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Abstract

Background

The impacts of climate change on surface water, waterborne disease, and human health

remain a growing area of concern, particularly in Africa, where diarrheal disease is one of

the most important health threats to children under 5 years of age. Little is known about the

role of surface water and annual flood dynamics (flood pulse) on waterborne disease and

human health nor about the expected impact of climate change on surface-water-dependent

populations.

Methods and findings

Using the Chobe River in northern Botswana, a flood pulse river—floodplain system, we

applied multimodel inference approaches assessing the influence of river height, water qual-

ity (bimonthly counts of Escherichia coli and total suspended solids [TSS], 2011–2017),

and meteorological variability on weekly diarrheal case reports among children under 5 pre-

senting to health facilities (n = 10 health facilities, January 2007–June 2017). We assessed

diarrheal cases by clinical characteristics and season across age groups using monthly out-

patient data (January 1998–June 2017). A strong seasonal pattern was identified, with 2

outbreaks occurring regularly in the wet and dry seasons. The timing of outbreaks diverged

from that at the level of the country, where surface water is largely absent. Across age

groups, the number of diarrheal cases was greater, on average, during the dry season.

Demographic and clinical characteristics varied by season, underscoring the importance of

environmental drivers. In the wet season, rainfall (8-week lag) had a significant influence on

under-5 diarrhea, with a 10-mm increase in rainfall associated with an estimated 6.5% rise

in the number of cases. Rainfall, minimum temperature, and river height were predictive of

E. coli concentration, and increases in E. coli in the river were positively associated with
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diarrheal cases. In the dry season, river height (1-week lag) and maximum temperature (1-

and 4-week lag) were significantly associated with diarrheal cases. During this period, a 1-

meter drop in river height corresponded to an estimated 16.7% and 16.1% increase in

reported diarrhea with a 1- and 4-week lag, respectively. In this region, as floodwaters

receded from the surrounding floodplains, TSS levels increased and were positively associ-

ated with diarrheal cases (0- and 3-week lag). Populations living in this region utilized

improved water sources, suggesting that hydrological variability and rapid water quality

shifts in surface waters may compromise water treatment processes. Limitations include the

potential influence of health beliefs and health seeking behaviors on data obtained through

passive surveillance.

Conclusions

In flood pulse river—floodplain systems, hydrology and water quality dynamics can be highly

variable, potentially impacting conventional water treatment facilities and the production of

safe drinking water. In Southern Africa, climate change is predicted to intensify hydrological

variability and the frequency of extreme weather events, amplifying the public health threat

of waterborne disease in surface-water-dependent populations. Water sector development

should be prioritized with urgency, incorporating technologies that are robust to local envi-

ronmental conditions and expected climate-driven impacts. In populations with high HIV bur-

dens, expansion of diarrheal disease surveillance and intervention strategies may also be

needed. As annual flood pulse processes are predominantly influenced by climate controls

in distant regions, country-level data may be inadequate to refine predictions of climate—

health interactions in these systems.

Author summary

Why was this study done?

• Diarrheal disease remains a persistent global health threat for children under 5 years of

age, particularly in Africa.

• In river—floodplain systems, annual floods or flood pulses can occur, with extreme

flooding and drought a common threat to local populations. We do not know how sur-

face water dynamics influence diarrheal disease and human health or how climate

change will affect populations dependent on surface water resources in these regions.

What did the researchers do and find?

• We conducted a study on the Chobe River floodplain system in northern Botswana, a

system that floods annually and is the source of drinking water for 8 villages included in

the study.

• We evaluated diarrheal outbreak patterns in children under 5 years of age (weekly,

2007–2017) and individuals of all ages (monthly, 1998–2017) reporting diarrheal disease

at government health facilities (n = 10).
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• Using multimodel inference approaches, we assessed how meteorology, river height,

and water quality characteristics (2011–2017) were associated with reports of diarrheal

disease in children under 5 years of age.

• Across individuals of all ages, diarrheal outbreaks occurred regularly in the wet and dry

seasons.

• Season had an important influence on the type of diarrhea and age group of the patient.

• Increases in diarrheal case reports were closely tied to meteorology, flood recession, and

decreases in surface water quality, with the highest number of cases occurring in the dry

season.

What do these findings mean?

• In flood pulse river—floodplain systems, rapid changes in surface water quality may

influence the ability of water treatment plants to provide safe drinking water.

• Climate change is expected to increase hydrological variability, further influencing the

vulnerability of populations in this region.

• There is an urgent need to strengthen water infrastructure to address current and future

environmental impacts that can influence the production of safe water.

• In populations with high HIV infection levels, public health focus may need to be

extended to include other at-risk groups beyond children under five, such as HIV-

infected individuals and others that may also be immunocompromised.

• As distant weather patterns influence local flood dynamics, use of country-level data

may not be adequate to predict climate impacts on human health in these types of

systems.

Introduction

Across land types, the flow of water (ground water, surface water, and rainfall) has been dem-

onstrated to influence infectious disease transmission dynamics across scales, from microbial

to host levels [1–4]. Degradation of freshwater ecosystems and declines in water quality in sur-

face water represent a growing public health threat across Africa [5]. Worldwide, degraded

water quality, waterborne disease, and infectious diarrhea remain prominent and persistent

concerns that are expected to worsen under future climate change projections [6,7]. In 2015,

diarrheal disease was estimated to cause 1.31 million deaths per year [8]. Of these, nearly half a

million deaths occurred in children under 5 years of age, with the greatest burden of disease

focused in sub-Saharan Africa and South Asia [9,10]. Diarrheal disease in children can have

lasting population effects, such as stunting and cognitive deficiencies [11]. Chronic oral expo-

sure to fecal contaminates is also linked to environmental enteropathy, a subclinical disorder

marked by chronic gut inflammation, small bowel structural change, decreased gut permeabil-

ity, and gut immune dysfunction, which can influence oral vaccine efficacy [12]. The societal

impact of diarrheal disease in children can be lasting, underscoring the need to advance our

understanding of environmental couplings to develop effective public health strategies that

will not only reduce current disease burdens but minimize future climate change impacts.
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Floods are identified as the most pervasive hydrometeorological hazard (reviewed in [13]),

are expected to increase in frequency under climate change [14], and are linked strongly with

the occurrence of diarrheal disease outbreaks in affected populations [15–18]. However, flood

and flow regimes can vary significantly by waterway, and range from large rivers in temperate

regions with more regular flow to dryland river—floodplain systems in arid and semiarid

regions where highly variable flow occurs annually (flood pulse), with extreme flooding as well

as droughts a common outcome [19]. In flood pulse systems, there is a predictable advance of

floodwaters onto surrounding floodplains and retraction back into the river channel with

flood recession, linking aquatic and terrestrial landscapes and microbial communities. These

annual flood dynamics are highly variable and can change dramatically in flow volume, dura-

tion, frequency, and timing [20,21]. These systems tend to be in a state of dynamic equilibrium,

with system behavior and biota characterized by flood dynamics and the geomorphology of

the river—floodplain system [21]. These interacting hydrological, geomorphological, and sedi-

mentary processes are fundamental determinants of microbial dynamics, water quality, and

waterborne pathogen exposure in humans and animals in flood-prone areas but have not yet

been adequately characterized, hampering our ability to address current and climate-mediated

population vulnerabilities.

Botswana provides an ideal model system to isolate the role of surface water and flood

dynamics on climate—diarrheal disease couplings. Botswana is an arid to semiarid country in

Southern Africa with only 3 sources of permanent surface water throughout the country. Rain-

fall is limited and only occurs during a defined wet season, with little or no rainfall during the

dry season. At the national level, diarrheal disease remains a persistent health threat to children

and adults alike [22]. Using this study system and a unique dataset, we evaluated the influence

of meteorology, surface water quality, and flood pulse dynamics on diarrheal disease and dis-

cuss the implications for public health and climate preparedness needs in systems where popu-

lations are dependent on surface water resources.

Methods

To analyze the relationships between variables, we used multimodel inference, which allowed

quantification of model uncertainty among different candidate models and unconditional

inference across those different models [23]. These methods permit inference of important

predictor variables, estimation of the average effects of predictor variables on an outcome, and

generation of multimodel weighted averaged predictions of that outcome.

Study site

Botswana is a semiarid, landlocked country in Southern Africa. The country has a subtropical

climate with annual wet (November—March) and dry (April—October) seasons. Intra- and

inter-annual precipitation variability is high, resulting in frequent droughts and flooding. This

study focuses on Chobe District, located in the northeastern part of Botswana (Fig 1). The

Chobe River floodplain system, which is the primary source of water for the district, floods

annually (flood pulse), with the peak flood height occurring in the late wet season/early dry

season (April). The district contains 1 primary hospital, 3 private clinics, and 12 government

health clinics that serve a total population of approximately 25,000 people (Central Statistics

Office of Botswana, 2011). Medical services are provided by the government, with patients

paying a nominal fee for health services. Chobe District is also home to the Chobe National

Park, which provides an important habitat for the largest elephant population in Africa, as well

as an abundance of other wildlife species (Fig 1).
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The Chobe River supplies all domestic water needs for the study villages (n = 8), providing

a unique environment to assess the impact of surface water dynamics on the health of depen-

dent populations. Water is pumped directly from the river into a conventional water treatment

plant and then distributed through direct reticulation to households (private outdoor and

indoor taps) or to public taps [22]. River water traverses a protected area before it reaches the

water treatment plant (Fig 1). Turbidity and pH are measured manually; values are used to

determine the amount of coagulant that is automatically deployed over time in the water treat-

ment process. A second fully automated plant was deployed in 2014, serving 2 out of the 8

study villages. Since 2016, frequent—daily and sometimes multiple daily—water purges occur

in the second system, which continues to date. The majority of households have access to

improved sanitation, with only 14% of households reporting lack of access in a recent survey

of 3 of the study villages, most frequently due to pit latrines being at capacity [24]. At the

country level, diarrheal disease outbreaks occur in a bimodal, cyclical pattern peaking during

March and October in the wet and dry seasons, respectively [25].

Time series data

Hydrometeorological data. Data period, type, and spatial resolution are provided in

Table 1. Meteorological data were acquired from the Department of Meteorological Services

Fig 1. The study was conducted in northern Botswana in Southern Africa. The Chobe River (blue line) is a transboundary waterway and 1 of

only 3 perennial sources of water within Botswana, with water flow (light blue arrow) moving from the national park towards the urban areas,

where the water treatment facility is located (blue X). Water quality samples were collected biweekly at established transect points (black

triangles). Surface waters are abstracted to produce drinking water through centralized water treatment facilities and distributed to the

population. Circles represent buildings color coded by the type of infrastructure (agricultural, commercial, residential, or tourism related; see

legend). In this system, annual floods are driven by distant and regional wet season precipitation, with the largest input arising from floodwaters

that occur in association with tropical rains in the upper watersheds of the Zambian and Angolan Highlands (inset, northern aspect of the

Cuando-Chobe River Basin). The peak of the flood pulse arrives in the Chobe River at the end of the wet season/beginning of the dry season,

after traversing more than 1,000 km from the highland areas.

https://doi.org/10.1371/journal.pmed.1002688.g001
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under the Ministry of Environment, Natural Resources Conservation and Tourism. Measure-

ments from all sites were averaged to produce daily estimates of temperature and rainfall in

Chobe District. The Department of Water Affairs provided daily measurements of the Chobe

River height. All hydrometeorological variables were aggregated to a weekly resolution and

span from January 2007 to June 2017.

Water quality assessments. Water grab samples were collected bimonthly from estab-

lished transect sites (n = 14 sampling points, July 2011–July 2017; Fig 1) located at 1-km inter-

vals along the Chobe River above the 2 water intake stations for the community. Land use

along this reach of the river consisted of protected area and urban land use. Water quality

assessments were conducted to estimate in-river concentrations of E. coli and total suspended

solids (TSS), as previously described [26].

Diarrheal case reports. Diarrheal case reports were obtained for the study from 10 health

facilities (9 government health clinics and 1 primary hospital) through 2 passive surveillance

systems operated under the Botswana Ministry of Health (MoH). Under-5 diarrhea case data

were acquired from the Integrated Disease Surveillance and Response (IDSR) program (Janu-

ary 2007–June 2017), which collates weekly numbers of under-5 diarrhea cases presenting to

district health facilities (Table 1). Total monthly outpatient cases of diarrhea (all ages) were

also obtained from the MoH for January 1998–June 2017. These case reports were extracted

from the same 10 health facilities, stratified by diarrhea type, age (<1, 1–4, 5+ years), and sex

of the patient. Outpatient data include the IDSR weekly data (a subset) as all patients must

access the health system through outpatient services. These data are useful as they provide

information on all patients by age over and above those less than 5 years. Outpatient data were

included to provide a more complete demographic and clinical picture of diarrheal disease in

the district. A diarrhea case was defined as the occurrence of at least 3 loose stools in a 24-hour

period within the 4 days preceding the health facility visit. The diarrhea type was characterized

by the attending physician or nurse as diarrhea with no dehydration, diarrhea with some dehy-

dration, diarrhea with severe dehydration, or bloody diarrhea. Each selected study village had

a clinic, with the largest town, Kasane, having 2 clinics and a primary hospital (n = 3). For both

the IDSR and outpatient datasets, data from the clinic in the village of Pandamatenga were

Table 1. Data type and resolution used in the analysis.

Category Variable measured Temporal scale Number of

measurements

Temporal resolution Spatial scale

Disease data Under-5 diarrhea cases Jan. 2007–Jun.

2017

10 health facilities Weekly total Chobe District

Outpatient diarrhea

cases

Jan. 1998–Jun.

2017

10 health facilities Monthly total Chobe District

Hydrometeorological

data

Maximum temperature Jan. 2007–Jun.

2017

1 station Weekly average Chobe District

Minimum temperature Jan. 2007–Jun.

2017

1 station Weekly average Chobe District

Rainfall Jan. 2007–Jun.

2017

2 stations Weekly sum Chobe District

River height Jan. 2007–Jun.

2017

1 station Weekly average Chobe River

Water quality E. coli Jul. 2011–Jun.

2014,

Jul. 2015–Jul. 2017

14 transect points Biweekly sampling, averaged over

transects

27.5 km of Chobe

River

Total suspended solids Jul. 2011–Jun.

2014,

Jul. 2015–Jul. 2017

14 transect points Biweekly sampling, averaged over

transects

27.5 km of Chobe

River

https://doi.org/10.1371/journal.pmed.1002688.t001
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excluded because residents in this village obtained water from boreholes and were expected to

have variable exposure to surface water resources from other villages and towns in the district.

Demographic statistical analyses were conducted using chi-squared tests for differences in pro-

portions between groups.

Diagnoses were categorized according to the International Classification of Diseases–10th

Revision (ICD-10 [27]). Case data represent summary clinical diagnoses of attending physi-

cians or nurses in government health facilities and were not associated with any clinical diag-

nostic information.

Correcting for missing under-5 diarrhea data

In the IDSR record, missing data existed for each of the 10 reporting health facilities. Weeks

with no reports (i.e., all 10 health facilities not reporting) were not included in the analysis. We

used 2 approaches to correct for the missing reports for weeks where data gaps existed (i.e.,

data from fewer than 10 health facilities). In the first approach, we took the total number of

cases reported in a given week and divided this by the number of health facilities reporting

that week. This method provides a weekly estimate of the total under-5 diarrhea cases per

health facility reporting but does not account for differences in patient volume. For the second

method, observations were first standardized as follows:

xst;i ¼
xt;i � mi

si

where xst;i is the standardized observation for week t and health facility i, xt,i is the raw number

of observations for week t and health facility i, μi is the mean number of observations for health

facility i, and σi is standard deviation of the number of observations for health facility i. For

each week, those standardized numbers of observations were averaged across reporting health

facilities to create a district-wide standardized estimate, xst , i.e.,

xst ¼
Xn

j¼1

xst;i
n

where n is the number of clinics reporting in a given week. This standardized weekly under-5

diarrhea estimate, xst , represents the average deviation from the mean number of cases across

reporting clinics. Analyses were performed using both correction approaches, and results were

consistent with both data forms. Findings using weekly under-5 diarrhea data divided by the

number of reporting clinics are presented here; findings using standardized under-5 diarrhea

data are presented in S3 Table and S3–S5 Figs. Overall, variable importance and effect size

were consistent irrespective of which data correction method was used.

Environmental predictors of under-5 diarrhea and water quality:

Multimodel inference

Three separate analyses were performed to determine the associations between environmental

variables and weekly under-5 diarrhea cases, E. coli, and TSS. The analyses differed only in the

outcome of interest and the basic structure of the models. Since water quality variables were

measured over a shorter time period, the models predicting E. coli and TSS included fewer

observations (n = 42 [wet season], n = 54 [dry season]) than models without water quality vari-

ables (n = 164 [wet season], n = 236 [dry season]). A priori, we believed that different environ-

mental drivers were important for the dry and wet season outbreaks of diarrhea in children

under 5. Hence, analyses were performed separately for the wet and dry seasons.
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Multimodel inference was carried out using groups of candidate regression models, each

developed with the same structure but different predictor variables. Under-5 diarrhea observa-

tions, which are overdispersed count data, were modeled using negative binomial regression.

E. coli and TSS concentration data were Gaussian in structure and were modeled using ordi-

nary least squares regression. Models for under-5 diarrhea were developed using all combina-

tions of 12 different environmental variables: minimum temperature (lagged 1, 4, and 8

weeks), maximum temperature (lagged 1, 4, and 8 weeks), rainfall (lagged 1, 4, and 8 weeks),

and Chobe River height (lagged 1, 4, and 8 weeks). Models for E. coli or TSS included the same

environmental variables lagged 0 and 4 weeks. These lag times were chosen to represent the

acute (0/1 week), short-term (4 week), and long-term (8 week) effects of environmental vari-

ability. All regressions included a dummy variable for year and an autoregressive term (diar-

rhea incidence lagged 1 week) as predictor variables. This resulted in 4,096 candidate models

of under-5 diarrhea for both the wet and dry season, and 256 candidate models for both E. coli
and TSS for each season. In summary, within a multimodel ensemble, every model had the

same regression structure (either Gaussian or negative binomial) and included a dummy vari-

able for year and an autoregressive term. The only differences between the models were the

environmental variables included as predictors.

Multimodel inference methods. Five different subsets of the candidate models were cre-

ated by (1) retaining all models, (2) selecting models with all coefficients statistically significant

at p< 0.20, (3) selecting models with all coefficients statistically significant at p< 0.10, (4)

selecting models with all coefficients statistically significant at p< 0.05, and (5) selecting only

the model with the lowest Akaike information criterion, corrected for the small sample size

relative to the number of parameters used in each model (AICc). The Akaike weight of each

model within the subset was then calculated. Akaike weights provide a relative likelihood that

a specific model is the best model in a given subset [23]. “Top” model sets were then obtained

by selecting the smallest combination of models with Akaike weights summing to 0.95.

These top model sets were used to calculate averaged variable coefficients and relative vari-

able importance. The average coefficient for variable X was calculated by taking a weighted

average of the coefficient estimates for variable X from each subset model. Each coefficient

estimate was weighted by the Akaike weight of its respective model. Relative variable impor-

tance is a measure of how often a predictor variable is included in the best performing models.

The relative importance of variable X was calculated by adding the Akaike weights of all mod-

els that included variable X as a predictor. These importance measurements do not add up to 1

because models can include multiple environmental predictors.

Multimodel averaged predictions. Multimodel averaged predictions are simply the

Akaike weighted average of the subset constituent model predictions. Pseudo R-squared was

calculated for the averaged model, top model, and null model by squaring the correlation

between the averaged predictions and observations of weekly diarrhea. In addition, leave-one-

out (LOO) cross-validation was performed by omitting 1 year of data from model fitting and

then generating and evaluating model averaged predictions for the missing year. Because our

models include a dummy variable for year, which cannot be estimated for the omitted year,

correlation rather than root mean square error (RMSE) was used to evaluate model predictive

performance.

Analysis of water quality and under-5 diarrhea

Negative binomial regressions were used to evaluate the relationships between Chobe River

water quality and under-5 diarrhea case reports. Multiple models were run with E. coli or TSS

lagged from 0 to 8 weeks as the predictor variable and under-5 diarrhea cases as the outcome.
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Each model, which included an autoregressive term (under-5 diarrhea incidence lagged 1

week) and a dummy variable for year, contained only 1 lagged water quality predictor variable.

Each model included data from weeks with complete observations for all predictors.

Study permissions and approvals

This study was conducted under permit from the Ministry of Environment, Natural Resources

Conservation and Tourism (EWT8/36/4) and the MoH (HPSME:13/18/1 Vol. X [878]).

Approval was also obtained from the Virginia Tech Institutional Review Board (#11–573).

Results

IDSR weekly cases of under-5 diarrhea in Chobe District exhibited strong seasonal dynamics

over the decade of observation (2007–2017), with 2 outbreaks occurring regularly each year

(Fig 2). The first outbreak period occurred on average in late January during the wet season,

and the second, in August during the dry season. The diarrheal attack rate was greater, on

average, for dry season outbreaks (average number of cases = 615, SD = 333) than for wet sea-

son outbreaks (average number of cases = 407, SD = 232). The number of outpatient diarrhea

cases reported per month (all ages) for the same area exhibited a similar seasonal pattern. As

with under-5 diarrhea, the all-age outpatient attack rate tended to be higher on average in the

dry season (average = 725, SD = 381) than in the wet season (average = 466, SD = 226).

Demographic and clinical characteristics of diarrheal disease

Outpatient (monthly, all ages) and IDSR (weekly under-5) diarrheal data demographics are

shown in Table 2. For the outpatient data, diarrheal outbreak patterns were similar in both

under-5 children and in older children and adults, with diarrheal disease in individuals� 5

years representing almost half of the reported cases. Significant differences in diarrhea type

were identified when outpatient data were stratified by age (Table 3). However, more than half

of the diarrheal cases across age groups presented with some or severe dehydration or bloody

diarrhea (Table 3).

Outpatient diarrheal demographics also differed significantly between the wet and dry sea-

sons (Table 4). While no difference in sex distribution could be detected, the wet season had

significantly more patients between the ages of 1 and 4 years (p< 0.001), and the dry season

had significantly more patients 5 years and over (p< 0.001). There was no seasonal difference

in the number of diarrhea case reports for children less than 1 year old. Diarrheal type also var-

ied by season (p< 0.001).

Hydrometeorological and water quality variables

Average maximum temperature was similar in the wet season and dry season, at 30 ˚C and 29

˚C, respectively; however, maximum temperature had greater variability during the dry sea-

son. Minimum temperature was higher during the wet season on average (19 ˚C) than during

the dry season (12 ˚C). The lowest minimum temperatures occurred during the dry season,

and then temperatures increased up to the start of the wet season, at which point they pla-

teaued. In this system, with the commencement of the flood pulse, the height of the Chobe

River steadily increased during the wet season, peaking on average in April and decreasing

through the dry season.

Chobe River measurements of E. coli and TSS from 2011 to 2017 also exhibited seasonal

patterns (Fig 2F and 2G; full time series data are provided in S1 Fig). TSS increased and peaked

during the dry season, declining steadily throughout the wet season. In contrast, E. coli
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Fig 2. Seasonal plots of all variables. All plots represent the average weekly values across all years of data. The shaded

portion represents the dry season, and the dashed black line is a cubic spline fit through the data to show seasonal trend.

Average weekly number of under-5 diarrheal cases reported for 2007–2017 is shown in (A); (B—E) provide the average

weekly values for environmental variables over the study period from January 2007 to June 2017 (full time series data are

provided in S1 Fig), and (F) and (G) are average biweekly water quality measurements in the Chobe River for 2011–2017.

CFU, colony-forming units; TSS, total suspended solids.

https://doi.org/10.1371/journal.pmed.1002688.g002
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concentrations were relatively low during the dry season and peaked in the middle of the wet

season.

Environmental predictors of under-5 diarrhea

Dry season multimodel results. The results from multimodel inference in the dry season

are summarized in Fig 3A.1. River height lagged 1 week, and maximum temperature lagged 1

Table 2. Demographic distributions of outpatient diarrhea cases and IDSR under-5 diarrhea cases in Chobe

District.

Attribute Outpatient IDSR

Age (years)

<1 29.5 N/A

1–4 27.0 N/A

5+ 43.5 N/A

Male sex 48.5 N/A

Diarrhea type

No dehydration 34.6 46.5

Some dehydration 55.1 39.0

Severe dehydration 3.7 6.6

Bloody diarrhea 6.7 7.5

IDSR data were not stratified by age or sex. Table entries represent percent of total cases in that category.

IDSR, Integrated Disease Surveillance and Response; N/A, not applicable.

https://doi.org/10.1371/journal.pmed.1002688.t002

Table 3. Outpatient diarrhea cases stratified by age and type of diarrhea.

Diarrhea type Age (years) Chi-squared p-value

<1 1–4 5+

No dehydration 31.6 37.7 34.6 <0.001

Some dehydration 57.8 52.4 55.0 <0.001

Severe dehydration 4.3 3.9 3.1 0.004

Bloody diarrhea 6.3 6.0 7.3 0.016

Entries represent percentage of total cases in that age group. p-Values are calculated using a chi-squared test for

differences in proportions across groups.

https://doi.org/10.1371/journal.pmed.1002688.t003

Table 4. Demographics by season of outpatient diarrhea cases in Chobe District.

Attribute Wet season Dry season Chi-squared p-value

Age (years)

<1 29.2 29.7 0.524

1–4 29.2 25.6 <0.001

5+ 41.6 44.7 <0.001

Male sex 49.3 48.1 0.143

Diarrhea type

No dehydration 39.4 31.4 <0.001

Some dehydration 49.5 58.8 <0.001

Severe dehydration 2.7 4.3 <0.001

Bloody diarrhea 8.3 5.6 <0.001

Table entries represent percent of total cases in that season. p-Values were calculated using a chi-squared test.

https://doi.org/10.1371/journal.pmed.1002688.t004
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and 4 weeks had the highest weighted importance within all model subsets. Indeed, average

coefficient estimates and variable importance did not differ greatly between model subsets

with different p-value criteria. River height lagged 4 weeks and rainfall lagged 1 week also had

moderate relative importance when rainfall—rare in the dry season—occurred.

As the Chobe River height decreases during the dry season, floodwaters drain back into the

channel from the surrounding floodplains. Multimodel inference estimates indicated that a

1-meter decrease in river height in the dry season was associated with a 16.7% (1-week lag)

and a 16.1% (4-week lag) increase in under-5 diarrhea cases. Maximum temperature had a

more complex relationship with diarrheal disease, with a positive influence on diarrheal dis-

ease initially at the 1-week lag but a negative relationship when lagged by 4 weeks.

Fig 3. Dry season and wet season average coefficients and variable importance. (A) Summary of multimodel inference predicting under-5

diarrhea. The rows of the tables represent each environmental variable at 1-, 4-, and 8-week lags. The columns of the tables represent different

model selection criteria, i.e., average coefficient estimates for each environmental variable derived from different model subsets. The numbers in

parentheses indicate the number of models that were averaged in a given model subset. Lastly, the shading indicates the weighted importance of

each variable within the model subset, with 1 being the highest possible weighted importance. “NaN” indicates that a variable was not used in

any of the models within a model subset. (A.1) shows results from the dry season, and (A.2) shows wet season results. (B and C) As for (A), but

for models predicting E. coli and total suspended solids (TSS), respectively, with 0- and 4-week lags. Tmax, maximum temperature; Tmin,

minimum temperature.

https://doi.org/10.1371/journal.pmed.1002688.g003
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A 1 ˚C increase in maximum temperature lagged 1 week was associated with an estimated

3.8% increase in under-5 diarrhea, while a 1 ˚C decrease in maximum temperature lagged 4

weeks was associated with a 3.4% increase in under-5 diarrhea.

Pseudo R-squared values for the averaged models ranged from 0.55 to 0.57 (S1 Table),

while the null model (with only an autoregressive term and year dummy variable) had a

pseudo R-squared value of 0.46. Prediction results for different model averages were consis-

tent, so this discussion focuses on the model subset with coefficients significant at p< 0.05.

LOO cross-validation prediction accuracy was typically higher for the weighted averaged

models than the top AICc model but varied greatly depending on the omitted year (S2 Table).

Correlations between predicted number of cases of under-5 diarrhea and observed number

of cases were very high for 2009 through 2017, but the 2008 correlation was very poor

(r = 0.1214). The averaged models containing environmental predictors performed much bet-

ter overall in LOO cross-validation than the null model (S4 Table).

Wet season multimodel results. Average coefficients and variable importance estimates

in the wet season also did not vary widely between model subsets (Fig 3A.2). Rainfall lagged 8

weeks was the most important predictor of under-5 diarrhea in the wet season. Each additional

10 mm of rainfall lagged 8 weeks was associated with a 6.5% increase in under-5 diarrhea inci-

dence. Minimum temperature lagged 1 week had moderate importance in 2 model averages,

which estimated a 5.8% increase in diarrhea for every 1 ˚C decrease.

Pseudo R-squared values for the wet season were 0.54 for all model averages, and the null

model had a value of 0.49 (S1 Table). All model averages produced similar LOO prediction

accuracy; models with coefficients significant at p< 0.05 are provided S2 Table. Similar to the

dry season models, prediction accuracy varied greatly based on the omitted year of data. Cor-

relations from model averaged predictions were higher than 0.80 for the years 2010–2014 and

2016. When data from 2015 were omitted, the models generated very poor predictions. How-

ever, the null model performed worse on average in LOO cross-validation than the averaged

models with environmental predictors.

We also tested the data using distributed lag nonlinear models, which allow for nonlinear

relationships between predictors and the outcome variable. All environmental variables were

included as predictors (maximum temperature, minimum temperature, rainfall, and river

height) lagged from 0 to 8 weeks. The results generally agreed with the results presented above.

In the dry season, decreasing river height was associated with a significantly higher risk of diar-

rheal disease at lag weeks 4–6. In the wet season, higher rainfall was associated with larger

diarrhea risk at lag weeks 7 and 8. Associations between other environmental variables and

diarrhea incidence were generally nonsignificant, which may be due to our moderate sample

size. Of note, the estimated exposure—response relationships were relatively linear, which sup-

ports our use of generalized linear model multimodel inference above. More details and figures

explaining this analysis can be found in S1 Text and S6 and S7 Figs.

Environmental predictors of TSS and E. coli
Multimodel inference identified different environmental drivers of E. coli and TSS by season

(Fig 3B and 3C). In the wet season, minimum temperature unlagged, river height unlagged,

and rainfall unlagged were the most important predictors of E. coli concentrations. All 3 vari-

ables had statistically significant positive associations with E. coli (Fig 3B.2). Rainfall lagged 4

weeks was the only important predictor of E. coli in the dry season and had a positive coeffi-

cient (Fig 3B.1). Rainfall in the dry season, however, was an uncommon event.

In the dry season, TSS level was strongly predicted by river height lagged 4 weeks, which

had a negative coefficient (Fig 3C.1). Lastly, minimum temperature lagged 0 and 4 weeks and
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river height lagged 4 weeks were important predictors of TSS in the wet season. Minimum

temperature at both lags had a positive association with TSS, and river height had a negative

association (Fig 3C.2).

Water quality and diarrheal case reports

Univariate regression analyses showed that both TSS and E. coli concentrations were signifi-

cantly associated with under-5 diarrheal disease (S2 Fig). TSS had a positive association with

diarrhea incidence in the dry season unlagged (beta = 0.060, 95% CI = 0.180, 0.102), lagged 3

weeks (beta = 0.041, 95% CI = 0.008, 0.073), and lagged 4 weeks (beta = 0.042, 95% CI = 0.004,

0.080). In contrast, TSS had a significantly negative relationship with under-5 diarrhea in

the wet season lagged 2 weeks (beta = −0.098, 95% CI = −0.151, −0.045) and 6 weeks (beta =

−0.063, 95% CI = −0.119, −0.007). E. coli had an unlagged positive association with diarrheal

incidence in both the wet season (beta = 0.003, 95% CI = 0.001, 0.004) and the dry season,

associated with rare rainfall events (beta = 0.011, 95% CI = 0.003, 0.017).

Discussion

Outbreak patterns and seasonal influences on demographic and clinical

characteristics of diarrhea case reports

In this system, the presence of surface water and flood pulse dynamics in a river—floodplain

system had a significant association with diarrheal disease case reports in children under 5

years of age as well as all other age groups reporting to health facilities. Timing of seasonal out-

breaks differed from that observed at the level of the country, where surface water is largely

absent [25], highlighting the important influence landscape characteristics can have on disease

dynamics and population vulnerability. In this study, diarrheal incidence was highest on aver-

age in the dry season in August, with the second outbreak occurring in the wet season towards

the end of January. Importantly, the timing of outbreaks was similar across age groups. Impor-

tant seasonal differences were identified in the average number of diarrheal cases reported for

the age groups 1 to 4 years and 5 years and over (p< 0.001; Table 4). This was not the case,

however, for children less than 1 year of age. The reasons for this remain unclear but may

relate to lower immunocompetence in the youngest children relative to the other age groups

and greater general susceptibility to waterborne pathogen communities across seasons. Diar-

rhea type also varied significantly by season (p< 0.001; Table 4), with, for example, bloody

diarrhea occurring more frequently in the wet season, suggesting that environmental condi-

tions influence pathogen community and exposure dynamics, associations that have been pre-

viously reported [28].

It is important to note, however, that passive surveillance data have potential limitations

influenced by health seeking behaviors and other critical sociocultural drivers, and data

may, therefore, not fully represent the population under study (for a full review see [25]).

Additional community-level studies are important and can provide insight into potential

infection dynamics not captured by passive surveillance systems [29]. Nevertheless, the season

—diarrhea interactions observed here underscore the important role environmental drivers

may have for predicting the timing of disease outbreaks as well as the demographic and clinical

characteristics of patients affected by season.

Environmental drivers of diarrheal disease

In this flood pulse system, diarrheal disease was strongly coupled to environmental drivers

(Fig 2). Across tropical and semiarid regions [25,30,31], rainfall has been identified as a critical
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predictor of diarrheal disease. Consistent with these studies, rainfall with an 8-week lag had a

significant influence on under-5 diarrhea, with a 10-mm increase in rainfall associated with an

estimated 6.5% rise in the number of cases reported. Rainfall, minimum temperature, and

river height were all associated with increases in E. coli in the river system (Figs 3, 4 and S2).

TSS, however, had a negative association with diarrheal cases in the wet season, with in-river

levels declining as river height rose in conjunction with the arrival of floodwaters (lagged 2

and 6 weeks; S2 Fig). However, significant variation in TSS levels between transect points and

river segments by season have previously been noted [26].

The number of diarrheal case reports was higher on average in the dry season (Fig 2) and

was linked to maximum temperature and flood height, with a 1-m drop in floodwaters during

floodwater recession from floodplains associated with a significant increase in diarrheal cases

of 16.7% and 16.1% lagged 1 and 4 weeks, respectively (Figs 3 and S2). River TSS levels were

strongly predicted by river height and had a significant positive association with diarrhea in

the dry season (lagged 0, 3, and 4 weeks; S2 Fig). Here, as floodwaters receded from surround-

ing floodplains, TSS levels increased within the river channel. Differences in lagged relation-

ships suggest that hierarchical environmental processes are occurring, where primary source

exposure and secondary transmission dynamics may further contribute to variation in the

observed timing of environmental—health couplings.

In our analysis, cross-validation results reveal important heterogeneity in the ability of our

environmental models to accurately predict diarrheal case reports across the 8-study villages.

Diarrheal disease as a syndrome is complex, driven by a variety of pathogens, each varying in

their transmission and persistence dynamics in the system, elements that will vary, together

with environmental drivers, within and between years. Sociocultural influences will also shape

exposures, secondary transmission, and case detection. These complexities are evident in the

demographic and clinical variation seen by season in the outpatient data. However, across

models, river height lagged 1 week in the dry season and rainfall lagged 8 weeks in the wet

season remained consistently important across all years in predicting diarrheal disease case

reports.

Flood pulse systems and microbial dynamics at the aquatic—terrestrial

interface

Waterborne pathogen dynamics are closely coupled with hydrological and ecological processes

across the aquatic—terrestrial interface and consequent human microbial exposure risk

[19,32]. In the studied system, the flood pulse played a critical role in outbreak dynamics across

age groups. In such flood pulse systems, floodplain environments are periodically flooded with

sediment, with fecal microbial transport occurring between the floodplain and the river chan-

nel [33], influencing microbial community structure and movement across the aquatic—terres-

trial interface (Fig 4) [19,32]. The character of the flood pulse (alternating cycles of increased

water flow, volume, inundation, and draining) establishes the degree of connectivity, with lat-

eral exchange of matter and microbial organisms including waterborne pathogens moving

across hydrological connectivity gradients [20,21,34,35]. Pathogen communities are shaped by

the interactions that occur at this aquatic—terrestrial interface and influence the character of

waterborne pathogen exposures in associated populations.

Typically, human health impacts are associated with the rise in water levels and advance-

ment of floodwaters, although the timing of this relationship can be complicated [15,36]. How-

ever, in the Chobe River system, flood recession and withdrawal from the floodplains back

into the river channel drives diarrheal disease outbreaks (Fig 4). Cholera in the Bengal Delta

region provides an important contrasting example. In this system, cholera outbreaks occur

Hydrometeorology and flood pulse dynamics drive diarrhea outbreaks and vulnerability to climate change

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1002688 November 8, 2018 15 / 25

https://doi.org/10.1371/journal.pmed.1002688


Fig 4. Schematic of rainfall and flood pulse influences on surface water quality and diarrheal disease outbreaks in a flood pulse

river system. In these systems, the flood pulse uniquely links aquatic and terrestrial habitats and microbial communities including

potential pathogens. During the wet season (panel 1), rainfall moves fecal E. coli (a marker for fecal bacteria) overland from riparian

areas into the river channel. As in-river E. coli increases, the number of diarrheal disease case reports increases in the population

using municipal water that was obtained from the river (wet season outbreak). During this same period, seasonal pans are filled with

rainfall, and water-dependent animals (wildlife and, to a lesser extent, livestock) move out of the riparian area into the interior to

utilize forage and water resources. Floodwaters (panel 2) rise and inundate floodplains, incorporating fecal microbial communities

on previously dry land areas. With progression of the dry season and no rainfall, water pans in the interior dry up, and water-

dependent animals move back to the river’s edge, concentrating fecal material along river floodplains while utilizing the only
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biannually, a pattern that is unique to this region [37]. Here, the flood pulse is important in

distributing the cholera pathogen, with disease outbreaks corresponding to high flood levels

and water movement distributing pathogens across floodplains. This contrast suggests that dif-

ferences in pathogen reservoirs (aquatic versus terrestrial) play a critical role in the timing of

diarrhea—flood relationships and human exposure dynamics. Advancing our understanding

of these human—environment couplings will provide critical insight into forecasting flood—

waterborne disease dynamics across different landscapes—including for emerging diseases—

by pathogen type.

Public health implications

Under-5 diarrhea surveillance focus. While significant differences were identified in

diarrhea type by age, moderate and severe diarrheal disease (diarrhea with some or severe

dehydration or bloody diarrhea) constituted greater than half of the reported cases for all age

groups (>60%; <1, 1–4, 5+ years; Table 3). The study region has one of the highest HIV infec-

tion rates in the country (male, 14.4%; female, 18.1% [38]), raising concerns regarding the

potential immunosuppressive role of this disease in creating increased vulnerability in individ-

uals 5 years of age and over. A public health focus on diarrheal disease control in children

under 5 years of age may, therefore, be inadequate in populations with high HIV burdens,

where additional public health interventions may be required.

Flood pulse systems and impacts of suspended solids on the production of safe drinking

water. In developing countries, much attention has been focused on household treatment of

water as a primary public health intervention for diarrheal disease [39]. While this is critically

important, it is an intermediate solution. Many of these regions have water treatment plants

that are operational, but clean water is not consistently available. In this study, households in

the 8 villages had access to and reported utilizing improved water produced by centralized

water processing plants (97% [40]). This infrastructure should protect the population from in-

river water quality declines and waterborne disease, yet biannual diarrheal outbreaks continue

to occur, coinciding with degraded river water quality. While numerous factors may influence

the ability of water treatment and distribution systems to provide clean water to a population,

hydrological variability as observed in this system across seasons can create extreme shifts in

TSS levels (which include natural organic material [NOM]), alkalinity, and pH, presenting a

challenge to conventional water treatment processes.

Suspended solids have an important influence on bacterial survival and transport in surface

waters, providing protection from UV light, predators, and grazers, and access to nutrients

(reviewed in [41,42]). Similarly, enteroviruses within surface water bodies are more commonly

attached to suspended solids [43]. Transport and deposition of microbial contamination can

also be influenced by the type of sediment particles present in surface waters, with significantly

greater adsorption of E. coli reported for soils with higher clay content [44]. Clay soil has a

high number of pore spaces, which provide niches for microbes and retain moisture and nutri-

ents, while the small average size of these pores reduces E. coli mortality by conferring protec-

tion from predation by larger-bodied nematode soil fauna [45,46].

Elevations in suspended solids not only influence microbial survival in the river but also

through the water treatment facility if these elevations are not detected and accounted for in

the treatment process. Conventional water treatment includes a coagulation step, which

permanent surface water in the system. Floodwaters begin to recede from the inundated land areas (panel 3), and TSS levels increase,

as does the number of diarrheal case reports (dry season outbreak). In the rare event of rainfall in the dry season, E. coli levels in the

water channel increase and are positively associated with diarrheal case reports (not shown). TSS, total suspended solids.

https://doi.org/10.1371/journal.pmed.1002688.g004
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involves the application of chemicals to remove suspended solids (sediments and NOM) from

the water into large floc aggregates that are subsequently eliminated through sedimentation

and filtration steps [47]. The effectiveness of these steps is influenced by water pH, alkalinity,

and NOM levels in the water [29]. This is then followed by a chemical disinfection step, most

frequently through chlorination.

Many treatment facilities in Africa and elsewhere, however, rely on manual control strate-

gies to determine the coagulation doses needed for water treatment [48], amounts that may be

grossly inadequate during periods of rapid hydrological change and shifts in upstream TSS lev-

els and other water properties [49]. Even when elevations in TSS levels are detected, calculation

of the optimum coagulant dose is complex and nonlinear, further complicating successful

application of manual approaches [50,51]. TSS elevations can occur rapidly, varying over

months, weeks (S1 Fig), days, and even within a day (in this system >43% increase observed

over 8 hours just above the water treatment plant inflow [one-time observation]; S5 Table),

with pH and alkalinity changes also influencing chemical effectiveness. Failure of the operator

and/or equipment in water treatment plants to detect and account for these fluxes when apply-

ing chemical dosing can compromise water quality as the coagulation step has crucial influ-

ence on disinfection and microorganism removal [47,51,52]. Microbial growth can also

continue beyond the water treatment facility in the water distribution system [53], particularly

when water shortages and low water pressure increase water stasis in the system. River system

degradation will influence these dynamics even further through additional inputs from erosion

and runoff or surface water disturbances such as boat traffic [49,54].

Flood pulse systems, diarrheal disease, and climate change. Under climate change, rain-

fall variability is expected to increase across Southern Africa in the 21st century, with a spread

in the rainfall probability distribution, increasing the frequency of droughts, extreme rainfall

events, and floods in the future [55]. In flood pulse systems, existing hydrological dynamics

already create significant variation in the volume of water flow in river systems and the area of

floodplain inundation (401 km2 to 5,779 km2 from 2000 to 2015 in the Chobe River system

[56]), with consequent impacts on water quality dynamics and waterborne pathogen exposure.

Predicted increases in hydrological extremes associated with climate change will further ele-

vate the vulnerability of populations dependent on surface water resources in these landscapes.

Predicting climate—health interactions in flood pulse systems. Flood pulse dynamics

in the Chobe River arise from precipitation events in catchment headwaters more than 1,000

miles away and determine the magnitude, duration, and timing of river flow and consequent

effects on dry season diarrheal disease in downstream populations. Climate controls on hydro-

meteorological conditions can vary significantly across a watershed. For example, rainfall in

the Angolan Highlands catchment area is driven by the Intertropical Convergence Zone and

Congo Air Boundary even as more local circulation changes contribute to the increasingly arid

conditions experienced in Botswana in the interior of Southern Africa. Distant meteorological

events and teleconnections associated with, for instance, the Walker circulation can further

influence diverging climate dynamics (reviewed in [57]). As these hydrometeorological pro-

cesses are intimately linked with diarrheal disease incidence, we can expect shifts in diarrheal

disease patterns to be responsive to both local and distant climate dynamics and associated

changes under climate change. It is evident that exclusive use of local or country-level climate

data would be inadequate to forecast climate impacts on diarrheal disease in this region. It

is further evident that clumping regions into larger diarrheal disease studies likely masks criti-

cal information necessary to understand environmental—health relationships and climate

vulnerabilities.

One health approach to understanding environmental drivers of diarrheal disease.

Pathogen-specific transmission pathways and host exposure and infection dynamics interact
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in particular ways with environmental and socioecological variables to influence the occur-

rence of diarrheal disease across populations and landscapes, predominantly in regions of pov-

erty, where environmental exposures are enhanced, as is vulnerability to climate change (Fig

5). These interdependent influences complicate simple climate—diarrheal disease evaluations,

affecting the development of sustainable interventions. While critical hydrometeorological

drivers were associated with in-river water quality declines and diarrheal disease outbreaks

in this study, this is only part of the story. For example, our previous work in this system has

identified significant associations between the spatial and temporal patterns of dry season

E. coli and TSS increases, protected land use, floodplain habitat, and riparian fecal counts

from elephant and other wildlife [26]. These elements were also predictive of the spatial occur-

rence of in-river E. coli concentrations in the early wet season above the water treatment plant

intake.

These findings identify important couplings between flood pulse dynamics, seasonal fluxes

in wildlife densities, land use, and water quality, with impacts on safe drinking water and diar-

rheal disease in children and adults. The complexity of the couplings in this system underscore

the need for the inclusion of dimensions not normally considered part of the domain of public

health. This is particularly true for emerging infectious diseases influenced by environmental

processes and consequently expected to be impacted by climate change.

Conclusions

From dryland to tropical systems, surface water plays a critical role in human health. Floods

and rainfall variability are expected to increase under climate change across many systems and

can induce dramatic shifts in surface water quality. While presenting a clear risk in populations

using unsafe water sources, rapid change in suspended solids and other water quality parame-

ters may overwhelm conventional water treatment processes, impacting the provision of safe

Fig 5. Schematic of linked processes across the aquatic—terrestrial interface in a flood pulse river—floodplain system like the Chobe River

in Botswana. Hydrological, geomorphological, sedimentary, and ecological processes influence fecal microbial dynamics, water quality, and

human waterborne disease risk in surface-water-dependent populations. These interactions are coupled to sociocultural and economic

processes, influencing landscape change and exposure to waterborne disease, feeding back to further environmental degradation and pathogen

pollution potential.

https://doi.org/10.1371/journal.pmed.1002688.g005
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drinking water and increasing the potential for waterborne pathogen exposure and diarrheal

disease. Long-term solutions to diarrheal disease and climate preparedness should include

increased national focus on water sector development using technologies that are robust to

local environmental conditions but can be serviced and maintained locally. In populations

with high HIV burdens, expansion of diarrheal disease surveillance and intervention strategies

might be needed, engaging other at-risk sectors beyond the under-5 age group. Ultimately, the

success of public health strategies across systems will depend on understanding how sociocul-

tural and environmental factors are coupled across scales and influence waterborne disease

exposure risk, transmission dynamics, and population vulnerability in the face of expected cli-

mate change.

Supporting information

S1 Fig. Time series of diarrhea, environmental, and water quality data from 2007 to 2017.

(TIF)

S2 Fig. Coefficient estimates for the effect of TSS and E. coli on under-5 diarrhea. Each

point represents the regression coefficient for the respective water quality measure at a differ-

ent lag week. The dotted lines provide the 95% confidence intervals for the corresponding

coefficient estimate.

(TIF)

S3 Fig. Dry season average coefficients and variable importance using standardized diar-

rhea data. Summary of multimodel inference predicting under-5 diarrhea (standardized). The

rows of the table represent each environmental variable at 1-, 4-, and 8-week lags. The columns

of the table represent different model selection criteria, i.e., average coefficient estimates for

each environmental variable derived from different model subsets. The numbers in parenthe-

ses indicate the number of models that were averaged in a given model subset. Lastly, the col-

ors indicate the weighted importance of each variable within the model subset, with 1 being

the highest possible weighted importance. “NaN” indicates that a variable was not used in any

of the models within a model subset.

(PNG)

S4 Fig. Wet season average coefficients and variable importance using standardized diar-

rhea data. Summary of multimodel inference predicting under-5 diarrhea (standardized). The

rows of the table represent each environmental variable at 1-, 4-, and 8-week lags. The columns

of the table represent different model selection criteria, i.e., average coefficient estimates for

each environmental variable derived from different model subsets. The numbers in parenthe-

ses indicate the number of models that were averaged in a given model subset. Lastly, the col-

ors indicate the weighted importance of each variable within the model subset, with 1 being

the highest possible weighted importance. “NaN” indicates that a variable was not used in any

of the models within a model subset.

(TIF)

S5 Fig. Coefficient estimates for the effect of TSS and E. coli on under-5 diarrhea (stan-

dardized). Each point represents the regression coefficient for the respective water quality

measure at a different lag week. The dotted lines provide the 95% confidence interval for the

corresponding coefficient estimate.

(TIF)

S6 Fig. Nonlinear exposure—response relationships between river height and diarrhea

incidence in the dry season. These relationships were generated using distributed lag
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nonlinear models that controlled for minimum temperature, maximum temperature, rainfall,

and year. Relative risk estimates (black lines) and confidence intervals (grey areas) are shown

across different river height levels (x-axis). All relative risks are in reference to a river height

increase of 6 m. (A—H) represent the response functions at lag weeks 1 through 8. We can see

from (D—F) that declines in river height at lag weeks 4–6 are associated with increased risk of

diarrheal disease.

(TIF)

S7 Fig. Nonlinear exposure—response relationships between rainfall and diarrhea inci-

dence in the wet season. These relationships were generated using distributed lag nonlinear

models that controlled for minimum temperature, maximum temperature, rainfall, and year.

Relative risk estimates (black lines) and confidence intervals (grey areas) are shown across

different rainfall levels (x-axis). All relative risks are in reference to rainfall of 0 mm. (A—H)

represent the response functions at lag weeks 1 through 8. We can see from (G) and (H) that

increases in rainfall at lag weeks 7 and 8 are associated with increased risk of diarrheal disease.

(PNG)

S1 Table. Pseudo R-squared values for each averaged model in the dry and wet seasons.

(XLSX)

S2 Table. LOO cross-validation results for the dry season and wet season using correlation

as the metric of prediction accuracy. The rows represent the seasonal data and the model

structure (i.e., averaged model with environmental predictors or null model without environ-

mental predictors) used to fit the model. The columns indicate the omitted year, which was

also used to test model prediction accuracy. Table values represent the correlation of the aver-

aged model prediction with the observation for the omitted year.

(XLSX)

S3 Table. Pseudo R-squared values for each averaged model in the dry and wet seasons,

using standardized diarrhea case data.

(XLSX)

S4 Table. LOO cross-validation results for the dry season and wet season using the stan-

dardized under-5 diarrhea data and correlation as the metric of prediction accuracy. The

rows represent the seasonal data that were used to fit the model. The columns indicate the

omitted year, which was also used to test model prediction accuracy. Table values represent

the correlation of the averaged model prediction with the observation for the omitted year.

(XLSX)

S5 Table. Measurement of TSS over an 8-hour period in the Chobe River on transect 33,

which is above the intake for the water treatment plant.

(XLSX)

S1 Text. Comparative analysis with distributed lag nonlinear models.

(DOCX)

S1 STROBE Checklist.

(DOCX)
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