i (wi)

µ
, c(t) ∼ c ≡

K∑
i=1

wiλifi(wi)

µ
κi, (4.33)

κi(t) ∼ κi ≡ z1−αi

√√√√√ ∑K
j=1 λjF

c
j (wi)(∑K

j=1 λjfj(wj)wj

)(∑K
j=1 λjF

c
j (wj)wj

) . (4.34)

where we say f(t) ∼ g(t) if f(t)/g(t)→ 1 as t→∞.
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Remark 4.4.1 (Average staffing and prioritization levels) The constants in (4.33)

and (4.34) can be used to compute the required average number of servers and scheduling

threshold. When K = 1, our staffing formula (4.33) degenerates to the ED+QED staffing

formulas (30) and (31) in [Mandelbaum and Zeltyn, 2009] which asymptotically controls the

TPoD for the stationary M/M/n+G model.

In addition, these analytic formulas can provide an estimate of the marginal prices

of staffing and scheduling (MPSS), that is, to improve the service to the next level (e.g.,

reducing wi by ∆wi, or reducing αi by ∆αi), how many extra servers are need and how

much should the scheduling threshold κi be adjusted?

If K = 1, then our multiclass V model degenerates to a single-class Mt/M/st + GI

model.

Corollary 4.4.3 (The single-class case) When K = 1, the second-order staffing term

c(t) simplifies to

c(t) = z1−αe
−µt
(
Z(t)− (µ− hF (w))

∫ t

0
Z(s)ds

)
, (4.35)

with Z(t) ≡ e(µ−hF (w))t

√∫ t

0
e2hF (w) (F c(w)λ(u− w) + µm(u)). (4.36)

It is easy to check that (4.35) and (4.36) coincide with the staffing formulas (7) and (8) in

[Liu, 2018], except for a time shift by w. This is due to the slightly different initial condition

here.

4.5 Numerical Studies

In this section, we provide numerical examples and simulation comparisons to test the

effectiveness of our TV-SRS and TV-DPS formulas. In §4.5.1 we first consider a base model

having two customer classes and state-independent service rates. We next give additional

simulation experiments in §4.5.2, including cases with smaller arrival rates and number of

servers, higher quality of service, mixed scales of arrival rates, state-dependent service rates,

and a five-class example.



CHAPTER 4. THE OVERLOADED REGIME 52

4.5.1 A Two-Class Base Model

Because sinusoidal functions capture the periodic structure in realistic arrival patterns, we

consider sinusoidal arrival rates

λi(t) = λ̄i (1 + ri sin(γit+ φi)) , 1 ≤ i ≤ K, (4.37)

with average rate λ̄i, relative amplitude |ri| < 1, frequency γi, and phase φi. We first

consider a two-class V model, where Class 1 and Class 2 represent high and low priority

customers respectively. We let λ̄1(t) = 1, λ̄2(t) = 1.5, r1 = 0.2, r2 = 0.3, γ1 = γ2 = 1, φ1 =

0, φ2 = −1. Abandonment times follow class-dependent exponential distributions with

PDF fi(x) = θie
−θix. We let θ1 = 0.6, θ2 = 0.3. Service rates are class-independent and

standardized so that µ1 = µ2 = 1 (with mean service time 1/µi = 1). To prioritize Class 1,

we set higher QoS levels (i.e., lower target wait time and tail probability of delay). We set

our target model parameters as w1 = 0.5, w2 = 1, α1 = 0.2, α2 = 0.8.
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Figure 4.1: Computed control functions for a two-class base case: m(t), c(t), κi(t) and σ(t),

i = 1, 2.

In Figure 4.1, we calculate and plot the required control functions for TV-SRS and TV-



CHAPTER 4. THE OVERLOADED REGIME 53

DPS in a finite time interval [0, T ], with T = 24, including the offered-load function m(t) in

(4.2), the second-order staffing term c(t) in (4.27), the second-order prioritization regulators

(4.28), and the standard deviation process of Û in (4.31). Consistent with discussions in

Remarks 4.2.1 and 4.3.4, we observe that κ1(t) > 0 and κ2(t) < 0 because α1 = 0.2 <

0.5 < 0.8 = α2. In addition, the second-order safety staffing term, c(t), can be alternating

between positive and negative.
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Figure 4.2: Simulation comparison for a two-class base case: (i) arrival rates (top panel);

(ii) simulated class-dependent TPoD P(Vi(t) > wi) (middle panel); and (iii) time-varying

staffing level (bottom panel), with w1 = 0.5, w2 = 1, α1 = 0.2, α2 = 0.8, and 5000

independent runs.

Using these control functions in Figure 4.1, we conduct Monte-Carlo simulation exper-

iments to test the effectiveness of TV-SRS and TV-DPS. For our base case, we let n = 50

and generate 5000 independent runs. Specifically, at each time 0 ≤ t ≤ T on an arbitrary

run, we schedule the next customer into service according to our TV-DPS in (4.5) using

the control function κi given in Figure 4.1. We plot (i) arrival rates, (ii) simulations of

TPoD, and (iii) staffing functions, in Figure 4.2, using a sampling resolution (i.e., step size)
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∆t = 0.01. From a visual inspection of the middle panel of Figure 4.2, we see that our

method effectively achieves stabilization of TPoD P(Vi(t) > wi) for both classes at their

(differentiated) targets (dashed lines).

4.5.2 Other Cases

We next test the robustness of TV-SRS and TV-DPS by considering variates of the base

model, including (i) higher QoS targets (§4.5.2.1), (ii) smaller system scale (§4.5.2.2), (iii)

class-dependent service rates (§4.5.2.3), and (iv) a five-class example (§4.5.2.4).
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Figure 4.3: The two-class based model with high QoS targets: (a) w1 = 0.5, w2 = 1,

α1 = 0.05, α2 = 0.1 (left), (b) w1 = 0.1, w2 = 0.2, α1 = 0.2, α2 = 0.4 (right).

4.5.2.1 Higher QoS targets

In our base model, we set α1 = 0.2 and α2 = 0.8 to test if TPoDs can be indeed significantly

differentiated. We now validate the effectiveness of TV-SRS and TV-DPS when both classes

have higher QoS targets.

Figure 4.3 gives the simulation results with (i) smaller probability targets α1 = 0.05

and α2 = 0.1 (w1 = 0.5, w2 = 1); and (ii) smaller delay targets w1 = 0.1 and w2 = 0.2

(α1 = 0.2, α2 = 0.4). Figure 4.3 shows that TPoD’s remain relatively stable in both cases.
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4.5.2.2 Smaller arrival rates

Our method is based on asymptotic analysis of the V model when n→∞, so it is evident

that we should be able to achieve desired TPoD performance when n is relatively large.

An important question is how effective TV-SRS and TV-DPS are for a small-scale system.

We now consider the two-class base model having a smaller scale n = 5. Due to the

increased stochastic variability in small-scale models, we increase our sample size to 20000

independent runs in our Monte-Carlo simulations.
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Figure 4.4: Simulation comparison for a small-scale two-class model: (i) arrival rates (top

panel); (ii) simulated class-dependent TPoD P(Vi(t) > wi) (middle panel); and (iii) time-

varying staffing level (bottom panel), with n = 5, w1 = 0.5, w2 = 1, α1 = 0.2, α2 = 0.8,

and 20000 independent runs, under three staffing discretizations.

Figure 4.4 shows that: (i) Due to the small arrival rate, the required staffing level is

small, so that addition and removal of a single server from time to time lead to bigger

TPoD bumps; (ii) Different staffing discritization methods now play bigger roles, that is,

adding a server to the staffing level at all times can cause a much larger performance change;

and nevertheless, (iii) our TV-SRS and TV-DPS yield relatively stable TPoD performance.
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This example shows that results derived from the large-scale (many-server) limits may have

strong practical relevance, even for small-scale systems.

4.5.2.3 Class-dependent service rates

Results in §4.3 enables us to treat the case of class-dependent service rates, which has strong

practical relevance. Taking the CTAS example, a patient of higher acuity may require a

much longer treatment, resulting in a smaller service rate. We now consider our two-class

base model with µ1 = 0.5 and µ2 = 1 (so that a high priority class requires significantly more

time in service). To obtain the control parameters, we calculated Var(Û(t)) according to

the contraction-based algorithm given in the appendix. Simulations show that our methods

continue to achieve desired service-level differentiation and performance stabilization; see

Figure 4.5.
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Figure 4.5: Simulation comparison for a two-class model with class-dependent rates: (i)

arrival rates (top panel); (ii) simulated class-dependent TPoD P(Vi(t) > wi) (middle panel);

and (iii) time-varying staffing level (bottom panel), with µ1 = 0.5, µ2 = 1, n = 50, w1 = 0.5,

w2 = 1, α1 = 0.2, α2 = 0.8.
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4.5.2.4 A Five-Class Example

Finally, motivated by the CTAS example, we now consider a five-class V model, having

class-dependent sinusoidal arrival rates as in (4.37), exponential abandonment and service

times. All model input parameters and QoS parameters are given in Table 4.1.

Table 4.1: Five Class Model: Class specific parameters and QoS target levels

Class parameters Service levels

Class λ̄ r γ φ θ µ w α

1 1.0 0.20 0.5 0 0.6 1 0.2 0.1

2 1.5 0.30 1.0 -1 0.3 1 0.4 0.3

3 1.2 0.05 1.3 1 0.5 1 0.6 0.5

4 1.1 0.15 1.6 -2 1.0 1 0.8 0.7

5 1.6 0.40 2.0 2 1.2 1 1.0 0.9

The control functions are given in the left-hand panel of Figure 4.6. In this example,

we intentionally let the sinusoidal arrival rates have class-dependent periods, frequencies,

and relative amplitudes (see right-hand panel of Figure 4.6). Nevertheless, our method

continues to successfully achieves stable TPoD-based service levels across all 5 classes.

4.6 Proof of Theorem 4.3.1

Because we assume each baseline arrival-rate function λi is bounded away from zero and

infinity, we define λ↓i ≡ inf
0≤t≤T

λ(t) > 0 and λ↑i ≡ sup
0≤t≤T

λ(t) < ∞. The proof proceeds in

four major steps, as indicated by the proof sketch presented in the main paper.

Step 1: SSC for the pre-limit HWT and PWT processes. Again let ani (t) denote

the inter-arrival time between the HoL customer in queue i and the most recent class-i

customer who entered service. By the way the TV-DPS rule operates,

Un(t)− ani (t)/wi < Uni (t)/wi + n−1/2κi(t) ≤ Un(t), (4.38)

where ani (t) is first-order stochastically dominated by an exponential random variable with

rate nλ↓iF
c
i (Ti) for Ti ≡ T + wi. By using the same argument as in the proof of Theorem
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Figure 4.6: A five-class based model: (i) Computed control functions m(t), c(t), and κi(t)

for i = 1, . . . , 5 (left), (ii) Simulation comparisons for TPoD P(Vi(t) > wi), i = 1, . . . , 5

(right), with n = 50, input and QoS parameters given in Table 4.1, and 5000 samples.

3.4.2, we conclude supt≤T {ani (t)} = O(n−1 log n). Combining with (4.38) yields

Uni (t)/wi + n−1/2κi(t) = Un(t)−Op(n−1 log n),

or, equivalently,

Ûni (t) = wi(Û
n(t)− κi(t))−Op(n−1/2 log n), (4.39)

where we recall that Ûn is the CLT-scaled frontier process, namely, Ûn(t) ≡ n1/2 (Un(t)− 1).

We next argue that under the TV-DPS rule, the PWT and the HWT satisfy

V n
i (t− Uni (t)) = Uni (t) +Op(n

−1 log n). (4.40)

The above relation evidently holds true for K = 1, because the PWT at the time of arrival

of the HoL customer is the HoL customer’s elapsed waiting time (i.e., the HWT) at time t

plus the additional time until the next departure. For K ≥ 2, we aims to establish (4.40)

by showing that the number of service completions needed for the HoL customer of queue

i to enter service is no greater than the sum of K − 1 geometric random variables. To see
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this is the case, suppose at time t customer A enters service from queue i and customer

B becomes the new HoL customer in queue i. Then customer B must have arrived at the

system at time t − Uni (t). By the definition of ani (t) it follows that customer A arrived at

the system at time t− Uni (t)− ani (t). Suppose κi ≡ 0, i ∈ I ≡ {1, . . . ,K} (the case where

κi are not zero functions can be analyzed in a similar fashion). Then under the TV-DPS

policy, only those class-j customers who arrived during the interval(
t− wj (Uni (t) + ani (t))

wi
, t− wjU

n
i (t)

wi

)
(4.41)

could enter service prior to the time at which customer B enters service. To proceed,

we make the following observation: The number of arrivals from a Poisson process with

arrival rate λ(2) over an exponentially distributed time with rate λ(1) follows a geometric

distribution with parameter λ(1)

λ(1)+λ(2)
. Now because the interval (4.41) has a length of

(wja
n
i /wi), the number class-j customers who have a higher service priority over B is

stochastically dominated by a geometric random variable with mean
wjλ

↑
j

wiλ
↓
i F

c
i (Ti)

. This shows

that the number of customers (from the other classes) who have higher service priority over

B can be bounded by the sum of K − 1 geometric random variables. This gives (4.40) for

K ≥ 2.

Step 2: The FWLLN. Here we prove the desired FWLLN results by showing the

stochastic boundedness of the corresponding CLT-scaled processes. In what follows, we will

first prove that the sequence {(B̂n
1 , . . . , B̂

n
K , Û

n);n ∈ N} is stochastically bounded. To that

end, introduce the LLN- and CLT-scaled empirical process

K̄n(t, x) ≡ 1

n

bntc∑
k=1

1{Xi≤x} for t ≥ 0, 0 ≤ x ≤ 1, and

K̂n(t, x) ≡
√
n
(
K̄n(t, x)− E

[
K̄n(t, x)

])
=

1√
n

bntc∑
k=1

1{Xi≤x} − x

 ,

(4.42)

where X1, X2, . . . are i.i.d. random variables uniformly distributed on [0, 1]. [Krichagina

and Puhalskii, 1997] have shown that K̂n ⇒ K̂ in DD as n→∞, where K̂ is the standard

Kiefer process. Paralleling (3.3) - (3.6) in [Aras et al., 2018], we break the enter-service

process Eni (t) in (2.4) into three pieces, namely,

Eni (t) = Eni,1(t) + Eni,2(t) + Eni,3(t), (4.43)
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where

Eni,1(t) ≡
√
n

∫ t−Un
i (t)

−Un
i (0)

F ci (V n
i (u))dÂni (u), t ≥ 0, (4.44)

Eni,2(t) ≡
√
n

∫ t−Un
i (t)

−Un
i (0)

∫ 1

0
1{y>F c

i (V n
i (u))}dK̂

n
i (Āni (u), y) t ≥ 0, (4.45)

Eni,3(t) ≡ n
∫ t−Un

i (t)

−Un
i (0)

F ci (V n
i (u))λi(u)du t ≥ 0, (4.46)

for Āni , Â
n
i given by (4.8) and K̂n

i is a CLT-scaled empirical process specified by (4.42).

Define the fluid version and CLT-scaled version of the enter-service process as

εi(t) ≡
∫ t−wi

−wi

F ci (wi)λi(u)du, (4.47)

Êni (t) ≡ n−1/2 (Eni (t)− nεi(t)) = n−1/2

(
Eni (t)− n

∫ t−wi

−wi

F ci (wi)λi(u)du

)
. (4.48)

Following the decomposition given in (4.43) - (4.46), we can write

Êni (t) = Êni,1(t) + Êni,2(t) + Êni,3(t), (4.49)

where

Êni,1(t) ≡ n−1/2Eni,1(t) =

∫ t−Un
i (t)

−Un
i (0)

F ci (V n
i (u))dÂni (u) t ≥ 0, (4.50)

Êni,2(t) ≡ n−1/2Eni,2(t) =

∫ t−Un
i (t)

−Un
i (0)

∫ 1

0
1{y>F c

i (V n
i (u))}dK̂

n
i (Āni (u), y) t ≥ 0, (4.51)

Êni,3(t) ≡ n−1/2

(
Eni,3(t)− n

∫ t−wi

−wi

F ci (wi)λi(u)du

)
t ≥ 0. (4.52)

For the term Êni,3, we further deduce

Êni,3(t) =
√
n

(∫ t−Un
i (t)

−Un
i (0)

F ci (V n
i (u))λi(u)du−

∫ t−wi

−wi

F ci (wi)λi(u)du

)

=
√
n

∫ t

0
F ci (Uni (u))λi(u− Uni (u))du−

√
n

∫ t

0
F ci (wi)λi(u− wi)du

−
∫ t

0
F ci (Uni (u))λi(u− Uni (u))dÛni (u) +Op(n

−1/2 log n)

= −
∫ t

0

{
fi(ζ

n
i (u))λi(u− ζni (u)) + F ci (ζni (u))λ′i(u− ζni (u))

}
wi(Û

n(u)− κi(u))du

−
∫ t

0
wiF

c
i (Uni (u))λi(u− Uni (u))d(Ûn(u)− κi(u)) +Op(n

−1/2 log n),

(4.53)
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where the second equality follows by a change of variables (namely, t→ t−Uni (t)) plus the

relation (4.40), while the third equality follows from (4.39) and applying the mean-value

theorem with ζni (t) satisfying

min{Uni (t), wi} ≤ ζni (t) ≤ max{Uni (t), wi}. (4.54)

On the other hand, by using conservation of flow, we get

Eni (t) = Bn
i (t) +Dn

i (t), (4.55)

From (4.47) it follows

εi(t) = mi(t) +

∫ t

0
µimi(u)du, (4.56)

where the equality follows from (4.2). Multiplying both sides of (4.56) by n, subtracting it

from (4.55), and dividing both sides by n1/2 yields

Êni (t) = B̂n
i (t) + µi

∫ t

0
B̂n
i (u)du+ D̂n

i (t) or dB̂n
i (t) + µiB̂

n
i (t)dt = dÊni (t)− dD̂n

i (t),

(4.57)

where

D̂n
i (t) ≡ n−1/2

[
Dn
i (t)− µi

∫ t

0
Bn
i (u)du

]
.

Let Bn(t) ≡
∑

i∈I B
n
i (t). It is routine to show, with the overloading assumption (4.2), that

Bn(t) = sn(t) + snd (t) (4.58)

holds with arbitrarily high probability by choosing n large enough. Thus, it suffices to focus

on the sample paths for which (4.58) holds. In this case we get

K∑
i=1

B̂n
i (t) = n−1/2 (Bn(t)− nm(t)) = n−1/2 (sn(t) + snd (t)− nm(t)) = c(t) + ŝnd (t), (4.59)

where ŝnd (t) ≡ n−1/2snd (t). Moreover, by using (2.6) and (4.56) we deduce

ŝnd (t) ≤ ψ

(
−
∑
i∈I

D̂n
i (t)−

∑
i∈I

µi

∫ t

0
B̂n
i (u)du− n1/2

∑
i∈I

εi(t)

)

≤ 2

∣∣∣∣∣∑
i∈I

D̂n
i (t) +

∑
i∈I

µi

∫ t

0
B̂n
i (u)du

∣∣∣∣∣ ≤ 2

∣∣∣∣∣∑
i∈I

D̂n
i (t)

∣∣∣∣∣+ 2
∑
i∈I

µi

∫ t

0

∣∣∣B̂n
i (u)

∣∣∣ du,
(4.60)
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where the second equality follows from the continuity and Lipschitz properties of the reflec-

tion mapping. Upon substituting (4.49) - (4.51) and (4.53) into (4.57), we obtain

dB̂n
i (t) + wiF

c
i (Uni (t))λi(t− Uni (t))dÛn(t)

=− µiB̂n
i (t)dt−

[
fi(ζ

n
i (t))λi(t− ζni (t)) + F ci (ζni (t))λ′i(t− ζni (t))

]
wiÛ

n(t)dt

+
[
fi(ζ

n
i (t))λi(t− ζni (t)) + F ci (ζni (t))λ′i(t− ζni (t))

]
wiκi(t)dt

+ wiF
c
i (Uni (t))λi(t− Uni (t))dκi(t) + dÊni,1(u) + dÊni,2(u)

− dD̂n
i (u) +Op(n

−1/2 log n) for i = 1, . . . ,K.

(4.61)

Together with (4.59), we end up getting K+1 linear differential equations with respect to the

(K+1)-dimensional process (B̂n
1 , . . . , B̂

n
K , Ĥ

n). Similar to what was done to (5.14) in [Aras

et al., 2018], we apply the Gronwall’s inequality together with the stochastic boundedness of

Êni,1, Êni,2, D̂
n
i , the third bound in (4.60) plus the assumed properties of λi, fi, F

c
i to conclude

the stochastic boundedness of the sequence {(B̂n
1 , . . . , B̂

n
K , Ĥ

n);n ∈ N}. In particular, the

sequences {Ûn;n ∈ N} and {(B̂n
1 , . . . , B̂

n
K);n ∈ N} are stochastically bounded. Having

established the stochastic boundedness of {(B̂n
1 , . . . , B̂

n
K);n ∈ N}, we can replicate the

proof of (3.40) to get

ŝnd ⇒ 0 in D as n→∞. (4.62)

On the other hand, from the established stochastic boundedness of {Ûn;n ∈ N} together

with the relations (4.39) and (4.40), we deduce that {Ûn;n ∈ N} and {V̂n;n ∈ N} are

stochastically bounded, for i = 1, . . . ,K. This implies the FWLLN for the HWT and PWT

processes, that is, as n→∞,

(Un, Un1 , . . . , U
n
K , V

n
1 , . . . , V

n
K)⇒ (e, w1e, . . . , wKe, w1e, . . . , wKe) in D2K+1, (4.63)

where the joint convergence holds due to converging-together lemma (Theorem 11.4.5. in

[Whitt, 2002]).

Step 3: The FCLT for the waiting time processes. Similar to the proof of Lemma

5.1 in [Aras et al., 2018], we invoke the continuous mapping theorem with (4.50) and (4.63)

to get

Êni,1(t)⇒ Êi,1(t) ≡ F ci (wi)

∫ t−wi

−wi

√
λi(u)dWλi(u), (4.64)
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where Wλi is a standard Brownian motion. To proceed, we argue that, as n→∞,

Êni,2(t)⇒ Êi,2(t) ≡
√
F ci (wi)Fi(wi)

∫ t−wi

−wi

√
λi(u)dWθi(u), (4.65)

whereWθi is a standard Brownian independent ofWλi . The essential structure of the proof

for (4.65) is exactly the same as that of A.7.2 in [Aras et al., 2018], which in turn draws on

Theorem 7.1.4 in [Ethier and Kurtz, 1986]. Because the proof can be fully adapted from

theirs, we omit the details.

Moreover, from the established stochastic boundedness of {(B̂n
1 , . . . , B̂

n
K);n ∈ N}, it

follows the FWLLN for the busy-server processes

(
B̄n

1 , . . . , B̄
n
K

)
⇒ (m1, . . . ,mK) in DK as n→∞.

Next a standard random-time-change argument allows us to derive

D̂n
i (·) = n−1/2

[
Πd
i

(
nµi

∫ ·
0
B̄n
i (u)du

)
− nµi

∫ ·
0
B̄n
i (u)du

]
⇒Wµi

(
µi

∫ ·
0
mi(u)du

)
,

(4.66)

n → ∞, where we have defined Πd
i to be a unit-rate Poisson process and Wµi to be a

standard Brownian motion independent of Wλi and Wθi . To establish the convergence of

(4.11), we will need to strengthen (4.64), (4.65) and (4.66) to joint convergence. The joint

convergence of multiple random elements is equivalent to individual convergence if they are

independent. Here Êni,1, Êni,2 and D̂n
i are not independent because both Êni,1 and Êni,2 involve

the arrival-time sequence, and D̂n
i depends on Bn

i which in turn correlates with Eni through

(4.55). But they are conditionally independent given Ani , U
n
i , V

n
i and Bn

i . Hence, we can

establish the joint convergence by first conditioning and then unconditioning. See Theorem

7.6 of [Pang et al., 2007] for a reference.

To derive a set of SDEs satisfied by the CLT-scaled processes (B̂n
1 , . . . , B̂

n
K , Û

n), we seek

to simplify the right-hand side of (4.53). First we note that the inequality (4.54) and the

convergence in (4.65) imply

ζni (t) = wi +O(n−1/2) = Uni (t) +O(n−1/2 log n). (4.67)
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We then use integration by parts to deduce

−
∫ t

0
wiF

c
i (ζni (u))λ′i(u− ζni (u))(Ûn(u)− κi(u))du

−
∫ t

0
wiF

c
i (Uni (u))λi(u− Uni (u))d(Ûn(u)− κi(u))

=− wiF ci (ζni (t))λi(t− ζni (t))(Ûn(t)− κi(t))

+

∫ t

0
wi {F ci (ζni (u))λi(u− ζni (u))− F ci (Uni (u))λi(u− Uni (u))}d(Ûn(u)− κi(u))

+

∫ t

0
wiλi(u− ζni (u))(Ûn(u)− κi(u))dF ci (ζni (u))

=− wiF ci (wi)λi(t− wi)(Ûn(t)− κi(t)) +O(n−1/2 log n),

(4.68)

where the last equality holds due to (4.67). Upon plugging (4.68) into (4.53), we obtain

Êni,3(t) = −
∫ t

0
wifi(wi)λi(u− wi)(Ûn(u)− κi(u))du

− wiF ci (wi)λi(t− wi)(Ûn(t)− κi(t)) +O(n−1/2 log n).

Now plugging (4.49) and the equation above into (4.57), we get, for i = 1, . . . ,K,

B̂n
i (t) + wiF

c
i (wi)λi(t− wi)Ûn(t)

=− µi
∫ t

0
B̂n
i (u)du−

∫ t

0
wifi(wi)λi(u− wi)Ûn(u)du+

∫ t

0
wifi(wi)λi(u− wi)κi(u)du

+ wiF
c
i (wi)λi(t− wi)κi(t) + Êni,1(t) + Êni,2(t)− D̂n

i (t) +O(n−1/2 log n).

(4.69)

The joint convergence (B̂n
i , . . . , B̂

n
K , Û

n) ⇒ (B̂i, . . . , B̂K , Û) then follows by applying

the continuous mapping theorem (see Theorem 4.1 of [Pang et al., 2007]) to (4.58) and

(4.69), with the joint convergence of ŝnd , Êni,1, Ê
n
i,2, and D̂n

i as specified by (4.62), (4.64),

(4.65), and (4.66), respectively. Alternatively, one can subtract (4.69) by (4.12) and invoke

the Gronwall’s inequality to show that the difference between the pre-limit and the limit is

bounded by a negligible term as n → ∞, as was done in the proof of (4.7) in [Aras et al.,

2018]. The convergence of {Ûni ;n ∈ N} and {V̂ n
i ;n ∈ N} follow easily from and (4.39) and

(4.40), respectively.

Step 4: The FCLT for the queue-length processes. To show that {Q̂ni ;n ∈ N}

converges to the corresponding limit, we decompose the right-hand side of (2.5) into three
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terms, namely,

Qni (t) = Qni,1(t) +Qni,2(t) +Qni,3(t), (4.70)

where

Qni,1(t) ≡
√
n

∫ t

t−Un
i (t)

F ci (t− u)dÂni (u), t ≥ 0, (4.71)

Qni,2(t) ≡
√
n

∫ t

t−Un
i (t)

∫ 1

0
1{x>F c

i (t−u)}dK̂
n
i (Āni (u), x) t ≥ 0, (4.72)

Qni,3(t) ≡ n

∫ t

t−Un
i (t)

F ci (t− u)λi(u)du t ≥ 0, (4.73)

Accordingly, the centered and normalized queue-length process can be decomposed into

three terms

Q̂ni (t) ≡ n−1/2 (Qni (t)− nqi(t)) = Q̂ni,1(t) + Q̂ni,2(t) + Q̂ni,3(t),

where Q̂ni,1(t) ≡
∫ t

t−Un
i (t)

F ci (t− u)dÂni (u) ⇒
∫ t

t−wi

F ci (t− u)dÂi(u), (4.74)

Q̂ni,2(t) ≡
∫ t

t−Un
i (t)

∫ 1

0
1{x>F c

i (t−u)}dK̂
n
i (Āni (u), x)

⇒
∫ t

t−wi

√
F ci (t− u)Fi(t− u)λi(u)dWθi(u), (4.75)

Q̂ni,3(t) ≡
√
n

∫ t−wi

t−Un
i (t)

F ci (t− u)λi(u)du ⇒ F ci (wi)λi(t− wi)Ûi(t). (4.76)

Here the proof for (4.74) and (4.75) is very similar to that of (4.64) and (4.65), and the

proof for (4.76) is also straightforward. �
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Chapter 5

Conclusions

We studied a service differentiation problem for a time-varying queueing system with mul-

tiple customer classes. Motivated by call center and health care applications, we measure

class-dependent service levels using the so-called TPoD, that is, the probability the waiting

time exceeds a delay target. We invested this problem for both critically-loaded and over-

loaded systems with class-independent service rate and impatient customers. For critically-

loaded systems, we proposed a SRS rule and two scheduling policies that can asymptotically

achieve TPoD-based performance stabilization for all classes over a finite time horizon. For

overloaded systems, we proposed a novel joint-staffing-and scheduling solution that can

asymptotically stabilize the TPoD across all customer classes. We established heavy-traffic

limit theorems to substantiate the effectiveness of the proposed solution. In addition, we

conducted extensive simulation experiments to provide engineering confirmation and prac-

tical insight. Numerical results show that our proposed solution works effectively in a wide

range of model settings.

There are several avenues for future research in this area. (i) For the overloaded setting,

our proposed scheduling policy will fail when wi = 0 for some i ∈ I. Developing scheduling

rules that can handle zero delay targets should be an interesting future research direction.

(ii) Instead of exploiting the HoL delay information to differentiate service in an overloaded

V system, one may consider queue-ratio based scheduling policies. From the implementa-

tion perspective, this would be advantageous to the HoL delay based policy as considered

here because a queue-ratio based scheduling rule does not require to track each customer’s
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elapsed waiting time in queue. (iii) Another natural extension would be to consider a more

general network with heterogeneous pools of servers under the setting of skill-based routing;

this would make the model more practical for service systems such as call centers. (iv) This

research assumes exponential services. However, in many real-world applications service

times are not exponentially distributed. Thus, it would be beneficial to devise effective con-

trols in the presence of non-exponential services and establish heavy-traffic limit theorems

with general service-time distributions. (v) Finally, customers in queues may switch classes.

This is especially true for healthcare settings where patients’ health condition may either

deteriorate or improve while waiting for treatment. How to staff and schedule to achieve

differentiated service with class switching can be a meaningful direction for future research.
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Appendix

Proofs of Chapter 4

In this part of the appendix, we provide the proofs for Proposition 4.3.1 and Proposition

4.3.2.

Proof of Proposition 4.3.1.

The multi-dimensional SDE (4.12) is equivalent to

d

dt

(
eµitB̃i(t)

)
= eµit

(
−wiF ci (wi)λi(t− wi)Ĥ(t)−

∫ t

0
wifi(wi)λi(u− wi)Ĥ(u)du+ yi(t) +Gi(t)

)
,

(1)

where

B̃i(t) ≡
∫ t

0
B̂i(u)du and yi(t) ≡ wiF ci (wi)λi(t− wi)κi(t) +

∫ t

0
wifi(wi)λi(u− wi)κi(u)du.

Integrating (1) from 0 to t yields

B̃i(t) = e−µit
∫ t

0
eµis

(
−wiF ci (wi)λi(s− wi)Ĥ(s)−

∫ s

0
wifi(wi)λi(u− wi)Ĥ(u)du+ yi(s) +Gi(s)

)
ds

= e−µit
(
−
∫ t

0
eµiswiF

c
i (wi)λi(s− wi)Ĥ(s)ds−

∫ t

0
wifi(wi)λi(u− wi)Ĥ(u)

∫ t

u
eµisdsdu

+

∫ t

0
eµisyi(s)ds+

∫ t

0
eµisGi(s)ds

)
=

∫ t

0
wiλi(s− wi)

(
−F ci (wi)e

µi(s−t) − fi(wi)
1− eµi(s−t)

µi

)
Ĥ(s)ds

+

∫ t

0
eµi(s−t)yi(s)ds+

∫ t

0
eµi(s−t)Gi(s)ds.
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Summing up over i from 1 to K, we have∫ t

0
c(s)ds =

K∑
i=1

B̃i(t) =

∫ t

0

K∑
i=1

wiλi(s− wi)

(
−F ci (wi)e

µi(s−t) − fi(wi)
1− eµi(s−t)

µi

)
Ĥ(s)ds

+
K∑
i=1

∫ t

0
eµi(s−t)

(
wiF

c
i (wi)λi(s− wi)κi(s) +

∫ s

0
wifi(wi)λi(u− wi)κi(u)du

)
ds

+

K∑
i=1

∫ t

0
eµi(s−t)

∫ s

0

√
F ci (wi)λi(u− wi) + µimi(u)dWi(u)ds

=
K∑
i=1

∫ t

0
wiλi(s− wi)

(
−F ci (wi)e

µi(s−t) − fi(wi)
1− eµi(s−t)

µi

)
Ĥ(s)ds

+
K∑
i=1

∫ t

0
wiλi(s− wi)κi(u)

(
F ci (wi)e

µi(s−t) + fi(wi)
1− eµi(s−t)

µi

)
du

+

K∑
i=1

∫ t

0

1− eµi(u−t)

µi

√
F ci (wi)λi(u− wi) + µimi(u)dWi(u), (2)

where the second equality holds by aggregating three independent Brownian motions Wµi ,

Wθi and Wλi in (4.13) into one independent standard Brownian motion Wi for each 1 ≤

i ≤ K. Differentiating (2) yields

c(t) = −
K∑
i=1

wiλi(t− wi)F ci (wi)Ĥ(t) +

∫ t

0

K∑
i=1

wiλi(s− wi)eµi(s−t) (µiF
c
i (wi)− fi(wi)) Ĥ(s)ds

+
K∑
i=1

wiλi(t− wi)F ci (wi)κi(t) +

∫ t

0

K∑
i=1

wiλi(s− wi)eµi(s−t) (−µiF ci (wi) + fi(wi))κi(s)ds

+

K∑
i=1

∫ t

0
eµi(u−t)

√
F ci (wi)λi(u− wi) + µimi(u)dWi(u).

And further aggregating the independent Brownian motions W1, . . . ,WK into W yields the

SVE in (4.18).

Uniqueness and existence of solution to the SVE (4.18). Consider two functions

x, y ∈ C (space of continuous functions) satisfying an equation

x(t) =

∫ t

0
L(t, s)x(s)ds+ y(t). (3)
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we show that (3) specifies a well-defined function φ : C→ C such that x = ψ(y). To do so,

for a given y, we define the operator

ψ(x)(t) ≡
∫ t

0
L(t, s)x(s)ds+ y(t). (4)

Therefore, x solves the fixed-point equation (FPE)

x = ψ(x). (5)

We first prove that ψ is a contraction over a finite interval [0, T ]. Specifically, let x1, x2 ∈ C,

and use the uniform norm ‖x‖T = sup{0≤t≤T} |x(t)|. We have

|ψ(x1)(t)− ψ(x2)(t)| ≤
∫ t

0
|L(t, s)|ds · ‖x1 − x2‖T

≤ ‖x1 − x2‖T

(∑K
i=1wiλ

↑
i (µiF

c
i (wi) + fi(wi))∑K

i=1wiλ
↓
iF

c
i (wi)

)
t. (6)

Hence, we have ‖ψ(x1)− ψ(x2)‖T ≤ L↑T‖x1 − x2‖T , where the constant

L↑ =

∑K
i=1wiλ

↑
i (µiF

c
i (wi) + fi(wi))∑K

i=1wiλ
↓
iF

c
i (wi)

<∞, (7)

which is guaranteed by the strict positivity assumptions on wi, λi and F ci for all 1 ≤ i ≤ K.

In case L↑T > 1, we can partition the interval [0, T ] to successive smaller intervals with

length ∆T satisfying ∆T < 1/L↑. This will recursively guarantee the contraction property

over all smaller intervals. Hence, the Banach fixed point theorem implies that the FPE (5)

has a unique solution over the entire interval [0, T ].

Consequently, the function φ specified by (3) is well-defined because φ(y) has one and

only one image for any y. So we conclude that (4.18) has a unique solution Ĥ. If fact, we

can write (4.18) as

Ĥ = φ

(∫ ·

0
J(·, s)dW(s) +K(·)

)
.

Treating the mean and variance of Ĥ. Taking expectation in (4.18) yields

m
Ĥ

(t) =

∫ t

0
L(t, s)m

Ĥ
(s)ds+K(t), where m

Ĥ
(t) = E[Ĥ(t)]. (8)
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It remains to show that the FPE x = Γ(x) has a unique solution, where x ∈ C and the

operator

Γ(x)(t) =

∫ t

0
L(t, s)x(s)ds+K(t).

We can do so by showing that Γ : C→ C is another contraction. Specifically, for x1, x2 ∈ C,

|Γ(x1)(t)− Γ(x2)(t)| ≤
∫ t

0
|L(t, s)||x1(s)− x2(s)|ds ≤ L↑t‖x1 − x2‖t,

where the finite upperbound L↑ is given by (7). The rest of the proof is similar.

To treat the variance of Ĥ, consider the SVE (4.18) at 0 ≤ s, t ≤ T

H(t)−
∫ t

0
L(t, u)H(u)du =

∫ t

0
J(t, u)dW(u),

H(s)−
∫ s

0
L(s, v)H(v)dv =

∫ s

0
J(s, v)dW(v).

Multiplying the two equations and taking expectation yield that

C(t, s) = −
∫ t

0

∫ s

0
L(t, u)h(s, v)C(u, v)dvdu+

∫ s∧t

0
J(t, u)J(s, u)du

+

∫ t

0
L(t, u)C(u, s)du+

∫ s

0
h(s, v)C(t, v)dv,

where C(t, s) = Cov(Ĥ(t), Ĥ(s)), or equivalently, an FPE

C = Θ(C), (9)

where C(·, ·) ∈ C([0, T ]2), and the operator

Θ(C)(t, s) = −
∫ t

0

∫ s

0
L(t, u)h(s, v)C(u, v)dvdu+

∫ t

0
L(t, u)C(u, s)du

+

∫ s

0
L(s, v)C(t, v)dv +

∫ s∧t

0
J(t, u)J(s, u)du. (10)

Using the norm ‖x‖T = sup
0≤s,t≤T

|x(t, s)|, we next prove that Θ is a contraction. Specifically,

for x1, x2 ∈ C([0, T ]2), we have

|Θ(x1)(t, s)−Θ(x2)(t, s)|

≤
∫ t

0

∫ s

0
|L(t, u)L(s, v)| · |x1(u, v)− x2(u, v)|dvdu

+

∫ t

0
|L(t, u)| · |x1(u, s)− x2(u, s)|du+

∫ s

0
|L(s, v)| · |x1(t, v)− x2(t, v)|dv

≤
(

(L↑)2ts+ L↑t+ L↑s
)
‖x1 − x2‖T .
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The contraction property is guaranteed if we pick a small ∆T > 0 such that(
(L↑)2∆T 2 + 2L↑∆T

)
< 1.

According to the Banach contraction theorem, we have the uniqueness and existence in

the small block [0,∆T ]2. The uniqueness and existence of C(·, ·) over the entire region

[0, T ]× [0, T ] can be proved by recursively dealing with small blocks of the form [i∆T, (i+

1)∆T ]× [j∆T, (j + 1)∆T ].

Remark .0.1 (Numerical Algorithm for σ2
Ĥ

(t)) The above proof of the existence and

uniqueness of the FPE (9) automatically suggests the following recursive algorithm to com-

pute the covariance C(t, s) and variance σ2
Ĥ

(t). To begin with, we pick an acceptable error

target ε > 0.

Algorithm:

(i) Pick an initial candidate C(0)(·, ·);

(ii) In the kth iteration, let C(k+1) = Θ
(
C(k)

)
with Θ given in (10).

(iii) If ‖C(k+1) − C(k)‖T < ε, stop; otherwise, k = k + 1 and go back to step (ii).

According to the Banach contraction theorem, this algorithm should converge geometrically

fast. When it finally terminates, we set σ2
Ĥ

(t) = C(t, t), for 0 ≤ t ≤ T , which will be used

later to devise required control functions c and κi. The algorithm to compute the mean M
Ĥ

is similar. �

Proof of Proposition 4.3.2

First note that the FPE (4.21) specifies a well-defined function φ : C→ C such that

M
Ĥ

= φ(K). (11)

See the proof of the uniqueness and existence of the SVE (specifically, see (3)–(7)) for

details.

Let (κ∗, c∗) ≡ (κ∗1, . . . , κ
∗
K , c

∗), with κ∗i and c∗ given in (4.28) and (4.27). Let K∗ and

M∗
Ĥ

be the corresponding version of (4.20) and the mean of Ĥ. (We know that K∗(t) =
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M∗
Ĥ

(t) = 0.) So we have

κ∗i (t) = κ∗i (t)−M∗Ĥ(t) = z1−αiσĤ(t), 1 ≤ i ≤ K. (12)

Now consider another solution to (κ̃, c̃) to (4.26), with (κ̃, c̃) ≡ (κ∗1+∆κ1, . . . , κ
∗
K+∆κK , c

∗+

∆c). Let K̃ and M̃
Ĥ

be the corresponding version of (4.20) and mean of Ĥ. By (4.26), we

have

κ∗i (t) + ∆κi(t)− M̃Ĥ
(t) = z1−αiσĤ(t), , 1 ≤ i ≤ K. (13)

Comparing (12) with (13), we must have

∆κi(t) = M̃
Ĥ

(t)−M∗
Ĥ

(t) ≡ ∆κ(t) for all 1 ≤ i ≤ K. (14)

Hence, any alternative solution to (4.26) (if any) has the form (κ∗1 + ∆κ, . . . , κ∗K + ∆κ, c∗+

∆c). Next, M∗
Ĥ

= φ(K∗) and M̃
Ĥ

= φ(K̃) imply that

M∗
Ĥ

(t) =

∫ t

0
L(t, s)M∗

Ĥ
(s)ds+K∗(t) and M̃

Ĥ
(t) =

∫ t

0
L(t, s)M̃

Ĥ
(s)ds+ K̃(t),

which leads to

∆κ(t) = M̃
Ĥ

(t)−M∗
Ĥ

(t) =

∫ t

0
L(t, s)

(
M̃
Ĥ

(s)−M∗
Ĥ

(s)
)

ds+
(
K̃(t)−K∗(t)

)
,

=

∫ t

0
L(t, s)∆κ(s)ds+

(
K̃(t)−K∗(t)

)
, (15)

where the last equality holds by the first equality. By (14) and (4.20), we have

K̃(t)−K∗(t) =
∆κ(t)

∑K
i=1

(
ηi(t)−

∫ t
0 ηi(s)e

µi(s−t)(µi − hFi(wi))ds
)
−∆c(t)

η(t)
. (16)

Finally, combining (15) with (16), we must have, for any ∆κ,

∆c(t) = ∆κ(t)
K∑
i=1

(
ηi(t)−

∫ t

0
ηi(s)e

µi(s−t)(µi − hFi(wi))ds

)
− η(t)

(
∆κ(t)−

∫ t

0
L(t, s)∆κ(s)ds

)
= 0,

where the last equality above holds by (4.20). Therefore, we can see that c is indeed unique,

but κi is only unique up to adding a arbitrary common function ∆, which is consistent with

our intuition. �
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