
An Open Source Tele-Operation Application for Arbitrary N-DOF
Manipulators

Steven Macenski1

Abstract— Human operation and tele-operation of manipu-
lators is required in a number of operation, validation, and
experimental scenarios. An application, termed the Command
Center, for commanding and receiving feedback from an
arbitrary manipulator is presented to improve human-robot
interaction. The Command Center dynamically updates avail-
able operations, feedback, command handling, and disabling
automatically for any degree of freedom (DOF) manipulator
utilizing MoveIt! for it’s path planning in the robotic operating
system (ROS). The application is capable of joint and Cartesian
space moves with variable speed control and MoveIt!’s built-
in perception handling and obstacle avoidance. Features for
gripper actuation are supported through the Command Center.
No additional setup is required to operate under the existing
ROS-Moveit! standard architecture. The application facilitates
lowering the barrier to entry for robot interaction and provides
ROS users with tightly integrated support for its current
state of the art for a robot arm. Considerations for uses and
comparisons of applications are explored.

I. INTRODUCTION

Many robotics applications continue to be based on the
human control of robotic manipulators in joint space and
Cartesian space with supplemental force or torque limi-
tations. Applications such as International Space Station
robot arm operations by the National Aeronautics and Space
Administration (NASA), handling of materials in nuclear
power plants, jogging robotics out of convoluted positions in
a lab environment, or remote tele-operation require human
operators to handle positioning of a manipulator. Many appli-
cations demand human operators due to the risks associated
with automation and intelligent robotics in regions like space
and nuclear power plants. Human spaceflight and public
safety robotics applications, such as presented in the DARPA
robotics challenge, will require a human operator for the
foreseeable future. [1]

ROS is a powerful communications tool in robotics that
has resulted in a breadth of easy-to-use standardized tools
for robotics developers. MoveIt! has made autonomous path
planning in ROS simple containing the same powerful path
planning algorithms from the Open Motion Planning Library
(OMPL) with visualization and simulation tools. [2] MoveIt!
does not currently support a tele-operation application to spe-
cific goal poses for users. The Command Center application
presented is a unique extension of the ROS-MoveIt! archi-
tecture developed for robotic manipulators with tight native
integration. It fills the gap with a standardized application
ready for any robot arm in minutes with a pre-generated

1Department of Aerospace Engineering, University of Illinois at Urbana-
Champaign, email: smacens2@illinois.edu.

MoveIt! configuration package, making robot tele-operation
easier than ever. The Command Center is a Qt stand-alone
application that utilizes MoveIt! services and namespaces
to determine the number of axes in the manipulator and
configure the application dynamically for any non-zero DOF
robot. It is capable of generating plans utilizing all parts
of MoveIt!’s architecture including obstacle avoidance when
moving the robot using this application. [3]

II. COMPARISON

The Command Center was built with ROS-MoveIt! in-
tegration in mind. There are other options that have ROS
bindings for their software architecture, however they are
generally highly specialized for their specific use cases and
arms. One major strength in this tele-operation software
is the ability to control many types and configurations of
manipulators utilizing the same hardware portability that
MoveIt! and ROS have been popularized for.

The simplified interface and portability make it the ideal
tele-operation software for new users or those who want
to move their ROS enabled robot within hours of instal-
lation with commercially supported manipulators. Section
III and IV covers the straight-forward process for users
with custom hardware without ROS support. The barrier to
entry of robotic manipulation and operation is dramatically
decreased; a user is capable of installing ROS and MoveIt!
then simply run an application to move their robot. Surgical
and NASA servicing tele-operation software, shown in Table
1, are highly specialized and cannot be easily modified to
work with an arbitrary manipulator due to their separate
custom control and planning software. While they offer real-
time control, many tasks outside of medicine and contact
operations do not require it. [4]-[6]

Robonaut is not highly integrated with ROS. It has roots in
ROS for its system architecture but does not entirely utilize
the current manipulator software stack the ROS community
has and continues to develop. The presented software is
tightly integrated with that open source software stack and
will continue to develop new features with the continuous
integration of the ROS manipulator software stack. [7]

The MoveIt! client that exists in an RVIZ plugin does not
allow the user to move to a specific numeric goal pose or
receive direct feedback from the robot.

III. ROBOT SETUP

Manipulators must be configured with ROS before they are
capable of using the Command Center. Three components
are required to configure the robot for use with MoveIt!, the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/196229784?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


TABLE I
APPLICATION FEATURE COMPARISON

Realtime ROS Portable Feedback
Proposed

MoveIt! Plugin
Tele-Op.

Surgery [4]
Robonaut [7] * *
Sat. Servicing
Software [5]

* with OROCOS

robot controllers, drivers, action client. These components
allow for the robot to receive paths from MoveIt!’s action
server and translate them to joint commands to send to the
robot controllers.

A. Drivers

Drivers for interacting with the robot controller in Ubuntu
are needed and many robots have drivers written in Linux
for ROS. The drivers must write to the robot controller the
desired positions from the ROS message types to the specific
manipulator messages using the manufacturers communica-
tions protocols and methods.

The drivers should handle either a streaming or download-
ing interface to the robots. A streaming driver will send a
single waypoint over the connection to the robot at a time. A
downloading driver will send a subset or full trajectory to the
robot for execution. This is effective for applications which
have a re-programmable robot controller to receive multi-
waypoint trajectories. The controller is then responsible for
timing, execution, and monitoring of each waypoint in the
trajectory. [8]

B. Action Server

MoveIt! interfaces to the drivers through an action server.
This server receives the joint trajectory messages from
MoveIt’s action client, breaks down the messages for dis-
persion to the drivers, and reports robot telemetry from the
drivers. It is expected that the action client has an action
server started to receive the goals from MoveIt! in a unique
namespace.

The action client and server interface must have these five
topics implemented;

• Feedback
• Results
• Status
• Goal
• Cancel.
The feedback, results, and status topics are available for

triggering other ROS nodes, error handling, trajectory sta-
tus updates, and trajectory completion messages.The action
server should receive a trajectory message from the goal
topic. Cancel is used to cancel the entire trajectory or a
subset of future points in the trajectory as determined by
the execution time or ID of the trajectory waypoint in the
sequence. Fig. 1 shows the action server and client interfaces.
[9] [10]

Fig. 1. Depiction of an action interface [9]

IV. MOVEIT! SETUP

MoveIt! requires setup for a robot. The setup assistant was
created as a tool to help users generate a MoveIt! package
for an arbitrary manipulator. The setup assistant is shown
in Fig. 2. Its input is a Unified Robot Description File
(URDF) generated from meshes or simple geometry with
similar parameters as the robot. The assistant will guide
through kinematic chains to build a path planning package.
Multiple planning groups may be created for multi-arm or
macro-micro systems and work with multiple instances of
the Command Center. A separate planning group should
be generated for any end-effectors that are to be actuated
through MoveIt! and the Command Center.

With a generated package, a handful of additional steps
are required to configure the package with the controllers
and action server.

Fig. 2. MoveIt! Setup Assistant GUI [12]

The controller manager must be populated to launch the
appropriate launch and configuration files. When perception
devices are used, a sensor manager file must also be popu-
lated. [12]

Additionally, the joint names and controllers configuration
files must be either added or filled out corresponding to the
robot specifics in the action server or controller configuration.
A MoveIt! planning and execution file should be generated.
This file connects to the robot and launch the required
drivers, controllers, and MoveIt! programs.

The connection between MoveIt!’s action client and an
action server for the robot is through the controllers.yaml
configuration file. The action ns field should correspond
to the ROS topic namespace that the controllers will be
started in.



Fig. 3. Command Center GUI

V. APPLICATION

After a proper ROS and MoveIt! configuration, the Com-
mand Center is very simple to setup and operate. The power
of this application is in its portability for any robot, tight
native integration in ROS capable of updates with new
MoveIt! functionality such as force control, and ease for
novice robot operators.

A. Capabilities

The application will allow the user to complete speed
variable joint and Cartesian space moves on an arbitrary
robot while respecting any planning scene or collision objects
added or identified by the perception system. Safety features
have been implemented to stop robot motion and operate
gripper-style or symmetrically actuated end-effectors.

The GUI will automatically update the number of joints
available for planning, commanding, and receiving feedback
from based on the manipulator group joints. The gripper
execution button and field will only appear when a gripper-
style group is available.

1) Joint and Cartesian Commands:
The Command Center, seen in Fig. 3, is able to com-

plete basic joint and Cartesian space moves using MoveIt!’s
functions plan and execute. All values displayed to the
operator are in degrees. [1]

The forward and inverse kinematics are determined from
the URDF of the manipulator loaded into MoveIt! on start-
up via the parameter server. The planning groups in MoveIt!
are used to determine the number of active joints in the robot
and whether an end-effector is present for use.

A current pose in Cartesian coordinates is determined
relative to the manipulator’s base frame to the manipulator’s
distal joint. A virtual end-effector is the preferred method of

planning for the end-effector pose. The rotation angles in the
linear commanding module are base frame fixed axis angles.

The ”Current” fields for joints and Cartesian pose, labeled
by ”Linear”, display the feedback from the robot controller
on the current robot position to aid in planning and goal pose
determination.

A call to the planning buttons for joint space ”PlanJ”
and Cartesian space ”PlanL” will plan the entered goal
position through MoveIt!’s plan function. After planning,
the proposed plan can be visualized in the move group’s
RVIZ window opened upon initialization of MoveIt!.

Fig. 4 displays an instantaneous view of operations that a
user would see while visualizing a path in Cartesian space.
Fig. 5 shows a time lapse of a simulated path in joint space.

The Commanding buttons, ”CommandJ” and ”Com-
mandL”, will send the plans to the the action server, in joint
or Cartesian space, after speed scaling. The robot can be seen
moving in either Gazebo or with hardware depending on the
experimental setup.

Fig. 4. Demonstration of Application and RVIZ

2) Delta-Position Moves:
A common move for many robot operators is to change

the pose of the robot in joint or Cartesian space by a small
amount. The delta moves check box gives the operator the
freedom to input ”change in” values from the current position
for either types of moves. When not checked, the moves are
absolute relative to base frame.

The same planning and execution buttons are used and the
output plans can be again visualized or executed in RVIZ,
Gazebo, or lab environments. The velocity scaling control is
also available for delta-position moves.

3) Speed Control:
The ability to change the speed of a manipulator is critical

for safety of people in proximity or when operating under
uncertainty.

The velocity scaling field allows an operator to scale
the speed of execution by an specified amount. After a
submission to execute a trajectory, the plan is conditioned
with the velocity scale factor for the final execution in
Gazebo or physical world.

MoveIt! does not directly implement any form of dynamic
velocity scaling. This feature was created in the application



Fig. 5. RVIZ plan propagation over time

by taking the planned path and scaling the velocities, ac-
celerations, and time from start duration fields for the
plan outputted directly from MoveIt!’s OMPL plan function
call. The default value is 1, corresponding to the speed
automatically used in MoveIt!’s planning process.

RVIZ will not reflect the speed scaling during it’s trajec-
tory simulation.

4) Emergency Disable:
The emergency disable feature allows the user to stop

any trajectory being executed on the robot. This safety
feature facilities necessary precautions for robot operations
especially when human operators are involved.

The E-Stop button will send a message to the action server
to stop all waypoints from being executed. The action server
/cancel topic takes a message to cancel the execution
of way points after the indicated time stamp or way point
identification number. In the absence of a time stamp or
trajectory point identifier, the action server must cancel
all pending waypoints in a stored trajectory on-board the
controller or being fed to the controller over a streaming
interface. [9]

The E-Stop sends an immediate actionlib msgs/GoalID
message with empty time stamp and point identifier to
cancel all pending points. The E-Stop relies on a properly
implemented action server. [9]

5) End-Effector Operations:
The end-effector can be operated from the fields and

buttons labeled by ”gripper”. This icon and field only appear
when a end-effector planning group is available. The gripper
actuation calls the planning group’s actuators to move the
specified amount by the GUI symmetrically. When a single
actuator gripper is present, the application will simply actuate
the single joint. If multiple exist, they will all actuate the
specified amount.

For more complex or unconventional end-effectors such

as hands, planning groups in MoveIt! should be separately
generated and controlled from the application rather than use
of the gripper command structure.

6) With Obstacles and Perception:
MoveIt! is able to handle obstacle avoidance from ob-

stacles declared in the planning scene and the output of
perception sensors. [1]

The application utilizes the planning features of MoveIt!
in combination with the action client and respects all con-
straints imposed by the planning scene and occupancy grids
generated from the sensor data. [1]

This powerful result gives some autonomous capabilities
for manual operation of robot manipulators, yielding safer
use and correcting for user error.

B. Usage

Using the application is simple, run the ROS node from
a terminal or launch file. RVIZ and Gazebo will function
the same as with MoveIt! alone, planning in the application
will graphically display the path in RVIZ and commanding
it will move the simulated robot in Gazebo. Physical robots
can be replace Gazebo when drivers, action servers, and robot
controllers have been configured.

1) Launch File:
An example launch file is shown below.

<launch>
<node
name="robot_ops_application"
pkg="moveit_operations_application"
type="robot_ops_application.py"
args="[controller name]
[manipulator planning group]
[opt. end-effector planning group]"

/>
</launch>

The arguments passed to the script contain the necessary
static information to connect the application to MoveIt!. The
controller name is the namespace of the robot controllers.
The manipulation and optional end-effector planning groups
are the names of the groups in MoveIt! configuration that
correspond to the planning groups desired to operate.

Multiple instances of the application can be open at the
same time for multi-arm or complex end-effector applica-
tions.

2) RVIZ Compatibility:
RVIZ will continue to display the paths planned and cur-

rent state of the robot as ordinarily expected from MoveIt!.
The application contains a MoveIt! wrapper for the planning
process to use the same pipeline for autonomous use cases.

RVIZ may be used in the human operations context as
a path verification tool to ensure operator comfort of the
move before execution. Additional characteristics or sensor
feeds may be visualized in RVIZ within the same window
simultaneously.



3) Gazebo or hardware robot:
Gazebo will also execute the paths commanded and return

state information about the robot as expected. The application
contains a MoveIt! wrapper for the execution process to use
the same pipeline used in autonomous simulation use cases.

Gazebo may be used to replace hardware for simulation
with sensor feedback and environmental testing. Fig. 6
displays the application’s planning process in RVIZ with
before and after execution in Gazebo.

Fig. 6. RVIZ (right) displays plan with Gazebo (left) execution

VI. USE CASES

The application was created to service a number of groups
in need of an GUI for visualizing and simulating user
commands through a front-end application in MoveIt!.

A. Novice Users

Many new robotics personnel are attracted to ROS be-
cause of its simplicity (as compared to the alternatives),
implemented packages, and strong developer support. These
users often require manual tele-operation capabilities for
their applications and MoveIt! abstracts the motion planning
problem from them.

Many research and industrial robots on the market have
configuration packages for the robots pre-generated for use.
The application would allow a new operator to tele-operate
their hardware manipulator or simulation in under an hour.
The only configuration required is editing a single launch file
for the application. This very effectively lowers the barrier
to entry of new robotics users with elementary tele-operation
needs with any manipulator.

B. Space Operations

International Space Station, satellite servicing, and larger
space manipulation projects conducted by NASA and inter-
national partners have relied on human operators to interface
with the robots remotely. Particularly in human spaceflight
and high value assets in orbit, the automation of robotic
manipulation on-orbit is highly unlikely to be adopted in
the near term. [3], [6], [14]

The International Space Station (ISS) robotics workstation
aboard the ISS relies on a custom application for operating
their robot in orbit. These applications have more capabilities
than currently supported by MoveIt!, open source control,
and planning communities. As the capabilities of MoveIt!
and ROS grow, in conjunction with the creation of more
capable flight processors, the barrier to space applications
shrinks. [6] [14]

While it is not expected ROS becomes the primary ar-
chitecture in the five year outlook, ROS integration with
other software architectures are in preliminary considera-
tions. When MoveIt! grows to include force control and other
state of the art algorithms, the interface, with minor updates,
will become a serious option in trade studies. The ability to
train operators on a single software system that extends to
a larger family of space robots aboard multiple spacecraft
without significant development costs is appealing. This
application is tightly integrated into ROS and through the
development of MoveIt!, the application will grow with it.
[13] [14]

Currently, many robot operators in several locations exist
within NASA alone. Each flight program utilizes similar ma-
nipulators and has separate applications for interacting with
their robots with similar base requirements. With a unified
platform, there is potential for a smaller number of human
operators capable of operating a myriad of manipulators
on-orbit. Standardization within the space robot community



homologous with the open source community will strengthen
the capabilities in both.

C. Jogging Robots in a Lab Environment

A nominal application for the application is for jogging
manipulators in research labs. A frequent need is to jog a
manipulator to position to change tools or move the robot to
the home position for resetting an experiment.

Research labs tend to have more relaxed requirements
on the storing objects in the robot workspace. For robots
already being operated with MoveIt!, it is a simple transition
and does not require manual scripting of desired positions
to move an industrial robot to a tool change pose. Safety
is critical for robot motion, thusly the application’s user
position feedback from the robot and motion visualization
could potentially save assets from damage.

VII. CONCLUSIONS

The Command Center presented is simple to use and
powerful. It allows the user to command robot motion
with ROS accessing MoveIt!’s native collision avoidance
properties ensuring asset safety. The application lowers the
barrier to entry for new users and experts, is capable of
easily interfacing with any manipulator, and has tight in-
tegration with ROS and MoveIt!. It is simple to update with
MoveIt! development to include advanced capabilities for
continuous integration with future capabilities. For future
work, the Command Center will be added as a RVIZ plugin
for a single window simulation and command application
launching directly from MoveIt!.

APPENDIX

Project can be found at the following link,
github.com/stevemacenski/CommandCenter. The project is
open source under the MIT License.

REFERENCES

[1] ”MoveIt! Concepts,” in MoveIt ROS, 2016.
[2] S. Chitta, I. Sucan, and S. Cousins, ”MoveIt!,” in IEEE Robotics &

Automation Magazine, 2012.
[3] N. Curry, ”International Space Station Robotic Systems Operations A

Human Factors Perspective,”, 2004.
[4] Tobergte, Konietschke, Hirzinger, ”Planning and Control of a Teleop-

eration System for Research in Minimally Invasive Robotic Surgery,”
in IEEE International Conference on Robotics and Automation, 2009.

[5] Washington, Alessandro, ”NASA tests new technologies for robotic
refueling,” Feb 2014.

[6] ”On-Orbit Satellite Servicing Study Project Report,” Satellite Servic-
ing Projects Division, NASA Goddard Spaceflight Center, Oct. 2010.

[7] Badger, Goodling, Ensley, Hambuchen, Thackston, ”ROS in Space: A
Case Study on Robonaut 2”.

[8] ”Working with ROS-Industrial Robot Support Packages,” in ROS
Wiki, 2016.

[9] ”Actionlib Detailed Description,” in ROS Wiki, 2013.
[10] ”Create a MoveIt Package for an Industrial Robot,” in ROS Wiki,

2015.
[11] ”ROS Concept,” in ROS Wiki, 2014.
[12] ”MoveIt! Setup Assistant Tutorial,” in MoveIt!, 2013.
[13] D. Colman, ”MoveIt! Strengths, Weaknesses, and Developer Insights,”

in ROSCon, 2015.
[14] S. Loff, ”Robotics workstation in the international space stations

Cupola,” [Online]. Available: nasa.gov.

https://github.com/stevemacenski/CommandCenter
nasa.gov

	INTRODUCTION
	Comparison
	Robot Setup
	Drivers
	Action Server

	MoveIt! Setup
	Application
	Capabilities
	Joint and Cartesian Commands
	Delta-Position Moves
	Speed Control
	Emergency Disable
	End-Effector Operations
	With Obstacles and Perception

	Usage
	Launch File
	RVIZ Compatibility
	Gazebo or hardware robot


	Use Cases
	Novice Users
	Space Operations
	Jogging Robots in a Lab Environment

	CONCLUSIONS
	References

