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Abstract

Background: A range of rare and common genetic variants have been discovered to be potentially associated
with mental diseases, but many more have not been uncovered. Powerful integrative methods are needed to
systematically prioritize both variants and genes that confer susceptibility to mental diseases in personal genomes
of individual patients and to facilitate the development of personalized treatment or therapeutic approaches.

Methods: Leveraging deep neural network on the TensorFlow framework, we developed a computational tool,
integrated Mental-disorder GEnome Score (iMEGES), for analyzing whole genome/exome sequencing data on
personal genomes. iMEGES takes as input genetic mutations and phenotypic information from a patient with
mental disorders, and outputs the rank of whole genome susceptibility variants and the prioritized disease-specific
genes for mental disorders by integrating contributions from coding and non-coding variants, structural variants
(SVs), known brain expression quantitative trait loci (eQTLs), and epigenetic information from PsychENCODE.

Results: iMEGES was evaluated on multiple datasets of mental disorders, and it achieved improved performance
than competing approaches when large training dataset is available.

Conclusion: iMEGES can be used in population studies to help the prioritization of novel genes or variants that
might be associated with the susceptibility to mental disorders, and also on individual patients to help the
identification of genes or variants related to mental diseases.

Keywords: Structural variants (SVs), Single nucleotide variants (SNVs), Machine learning, Deep neural network,
Mental disorders, Personal genome

Background
Mental disorders, such as schizophrenia, bipolar disorder,
attention-deficit/hyperactivity disorder (ADHD), autism
spectrum disorder (ASD), major depressive disorder
(MDD) and language/communicative impairments, have
been found to affect ~ 25% people worldwide at some

point in their lives [1]. Thus, mental disorders have been
placed as one of the leading causes of disability and they
take a significant social and economic toll to the society.
Genetic factors have been suggested to be a strong con-
tributors to neuropsychiatric and neurodevelopmental dis-
orders by a wide range of evidence in existing work [2–9].
Hundreds of variants with small effect sizes have been
identified by standard genome-wide association studies
(GWAS) in several mental disorders [10–13], and a
number of rare CNVs associated with a range of mental
disorders have also been detected by genome-wide copy
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number variations (CNVs) studies [14–17]. Recently, de
novo mutations in specific genes or pathways were also
found to be associated with several mental disorders
[18–20]. With the recent rapid development of next-
generation sequencing techniques, a large amount of
high-throughput whole-genome sequence data were
generated, making it possible to study well-phenotyped
patients with mental disorders by examining all types of
genetic variations in their genomes. Improved under-
standing of the genetic basis of mental disorders could
be obtained by direct identification of casual variants
rather than proxy markers from whole-genome
genotyping.
However, there are still at least three critical problems

in genetic analysis of mental disorders. First, although
by using high-throughput genomic data, a range of rare
and common genetic variants have been discovered to
be potentially associated with mental disorders with
varying effect sizes [21–24], many more have not been
uncovered. Second, there are also a lack of powerful inte-
grative methods to systematically prioritize variants and
genes that confer susceptibility to mental disorders. Third,
with the discovery of candidate variants for mental dis-
eases, it is not easy to design appropriate functional
follow-up experiments since the mechanisms of action are
still unclear based on those candidate variants. With these
unsolved problems, a large gap clearly exists between the
amount of data for genetic variations and the comprehen-
sion on how they impact diseases, resulting in a substan-
tial delay to develop targeted treatment approaches. Many
computational algorithms have been proposed to study
coding variants which might affect protein functions, but
how non-coding variants impact mental diseases is very
challenging. With increasing volume of genomic data, a
lot of functional DNA elements in human genome have
been identified [25], and different computational tools and
various machine learning algorithms have been designed
to distinguish pathogenic and neutral variants for both
coding and non-coding mutations, such as the CADD
score (Combined Annotation Dependent Depletion) [26],
the DANN score [27], the GWAVA score [28], the
FATHMM-MKL score [29], the deltaSVM score [30], the
DeepSEA (Deep learning–based SEquence Analyzer)
score [31], as well as other similar scores such as the
GTEx (Genotype-Tissue Expression) score [32] and the
intolerance score [33]. Many sets of available annotations
enabled the study of how coding and non-coding variants
function in mental diseases, and we previously developed
a method for variant prioritization by integrating various
computational functional methods for non-coding vari-
ants scores for mental disorders [34]. However, there are
still a lack of tools available specifically to predict the
consequences of non-coding variants for mental disorders
on personal genomes that consider the specific properties

of mental diseases and neuronal genes. To extend our
previous work [34], we developed a novel bioinformatics
tool, integrated MEntal-disorder GEnome Score (iMEGES),
which leverages a two-steps strategy to predict the impacts
of variants and genes in personal genomes on mental
diseases:

a) In the first step of iMEGES, we used a deep
learning approach to build a whole genome variant
score for variants which affect brain functions, and
to prioritize non-coding variants and to generate
non-coding variants score for brain disorders called
ncDeepBrain score.

b) In the second step of iMEGES, we used another deep
learning framework to integrate the ncDeepBrain
score, general gene scores (such as GTEx), and
disease-specific scores to prioritize mutated genes for
mental disorders based on individual patient’s own
phenotype and genotype information.

iMEGES was evaluated on a few publicly available
data sets of mental disorders. We believe that iMEGES
can be used in population studies to prioritize novel
genes or variants which might be associated with the
susceptibility of mental diseases, and also on individual
patients to help identify genes or variants related to
mental diseases. iMEGES is available at https://github.
com/WGLab/iMEGES.

Methods
Schematic framework of iMEGES
As shown in Fig. 1, the input to iMEGES is genetic mu-
tations and phenotypic information from a patient. The
input format could be ANNOVAR [35] input format,
VCF format, or BED format. The outputs of iMEGES
are the ranking of whole genome susceptibility variants
together with the detailed information for each variant,
and the prioritized disease-specific genes together with
iMEGES scores for mental disorders. Correspondingly,
iMEGES contains two main steps (see Fig. 1), variant
prioritization and gene prioritization.
For non-coding variants (whole genome variants), vari-

ant scoring step in iMEGES generates non-coding variants
score from various existing prediction algorithms, and
then prioritizes susceptibility variants for mental disor-
ders. Several non-coding scores from existing predictors
were used to prioritize non-coding variants, such as the
known eQTLs data from CommonMind project in brain
tissues, and enhancers/promoters regions from PsychE-
NOCDE and RoadMap Epigenomics projects. These
scores were integrated by a deep learning process in our
model to generate our variants score named as the
ncDeepBrain score. The ncDeepBrain score supplements
functional scores for coding variants and structural
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variants in the genome. Gene prioritization in
iMEGES uses a deep learning framework and takes
as input various variables: the ncDeepBrain scores of
the first step, general gene-specific scores (such as
RVIS, GTEx and haploinsufficiency scores), and
disease-specific scores (such as Phenolyzer, CNVs and
de novo mutations scores) to prioritize genes for
mental diseases. The details of the two steps are de-
scribed below.

Variant prioritization
Variant prioritization at iMEGES integrates various
non-coding scores, the known eQTLs, and enhancers/
promoters regions for ranking variants. These scores are
described below.

Non-coding scores
Non-coding scores used in iMEGES includes EIGEN
[36], CADD [26], DANN [27], GWAVA [28] and
FATHMM (Functional Analysis through Hidden Markov
Models) [29]. The EIGEN score measures functional im-
portance and is generated by unsupervised machine
learning based on diverse annotations [36]. The EIGEN
score is publicly available for 9 billion variants. The
CADD was generated by support vector machine (SVM)

to discriminate observed variants 14.7 million high-fre-
quency from simulated 14.7 million variants [26]. Based
on the same data used in training of CADD scores, a
deep learning approach called DANN was also developed
to discriminate observed variants from simulated variants
[27]. GWAVA is whole genome score based on modified
random forest algorithm [28]. In GWAVA, 174 different
genomic and epigenomic annotations were used to define
a new whole genome variants GWAVA score. The
FATHMM score can be used to estimate the impact of
both coding and non-coding variants [29]. In iMEGES,
ANNOVAR [35] was used to extract all ~ 9 billion pos-
sible SNPs in the human reference genome (GRCh37),
and genome-wide pre-computed prediction scores pre-
dicted by these computational tools were used for vari-
ant prioritization.

Enhancer and promoter regions
The ChIP-seq data used in variant prioritization includes
EpiMap (doi:https://doi.org/10.7303/syn4566010), CNON
(doi:https://doi.org/10.7303/syn4590897) and Yale-ASD
(doi:https://doi.org/10.7303/syn4566141) for different
types of brain tissues, which were downloaded from the
PsychENCODE project [37] (Please refer to our work [34]
for detail.). Variants based on the ChIP-seq data from
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Fig. 1 Schematic overview of iMEGES. The input are whole genome variants from patients with mental disorders, in ANNOVAR input format, BED
format or VCF format. In variant prioritization of iMEGES, iMEGES extracts predicted scores from various predictors for non-coding variants, the
GNOMAD frequency, known brain eQTLs scores, enhancer and promoter regions of the brain, and then trains a deep learning algorithm for
generating variant score named as ncDeepBrain. In gene prioritization, iMEGES integrates the variant score from the first step, general gene scores
(RVIS, GTEx and haploinsufficiency scores), and disease-specific scores such as Phenolyzer, CNVs and de novo mutations scores to generate iMEGES
gene prioritization score for mental disorders
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these projects were then annotated using ANNOAR [35]
to know whether variants are likely functional by inspect-
ing where the mutations are located, within or outside the
ChIP-seq region.
The enhancer and promoter data of brain from Roadmap

Epigenomics Project (http://www.roadmapepigenomics.org)
was also used in variant prioritization. This data set con-
tains various brain tissues such as angular gyrus, anterior
caudate, cerebellum, cingulate gyrus, fetal, hippocampus
middle, inferior temporal lobe, mid frontal lobe and sub-
stantia nigra. Existing works have found that significant
gene expression changes, resulting from the variation in
regulatory regions such as SNVs and CNVs, might be dir-
ectly link to pathogenicity [38, 39], and are more common
in mental disorder such as schizophrenia and ASD [40, 41].
Therefore, non-coding variants in the enhancer and pro-
moter regions of brain were also integrated into variant
prioritization according to Eq. (1).

f variantð Þ ¼ 1; if a variant∈ the regions of enhancers and promotersð Þ
0; if a variant∉ the regions of enhancers and promotersð Þ

�

ð1Þ

Expression quantitative trait locus (eQTLs)
Expression Quantitative Trait Loci (eQTLs) are gen-
omic loci whose variants are closely associated with the
changes in gene expression and can be potential loci
for brain disorders [42]. Existing studies have examined
such SNP-transcript association in different brain sam-
ples [42–44]. In this study, significant eQTLs were
downloaded from [44] and the CommonMind database
[45] where the 6.4 million genotyped and imputed
markers with estimated allele frequency ≥ 0.05 and
16,423 genes were generated for analysis in variant
prioritization based on Eq. (2).

f ðvariantÞ ¼
n 0:5; i f a variant does not have a known brain eQTLs score

score; i f a variant has known brain eQTLs score

ð2Þ

In iMEGES, all the variants were annotated using
ANNOVAR [35], and different variant scores, including
EIGEN [36], CADD [26], DANN [27], GWAVA [28],
FATHMM [29], GNOMAD frequency [46], the known
brain eQTLs from CommonMind, enhancers/promoters
data from PsychENOCDE and Roadmap Epigenomics
projects were then used to prioritize coding and
non-coding variants for mental diseases.

Gene prioritization
Gene prioritization in iMEGES takes the input of the
ncDeepBrain score of the first step, RVIS, GTEx, hap-
loinsufficiency scores, and disease-specific scores (such

as Phenolyzer, CNVs and de novo mutations in mental
disorders). To link the ncDeepBrain scores of non-
coding variants to genes, we used a genomic distance
(≤ 100 kb) between SNP marker and gene position. Given
the fact that some genes harbor more than one mutation,
we used all the mutations and prioritized each of the vari-
ants for specific mental disorders genes. Other scores used
in gene prioritization were calculated by existing tools and
details are given below.

General scores
Genotype-tissue expression (GTEx) score
Recently thousands of loci have been detected by GWAS
for common diseases [10, 47–49] and hundreds of suscep-
tibility genes were identified for many human conditions
and quantitative traits [50, 51]. However, for most of the
loci, the mechanisms underlying disease susceptibility re-
main unknown. The Genotype-Tissue Expression (GTEx)
project was developed and a database was provided to sci-
entific community [32], to study the association between
genetic variations and gene expression in 44 different hu-
man tissues. We downloaded the GTEx scores for all tis-
sues, using a stringent threshold of Q-values < 0.05 for
defining significant associations. The GTEx score for each
of the SNPs-genes pairs was used in iMEGES.

f ðvariantÞ ¼
nEMR; i f a variant does not have a GTEx score

score; i f a variant has GTEx score q−value

ð3Þ

where EMR is the estimate of missing rate of GTEx
score described later.

Residual variation intolerance (RVIS) score
The RVIS score measures the tolerance of genes to mu-
tations. We downloaded RVIS scores from [33] for gene
prioritization by using Eq. (4).

f ðgeneÞ ¼
n 0; i f a gene does not have a RV IS score

score; i f a gene has RVIS score

ð4Þ

Haploinsufficiency score
Haploinsufficiency refers to the biological insufficiency of
a single functional copy of a gene to maintain the normal
function which might cause many dominant diseases [52].
We downloaded the haploinsufficiency score from [53]
and used these scores in gene prioritization in iMEGES.

Disease specific scores
Phenolyzer score
Phenolyzer is a computational tool, which prioritizes dis-
ease genes based on a list of phenotype terms, and can
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facilitate the analysis of whole genome and exome se-
quencing studies [53]. Phenolyzer score can be used for
each of the mental disorder diseases: schizophrenia,
ASD, ADHD and MDD. However, when more detailed
phenotype information for each patient is available (such
as Human Phenotype Ontology terms), they can be
optionally used as input to Phenolyzer to obtain priori-
tized gene scores. For whole genome variants, we used
ANNOVAR to annotate variants and each non-coding
variant was assigned to its closest gene based on gen-
omic distance.

f ðgeneÞ ¼
nEMR; i f a gene does not have a Phenolyzer score

score; i f a gene has Phenolyzer score

ð5Þ
where EMR is the estimate of missing rate for several
diseases such as schizophrenia and autism.

Copy number variations (CNV) score
Copy number variations (CNV) are traditionally defined
as duplication or deletions of genome fragment more than
1 kb, when compared to the human reference genome.
Previous studies demonstrated that CNV may account for
a significant proportion of human genome even when
analyzing healthy subjects [54]. The genome-wide associ-
ation studies (GWAS) on mental disorders can also
analyze CNV sites using the SNP genotyping data. Mar-
shall et al. studied schizophrenia cohort of 21,094 cases
and 20,227 controls to investigate the contribution of
CNVs to etiology of schizophrenia [55]. We downloaded
the CNV data of schizophrenia from [55], which contains
1309 genes with significant q-values. We used q-values for
significant genes in gene prioritization based on Eq. (6):

f geneð Þ ¼ 0:5; if a gene does not have a CNV score
score; if a gene has CNV score q−valueð Þ

�

ð6Þ

De novo mutations (DNM) score
Each individual person may carry some new variants,
which are not present in the genomes of their parents
and thus denoted as de novo mutations. Most of de
novo mutations do not cause diseases [56] or they may
merely represent false variant calls, however, some de
novo mutations may contribute to different types of dis-
ease/phenotype [57, 58]. Several severe developmental/
mental disorders, such as autism [17, 59, 60] and schizo-
phrenia [18, 61], were found to have enrichment in dam-
aging de novo mutations in developmentally important
genes. We downloaded whole genome de novo muta-
tions from de novo mutations database for neuropsychi-
atric disorders (http://www.wzgenomics.cn/NPdenovo/
download.php), and de novo mutations from db-denovo

database (http://denovo-db.gs.washington.edu/) of different
published studies [62]. We used all these de novo muta-
tions in our feature vector of gene prioritization to
prioritize human genes involved in human brain disorders.
For a quick reference, the scores and tools used were

summarized in Additional file 1: Table S1.

Deep neural network model in iMEGES
For both variant prioritization and gene prioritization in
iMEGES, corresponding features above would be used as
input of deep learning framework, and there were two
similar deep learning frameworks: one for variant
prioritization and the other for gene prioritization. The
details are described below.
Deep learning framework used in this study is a typical

multilayer neural network with one input layer, one out-
put layer and several hidden layers. Each of hidden layers
consists of several computational neurons, and several se-
quential layers are organized to conduct sequential func-
tional transformations. A neuron in a layer is fed by input
data or the output from a set of previous-layer neurons
and generated a single value as output.
In iMEGES, four hidden layers were used, and the

number of hidden nodes was tuned. To void diminishing
effect in neural network, we applied the well-known
dropout strategy where a proportion of neurons at a spe-
cific layer are randomly set to a value of 0 in each step
to regularize the model. The dropout rates of neurons
need to be manually tuned to generate better model. For
the last layer of each step in iMEGES, the sigmoid out-
put layer ( ŷ ¼ SigmoidðXÞ ¼ 1

1þe−½WTXþb� ) was used to

make predictions for variants/genes and the output
scores were scaled to the 0–1 range. Here, X denotes in-
put matrix, W representes weight matrix for the sigmoid
output layer, T refers to transpose, b is bias term in lin-
ear combination of predictors, and ŷ is final sigmoid
function. For variant prioritization, the used features X
are

F ¼ EIGEN;CADD;DANN;GWAVA; FATHMM;GNOMAD;
eQTLs;H3K4me3;H3K4me1;H3K27me3;H3K27Ac

� �

For gene prioritization, the used features X are

F ¼ �
ncDeepBrain;RVIS;GETx;Haploinsufficiency; Phenolyzer;

CNV; de novo mutationÞ:

The objective function to be minimized in iMEGES is the
sum of the negative log likelihood Lðy; ŷÞ ¼ −ylogŷ−ð1−yÞ
logð1−ŷÞ where y are actual labels in training datasets while
ŷ are prediction. This objective function is optimized ac-
cording to the stochastic gradient descent with momentum
using standard back-propagation algorithm. As for muta-
tions with missing values, we used bPCA (Bayesian Princi-
pal Component Analysis) fill to impute values for each
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missing value of variants. bPCA is a computational tool
to estimate missing values in large dataset [63]. The
imputation was conducted for DANN, CADD, EIGEN,
GWAVA and FATHMM using non-missing scores of
each of variants for all potential SNVs in human
whole genome. The missing values were summarized
in Additional file 1: Table S2.
Our model implemenation utilized the Keras library

(https://keras.io/) with TensorFlow as a backend (https://
www.tensorflow.org/) for deep learning in iMEGES to
rank the variants and genes for brain. The correlation
between all the feature scores was also investigated in our
training dataset to build efficient deep learning model with
proper feature scores.
A ten-fold cross-validation was used to test predictive

performance of iMEGES with estimated receiver operat-
ing characteristic (ROC) curve with sensitivity against
specificity and area under curve (AUC), where the ROC
plots were generated using python scikit, a machine
learning library in python. Imbalanced data refers to a
problem when one of the classes is rare over the other
class. We used ROSE R library to handle imbalanced
testing and training datasets for iMEGES [64].

Datasets used in iMEGES
Four training and four testing datasets were used for
variant prioritization in iMEGES.

Training dataset 1: DNase I sensitivity quantitative trait loci
(dsQTL) data
The first training data were downloaded from [30],
including 574 dsQTL positive SNPs and 27,735 negative
SNPs with minor allele frequency (MAF) > 5% in dsQTL
regions. dsQTL positive SNPs were strictly selected by
deltaSVM [30] to ensure the causality of dsQTL SNPs to
DNase I sensitivity change.

Training dataset 2: GWAVA-region
In the second training data, there are 1614 non-coding
regulatory SNPs downloaded from HGMD (human gene
mutation database with the April 2012 release using
GWAVA) [28], while negative common SNVs were ran-
domly selected from variants with MAF > 1% from the
1000 genomes project [65].

Training dataset 3: Expression quantitative trait loci fine-
mapping data
The third training dataset contains 31,118 functional
eQTLs which were generated from joint test of 7 brain
tissues/cell lines from eleven studies [66, 67], and an equal
number (36,540) frequency-matched background SNPs
which were sampled around the nearest TSS of randomly
selected genes.

Training dataset 4: Expression quantitative trait loci data
The fourth training dataset used in this study was gener-
ated by DeepSEA [31]. In this dataset, the associated
SNPs were generated with P-value cutoff 1 × 10− 10 from
the non-coding eQTLs of GRASP (Genome-Wide Re-
pository of Associations between SNPs and Phenotypes)
[68], and the non-associated SNPs were generated from
1000 Genomes Project [69], and randomly selected from
those SNPs which are closest to associated SNPs and
with matched minor allele frequency distribution from
associated SNPs.

Testing dataset 1: Schizophrenia
The first testing dataset is for schizophrenia, and has
3440 significant SNPs and 66,916 non-significant SNPs
[70], and downloaded from PGC (Psychiatric Genomics
Consortium: https://www.med.unc.edu/pgc). In this
study, the significant positive SNPs must have P-value
less than 1 × 10− 10 and non-significant negative SNPs
have P-value > 0.5. Positive and negative SNPs must have
matched frequency.

Testing dataset 2: Autism spectrum disorder
The second testing dataset was downloaded from [71]
for ASD. In this dataset, the 8002 significant SNPs have
P-value not higher than 0.0227, and the 19,322
non-significant SNPs have P-value not less than 0.06.

Testing dataset 3: Regulatory variants
The third testing dataset was downloaded from [66] with
manual curation. This dataset contains 76 regulatory
variants which were experimentally validated, and 156
background SNPs which were frequency-matched from
nearby regions of regulatory variants.

Testing dataset 4: Synonymous pathogenic variants
The fourth testing dataset has 477 de novo synonymous
variants compiled by Gelfman et al. [72]. Using the
pathogenicity (TRaP) score designed in [72], 75 of 477
variants are determined as pathogenic, and the rest 402
variants are not-associated.

Results
iMEGES has two deep learning modules, one for vari-
ant prioritization and the other for gene prioritization
for mental disorders. Variant prioritization prioritizes
the susceptibility variants according to the ncDeepBrain
score which was generated by integrating scores from
various predictors for non-coding variants, the known
eQTLs from CommonMind project in brain tissues,
and enhancer/promoter regions from the PsychENOCDE
and RoadMap Epigenomics projects. After that, another
deep learning framework takes as input the ncDeepBrain
score, three gene-based scores of RVIS, GTEx and
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haploinsufficiency scores, and three disease-specific scores
from Phenolyzer, CNVs and de novo mutations on mental
disorders, to prioritize mental disease genes. Below, we
detailed the performance for each of the two modules of
iMEGES and demonstrated the performance of iMEGES
in real-world applications.

Variant prioritization
In variant prioritization (ncDeepBrain) of iMEGES, both
tissue-related scores and other general (non-tissue-speci-
fic) scores for non-coding variants were used. General
scores, such as these scores from EIGEN, CADD, DANN,
GWAVA and FATHMM, provide general information of
non-coding variants at a genomic scale. Tissue-related
scores of known eQTLs in brains from CommonMind,
and enhancer/promoter from the PsychENCODE project
might contain more specific information related to brain
tissues and mental disorders. The two types of scores were
integrated by a deep learning framework (ncDeepBrain for
short in iMEGES).
To test the redundancy of different scores of genetic

variants conferring susceptibility to mental diseases
[73], Pearson’s correlation coefficient of each pair of
these scores for non-coding variants were calculated
and presented in Fig. 2(a). Violin plots of all predictors
on training dataset 1 were also shown in Fig. 2(b) to
confirm that the distributions of these scores for associ-
ated and non-associated variants do not contains

outliers and the correlation of the variables in the train-
ing dataset 1 is tabulated in Additional file 1: Table S3.
To compare the performance of variant prioritization
for ncDeepBrain, we generated ROC curves for discrimin-
ating disease variants from non-disease variants (normal)
in the testing set and calculated AUC scores. The classifi-
cation AUC value of ncDeepBrain is 80% on the deltaSVM
data training dataset 1 as shown in Additional file 1:
Figure S2(a). We also trained ncDeepBrain on the
GWAVA data of positive and negative SNPs. The classi-
fication AUC value of ncDeepBrain on the GWAVA’s
paper data is 91% (see Additional file 1: Figure S2(c)).
ncDeepBrain works well on this data (see Fig. 3(c)).
However, GWAVA was trained using Human Gene
Mutation Database (HGMD) and may suffer from over-
fitting issues [74]. The AUC values of ncDeepBrain on
testing dataset 1 and testing dataset 3 are 75% and 89%
respectively (Additional file 1: Figure S3(a, c)).
The classification AUC value of ncDeepBrain on PGC

schizophrenia data is 75%, and ncDeepBrain works better
on this data, however its AUC value is still unsatisfactory
on testing dataset 1 as shown in Additional file 1: Figure
S1 (b). We suspect that it might be due to the fact that
TN (true negative) and TP (true positive) variants are not
well defined, since the variants were sampled based on
imputed p-values/variants frequency from genome-wide
association studies (GWAS), and most of these variants
may be proxy markers of causal variants.

a b

Fig. 2 Correlation between the predictors used in iMEGES on training dataset 1. The feature vector contains different non-coding variants scores,
enhancers, promoters and known brain eQTLs for variant prioritization of iMEGES. a Correlation plots illustrate Pearson correlation between each
of all scores from the predictors and outcome on the training dataset. The level of correlation was indicated by color and size of the shaded
regions in the pie charts at upper right, and blue and larger proportions of the shaded regions suggest higher positive correlation. b Violin plots
of scores from various predictors on the training datasets in associated and non-associated groups, and in each violin plot, the median and the
first through third interquartile range of predicted scores in each group were provided
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We also tested ncDeepBrain and logistic regression
ncLGBrain models on testing datasets in Table 1 for
discriminating disease variants from neutral variants. For
training dataset 1, 4 and testing dataset 3, ncLGBrain
performed better than ncDeepBrain (see Fig. 3(a, d)),
however for training 2, 3 datasets ncDeepBrain per-
formed better than ncLGBrain (see Fig. 3 (b) and (c)).
Additionally, we trained both models on training data-

sets 1, 2, 3, 4 and tested on testing dataset 3. For training
dataset 1 and testing dataset 1, ncDeepBrain outperforms
the logistics regression as shown in Additional file 1:
Figure S1(a), where the AUC value of ncDeepBrain is 61%
and the AUC value of ncLGBrain is 55%, for training data-
set 2 and testing dataset 1, the ncLGBrain outperformed
the ncDeepBrain (see Additional file 1: Figure S1 (b)). For
training dataset 2, 3 and testing dataset 1 both the models
performed quite similar (Additional file 1: Figure S1 (b,
c)). For training dataset 4 and testing dataset 1,

ncDeepBrain outperformed the ncLGBrain model (see
Additional file 1: Figure S1(d)). The AUC value of
ncDeepBrain is low for training datasets 1, 2, 3, 4 and
testing dataset 2 (as shown in Additional file 1: Figure
S4), possibly due to the false positives and false nega-
tives in the testing dataset 1.
Furthermore, we compared our ncDeepBrain score

with each of the individual scores such as EIGEN,
CADD, DANN, GWAVA and FATHMM. The
ncDeepBrain outperformed the existing methods in
terms of AUC value for training dataset 1 (see Add-
itional file 1: Figure S5). For training dataset 1, the
AUC values of EIGEN, CADD, DANN, GWAVA and
FATHMM are 52%, 57%, 57%, 59% and 57% respect-
ively (Additional file 1: Figure S5), but the AUC value
achieved by ncDeepBrain is 80%, which substantially
outperformed each individual score (See Additional
file 1: Figure S2(a)).

Fig. 3 The AUC performance of non-coding variant prioritization of iMEGES for ncDeepBrain (a deep learning model) and ncLGBrain (logistic
regression) scores. The higher AUC score is, the better performance is for discriminating disease-related variants from neutral variants. The
performance values were achieved by ncDeepBrain and ncLGBrain on testing dataset 3, when ncDeepBrain and ncLGBrain were trained on
training sets 1, 2, 3 and 4 respectively for (a), (b), (c) and (d)
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To evaluate the approach for the prioritization of
disease-relevant variants for personal genomes in indi-
viduals affected with mental disorders, we analyzed the
whole-genome sequencing data on two patients affected
with autism spectrum disorders, which were previously
published [75]. In the original publication published
five years ago, we detected 59 candidate coding variants
which might increase susceptibility to autism, and fur-
ther identified ANK3 as the most likely candidate gene
by manual examination. In [75], we also identified 33
prioritized non-coding variants with evolutionary con-
straint and experimental evidence from ENCODE. We
hypothesize that additional annotation information such
as PsychENCODE and Roadmap Epigenome Project that
are available today can help us further refine possible
disease-relevant variants. Therefore, we re-analyzed the
previously published data set, and found that 19 of 33 var-
iants are in PsychENCODE peaks or Epigenome peaks.

Gene prioritization
Gene prioritization of iMEGES used a deep learning
framework to integrate the ncDeepBrain score, general
scores (such as GTEx score of the variants with q-value
less than or equal to 0.05 [32] for each of the 44 avail-
able tissues from the GTEx database, RVIS gene score
[33], a haploinsufficiency score and the disease specific
scores (such as Phenolyzer score for each gene [53],
CNVs and de novo mutations scores of mental disor-
ders). The purpose of this step is to discriminate causal
genes from genes unrelated to mental disorders, and
then to generate the iMEGES score to prioritize suscep-
tibility genes which might be associated with mental dis-
eases. For a given patient, it is also possible to prioritize
the disease-related genes based on genomic profile of
this patient by integrating variant-level and gene-level
scores.

First we examined the summary statistics for all feature
variables to ensure validity of these variables used in gene
prioritization. We investigated whether there were any
outliers which are biologically feasible, and used pairwise
correlation to diagnose the collinearity of the variables to
make ensure that no feature variables are collinear.
We evaluated the performance of gene prioritization

in iMEGES on the schizophrenia dataset. The per-
formance of iMEGES for gene prioritization are
shown in Fig. 4. Here the ncDeepBrain score was cal-
culated by the first step of iMEGES on the schizo-
phrenia and ASD datasets. To compare the
performance of iMEGES for gene prioritization, we
generated ROC curves for discriminating the disease
genes from the non-disease genes on the schizophre-
nia dataset and calculated AUC scores. The classifica-
tion AUC value of gene prioritization of iMEGES is
57% (see Fig. 4 (a)) and 58% (see Fig. 4 (b)) for
schizophrenia and ASD datasets respectively. Gene
prioritization thus provides useful information to
identify disease genes. However, the relatively low
AUC values suggest that additional improvements in
gene prioritization is needed.

Discussion
Mental disorders represent significant social and eco-
nomic toll to the society, and as a group is one of the
leading causes of disability worldwide. High-throughput
genomic sequencing techniques have enabled the de-
tection of many genetic variants that may contribute to
the development of mental disorders. However, the
genetic complexity and heterogeneity of mental disor-
ders make the identification and interpretation of gen-
etic variants or genes difficult challenges. In this study,
we designed a practical tool, iMEGES, for prioritizing
genetic variants and genes that may be associated with
specific clinical phenotypes in personal genomes from

Table 1 The training and testing datasets variant prioritization of iMEGES

Dataset Positive Negative Description

Training dataset 1 574 27,735 The most likely causal dsQTL SNPs were downloaded from deltaSVM [30]

Training dataset 2 1614 161,400 Regulatory associated mutations were downloaded from HGMD from
2012, and random SNVs with allele frequency≥ 1% in the 1000
Genomes Project

Training dataset 3 31,118 36,540 eQTLs SNPs were collected from 11 studies on 7 tissues/cell lines

Training dataset 4 78,613 593,335 Non-coding eQTLs from GRASP was considered to be associated, while
SNPs from 1000 Genomes Project not to be associated

Testing dataset 1 3439 66,916 Based on P-values of imputed SNPs from Psychiatric Genome Consortium
(PGC) schizophrenia GWAS

Testing dataset 2 8002 19,322 Based on P-values of imputed SNPs from Psychiatric Genome Consortium
(PGC) autism spectrum disorder (ASD)

Testing dataset 3 76 156 Manually curated regulatory SNPs with experimental validation.

Testing dataset 4 75 402 The synonymous variants compiled by [72]
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patients affected with mental disorders. This tool uses a
deep learning framework to prioritize variants detected
in a personal genome, and thus can enable the identifi-
cation of specific variants known to be associated with
mental disorders, but also help detect novel variants in
mental disorders. Further, based on various prediction
scores of variants in a personal genome, the second
deep learning step in iMEGES is used to prioritize
genes associated with specific observed clinical pheno-
types in a patient. The top-rank genes are more likely
to be disease-relevant genes which might influence sus-
ceptibility to mental disorders for a specific patient.
The personalized analysis of variants and genes helps
identify potential targets, so that the treatment would
be more efficient and effective. To the best of our
knowledge, there is not such tools available for mental
disease for similar purposes. Meanwhile, iMEGES only
requires the patient’s genomic mutation data in VCF
format (optionally, the detailed clinical phenotypic pre-
sentations) and manages all data preprocessing steps
for users in an automated fashion, which facilitates re-
searchers to gather a list of prioritized variants and
genes easily.
Despite these unique advantages, as one of the first

tools for comprehensive prioritization of variants and
genes for mental diseases, iMEGES has several limita-
tions which can be addressed in our future development
of the tool. First, it is challenging to obtain large-scale
high quality data for training statistical models. Since
deep learning model was used in iMEGES for classifying
the mental disease related mutations and neutral muta-
tions, a large number of high quality data would be help-
ful. Unfortunately, due to the paucity of data, some of
our procedures must rely on imputed GWAS data, and

many such hits represent proxy markers rather than
true causal variants, making the model less reliable
than ideal. Secondly, to use information from the
non-coding variants, we associated each non-coding
variant to its closest gene in the genome. This strat-
egy may work well for promotors, which explain a
fraction of the variations in RNA expression, but for
other types of regulatory elements, this strategy may
be less optimal. These limitations would be addressed
in future, and we expect that iMEGES will be a
powerful tool to bridge the gap between the increas-
ing amount of genetic data on patients and the com-
prehension of the functional impacts of genetic
variants in mental diseases.

Conclusions
We developed a computational tool, iMEGES, for the
prioritization of variants and genes that are relevant
for mental disorders based on whole genome sequen-
cing data of individual patients. The method can also
work as a general approach to integrate additional
omics information into the same framework for con-
tinuous improvements in identifying disease candi-
date genes from population-level data. iMEGES
prioritizes non-coding variants using ncDeepBrain
score, and then prioritizes genes with tissue-specific
and phenotype-specific information, and generates
prioritize gene scores for mental disorders. We hope
that iMEGES can complement existing computational
approaches that are not disease-specific, and address
the challenge of more sensitive and specific detection
of susceptibility variants and genes in personal ge-
nomes for mental disorders.

Fig. 4 The performance of gene prioritization of iMEGES. a the performance of gene prioritization of iMEGES on the schizophrenia data; b the
performance of gene prioritization of iMEGES on the ASD data
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Additional file 1: Supplementary figures for more performance
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