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Abstract

Some canonical metrics on Kähler orbifolds

Mitchell Faulk

This thesis examines orbifold versions of three results concerning the existence of

canonical metrics in the Kähler setting. The first of these is Yau’s solution to Calabi’s

conjecture, which demonstrates the existence of a Kähler metric with prescribed Ricci

form on a compact Kähler manifold. The second is a variant of Yau’s solution in a

certain non-compact setting, namely, the setting in which the Kähler manifold is

assumed to be asymptotic to a cone. The final result is one due to Uhlenbeck and

Yau which asserts the existence of Kähler-Einstein metrics on stable vector bundles

over compact Kähler manifolds.
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Chapter 1

Introduction

An orbifold is a generalization of a manifold whereby each local chart is equipped

with the additional structure of a smooth action of a finite group in such a way

that the underlying topological space is locally homeomorphic to the orbit spaces of

these actions. Because an orbit space may admit singular points, it is possible to use

orbifolds to model objects with specific types of singularities.

Standard notions from complex geometry extend to orbifolds. Some notions ex-

tend in an obvious manner: a tensor, for example, is just given locally by an invariant

tensor on each chart (with some compatibility conditions). However, other notions

require more care: a vector bundle associates to each chart an equivariant bundle,

but with this convention, even though the total space of a vector bundle enjoys a

natural projection map to the underlying orbifold, this map will in general fail to be

a topological vector bundle in the usual sense.

With the tools from complex geometry available, it therefore makes sense to study

the existence of canonical metrics in those situations that have been studied in the

literature. While the problem of finding such metrics has been a fruitful direction

of research within the field of differential geometry itself, recent developments in
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the setting of Kähler geometry have unearthed interesting connections to algebraic

geometry, specifically to notions of stability motivated by geometric invariant theory.

This rich interplay between differential geometry and algebraic geometry suggests

there remains a deep trove of outstanding results to be uncovered and understood.

In addition, these interactions with algebraic geometry suggests that generaliza-

tions of existence results to such singular objects as orbifolds merit study and, indeed,

have been previously considered in the literature (e.g in [56]) not just for the extra

degree of generality, but also because constructions for orbifolds can be helpful to

similar constructions for manifolds (see, for example, [35] and the gluing construction

of [55]). Moreover, in the program of mirror symmetry (resp. string theory), it is

known that orbifolds can arise as the mirrors of manifolds (resp. as singular geome-

tries), and hence the study of their complex geometry merits at least as much concern

as that of manifolds.

It turns out, perhaps unsurprisingly, that several seminal results concerning the

existence of canonical metrics extend to the setting of orbifolds, and this thesis reviews

three such extensions, as mentioned in the abstract. Each of these extensions is

discussed in a separate paper by the author (see [34, 33, 32]).

One goal of this thesis is to highlight the novel components of these extensions, if

there are any. Particular focus is given to those moments where approaches detour

from those of the manifold setting. Also indicated, whenever possible, are ways in

which approaches from the literature can be consolidated or simplified or—even—

improved.

Due to the competing intention of completeness, there is a fear that such novel

components could be lost or overlooked among pages of lengthy arguments and details.

Because of this, an attempt is made to place a discussion of original ideas either at

the beginning of each chapter or in separate “Remark” environments.
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One small improvement worth emphasizing here is a new precision with respect

to the decay rate concerning solutions to a Monge-Ampère equation corresponding

to Yau’s Theorem on asymptotically conical manifolds (orbifolds), as discussed in

Remark 3.2.

Besides the three kinds of canonical metrics surveyed in this document, there

exist many others—such as constant scalar curvature Kähler (cscK) metrics or, more

generally, extremal metrics—which leave open other possible directions of study.

In particular, Ross-Thomas [56] have obtained an orbifold variant of a theorem

due to Donaldson [27] relating K-semistability to the existence of a cscK metrics.

However, their results apply only to those orbifolds with cyclic singluarities, and more

work is required to extend their results to arbitrary singularities. In addition, their

work suggests further connections to notions of stability and moduli from geometric

invariant theory, which could be explored.

Because the landscape of algebraic geometry is so near to many of these results

concerning canonical metrics, it is tempting to write in the language of stacks, es-

pecially within the orbifold setting that follows. However, in this document—and in

those papers by the author which this document examines—there is an attempt to

remain faithful to the language of complex geometry and write in a manner that is to

be accessible to those working in this area. Nevertheless, it may be a fruitful endeavor

in the future to examine relevant results using the language of stacks so as to cement

the bridges to algebraic geometry even further.
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Chapter 2

Ricci-flat metrics on compact

Kähler orbifolds

Yau’s solution [65] to Calabi’s conjecture [15] states that if R is any (1, 1)-form rep-

resenting the first Chern class of a compact Kähler manifold (X,ω), then there is a

unique Kähler metric in the cohomology class of ω whose Ricci form is R. If partic-

ular, if the first Chern class of X vanishes, then X admits a unique Ricci-flat Kähler

metric.

Yau’s proof relies upon the fact that to solve Calabi’s problem it is sufficient to

find a smooth solution ϕ to the following complex Monge-Ampère equation


(ω +

√
−1∂∂̄ϕ)n = eFωn

ω +
√
−1∂∂̄ϕ is a positive form

, (2.1)

where n is the complex dimension of X and F is a fixed smooth positive function

(corresponding to the desired prescribed Ricci form R). In [34], we offer a self-

contained exposition to show that Yau’s solution extends to the setting of compact
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orbifolds.

Theorem 2.1. Let (X , ω) be a compact Kähler orbifold and F a smooth function on

X with average value zero. Then equation (2.1) admits a smooth solution ϕ, unique

up to additive constant.

The approach we use in [34] is the classical continuity method, involving a priori

estimates to solutions of a family of equations indexed by a parameter t (whose

limit as t → 1 is equation (2.1)). Because estimates and tools from the manifold

setting extend with little difficulty, there is little novelty to our approach. It was

only necessary to develop an appropriate framework of elliptic differential operators

and their regularity within the setting of orbifolds, but since these regularity results

are essentially local ones, they can be easily adapted to the orbifold setting using

arguments involving charts.

It is easily shown that Theorem 2.1 implies—or, more precisely, is equivalent to—

the following, which is the analogous extension of the original Calabi conjecture [15]

to the setting of orbifolds.

Theorem 2.2. Let (X , ω) be a compact Kähler effective orbifold, and let R be a

(1, 1)-form representing the cohomology class 2πc1(X ) ∈ H2(X ,R). Then there is a

unique Kähler form ω′ on X such that

(i) ω′ and ω represent the same cohomology class and

(ii) the Ricci form of ω′ is R.

In particular, if c1(X ) = 0 as a cohomology class in H2(X ,R), then there is a

unique Ricci-flat Kähler form on X (c.f. [17, Theorem 1.3]).
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If one instead solves a slightly modified Monge-Ampère equation from the one

above, namely,


(ω +

√
−1∂∂̄ϕ)n = eF+ϕωn

ω +
√
−1∂∂̄ϕ is a positive form

(2.2)

on a compact Kähler orbifold whose first Chern class c1(X ) is negative with Kähler

form ω representing −2πc1(X ), then one obtains a Kähler-Einstein metric ωϕ =

ω +
√
−1∂∂̄ϕ satisfying Ric(ωϕ) = −ωϕ. Concisely, we have the following additional

result concerning the existence of Kähler-Einstein metrics, which was considered by

Aubin in the setting of manifolds [3] but which was also considered by Yau in the

same setting as a special case of his more general results [65].

Theorem 2.3. If X is a compact Kähler effective orbifold satisfying c1(X ) < 0, then

there is a Kähler metric ω ∈ −2πc1(X ) on X satisfying Ric(ω) = −ω.

One small subtlety in the orbifold setting is that the first Chern class may no longer

be an integral class; instead it is a rational class. However, once this is understood,

one obtains Ricci-flat metrics on classical examples of Calabi-Yau orbifolds that arise

in mirror symmetry, such as hypersurfaces in toric varieties arising from reflexive

polyhedra as in Batyrev’s mirror construction (see Example 2.34 and more generally

Example 2.35). Moreover, by applying Theorem 2.2 to the orbifold obtained as the

rth root of an effective Cartier divisor D in a smooth X (see Example 2.36), one

obtains Ricci-flat metrics with cone angle 1/r along D, thereby encompassing the

results of [13] at least for cone angles of the form β = 1/r (but also for more general

types of cone angles by considering collections of divisors).
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2.1 Orbifold preliminaries

The goal of this section is to review the notion of a Kähler orbifold and to review

some differential geometric tools and concepts associated to these objects. There is

some competing terminology and notation in the literature, so an additional goal of

this section is to fix the terminology and notation we will use throughout.

2.1.1 Smooth orbifolds

Let X be a topological space. A real n-dimensional smooth orbifold chart for X

consists of a triple (U,G, π) where U is an open connected subset of Rn, G is a finite

group of smooth automorphisms of U , and π : U → X is a continuous map which is

invariant under the action of G and which induces a homeomorphism of U/G onto an

open subset V of X, called the support of the chart (U,G, π). An embedding of a chart

(Uα, Gα, πα) into another (Uβ, Gβ, πβ) consists of a smooth embedding λ : Uα → Uβ

such that πβ ◦λ = πα. An orbifold atlas for X is a family U of charts whose supports

cover X and which are compatible with one another in the sense that whenever x is a

point in the intersection of the supports of two charts (Uα, Gβ, πα) and (Uβ, Gβ, πβ),

then there is a third chart (Uγ, Gγ, πγ) whose support contains x and which enjoys

embeddings into both of the charts (Uα, Gα, πα) and (Uβ, Gβ, πβ). An atlas U ′ is said

to refine another atlas U if each chart of U ′ enjoys an embedding into some chart of

U . Two atlases are called equivalent if they share a common refinement.

By an orbifold X of real dimension n we mean a paracompact Hausdorff space

X equipped with an equivalence class of n-dimensional orbifold atlases. We call X

the underlying space of the orbifold X . In particular, because X is paracompact,

we may assume that X is covered by a locally finite collection Vα of supports with

corresponding charts (Uα, Gα, πα), which constitute an atlas for X .
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By a smooth map from an orbifold X into another X ′ we mean a map f : X → X ′

of their underlying topological spaces satisfying the property that for each x ∈ X,

there is a chart (U,G, π) for X and a chart (U ′, G′, π′) for X ′ whose supports contain

x and f(x) respectively and there is a smooth map fx,U,U ′ : U → U ′ covering the

restriction of f to the supports.

Example 2.4. As an important example, suppose G is a compact Lie group acting

smoothly, effectively, and almost freely (meaning with finite stabilizers) on a smooth

manifold M . Then one can form an effective orbifold [M/G] called the effective

quotient orbifold in the following way. The underlying space is the topological quo-

tient M/G, which is paracompact and Hausdorff. Because smooth actions are locally

smooth, for a point x ∈ M with isotropy subgroup Gx, there is a chart Ux (diffeo-

morphic to Rn) containing x that is Gx-invariant. The orbifold charts are then the

triples (Ux, Gx, π) where π : Ux → Ux/Gx is the projection map.

Example 2.5. In particular, as a special case of the previous example, we can form

weighted projective space. Let S2n+1 = {z = (z0, . . . , zn) : |z|2 = 1} ⊂ Cn+1. For

coprime integers a0, . . . , an, let S1 act on S2n+1 by the rule

λ · (z0, . . . , zn) = (λa0z0, . . . , λ
anzn).

Then the quotient enjoys the structure of an effective quotient orbifold by the above

construction, and we denote the orbifold by CP[a0, . . . , an].

For a smooth manifold F , by a fiber bundle E over X with fiber F we mean we are

given the data of an atlas of charts (Uα, Gα, πα) for X together with a fiber bundle

Eα with fiber F over each Uα which is equipped with an action of Gα in such a way

that the projection of Eα onto Uα is Gα-equivariant. Moreover, to each embedding
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λ : Uα → Uβ of charts, there corresponds a bundle isomorphism λ∗ : Eα → λ∗Eβ that

is Gα-equivariant. In addition, the bundle isomorphisms are compatible with one

another in the sense that (λ′ ◦ λ)∗ = (λ∗λ′∗) ◦ λ∗ for a pair of composable embeddings

λ, λ′.

For a fiber bundle E over X , by refining the atlas enough, we may assume that

each Eα is isomorphic to Uα×F . In this way, the bundle isomorphisms λ∗ correspond

to bundle automorphisms of Uα × F .

A fiber bundle E over X determines an orbifold, which we denote by E , and a

smooth map of orbifolds p : E → X . Refining the atlas enough so that each Eα is

isomorphic to Uα × F , the underlying space of E is given by the quotient space

E =

(⊔
α

Uα × F

)
/ ∼

where ∼ is the equivalence relation determined by the bundle isomorphisms λ∗ from

the embeddings λ. Orbifold charts can be found by taking the Cartesian product of

Uα with a chart for F and then considering the natural image of this product in E.

The map of orbifolds p : E → X is described in charts by considering the projection

onto the factor Uα. It is important to remark that the underlying space E of a fiber

bundle is not necessarily a fiber bundle over the underlying space of the base X in

the usual sense of topology.

The notion of a real vector bundle E of rank r over X is defined similarly to that of

a fiber bundle. In particular, by refining the atlas enough, we may assume that each

Eα is isomorphic to Uα ×Rr. In this way, the bundle isomorphisms λ∗ correspond to

bundle automorphisms of Uα × Rr and hence to the data of smooth transition maps

gλ : Uα → GL(r,R), which satisfy the cocycle condition gλ′◦λ(x) = gλ′(λ(x))gλ(x).

Example 2.6. The tangent bundle TX of an orbifold X of real dimension n is a real
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vector bundle of rank n defined in the following manner. For a chart (Uα, Gα, πα),

the group Gα acts on the tangent bundle TUα in the following manner. If g ∈ Gα,

then g determines a diffeomorphism g : Uα → Uα, and we set g · (x, ξ) = (g · x, dgxξ)

for ξ ∈ TxUα. In this way, the projection map TUα → Uα is Gα-equivariant. Each

embedding of charts λ : Uα → Uβ determines a transition function gλ(x) which

corresponds to the derivatives dλx : TxUα → Tλ(x)Uβ.

The notions of the direct products, tensor products, wedge products, and duals

of vector bundles can be defined in terms of transition functions and corresponding

representations in the usual manner. For example, if Gα acts on Uα × Rr and gλ :

Uα → GL(r,R) is a transition function for E , then Gα acts on Uα× (Rr)∗ by the dual

action and a transition function for E∗ is g∗λ(x) = (gλ(x)−1)T .

A smooth section of a vector bundle E over an orbifold X consists of a collection

of Gα-equivariant smooth sections sα of the bundles Eα over Uα which are compatible

with one another in the sense that λ∗ ◦ sα = sβ ◦ λ whenever λ : Uα → Uβ is an

embedding.

In this way, it makes sense to speak of smooth functions, vector fields, tensors, and

differential forms on X . In particular, note that a smooth function is a section of the

trivial bundle of rank 1 over X , and hence the equivariance condition implies that a

smooth function f is given by a collection fα of Gα-invariant functions on the charts

Uα (since the action of Gα on R or C is trivial). More generally, one can ascertain

that a tensor T over X corresponds to a collection Tα of Gα-invariant tensors over

the charts Uα (with some compatibility conditions). In particular, by a Riemannian

metric on X , we mean a positive-definite symmetric (0, 2)-tensor in the usual way.
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The support of a tensor T is then taken to be the subset of X determined by

supp(T ) =
⋃
α

πα(supp(Tα)).

We say that an orbifold X is orientable if all of the smooth automorphisms and

embeddings of the charts in an atlas are orientation-preserving. From this point

forward, we will assume that X is orientable and equipped with an orientation.

The integral of a differential n-form ω on X may defined as follows. If ω is

compactly supported with support contained in the support Vα of a chart (Uα, Gα, πα),

then we define ∫
X
ω =

1

|Gα|

∫
Uα

ωα.

More generally, for an arbitrary n-form, one chooses a partition of unity ϕα subordi-

nate to a locally finite collection Vα of supports and then sets

∫
X
ω =

∑
α

∫
X
ϕαω.

The wedge product of forms is a local operation that extends in the usual way, and

the naturality of the de Rham differential d ensures that it extends in the obvious way

as well. We let A(X ;R) denote the algebra of differential forms over X with graded

pieces Ak(X ;R). More generally, a section of ΛkT ∗X ⊗E is called an E-valued k-form,

and we let Ak(E ;R) denote the space of E-valued k-forms. From this point forward,

we will drop the mention of the scalar field (which is R for a real vector bundle and

C for a complex one) when the choice of scalars is clear, so we will simply write A(E)

and Ak(E) with hope that no confusion will arise.

Stokes’ theorem extends to compact orbifolds (without boundary) in a natural

way. Indeed let ω be any (n− 1)-form on a compact orbifold X . Choose a partition
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of unity ϕα subordinate to the supports Uα of the orbifold charts. If we let ωα denote

a Gα-invariant n-form on Uα representing ϕαω, then we find by definition that

∫
X
d(ϕαω) =

1

|Gα|

∫
Uα

d(ωα) = 0

where the latter integral vanishes by the ordinary Stokes’ theorem, as ωα has support

which is compact and contained within Uα. It now follows that

∫
X
dω =

∫
X
d

(∑
α

ϕαω

)

=
∑
α

∫
X
d(ϕαω)

= 0,

where the interchanging of the sum and the integral sign is valid because, for example,

we may suppose that the number of charts is finite as X is compact. We summarize

below.

Lemma 2.7 (Stokes’ theorem). Let ω be an (n − 1)-form on a compact orbifold X .

Then ∫
X
dω = 0.

We say in the usual manner that a connection on E over X consists of a linear

map D : A0(E)→ A1(E) which satisfies Leibniz rule in the sense that

D(fs) = df ⊗ s+ fDs

for functions f on X and sections s of E . A connection D determines a prolongation
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D : Ak(E)→ Ak+1(E) in the usual way by forcing Leibniz rule

D(ψ ∧ ξ) = dψ ⊗ ξ + (−1)kψ ∧Dξ

for ψ ∈ Ak(X ) and ξ ∈ A0(E). The square of a connection D ◦D : A0(E)→ A2(E) is

A0(X )-linear and hence corresponds to an End(E)-valued 2-form, which is denoted by

FD and is called the curvature of the connection D. Moreover, any connection D on

E determines one on duals and powers of E in the standard way by demanding that

the connection be compatible with Leibniz rule and contraction (of E with E∗). In

particular, if D is a connection on the tangent bundle E = TX , then for a Riemannian

metric g on X , one finds that

d(g(V,W )) = (Dg)(V,W ) + g(DV,W ) + g(V,DW )

for vector fields V,W . A connection D on TX is said to be compatible with the

metric g if Dg = 0. For a given metric g, there is a unique symmetric connection on

TX compatible with it, which we call the Levi-Civita connection and which we will

denote by ∇.

In addition, a Riemannian metric g provides an identification of the space of vector

fields with the space of 1-forms, and so for any two 1-forms η and ζ, the metric g

determines a smooth function g(η, ζ). More generally, for a pair of tensors S, T of the

same type, the metric determines a smooth function g(S, T ). In particular, we write

|S|2g to denote the smooth function |S|g = g(S, S).

Finally a Riemannian metric g also determines a unique volume form volg com-

patible with the orientation. In this way, we obtain Sobolev spaces Lpk(X ) by using
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the usual Sobolev norms

‖f‖Lpk =

(
k∑
j=0

∫
X
|∇kf |pgvolg

)1/p

.

To reduce the size of subscripts, we often write ‖f‖p to mean the Lp-norm (or Lp0-

norm) of f .

2.1.2 Kähler orbifolds

An orbifold of real dimension 2n is called complex (of complex dimension n) if the atlas

can be taken to be holomorphic. In particular, this means that each Uα is a subset

of Cn, the group Gα acts by biholomorphisms, and the embeddings λ : Uα → Uβ are

holomorphic embeddings.

For a complex orbifold, we have a well-defined complex structure J , that is, a

mapping of vector fields to vector fields satisfying J2 = −id, which can be described

locally in the usual way by requiring

J

(
∂

∂xj

)
=

∂

∂yj

J

(
∂

∂yj

)
= − ∂

∂xj

for a choice of holomorphic coordinates zj = xj +
√
−1yj. The complexification of

the space of vector fields decomposes into the eigenspaces for J corresponding to

±
√
−1. Dually the complexification of the space of 1-forms decomposes and a 1-form

corresponding to the eigenvalue
√
−1 (resp. −

√
−1) is called a (1, 0)-form (resp.

(0, 1)-form). Taking higher exterior powers one obtains the notion of a (p, q)-form on
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X , that is, we obtain a splitting of the space of complex-valued k-forms

Ak(X ) =
⊕
p+q=k

Ap,q(X ).

The extension of the de Rham operator to the complexified spaces decomposes as

d = ∂ + ∂̄ where ∂ is an operator taking (p, q)-forms to (p + 1, q) forms and ∂̄ an

operator taking (p, q)-forms to (p, q + 1)-forms. The relation d2 = 0 implies that

∂2 = ∂̄2 = 0.

A real (1, 1)-form η is called positive (resp. nonnegative) if the corresponding

symmetric tensor defined by (V,W ) 7→ η(V, JW ) is positive (resp. nonnegative)

definite for vector fields V,W . Locally this means that if η admits an expression

as η =
√
−1ηjk̄dz

j ∧ dz̄k in some chart, then the matrix ηjk̄ of smooth functions is

positive definite. A real (p, p) form is called positive (resp. nonnegative) if it is the

sum of products of positive (resp. nonnegative) real (1, 1)-forms. The integral of a

nonnegative (n, n)-form is nonnegative.

A Riemannian metric g on X is called hermitian if J is an orthogonal transforma-

tion with respect to g. A hermitian metric g gives rise to a real (1, 1)-form ω defined

by ω(JV,W ) = g(V,W ). One says that a hermitian metric is Kähler if the corre-

sponding (1, 1)-form is d-closed. Conversely, we say a real (1, 1)-form ω is compatible

with J if the equality ω(JV, JW ) = ω(V,W ) holds for each pair of vector fields V,W .

It is easily shown that the data of a Kähler metric is equivalent to the data of a

J-compatible positive d-closed real (1, 1)-form. By a Kähler orbifold (X , ω) we mean

an orbifold together with a choice of J-compatible positive d-closed real (1, 1)-form

ω.

Many properties of Kähler manifolds, including Kodaira’s ∂∂̄-lemma, extend to

the setting of Kähler orbifolds (see, for example, [5]).
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Lemma 2.8 (∂∂̄-lemma). Let (X , ω) be a compact Kähler orbifold. If η and η′ are

two real (1, 1)-forms in the same cohomology class, then there is a function f : X → R

such that η′ = η +
√
−1∂∂̄f .

A Kähler metric g admits a local expression in the charts as

gα = (gα)jk̄dz
j
α ⊗ dz̄kα

where (gα)jk̄ = gα(∂/∂zjα, ∂/∂z̄
k
α) for local coordinates (zjα) on the chart Uα. The

corresponding Kähler form ω admits local expression

ωα =
√
−1(gα)jk̄dz

j
α ∧ dz̄kα.

The Ricci form Ric(ω) corresponding to a Kähler form ω is the (1, 1)-form with

local expression

Ric(ω)α = −
√
−1∂∂̄ log det((gα)jk̄).

It can be shown that the cohomology class of Ric(ω) does not depend on the particular

Kähler metric ω, and thus defines an invariant of the orbifold. The first Chern

class c1(X ) can be taken to be the real cohomology class determined by the form

1
2π

Ric(ω) for some choice of Kähler form ω. We say that c1(X ) is positive written

c1(X ) > 0 (resp. negative written c1(X ) < 0) if c1(X ) is represented by a positive

(resp. negative) (1, 1)-form.

For a Kähler metric g on a complex orbifold, the operator ∂̄ : Ap,q(X )→ Ap,q+1(X )

admits an adjoint, and there is there is a corresponding Laplacian ∆ = ∂̄∗∂̄ + ∂̄∂̄∗.

Here we are using the convention (as in [39]) that the Laplacian is a non-negative

operator. Acting on the space A0(X ) of functions, we will see that the Laplacian ∆

a second-order uniformly elliptic operator (see Section 2.2). In particular, acting on
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the space A0(X ) of smooth functions, the operator ∆ admits a local description as

∆ϕ = −gjk̄∂j∂k̄ϕ

for a choice of holomorphic coordinates in some chart.

In addition, for a Kähler metric g, there is a contraction operator Λ : A1,1(X )→

A0(X ), which associates to every (1, 1)-form η a smooth function Λη satisfying

n · η ∧ ωn−1 = Λη · ωn,

where n is the complex dimension of X . The function Λη measures the component

of η along ω. In particular, if η admits a local description as η =
√
−1ηjk̄dz

j ∧ dz̄k,

then the smooth function Λη admits a description as

Λη = gjk̄ηjk̄

where gjk̄ is the inverse of gjk̄ and ω =
√
−1gjk̄dz

j ∧ dz̄k. The operator Λ is related

to the Laplacian ∆ by the relation

Λ(
√
−1∂̄∂ϕ) = ∆ϕ

for a smooth function ϕ. (This relation can be viewed in light of the Kähler identity

∂∗ = iΛ∂̄ (c.f. [39]).)

For a smooth C-valued function ϕ on a Kähler orbifold (X , ω), we have

|dϕ|2g = |∂ϕ|2g + |∂̄ϕ|2g.
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Moreover, if ϕ is R-valued, then |∂ϕ|2g = |∂̄ϕ|2g, and hence

|∂ϕ|2g =
1

2
|dϕ|2g.

With this convention, it follows that for a smooth R-valued function ϕ we have

n
√
−1∂ϕ ∧ ∂̄ϕ ∧ ωn−1 = |∂ϕ|2g · ωn.

2.2 Elliptic operators on orbifolds

The goal of this section is to study some properties and estimates associated to

linear elliptic second-order differential operators on a compact orbifold, to construct

a Green’s function of the complex Laplacian on a compact Kähler orbifold, and to

establish some useful inequalities of Poincaré and Sobolev type.

For a bounded domain Ω in Rn, a natural number k ∈ N, and a number α ∈ (0, 1),

recall the Ck,α-norm of a function f on Ω can be defined by

‖f‖Ck,α(Ω) = sup
|`|6k
|∂`f |+ sup

|`|=k
sup
x,y∈Ω
x 6=y

|∂`f(x)− ∂`f(y)|
|x− y|α

where ` = (`1, . . . , `n) is a multi-index and

∂` =
∂

∂x`1
· · · ∂

∂x`n
.

The space Ck,α(Ω) is then the space of functions on Ω whose Ck,α-norm is finite.

A uniformly elliptic operator L of second-order with smooth coefficients on Ω
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admits an expression of the form

L(f) = aij∂i∂jf + bm∂mf + cf (2.3)

where aij, bm, c are smooth functions and where we are using the Einstein summation

convention. The uniform ellipticity implies that there are constants λ,Λ > 0 such

that

λ|ξ|2 6 aij(x)ξiξj 6 Λ|ξ|2

for each point x ∈ Ω and each vector ξ ∈ Rn. The following a priori estimates for

such operators are well-known (see, for example, [36]).

Theorem 2.9. Let Ω ⊂ Rn be a bounded domain, let Ω′ ⊂⊂ Ω be a relatively compact

subset, and let α ∈ (0, 1) and k ∈ N. Then there is a constant C such that

‖f‖Ck+2,α(Ω′) 6 C(‖Lf‖Ck,α(Ω) + ‖f‖C0(Ω)).

Moreover, the constant C only depends on k, α, the domains Ω and Ω′, the Ck,α-

norms of the coefficients of L, and the constants of ellipticity λ,Λ. Finally, it is

enough only to assume that f ∈ C2(Ω) so that Lf makes sense, and then it follows

that f ∈ Ck+2,α(Ω′) whenever Lf and the coefficients of L are in Ck,α(Ω).

These estimates can be extended to a compact orbifold X as follows. The Hölder

spaces can be defined locally in orbifold charts: Covering X with orbifold charts,

any tensor T has a local expression as a bona fide tensor Tβ in these charts, and the

Ck,α-norm of T can be defined to be the supremum of the Ck,α-norms of these Tβ.

In particular, if X is compact, we may achieve that there are finitely many orbifold

charts, and the supremum can be taken to be the maximum. A linear second-order
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differential operator on an orbifold X is an operator which admits an expression as

(2.3) in each orbifold chart.

Theorem 2.10. Let L be an elliptic second-order linear differential operator with

smooth coefficients on a compact Riemannian orbifold (X , g), and fix α ∈ (0, 1) and

k ∈ N. Then there is a constant C such that

‖f‖Ck+2,α(X ) 6 C(‖Lf‖Ck,α(X ) + ‖f‖C0(X )).

Moreover, the constant C only depends on k, α, the orbifold X , the Ck,α-norms of the

coefficients of L, and the constants of ellipticity λ,Λ. Finally, it is enough to assume

only that f ∈ C2(X ), and then it follows that f ∈ Ck+2,α(X ) whenever Lf and the

coefficients of L are in Ck,α(X ).

Proof. As X is compact, there is a finite collection of orbifold charts (Uβ, Gβ, πβ)

whose supports Vβ cover X. We may select relatively compact domains U ′β ⊂ Uβ

invariant under the Gβ action satisfying the hypotheses of Theorem 2.9, such that

the images πβ(U ′β) still cover X. We have a finite list of constants Cβ from Theorem

2.9 applied to each pair (Uβ, U
′
β), and taking the maximum gives a large constant C.

Then an application of the previous theorem gives

‖f‖Ck+2,α(X ) = max
β
‖fβ‖Ck+2,α(U ′β)

6 max
β

Cβ(‖h‖Ck,α(Uβ) + ‖f‖C0(Uβ))

6 C(‖h‖Ck,α(X ) + ‖f‖C0(X )),

as desired.

Moreover, the mapping properties of such operators on compact orbifolds are
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well-understood, as demonstrated below. We require the following standard result in

functional analysis which can be found, for example, in [50, Proposition 3.9.7].

Lemma 2.11. Let E1 and E2 be Banach spaces, and let A1, A2 : E1 → E2 be bounded

linear operators. Suppose that

(i) A1 is injective and the range of A1 is closed;

(ii) A2 is a compact operator.

Then the range of A1 + A2 is closed in E2.

Lemma 2.12. Let L be an elliptic second-oder operator with smooth coefficients on

a compact orbifold X . Then the range of L : Ck+2,α(X )→ Ck,α(X ) is closed.

Proof. Define two Banach spaces E1 and E2 by

E1 = Ck+2,α(X )

E2 = Ck,α(X )⊕ Ck,α(X ).

Define two bounded linear operators A1, A2 : E1 → E2 by

A1(f) = (Lf, f)

A2(f) = (0,−f).

The operator A1 is injective because the second component is. Moreover, the range

of A1 is closed by the uniform bound

‖f‖Ck+2,α(X ) 6 C(‖Lf‖Ck,α(X ) + ‖f‖C0(X ))

6 C(‖Lf‖Ck,α(X ) + ‖f‖Ck,α(X )) = C ‖A1(f)‖E2
.
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Finally A2 is compact by the Arzela-Ascoli theorem applied to the inclusion of

Ck+2,α(X ) into Ck,α(X ). It follows from the previous lemma that A1 +A2 has closed

range. But the range of A1 + A2 is identified with Ran(L) ⊕ {0}, and hence L has

closed range.

Theorem 2.13. Let L be an elliptic second-oder operator with smooth coefficients on

a compact Riemannian orbifold (X , g). Then L is an isomorphism of Banach spaces

L : (kerL)⊥ ∩ Ck+2,α(X )→ (kerL∗)⊥ ∩ Ck,α(X ),

where L∗ denotes the adjoint of L with respect to the indicated Banach norms.

Proof. The restriction of the domain to (kerL)⊥ ensures that L is injective and the

restriction of the codomain to (kerL∗)⊥ = Ran(L) ensures that L is surjective by the

previous lemma. Hence L is a bounded invertible linear operator between Banach

spaces. We conclude that the inverse of L is bounded as well from [44, §23 Theorem

2], and therefore L is an isomorphism of Banach spaces.

Additionally, using Sobolev spaces, one can obtain not only a Green’s function of

the complex Laplacian, but also inequalities Poincaré and Sobolev stype, as follows.

The following version of Rellich’s lemma on orbifolds can be found in [21].

Theorem 2.14 (Rellich). For a compact Riemannian orbifold (X , g), the inclusion

L2
k+1(X )→ L2

k(X ) is compact.

If L is a linear elliptic differential operator of second order, then L defines a map

L : Lpk+2(X ) → Lpk(X ), and similarly to the case of Hölder norms, the mapping

properties of L with respect to these Sobolev norms are well-understood.
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Theorem 2.15. Let L be an elliptic operator of second order on a compact Rieman-

nian orbifold (X , g), and fix a number p > 1 and a number k ∈ N. Then there is a

constant C such that for all smooth functions f we have

‖f‖Lpk+2
6 C(‖Lf‖Lpk + ‖f‖Lpk).

Moreover the constant C depends only on X , g, L, k, p. Finally, L induces an isomor-

phism of Banach spaces

L : (kerL)⊥ ∩ Lpk+2(X )→ (kerL∗)⊥ ∩ Lpk(X ).

Remark 2.16. We do not outline a complete proof of this theorem here, but a proof

would proceed analogusly to that of the manifold setting. It is interesting also to note

that just as in the case of Hölder norms, there are local versions of these inequalities:

For any relatively compact Ω′ ⊂⊂ Ω, we have an inequality of the form

‖f‖Lpk+2(Ω′) 6 C(‖Lf‖Lpk(Ω) + ‖f‖Lpk(Ω)).

Example 2.17. In particular, the complex Laplacian ∆ on a compact Kähler orbifold

(X , ω) is an elliptic operator of second order. (Actually it is the negative −∆ which

is elliptic in the strictly positive local sense that we have defined, but it follows

immediately that the same a priori estimates hold for ∆ as well.) For a point x ∈ X,

consider the real-valued function δx defined on smooth functions ϕ by the rule

δx(ϕ) = ϕ(x)− ϕ̄

where ϕ̄ denotes the average value of ϕ. Then we may regard δx as an element of
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the Hilbert space L2(X ) (= L2
0(X )) via the L2-inner product (c.f. [21]). Since δx

vanishes on smooth functions with average value zero, it follows from Theorem 2.15

that there is an element Gx of L2
2(X ) such that ∆Gx = δx. Such a function Gx is

called a Green’s function associated to ∆ and satisfies

∫
X
Gx∆ϕ · ωn = ϕ(x)− ϕ̄.

In addition, reasoning in [4, Chapter 4, Section 2] can be applied to show that Gx is

bounded from below.

Theorem 2.18 (Poincaré inequality). Let (X , g) be a compact Kähler orbifold. There

is a constant C depending only on X and g such that if ϕ is a smooth function with

average value zero, then

‖ϕ‖2 6 C ‖∂ϕ‖2 ,

where, again, the notation ‖ϕ‖2 means ‖ϕ‖L2.

Remark 2.19. With this above notation, for a compact Kähler orbifold (X , ω) we

find that the following coincide ‖df‖2 = ‖∇f‖2 =
√

2 ‖∂f‖2.

Proof of Theorem 2.18. For a function ϕ ∈ L2
1(X ) satisfying ‖ϕ‖2 6= 0, let R(ϕ)

denote the Rayleigh quotient

R(ϕ) =
‖∂ϕ‖2

‖ϕ‖2

.

Let E denote the subspace of L2
1(X ) consisting of all functions with average value

zero, and let λ denote the infimum

λ = inf
06=ϕ∈E

R(ϕ).

It suffices to show that λ is nonzero, which we show. Suppose not. Let ϕj denote a
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sequence of elements in E satisfying limj→∞R(ϕj) = 0. By scaling by ‖ϕj‖−1
2 , we may

assume that each ϕj satisfies ‖ϕj‖2 = 1. It follows that the sequence ϕj is uniformly

bounded in L2
1(X ). Rellich’s lemma implies that, by passing to a subsequence, we can

assume that the ϕj converge in L2(X ) to a function ϕ ∈ L2(X ). This function must

satisfy ‖ϕ‖2 = 1. Moreover, for any smooth (1, 0)-form ψ, if ∂∗ denotes the adjoint

of ∂ with respect to the L2-inner product induced by the Kähler metric g, then

|〈ϕ, ∂∗ψ〉L2| = lim
j→∞
|〈ϕj, ∂∗ψ〉L2|

= lim
j→∞
|〈∂ϕj, ψ〉L2|

6 lim
j→∞
‖∂ϕj‖2 ‖ψ‖2 = 0

so that ∂ϕ = 0 in the weak sense. The ellipticity of ∂ implies that ϕ is actually

smooth, and therefore a constant, with average value zero, and hence equal to zero.

This contradicts the above deduction that ‖ϕ‖2 = 1. �

The following Sobolev inequality on bounded domains is well-known [30].

Lemma 2.20 (Local Sobolev inequality). Let Ω be a bounded domain in Rn. For a

number p > 1, let q denote the Sobolev conjugate satisfying 1/p + 1/q = 1/n. Then

there is a constant C depending on Ω and p such that for any smooth function f with

compact support in Ω, we have

‖f‖2
q 6 C(‖f‖2

p + ‖∇f‖2
p).

In particular, if Ω ⊂ Cn and p = 2, then q = 2n/(n− 1) and

‖f‖2
2n
n−1
6 C(‖f‖2

2 + ‖∂f‖2
2).
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It follows that there is a similar type of inequality on compact Kähler orbifolds.

Theorem 2.21 (Sobolev inequality). Let (X , g) be a compact Kähler orbifold of

complex dimension n. There is a constant C depending only on X and g such that if

f is a smooth function then

‖f‖2
2n
n−1
6 C(‖f‖2

2 + ‖∂f‖2
2).

Proof. Let ϕα be a partition of unity subordinate to the supports Vα of a finite

collection of orbifold charts Uα in an atlas. The smooth function ϕαf is compactly

supported in the support Uα of a chart Uα. The local Sobolev inequality in this chart

Uα implies the existence of a constant Cα such that

‖ϕαf‖2
2n
n−1
6 Cα(‖ϕαf‖2

2 + ‖∂(ϕαf)‖2
2).

The triangle inequality implies that

|∂(ϕαf)| 6 |(∂ϕα)||f |+ ϕα|∂f | 6
(

sup
X
|∂ϕα|

)
|f |+ |∂f |.

Hence with the previous observation, we find an estimate of the form

‖ϕαf‖2
2n
n−1
6 Cα(‖f‖2

2 + ‖∂f‖2
2).

Whence if N denotes the number of charts and C = N · supαCα, then

‖f‖2
2n
n−1
6
∑
α

‖ϕαf‖2
2n
n−1
6 C(‖f‖2

2 + ‖∂f‖2
2),

as desired.
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2.3 Yau’s theorem on orbifolds

The goal of this section is to outline a proof of Theorem 2.1. Before doing so, let us

first demonstrate how Theorem 2.1 implies Theorem 2.2.

Lemma 2.22. Theorem 2.1 implies Theorem 2.2.

Proof. Because R and Ric(ω) represent the same cohomology class, the ∂∂̄-lemma

gives a smooth function F̃ on X such that

R = −
√
−1∂∂̄F̃ + Ric(ω).

If we let C1, C2 denote the positive quantities

C1 =

∫
X
eF̃ωn C2 =

∫
X
ωn

and we let F denote the smooth function F = F̃ + log(C2/C1), then F satisfies the

integration condition ∫
X
eFωn

∫
X
ωn.

By Theorem 2.1, there is a smooth function ϕ satisfying (2.1). The Ricci form of

ω′ = ω +
√
−1∂∂̄ϕ then satisfies

Ric(ω′) = −
√
−1∂∂̄ log(eFωn) = −

√
−1∂∂̄F + Ric(ω) = R.

Hence ω′ = ω +
√
−1∂∂̄ϕ is a solution to the Calabi conjecture.

Suppose that ω′′ is another solution. There is a ϕ′′ such that ω′′ = ω+
√
−1∂∂̄ϕ′′.

By assumption, the Ricci form of ω′′ satisfies

Ric(ω′′) = R = −
√
−1∂∂̄F + Ric(ω),
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or equivalently,

−
√
−1∂∂̄(log(ω +

√
−1∂∂̄ϕ′′)n) = −

√
−1∂∂̄F −

√
−1∂∂̄ log(ωn).

Rearranging gives

√
−1∂∂̄

(
log

(ω +
√
−1∂∂̄ϕ′)n

ωn
− F

)
= 0.

Integration by parts shows that there is a constant C such that

log
(ω +

√
−1∂∂̄ϕ′′)n

ωn
− F = C,

which implies that

(ω +
√
−1∂∂̄ϕ′′)n = eF+Cωn.

The fact that
∫
X e

Fωn =
∫
X ω

n implies that

eC
∫
X
eFωn =

∫
X
eF+Cωn =

∫
X
ωn =

∫
X
eFωn.

Hence C = 0 and we conclude that ϕ′′ is a solution to Theorem 2.1. Thus ϕ′′ and ϕ′

differ by a constant, and so ω′′ = ω′. This shows how the uniqueness in Theorem 2.2

follows from that of Theorem 2.1.

Let us now move on to a proof of Theorem 2.1. First we deal with uniqueness.

Proposition 2.23. If ϕ, ϕ′ are two smooth solutions to (2.1), then ϕ and ϕ′ differ

by a constant.
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Proof. Write ωϕ = ω +
√
−1∂∂̄ϕ. Then with this notation, we have

0 = ωnϕ − ωnϕ′ =
√
−1∂∂̄(ϕ− ϕ′) ∧ T

where

T =
n−1∑
k=0

ωkϕ ∧ ωn−1−k
ϕ′

is a positive, closed (n− 1, n− 1) form. Upon integrating by parts, we find

0 =

∫
X

(ϕ− ϕ′)(ωnϕ − ωnϕ′) = −
∫
X

√
−1∂(ϕ− ϕ′) ∧ ∂̄(ϕ− ϕ′) ∧ T.

The positivity of T implies that the integral is nonnegative, and hence we must have

∂(ϕ− ϕ′) = 0. Thus ϕ− ϕ′ is constant.

With the tools established in the previous sections, we can formulate a proof of

Theorem 2.1 by following exactly the structure of a proof in the smooth setting. In

particular, one approach is the following well-known continuity method. For com-

pleteness, we outline this approach now.

The idea is to introduce a family of equations


(ω +

√
−1∂∂̄ϕ)n = etFωn

ω +
√
−1∂∂̄ϕ is a Kähler form

(∗t)

indexed by a parameter t ∈ [0, 1]. The equation (∗0) admits the trivial solution

ϕ ≡ 0. Thus, if we can show that the set of such t ∈ [0, 1] for which (∗t) admits a

smooth solution is both open and closed, it will follow that we can solve (∗1). For

this endeavor, it suffices to prove the following.

Proposition 2.24. Fix an α ∈ (0, 1).
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(i) If (∗t) admits a smooth solution for some t < 1, then for all sufficiently small

ε > 0, the equation (∗t+ε) admits a smooth solution as well.

(ii) There is a constant C > 0 depending only on X , ω, F, and α such that if ϕ with

average value zero satisfies (∗t) for some t ∈ [0, 1], then

• ‖ϕ‖C3,α(X ) 6 C and

• (gjk̄+∂j∂k̄ϕ) > C−1(gjk̄), where gjk̄ are the components of ω in local coordinates

of any chart and the inequality means that the difference of matrices is positive

definite.

Indeed Proposition 2.24 is sufficient because we can obtain a solution to (∗1) using

the following lemma.

Lemma 2.25. Assume Proposition 2.24. Then if s is a number in (0, 1] such that

we can solve (∗t) for all t < s, then we can solve (∗s).

Proof. Let ti ∈ (0, 1] be a sequence of numbers approaching s from below. By as-

sumption, this gives rise to a sequence of functions ϕi satisfying

(ω +
√
−1∂∂̄ϕi)

n = etiFωn.

Proposition 2.24 together with the Arzela-Ascoli theorem implies that after passing

to a subsequence, we may assume that ϕi converges in C3,α′(X ) to a function ϕ for

some α′ < α. This convergence is strong enough that we find

(ω +
√
−1∂∂̄ϕ)n = esFωn.

Moreover, Proposition 2.24 gives that the forms ω+
√
−1∂∂̄ϕi are bounded below by

a fixed positive form C−1ω, so that ω +
√
−1∂∂̄ϕ is a positive form.
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It remains to show that ϕ is smooth. In local coordinates, we find that ϕ satisfies

log det(gbk̄ + ∂j∂k̄ϕ)− log det(gjk̄)− sF = 0.

Differentiating the equation with respect to the variable z` we have

(gϕ)jk̄∂j∂k̄(∂`ϕ) = s∂`F + ∂` log det(gjk̄)− (gϕ)jk̄∂`gjk̄

where (gϕ)jk̄ is the inverse of the matrix (gϕ)jk̄ = gjk̄+∂j∂k̄ϕ. We think of this equation

as a linear elliptic second-order equation L(∂`ϕ) = h for the function ∂`ϕ ∈ C2,α′(X ).

Because the function h and the coefficients of L belong to C1,α′ , we conclude from

Theorem 2.10 that ∂`ϕ belongs to C3,α′ . Because ` was arbitrary, it follows that ϕ

belongs to C4,α′ . Repeating this argument we obtain that ϕ ∈ C5,α′ and by induction,

that ϕ is actually smooth. This technique of considering the corresponding linear

equation to obtain better regularity of solutions is called bootstrapping.

Let us now prove the first part of Proposition 2.24.

Proof of Proposition 2.24 (i). Let B1 denote the Banach manifold consisting of those

ϕ ∈ C3,α(X ) with average value zero and such that ω +
√
−1∂∂̄ϕ is a positive form.

Let B2 denote the Banach space consisting of those ϕ ∈ C1,α(X ) with average value

zero. Define a mapping

G : B1 × [0, 1] −→ B2

(ϕ, s) 7−→ log
(ω +

√
−1∂∂̄ϕ)n

ωn
− sF.

By assumption, we are given a smooth function ϕt such that G(ϕt, t) = 0 and ω +
√
−1∂∂̄ϕt is a Kähler form. The partial derivative of G in the direction of ϕ at the
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point (ϕt, t) is given by

DG(ϕt,t)(ψ, 0) =
n
√
−1∂∂̄ψ ∧ ωn−1

t

ωnt
= −∆tψ,

where ωt = ω +
√
−1∂∂̄ϕt and ∆t denotes the Laplacian with respect to ωt. Denote

this partial derivative by the operator L(ψ) = −∆tψ.

The operator L has trivial kernel. Indeed suppose ψ satisfies L(ψ) = 0. Then

integration by parts shows that

0 =

∫
X
ψ∆tψω

n
t = n

∫
X

√
−1∂ψ ∧ ∂̄ψ ∧ ωn−1

t

and the positivity of ωn−1
t implies that ∂ψ = 0. We conclude that ψ is a constant,

with average value zero, and hence equal to zero.

Moreover two integrations by parts show that the operator L is self-adjoint, and

hence L∗ has trivial kernel as well. It follows from Theorem 2.13 that L is an isomor-

phism

L : C3,α
0 (X )→ C1,α

0 (X )

where Ck,α
0 (X ) denotes the subspace of functions in Ck,α(X ) with average value zero.

The implicit function theorem asserts that for s sufficiently close to t, there are

functions ϕs in C3,α
0 (X ) satisfying G(ϕs, s) = 0. Because ϕ +

√
−1∂∂̄ϕt is a positive

form, for s close enough to t, we can ensure that each ω +
√
−1∂∂̄ϕs is a positive

form as well. Moreover, bootstrapping arguments similar to those described earlier

show that ϕs is actually smooth. �
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2.4 A uniform C3,α-estimate

This section is devoted to proving Proposition 2.24 (ii). There are many expositions

of this statement in the smooth setting (see [65, 61, 10, 60]). Essentially any of these

arguments can be modified to the orbifold setting, provided the necessary ingredients

can be modified to the orbifold setting. We will outline a streamlined version of one

of the arguments, which can be found in [60], and we direct the reader to this resource

for more details of the reasoning to follow. We also direct the reader’s attention to

the survey paper [52], which is a survey of some of the recent developments in the

theory of complex Monge-Ampère equations.

First we obtain a C0-estimate using a method of Moser iteration. An argument

in the smooth setting can be found in [60], which follows an exposition due to [10].

For completeness, we outline the argument below, demonstrating how the tools of

the previous sections (Green’s function, Poincare inequality, Sobolev inequality) are

used.

Lemma 2.26 (C0-estimate). There is a constant C depending on X , ω, and F such

that if ϕ is a solution to (∗t) with average value zero, then

‖ϕ‖C0(X ) 6 C.

Proof. Without loss of generality we may assume that ω is rescaled so that X has

volume 1. In addition, to eliminate some minus signs in what follows, by replacing

ϕ with −ϕ, we may assume that the Kähler form has description ω −
√
−1∂∂̄ϕ. For

such ϕ with average value zero, it suffices to give a bound

sup
X
ϕ− inf

X
ϕ 6 C.
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Thus, shifting ϕ by a constant, to prove the claim, it suffices to show that for solutions

with inf ϕ = 1, we have a bound

sup
X
ϕ 6 C,

which is what we will show.

We first show that we have a uniform bound ‖ϕ‖1 6 C on the L1-norm of solutions

ϕ. The form ω−
√
−1∂∂̄ϕ is positive so that after taking the trace with respect to ω

we have

n+ ∆ϕ > 0.

where ∆ is the Laplacian with respect to ω. Let x be a point where ϕ achieves its

minimum, and let Gx be a Green’s function with respect to the Laplacian ∆. We

may assume that Gx is integrable and, shifting by a constant, that Gx is nonnegative.

Then

ϕ(x) =

∫
X
ϕ · ωn +

∫
X
Gx∆ϕ · ωn >

∫
X
ϕ · ωn − n

∫
X
Gx · ωn

>
∫
X
ϕ · ωn − C.

It follows that we have a uniform estimate ‖ϕ‖1 6 C as desired.

We next show that we have a uniform estimate ‖ϕ‖2 6 C. If we write ωϕ =

ω −
√
−1∂∂̄ϕ, then we compute that

∫
X
ϕ(ωnϕ − ωn) =

∫
X

√
−1∂ϕ ∧ ∂̄ϕ ∧ T
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where T is the positive (n− 1, n− 1) form

T =
n−1∑
k=0

ωk ∧ ωn−1−k
ϕ .

It follows that ∫
X
ϕ(ωnϕ − ωn) >

∫
X

√
−1∂ϕ ∧ ∂̄ϕ ∧ ωn−1

From the observation that ωnϕ − ωn = (etF − 1)ωn together with the estimate of the

previous paragraph, we find that

‖∂ϕ‖2
2 6 C.

The Poincaré inequality (Theorem 2.18) then implies that

∫
X

(ϕ− ‖ϕ‖1)2ωn 6 C ‖∂ϕ‖2
2 6 C.

Hence our bound from the previous paragraph implies a bound ‖ϕ‖2 6 C.

Finally it is routine to use a technique called Moser iteration to establish a uniform

bound supX ϕ 6 C ‖ϕ‖2, which will complete the proof. For p > 2, we have

∫
X
ϕp−1(ωnϕ − ωn) =

4(p− 1)

p2

∫
X

√
−1∂ϕp/2 ∧ ∂̄ϕp/2 ∧ T,

which implies

∫
X
ϕp−1(ωnϕ − ωn) >

4(p− 1)

p2

∫
X

√
−1∂ϕp/2 ∧ ∂̄ϕp/2 ∧ ωn−1.

We deduce that ∥∥∂ϕp/2∥∥2

2
6 Cp ‖ϕ‖p−1

p−1
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for some constant C independent of p. The Sobolev inequality (Theorem 2.21) applied

to ϕp/2 together with this estimate gives that

‖ϕ‖pnp
n−1

=
∥∥ϕp/2∥∥2

2n
n−1

6 C
(∥∥ϕp/2∥∥2

2
+
∥∥∂ϕp/2∥∥2

2

)
6 C

(
‖ϕ‖pp + Cp ‖ϕ‖p−1

p−1

)
6 Cp ‖ϕ‖pp .

If we write pk = (n/(n− 1))kp, then we find

‖ϕ‖pk 6 (Cpk−1)1/(pk−1) ‖ϕ‖pk−1

6 ‖ϕ‖p
k−1∏
i=0

(Cpi)
1/pi

6 ‖ϕ‖p
∞∏
i=0

(Cpi)
1/pi .

If we set p = 2 and let k →∞, then we find that

sup
X
ϕ 6 C ‖ϕ‖2 ,

and the estimate from the previous paragraph on ‖ϕ‖2 gives the desired bound.

The following lemma can be proved by a local calculation, which uses the Cauchy-

Schwarz inequality twice and which can be found, for example, in [60, Lemma 3.7]

(but we require a minus sign because our convention of the Laplacian is the negative

of the one appearing in that book).

Lemma 2.27. There is a constant C depending on X and ω such that if ϕ is a
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solution to (∗t) with average value zero, then

−∆̂ log Λωϕ > −CΛ̂ω −
gjk̄R̂jk̄

trωωϕ

where ∆̂ is the Laplacian with respect to ωϕ, Λ̂ is the trace with respect to ωϕ, and

R̂jk̄ is the Ricci curvature of ωϕ.

A C2-estimate then follows directly from this lemma together with the C0-estimate,

again by a local computation which uses only rudimentary tools such as the Cauchy-

Schwarz inequality and which can be found again in [60, Lemma 3.8].

Lemma 2.28 (C2-estimate). There is a constant C depending on X , ω, F such that

a solution ϕ of (∗t) with average value zero satisfies

C−1(gjk̄) < (gjk̄ + ∂j∂k̄ϕ) < C(gjk̄).

Let S denote the tensor given by the difference of Levi-Civita connections S =

∇̂−∇, where ∇̂ is the connection corresponding to ωϕ and ∇ is the one corresponding

to ω. Note that S depends on the third derivatives of ϕ. So if |S| denotes the norm of

S with respect to the metric ωϕ, the fact that the metric gjk̄ is uniformly equivalent

to the metric gjk̄ + ∂j∂k̄ϕ implies that a bound on |S| gives a C3-bound on ϕ.

Lemma 2.29 (C3-estimate). There is a constant C depending on X , ω, F such that

if ϕ is a solution to (∗t) with average value zero, then |S| 6 C, where |S| is the norm

of S computed with respect to the metric ωϕ.

Proof. Again local computations and rudimental local identities from complex geom-

etry can be used first to obtain estimates of the form

−∆̂|S|2 > −C|S|2 − C
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and

−∆̂Λωϕ > −C + ε|S|2

where C denotes a large constant and ε a small one. We direct the reader again to

[60, Lemma 3.9 and Lemma 3.10] for local proofs of these estimates, remarking that

the convention of the Laplacian in [60] is the negative of our own so we require a

minus sign on the left-hand side of these estimates.

It follows that we may choose a large constant A such that

−∆̂(|S|2 + AΛωϕ) > |S|2 − C

Suppose that |S|2 + AΛωϕ achieves its maximum at x ∈ X. Then in a local chart

around x we have a local inequality of the form −∆̂(|S|2 + AΛωϕ)(x) 6 0 and hence

also

0 > |S|2(x)− C

so that |S|2(x) 6 C. At any other point y ∈ X, this bound together with the

C2-estimate imply any estimate of the form

|S|2(y) 6 (|S|2 + AΛωϕ)(y) 6 (|S|2 + AΛωϕ)(x) 6 C.

This is what we wanted.

We are now able to complete a proof of Proposition 2.24.

Proof of Proposition 2.24 (ii). Lemma 2.28 shows that the metric ωϕ is uniformly

equivalent to the metric ω. Lemma 2.29 implies that we have a uniform bound of the

form ‖ϕ‖C3(X ) 6 C, from which it follows that we have a uniform bound of the form

‖ϕ‖C2,α(X ) 6 C. Bootstrapping arguments together with Theorem 2.10 and Lemma
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2.26 imply that we actually have a uniform bound ‖ϕ‖C3,α(X ) 6 C, as desired. �

2.5 Kähler-Einstein metrics for orbifolds with neg-

ative first Chern class

The goal of this section is to outline briefly a proof of Theorem 2.3. One way to

proceed is by showing that the Kähler-Einstein condition is equivalent to a Monge-

Ampère equation that is only slightly different than (2.1), and then use the same

technique of the continuity method to solve this slightly modified equation.

Indeed, let ω be any Kähler metric in −2πc1(X ). The Ricci form Ric(ω) belongs

to the class 2πc1(X ), so by the ∂∂̄-lemma there is a smooth function F such that

Ric(ω) = −ω +
√
−1∂∂̄F.

Any other Kähler metric can be written as ωϕ = ω+
√
−1∂∂̄ϕ for a smooth function

ϕ on X . The Ricci form of ωϕ satisfies

Ric(ωϕ) = Ric(ω)−
√
−1∂∂̄ log

ωnϕ
ωn

and so the Kähler-Einstein condition Ric(ωϕ) = −ωϕ reduces to

−
√
−1∂∂̄ϕ =

√
−1∂∂̄F −

√
−1∂∂̄ log

ωnϕ
ωn
.

For this equation to be true, it suffices to solve the Monge-Ampère equation (2.2).

To solve equation (2.2), one can use a continuity method as in the case of (2.1).
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Indeed, one can introduce the family of equations


(ω +

√
−1∂∂̄ϕ)n = etF+ϕωn

ω +
√
−1∂∂̄ϕ is a Kähler form

(∗∗t)

indexed by a parameter t ∈ [0, 1] and show that the set of such t for which (∗∗t) admits

a smooth solution is both open and closed. The openness follows from the implicit

function theorem as in the proof of Proposition 2.24 (i), with the only modification

being that the linearized operator at t is given by

ψ 7→ −∆tψ − ψ.

The closedness follows from appropriate C0-, C2-, and C3-estimates for solutions of

(∗∗t), which can be obtained from only very slight modifications of the arguments

for the corresponding estimates for solutions of (∗t). Moreover, the case of the C0-

estimate is even easier for solutions of (∗∗t), as one can argue using the maximum

principle (see [60, Lemma 3.6] for a proof in the nonsingular case).

2.6 Examples of Calabi-Yau orbifolds

Theorem 2.2 produces Ricci-flat Kähler metrics on orbifolds with c1(X ) = 0 as a real

cohomology class in H2(X ,R). In this section, we give examples of such orbifolds,

which we call Calabi-Yau orbifolds.

Previously we had defined the first Chern class of a Kähler orbifold (X , ω) using

the Ricci form Ric(ω). Alternatively, the first Chern class can be defined as a real

cohomology class using connections and Chern-Weil theory as usual. In particular,

the square of a unitary connection ∇ on X corresponds to a mapping F∇ taking
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(1, 0)-tensors to (1, 2)-tensors which is linear over the ring of smooth complex-valued

functions on X . The curvature F∇ determines a characteristic polynomial in t

det

(
id− 1

2π
√
−1

F∇t

)
=

n∑
k=0

fk(X )tk

where fk(X ) corresponds to a real 2k-form on X whose complex dimension we have

denoted by n. The cohomology class determined by fk(X ) independent of the choice

of unitary connection and defines a real cohomology class ck(X ) ∈ H2k(X ,R) called

the kth Chern class.

There is also a way to define the Chern classes as integral cohomology classes

ck(X ) ∈ H2k(X ,Z) (see [2]). (Here, it is important to remark that the cohomology

group Hk(X ,Z) is not the same as the integral cohomology group of the underlying

topological space Hk(X,Z).) For our purposes, it is enough to know that the integral

first Chern class c1(X ) vanishes in H2(X ,Z) if and only if the sheaf KX of germs

of n-forms is isomorphic to the trivial invertible sheaf OX of germs of holomorphic

functions. If c1(X ) vanishes as an integral cohomology class, then it must also vanish

as a real cohomology class. However, the converse is not true in general, as we will

see in Example 2.30 below.

In the special case that dimCX = 1, the condition that c1(X ) vanish as a real

cohomology class is equivalent to the condition that the degree

deg(KX ) = −〈c1(X ), [X ]〉 = −
∫
X
c1(X )

of the sheaf KX vanishes, where [X ] ∈ H2(X ,R) denotes the fundamental class de-

termined by a choice of orientation on X . Let us use this observation first to classify

all Calabi-Yau orbifold Riemann surfaces, which we call elliptic orbifolds.
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Example 2.30. Let X be a connected closed orbifold Riemann surface with finitely

many stacky points p1, . . . , pn in the underlying spaceX . (We assume that X contains

at least one stacky point, or equivalently, n > 0.) For each i, let mi > 1 denote the size

of the stabilizer group of pi. We may assume that we have ordered the points so that

m1 > · · · > mn. The goal of this example is to show that the statement c1(X ) = 0

as a real cohomology class can be stated in terms of the data n,m1, . . . ,mn, and will

hence give a finite list of possibilities.

Let Y denote the complex manifold whose complex structure is determined by

the atlas represented by the open subsets U ⊂ C from the charts of X together

with the transition functions determined by the embeddings of these charts. Then

Y is a connected closed smooth Riemann surface of genus g. In particular, Y is an

effective orbifold in which every group in every orbifold chart is trivial. Let π : X → Y

denote the corresponding canonical smooth map of effective orbifolds, which we study

presently.

Away from the stacky points, the map π is an isomorphism of effective orbifolds.

More precisely, denote by qi the point in Y corresponding to pi in X. Let U denote

the subset U = X \ {p1, . . . , pn} together with the orbifold structure determined by

X , and let V denote the complex submanifold of Y given by V = Y \ {q1, . . . , qn}

where Y is the underlying space of Y . Then the restriction

π|U : U → V

is an isomorphism of effective orbifolds.

Near the point pi, however, the map π can be described as follows. If w is a local

coordinate on Y near qi and if z is a local coordinate on X near pi, then π∗w = zmi . It

follows that if OY(qi) denotes the locally free sheaf corresponding to the divisor qi in
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Y , then upon pulling back to X we obtain π∗(OY(qi)) = OX (mipi). Since the degree

of the line bundle OY(qi) is 1 and pulling back is compatible with taking degree, we

find that

deg(OX (mipi)) = deg(π∗(OY(qi))) = deg(OY(qi)) = 1.

We conclude that we must have

deg(OX (pi)) =
1

mi

.

If KX denotes the coherent sheaf of germs of one-forms on X , then we claim that

π∗KY = KX

(
n∑
i=1

(1−mi)pi

)
. (2.4)

Indeed, away from the stacky points, the map π is an isomorphism, so we have

π∗KY |U = KX |U = KX

(
n∑
i=1

(1−mi)pi

)∣∣∣∣∣
U

where the last equality follows because pi /∈ U . On the other hand, near the point pi,

the projection map π satisfies

π∗(dw) = d(zmi) = miz
mi−1dz.

If Ui is a neighborhood of pi satisfying Ui ∩ {p1, . . . , pn} = pi, then the previous

equality shows that

π∗KY |Ui = KX

(
n∑
i=1

(1−mi)pi

)∣∣∣∣∣
Ui

.

The claim now follows.
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Taking the degree of (2.4), we find that

2g − 2 = deg(KX ) +
n∑
i=1

1−mi

mi

= deg(KX )− n+
n∑
i=1

1

mi

.

And hence the degree of the canonical sheaf KX satisfies

deg(KX ) = 2g − 2 + n−
n∑
i=1

1

mi

.

Therefore, the condition c1(X ) = 0 as a real cohomology class is equivalent to the

equation

2− 2g =
n∑
i=1

(
1− 1

mi

)
. (2.5)

However, this condition is not enough to ensure that the first Chern class vanishes as

an integral cohomology class, and in fact, even with this condition, the first Chern

class is never zero in H2(X ,Z) because the integral first Chern class restricts to a

generator c1(X )|pi ∈ H2(pi,Z) ' Z/miZ of the integral cohomology group of each

stacky point. Nevertheless, if m is the least common multiple of m1, . . . ,mn, then

K⊗mX is trivial, so that the multiple mc1(X ) is zero as an integral cohomology class.

Now let us determine the possibilities for n,m1, . . . ,mn. Each term on the right

hand side of (2.5) is at least 1/2 and less than 1, so we find that

n

2
6 2− 2g < n.

Since n > 1, we conclude that g = 0, and thus there are two cases for n: either n = 3

or n = 4.
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• Suppose that n = 4. Then equation (2.5) implies that we have

1

m1

+
1

m2

+
1

m3

+
1

m4

= 2.

There is only one possibility

(i) m1 = m2 = m3 = m4 = 2.

• Suppose that n = 3. Then equation (2.5) implies that we have

1

m1

+
1

m2

+
1

m3

= 1.

We also have that m1 > m2 > m3 > 2. There are three possibilities

(ii) m1 = m2 = 4,m3 = 2;

(iii) m1 = 6,m2 = 3,m3 = 2;

(iv) m1 = m2 = m3 = 3.

Each of these cases (i) through (iv) can be realized explicitly as a quotient of

an elliptic curve. Indeed for a complex number τ in the upper half plane {z ∈ C :

Im(z) > 0}, let Eτ denote the smooth elliptic curve

Eτ = C/(Z + Zτ).

The flat Kähler metric on C descends to a flat Kähler metric on Eτ . If Γ is an finite

group acting holomorphically and isometrically on Eτ , then the flat Kähler metric on

Eτ descends to a flat Kähler metric (hence Ricci flat) metric on the global quotient

orbifold [Eτ/Γ].
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(i) If τ is any element of the upper half plane, then the group Γ = {±1} acts on

C in such a way that the action descends to the quotient Eτ . If [0] denotes the

point in Eτ corresponding to 0 ∈ C, then [0] is fixed by every element of Γ. The

same is also true of the points [1/2], [τ/2], and [(1 + τ)/2]. It follows that the

orbifold [Eτ/Γ] is an elliptic orbifold. Such an orbifold is called a “pillowcase”

in the literature.

(ii) Suppose in particular that τ =
√
−1. The group Γ = {±1,±τ} ' Z4 acts

on C in such a way that the action descends to one on Eτ . The points [0] and

[(1+
√
−1)/2] are fixed by every element of Γ, and hence have a stabilizer group

of order 4. The point [1/2] is fixed by the subgroup of size two consisting of

{1,−1}. It follows that the orbifold [Eτ/Γ] corresponds to the elliptic orbifold

P1
4,4,2.

(iii) Suppose that τ = eπ
√
−1/3. The rotations generated by −1 and e2π

√
−1/3 act

in a well-defined way on Eτ so that the group Γ = Z6 ' Z2 × Z3 acts on Eτ .

The points [0], [(τ + 1)/3], and [(τ + 1)/2] have stabilizers of orders 6, 3, and 2

respectively. It follows that [Eτ/Γ] corresponds to the elliptic orbifold P1
6,3,2.

(iv) Suppose again that τ = eπ
√
−1/3. The group Z3 acts on C by rotations generated

by τ 2 = e2π
√
−1/3. This action descends to a Z3-action on Eτ . The points

[0], [(1+τ)/3], and [2(1+τ)/3] are distinct points in the quotient with stabilizers

of order 3. It follows that [Eτ/Γ
′] corresponds to the elliptic orbifold P1

3,3,3.

This completes our discussion of elliptic orbifolds.

Remark 2.31. The slightly different but related problem of the Ricci flow and its

convergence is studied on Riemann surfaces with marked points in [53]. There, the

convergence of the flow is studied in relation to a notion of stability for the underlying
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orbifold itself, and the flow is shown to convergence in all three stable, semi-stable,

and unstable cases.

For examples of higher dimensional Calabi-Yau orbifolds, one can consider com-

plete intersections in weighted projective space. In this case, one can construct ex-

amples where the first Chern class vanishes as an integral cohomology class.

Example 2.32. Recall weighted projective space CP[a0, . . . , an] of Example 2.5.

It is useful to view CP[q0, . . . , qn] as a toric variety. Let N be a lattice spanned by

vectors u0, . . . , un satisfying the relation q0u0 + · · ·+ qnun = 0, and let Σ be the fan of

all cones generated by proper subsets of {u0, . . . , un}. Then CP[q0, . . . , qn] is the toric

variety XΣ corresponding to the fan Σ. Let Di denote the torus-invariant divisor in

CP[q0, . . . , qn] corresponding to the one-dimensional cone spanned by ui. According

to [25, Exercise 4.1.5] the class group Cl(XΣ) can be identified with Z in such a way

that the divisor
∑

i aiDi determines the element
∑

i aiqi of Z ' Cl(XΣ). The divisor

−D0 − · · · −Dn corresponds to the dualizing sheaf of XΣ which in turn corresponds

to the element −q0 − · · · − qn ∈ Z ' Cl(XΣ).

Let C[x0, . . . , xn] denote the polynomial ring corresponding to CP[q0, . . . , qn], where

each xi has degree qi. A polynomial F in C[x0, . . . , xn] has degree d if each monomial

xα appearing in F satisfies α · (q0, . . . , qn) = d. Accordingly, a polynonial F of degree

d corresponds to a global section of the sheaf corresponding to d ∈ Z ' Cl(XΣ), so

that the hypersurface {F = 0} in CP[q0, . . . , qn] has normal sheaf corresponding to

d ∈ Z ' Cl(XΣ).

Let F1, . . . , Fs be homogeneous polynomials in C[x0, . . . , xn] of degrees d1, . . . , ds

respectively. Then the subset of weighted projective space given by Y = {F1 = · · · =

Fs = 0} is a complete intersection subvariety. If Y has at most quotient singularities,

then Y is a complex orbifold. Remarks in the previous paragraph imply that the top
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power of the normal sheaf of Y is the sheaf corresponding to d1+· · ·+ds ∈ Z ' Cl(XΣ).

Because Y and X are Cohen-Macaulay, adjunction still holds, which gives that

KY = KX(d1 + · · ·+ ds).

We find that KY is trivial if and only if

d1 + · · ·+ ds = q0 + · · ·+ qn

which is equivalent to c1(Y ) = 0 as an integral cohomology class.

Example 2.33. We follow a construction found in [22] to give finite quotients of

Calabi-Yau hypersurfaces in weighted projective spaces, which allows us to to realize

the elliptic orbifolds (ii) through (iv) as finite quotients of cubic curves in CP2 (c.f.

[45]). A polynomial F in (n + 1) variables is called quasi-homogeneous if there is a

n-tuple of weights (c0, . . . , cn) such that for any scalar λ we have

F (λc0x0, . . . , λ
cnxn) = λF (x1, . . . , xn).

We assume that F is non-degenerate in the sense that F defines an isolated singularity

at the origin, and we also assume that F is of Calabi-Yau type meaning
∑

i ci = 1.

Then the equation F = 0 defines a Calabi-Yau hypersurface XF in the weighted

projective space CP[q0, . . . , qn] where qi = ci/d for some common denominator d.

(For example, if F = x2y + y3 + xz2, then F is quasihomogeneous with weights

(1/3, 1/3, 1/3), and hence F defines a Calabi-Yau hypersurface in CP2 = CP[1, 1, 1].)

Let Gmax denote the diagonal symmetry group

Gmax = {Diag(λ0, . . . , λN) : F (λ0x0, . . . , λnx0) = F (x0, . . . , xn)}.
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This group contains the element J = Diag(e2πic0 , . . . , e2πicn) which acts trivially on

XF . A subgroup G satisfying J ∈ G ⊂ Gmax acts on XF with kernel 〈J〉. Hence the

group G̃ = G/〈J〉 acts faithfully on XF , and one obtains an orbifold global quotient

X = [XF/G̃]. This orbifold global quotient has c1(X ) = 0 as a real cohomology class.

In particular, the canonical sheaf KX is not necessarily trivial, but some power of it

is, so that some multiple of c1(X ) vanishes as an integral cohomology class.

One can realize the elliptic orbifolds from Example 2.30 as such quotients of cubic

curves in CP2 (c.f. [45]):

(ii) Consider the curve XF ⊂ CP2 determined by the cubic polynomial F = x2y +

y3 + xz2. The group G̃ = Z4 acts on XF via

ξ · [x, y, z] = [ξ2x, y, ξz]

so that the quotient orbifold [XF/G̃] is the elliptic orbifold P4,4,2. Indeed the

points whose stabilizers have orders 4, 4 and 2 are the images of the points

[1, 0, 0], [0, 0, 1], and [1,
√
−1, 0].

(iii) Consider the curve XF ⊂ CP2 determined by the cubic polynomial F = x3 +

y3 + xz2. The group G̃ = Z6 acts on XF via

ξ · [x, y, z] = [ξ4x, y, ξz]

so that the quotient orbifold is the elliptic orbifold P6,3,2. Indeed, the three

points whose stabilizers have orders 6, 3, and 2 are the images of the points

[0, 0, 1], [1, 0,
√
−1], and [x,−1, 0] where x is a third root of unity.

(iv) Consider the curve XF ⊂ CP2 determined by the cubic polynomial F = x3 +
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y3 + z3. The group G̃ = Z3 × Z3 acts on XF via

(ξ1, ξ2) · [x, y, z] = [x, ξ1y, ξ2z]

so that the quotient orbifold [XF/G̃] is the elliptic orbifold P3,3,3. Indeed the

points with stabilizers of size three are the images of the points [−1, 0, z], [0,−1, z]

and [−1, y, 0] where y, z denote third roots of unity.

In the general case, to each finite quotient Calabi-Yau orbifold [XF/G̃], there is

an associated Berglund-Hübsch-Krawitz mirror [XT
F /G̃

T ], which is another Calabi-

Yau orbifold that is dual to the other one in the sense that there are symmetric

isomorphisms at the level of certain cohomological groups, namely Chen-Ruan orb-

ifold cohomology. It is beyond the scope of this work to describe the mirror here, but

we direct the reader to [9] for a detailed description. (Also see [9] for the proposal of

this “classical mirror symmetry conjecture” and [22] for the proof.)

Example 2.34. One can consider Calabi-Yau hypersurfaces in toric varieties defined

by polyhedra, and in the case that the defining polyhedron is reflexive, there is a so-

called Batyrev mirror, which is another Calabi-Yau hypersurface dual to the original

hypersurface in the sense of mirror symmetry from mathematical physics [6]. Provided

these hypersurfaces are orbifolds, Theorem 2.2 implies that these hypersurfaces and

their mirrors admit Ricci-flat metrics. One exposition of this material can be found

in [24], which we will follow closely.

More precisely, let N be a lattice, and M the corresponding dual lattice. A full-

dimensional integral polytope ∆ in M is reflexive if

(i) 0 belongs to the interior of ∆

(ii) there are vectors vF ∈ N associated to each codimension-1 face F of ∆ such
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that

∆ = {m ∈MR : 〈m, vF 〉 > −1 for each F}.

Such a polytope determines a toric variety X∆ which is Gorenstein and Fano. The

anticanonical sheaf corresponds to the divisor
∑

ρDρ as ρ ranges over the one-

dimensional cones in the normal fan Σ∆. By adjunction, the zero locus of a generic

section of the anti-canonical sheaf determines a hypersurface V̄ with trivial canonical

sheaf so that c1(V̄ ) is zero as an integral cohomology class. Let F(∆) denote this

family of Calabi-Yau hypersurfaces.

This family F(∆) of Calabi-Yau hypersurfaces is dual to another family of Calabi-

Yau hypersurfaces in the following sense. The polar dual of ∆ is given by

∆◦ = {n ∈ NR : 〈m,n〉 > −1 for all m ∈ ∆}

and is reflexive if and only if ∆ is. It follows that ∆◦ also determines a Gorenstein

toric Fano variety X∆◦ . In this way, one obtains a dual family F(∆◦) of Calabi-Yau

hypersurfaces determined by generic sections of the anticanonical sheaf of X∆◦ . The

involution taking F(∆) to F(∆◦) can be shown to satisfy the properties of the mirror

duality in physics [6] in some precise sense involving Hodge numbers.

However, in general, X∆ may be too singular to study its Hodge theory directly,

so one considers a maximal projective simplicial resolution of the normal fan of ∆

to obtain a crepant partial resolution X → X∆ by an orbifold X. A general anti-

canonical hypersurface V of X is then a Calabi-Yau orbifold which is a proper trans-

form of a corresponding general anticanonical hypersurface V̄ of X∆, and Batyrev

calls V a maximal projective crepant partial desingularization of V̄ , or a MPCP-

desingularization for short. In particular, V is an orbifold, and so it makes sense to

51



consider its Hodge numbers. The precise statement for mirror symmetry then con-

cerns the Hodge numbers of these MPCP-desingularizations V (and their duals V ◦,

which are obtained by applying the same process to the dual polytope ∆◦).

Example 2.35. One can generalize the previous example to complete intersection

subvarieties of toric varieties and their mirrors [7].

Let X∆ be a Gorenstein Fano toric variety determined by a reflexive full dimen-

sional integral polytope ∆, and let Σ∆ denote the corresponding normal fan. In some

sense this family of examples is more general than the purpose of this chapter because

a general X∆ may be more singular than an orbifold, but at least X∆ is an orbifold

when the corresponding fan is simplicial.

Let E = {e1, . . . , er} denote the set of vertices of ∆. A representation E =

E1 ∪ · · · ∪ Es as the disjoint union of subsets E1, . . . , Es is called a nef-partition if

there are integral convex Σ∆-piecewise linear functions ϕ1, . . . , ϕs on MR satisfying

ϕi(ej) =


1 ej ∈ Ei

0 otherwise

.

Such a partition induces a representation of the anticanonical divisor as the sum of

s Cartier divisors
∑s

i=1Di which are nef. A choice of an s-tuple of generic sections

of the sheaves corresponding to these divisors gives rise to a complete intersection

subvariety V of X∆ which has trivial canonical sheaf and hence c1(V ) is zero as an

integral cohomology class.

There is a duality on such complete intersections which can be described as follows.

Let E = E1∪· · ·∪Es be a nef partition of the vertices of ∆. For each i, let ∆′i denote
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the convex polyhedron

∆′i = {n ∈ NR : 〈m,n〉 > −ϕi(x)}.

Then it can be shown that the lattice polyhedron ∆′ defined by

∆′ = Conv(∆′1 ∪ · · · ∪∆′s).

is reflexive [11]. Let E ′ denote the collection of vertices of ∆′. For each i, if E ′i denotes

the collection of vertices of ∆′i, then E ′ = E ′1 ∪ · · · ∪ E ′s is a nef-partition of E ′. In

this way, the set of reflexive polyhedra together with nef-partitions enjoys a natural

involution

(∆;E1, . . . , Es) 7→ (∆′;E ′1, . . . , E
′
s).

It is shown in [8] that this involution gives rise to mirror symmetric families of Calabi-

Yau complete intersections in Gorenstein Fano toric varieties, and the precise state-

ment of this mirror symmetry concerns string-theoretic Hodge numbers.

Example 2.36. Let X be a smooth n-dimensional Kähler manifold and let D be an

effective Cartier divisor in X. One can form an orbifold X = r
√
D/X called the rth

root of D in X enjoying a map π : X → X which is an isomorphism away from D,

and moreover such that X is the underlying space of X . Locally, if U is a chart for X

intersecting D, then upon restricting U to a polydisc and choosing coordinates such

that U ∩D = {z1 = 0}, the mapping π admits a local description by the assignment

(z1, z2, . . . , zn) 7→ (zr1, z2, . . . , zn) on U . The group G = Zr of rth roots of unity acts on

U via the action on the first coordinate to give an orbifold chart for X . (In generaly,

the rth root r
√
D/X does not admit a description as a global quotient orbifold [X̃/G̃],

but there are cases in which it is.)
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Computations similar to example 2.30 show that the condition c1(X ) vanish as a

real cohomology class is equivalent to the condition

c1(X) =

(
1− 1

r

)
c1(D).

In such a case, X admits a Ricci-flat metric by the main result of this chapter. Such

a metric corresponds to a metric on X with edge singularities along D of cone angle

β = 1/r using the terminology of [13]. (In addition, the condition that c1(KX ) vanish

is equivalent to the cohomological assumption of [13].) More generally, it is possible

to use the root construction to obtain rational values for β by considering collections

of divisors. In this way, the main results of this chapter recover the main results of

[13], at least for cone angles β that are rational.

We would like to remark that it is also possible to construct r
√
D/X even whenD is

singluar. Say that a defining locus for D in some affine chart U = Spec(C[z1, . . . , zn])

is a polynomial f in the variables z1, . . . , zn. If I denotes the ideal of the ring R =

C[z1, . . . , zn, t] generated by tr − f , then the quotient R/I can be identified with a

chart Ũ for r
√
D/X. There is a natural algebra morphism C[z1, . . . , zn] → R, which

describes a morphism of varieties Ũ → U . In addition, the group G = Zr acts on the

chart Ũ by the action of G on the coordinate t in such a way that the G-invariant

part of Ũ corresponds to the ring (R/I)G ' C[z1, . . . , zn, t
r]/〈tr − f〉, which may be

identified with the ring for U .

There is even a more general construction which constructions a root “stack,” and

we direct the reader to [14, 1] for these general constructions.
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Chapter 3

Ricci-flat metrics on asymptotically

conical Kähler orbifolds

It is known that Yau’s solution to Calabi’s conjecture extends in a certain sense to the

setting of non-compact manifolds which are asymptotically conical (AC) [23]. Here, a

Kähler manifold (X, g) is called AC if away from some compact set it is diffeomorphic

to a Kähler cone C(Σ) = Σ×R>0 in such a way that the difference between the two

Kähler structures decays rapidly (with some weight λg).

In this case, the complex Monge-Ampère equation (2.1) admits solutions, but

these solutions depend on the prescribed decay rate of the function F appearing on

the right-hand side. In particular, it is natural to require that F decay at least as fast

as ρβ for some weight β < 0, where ρ is a radius function defined on the underlying

AC manifold, and we denote this by F ∈ C∞β (X). The linearization of (2.1) then

involves the Laplacian ∆ : C∞β+2(X) → C∞β (X) corresponding to a Kähler metric,

and the Fredholm index of this Laplacian is a monotonic function defined for almost

every weight β, with only jump discontinuities at a set P ⊂ R of exceptional weights

(where the Fredholm index is not defined). In this way, one obtains different types of
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existence and uniqueness results for different intervals of decay rates (see [23]).

In [33], we show that these existence results extend to the setting of orbifolds

mutatis mutandis.

Theorem 3.1. Let (X , g) be a Kähler orbifold of complex dimension n which is

asymptotically conical of order λg. Given a smooth function F ∈ C∞β (X ), consider

the equation (2.1) to be solved for a smooth function ϕ on X .

(i) If β ∈ (max{−4n, β−1 , λg − 2n},−2n) where β−1 is the exceptional weight corre-

sponding to the smallest nonzero eigenvalue of the Laplacian of Σ, then there is

a unique solution ϕ ∈ Rρ2−2n ⊕ C∞β+2(X ).

(ii) If β ∈ (−2n,−2), then there is a unique solution ϕ ∈ C∞β+2(X ).

(iii) If β ∈ (−2, 0) and β + 2 /∈ P, then there is a solution ϕ ∈ C∞β+2(X ).

Remark 3.2. A small improvement in our statement of Theorem 3.1 from the ex-

istence theorem of [23] is the precision offered in the statement of the interval for

case (i), namely the left-hand endpoint of the interval, which depends on a study of

the existence of solutions to the Dirichlet problem for the Laplacian on AC orbifolds

and which should be compared to the case of asymptotically locally Euclidean (ALE)

manifolds as in [42]. In fact, the number β′ := max{−4n, β−1 , λg − 2n} arises in the

following manner.

Suppose β is a weight satisfying β′ < β < −2n, that is, suppose we are in case (i)

of Theorem 3.1. Then because F decays with rate β, it also decays with rate −2n+ ε,

and we may obtain a solution ϕ to (2.1) from case (ii), but this solution is only known

to decay with rate C−2n+ε+2. The assumption β′ < β guarantees that we can improve

the decay rate of ϕ in the following four steps.
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(a) By expanding (2.1) as

−(∆ϕ)ωn = (1− eF )ωn +
n∑
j=2

(
n

j

)
(i∂∂̄ϕ)j ∧ ωn−j,

we immediately obtain that ∆ϕ decays with rate max{β, 2(−2n+ ε)}, and thus

the assumption −4n 6 β′ < β implies that ∆ϕ = O(ρβ).

(b) A weighted version of the Poincaré inequality that holds on AC manifolds [40]

(and therefore also on AC orbifolds), allows one demonstrate that for β < −n−1

the Poisson equation ∆u = f for f ∈ C∞β admits a unique solution u belonging

to a certain weighted Sobolev space L2
1,1−n (and in fact, such a solution must

be smooth by standard regularity arguments).

(c) Moreover, following [49], it is possible to show that assuming β−1 6 β′ < β <

−2n, the Laplacian ∆ : Ck+2,α
β+2 → Ck,α

β has a range given by all f ∈ Ck,α
β with

zero integral over X , and hence for such an f , we obtain an estimate on solutions

u to ∆u = f the form ‖u‖Ck+2,α
β+2

6 C ‖f‖Ck,αβ .

(d) However, if f does not have zero integral, then it is possible to show that the

assumption λg − 2n 6 β′ < β < −2n implies that a solution u to ∆u = f must

have a contribution at the exceptional weight −2n in the sense that for such a

u there is a v ∈ Cβ+2 and a number A such that u = Aρ2−2n + v.

(e) Combining (c) and (d) with (a) gives part (i) of Theorem 3.1.

Remark 3.3. It would be interesting to answer the question of whether this number

max{−4n, β−1 , λg− 2n} is as sharp as possible, but we do not study this question any

further here.
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Remark 3.4. Another difference from Conlon-Hein [23] is the inclusion of a detailed

outline of a proof of cases (i) and (ii) using a continuity method involving estimates

on weighted Hölder spaces, which is a modification of the approach of Joyce [42]

(which deals only with the case when the link Σ is S2n−1). (A detailed account of

how statement (iii) follows from (ii) is found already in [23].) To fully extend Joyce’s

claims, the improvement of the previous remark was necessary. In addition, by incor-

porating modern techniques into Joyce’s approach, we are able in [33] to streamline

the argument somewhat and avoid some potentially irksome technical lemmas. It

would be interesting to investigate whether even more modern approaches, such as

an approach involving the ABP estimate, would be applicable in this non-compact

setting and would streamline the arguments even further.

Using Theorem 3.1, one can guarantee existence of a one-parameter family of

Ricci-flat metrics within each Kähler class satisfying a mild decay condition on an

AC orbifold with trivial canonical bundle.

Theorem 3.5. Let X be a complex orbifold of complex dimension n > 2 with trivial

canonical bundle. Let Ω be a nowhere vanishing holomorphic volume form on X .

Let Σ be Sasaki-Einstein with associated Calabi-Yau cone (C, g0, J0,Ω0) and radius

function r. Suppose that there is a constant λΩ < 0, a compact subset K ⊂ X, and a

diffeomorphism Φ : (1,∞)× Σ→ X \K such that

Φ∗Ω− Ω0 = O(rλΩ).

Let k ∈ H2(X ) be an almost compactly supported Kähler class of rate λk < 0 (see

Definition 3.41). Denote by λ the maximum of λk and λΩ, and assume that λ + 2 /∈

P ∩ (0, 2). Then for all c > 0, there is an asymptotically conical Calabi-Yau metric

58



gc on X whose associated Kähler form ωc lies in k and satisfies

Φ∗ωc − cω0 = O(rmax{−2n,λ}).

Moreover, if λ < −2n, then there is an ε > 0 such that

Φ∗ωc − cω0 = const
√
−1∂∂̄r2−2n +O(r−2n−1−ε).

In particular, one obtains Ricci-flat metrics on orbifold crepant partial resolutions

of Calabi-Yau cones, as stated precisely in the following corollary.

Corollary 3.6. Let (C(Σ), g0, J0,Ω0) be a Calabi-Yau cone of complex dimension

n > 2, let p : C → Σ denote the radial projection, and let V be the normal affine

variety associated to C. Let π : X → V be a crepant partial resolution by an orbifold

X , and let k ∈ H2(X ) be a class that contains positive (1, 1)-forms. Then for each

c > 0, there is a complete Calabi-Yau metric gc on X such that ωc ∈ k and

ωc − π∗cω0 = O(r−2+δ)

for sufficiently small δ. If k ∈ H2
c (X ), then we actually have

ωc − π∗(cω0) = const
√
−1∂∂̄r2−2n +O(r−2n−1−ε)

for some ε > 0.

This particular result encompasses many well-known examples of Ricci-flat met-

rics in the non-compact setting, such as Calabi’s Ansatz [16] (Example 3.50), Kron-

heimer’s hyper-Kähler metrics on ADE resolutions [46] (Example 3.51), and the small

resolution of a conifold considered by Candelas and Xenia [18] (Example 3.52), along
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with—and this is the main point of Corollary 3.46—all partial resolutions related to

these.

3.1 Preliminaries

Definition 3.7. Let (Σ, gΣ) be a compact Riemannian manifold.

(i) The Riemannian cone C = C(Σ) over Σ is defined to be the manifold R+ × Σ

with the metric

g0 = dr2 + r2gΣ

where r is a local coordinate on R+ = (0,∞).

(ii) A tensor T on the cone C is said to decay with rate λ ∈ R, written T = O(rλ), if

|∇k
0T |g0 = O(rλ−k) for each k ∈ N, where∇0 denotes the Levi-Civita connection

corresponding to g0. In particular, if T is a tensor on Σ, we may regard T as a

tensor on the cone with decay rate λ = −2.

(iii) We say that the cone (C, g0) is Kähler if g0 is Kähler and C is equipped with

a choice of g0-parallel complex structure J0. In such a case, there is a Kähler

form ω0(U, V ) = g0(J0U, V ) with local expression ω0 = (i/2)∂∂̄r2.

Definition 3.8. Let (X , g, J) be a complete Kähler orbifold with underlying space

X, and let (C, g0, J0) be a Kähler cone.

(i) We say that X is asymptotically conical of rate λg with tangent cone C if there

is a diffeomorphism Φ : C \ K → X \ K ′, with K,K ′ compact, such that

Φ∗g − g0 = O(rλg) and also Φ∗J − J0 = O(rλg). (In particular, this means that

all of the orbifold points of X are contained in K ′.)

60



(ii) A radius function on an asymptotically conical X is a smooth function ρ on X

with codomain [1,∞) satisfying Φ∗ρ = r away from K ′.

A radius function ρ on an asymptotically conical X allows us to define spaces of

functions Ck
β(X ) in the following manner. For an integer k > 0 and a weight β ∈ R,

let Ck
β(X ) be the space of continuous functions f with k continuous derivatives such

that the norm

‖f‖Ckβ(X ) =
k∑
j=0

sup
X
|ρj−β∇jf |g

is finite. Let C∞β (X ) denote the intersection of all of the Ck
β(X ) for k > 0.

We may also define weighted Hölder spaces Ck,α
β (X ). The metric g allows us to

define the distance d(x, y) between two points x, y in the underlying space X as the

infimum of the lengths of all possible continuous admissible curves connecting them

(see [12, Theorem 38] the notion of admissible curve and the notion of distance). In

this way, we obtain the notion of a ball Br(x) of radius r centered about x. The

Levi-Civita connection for g also allows us to say when a path is a geodesic, and

hence we can say that a subset Y of the underlying space is strongly convex if any

two points are joined by a unique minimal geodesic entirely contained within Y . The

convexity radius r(x) at x is defined to be the largest possible radius R such that

Br(x) is strongly convex for all 0 < r < R. The convexity radius r(g) of g is the

infimum over all r(x). Taken over the compact set K ′, the infimum will be positive

by compactness, and over the rest of the orbifold, the infimum will be positive by the

asymptotically conical assumption (and the compactness of Σ). For a tensor T on X ,

we may then define the seminorm

[T ]C0,α
β (X ) = sup

x 6=y∈X
d(x,y)<r(g)

[
min(ρ(x), ρ(y))−β

|T (x)− T (y)|
d(x, y)α

]
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where the distance |T (x)− T (y)| is defined via parallel transport along the minimal

geodesic from x to y. Then define the weighted Hölder space Ck,α
β (X ) to be the space

of functions f ∈ Ck
β(X ) for which the norm

‖f‖Ck,αβ (X ) = ‖f‖Ckβ(X ) + [∇kf ]C0,α
β−k−α

is finite.

For a pair of weights β′ < β and a pair of constants α′ > α, the inclusion

Ck,α′

β′ (X ) ↪→ Ck,α
β (X ) (3.1)

is continuous. In fact, analogous to the Arzela-Ascoli Theorem for compact mani-

folds/orbfiolds, this inclusion is compact, as stated below.

Theorem 3.9. For a pair of weights β′ < β and a pair of constants α′ > α, the

inclusion (3.1) is compact.

This theorem is proved for weighted Hölder spaces on complete non-compact man-

ifolds in [19, Lemme 3]. The arguments presented there can be applied to the setting

of orbifolds with only minor notational adjustments.

3.2 Fredholm index of the Laplacian

For an asymptotically conical (X , g) of complex dimension n, the Laplacian ∆ induced

from g defines a linear map

∆ : Ck+2,α
β+2 (X )→ Ck,α

β (X ) (3.2)
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for any weight β. In the setting of compact orbifolds, the operator ∆ is elliptic, and

there are corresponding a prior estimates on solutions to equations involving ∆ in

corresponding (unweighted) Hölder spaces as descussed in Section 2.2. The same is

true in the setting of conical orbifolds in weighted Hölder spaces:

Theorem 3.10 (Weighted Schauder estimates on conical orbifolds). Let (X , g) be an

asymptotically conical Riemannian orbifold, and let k, ` ∈ N and α ∈ (0, 1). Then

there is a constant C such that for each f ∈ Ck+2,α
β+2 (X ), we have

‖f‖Ck+2,α
β+2 (X ) 6 C(‖∆f‖Ck,αβ (X ) + ‖f‖C0

β+2(X )).

To prove this theorem, we require first the result for manifolds, which is discussed

in greater detail, for example, in Marshall [49].

Theorem 3.11 (Weighted Schauder estimates on conical manifolds). Let (C(Σ), gΣ)

be a Riemannian cone, and let α ∈ (0, 1), k ∈ N, and β ∈ R. Then there is a constant

C such that for each f ∈ Ck+2,α
β+2 (C(Σ)), we have

‖f‖Ck+2,α
β+2 (C(Σ)) 6 C(‖∆f‖Ck,αβ (C(Σ)) + ‖f‖C0

β+2(C(Σ))).

Proof of Theorem 3.10. Cover the compact set K ′ by finitely many orbifold charts

(Uγ, πγ, Gγ). We may select Gγ-invariant relatively compact subsets U ′γ ⊂ Uγ satis-

fying d(U ′γ, ∂Uγ) > 0 and whose supports still cover K ′. Because the collection of

supports {U ′γ} covers K ′, the norm ‖f‖Ck+2,α
β+2 (X ) is equivalent to the norm defined by

‖f‖Ck+2,α
β+2 (X\K′) +

∑
γ

‖f‖Ck+2,α(U ′γ) .

(Notice the absence of the weights in the norms over the subsets U ′γ.) The ordinary
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Schauder estimates in Rn imply that for each γ, there is a constant Cγ such that

‖f‖Ck+2,α(U ′γ) 6 Cγ(‖∆f‖Ck,α(Uγ) + ‖f‖C0(Uγ)).

Moreover, the weighted Schauder estimates on conical manifolds together with the

fact that (X , g) is asymptotically conical imply there is a constant C ′ such that

‖f‖Ck+2,α
β+2 (X\K′) 6 C ′(‖∆f‖Ck,αβ (X\K′) + ‖f‖C0

β+2(X\K′)).

If C denotes the maximum of C ′ and the numbers Cγ, then the result follows. �

In the compact case, the Arzela-Ascoli Theorem—together with (unweighted)

Schauder estimates—implies that ∆ is Fredholm. However, this implication fails

to be true in the asympotically conical case, because, for example, X is not compact

and hence neither is the embedding dealt with by Arzela-Ascoli. Nevertheless, for

almost all weights β, the map (3.2) is still Fredholm, as stated below.

Theorem 3.12. For an asymptotically conical Kähler orbifold X of complex dimen-

sion n with Kähler cone C(Σ), define the set of exceptional weights

P =

{
−m− 2

2
±
√

(m− 2)2

4
+ µ : µ > 0 is an eigenvalue of ∆Σ

}
.

where m = 2n = dimRC(Σ). Then the operator (3.2) is Fredholm if β + 2 /∈ P.

Remark 3.13. In general, the set P is disjoint from the interval (−2n + 2, 0) and

symmetric about the point 1− n = (2−m)/2.

To prove this result, we require a result from [47] which states that an elliptic

operator on the full cylinder is an isomorphism away from the exceptional weights.

The full cylinder is the product Cyl(Σ) = R×Σ where we use the coordinate t on R
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and t is related to r by the rule et = r. If ∆ is the Laplacian on the cone, then we

may regard ∆ as a differential operator on the cylinder as well, and the composition

P = e2t ◦∆ can be regarded as an elliptic differential operator

P : Ck+2,α
β+2 (Cyl(Σ))→ Ck,α

β+2(Cyl(Σ)) (3.3)

which is translation invariant, where the weighted Hölder spaces on the cylinder

are exactly those on the cone with the change of variables r = et. Away from the

exceptional weights, it is known that this operator is actually an isomorphism.

Lemma 3.14. [47, 37] The operator (3.3) is an isomorphism provided β + 2 /∈ P.

Proof of Theorem 3.12. The argument is essentially the same as that in [47, Section 2]:

one splits the estimates into those near the apex of the cone and those near infinity.

Since we have weighted conical estimates on an orbifold by Theorem 3.10, we apply

these near the apex, and then combine these estimates with estimates near infinity

from 3.14 to obtain the desired result.

More precisely, let R be a number so large that K ′ ⊂ ρ−1([1, R]), and set X1 =

ρ−1([1, R]). Let ϕ1 be a smooth cutoff function compactly supported on X1 such that

ϕ1 ≡ 1 on K ′. Set ϕ2 = 1− ϕ1. The Schauder estimates (Theorem 3.10) give that

‖ϕ1f‖Ck+2,α
β+2 (X ) 6 C(‖∆(ϕ1f)‖Ck,αβ (X ) + ‖ϕ1f‖C0

β+2(X )).

The composition P = ρ2 ◦ ∆ is a translation invariant differential operator of order

2 which is elliptic. For β satisfying β + 2 /∈ P , view ϕ2f as a function on the full

cylinder Cyl(Σ), and then apply Lemma 3.14 to the composition P = ρ2◦∆ to obtain
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an estimate of the form

‖ϕ2f‖Ck+2,α
β+2 (X ) 6 C

∥∥ρ2∆(ϕ2f)
∥∥
Ck,αβ+2(X )

= ‖∆(ϕ2f)‖Ck,αβ (X ) .

Combining these two inequalities, we find that for β satisfying β + 2 /∈ P , we have

‖f‖Ck+2,α
β+2 (X ) 6 C

(
‖ϕ1∆f‖Ck,αβ (X ) + ‖[ϕ1,∆]f‖Ck,αβ (X ) (3.4)

+ ‖ϕ2∆f‖Ck,αβ (X ) + ‖[ϕ2,∆]f‖Ck,αβ (X ) + ‖ϕ1f‖C0
β+2(X )

)

where [ϕi,∆] = ϕi∆−∆ϕi.

For β satisfying β + 2 /∈ P , define two maps

A1, A2 : Ck+2,α
β+2 (X ) −→ Ck,α

β (X )⊕ Ck,α
β (X )⊕ Ck,α

β (X )⊕ C0
β+2(X )

by the assignments

A1(f) = (∆f,−[ϕ1,∆]f,−[ϕ2,∆]f,−ϕ1f)

A2(f) = (0, [ϕ1,∆]f, [ϕ2,∆]f, ϕ1f).

Inequality (3.4) asserts that A1 has trivial kernel and closed image. If we knew that

A2 were a compact mapping, then we could apply Lemma 2.11 to conclude that

∆ = A1 +A2 has finite dimensional kernel and closed image. Therefore, it suffices to

prove that A2 is compact, which we do presently.

We give only an argument to show that [ϕ1,∆] is a compact mapping

[ϕ1,∆] : Ck+2,α
β+2 (X )→ Ck,α

β (X ),
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claiming that arguments for [ϕ2,∆] and ϕ1 are similar. Direct computation shows

that

[∆, ϕ1]f = (∆ϕ1)f − 〈∇ϕ1,∇f〉.

Because ϕ1 is supported only on X1, we conclude that [∆, ϕ1]f is supported only on

X1 as well. It follows that if fj is a sequence bounded in Ck+2,α
β+2 (X ), then [∆, ϕ1]fj is a

sequence bounded in Ck+1,α(X1). The Arzela-Ascoli theorem applied to the compact

X1 ensures that there is a subsequence of [∆, ϕ1]fj which converges in Ck,α(X1) and

hence also in Ck,α
β (X ).

Finally the arguments in [47, Section 2] shows that for β + 2 /∈ P , the map (3.2)

has finite co-dimensional range as well, with only minor suitable adaptations to the

orbifold setting. �

For a weight β < −2, the kernel of (3.2) is trivial, so that the Fredholm index of

(3.2) is nonpositive for non-exceptional weights β < −2.

Lemma 3.15. For β < −2 satisfying β + 2 /∈ P, the map (3.2) is injective.

Proof. Let f ∈ Ck+2,α
β+2 (X ) be such that ∆f = 0. For R > 1, let TR denote the compact

subset of X given by TR = ρ−1([1, R]). The restriction of f to TR is harmonic and so

achieves its maximum on the boundary, which we denote by SR. In particular, the

function f belongs to C0
β+2(X ) so that there is a constant C such that

max
TR

f = sup
SR

f < CRβ+2.

Taking R→∞ implies that f must be identically zero.

Lemma 3.16. For β > −2n satisfying β + 2 /∈ P, the map (3.2) is surjective.
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Proof. The formal L2-adjoint ∆∗ is a mapping satisfying

∫
X

(∆f)h dVg =

∫
X
f(∆∗h) dVg

for compactly supported smooth functions f, h on X . Because the volume of X

behaves as O(ρ2n), we see that this identity extends to functions f ∈ C∞β+2(X ) and

h ∈ C∞−β−2n−ε(X ) for any ε > 0. Two integrations by parts show that we may take

∆∗ = ∆. We also find that the image of ∆ is contained in the subspace perpendicular

to the kernel of

∆ : Ck+2,α
−β−2n−ε(X )→ Ck,α

−β−2n−2−ε(X ) (3.5)

for each ε > 0. It therefore follows that the image of (3.2) is contained in the subspace

perpedicular to the kernel of

∆ : Ck+2,α
−β−2n(X )→ Ck,α

−β−2n−2(X ). (3.6)

The results of [49, Theorem 6.10] extended to the setting of orbifolds imply that the

image of (3.2) is actually equal to the subspace perpendicular to the kernel of (3.6).

For β > −2n satisfying β + 2 /∈ P , the previous lemma implies that the kernel of

(3.6) is trivial, so that (3.2) is surjective.

Corollary 3.17. For β satisfying −2n < β < −2, the map (3.2) is an isomorphism.

3.3 Case (ii) of Theorem 3.1

In this section, we solve equation (2.1) in the case (ii) (where −2n < β < −2) by

the method of continuity as in the previous chapter. (In particular, throughout the
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section, we will assume that −2n < β < −2.) For a parameter t ∈ [0, 1], again

consider the one-parameter family of equations


(ω +

√
−1∂∂̄ϕ)n = etFωn

ω +
√
−1∂∂̄ϕ > 0

. (∗t)

The equation (∗0) admits the trivial solution ϕ = 0. The desired equation we want

to solve is equation (∗1). To solve this equation, just as in the previous chapter, it

suffices to prove the following proposition.

Proposition 3.18.

(i) If (∗t) admits a smooth solution belonging to C∞β+2(X ) for some t < 1, then for

all sufficiently small ε > 0, the equation (∗t+ε) admits a smooth solution belonging to

C∞β+2(X ) as well.

(ii) There is a constant C > 0 depending only on X , ω, F, and α such that if ϕ ∈

C∞γ (X ) satisfies (∗t) for some t ∈ [0, 1] and some weight γ satisfying β + 2 6 γ < 0,

then

• ‖ϕ‖C3,α
β+2(X ) 6 C and

• (gjk̄+∂j∂k̄ϕ) > C−1(gjk̄), where gjk̄ are the components of ω in local coordinates

of any chart and the inequality means that the difference of matrices is positive

definite.

Indeed, Proposition 3.18 is sufficient because we can obtain a solution to (∗1)

belonging to C∞β+2(X ) using the following lemma.

Lemma 3.19. Assume Proposition 3.18. Then if s is a number in (0, 1] such that we

can solve (∗t) for all t < s, then we can solve (∗s) for a smooth function ϕ belonging

to C∞β+2(X ).
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Proof. Let ti ∈ (0, 1) be a sequence of numbers approaching s from below. By as-

sumption this gives rise to a sequence of smooth functions ϕi satisfying

(ω +
√
−1∂∂̄ϕi)

n = etiFωn.

Proposition 3.18(i) and Theorem 3.9 imply that after passing to a subsequence, we

may assume that the ϕi converge in C3,α′

β′+2 to a function ϕ for some α′ > α and β′ < β.

This convergence is strong enough that ϕ satisfies the limiting equation

(ω +
√
−1∂∂̄ϕ)n = esFωn.

Proposition 3.18(ii) gives that the forms ω+
√
−1∂∂̄ϕi are bounded below by a fixed

positive form C−1ω, and hence ω +
√
−1∂∂̄ϕ is a positive form. If we knew that ϕ

were smooth, then we could apply Proposition 3.18(i) to obtain that ϕ belongs to

C∞β+2(X ). It thus remains to show that ϕ is smooth.

We show ϕ is smooth by a standard local bootstrapping argument. In local

coordinates, we find that ϕ satisfies

log det(gjk̄ + ∂j∂k̄ϕ)− log det(gjk̄)− sF = 0.

Differentiating the equation with respect to the variable z` we have

(gϕ)jk̄∂j∂k̄(∂`ϕ) = s∂`F + ∂` log det(gjk̄)− (gϕ)jk̄∂`gjk̄

where (gϕ)jk̄ is the inverse of the matrix (gϕ)jk̄ = gjk̄ + ∂j∂k̄ϕ. We think of this

equation as a linear elliptic second-order equation ∆ϕ(∂`ϕ) = h for the function

∂`ϕ ∈ C2,α′(X ). Because the function h belongs to C1,α′ , we conclude from ordinary
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(unweighted) Schauder estimates that ∂`ϕ belongs to C3,α′ . Because ` was arbitrary,

it follows that ϕ belongs to C4,α′ . Repeating this argument we obtain that ϕ ∈ C5,α′

and by induction, that ϕ is actually smooth.

Let us now prove the first part of Proposition 3.18.

Proof of Proposition 3.18 (i). Let B1 denote the Banach manifold consisting of those

ϕ ∈ C3,α
β+2(X ) such that ω +

√
−1∂∂̄ϕ is a positive form. Let B2 denote the Banach

space B2 = C1,α
β (X ). Define a mapping

G : B1 × [0, 1] −→ B2

(ϕ, s) 7−→ log
(ω +

√
−1∂∂̄ϕ)n

ωn
− sF.

By assumption, we are given a smooth function ϕt belonging to C∞β+2(X ) such that

G(ϕt, t) = 0 and ω +
√
−1∂∂̄ϕ is a Kähler form. The partial derivative of G in the

direction of ϕ at the point (ϕt, t) is given by

DG(ϕt,t)(ψ, 0) =
n
√
−1∂∂̄ψ ∧ ωn−1

t

ωnt
= −∆tψ,

where ωt = ω+
√
−1∂∂̄ϕt and ∆t denotes the Laplacian with respect to ωt. Corollary

3.17 gives that ∆t is an isomorphism

∆t : C3,α
β+2(X )→ C1,α

β (X ).

The implicit function theorem implies that for s sufficiently close to t, there are

functions ϕs in C3,α
β+2(X ) satisfying (G(ϕs), s) = 0. Because ω+

√
−1∂∂̄ϕt is a positive

form, for s close enough to t, we can ensure that each ω +
√
−1∂∂̄ϕs is a positive

form as well. Moreover, bootstrapping arguments similar to those described earlier
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show that ϕs is actually smooth. �

It remains to prove Proposition 3.18 (ii). We do this in the next section.

3.4 A priori estimates

This section is devoted to proving Proposition 3.18 (ii). In particular, we are still

assuming that −2n < β < −2. While the proof is analogous to the compact setting

(see Section 2.4), there are a few main differences:

(i) Stokes’ Theorem cannot be applied directly since our orbifold is not compact.

(ii) An a priori L2-bound is replaced by an a priori Lp0-bound for some p0 > 1 (see

Lemma 3.22).

(iii) Our bootstrapping arguments (which use weighted Schauder estimates) require

a weighted C0
β+2-estimate on solutions ϕ.

(iv) Finally, the desired result is a weighted Ck,α
β+2-estimate, which we show follows

from an unweighted Ck,α-estimate (see Proposition 3.33) as is obtained in the

compact setting.

Our methods in this section follow closely those of Joyce in [42] with modifications

motivated our approach in the previous chapter, which was influenced strongly by the

presentation of [60].

Throughout, let us fix an additional weight γ satisfying β + 2 6 γ. We will be

assuming that our solution ϕ belongs to the weighted Hölder space C∞γ (X ). Our

goal is to obtain a priori estimates on ϕ. The approach is very similar to that of the

continuity method of the first Chapter, but one must obtain additional “weighted”

versions of certain a priori estimates.

72



3.4.1 A C0-estimate

Lemma 3.20. For p > (2− 2n)/γ, any smooth solution ϕ ∈ C∞γ (X ) to (∗t) satisfies

∫
X

∣∣∂|ϕ|p/2∣∣2
g
dVg 6

np2

4(p− 1)

∫
X

(1− eFt)ϕ|ϕ|p−2dVg.

Proof. For sufficiently large R, if TR = {x ∈ X : ρ(x) 6 R}, then by Stokes’ Theorem,

we have

√
−1

∫
TR

d
[
ϕ|ϕ|p−2∂̄ϕ ∧ (ωn−1 + ωn−2 ∧ ωϕ + · · ·+ ωn−1

ϕ )
]

=
√
−1

∫
∂TR

ϕ|ϕ|p−2∂̄ϕ ∧ (ωn−1 + ωn−2 ∧ ωϕ + · · ·+ ωn−1
ϕ ).

Since ϕ ∈ C∞γ (X ), on the boundary ∂SR, we have that ϕ = O(Rγ), dcϕ = O(Rγ−1),

and ω, ωϕ = O(1). We also have that vol(∂SR) = O(R2n−1). It follows that the

right-hand side of the equality is O(Rpγ+2n−2), where, by assumption on p, we have

pγ + 2n− 2 < 0. Taking the limit as R→∞ and taking the (1, 0)-part gives that

√
−1

∫
X
∂
[
ϕ|ϕ|p−2∂̄ϕ ∧ (ωn−1 + ωn−2 ∧ ωϕ + · · ·+ ωn−1

ϕ )
]

= 0.

Expanding the integrand gives the equation

∫
X
ϕ|ϕ|p−2(1− eFt)ωn = (p− 1)

∫
X
|ϕ|p−2

√
−1∂ϕ ∧ ∂̄ϕ ∧ (ωn−1 + · · ·+ ωn−1

ϕ ).

Each term on the right is positive so that

∫
X
ϕ|ϕ|p−2(1− eFt)ωn > (p− 1)

∫
X
|ϕ|p−2

√
−1∂ϕ ∧ ∂̄ϕ ∧ ωn−1.
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But the right-hand side is

(p− 1)

∫
X
|ϕ|p−2

√
−1∂ϕ ∧ ∂̄ϕ ∧ ωn−1 =

4(p− 1)

np2

∫
X

∣∣∂|ϕ|p/2∣∣2
g
ωn,

as we desire.

There is a type of Sobolev inequality on AC manifolds, which carries over to the

orbifold setting without any modification. Joyce [42], who deals with the ALE case,

notes that a Sobolev inequality can be deduced from statements concerning elliptic

operators in weighted Sobolev spaces, more details of which can be found in [51,

Section 13]. Tian-Yau [62, Section 3] provide a Sobolev inequality in several special

cases, and general proofs are given by van Coevering [?, Section 2.2] and Hein [40,

Theorem 1.2].

Lemma 3.21 (Sobolev inequality). For n > 2, let τ = n
n−1

. There is a constant

C > 0 depending on (X , g) such that if ϕ belongs to L2
1(X ), then

‖ϕ‖L2τ 6 C ‖∂ϕ‖L2 .

With the previous two results, one can obtain a uniform Lp0-estimate:

Lemma 3.22 (An Lp0-estimate). There are constants C > 0 and p0 larger than

max{(2− 2n)/γ, 3n/2} such that any solution ϕ ∈ C∞γ (X ) to (∗t) satisfies

‖ϕ‖Lp0 6 C.

Proof. Choose p satisfying p > 1 and p > (2 − 2n)/γ. Let q and r be the numbers

q = np/(p + n− 1) and r = τp/(p− 1) where τ = n/(n− 1), and note that q and r
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satisfy 1/q + 1/r = 1. Using Lemma 3.21, we have an estimate of the form

‖ϕ‖pLτp 6 C
∥∥∂|ϕ|p/2∥∥2

L2 .

Then we apply the result of the Lemma 3.20 and Hölder’s inequality to obtain that

‖ϕ‖pLτp 6
Cnp2

4(p− 1)

∫
X

(1− etF )ϕ|ϕ|p−2dVg

6
Cnp2

4(p− 1)

∥∥1− etF
∥∥
Lq

∥∥|ϕ|p−1
∥∥
Lr
.

But we note from the definition of r = τp/(p− 1) that

∥∥|ϕ|p−1
∥∥
Lr

= ‖ϕ‖p−1

Lr(p−1) = ‖ϕ‖p−1
Lτp .

We conclude that for C sufficiently large, we have

‖ϕ‖Lτp 6 Cp
∥∥1− etF

∥∥
Lq
.

The condition that p > (2−2n)/γ implies that qβ < −2n, so that
∥∥1− etF

∥∥
Lq

exists,

and can be bounded by a constant depending on X , ω, and F . Choosing p0 = τp

completes the proof of the claim.

Lemma 3.23. Setting τ = n/(n− 1) and with p0 as in Lemma 3.22, for each integer

k > 0, let pk = τ kp0. Then there are constants A,B > 0 such that any solution

ϕ ∈ C∞γ (X ) to (∗t) satisfies

‖ϕ‖Lpk 6 A(Bpk)
−n/pk .

Proof. The sequence of norms
∥∥1− etF

∥∥
Lpk

converges (to
∥∥1− etF

∥∥
C0) and is hence
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bounded, meaning there is a constant D depending only on X , ω, F such that

∥∥1− etF
∥∥
Lpk
6 D

for each k. If C denotes the constant from Lemma 3.21, let B > 1 be a constant

satisfying

3
√
B > CDn2nτn−1.

Then let A > 1 denote a constant satisfying

A > (Bp0)n/p0 ‖ϕ‖Lp0 .

With these choices for A and B, we prove the claim by induction on the letter k. For

k = 0, the claim is true by the definitions of A and B.

Now suppose the result has been proved for all integers less than or equal to k,

and we prove the result for k + 1. If r = pk/(pk − 1), then 1/pk + 1/r = 1. Using

Lemma 3.21, we have an estimate of the form

‖ϕ‖pk
Lpk+1 = ‖ϕ‖pkLτpk 6 C

∥∥∂|ϕ|pk/2∥∥2

L2 .

We then apply Lemma 3.20 and Hölder’s inequality to find that

‖ϕ‖pk
Lpk+1 6

Cnp2
k

4(pk − 1)

∥∥1− etF
∥∥
Lpk

∥∥|ϕ|pk−1
∥∥
Lr

6
CDnp2

k

4(pk − 1)

∥∥|ϕ|pk−1
∥∥
Lr

76



by the definition of D. Since pk > 1, we have p2
k/(4(pk − 1)) 6 pk so that

‖ϕ‖pk
Lpk+1 6 CDnpk

∥∥|ϕ|pk−1
∥∥
Lr
.

But ∥∥|ϕ|pk−1
∥∥
Lr

= ‖ϕ‖pk−1

Lr(pk−1) = ‖ϕ‖pk−1
Lpk

implies that

‖ϕ‖pk
Lpk+1 6 CDnpk ‖ϕ‖pk−1

Lpk .

We apply the inductive hypothesis to the right-hand side to find that

‖ϕ‖pk
Lpk+1 6 Apk−1CDnpn/pkBn/pk−1(Bpk)

1−n.

The quantity A is larger than 1, the inequality p
1/pk
k < 2 is valid for any positive

number pk > 1, and we are assuming that p0 > 3n/2 (so that Bn/pk−1 < B−1/3), so

that we may obtain

‖ϕ‖pk
Lpk+1 6 ApkCDn2nB−1/3(Bpk)

1−n.

By our assumption on B, we have that CDn2nB−1/3 6 τ 1−n, and we conclude that

‖ϕ‖pk
Lpk+1 6 Apk(Bτpk)

1−n = (A(Bpk+1)−n/pk+1)pk .

This completes the inductive step and the proof.

Proposition 3.24 (A C0-estimate). There is a constant C such that any solution

ϕ ∈ C∞γ (X ) to (∗t) satisfies ‖ϕ‖C0(X ) 6 C.
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Proof. One uses the previous lemma to find that

‖ϕ‖C0 6 lim
k→∞

A(Bpk)
−n/pk = A

as desired.

3.4.2 A C3-estimate

Just as in the compact setting, local calculations together with the C0-estimate then

imply the following C2-estimate (see [65, 60]).

Proposition 3.25 (A C2-estimate). There is a constant C depending on X , ω, F

such that a solution ϕ ∈ C∞γ (X ) of (∗t) satisfies

C−1(gjk̄) < (gjk̄ + ∂j∂k̄ϕ) < C(gjk̄)

where < means that the difference of matrices is positive definite and where ω has

local expression ω =
√
−1gjk̄dz

j ∧ dz̄k.

There is one significant difference from a proof in the compact setting, however,

in that some care has to be given to the application of the maximum principle, since

our manifold is non-compact. For a proof in the compact setting, one uses that the

function Λωωϕ − Aϕ achieves a maximum, for some large constant A. In this non-

compact setting, this may no longer be the case. However, we do know that because

ϕ belongs to the space C∞γ for γ < −2, the function Λωωϕ−Aϕ tends to n as ρ tends

to infinity, and so if the function has no maximum, then at least we know that it

is bounded from above by a uniform constant independent of ϕ, and this is actually

enough to complete the proof.
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Let S denote the tensor given by the difference of Levi-Civita connections S =

∇̂−∇, where ∇̂ is the connection corresponding to ωϕ and ∇ is the one corresponding

to ω. Note that S depends on the second and third derivatives of ϕ. So if |S| denotes

the norm of S with respect to the metric ωϕ, the fact that the metric gjk̄ is uniformly

equivalent to the metric gjk̄ +∂j∂k̄ϕ implies that a bound on |S| gives a C3-bound on

ϕ. Such a bound follows just as in compact case (see Section 2.4).

Proposition 3.26 (A C3-estimate). There is a constant C depending on X , ω, F

such that if ϕ ∈ C∞γ (X ) is a solution to (∗t), then |S| 6 C, where |S| is the norm of

S computed with respect to the metric ωϕ.

Again there is a difference from the compact setting in that we may not apply

a maximum principle directly, but instead, we can use that the function ϕ decays

rapidly to achieve the desired result. In particular, in the proof in the compact case,

one considers a point where the function |S|2 + AΛωωϕ achieves its maximum. In

this non-compact setting, this function may not achieve a maximum, but at least we

know that it decays to a uniform constant as ρ → ∞, and as we remarked above,

knowing this is enough to complete the proof.

Once a C3-estimate is known, ordinary bootstrapping arguments together with

Schauder estimates and the C0-estimate then imply the following (see Section 2.4).

Corollary 3.27 (A Ck,α-estimate). Let k be a nonnegative integer and α ∈ (0, 1).

There is a constant C depending on X , ω, F such that if ϕ ∈ C∞γ (X ) is a solution to

(∗t), then ‖ϕ‖Ck,α(X ) 6 C.

3.4.3 A weighted C0-estimate

We now prove a weighted C0-estimate. Our goal is specifically to prove a C0
β+2-

estimate. However, to do so, we must first prove a C0
γ -estimate for a weight γ satisfying
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β+2 < γ and −1 < γ. A stronger estimate for the weight β+2 will eventually follow

(see Proposition 3.36).

To prove the C0
γ -estimate, we proceed in a way analogous to the unweighted C0-

estimate presented above, with minor adaptations to deal with the weight γ.

The arguments in [42, Proposition 8.6.7] show directly (in the setting of asymp-

totically locally Euclidean manifolds) that the following is true.

Lemma 3.28. There is a constant C > 0 such that for p > (2 − 2n)/γ and q > 0

satisfying pγ + q < 2− 2n, any solution ϕ ∈ C∞γ (X ) to (∗t) satisfies

∥∥∂(|ϕ|p/2ρq/2)
∥∥2

L2 6
np2

4(p− 1)

∫
X

(1− etF )ϕ|ϕ|p−2ρqdV

+ C
q(p+ q)

4(p− 1)

∫
X
|ϕ|pρq−2dV.

In addition, the arguments of Proposition 8.6.8 of [42] prove also the following

weighted analogue of the Sobolev inequality. It is convenient to introduce the weighted

Sobolev norm

‖f‖Lqk,β =

(
k∑
j=0

∫
X
|ρj−β∇jf |qρ−2n dV

)1/q

.

Lemma 3.29. Let γ be a weight satisfying β+2 < γ and −1 < γ. There is a constant

C > 0 such that if p > 2 satisfies p > (2 − 2n)/γ then any solution ϕ ∈ C∞γ (X ) of

(∗t) satisfies

‖ϕ‖p
Lτp0,γ
6 Cp(‖ϕ‖p−1

Lp−1
0,γ

+ ‖ϕ‖p
Lp0,γ

).

We may now obtain a uniform weighted L1-estimate.

Lemma 3.30. Let γ be a weight satisfying β+2 < γ and −1 < γ. There is a constant

C > 0 such that if ϕ ∈ C∞γ is a solution to (∗t) then ‖ϕ‖L1
0,γ
6 C.

Proof. Let p0 be chosen from Lemma 3.22. Because −1 < γ, we may also ensure that
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p0 satisfies

p0 <
−2n

γ
.

Define r, s by the relations 1/p0 + 1/r = 1 and s = −r(γ + 2n). Then by Hölder’s

inequality, we find that

‖ϕ‖L1
0,γ

=

∫
X
|ϕ|ρ−γ−2ndV 6 ‖ϕ‖Lp0

[∫
X
ρsdV

]1/r

.

The choice of p0 satisfying p0γ > −2n ensures that s < −2n so that the integral∫
X ρ

sdV exists. The result now follows from Lemma 3.22.

By techniques similar to those used in Lemma 3.23, one can use the previous

lemmas to prove the following.

Lemma 3.31. Let γ be a weight satisfying β+2 < γ and −1 < γ. With τ = n/(n−1),

for each integer k > 0, let pk = τ k. Then there are constants A,B > 0 such that any

solution ϕ ∈ C∞γ to (∗t) satisfies

‖ϕ‖Lpk0,γ 6 A(Bpk)
−n/pk .

A C0
γ -estimate now follows immediately.

Proposition 3.32 (A C0
γ -estimate). Let γ be a weight satisfying β + 2 < γ and

−1 < γ. There is a constant C such that any solution ϕ ∈ C∞γ (X ) to (∗t) satisfies

‖ϕ‖C0
γ
6 C.

3.4.4 A weighted C3-estimate

The techniques of Theorem 8.6.11 from [42] (which include a priori estimates of

elliptic operators on domains in Cn) can be used to show that a C0
γ -estimate implies
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a C3
γ -estimate.

Proposition 3.33. If γ > β + 2 is a weight such that we have an estimate of the

form ‖ϕ‖C0
γ
6 C, then we also have an estimate of the form ‖ϕ‖C3

γ
6 C, and hence

by weighted bootstrapping arguments involving the weighted Schauder estimates of

Theorem 3.10, we also have estimates of the form ‖ϕ‖Ck,αγ 6 C for each k, α.

Moreover, the next proposition asserts that, as soon as we have a C0
γ -estimate,

we may decrease the weight γ to obtain an even stronger weighted estimate, so that

we may continue until we obtain a C0
β+2-estimate. We first require a lemma, the

proof of which can be found in [42, Lemma 8.7.1] and involves choosing holomorphic

coordinates and higher order estimates on ϕ.

Lemma 3.34. For a solution ϕ ∈ C∞γ (X ) of (∗t), we have an estimate of the form

|∆ϕ+ etF − 1| 6 C|
√
−1∂∂̄ϕ|2

where ∆ denotes the Laplacian and Levi-Civita connection of either ω or ωϕ, since

the corresponding metrics are equivalent by Proposition 3.25.

Lemma 3.35. Let γ > β + 2 be a weight such that we have an estimate of the form

‖ϕ‖C0
γ
6 C. If γ′ = max{2γ − 2, β + 2}, then we also have an estimate of the form

‖ϕ‖C0
γ′
6 C.

Proof. The idea is to use the previous lemma and the fact that the Laplacian (3.2)

is an isomorphism. In particular, since we are assuming we have an estimate of the

form ‖ϕ‖C0
γ
6 C, Proposition 3.33 shows that we actually have an estimate of the

form ‖ϕ‖C5,α
γ
6 C. From this, we conclude that

√
−1∂∂̄ϕ ∈ C3,α

γ−2, and thus that
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|
√
−1∂∂̄ϕ|2 ∈ C3,α

2(γ−2). Lemma 3.34 establishes an estimate of the form

∆ϕ = O(ρ2γ−4) +O(ρβ).

Corollary 3.17 then gives the desired estimate.

Proposition 3.36 (A C0
β+2-estimate). There is a constant C such that any solution

ϕ ∈ C∞γ to (∗t) satisfies ‖ϕ‖C0
β+2
6 C.

Proof. Let γ be a weight satisfying β + 2 < γ and −1 < γ. Then Proposition 3.32

gives an estimate of the form ‖ϕ‖C0
γ
6 C. Define the sequence of weights γ0, γ1, . . .

by the rule γ0 = γ and γi+1 = max{2γi − 2, β + 2}. Then for all sufficiently large i,

we have γi = β + 2, and the previous lemma therefore gives an estimate of the form

‖ϕ‖C0
β+2
6 C.

3.4.5 Proof of Proposition 3.18(ii)

Proposition 3.36 gives an estimate of the form ‖ϕ‖C0
β+2
6 C. Proposition 3.33 then

implies that we have an estimate of the form ‖ϕ‖Ck,αβ+2
6 C for each k, α. Moreover,

the metrics determined by ω and ω +
√
−1∂∂̄ϕ are equivalent by Proposition 3.25.

3.5 Cases (i) and (iii) of Theorem 3.1

It remains to discuss Theorem 3.1 in the cases (i) and (iii), that is, if the right-hand

side decays fast and slowly respectively. We require some preliminary results.

Lemma 3.37. Suppose β satisfies β < −n− 1 and β + 2 /∈ P. For any f ∈ C∞β (X ),

there is a unique u ∈ C∞(X )∩L2
1,1−n(X ) such that ∆u = f , where L2

1,1−n(X ) denotes

the weighted Sobolev space given by the completion of the space of compactly supported
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smooth functions with respect to the weighted Sobolev norm

‖v‖2
L2

1,1−n
=

∫
X

(
|v|2ρ−2 + |∇v|2

)
dV.

Proof. Define a functional

E(v) =

∫
X

(
1

2
|∇v|2 + fv

)
dV

for all functions v in L2
1,1−n(X ).

We first claim that there are constants δ, A > 0 such that

E(v) > δ ‖v‖2
L2

1,1−n
− A. (3.7)

Indeed, using Hölder’s inequality, we can bound E(v) from below by

E(v) >
1

2
‖∇v‖2

L2 −
∥∥ρ−1v

∥∥
L2 ‖ρf‖L2 ,

where the L2-norm of ρf is finite because β < −n − 1. A geometric mean type of

inequality implies that for each ε > 0 we have

E(v) >
1

2
‖∇v‖2

L2 −
ε

2

∥∥ρ−1v
∥∥2

L2 −
1

2ε
‖ρf‖2

L2 .

An orbifold version of Theorem 1.2(ii) from [40] (with α = 1 and β = 2n) gives a

weighted Poincaré inequality on X of the form

∥∥ρ−1v
∥∥2

L2 = ‖v‖2
L2

0,1−n
6 C ‖∇v‖2

L2 . (3.8)
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It follows that for ε sufficiently small, we have

E(v) >
1

4
‖∇v‖2

L2 −
1

2ε
‖ρf‖2

L2 .

We use (3.8) again to find that

E(v) >
1

8
‖∇v‖2

L2 +
1

8C

∥∥ρ−1v
∥∥2

L2 −
1

2ε
‖ρf‖2

L2 ,

and hence, for C large enough, we have

E(v) >
1

8C
‖v‖2

L2
1,1−n
− 1

2ε
‖ρf‖2

L2 .

By the calculus of variations, the functional E has a unique critical point u ∈

L2
1,1−n which achieves an absolute minimum of E, and moreover u is a weak solution

to the equation ∆u = f . It then follows from standard (local) elliptic regularity

arguments that u is actually smooth (since f is).

Lemma 3.38. (c.f. [42, Proposition 8.3.4]) For an asymptotically conical orbifold

(X , g) with radius function ρ, we have ∆(ρ2−2n) ∈ C∞λg−2n(X ) and

∫
X

∆(ρ2−2n) dV = (2n− 2)Vol(Σ)

where Vol(Σ) is the volume of the compact manifold Σ.

Proof. For the statement about the decay rate of ∆(ρ2−2n), we know that ∆(r2−2n) =

0 on the cone C(Σ). It follows from the definition of the radius function and the fact

that X is asymptotically conical that ∆(ρ2−2n) belongs to C∞λg−2n(X ).

Let SR be the subset of X given by SR = {x ∈ X : ρ(x) 6 R}. Then Stokes’
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Theorem gives that

∫
SR

∆(ρ2−2n) dV =

∫
∂SR

[∇(ρ2−2n) · n] dV.

For R large enough, the quantity ∇(ρ2−2n) ·n is approximated by (2n− 2)R1−2n and

vol(∂SR) is approximated by R2n−1Vol(Σ). Letting R tend to ∞ gives the desired

result.

Let µ1 be the smallest nonzero eigenvalue of ∆Σ, and let β±1 be the exceptional

weights corresponding to this eigenvalue in the sense that

β±1 = −2n− 2

2
±
√

(2n− 2)2

4
+ µ1. (3.9)

Lemma 3.39. Suppose β satisfies β−1 < β < −2n, and let f belong to C∞β (X ).

(a) If
∫
X f dV = 0, then the unique solution u ∈ C∞(X ) ∩ L2

1,1−n(X ) to ∆u = f

belongs to the space C∞β+2(X ).

(b) If
∫
X f dV 6= 0 and β satisfies λg − 2n < β, then the unique solution u ∈

C∞(X ) ∩ L2
1,1−n(X ) to ∆u = f can be written as u = Aρ2−2n + v for a unique

number A and a unique function v ∈ C∞β+2(X ). Moreover, the number A can be

computed explicitly as

A =
1

(2n− 2)Vol(Σ)

∫
X
f dV.

Proof. For part (a), the proof of Lemma 3.16 states that the range of

∆ : Ck+2,α
β+2 (X )→ Ck,α

β (X ) (3.10)
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is the orthogonal complement of the kernel of

∆ : Ck+2,α
−β−2n(X )→ Ck,α

−β−2n−2(X ). (3.11)

Our assumption on β guarantees that −β−2n belongs to the interval (0, β+
1 ). In this

interval, the kernel of (3.11) is the one-dimensional subspace spanned by the constant

1 function. It follows that the range of (3.10) is the subspace W of all f ∈ Ck,α
β (X )

satisfying
∫
X f dV = 0. The restriction

∆ : Ck,α
β+2(X )→ W

is an isomorphism, and hence there is an estimate of the form

‖u‖Ck+2,α
β+2

6 C ‖f‖Ck,αβ for f = ∆u satisfying

∫
X
f dV = 0.

Claim (a) now follows.

For part (b), the integral
∫
X ∆ρ2−2n dV is finite and equal to (2n − 2)Vol(Σ) by

the previous lemma. Because β satisfies β < −2n, the integral
∫
X f dV is also finite.

Let A denote the constant

A =

∫
X f dV∫

X ∆ρ2−2n dV
=

1

(2n− 2)vol(Σ)

∫
X
f dV.

Since β satisfies λg − 2n < β, the function f − ∆(Aρ2−2n) belongs to C∞β (X ) and

has zero integral over X . By part (i), there is a unique v ∈ C∞β+2(X ) such that

∆v = f −∆(Aρ2−2n). Upon rearranging, we find that the proof is complete.
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3.5.1 Case (i)

Let us now discuss the case (i) of Theorem 3.1. In this case, we are assuming that β

satisfies max{−4n, β−1 , λg − 2n} < β < −2n. The idea is that there is an inclusion

C∞β (X ) ↪→ C∞β′ (X ) for β′ satisfying β < −2n < β′ so that we can use the existence

from case (ii), noting, however, that the solution we obtain may not belong to the

desired space of functions. Nevertheless, because the solution satisfies a Monge-

Ampère equation, we will be able to use Lemma 3.39(b) to conclude that the solution

belongs to the space we want.

More precisely, for a small number ε > 0, there is an inclusion C∞β (X ) ↪→

C∞−2n+ε(X ). It therefore follows from case (ii), that there is a unique solution ϕ

to (2.1) satisfying ϕ ∈ C∞2−2n+ε(X ). By expanding the Monge-Ampère equation (2.1)

and using the relation

n
√
−1∂∂̄ϕ ∧ ωn−1 = −(∆ϕ)ωn,

we find that

−(∆ϕ)ωn = (1− eF )ωn +
n∑
j=2

(
n

j

)
(
√
−1∂∂̄ϕ)j ∧ ωn−j.

The term (1− eF )ωn belongs to O(ρβ) by assumption on F . All of the terms in the

summation belong to O(ρ−4n+2ε) because j > 2. It follows that ∆ϕ belongs to O(ρβ),

and hence by Lemma 3.39(b) we find that ϕ ∈ Rρ2−2n ⊕ C∞β+2(X ) as desired.

3.5.2 Case (iii)

We finish by discussing the case (iii) of Theorem 3.1. In this case, we are assuming

that β satisfies −2 < β < 0 and β + 2 /∈ P . The idea is to reduce again to the case

(ii), using the following lemma.
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Lemma 3.40. Suppose that β satisfies −2 < β < 0 and β + 2 /∈ P. If F belongs to

C∞β (X ), then there is a function ϕ1 ∈ C∞β+2(X ) satisfying


(ω +

√
−1∂∂̄ϕ1)n = eF−F1

ω +
√
−1∂∂̄ϕ1 > 0

(3.12)

for some F1 ∈ C∞2β(X ).

Proof. Identify X \ K ′ with (1,∞) × Σ. Let η : R+ → R+ be a smooth function

satisfying

η(t) =


0 r 6 1

1 r > 2

.

For R > 1, let ηR be the composition ηR(r) = η(r/R). Since ∆ : C∞β+2(X )→ C∞β (X )

is surjective by Lemma 3.16, there is a function ϕ̂1 ∈ C∞β+2(X ) such that ∆ϕ̂1 = −F

on X . We claim that ϕ1 = ηRϕ̂1 has the desired properties for R sufficiently large.

We first claim that the form ω+
√
−1∂∂̄ϕ1 is a positive form. Indeed, we compute

that

√
−1∂∂̄ϕ1 = ηR

√
−1∂∂̄ϕ̂1 +

√
−1

η′

R
(∂ϕ̂1 ∧ ∂̄r + ∂r ∧ ∂̄ϕ̂1)

+
√
−1ϕ̂1

(
η′

R
∂∂̄r +

η′′

R2
∂r ∧ ∂̄r

)
.

Because ϕ̂1 ∈ C∞β+2(X ) and ηR is supported only for r > R, we find that the length

of the first term ηR
√
−1∂∂̄ϕ̂1 is O(Rβ). The derivatives of η are only supported for

r ∈ [R, 2R] so that the lengths of the other terms are also O(Rβ). We conclude that

sup |
√
−1∂∂̄ϕ1| → 0 as R → ∞, and so we can ensure that the form ω +

√
−1∂∂̄ϕ1

is positive for R large enough.
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Now for the complex Monge-Ampère equation, we note that for r > 2R, we have

ϕ1 = ϕ̂1 and hence for such r we have

(ω +
√
−1∂∂̄ϕ1)n = (1−∆ϕ̂1)ωn +

∑
j>2

(
n

j

)
(
√
−1∂∂̄ϕ̂1)j ∧ ωn−j

= (1 + F +O(r2β))ωn.

If we set F1 = F − log(1 + F + O(r2β)), then we have (by the Taylor series for log)

that F1 = O(r2β). The result follows.

Indeed, we may now finish the proof of case (iii) in the following manner. By

the previous lemma, we obtain a ϕ1 ∈ C∞β+2(X ) and an F1 ∈ C∞2β(X ) satisfying

(3.12). In particular, the form ω1 = ω +
√
−1∂∂̄ϕ1 is a Kähler form. If it happens

that 2β < −2, then we can use case (ii) to obtain a solution ϕ2 ∈ C∞2β+2(X ) to the

equation (ω1 +
√
−1∂∂̄ϕ2)n = eF1ωn1 , and setting ϕ = ϕ1 +ϕ2, we find that ϕ belongs

to C∞β (X ) and that ϕ solves (2.1). If 2β is not smaller than −2, then we can use the

previous argument to find ϕ2 ∈ C∞2β+2(X ) such that (ω1 +
√
−1∂∂̄ϕ2)n = eF1−F2ωn1

for some F2 ∈ C∞4β(X ). If 4β < −2, then we can use the previous argument to solve

the desired equation (2.1). If not, then we can proceed iteratively to solve (2.1) in a

finite number of steps.

3.6 Calabi-Yau metrics

This section is devoted to proving Theorem 3.5, which states the existence of Ricci-flat

metrics in certain Kähler classes which decay rapidly in the following precise sense.

Definition 3.41. Let X be a compact orbifold and K ⊂ X a compact subset of the

underlying space, and let C = R+ × Σ be a cone with cone metric g0. Suppose that

90



there is a diffeomorphism Φ : (1,∞) × Σ → X \ K. A class k in H2(X ) is called

almost compactly supported of rate λk < 0 if the class can be represented by a Kähler

form ω on X such that there is a compact set K ′ ⊃ K and a real smooth 1-form η

on X \K ′ such that the difference ω − dη decays with rate λk.

Our proof of the theorem follows very closely the proof presented in [?, Theorem

2.4] and relies upon the following lemmas. The first lemma can be found in [23], and

the proof given there still holds in the orbifold setting because the arguments are

given outside of the compact subset K ′ in which our orbifold is isomorphic to a cone.

Lemma 3.42. With the hypotheses of Theorem 3.5, we have Φ∗J − J0 = O(rλΩ) (in

the sense of Definition 3.7).

The second lemma can also be found in [23], and the exact same proof involving

cut-off functions extends to the orbifold case with almost no adjustments.

Lemma 3.43. With the hypotheses of Theorem 3.5, for each α > 0, there is a smooth

plurisubharmonic function hα on X which is strictly plurisubharmonic (this means in

particular that
√
−1∂∂̄hα is a positive form) and whose pullback to (1,∞)×Σ agrees

with r2α outside of a compact subset Kα ⊂ X.

The final lemma is a version of the ∂∂̄-lemma that holds outside of a compact

subset. Again, this lemma follows from the manifold case simply because away from

the orbifold points our orbifold is isomorphic to a manifold so that the results [23,

Proposition A.2(ii), Corollary A.3(ii)] still hold.

Lemma 3.44. Let X be an AC Kähler orbifold with trivial canonical bundle. If

n = dimCX > 2 and if α is an exact real (1, 1)-form on X \K for some compact K

containing all of the orbifold points, then there is a compact K ′ ⊃ K and a smooth

function u on X \K ′ such that α =
√
−1∂∂̄u on X \K ′.
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We are now in a position to prove Theorem 3.5. The proof of Theorem 2.4 from

[23] applies almost directly, but we sketch the arguments here for completeness.

Proof of Theorem 3.5. We identify X \K with (1,∞)×Σ via Φ, and we let ourselves

work with increasingly large compact subsets K if necessary. By assumption, there

is a smooth 1-form η on X \K such that the difference ω − dη decays with rate λk.

By Lemma 3.44, there is a smooth function u on X \K such that dη = −
√
−1∂∂̄u.

By Lemma 3.43, for each α > 0, there is a smooth plurisubharmonic function hα on

X which is strictly plurisubharmonic and whose pullback to (1,∞) × Σ agrees with

r2α outside of some compact subset Kα ⊂ X.

Fix some α ∈ (0, 1). Ensure that the compact set K contains Kα and K1. Let R

be a number so large that K ⊂ {r 6 R}. Fix a cutoff function ψ on X satisfying

ψ(x) =


0 ρ(x) < 2R

1 ρ(x) > 3R.

For a constant S > 2, let ψS denote the rescaled cutoff function satisfying by

ψS(x) =


0 ρ(x) < 2RS

1 ρ(x) > 3RS.

For a constant c > 0 and a constant C, let ω̂ be the form

ω̂ = ω +
√
−1∂∂̄(ψu) + C

√
−1∂∂̄((1− ψS)hα) + c

√
−1∂∂̄h1.

In [23], it is shown that for suitable choices of S, c, and C, the form ω̂ is a Kähler

form on X in such a way that (X , ω̂) is asymptotically conical of rate λ < 0. The
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Kähler form ω̂ has global Ricci potential given by

f̂ = log

(
in

2
Ω ∧ Ω̄

(ω̂/c)n

)

belonging to the space C∞λ (X ). We would like to use Theorem 3.1 to solve the

equation

(ω̂ +
√
−1∂∂̄ϕ̂)n = ef̂ ω̂n

for ϕ̂, and we would obtain a Ricci-flat metric. Let us consider two cases for λ: either

λ < −2n or −2n < λ < 0.

(i) If λ < −2n, then by considering λ′ > λ in the interval (max{−4n, β−1 , λg −

2n},−2n) of case (i) of Theorem 3.1 and the inclusion C∞λ (X ) ↪→ C∞λ′ (X ), we

may view f̂ as having decay rate λ′, and therefore use case (i) of Theorem 3.1

to obtain a solution ϕ̂ ∈ Rρ2−2n ⊕ C∞β+2(X ) whose corresponding Kähler form

decays with rate −2n = max{λ,−2n}.

(ii) If −2n < λ < 0, then we may use either case (ii) or (iii) to find a solution ϕ̂ ∈

C∞λ+2(X ) whose corresponding Kähler form decays with rate λ = max{λ,−2n}.

Remark 3.45. In [23, Remark 2.10], it is shown using the Lichnerowicz-Obata Theo-

rem that if Ric(g0) > 0, then P∩(0, 2) = P∩ [1, 2) and moreover that the exceptional

weights in the interval (1, 2) are associated with the growth rates of plurisubharmonic

functions on the cone C. This remark justifies the slight difference in the statement

of Theorem 3.5 from that of [23, Theorem 2.4].

Corollary 3.46. Let (C(Σ), g0, J0,Ω0) be a Calabi-Yau cone of complex dimension

n > 2, let p : C → Σ denote the radial projection, and let V be the normal affine

variety associated to C. Let π : X → V be a crepant partial resolution by an orbifold
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X , and let k ∈ H2(X ) be a class that contains positive (1, 1)-forms. Then for each

c > 0, there is a complete Calabi-Yau metric gc on X such that ωc ∈ k and

ωc − π∗cω0 = O(r−2+δ) (3.13)

for sufficiently small δ. If k ∈ H2
c (X ), then we have

ωc − π∗(cω0) = const
√
−1∂∂̄r2−2n +O(r−2n−1−ε)

for some ε > 0.

Proof. We first claim that we have an exact sequence of the form

0→ H2
c (X ,R)→ H2(X ,R)→ H1,1

pr,b(Σ).

Indeed, if X1 ⊂ X denotes the suborbifold X1 = {x ∈ X : ρ(x) 6 1}, then we may

view Σ as the boundary of X1. Considering the pair (X1,Σ), we have a long exact

sequence in cohomology of the form

· · · → Hk−1(Σ,R)→ Hk(X1,Σ,R)→ Hk(X1,R)→ Hk(Σ,R)→ · · ·

Using the identifications Hk(X1,R) ' Hk(X ,R) and Hk(X1,Σ,R) ' Hk
c (X ,R), we

obtain a long exact sequence, a portion of which is

· · · → H1(Σ,R)→ H2
c (X ,R)→ H2(X ,R)→ H2(Σ,R)→ · · ·

In [64], it is shown that H1(Σ,R) = 0 (because, for example, we may choose a

metric on Σ with positive Ricci curvature). Moreover, the Bochner formula (see [37,
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Lemma 5.3]) gives that H2(Σ) can be identified with H1,1
pr,b(Σ), the primitive basic

(1, 1)-cohomology group associated with the Sasaki structure on Σ. The claim now

follows.

Let ω be a closed positive (1, 1)-form in the class k. From exact sequence of the

previous paragraph, there is a compact subset K ⊂ X such that away from K, we

have

ω = dη + p∗ξ

for some real 1-form η and some primitive basic (1, 1)-form ξ on Σ. Noting that

p∗ξ = O(r−2) shows that we can take λk = −2 + δ (and the fact that Ω agrees with

Ω0 outside of a compact set implies that λΩ = −∞). Theorem 3.5 now gives the

result.

Remark 3.47. The arguments in [37] (see Proof of Theorem 5.1) can actually be used

to give a stronger version of Corollary 3.46, whereby the relation (3.13) is replaced

by the relation

ωc − π∗cω0 = p∗ξ +O(r−4) (3.14)

where ξ is the primitive basic harmonic (1, 1)-form on Σ that represents the restriction

of κ to Σ. If ξ = 0, or equivalently, if k ∈ H2
c (X ), then we have

ωc − π∗(cω0) = const
√
−1∂∂̄r2−2n +O(r−2n−1−ε)

for some ε > 0.

Remark 3.48. Moreover, the same arguments and method of proof in [37] (see Proof

of Theorem 5.1) can be used to deal with the surface case (n = 2) of Corollary 3.46.

In particular, in this case, the Kähler class must belong to H2
c (X ).
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3.7 Examples

We consider examples of crepant partial resolutions of Calabi-Yau cones, to which

one can apply the results of Corollary 3.46 (and Remark 3.48 for the case n = 2) to

obtain Ricci-flat Kähler metrics.

Our first example is that of the canonical bundle over projective space CPn−1,

which is actually a manifold, and which is covered by the results in [23]. However,

we find it useful to review this particular example, as it contains a construction that

will be repeated in further examples.

Example 3.49. Projective space CPn−1 equipped with the Fubini-Study metric is

a Kähler-Einstein Fano manifold of dimension n − 1 (with Kähler-Einstein constant

n). The tautological line bundle O(−1) is a Hermitian-Einstein vector bundle over

CPn−1 when equipped with the hermitian metric h induced by viewing O(−1) as a

subbundle of the trivial vector bundle of rank n. Let t denote the smooth nonnegative

function on the total space L of O(−1) defined by

t(η) = hx(η, η) = |η|2

for η a vector in the fiber of Lx over x ∈ CPn−1. Let Σ ⊂ L denote the corresponding

S1-bundle given by Σ = t−1(1). Then Σ may be identified with the sphere S2n−1,

viewed as an S1-bundle over CPn−1 by considering the inclusion S2n−1 ↪→ Cn \ 0

followed by the projection onto CPn−1. The group Zn of nth roots of unity acts freely

on Σ via the diagonal action of Zn on S2n−1 ⊂ Cn \0. The variety V associated to the

cone C(Σ/Zn) = C(S2n−1/Zn) may be identified with the quotient variety Cn/Zn,

which carries a global holomorphic volume form from that of Cn. There is a crepant
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resolution

π : KCPn−1 → Cn/Zn,

which contracts the zero section of KCPn−1 to the singular point of Cn/Zn. Calabi

[16] lifts the Kähler metric on CPn−1 to a Sasaki-Einstein metric on the S1-bundle

Σ ' S2n−1, so that the cone C(Σ/Zn) ' C(S2n−1/Zn) is a Calabi-Yau cone.

Corollary 3.46 now abstractly proves the existence of a one-parameter family of

AC Calabi-Yau metrics on KCPn−1 in each Kähler class k that contains positive (1, 1)-

forms. In particular, by solving an ODE, Calabi [16] explicitly constructs a family of

Ricci-flat Kähler metrics on the total space of the canonical bundle KCPn−1 = O(−n),

and the classes represented by these metrics are compactly supported.

The next example we consider is a genearlization of the previous example in the

sense that we consider the canonical bundle over any Kähler-Einstein Fano manifold.

Again this example is actually a manifold and is covered by the previous results from

[23].

Example 3.50. Let (M, g) be a Kähler-Einstein Fano manifold of dimension n − 1

with Kähler-Einstein constant k0. Let L denote the total space of a maximal root

of the canonical bundle (meaning that if ι is the largest integer that divides KM in

Pic(M), then Lι = KM). The function (det g)−1 describes a hermitian metric on

KM with Hermitian-Einstein constant k0. The corresponding metric on L described

by h = (det g)−1/ι is also Hermitian-Einstein with constant ` = k0/ι. Let t denote

the smooth nonnegative function on the total space of L determined by h, and let Σ

denote the corresponding S1-bundle over M given by Σ = t−1(1) ⊂ L. The fiberwise

action of Zι on Σ is free. The total space of the canonical bundle KM is a smooth

crepant resolution of the variety associated to the cone C(Σ/Zι), which enjoys a

global holomorphic volume form. By lifting the metric on M , Calabi [16] constructs
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a Sasaki-Einstein metric on Σ, and in this way, the cone C(Σ/Zι) enjoys the structure

of a Calabi-Yau cone.

Corollary 3.46 now abstractly proves the existence of a one-parameter family of AC

Calabi-Yau metrics on KM in each Kähler class k that contains positive (1, 1)-forms.

By solving an ODE, Calabi [16] explicitly constructs a family of Ricci-flat Kähler

metrics on the total space of the canonical bundle KM , and the classes represented

by these metrics are compactly supported.

Example 3.51. Let us fix our attention to the variety X = C2/Γ for a finite subgroup

Γ of SU(2). The ADE classification gives a one-to-one correspondence between finite

subgroups of SU(2) and simply laced Dynkin diagrams of the form An for n > 1, Dn

for n > 4, E6, E7 and E8. Moreover, if π : X̃ → X denotes the minimal resolution

of X = C2/Γ, then the Dynkin diagram is the dual graph of the exceptional set of

the resolution, which is a union of #Vert copies of P1, where #Vert is the number

of vertices in the Dynkin diagram corresponding to Γ. Using this correspondence,

Kronheimer [46] constructs ALE hyper-Kähler metrics on the minimal resolution X̃.

In this case, any Kähler class is compactly supported, so Corollary 3.46 implies in

addition that any intermediate crepant partial resolution X factoring π

X̃

π
��

// X

π

��
X

admits a b2(X)-parameter family of AC Calabi-Yau metrics as well. The second Betti

number of X satisfies b2(X) = dimH2
c (X), and moreover, the inequality

H2
c (X) = b2(X) 6 b2(X̃) = #Vert
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always holds.

Example 3.52. Candelas and de la Ossa [18] construct explicitly a metric that

behaves with ξ 6= 0 in (3.14), as discussed in [23]. Let L denote the total space

of two copies O(−1)⊕2 of the tautological line bundle over CP1, and let h denote

the hermitian metric obtained as the product of the metrics induced on each factor

separately. If t denotes the corresponding nonnegative smooth function on the total

space L, then the subset Σ = t−1(1) ⊂ L is an S3-bundle over CP1. Moreover, L is

a subset of the product space CP1 × (C2)2, and the projection of Σ onto the factor

(C2)2 = C4 shows that Σ is also an S2-bundle over S3. Any such bundle is known

to be trivial by Steenrod’s classification [59]. The variety V associated to the cone

C(Σ) ' C(S3×S2) may be identified with the affine variety V = {z2
1 + z2

2 + z2
3 + z2

3 =

0} ⊂ C4 considered by [18]. There is a crepant resolution π : L→ V which contracts

the zero section of L to the singular point of V . There is a Sasaki-Einstein metric on

S3 × S2 so that C(S3 × S2) becomes a Calabi-Yau cone.

Corollary 3.46 now abstractly proves the existence of a one-parameter family of

AC Calabi-Yau metrics on L in each Kähler class k that contains positive (1, 1)-forms.

We note that such Kähler classes are not compactly supported because in fact, if E

denotes the zero section, which is isomorphic to CP1, then H2
c (L) ' H2n−2(E) = 0.

Moreover, since b2(L) = 1, there is at most a one-parameter family of such Kähler

classes that contain positive (1, 1)-forms. In [18], an explicit one-parameter family of

AC Kähler metrics on L is constructed.

Example 3.53. More generally, if Γ is a finite subgroup of SU(2) acting freely on

S3 ⊂ C2, then we obtain a corresponding action of Γ on the sphere bundle Σ, and

hence also on the total space L of two copies O(−1)⊕2 of the tautological line bundle

over CP1. The global quotient orbifold [L/Γ] is a crepant partial resolution of the
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variety associated to the Calabi-Yau cone C((S3/Γ)×S2), so Corollary 3.46 abstractly

proves the existence of a family of AC Calabi-Yau metrics on [L/Γ] in each Kähler

class that contains (1, 1)-forms. Moreover, the orbifold [L/Γ] may be resolved fully to

obtain a smooth resolution Ỹ , and in analogy with Example 3.51, each intermediate

partial resolution Y admits a b2(Y )-parameter family of AC Calabi-Yau metrics. In

this case, each Y is a CP1-fibration of a partial resolution X of the variety X = C2/Γ

from Example 3.51, and the second Betti number of Y satisfies

b2(Y ) = 1 + dimH2
c (Y ) = 1 + b2(X).
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Chapter 4

Hermitian-Einstein metrics on

stable vector bundles over compact

Kähler orbifolds

A seminal result due to Uhlenbeck-Yau [63] states that a stable vector bundle over

a compact Kähler manifold admits a unique Hermitian-Einstein metric. This result

was also proved for surfaces by Donaldson [26], and in that paper, he studied a

corresponding variational problem to introduce a functional MK on the space of

Hermitian metrics whose critical points are the desired Hermitian-Einstein ones. This

functional was studied in a slightly more general setting by Simpson [57], who related

the properness of this functional (in a certain sense) to the stability of the bundle in

order to provide another approach to proving the result of Uhlenbeck-Yau.

In [32], we show it is possible to extend these results to the setting of orbifolds to

obtain the following.

Theorem 4.1. Let E be an indecomposable holomorphic vector bundle over a compact

Kähler orbifold (X , ω). The following statements are equivalent.
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(i) The bundle E is stable.

(ii) For each metric K on E, the Donaldson functional MK is proper (in the sense

of Definition 4.21).

(iii) There is a Hermitian-Einstein metric on E.

This result arguably requires more care when passing to the orbifold setting than

the results in the previous sections. In particular, the pullback and pushforward

constructions for vector bundles and sheaves respectively require care. Nevertheless,

in [32], we only require these pullback and pushforward constructions along very

specific types of maps—namely, projection maps corresponding to fiber bundles—and

we show that for such maps, these constructions still remain valid, thereby allowing

us to mimic the manifold approach, as demonstrated with more detail in the following

remark.

Remark 4.2. The purpose of this remark is to outline how a certain regularity

argument necessary in our proof of the implication (i) =⇒ (ii) of Theorem 4.1

follows from similar regularity statements from the setting of manifolds.

Assuming (ii) does not hold for some metric K, one can follow an approach by

[57] to construct a weakly holomorphic subbundle for E that is destabilizing. Here

a weakly holomorphic subbundle means an L2
1 section Π of End(E) which satisfies

Π = Π2 = Π∗ (where the adjoint is computed with respect to K) and (IE−Π)∂̄Π = 0.

An argument by Uhlenbeck-Yau [63] shows that these conditions on Π ensure that

it may be extended to a rational section (that is, a holomorphic section outside of a

subvariety of codimension at least 2). In such a case, we explain in [32] that Π may

be regarded as a rational section of the fiber bundle Gr(s, E) over X of s-planes in E ,

where s denotes the trace of Π.
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The rational section Π of the bundle Gr(s, E) then determines a coherent sheaf

(which is a subsheaf of E) over X in the following manner. In [32], we show that it is

possible to pull back the bundle E along the projection p : Gr(s, E)→ X to obtain a

vector bundle p∗E of rank r over Gr(s, E), which contains a universal subbundle S of

rank s via the ordinary incidence correspondence. The coherent sheaf S restricts to

one on the closure Y of the image of the rational section in the total space Gr(s,X ).

Pushing forward this sheaf to X , one obtains a sheaf over X which is coherent by

Grauert’s direct image theorem.

The reader may also be interested in Eyssidieux and Sala [31], who provide stacky

analogues of the Uhlenbeck-Yau theorem and some of its variants while also studying

applications to ALE spaces.

4.1 Preliminaries

By an analytic subvariety V of X we mean we are given the data of an atlas of charts

(Uα, Gα, πα) for X and for each α there corresponds a subvariety Vα of Uα satisfying

Gα ·Vα = Vα. Moreover, these Vα are required to agree with one another with respect

to the embeddings λ : Uα → Uβ. An analytic subvariety V determines a subset V of

the underlying space X in a natural way.

For an analytic subvariety V of X , the orbifold structure on X induces an orbifold

structure on the complement X \ V , and we denote the resulting orbifold by X \ V .

A Hermitian metric on a complex vector bundle E consists of a collection of her-

mitian metrics Hα on bundles Eα over Uα which are invariant under the action of

Gα on Uα and which are compatible with the embeddings in the sense that for each

embedding λ : Uα → Uβ, the pullback metric λ∗Hβ agrees with Hα. A Hermitian

metric H can be regarded as a section of the bundle E∗ ⊗ E∗. A Hermitian metric is
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said to be compatible with a connection D if DH = 0.

A complex vector bundle E of rank k over a complex X of dimension n is called

holomorphic if the transition functions gλ : Uα → GL(k,C) can be taken to be

holomorphic. In such a case, the orbifold E enjoys the structure of a complex orbifold

(of dimension n+k) in such a way that the map of orbifolds p : E → X is holomorphic.

A holomorphic structure on E determines a raising operator ∂̄ : A0(E)→ A0,1(E) by

the usual local definition, and ∂̄ satisfies the property that if s is a holomorphic

section of E , then ∂̄s = 0. We say that a connection D on E is compatible with the

holomorphic structure if D′′ = ∂̄, where D′′ denotes the composition of D with the

projection of A1(E) onto A0,1(E).

Example 4.3. The complexified tangent bundle TX of a complex orbifold X is a

holomorphic vector bundle in the same way that it is for manifolds.

Just as in the manifold setting, if E is a holomorphic vector bundle, then a Her-

mitian metric H on E determines a unique Chern connection, denoted dH , which is

compatible with H and which is compatible with the holomorphic structure. The

curvature FH of dH is an End(E)-valued (1, 1)-form.

If two metrics H,K on E satisfy

〈ξ, η〉H = 〈hξ, η〉K

for a positive endomorphism h of E , we write H = Kh. One can show that in such a

case, the endomorphism h is self-adjoint with respect to K (and also H). In addition,

the curvatures FH and FK are related by

FH = FK + ∂̄(H−1∂KH),
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where we are using the notation ∂K to denote the (1, 0)-component of the Chern

connection dK .

Lemma 4.4. If two metrics H,K satisfy H = Kes for an endomorphism s that is

self-adjoint with respect to K, then

(i) the adjoint of ∂Ks is ∂̄s.

(ii) ∆∂Ks = iΛ(FH − FK)

(iii) ∆∂̄s = iΛ(FH − FK)− iΛFKs

(iv) ‖∂Ks‖2
L2
K

= 〈iΛ(FH − FK), s〉L2
K

(v) ∆|s|2K = 〈2iΛ(FH − FK), s〉 − 〈iΛFKs, s〉 − |dKs|2

Proof. For (i), upon differentiating the relation 〈sη, ξ〉 = 〈η, sξ〉, we find

〈(∂Ks)η + s(∂Kη), ξ〉+ 〈sη, ∂̄ξ〉 = 〈∂Kη, sξ〉+ 〈η, (∂̄s)ξ + s∂̄ξ〉.

Because s is self-adjoint we are left with

〈(∂Ks)η, ξ〉 = 〈η, (∂̄s)ξ〉.

For (ii), the curvatures are related by

FH = FK + ∂̄(H−1∂KH) = FK + ∂̄(∂Ks).

The Kähler identities (see [39]) extend to identities on bundle-valued forms to imply

the relation

∂∗K = iΛ∂̄,
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which gives that

iΛFH = iΛFK + ∂∗K∂Ks.

We conclude that

∆∂Ks = iΛ(FH − FK),

as claimed.

For (iii), we recall that FK is given by FK = ∂K ∂̄ + ∂̄∂K so that the curvatures

are related by

FH = FK + (FK − ∂K ∂̄)s.

We then use the Kähler identity ∂̄∗ = −iΛ∂K to obtain that

iΛFH = iΛFK + iΛFKs+ ∆∂̄s.

Rearranging gives (iii).

For (iv), multiplying the equality of (ii) on the right by s, then taking the trace,

and then integrating gives

∫
X
|∂Ks|2K

ωn

n!
=

∫
X
〈∂∗K∂Ks, s〉K

ωn

n!

=

∫
X
〈iΛ(FH − FK), s〉K

ωn

n!
,

as desired.

For (v), we have the identity

∆|s|2K =
1

2
∆d|s|2K = 〈∆Ks, s〉 − |dKs|2

regardless of whether s is self-adjoint. (Here ∆d denotes the de Rham Laplacian.)
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Because ∆K = ∆∂K + ∆∂̄, we obtain from parts (ii) and (iii) that

∆|s|2K = 〈2iΛ(FH − FK), s〉 − 〈iΛFKs, s〉 − |dks|2

as desired.

4.1.1 Stable bundles and sheaves

Chern-Weil theory may be used as usual to define Chern classes (or more generally

characteristic classes) of vector bundles. We will discuss characteristic classes in

greater detail in Section 4.1.2, but for now let us at least note that the first Chern

class c1(E) can be defined as the cohomology class represented by the (1, 1)-form

i

2π
Tr(FH)

for any choice of Hermitian metric H on E . The degree of E is then the integral of

i
2π

ΛTr(FH) over X

deg(E) =
i

2π

∫
X

ΛTr(FH) · vol =

∫
X
c1(E) ∧ ωn−1

(n− 1)!
,

and the slope of E is the ratio

µ(E) =
deg(E)

rank(E)
.

Given an action σ : G×U → U of a finite group G on U ⊂ Cn by biholomorphisms,

a G-equivariant sheaf over U consists of the data of a sheaf F of OU -modules together
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with an isomorphism of sheaves of OG×U -modules

ρ : σ∗F → p∗2F

which satisfies the cocycle relation

p∗23ρ ◦ (1G × σ)∗ρ = (m× 1U)∗ρ

where m denotes multiplication m : G×G→ G and p23 : G×G×U → G×U is the

projection onto the second two factors.

By a sheaf F over X we mean we are given the data of an atlas (Uα, Gα, πα)

of orbifold charts together with a Gα-equivariant sheaf Fα over each Uα. For each

embedding λ : Uα → Uβ there also corresponds a sheaf isomorphism τλ : Fα →

λ∗Fβ. Moreover these isomorphisms are compatible with one another in the sense

that whenever λ : Uα → Uβ and λ′ : Uβ → Uγ are a pair of composable embeddings,

then τλ′◦λ = λ∗τ ′λ ◦ τλ.

The notion of a sheaf F over an analytic subvariety V of X is defined similarly.

In particular, if V is given locally by subvarieties Vα of charts (Uα, Gα, πα), then a

sheaf assigns to each Vα a Gα-equivariant sheaf Fα, and moreover to each embedding

of charts, there corresponds a sheaf isomorphism as above (and these isomorphisms

are compatible with one another). It is important to note that a sheaf F over X is

not the same thing as a sheaf over the underlying topological space X.

Example 4.5. A complex orbifold X enjoys a structure sheaf OX of holomorphic

C-valued functions, and more generally, any analytic subvariety V of X determines a

structure sheaf OV .

A sheaf F is called coherent (resp. torsion-free) if each Fα is. If F is coherent and
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torsion-free of rank r, then one can define the determinant line bundle associated to

F to be

det(F) = (ΛrF)∗∗.

It follows that for a coherent torsion-free sheaf F we have a well-defined notion of

degree

deg(F) = deg(det(F))

and slope

µ(F) =
deg(F)

rank(F)
.

In addition, one can show that a torsion-free coherent sheaf is locally free outside

of a subset of codimension at least two. A proof of this can be found for example in

[43]. The argument given there extends to the setting of orbifolds because one can

apply the argument to each Gα-equivarariant sheaf over each chart.

Lemma 4.6. If F is a torsion-free coherent sheaf, then there is a subvariety V of

codimension at least 2 in X such that the restriction of F to X \ V is locally free.

The notion of slope allows one to introduce the usual notion of (slope) stability

in the standard way.

Definition 4.7. One says that a coherent torsion-free sheaf F is semi-stable if for

each proper coherent subsheaf F ′ of F , we have the inequality µ(F ′) 6 µ(F). If

moreover the strict inequality µ(F ′) < µ(F) holds for each proper coherent subset

F ′ satisfying 0 < rank(F ′) < rank(F), then we say that F is stable. In addition,

a holomorphic vector bundle E is called (semi)-stable if its corresponding sheaf of

sections is.
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4.1.2 The heat flow and Donaldson functional

Let us fix from this point forward a holomorphic vector bundle E of rank r over a

Kähler orbifold (X , ω). There will be no loss of generality in assuming in addition

that E is indecomposable.

Definition 4.8. A Hermitian metric H on E is called Hermitian-Einstein if there is

a constant λ such that

ΛFH = λ · IE ∈ A0(End(E)) (4.1)

where IE denotes the identity automorphism on E .

Remark 4.9. The constant λ = λ(X , ω, E) can be determined by the Kähler class

[ω] and the slope of E . In particular, taking the trace of both sides of (4.1) and

integrating over X gives

deg(E) =
λi

2π
rank(E)vol(X )

so that

λ =
−2πi · µ(E)

vol(X )
.

Definition 4.10. By a heat flow with initial data H0 we mean a flow of metrics Ht

satisfying the differential equation

Ḣt = − i
2
Ht(ΛFt − λ · IE). (4.2)

In particular, note that stable points of this flow must be Hermitian-Einstein

metrics. Donaldson studied this flow in [26], and some of the results from that paper

can be summarized in the following theorem.

110



Theorem 4.11. For any initial metric H0 on E, the heat flow (4.2) has a unique

smooth solution defined for 0 6 t <∞.

This theorem is valid for orbifolds for a few reasons. First, the short-time existence

is a local argument involving a linearization of the flow, which can be studied in a local

orbifold chart with no changes from the manifold setting. The long-time existence

involves estimates to solutions of the flow, which remain valid in the orbifold setting

since in particular the estimates are valid on each chart in some open cover, whereby

computations agree with those in the manifold case. Some of the intermediary results

Donaldson obtained in order to establish long-time existence included the following

two propositions.

Proposition 4.12. For an initial metric H0 = K on E, the function

sup
X
|ΛFt − λIE |2K

is decreasing along the heat flow.

Proposition 4.13. For an initial metric H0 = K on E, let Ht be a one-parameter

family of metrics for 0 6 t < T . Assume that Ht converges in C0-norm (with respect

to K) to some continuous metric as t→ T and also that we have a uniform bound on

supX |ΛFt|2K. Then we also have a uniform Lp2-bound on Ht for each p < ∞ (where

the norm is computed with respect to K). Moreover, this result is still true when we

allow T =∞.

As a result of this former proposition, we have the following corollary.

Corollary 4.14. Let Ht be a solution to the heat flow with initial condition H0 = K.

If Ht is uniformly bounded with respect to the C0-norm, then Ht is also uniformly
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bounded with respect to the L2
1-norm, where here all norms are computed with respect

to the initial metric K.

Proof. Proposition 4.12 implies that |ΛFt|K is uniformly bounded with respect to the

C0-norm. In addition, we are assuming a C0-bound on Ht. Thus the right-hand side

of equality (iv) of Lemma 4.4 is bounded uniformly by a constant independent of t.

The result then follows.

Another ingredient found in Donaldson [26] is the following result concerning the

C0-norm of solutions to the heat flow. For two metrics H1, H2, let σ(H1, H2) denote

the number

σ(H1, H2) = Tr(H−1
1 H2) + Tr(H−1

2 H1)− 2r,

where r is the rank of E . Then the assignment σ does not quite define a metric,

but we do have in fact that a sequence Hi converges to H in C0 if and only if

supX σ(Hi, H)→ 0. (In fact, the space of hermitian metrics is the set of sections of a

fiber bundle, which, on each fiber admits a natural distance function d coming from

the description of the fiber as a homogeneous space GL(r,C)/U(r), and Donaldson

[26] asserts that the function σ compares uniformly with d, in the sense that σ 6 f(d)

and d 6 F (σ) for monotone f, F .) Donaldson [26] then proves the following by a direct

calculation.

Proposition 4.15. If Ht, Kt are two solutions to the heat flow and σ = σ(Ht, Kt),

then (
∂

∂t
+ ∆

)
σ 6 0.

With this, it is possible to obtain the following result which relates the L2-

convergence of solutions to the heat flow with C0-convergence.
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Corollary 4.16. For a real number τ > 0 and a solution Ht to the heat flow, let

στ = σ(Ht, Ht+τ ). Then for each t′ > 0, we have

sup
X
στ (t+ t′) 6 c(t′)

∫
X
στ (t)

ωn

n!
,

where c(t′) denotes the (finite) supremum of the heat kernel at time t′. In particular,

if the sequence Ht coverges in L2 as t→∞, then it also converges in C0, where here

the norms are to be computed with respect to the fixed initial metric K = H0.

Proof. The inequality follows immediately from the previous proposition together

with a type of Green’s formula involving the heat kernel (see [29]). For the second

part about convergence, suppose that Ht is Cauchy in L2. Let ε > 0 be given. Because

Ht is Cauchy in L2 and because the function σ compares uniformly with the norm

afforded by K, there is a time T > 0 such that

∫
X
στ (t)

ωn

n!
< c(1)−1ε

for each t > T and each τ > 0. We therefore find that

sup
X
στ (t+ 1) 6 c(1)

∫
X
στ (t)

ωn

n!
< ε

for each t > T and each τ > 0. This means precisely that

sup
X
σ(Ht+1, Ht+1+τ ) < ε

for each t > T and each τ > 0. We conclude that the Ht are uniformly Cauchy with

respect to the C0-norm determined by K.

Also in [26], Donaldson considered a corresponding variational approach and intro-
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duced a functional whose critical points correspond to stable points of the heat flow.

The introduction of such a functional requires the notion of secondary characteristic

classes, which we review now.

A p-multilinear function ϕ on gl(r,C) is called invariant if it is invariant under the

(diagonal) adjoint action of GL(r,C) on p copies of gl(r,C). Such a function assigns

to any metric H on E a (p, p)-form

ϕ(FH) := ϕ(FH , . . . , FH) ∈ Ap,p(X ).

The cohomology class represented by the (p, p)-form ϕ(FH) is independent of the

choice of metric H and is called the first characteristic class associated to ϕ. In

addition the ∂∂̄-lemma implies that the difference between two such forms is ∂∂̄-

exact. In fact, the following more precise statement is true (see [26]).

Proposition 4.17. If H,K are two metrics on E, then for each ϕ there is an invariant

Rϕ(H,K) ∈ Ap−1,p−1(X )/(Im∂ + Im∂̄),

called the secondary characteristic class associated to ϕ, satisfying the following three

properties.

(i) We have Rϕ(K,K) = 0 and for any third metric J , we have

Rϕ(H,K) = Rϕ(H, J) +Rϕ(J,K).

(ii) If Ht is a smooth family of metrics, then

d

dt
Rϕ(Ht, K) = −iϕ(FHt ;H

−1
t Ḣ),
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where ϕ(FHt ;H
−1
t Ḣ) denotes the sum

ϕ(FHt ;H
−1
t Ḣ) =

p∑
k=1

ϕ(FHt , . . . ,

k︷ ︸︸ ︷
H−1
t Ḣ, . . . , FHt).

(iii) We have

i∂̄∂Rϕ(H,K) = ϕ(FH)− ϕ(FK) ∈ Ap,p(X).

Example 4.18. For our purposes, we only need two such invariants Rϕ. The first

R1 is associated to the trace ϕ1(A) = TrA, and the second R2 is associated to the

Killing form ϕ2(A,B) = −Tr(AB).

This means in particular that given a path Ht of metrics with H0 = K and

H1 = H, we may set

R1(H,K) = −i
∫ 1

0

Tr(H−1
t Ḣ) dt

R2(H,K) = 2i

∫ 1

0

Tr(H−1
t ḢFt) dt.

The particular integrals may depend on the choice of path, but, modulo Im∂ + Im∂̄,

they do not.

Definition 4.19. With these two invariants, Donaldson introduced a functional for

surfaces, whose extension to arbitrary dimensions can be described as

M(H,K) =

∫
X

(R2 + 2λR1ω) ∧ ωn−1

(n− 1)!
. (4.3)

For a fixed metric K, we can consider the functional M(−, K) on the space of metrics,

and it turns out that the critical points of this functional (if they exist) are Hermitian-

Einstein metrics.
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Proposition 4.20. For a fixed metric K, let MK denote the functional on the space

of metrics described by MK(H) = M(H,K).

(i) If Ht is any smooth path of metrics, then the variation of MK(Ht) along Ht is

given by

∂

∂t
MK(Ht) = 2i

∫
X

Tr(H−1
t Ḣt(Ft − λωIE)) ∧

ωn−1

(n− 1)!
.

(ii) If H is a critical point of MK, then H is a Hermitian-Einstein metric.

(iii) In particular, if Ht is a solution to the heat flow (4.2), then

∂

∂t
MK(Ht) = −‖ΛFt − λIE‖2

L2
Ht

,

meaning that MK is a non-increasing function of t along the heat flow.

Proof. For part (i), we compute using the definitions of the invariants R1 and R2 as

follows

d

dt
MK(Ht) =

∫
X

(
2iTr(H−1

t ḢFt)− 2iλTr(H−1
t Ḣ)ω

)
∧ ωn−1

(n− 1)!

= 2i

∫
X

Tr(H−1
t Ḣ(Ft − λωIE)) ∧

ωn−1

(n− 1)!

Part (ii) is then immediate from the computation in part (i). Part (iii) then follows

from using the flow (4.2) and the fact that ΛFt − λIE is skew-adjoint with respect to

Ht.

Part (iii) of the previous proposition says that MK is non-increasing along the heat

flow, and we will later show that the functional MK is convex in a certain sense (see

Proposition 4.32). In general, however, MK may not be bounded from below. Because

116



the critical points of MK are the desired metrics, it would be useful to understand

exactly when MK admits such critical points. Motivated by Proposition 5.3 of [57],

we introduce the following notion of properness for MK .

Definition 4.21. We say that MK is proper if there are positive constants C1, C2

such that for the solution Ht = Kest to the heat flow with initial condition s0 = 0,

we have

sup
X
|st|K 6 C1 + C2MK(Kest)

for each t > 0.

Corollary 4.22. If MK is proper and Ht is a solution to the heat flow with initial

condition H0 = K, then the following statements are true.

(i) MK(Ht) is bounded from below (by −C1/C2).

(ii) ‖Ht‖C0
K

is bounded from above.

(iii) ΛFHt → λIE in L2
K as t→∞.

Proof. Part (i) is obvious. Part (ii) follows from the fact that t 7→MK(Ht) is decreas-

ing along the heat flow and MK(H0) = MK(K) = 0. For part (iii), because MK(Ht)

is bounded from below and non-increasing, we know that

lim
t→∞

∂

∂t
MK(Ht) = 0

and by the previous proposition we conclude that

lim
t→∞
‖ΛFt − λIE‖2

L2
Ht

= 0.

Because Ht is uniformly bounded in C0, the L2-norm with respect to Ht is equivalent

to the L2-norm with respect to K in a uniform manner, meaning that there is a
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constant C independent of t such that

‖ΛFt − λIE‖2
L2
K
6 C ‖ΛFt − λIE‖2

L2
Ht

.

Taking the limit of both sides gives the required convergence.

4.2 Proof of the main result

Let us recall that our objective is to prove the following.

Theorem 4.23. Assume E is indecomposable. Then the following are equivalent.

(i) The bundle E is stable.

(ii) For each metric K on E, the Donaldson functional MK is proper in the sense

of Definition 4.21.

(iii) There is a Hermitian-Einstein metric on E.

Let us immediately deal with the implication (iii) =⇒ (i). A proof can be found,

for example, in [48], but we outline a proof now for the sake of completeness.

Proposition 4.24. Assume E is indecomposable. If there is a Hermitian-Einstein

metric H on E, then E is stable.

Proof. Let E ′ be a proper coherent subsheaf of E of rank r′ with torsion-free quotient

E/E ′. Lemma 4.6 implies that E ′ is locally free outside of a subvariety of codimension

at least 2. From this point forward, we work away from this subvariety so that

for example the metric H restricts to a metric on E ′ with corresponding curvature

denoted F ′. It is standard (see [39, Chapter 1, Section 5]) to show that the difference
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of curvatures

F |E ′ − F ′

is a semi-positive End(E ′)-valued (1, 1)-form and moreover vanishes if and only if the

orthogonal complement of E ′ is holomorphic. Here we are using the convention as in

[39] that semi-positive implies in particular that

i

2π
· TrE ′(F )− i

2π
TrE ′F

′

is a positive (1, 1)-form. Integrating over X we obtain the inequality

i

2π

∫
X

TrE ′ΛF · vol > deg(E ′) (4.4)

which is valid because we are working outside of a subset of codimension at least two.

Now the Hermitian-Einstein condition guarantees that

TrE(ΛF ) = TrE(λIE) = r · λ

and hence also that

TrE ′ΛF = r′ · λ =
r′

r
TrEΛF.

Using these we find that (4.4) is equivalent to

r′

r
deg(E) > deg(E ′).

But the inequality is actually strict because equality would mean that the comple-

ment of E ′ is holomorphic, which is a contradiction to the assumption that E is

indecomposable. We conclude that E is stable.
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A proof of the implication (ii) =⇒ (iii) for manifolds can be found in [57], and for

this, one uses the heat flow of Definition 4.10. Indeed the argument roughly proceeds

as follows. The assumption (ii) guarantees the functional MK has a unique critical

point belonging to a certain Sobolev space. The heat flow approaches this critical

point H∞ and certain estimates involving this flow and the functional MK allow one to

obtain enough regularity on this critical point to ascertain that H∞ corresponds to a

bona fide smooth metric. Since stable points of the heat flow are Hermitian-Einstein,

we find that H∞ is. Let us now be more precise.

Proposition 4.25. Assume E is indecomposable. If for each fixed metric K on E,

the Donaldson functional MK is proper in the sense of Definition 4.21, then there is

a Hermitian-Einstein metric on E.

Proof. Let us denote by Ht a solution to the heat flow with initial condition H0 = K.

Corollary 4.22 applies so in particular we have a uniform C0-bound on Ht. (Here

all norms will be computed with respect to the fixed initial metric K.) We have a

uniform C0-bound on ΛFt by Proposition 4.12. It follows from Corollary 4.14 that

we have a uniform L2
1-bound on Ht. A compactness theorem (Theorem 2.14) now

guarantees the existence of a sequence of times ti → ∞ and a limit H∞ ∈ L2
1 such

that the sequence Hti converges in L2 to H∞. Corollary 4.16 implies actually that Hti

converges to H∞ in C0-norm. Proposition 4.13 now gives that Hti is in fact uniformly

bounded in Lp2 for each p < ∞. It follows that the weak limit F∞ exists in Lp for

each p < ∞ and moreover that the weak equation ΛF∞ = λ · IE holds by Corollary

4.22 (iii). Elliptic regularity (Section 2.2) now implies that H∞ is in fact smooth.

The remaining implication is (i) =⇒ (ii), and this is proved for manifolds in [57]

with the help of a regularity statement concerning weakly holomorphic subbundles
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from [63], another proof of which can be found in [54]. The precise notion of a weakly

holomorphic subbundle that we will use is the following.

Definition 4.26. By a weakly holomorphic subbundle of E (with respect to a fixed

metric K) we mean an L2
1 section Π of End(E) which satisfies Π = Π∗ = Π2 (where

the adjoint is computed with respect to K) and (IE − Π)∂̄Π = 0.

A weakly holomorphic subbundle determines a degree via Chern-Weil theory,

which may be computed as

deg(Π) =
i

2π

∫
X

Tr(ΠΛFK)
ωn

n!
− 1

2π

∫
X
|∂̄Π|2K

ωn

n!
(4.5)

(compare to [57, Lemma 3.2] or [63, Proposition 4.2]). It therefore makes sense to

say when a weakly holomorphic subbundle is destabilizing for E .

Remark 4.27. Let us verify equation (4.5) for the case of a smooth subbundle S of E .

Let Π denote the projection endomorphism of E corresponding to S. If we write DE

for the Chern connection on E determined by the metric K, then there is a connection

DS on S described by the composition Π ◦DE . The difference A = DE |S −DS may

be considered as a map from A0(S) to A1(S⊥). In fact, A is a map to A1,0(S⊥) (see

[39]) and corresponds to the composition Π⊥ ◦ ∂EΠ (see [63, Proposition 4.2]), where

here ∂E denotes the (1, 0)-component of DE . In [39], the curvature of the subbundle

is related to the curvature of the ambient bundle by FS = Π ◦ FE − A ∧ A∗. Taking

the trace and integrating over X we find that

deg(S) =
i

2π

∫
X

Tr(FS) ∧ ωn−1

(n− 1)!

=
i

2π

∫
X

Tr(ΠFE)
ωn−1

(n− 1)!
− 1

2π

∫
X

Tr(iA ∧ A∗) ∧ ωn−1

(n− 1)!

=
i

2π

∫
X

Tr(ΠΛFE)
ωn

n!
− 1

2π

∫
X
|Π⊥ ◦ ∂EΠ|2K

ωn

n!
.
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Because Π ◦ ∂EΠ = 0, we conclude that in fact Π⊥ ◦ ∂EΠ = ∂EΠ. The fact that Π is

self-adjoint also implies that |∂EΠ| = |∂̄Π| and the formula (4.5) is verified.

With these notions, the implication (i) =⇒ (ii) then follows immediately from

the following two lemmas.

Lemma 4.28. Suppose MK is not proper. Then there is a weakly holomorphic sub-

bundle of E which is destabilizing for E.

Lemma 4.29. Let Π be a weakly holomorphic subbundle of E. Then there is a co-

herent subsheaf F of E and an analytic subvariety V of codimension at least two in

X such that

(i) The map Π is smooth away from V and there we have Π = Π∗ = Π2 and

(IE − Π) ◦ ∂̄Π = 0.

(ii) Outside of V the subsheaf F agrees with the image of Π and is a holomorphic

subbundle of E|X\V .

Lemma 4.28 is proved for manifolds in Proposition 5.3 of [57], and exactly the

same method of proof applies in our setting. We reserve the final section following

this one for a discussion of this method. The basic idea is the following. Assuming

MK is not proper, we can obtain a sequence sk of sections of End(E) with larger and

larger norms. An appropriate normed sequence uk then tends to a weak limit u∞ in

L2
1, whose eigenvalues are constant almost everywhere. The eigenspaces of u∞ then

give rise to a filtration of E by L2
1-subbundles, for which, it is possible to show that

one must be destabilizing.

Assuming Lemma 4.28 then, for now, it remains only to discuss Lemma 4.29. A

version of this result can be found in the original paper by Uhlenbeck-Yau [63], and

we aim to explain how it extends to the orbifold setting.
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For the holomorphic vector bundle E of rank r over X , it is possible to form

the Grassmannian bundle Gr(s, E) of s-planes in E , which is a holomorphic fiber

bundle over X with fiber Gr(s, r). Locally if Eα is a Gα-equivariant vector bundle

of rank r over a chart Uα, then the Grassmannian bundle Gr(s, E) associates to Uα

the fiber bundle Gr(s, Eα) of s-planes in Eα, where the fiber over a point x ∈ Uα is

the Grassmannian Gr(s, (Eα)x) of s-planes in the fiber (Eα)x. The bundle Gr(s, Eα)

enjoys an induced action of Gα on it coming from the action of Gα on Eα, and the

induced action is such that the natural projection onto Uα is Gα-equivariant. For

an embedding λ : Uα → Uβ, the bundle isomorphism Eα → λ∗Eβ induces a bundle

isomorphism Gr(s, Eα)→ λ∗Gr(s, Eβ) ' Gr(s, λ∗Eβ).

A holomorphic subbundle E ′ of E of rank s determines a section of the fiber bundle

Gr(s, E). In addition, any section of the bundle Gr(s, E) determines a holomorphic

subbundle E ′ of E which corresponds to the image of the section in Gr(s, E).

If p : Gr(s, E)→ X denotes the projection map, then there is a way of pulling back

the vector bundle E along p to obtain a vector bundle p∗E of rank r over Gr(s, E),

which is described as follows. There is an atlas of charts (Uα, Gα, πα) for X such that

(Uα×Gr(s, r), Gα, π
′
α) is an atlas of charts for Gr(s, E), where π′α denotes the natural

map from Uα × Gr(s, r) to its image in Gr(s, E). To each embedding of charts λ :

Uα → Uβ, there corresponds an embedding of charts λ′ : Uα×Gr(s, r)→ Uβ×Gr(s, r)

such that the diagram

Uα ×Gr(s, r) λ′ //

prα1
��

Uβ ×Gr(s, r)

prβ1
��

Uα λ
// Uβ,

(4.6)

commutes, where prα1 denotes projection onto the first factor. The vector bundle
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E associates to each Uα a Gα-equivariant vector bundle Eα, and we may consider

the pullback p∗Eα = (prα1 )∗Eα of Eα along the projection Uα × Gr(s, r) onto the

first factor. The pullback p∗Eα enjoys an action of Gα in the following manner: if

g ∈ Gα and if ξ is an element of p∗Eα in the fiber over (x, V ) ∈ Uα × Gr(s, r),

then in fact ξ is an element in the fiber (Eα)x and g · ξ is an element of the fiber

(Eα)g·x = (p∗Eα)g·(x,V ). In addition, to each embedding of charts λ′ : Uα×Gr(s, r)→

Uβ × Gr(s, r), there corresponds a bundle isomorphism p∗Eα → (λ′)∗p∗Eβ which is

described as (prα1 )∗λ∗ where λ∗ : Eα → λ∗Eβ is the bundle isomorphism induced by λ.

This makes sense because there is an isomorphism of bundles (λ′)∗p∗Eβ ' (prα1 )∗λ∗Eβ

by the commutativity of the diagram (4.6).

Remark 4.30. We remark that using the previous construction, it is actually possible

to pull back a vector bundle E over X along the projection map E ′ → X of any fiber

bundle E ′ over X . However, it is not immediately clear that this construction of the

pullback is readily available for each smooth map of orbifolds X ′ → X . In Section

4.4 of [20], the authors introduce the notion of a “good” smooth map of orbifolds,

and using this notion, they show that a vector bundle may be pulled back along such

maps. In particular, the projection map E ′ → X for a fiber bundle is a “good” map,

so their construction applies in this situation, as we have just described.

There is a universal subbundle S of p∗E of rank s over Gr(s, E) described as the

incidence correspondence in the usual way.

If Y is an analytic subvariety of Gr(s, E) and F is a coherent sheaf over Y , then

there is a way of pushing forward the sheaf via the restriction of the projection

p : Gr(s, E)→ X to Y to obtain a coherent sheaf p∗F on X as follows. The subvariety

Y associates to each chart Uα×Gr(s, r) a Gα-invariant subvariety Vα ⊂ Uα×Gr(s, r)

and the sheaf F associates a Gα-equivariant sheaf Fα over Vα. We may consider
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the pushforward p∗Fα onto Uα using the projection prα1 onto the first factor. The

resulting sheaf p∗Fα is Gα-equivariant since prα1 is. For each embedding λ : Uα → Uβ

of charts, there is an isomorphism of sheaves p∗Fα → λ∗p∗Fβ described as (prα1 )∗τλ′ ,

where τλ′ denotes the isomorphism of sheaves Fα → λ′∗Fβ. This makes sense because

there is an isomorphism of sheaves λ∗p∗Fβ ' (prα1 )∗λ
′∗Fβ by the commutativity of

the following diagram (compare to (4.6)):

Vα
λ′|Vα //

��

Vβ

��
Uα ×Gr(s, r) λ′ //

prα1
��

Uβ ×Gr(s, r)

prβ1
��

Uα
λ // Uβ.

In addition, the resulting sheaf is coherent by the Grauert direct image theorem [38]

because the maps prα1 are proper maps between complex spaces (as Y is compact and

properness is preserved under base change).

By a rational map from a holomorphic orbifold X into another X ′ we mean we

are given an analytic subvariety V of codimension at least 2 or more in X together

with a holomorphic map from X \ V into X ′.

We assert that a rational section of Gr(s, E) over X determines a coherent subsheaf

of E in the following manner. Let Y denote the closure of the image of the section in

Gr(s, E). The restriction of the universal bundle S to Y is a coherent sheaf of rank s

over Y . In addition, as a closed subset of a compact space, Y is compact itself, and

so the projection of Y onto X is proper. Pushing forward the restriction S|Y of the

universal bundle via the projection of Y onto X , we obtain a sheaf F over X , which

is coherent by our above observations.

Proof of Lemma 4.29. A weakly holomorphic subbundle Π determines a map from
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a set of full measure in X to the total space of the bundle Gr(s, E). Uhlenbeck-Yau

demonstrate how the assumptions Π = Π2 = Π∗ ∈ L2
1 and (IE − Π)∂̄Π = 0 imply

that Π extends to a rational section of the bundle Gr(s, E). The previous discussion

explains how this rational section furnishes a coherent subsheaf of E over X . �

4.3 Simpson’s method

This section is devoted to proving Lemma 4.28 following an approach from [57]. We

first require a somewhat technical estimate relating the C0-norm to the L2-norm for

solutions to the heat flow. This result is intended to replace Assumption 3 from [57].

It is important to note that in this section all inner products and norms are to be

computed with respect to K unless otherwise indicated. In particular, this means

that we will use the notation Lp to denote the Lp-norm of a section with respect to

the fixed metric K.

Lemma 4.31. Fix a metric K. Then there are positive constants C1, C2 such that the

following is true. Let Ht be a solution to the heat flow with initial condition H0 = K

and write Ht = Kest for a path t 7→ st of self-adjoint endomorphisms with initial

condition st = 0. Then for any t we have

sup
X
|st|K 6 C1 + C2

∥∥|st|2K∥∥1/2

L2 .

Proof. In the course of the proof, we let C1, C2, . . . denote constants that are inde-

pendent of t but which may vary from step to step. Recall from Lemma 4.4 (v), we

know that

∆|st|2K = 〈2iΛ(Ft − FK), st〉 − 〈iΛFKst, st〉 − |dKst|2
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and hence because the last term is a square we find

∆|st|2K 6 〈2iΛ(Ft − FK), st〉 − 〈iΛFKst, st〉.

Proposition 4.12 (with the Schwarz inequality) implies there are positive constants

C1, C2 such that

∆|st|2K 6 C1|st|+ C2|st|2

6 C1 + C2|st|2.

Let pt be a point where |st|2K achieves its maximum. Let Gpt ∈ L2
2 be Green’s

function for ∆. Green’s formula gives that

|st|2(pt) =
1

vol(X )

∫
X
|st|2

ωn

n!
+

∫
X
Gpt∆|st|2

ωn

n!
.

Because Gpt is bounded from below, we may assume by shifting by a constant that

Gpt is positive (c.f. [4]). Moreover, we may assume that Gpt is square integrable.

In fact, because X is compact, there is a constant C (independent of t) such that

‖Gpt‖L2 6 C. Using the previous paragraph and the Schwarz inequality we find that

we have an inequality of the form

|st|2(pt) 6 C1

∥∥|st|2∥∥L1 + C2 + C3

∥∥|st|2∥∥L2 .

The inclusion of L2 into L1 implies that

|st|2(pt) 6 C1 + C2

∥∥|st|2∥∥L2 .
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Now, we also know that

(sup
X
|st|)2 6 1 + sup

X
|st|2,

and so in conjunction with the previous paragraph we have

sup |st| 6 C1 + C2

∥∥|st|2∥∥1/2

L2 ,

as desired.

It is also prudent to understand the variation of MK along a path of the form

t 7→ Kets for a fixed endomorphism s of E that is self-adjoint with respect to K and

which satisfies
∫
X Tr(s)ωn = 0. We will see that the functional MK is convex along

such a path.

Proposition 4.32. If Ht = Kets for an endomorphism s with
∫
X Tr(s)ωn = 0 which

is self-adjoint with respect to K, then

∂

∂t
MK(Kets) = 2i

∫
X

Tr(sFt) ∧
ωn−1

(n− 1)!

and

∂2

∂t2
MK(Kets) = 2

∫
X
|∂̄s|2Ht

ωn

n!
.

Proof. Note that along this path, we have Ḣt = Hts, and so using Proposition 4.20

(i), we readily verify the formula of the first variation (using that
∫
X Tr(s)ωn = 0).
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Upon taking another derivative, we find

∂2

∂t2
MK(Kets) = 2i

∫
X

Tr(sḞt) ∧
ωn−1

(n− 1)!
.

But because Ht = Kets, we have that the curvatures are related by

Ft = FK + ∂̄(H−1
t ∂KHt) = FK + t∂̄(∂K(s))

so that Ḟt = ∂̄∂Ks, from which we find

∂2

∂t2
MK(Kets) = 2i

∫
X

Tr(s ∧ ∂̄∂Ks) ∧
ωn−1

(n− 1)!
.

One integration by parts shows that

∂2

∂t2
MK(Kets) = −2i

∫
X

Tr(∂̄s ∧ ∂Ks) ∧
ωn−1

(n− 1)!
.

And another shows that

∂2

∂t2
MK(Kets) = −2i

∫
X

Tr(∂K ∂̄s ∧ s) ∧
ωn−1

(n− 1)!
.

(Note that the sign is preserved here because ∂̄s is a 1-form.) Then the Kähler identity

∂̄∗ = −iΛ∂ shows that

∂2

∂t2
MK(Kets) = 2

∫
X

Tr(∂̄∗∂̄s ∧ s) ∧ ω
n

n!
.

Now using that s is self-adjoint with respect to Ht, we find that this is equal to

∂2

∂t2
MK(Kets) = 2

∫
X
〈∂̄∗∂̄s, s〉Ht

ωn

n!
.
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This is equivalent to the desired formula.

This proposition allows one to obtain a slightly different expression for the func-

tional MK , which can be found for example in [57, 58, 41, 28]. Indeed, let us write

M(t) for the value M(t) = MK(Kets). Then with this convention, we have from the

previous proposition that M ′(0) is given by

M ′(0) = 2i

∫
X

Tr(sFK) ∧ ωn−1

(n− 1)!
.

The fundamental theorem of Calculus in conjunction with the previous proposition

gives

M ′(t) = 2i

∫
X

Tr(sFK) ∧ ωn−1

(n− 1)!
+ 2

∫ t

0

∫
X
|∂̄s|2Hu

ωn

n!
du.

The condition M(0) = 0 implies then that M(1) is given by an additional integration

MK(Kes) = M(1) = 2i

∫
X

Tr(sFK) ∧ ωn−1

(n− 1)!
+ 2

∫ 1

0

(∫ t

0

∫
X
|∂̄s|2Hu

ωn

n!
du

)
dt.

We now follow [28] to write the second term on the right-hand side with a local

expression involving frames.

Let us fix a smooth unitary (with respect to K) frame for E for which the matrix

of s with respect to this frame is diagonal with eigenvalues λ1, . . . , λr. (The matrix of

∂̄s may not be diagonal because the frame is only smooth.) With these conventions,

then the integrand of the second equality in the previous proposition becomes

|∂̄s|2Ht = (∂̄s)βα(∂̄s)ργ(Ht)
αγ(Ht)βρ

= (∂̄s)βα(∂̄s)ργ(e
−tλαδαγ)(etλβδβρ)

=
∑
α,β

|(∂̄s)βα|2e(λβ−λα)t.
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Integrating once we obtain

∫ t

0

|∂̄s|2Hudu =
∑
α,β

|(∂̄s)βα|2
e(λβ−λα)t − 1

λβ − λα
.

And integrating again gives

∫ 1

0

(∫ t

0

|∂̄s|2Hudu
)
dt =

∑
α,β

|(∂̄s)βα|2
eλβ−λα − (λβ − λα)− 1

(λβ − λα)2
.

What we have shown therefore is that

M(Kes, K) = 2i

∫
X

Tr(sΛFK)
ωn

n!
+ 2

∫
X

∑
α,β

|(∂̄s)βα|2
eλβ−λα − (λβ − λα)− 1

(λβ − λα)2

ωn

n!
,

(4.7)

where the summand is interpreted as 1
2
|(∂̄s)βα|2 if α = β.

Following [58] and [28, Lemma 24] it is then possible to obtain the following

estimate, which we won’t really need, but which we collect for completeness.

Corollary 4.33. For any endomorphism s with
∫
X Tr(s)ωn = 0 that is self-adjoint

with respect to K, we have

‖DKs‖2
L1 6 2(

√
2 ‖s‖L1 + vol(X ))

(
MK(Kes)− 2i

∫
X

Tr(sΛFK)
ωn

n!

)
.

Proof. For any real number u, we have the following inequality

1

2
√
u2 + 1

6
eu − u− 1

u2
,

which is verified, for example, in [58]. From this it follows immediately upon setting
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u = λβ − λα that

1

2
√

(λβ − λα)2 + 1
6
eλβ−λα − (λβ − λα)− 1

(λβ − λα)2
.

The inequality

2(λ2
β + λ2

α) = (λβ − λα)2 + (λβ + λα)2 > (λβ − λα)2

implies also that

1

2
√

2(λ2
β + λ2

α) + 1
6
eλβ−λα − (λβ − λα)− 1

(λβ − λα)2
.

And finally the inequality

|s|2K =
∑
α

λ2
α > λ2

β + λ2
α

implies

1

2
√

2|s|2K + 1
6
eλβ−λα − (λβ − λα)− 1

(λβ − λα)2
.

Now using that |DKs|2K = 2|∂̄s|2K (because s is self-adjoint), we find that

|DKs|2K
4
√

2|s|K + 1
=

|∂̄s|2K
2
√

2|s|K + 1
6
∑
α,β

|∂̄sβα|2
eλβ−λα − (λβ − λα)− 1

(λβ − λα)2
.

Upon integrating over X and using formula (4.7), we find

1

2

∫
X

|DKs|2K√
2|s|K + 1

ωn

n!
6MK(KeS)− 2i

∫
X

Tr(sΛFK)
ωn

n!
. (4.8)
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On the other hand, if we write

DKs =
DKs

(2|s|K + 1)1/4
(2|s|K + 1)1/4

and use the Cauchy inequality, we find that

(∫
X
|DKs|K

ωn

n!

)2

6

(∫
X

|DKs|2K√
2|s|K + 1

ωn

n!

)(∫
X

(2|s|2K + 1)1/2ω
n

n!

)

6

(∫
X

|DKs|2K√
2|s|K + 1

ωn

n!

)(∫
X

(
√

2|s|K + 1)
ωn

n!

)

6

(∫
X

|DKs|2K√
2|s|K + 1

ωn

n!

)(√
2 ‖s‖L1 + vol(X )

)
,

and then using (4.8) we conclude

‖DKs‖2
L1 6 2

(√
2 ‖s‖L1 + vol(X )

)(
MK(Kes)− 2i

∫
X

Tr(sΛFK)
ωn

n!

)
,

as desired.

Notation 4.34. Let us follow [57] to introduce briefly some notation that will allow

us to express formula (4.7) in a global manner.

For a smooth function ϕ : R → R, an endomorphism s of E that is self-adjoint

with respect to K, we let ϕ(s) denote the endomorphism described in the following

manner. If {e1, . . . , er} is a smooth unitary (with respect to K) frame for E with

respect to which s is diagonal with entries λ1, . . . , λr, then ϕ(s) is the endomorphism

with diagonal entries ϕ(λ1), . . . , ϕ(λr).

In addition, for a smooth function Φ : R× R→ R of two variables, a self-adjoint

endomorphism s ∈ End(E , K), and an endomorphism A ∈ End(E), we let Φ(s)(A)

denote the endomorphism of E described in the following manner. If {e1, . . . , er} is a
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smooth unitary (with respect to K) frame of E with respect to which s is diagonal

with eigenvalues λ1, . . . , λr and A has the local expression A = Aβαe
α ⊗ eβ where eα

is the frame dual to eβ, then the endomorphism Φ(s)(A) has local expression

Φ(s)(A) =
∑
α,β

Φ(λα, λβ)Aβαe
α ⊗ eβ.

The construction Φ enables one to express the derivatives of construction ϕ in the

following way.

Lemma 4.35. Given a ϕ : R → R, if we set dϕ : R × R → R to be the difference

quotient defined by

dϕ(u, v) =
ϕ(u)− ϕ(v)

u− v

for u 6= v and dϕ(u, u) = d
du
ϕ(u) along the diagonal, then we have

∂̄(ϕ(s)) = dϕ(s)(∂̄s).

In addition, if Φ : R×R→ R is any smooth function which agrees with dϕ along the

diagonal, then

Tr(Φ(s)(∂̄s)) = Tr(dϕ(s)(∂̄s)).

Proof. Let eα be a smooth unitary frame for E with respect to which a local expression

for s is

s =
∑
α

λαe
α ⊗ eα

for some local smooth functions λα. Let us also write

∂̄eα = θβαeβ
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for some local (0, 1)-forms θβα. The relation eα(eβ) = δαβ implies then that we also

have

∂̄eα = −θαβeβ.

It follows that a local expression for ∂̄s is given by

∂̄s = (∂̄λα)eα ⊗ eα +
∑
α,β

(−λαθαβeβ ⊗ eα + λαθ
β
αe

α ⊗ eβ)

= (∂̄λα)eα ⊗ eα +
∑
α 6=β

(λα − λβ)θβαe
α ⊗ eβ,

which means precisely that the coefficients of ∂̄s are given by

(∂̄s)βα =


(λα − λβ)θβα α 6= β

∂̄λα α = β

.

More generally, a similar computation shows that the coefficients of ∂̄(ϕ(s)) are given

by

(∂̄(ϕ(s))βα =


(ϕ ◦ λα − ϕ ◦ λβ)θβα α 6= β

∂̄(ϕ ◦ λα) α = β

.

On the other hand, by definition, the endomorphism dϕ(s)(∂̄s) has coefficients

(dϕ(s)(∂̄s))βα = dϕ(λα, λβ)(∂̄s)βα

=


ϕ◦λα−ϕ◦λβ
λα−λβ

(λα − λβ)θβα α 6= β

ϕ′(λα)∂̄λα α = β

.

Comparing coefficients, we find that the first part of the lemma follows.

For the second part about the trace, suppose that Φ : R× R→ R is any smooth
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function which agrees with dϕ along the diagonal. Then the trace of Φ(s)(∂̄s) is given

by

Tr(Φ(s)(∂̄s)) =
∑
α

Φ(λα, λα)(∂̄s)αα

=
∑
α

ϕ′(λα)∂̄λα

= Tr(dϕ(s)(∂̄s)),

as desired.

With these conventions, we see that formula (4.7) is equivalent to

MK(Kes) = 2i

∫
X

Tr(sΛFK)
ωn

n!
+ 2

∫
X
〈Ψ(s)(∂̄s), ∂̄s〉K

ωn

n!
, (4.9)

where Ψ : R× R→ R is the function

Ψ(u, v) =
ev−u − (v − u)− 1

(v − u)2
,

which is extended continuously (and smoothly) along the diagonal by requiring that

Ψ(u, u) = 1/2.

The construction Φ extends to Lp-spaces of endomorphisms in the following way.

Because Φ is smooth, there is a positive constant C depending on Φ such that we

have the pointwise estimate

|Φ(s)(A)|K 6 C|s|K |A|K

for any endomorphism A and self-adjoint endomorphism s. Given any 1 6 p < q, if
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r is the number 1/p = 1/q + 1/r, then Hölder’s inequality implies that

‖|s|K |A|K‖Lp 6 ‖s‖Lr ‖A‖Lq .

It follows that for 1 6 p < q, given a self-adjoint endomorphism s ∈ Lr(End(E)), the

construction A 7→ Φ(s)(A) describes a bounded linear operator

Φ(s) : Lq(End(E))→ Lp(End(E))

whose norm satisfies

‖Φ(s)‖ 6 C ‖s‖Lr .

In this way, we may think of Φ as a mapping

Φ : Lr(End(E , K))→ Hom(Lq(End(E)), Lp(End(E))).

Moreover, it also follows that if sk is a sequence that converges in the Lr-norm to s∞,

then the sequence Φ(sk) of operators converges in the operator norm to Φ(s∞). We

summarize in the following proposition.

Proposition 4.36. For 1 6 p < q, the construction Φ describes a continuous map-

ping

Φ : Lr(End(E , K))→ Hom(Lq(End(E)), Lp(End(E))),

where r is the number satisfying 1/p = 1/q + 1/r.

Proof of Lemma 4.28. Assuming the properness condition in Definition 4.21 is vio-

lated, we will construct explicitly a weakly holomorphic subbundle that is destabiliz-

ing.
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For a solution Ht to the heat flow with initial condition H0 = K, let us write

Ht = Kest for a path of self-adjoint endomorphisms st with initial condition s0 = 0.

We first claim that we have
∫
X Tr(st)ω

n = 0 along the path t 7→ st. Indeed, the

heat equation (4.2) implies that

ṡt = − i
2

(ΛFt − λIE).

Upon taking the trace and integrating over X , we find that the right-hand side van-

ishes, and so the quantity
∫
X Tr(st)ω

n must be constant. The initial condition s0 = 0

implies that this constant must be zero, as desired.

Now assume the properness condition of Definition 4.21 is violated. By Lemma

4.31, we can find st contradicting the estimate with ‖|st|2K‖L2 arbitrarily large, or else

the resulting bound on the C0-norm would make the estimate of Definition 4.21 hold

trivially after adjusting C1. We thus have a sequence of times tk and corresponding

self-adjoint endomorphisms sk whose L2-norms ‖|sk|2‖L2 tend to∞ and which satisfy

∥∥|sk|2∥∥1/2

L2 > kMK(Kesk). (4.10)

Let us define a sequence of normalized endomorphisms uk = `−1
k sk, where `k is

the number

`k =
∥∥|sk|2∥∥1/2

L2 .

Note that the uk are indeed normalized in the sense that ‖|uk|2‖1/2

L2 = 1. The uniform

estimate of Lemma 4.31 implies that

`k sup
X
|uk| 6 C1 + C2`k

∥∥|uk|2∥∥1/2

L2 ,
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and so we obtain a uniform C0-bound on the sequence uk.

We now prove the following useful lemma.

Lemma 4.37. After passing to a subsequence, we may assume that the sequence uk

converges in u∞ weakly in L2
1. If Φ : R × R → R is a positive smooth function

satisfying Φ(u, v) < (u− v)−1 whenever u > v, then

i

∫
X

Tr(u∞ΛFK)
ωn

n!
+

∫
X
〈Φ(u∞)(∂̄u∞), ∂̄u∞〉K

ωn

n!
6 0,

where Φ(u∞)(∂̄u∞) is the endomormorphism of E constructed as in Notation 4.34.

Proof of Lemma 4.37. Condition (4.10) can be written as

2i`k

∫
X

Tr(ukΛFK)
ωn

n!
+ 2`2

k

∫
X
〈Ψ(`kuk)(∂̄uk), ∂̄uk〉K

ωn

n!
6

1

k
`k.

As `→∞, the expression

`Ψ(`u, `v) =
`e`(v−u) − `2(v − u)− `

`2(v − u)2

increases monotonically to (u− v)−1 for u > v and to ∞ for u 6 v.

Fix Φ as in the statement of the lemma. Because the construction Φ(uk) depends

only on the eigenvalues of uk and these are bounded uniformly in k (by the C0-

bound on the sequence), we may assume that Φ is compactly supported. Then the

assumption on Φ guarantees that Φ(u, v) < `Ψ(`u, `v) for ` sufficiently large. It

follows from the previous paragraph that for k sufficiently large, we have

i

∫
X

Tr(ukΛFK)
ωn

n!
+

∫
X
〈Φ(uk)(∂̄uk), ∂̄uk〉K

ωn

n!
6

1

2k
. (4.11)

The C0-bound on the sequence uk implies that the operator norms of Φ(uk) are
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bounded uniformly, and hence we obtain from this inequality a uniform bound on∥∥∂̄uk∥∥L2 . Therefore we may choose a subsequence so that uk → u∞ weakly in L2
1

(and strongly in L2).

Moreover, the fact that we have a uniform C0-bound on the sequence uk implies

that the sequence uk converges to u∞ in Lr for any r > 2. Indeed, let us write b for

a uniform C0-bound for the sequence uk. Then we compute that

‖uk − uj‖rLr =

∫
X
|uk − uj|rK

ωn

n!

=

∫
X
|uk − uj|r−2

K |uk − uj|
2
K

ωn

n!

6 (2b)r−2

∫
X
|uk − uj|2K

ωn

n!

= (2b)r−2 ‖uk − uj‖2
L2 .

This estimate implies that if the sequence uk is Cauchy in L2 then it is also Cauchy

in Lr for r > 2.

The proof of this lemma would be complete if we knew we could take a limit of

the inequality (4.11) as k → ∞. We can do so for the following reasons. Let ε > 0

be arbitrary. Notice that

∥∥Φ1/2(uk)(∂̄uk)
∥∥2

L2 =

∫
X
〈Φ(uk)(∂̄uk), ∂̄uk〉K

ωn

n!
.

The mapping

u 7→ i

∫
X

Tr(uΛFK)
ωn

n!

is continuous for u ∈ L2, so the inequality (4.11) implies that for k sufficiently large

we have

i

∫
X

Tr(u∞ΛFK)
ωn

n!
+
∥∥Φ1/2(uk)(∂̄uk)

∥∥2

L2 6 ε.
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This estimate implies in particular that the sequence of numbers
∥∥Φ1/2(uk)(∂̄uk)

∥∥2

L2

is bounded uniformly. Let p be a number satisfying 1 < p < 2, and let r be the

positive number such that 1/p = 1/2 + 1/r. The inequality 1 < p implies that r > 2.

By the previous paragraph, because r > 2, the sequence uk converges in Lr. It follows

from Proposition 4.36 that the sequence of operators Φ1/2(uk) converges to Φ1/2(u∞)

in the space Hom(L2(End(E)), Lp(End(E)). The sequence ∂̄uk is bounded in L2, so

we may appeal to Proposition 4.36 to find that Φ1/2(uk)(∂̄uj) → Φ1/2(u∞)(∂̄uj) for

fixed j as k →∞ in Lp. This means that for k sufficiently large we have

∥∥Φ1/2(u∞)(∂̄uj)
∥∥2

Lp
6
∥∥Φ1/2(uk)(∂̄uj)

∥∥2

Lp
+ ε,

where this estimate is independent of j because the sequence ∂̄uj is bounded uniformly

in L2. In addition, the sequence Φ1/2(u∞)(∂̄uj) converges to Φ1/2(u∞)(∂̄u∞) weakly

in Lp, so by the lower semicontinuity of the norm, we find that for j, k sufficiently

large, we have

∥∥Φ1/2(u∞)(∂̄u∞)
∥∥2

Lp
6
∥∥Φ1/2(u∞)(∂̄uj)

∥∥p
Lp

+ ε

6
∥∥Φ1/p(uk)(∂̄uj)

∥∥2

Lp
+ 2ε.

Moreover, we have an estimate of the form

‖f‖Lp 6 (vol(X ))1/r ‖f‖L2

for f ∈ L2. As p→ 2, we have r →∞, so by choosing p sufficiently close to 2, we may

ensure that (vol(X ))1/r is sufficiently close to 1. Because the sequence of numbers∥∥Φ1/2(uk)(∂̄uk)
∥∥2

L2 is bounded uniformly, we may now ensure that by taking p close
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enough to 2 that we have a uniform estimate of the form

∥∥Φ1/2(uk)(∂̄uk)
∥∥2

Lp
6
∥∥Φ1/2(uk)(∂̄uk)

∥∥2

L2 + ε.

Collecting all of the above, what we have shown therefore is that for k sufficiently

large and for p sufficiently close to 2, we have

i

∫
X

Tr(u∞ΛFK)
ωn

n!
+
∥∥Φ1/2(u∞)(∂̄u∞)

∥∥2

Lp

6 i

∫
X

Tr(u∞ΛFK)
ωn

n!
+
∥∥Φ1/2(uk)(∂̄uk)

∥∥2

Lp
+ 2ε

6 i

∫
X

Tr(u∞ΛFK)
ωn

n!
+
∥∥Φ1/2(uk)(∂̄uk)

∥∥2

L2 + 3ε

6 4ε.

If a measurable function satisfies an inequality involving the Lp-norm uniformly for

p < 2, then it satisfies the same inequality involving the L2-norm. Because ε > 0 was

arbitrary, the lemma now follows. �

We also claim the limit u∞ is nontrivial. Indeed because the sequence uk converges

to u∞ in L2, we find that the sequence also converges in L4 by the ideas in the proof of

the lemma. But we have ‖uk‖4
L4 = ‖|uk|2K‖

2
L2 = 1. We therefore find that ‖u∞‖L4 = 1,

and u∞ is nontrivial.

With the lemma, it is possible to see that the eigenvalues of u∞ are constant.

To demonstrate this, we argue that if ϕ : R → R is any smooth function, then the

function Tr(ϕ(u∞)) is constant. (Here we are using Notation 4.34.) To prove that this

function is constant, we will consider its derivative ∂̄Tr(ϕ(u∞)). If dϕ : R × R → R

denotes the difference quotient of ϕ as in Lemma 4.35, then we have ∂̄Tr(ϕ(u∞)) =

Tr(dϕ(u∞)(∂̄u∞)). Let N be a large number. Choose Φ : R × R → R which agrees
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with dϕ along the diagonal in the sense that Φ(u, u) = dϕ(u, u) = ϕ′(u) and also

ensure Φ satisfies

NΦ2(u, v) < (u− v)−1

for u < v. Then by Lemma 4.35, we have

∂̄Tr(ϕ(u∞)) = Tr(dϕ(u∞)(∂̄u∞)) = Tr(Φ(u∞)(∂̄u∞)),

and using Lemma 4.37, we find that

i

∫
X

Tr(u∞ΛFK)
ωn

n!
+N

∫
X
〈Φ2(u∞)(∂̄u∞), ∂̄u∞〉K

ωn

n!
6 0,

that is, ∫
X
|Φ(u∞)(∂̄u∞)|2K

ωn

n!
6 − i

N

∫
X

Tr(u∞ΛFK)
ωn

n!
.

The Schwarz inequality implies that

Tr(Φ(u∞)(∂̄u∞)) = 〈Φ(u∞)(∂̄u∞), IE〉K 6 r2|Φ(u∞)(∂̄u∞)|2K ,

from which we obtain

∥∥∂̄Tr(ϕ(u∞))
∥∥
L1 =

∥∥Tr(Φ(u∞)(∂̄u∞))
∥∥
L1 6 −

r2i

N

∫
X

Tr(u∞ΛFK)
ωn

n!
.

We conclude that ∥∥∂̄Tr(ϕ(u∞))
∥∥
L1 6

C

N
.

The fact that N was arbitrary implies that ∂̄Tr(ϕ(u∞)) = 0. Because the function

Tr(ϕ(u∞)) is real, we conclude that it must be a constant, as desired.

If ν1 6 · · · 6 νr denote the eigenvalues of u∞ (which are constant almost ev-
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erywhere), then we claim that not all να are equal. Indeed because each sk sat-

isfies
∫
X Tr(sk)ω

n = 0, we find also that
∫
X Tr(uk)ω

n = 0, and hence we have∫
X Tr(u∞)ωn = 0 as well. But u∞ is nontrivial, and so at least one eigenvalue must

be nonzero.

It follows that the eigenspaces of u∞ give rise to a nontrivial flag of L2
1-subbundles

of E which we denote by

0 ⊂ π1 ⊂ · · · ⊂ πr = IE ,

where πα denotes projection onto the sum of the first α eigenspaces of u∞. Note that

by construction the πα are self-adjoint with respect to K and satisfy π2
α = πα.

We claim that each πα represents a weakly holomorphic subbundle of E in the

sense of Definition 4.26. For this, it remains only to check that (IE − πα)∂̄πα = 0.

We will use Notation 4.34 to write πα as πα = pα(u∞) where pα : R→ R is a smooth

real-valued function satisfying

pα(νβ) =


1 β 6 α

0 β > α

,

from which it follows that ∂̄πα = dpα(u∞)(∂̄u∞) by Lemma 4.35.

If we set Φα : R× R→ R to be

Φα(u, v) = (1− pα)(v)dpα(u, v)

where 1 denotes the constant 1 function, then then we claim that

(IE − πα)∂̄πα = Φα(u∞)(∂̄u∞). (4.12)
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Indeed let eβ be a unitary basis for E with respect to which a local expression for u∞

is

u∞ =
∑
β

νβe
β ⊗ eβ.

Reasoning in Lemma 4.35 shows that

(∂̄u∞)γβ =


(νβ − νγ)θγβ β 6= γ

0 β = γ

where θγβ is the matrix of ∂̄. We then compute that the coefficients of Φα(u∞)(∂̄u∞)

are given by

(Φα(u∞)(∂̄u∞))γβ =


(1− pα)(νγ)dpα(νβ, νγ)(νβ − νγ)θγβ β 6= γ

0 β = γ

=


(1− pα(νγ))(pα(νβ)− pα(νγ))θ

γ
β β 6= γ

0 β = γ

=


(pα(νβ)− pα(νγ))θ

γ
β β 6= γ, γ > α

0 β = γ or γ 6 α

.

On the other hand, the previous paragraph implies that the coefficients of ∂̄πα are

given by

(∂̄πα)µβ =


(pα(νβ)− pα(νµ))θµβ β 6= µ

0 β = µ
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and also the coefficients of IE − πα are given by

(IE − πα)γµ =


δγµ γ > α

0 γ 6 α

.

The composition (IE − πα)∂̄πα therefore has coefficients

((IE − πα)∂̄πα)γβ = (IE − πα)γµ(∂̄πα)µβ

=


(∂̄πα)γβ γ > α

0 γ 6 α

.

Comparing with the coefficients for Φα(u∞)(∂̄u∞) we find the relation (4.12) is indeed

true.

We next claim that for νγ > νβ, we have Φα(νγ, νβ) = 0. There are two possibilities

for νβ: either νβ 6 να or νβ > να. If νβ 6 να, then pα(νβ) = 1 and so Φα(νγ, νβ) = 0

by definition. On the other hand, if νβ > να, then for νγ > νβ > να, we have that

each pα(νγ) = pα(νβ) = 0, and so the difference quotient dp(νγ, νβ) vanishes. The

claim now follows.

Because the eigenvalues of u∞ are constant almost everywhere, the construction

Φα(u∞) depends only on the values of Φα : R × R → R on the pairs of eigenvalues

(νβ, νγ). So by replacing Φα with ΦN
α satisfying ΦN

α (νγ, νβ) = Φα(νγ, νβ) and

N(ΦN
α )2(u, v) < (u− v)−1 for u > v,
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then we find that still we have

(IE − πα)∂̄πα = ΦN
α (u∞)(∂̄u∞),

but now we have guaranteed in addition that
∥∥ΦN

α (u∞)(∂̄u∞)
∥∥2

L2 6 C/N by following

the line of reasoning from earlier in the argument. Because N is arbitrary, we can

conclude that ΦN
α (u∞)(∂̄u∞) = 0. This therefore completes the proof that πα is a

weakly holomorphic subbundle.

We finally show that at least one of the πα for α < r is destabilizing. In a

telescoping manner we may write

u∞ = νrIE −
r−1∑
α=1

(να+1 − να)πα.

Then, according to Definition 4.26, the following sum of degrees is given by

W = νr deg(E)−
∑
α

(να+1 − να) deg(πα)

= νr
i

2π

∫
X

Tr(ΛFK)−
∑
α

(να+1 − να)

(
i

2π

∫
X

Tr(παΛFK)− 1

2π

∫
X
|∂̄πα|2K

)
=

i

2π

∫
X

Tr(u∞ΛFK) +
1

2π

∫
X

∑
α

(να+1 − να)|∂̄πα|2K .

Because ∂̄πα = pα(u∞)(∂̄u∞), we obtain

W =
i

2π

∫
X

Tr(u∞ΛFK) +
1

2π

∫
X

∑
α

(να+1 − να)〈(dpα)2(u∞)(∂̄u∞), ∂̄u∞〉K .

For fixed νβ > νγ, if να satisfies νβ > να > νγ, then dpα(νβ, νγ)
2 = (νβ − νγ)−2, and
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vanishes otherwise. It follows that for νβ > νγ, the (telescoping) sum satisfies

∑
α

(να+1 − να)(dpα)2(νγ, νβ) =
νβ − νγ

(νβ − νγ)2
=

1

νβ − νγ
.

Lemma 4.37 implies that W 6 0, which means that

νr deg(E) 6
∑
α

(να+1 − να) deg(πα). (4.13)

On the other hand, the trace of u∞ is zero, which means that

νrrk(E) =
∑
α

(να+1 − να)Tr(πα).

If each deg(πα) satisfied deg(πα) < Tr(πα)(deg(E)/rk(E)), then we would have

∑
α

(να+1 − να) deg(πα) <
deg(E)

rk(E)

∑
α

(να+1 − να)Tr(πα) = νr deg(E),

which contradicts (4.13). It follows that at least one πα has µ(πα) > µ(E).

This completes the proof of Lemma 4.28. �
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[17] F. Campana. Orbifoldes á premiére classe de Chern nulle. arXiv preprint

math/0402243, 2004.

[18] P. Candelas and C. Xenia. Comments on conifolds. Nuclear Physics B,

342(1):246–268, 1990.

[19] A. Chaljub-Simon and Y. Choquet-Bruhat. Problèmes elliptiques du second

ordre sur une variété euclidienne à l’infini. In Annales de la Faculté des sciences
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