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Abstract 

 Human alteration of stream channels and land use initiates responses in a fluvial 

system that can increase flooding, erosion, and sedimentation, which, in turn, impact 

aquatic habitat, property, and water quality.  Geomorphic assessment approaches have 

been developed to evaluate channel response to disturbances for various regions of the 

United States and there is concern regarding the appropriateness of applying them in 

regions for which they were not developed, particularly Illinois.  Channel responses to 

disturbances tend to be more subtle in Illinois as compared to the dramatic responses in 

the mountainous northwest, arid southwest, and coastal plains.  Also, channel disturbance 

issues are complex and dynamic, consequently the evaluation of these issues requires 

extensive training and formal research experience.   Due to pressure by policy makers 

and resource managers for rapid assessments and natural channel designs for stream 

restorations, some assessment approaches have been developed and applied by non-

geomorphologists and extended beyond credible use.  Lack of standardization between 

approaches has proven difficult to compare disturbance response mechanisms within and 

between physiographic regions, as well as establishing long-term research of these 

mechanisms. 

 A standardized, systematic geomorphic assessment approach for evaluating past 

conditions, extant character, and potential future adjustments of stream channels in 

Illinois was developed and evaluated.  The methodology draws from components of 

approaches developed in the United States.  The approach was applied to the Big Creek 

watershed in the Cache River Basin in the southern region of Illinois – a fluvial system 

that has been severely impacted both directly and indirectly by human activities. 



 iv

 The geomorphic assessment approach has three levels of investigation that 

incorporates temporal- and spatial-scale analysis, standardizes the systematic collection 

of data, compares and contrasts multiple lines of evidence to characterize the watershed 

and channels, and utilizes three approaches to evaluate prevailing channel process 

response mechanisms to infer potential future channel adjustments.  Several components 

overcame inconsistent datasets found in Big Creek and integrated multi-scale information 

to infer future several channel adjustment processes.  The results for the case study 

watershed, Big Creek, revealed that the complex geology and multiple human 

disturbances has produced four separate channel responses that will require separate, but 

integrated, attention of the watershed and channel reaches. 
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1. Introduction 

Alteration of stream channels and land use initiates responses in a fluvial system 

that can increase flooding, erosion, and sedimentation, which, in turn, impact aquatic 

habitat, property, and water quality.  Resource managers and policy makers require 

stream restoration techniques that ameliorate environment impacts through the 

implementation of natural channel designs, rather than typical ‘hard’ engineering 

approaches.  To determine appropriate natural channel designs, there needs to be an 

understanding of fluvial processes and channel form relationships, as well as the 

magnitude and type of process responses due to disturbances in various 

physical/physiographic settings around the United States.  Many geomorphic assessment 

approaches have been developed in various regions of the United States or United 

Kingdom and there is concern regarding the appropriateness of applying these 

approaches in regions for which they were not developed.  Most approaches have been 

developed for regions where channel responses tend to be dynamic, such as the 

mountainous northwest, arid southwest, and coastal plains.   

For the most part, it is generally accepted that channel disturbance issues are 

complex and dynamic, and that evaluation of these issues requires extensive training and 

formal research experience.  Nevertheless, policy makers and resource managers demand 

rapid “cookbook” assessments, and natural channel designs with implementation times of 

conventional engineering projects (Kondolf, 1998, p. 41; Miller and Ritter, 1996, p. 298; 

Newson, 1995, p. 415).  Such approaches have been developed by non-geomorphologists 

from basic principles of fluvial geomorphology and extended beyond credible use 

(Gillilan, 1996, p. 5; Juracek and Fitzpatrick, 2003, p. 668; Kondolf and Piegay, 2003, p. 
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3; Simon et al., 2005).  Problems with some of these approaches include inability to 

reliably predict outcomes of implemented channel designs, reliance on template 

approaches (reference reach or analog) and empirically derived methods (Skidmore et al., 

2001), reliance on experience of the observer (Johnson and Heil, 1996, p. 1289) and lack 

of investigation of the entire fluvial system to determine the influences that may have 

initiated channel adjustments (Brookes and Sear, 1996, p. 77; Callahan, 2001, p. 3; 

Newson, 1995, p. 419).   

1.1 Direct and Indirect Effects of Humans on Stream Geomorphology 

Natural stream channels are dynamic systems that adjust their form in response to 

direct and indirect changes in transport capacity and sediment supply.  Alluvial channels 

transport material eroded from  uplands and channel margins, and the form of the channel 

is a function of streamflow, sediment character, and channel material (Leopold, 1994).  

Channel responses to environmental influence are complex with channel form responding 

to the interaction of the flow and sediment, but changes in form, in turn, influencing the 

interaction between flow and sediment (Knighton, 1998).  So many factors control 

process-response mechanisms in streams that, under constant environmental conditions, a 

channel can assume a variety of morphologic configurations (Leopold, 1994).  Moreover, 

channel shape and planform can continually change nonlinearly over time even during 

periods of constant environmental conditions (Rhoads, 2003).  For this reason a channel 

is considered in “dynamic equilibrium” or “stable” when changes in channel character are 

minimal over management time horizons, which for most purposes, is on the order of 

several decades (Thorne et al., 1996; Rhoads, 2003).   
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Channel process-response mechanisms are initiated through indirect changes in 

transport capacity and sediment supply.  A reduction in sediment input often causes 

erosion of the channel perimeter to balance the sediment transport capacity.  Channel 

geometry, slope, and planform will adjust to accommodate the net sediment deficit.  Even 

when sediment inputs and outputs remain balanced, an increase in transport capacity can 

initiate increased bank erosion or channel instability.  Changes in watershed-scale 

conditions that can affect transport capacity include:  urbanization, conversion of land to 

agriculture, and clearing of riparian corridors. These tend to increase overland runoff and 

decrease hydraulic resistance of channels, thereby increasing velocities (stream power) 

within the stream and enhancing the capacity for the channel to erode its perimeter.  The 

channel responds either by increasing lateral rates of migration or by incising into the 

alluvial material in which it has formed.  Enhanced rates of bank erosion or the 

development and headward retreat of knickpoints on the channel bed are local indicators 

of system-wide change. Adjustments to accommodate indirect changes can propagate 

through a channel network until a relative balance in sediment flux is achieved. 

Direct changes in a fluvial system also can initiate abrupt changes in transport 

capacity and sediment supply, which may induce time-dependent channel adjustments 

(Simon, 1994).  Human influences are an example of direct and catastrophic change, such 

as channelization of rivers by straightening, dredging of channels for flood control, and 

improved urban or rural land drainage (Rhoads, 1995).  The impacts of direct changes are 

similar to indirect ones, but involve local disruptions of fluvial processes that can result 

in severe “disequilibrium”.  The reduction of channel length by straightening, considered 

the most severe type of direct change, often sets into motion channel responses upstream 
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and downstream of the area of maximum disturbance (AMD).  Immediately upstream of 

the AMD, where the channel deepens and widens, sediment quantity and character 

changes, while downstream of the AMD, the channel aggrades until a balance in 

transport capacity and sediment supply is restored (Simon, 1994; Simon and Downs, 

1995).  Undesirable side effects of this adjustment include degradation of habitat, loss of 

structures and property, and permanently altered hydraulic conditions.   

1.2 Spatial Variability of Channel Response to Human Disturbance 

The magnitude, type, and position of channel responses to disturbances in the 

fluvial network are variable throughout the United States.  Studies in the mountainous 

Northwest (Oregon and Washington), the arid Southwest (Arizona), and the low-relief 

Midwest have documented various types of channel adjustments to disturbances (Barnard 

and Melhorn, 1982; Rhoads, 1990b; Whiting and Bradley, 1993; Rhoads and Herricks, 

1996; Montgomery and Buffington, 1997; Rhoads and Urban, 1997; Simon and Rinaldi, 

2000; Urban and Rhoads, 2003).  Montgomery and Buffington (1997) and Whiting and 

Bradley (1993) both describe process domains in mountainous streams that transport 

sediment (colluvium or debris flows) supplied episodically from steep hillslopes. 

Downstream low-gradient, meandering alluvial channels respond to sediment inputs by 

forming braided channels (Montgomery and Buffington, 1997, p. 608).  This 

classification scheme identifies domains in the drainage network based on the ratio 

between transport capacity and sediment supply.  The episodic sediment inputs are 

indirect, natural disturbances; however, any changes in transport capacity or sediment 

supply due to development or insensitive logging practices can also exacerbate 

downstream sediment loading.   
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Rhoads (1990a) describes how increased transport capacity generated by 

channelization of Santa Rosa Wash in south-central Arizona resulted in bed degradation 

through migrating headcuts and subsequent channel widening. Fluvial adjustments in 

disturbed arid-region rivers are episodic with major headcut migration occurring only 

during floods, implying that  channel recovery may occur over time scales of decades to 

centuries (Rhoads, 1990a).  Accelerated channel degradation and widening due to human 

modification (channelization) have been reported in some portions of the loess area of the 

Midwestern United States.  Simon and Rinaldi (2000) show that many channels in 

western and southern regions of the Midwest (western and southeastern Iowa, 

northeastern Kansas, and northwestern Missouri) have undergone four- to five-fold 

increases in channel depth and width through migrating headcuts.  In western Tennessee 

and southeastern Nebraska many streams exhibit similar but less severe responses to 

channelization than those in western Iowa.   

Aerial reconnaissance of streams in western Illinois and east-central Iowa (central 

Midwest region) suggests that channels are in a late stage of recovery compared to those 

in other regions due to the thickness of the loess cap, which is thinner in eastern Iowa and 

western Illinois than it is further to the west (Simon and Rinaldi, 2000).  Channel incision 

in thin loess areas quickly reaches coarse underlying material, which initiates an initial 

phase of channel recovery characterized by downstream aggradation and reduction in 

bank heights (Simon and Rinaldi, 2000).   

Natural meandering rates of low-energy streams in east-central Illinois are nearly 

imperceptible, whereas recovery rates following channelization either have been 

undetectable or have exceeded low natural rates of channel migration (Barnard and 
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Melhorn, 1982; Rhoads and Herricks, 1996; Rhoads and Urban, 1997; Landwehr and 

Rhoads, 2003; Rhoads, 2003; Urban and Rhoads, 2003).  Unlike the dramatic increases in 

width and depth of channels in western and southeastern Iowa, northeastern Kansas, and 

northwestern Missouri, channels in eastern-Illinois respond mainly by forming mildly 

sinuous low flow channels within the trapezoidal ditches produced from channelization 

(Rhoads and Herricks, 1996). Barnard and Melhorn (1982) found similar responses in a 

west-central Indiana stream where considerable meander development took place 

immediately following channelization (1932) in higher gradient segments (0.0014 to 

0.0027) and virtually no adjustments occurred in lower gradient segments (0.0010 to 

0.0014).  Based on stream power-to-sinuosity threshold analyses, Barnard and Melhorn 

(1982) estimated that recovery of a meandering planform may take as long as 165 years.  

As with the eastern-Illinois streams, in-channel bar development followed by increasing 

channel sinuosity seems to be the predominant form of channel adjustment.  

Channel response to direct impacts is not only variable across the United States 

but can vary within a region or state, such as the Midwest and Illinois.  Streams in the 

western and southern regions of the Midwest respond by incising and widening.  The 

eastern region has lower stream power and responds by lateral migration with slow rates 

of recovery.  The central region incises and widens to a lesser degree than the western 

region but also moves to later stages of recovery sooner due to the availability of coarse 

material below a thinner loess cap.   

Studies by Barnard and Melhorn (1982), Rhoads and Herricks (1996), Urban and 

Rhoads (2003), and Simon and Rinaldi (2000) demonstrate the variability in channel 

responses within Illinois.  The physical setting of Illinois streams presents striking 
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contrasts to other Midwest (north-central) states.  Generally, Illinois is more extensively 

glaciated, lower relief, and has the lowest mean elevation (Leighton et al., 1948, p. 16-

17), which makes the whole-sale application of extant geomorphic assessment 

approaches debatable.   

1.3 Geomorphic Assessment of Human Impacts on River Systems 

 Geomorphic assessment methods used to evaluate channel responses to human 

disturbance vary widely.  In the mountains of the northwest United States, Montgomery 

and MacDonald (2002) describe a diagnostic approach to assess mountain stream 

channels.  These channels are evaluated for temporal and spatial variability, historical 

conditions (using aerial photographs, engineering projects, and stream gage records), 

channel type or classification (Montgomery and Buffington, 1997), and changes in 

riparian and valley bottom vegetation.  Field indicators for valley bottom and active 

channel characteristics, such as slope, valley confinement, channel entrenchment, riparian 

vegetation, overbank deposits, channel pattern, bank conditions, gravel bars, pool 

characteristics, and bed material are collected (Montgomery and MacDonald, 2002).   In 

the arid Southwest, Rhoads (1990a and 1990b) used historical sources (General Land 

Office Survey records, U.S. Geological Survey topographic maps, aerial photographs, 

and historical flooding photographs), current channel cross-section surveys, floodplain 

and channel material particle-size analysis, current aerial photographs, flood survey 

reports, U.S. Geological Survey stream gaging records, and modeling.  These data were 

used to establish type and rates of channel adjustments as well as the magnitude and 

frequency of fluvial processes.  Simon and Rinaldi (2000) determined channel adjustment 

trends using historical bed-elevations, bank profiles, shear-strength tests, bed-material 
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particle sizes, stages of channel evolution, and dendrochronologic evidence.  They were 

able to take advantage of several prior technical studies in the region and supplement 

their analyses by collecting additional data during field reconnaissance trips.  

Geomorphic analyses in eastern Illinois by Rhoads and Herricks (1996) and Urban and 

Rhoads (2003) used GIS analysis of historical aerial photography to establish meander 

rates, one-dimensional hydraulic modeling, stream power analysis, and study of alternate 

bar formations.  Barnard and Melhorn (1982) analyzed historical aerial photography, 

original engineering plans of the channelization projects, cross-section surveys, channel 

longitudinal profiles, bank material, evolution of channel bedform conceptual model, and 

stream power to sinuosity threshold analyses. 

 These studies all had similar objectives in that they sought to characterize the 

types, rates, and magnitudes of channel adjustment due to direct human modifications 

with the goal of providing geomorphic-process information for management strategies to 

ameliorate future channel responses.   Each study, however, employed slightly different 

approaches of geomorphic evaluation.  These differences were due to constraints in data 

availability, resources, as well as differences in goals related to the programmatic issues 

of the funding agent and participating researchers.  More importantly, even though the 

goals of these studies were assumed to be accomplished, the lack of standardization in 

methods makes it difficult to compare results and to re-evaluate the study areas at a later 

time. 

1.4 Physical Setting of Illinois in the Midwestern United States 

 The Midwest United States is broadly composed of five physiographic provinces:  

Superior Upland, Great Plains, Central Lowlands, Interior Highlands, and Coastal Plain.  
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Three of the provinces, Superior Upland, Great Plains, and Central Lowlands, have 

experienced glacial advances at one point or more.  The states of Wisconsin and Illinois 

are unique in that “glacial lobes from both the east and west of Hudson Bay invaded them 

and attained the southernmost limit of continental glaciation in the northern hemisphere 

(Frye et al., 1965, p. 43)”.  The current surficial deposits and materials in Midwest 

provinces vary in depositional processes, age, physical and chemical characteristics, and 

thicknesses, all of which determines distinct regional topography, landforms, and terrains 

(Fullerton et al., 2003).  Because Illinois and Wisconsin experienced the greatest number 

of glacial advances, they also contain the most varied glacial deposits in the Midwest 

(Frye et al., 1965, p. 43).  A mantle of loess (windblown silt) covers and obscures most of 

the surficial deposits and materials in the five provinces.  There are variations in loess 

thickness and particle size distribution across the provinces.  Loess tends to be thickest 

and coarsest (~30m) in eastern Nebraska and becomes thinner and finer downwind to the 

east and southeast toward Illinois, Indiana, Kentucky, Tennessee, and Mississippi 

(Kohfeld and Muhs, 2001; Lutenengger, 1987, p. 28; Ruhe, 1969, p. 33, 37; Shroba et al., 

2001, p. 5).   

1.5 Objectives of Study 

 The purpose this study is to develop an Illinois region-specific geomorphic 

assessment approach by adapting components and techniques from approaches developed 

in other geographic regions and in Illinois.  Although many hydrologic, physical, and 

geomorphic data collection and analysis techniques (tools) are widely accepted as key 

elements for evaluating fluvial systems in geomorphic investigations (Kondolf and 
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Piegay, 2003, p. 5), the challenge is to appropriately apply these tools and interpret the 

resulting data for distinct physiographic settings.    

 Specific objectives of the study are to: 1) develop and evaluate a standardized, 

systematic geomorphic assessment methodology for evaluating past conditions, extant 

character and potential future adjustments of stream channels in Illinois and 2) apply this 

methodology using a case study in Big Creek in the southern part of Illinois – a fluvial 

system that has been severely impacted both directly and indirectly by human activities.  

This methodology development is a first step toward the evaluation of stream channels in 

other regions of Illinois that respond differently to disturbances. 

 The first objective is aimed at fulfilling the need for standardized protocols for 

geomorphologic evaluation of fluvial systems in Illinois recognizing distinct 

physiographic divisions and varied stream channel responses to disturbances. The 

development of standardized protocols is essential for several watershed-management 

initiatives in Illinois, including programs such as the Illinois River Ecosystem Restoration 

Framework (Illinois Department of Natural Resources, 2004). These protocols would also 

set the stage for post-project evaluations and long-term monitoring of potential future 

channel adjustments.  

 The second objective seeks to contribute to an improved understanding of channel 

adjustments in response to human activities within a geographic region of Illinois where 

such adjustments have not been studied extensively in a geomorphic context.  Although 

Big Creek and its watershed have been influenced substantially by indirect effects 

(conversion of forest and wetlands to agricultural land) and by direct effects 

(straightening, dredging, channel diversions) since the late 19th century, the geomorphic 



 11

response of the system to these effects has yet to be evaluated systematically.  The results 

of the geomorphic assessment are two-fold.  First, the development and performance of 

this method will contribute to an assessment tool that could be applied to watersheds in 

the southern Illinois region.  Also, the results will provide resource managers in the Big 

Creek watershed with information that can be used to help achieve objectives and goals 

outlined in the Big Creek watershed restoration plan (Guetersloh, 2002).   

1.6 Thesis Structure 

This thesis is organized into four chapters:  introduction, literature review, method 

development, and conclusions.  Chapter 2 reviews popular geomorphic assessment 

approaches from around the United States and United Kingdom in the context of the 

physiographic and geographic setting for which they were developed.  The strengths and 

weaknesses of these approaches as they relate to their relative applicability to Illinois are 

important to understand the rationale and development of this proposed approach.  

Chapter 3 presents the development of the proposed geomorphic assessment approach 

using the Big Creek watershed as a case study.  The approach is comprised of three 

phases; therefore the chapter is divided into three sections.  Each section will present the 

objective of each phase, rationale for utilization of components adapted from approaches 

discussed in Chapter 2, demonstrate the application of each component using data from 

Big Creek, and a discussion of assessment results and evaluates the performance of the 

geomorphic assessment approach.  The final chapter contains conclusions about the 

performance of the approach through its ability to discover components of 

geomorphological significance when assessing fluvial systems for stream channel 
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stability.  The adaptability of this approach to other physiographic regions of Illinois will 

be suggested for future research. 
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2. Literature Review of Geomorphic Assessment Approaches 
 

The initial paradigms for explaining landforms date back to the late-19th century 

with work by (Davis, 1899) and (Gilbert, 1877).  The Davisian model, the geographic 

cycle or cycle of erosion, was heavily influenced by evolutionary theory and proposed 

that landscapes were formed by initial geological uplift followed by distinct stages of 

landscape forms produced in an orderly sequence (youth, maturity, and old age) (Rhoads 

and Thorn, 1996).  The temporal and spatial scales addressed by this model were on the 

order of millennia and kilometers and lacked explanation of erosion and sedimentation 

physical processes at any scale (Church, 1996).  Davis considered time as a principal 

variable in the development of landscapes with the effects of geology becoming less of a 

control as landscapes proceeded through a cycle (Osterkamp and Hupp, 1996; Ritter, 

1978).   Gilbert, on the other hand, believed that landforms reflected “an equality of 

action between process and geology” and that geology is always an important factor 

(Ritter, 1978; p. 7). Gilbert also recognized the need for theories to be mutually 

consistent at all scales, where spatial scales should match time scales of observable 

processes (Church, 1996).  He relied heavily on background knowledge (physics and 

chemistry) as evidence to prove or disprove causal hypotheses (Rhoads and Thorn, 1996).  

Gilbert is credited with first proposing “dynamic equilibrium” (Osterkamp and Hupp, 

1996) and his process-based approach has dominated the field of geomorphology for the 

last 50 years (Rhoads and Thorn, 1996). 

Even though Gilbert introduced process-based observation in geomorphology 

before Davis, the Davisian “cycle of erosion” dominated the field until the mid-20th 

century when a shift to process-oriented approaches emerged in geomorphology as a 
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‘return to Gilbert’ (Rhoads and Thorn, 1996).  Some of the key work came from Horton 

(1945), Strahler (1950), Leopold and Maddock (1953), Hack (1957, 1960), Leopold, 

Wolman, and Miller (1964), Schumm and Lichty (1965) where quantitative analyses of 

process and statistical descriptions of landscapes (Ritter, 1978), as well as, allometry, 

topology, and a variety of statistical techniques, emerged in the 1960s and 1970s which 

essentially replaced Davis’s cycles. Another important development that occurred with 

this shift to a process approach was an increasing emphasis on application of 

geomorphology to practical problems.  Research began to focus on the responses of 

geomorphic systems to human influences.  As environmental management of these 

systems, especially rivers, has become more popular within society, the need has arisen to 

employ geomorphological techniques to assess system dynamics for the purpose of 

management.  

A search of literature on current approaches to the geomorphic assessment of 

rivers yielded many results (Brice, 1982; Schumm et al., 1984; Frissell et al., 1986; 

Simon, 1989; Trimble and Cooke, 1991; Bryan et al., 1995; Simon and Downs, 1995; 

Downs and Thorne, 1996; Kondolf and Downs, 1996; Thorne et al., 1996; Montgomery 

and Buffington, 1997; Federal Interagency Stream Restoration Working Group, 1998; 

Thorne, 1998; Johnson et al., 1999; Kuhnle and Simon, 2000; Rhoads, 2003; Trimble, 

1998; Whiting and Bradley, 1993; Rosgen, 1994; Rosgen, 1996).  Some techniques  are 

used for overall system-wide analyses and others are strict classification schemes, 

processed-based analyses, or a combination of both.  The main differences among these 

approaches are 1) temporal and spatial scales of application, 2) region of application, 3) 

objective of the approach, and 4) the perspective of the discipline that developed the 
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approach. Key methods are discussed below to demonstrate the breadth of current 

geomorphic assessment approaches around the country. 

Classification systems for mountainous streams have been developed by Whiting 

and Bradley (1993) and Montgomery and Buffington (1997).  Both systems are process-

based, recognizing hillslope and channel gradients, valley and channel depth and widths, 

and sediment size as primary factors in describing transport capacity and sediment 

discharge processes.  The Whiting and Bradley (1993) scheme concentrates on 

classifying processes in upland headwater channels in mountain watersheds dominated by 

colluvial material.  They refer to the classification scheme as ‘process domains’ divided 

into three characterizations, or panels, of primary factors.  The first ‘panel’ classifies the 

relationship between channel gradient and hillslope stability into four process domains.  

One of these domains is differentiated into a second panel due to channels in this domain 

tending to have gradients insufficiently steep to transport debris flows produced by 

hillslopes prone to landslides.  This second panel differentiates four process domains 

based on three parallel curves describing the relationship between channel and valley 

widths.  The results of these two panels provide the first part of an alphanumeric code in 

this classification scheme.  The third panel characterizes the relationship between median 

grain size and the product of channel slope and average channel (bankfull) depth, which 

roughly represents a Shields diagram.  There are six domains where distinctions are based 

on Shields criterion, sediment size, armoring, and mode of grain movement either by 

saltation or suspension.  The third panel provides the second part of the alphanumeric 

code.  The code classifies channels by the potential of hillslopes to contribute material 

and the channel to transport the material downstream (Whiting and Bradley, 1993).  
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These domain codes essentially map the physical channel processes and their relative 

rates within a headwater fluvial system. 

The classification of channel-reach morphology presented by Montgomery and 

Buffington (1997) covers the entire fluvial system in a mountain environment from the 

colluvial-material dominated, steep headwaters to low-gradient alluvial valleys and 

floodplains.  Their scheme relates channel morphology with processes to predict channel 

responses to human and natural disturbances.  The spatial linkages of these processes 

within a watershed assists in understanding current channel conditions, predict channel 

response to disturbances, and interpret the causes of historical channel changes 

(Montgomery and Buffington, 1997).  Seven channel-reach types are presented based on 

three primary channel substrates:  colluvium, bedrock, and alluvium (cascade, step pool, 

plane bed, pool riffle, and dune ripple).  A downstream progression of these channel-

reach types was observed which reflects a sequence of local factors that control channel 

slope, discharge, sediment supply, bedrock lithology, and disturbance history 

(Montgomery and Buffington, 1997).  A general trend was observed between sediment 

supply and transport capacity to drainage area for the five alluvial channel-reach types.  

Transport capacity and sediment supply have an inverse relationship, as drainage area 

increases; transport capacity decreases while sediment supply increases.  The authors also 

describe a continuum between colluvial, alluvial, and bedrock valley segments where 

colluvial valleys are transport limited, due to high hillslope to channel coupling that 

allows debris to accumulate in the valley bottoms, and bedrock valley segments are 

supply limited, due to increased slopes and shear stresses.  Channel-reach types in 

alluvial valley segments take on broad ranges of transport capacity and sediment supply 
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ratios relative to weaker hillslope to channel coupling.  These are illustrated in bed 

morphologies reflecting roughness configurations that dissipate energy (Montgomery and 

Buffington, 1997; p. 606).  These relationships define process-linkage characterizations 

that can be used to understand channel responses to natural and human disturbances. 

A river classification system by Rosgen (1994, 1996) includes a four level 

hierarchy of river inventory and assessment.  This system is based on fluvial-geomorphic 

principles developed in Leopold et al., 1964). Stream pattern morphology is related to 

eight hydrologic and morphologic variables. The first level broadly characterizes a stream 

into one of eight stream types based on valley morphology and channel relief, pattern, 

shape and dimension.  Level II is the most data intensive and further delineates stream 

types using direct field measurements of channel patterns, entrenchment ratio, 

width/depth ratio, sinuosity, channel material, and slope.  The third level describes the 

existing conditions, or “state”, that influence channel responses.  This level also provides 

methodologies to predict channel responses by determining the departure from reference 

stream conditions.  The fourth level is a verification of Level III by directly measuring 

reach-specific information on channel processes and evaluating the effectiveness of 

installed restoration practices.   

The Rosgen scheme has been the subject of much criticism based on its tendency 

for geomorphic convergence, uncertain applicability across physical environments 

(Juracek and Fitzpatrick, 2003), reliance on template (reference reach or analog) and 

empirically derived methods (Skidmore et al., 2001), and lack of investigation of the 

entire fluvial system to determine the influences that may have initiated channel 

adjustments (Brookes and Sear, 1996; Callahan, 2001; Newson, 1995).   
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Trimble and Cooke (1991) and Trimble (1998) outline the value of historical 

resources in geomorphologic research in the United States.  They argue that it is not 

possible to comprehend how current processes developed without an appreciation of the 

past.  The resources they describe are: travel and exploration accounts, newspapers and 

journals, instrumented land surveys, topographic surveys, geology, soil, soil erosion 

surveys, aerial photographs, ground-based landscape photography, land-use statistics, 

drainage and irrigation records, climatological records, and stream and sediment 

discharge records.  Many of these sources are valuable in establishing sediment 

degradation/aggradation rates when contrasted with similar current data and provide 

insight into the human impacts on channel adjustment process over historical periods of 

time. Historical analysis also aids in the understanding the dynamics of geomorphic 

processes, thereby enhancing the ability to predict channel response with and without 

engineering. (Trimble, 1998) 

An approach for evaluating potential instability in streams on a watershed-scale 

was developed by Simon and Downs (1995).  This approach is an extension of a study 

that evaluated potential bridge scour in West Tennessee (Simon et al., 1989). It has been 

used extensively by the USGS in the Rocky Mountains, Great Plains, Valley and Ridge, 

Piedmont, and Atlantic and Gulf Coastal Plains physiographic regions.  A modular 

approach that includes initial site evaluations, GIS-based data input and management, 

ranking of relative channel instability, identification of spatial trends, ranking of socio-

economic impacts, identification of critical sites, and collection of additional field data to 

determine magnitude and type of future channel instabilities was presented.  The data 

gathering techniques in this approach originally were developed for use at bridge 
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crossings; however, it has been modified to assess general channel instabilities at other 

locations (Simon and Downs, 1995).  The information collected from many site 

evaluation sites are mapped, using GIS, to present the spatial distribution of channel 

stability/instability, physical characteristics, or stage of channel evolution, which can be 

used to identify system-wide trends in channel adjustment (Simon and Downs, 1995).  To 

determine the magnitude and style of future channel adjustments, additional data is 

collected at fewer sites.  The sites and type of additional data collected is determined by 

which of four methods are used:  numerical alluvial-channel models, regime equations, 

empirical models of channel evolution, and empirical relations based on process 

dominance in different fluvial environments.  The preferred method is the empirical 

models of channel evolution (Simon and Hupp, 1992).  When a stage of channel 

evolution is not available, a four-stage process was developed, based on previous studies 

by the authors, and is composed of:  1) characterization of expected stable channel 

morphologies by identifying the type of fluvial environment under study (dominant 

boundary sediments and general physiographic setting), 2) determining threshold values 

of stream power to assess the likelihood of channel instabilities, 3) estimate the style of 

channel adjustment by using channel gradient as a surrogate for type of fluvial 

environment, and 4) estimating the likely form of future channel adjustments using any of 

the 3 stages described above to determine the current stage of channel evolution, from 

which future forms and processes can be inferred. 

Thorne, Allen and Simon (1996) present a three-fold approach for geomorphic 

studies:  river reconnaissance, analysis (qualitative and quantitative), and assessment.  

The field data gathered during river reconnaissance uses the Simon and Downs (1995) 
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method for initial screening of the entire fluvial system, then qualitatively interprets the 

processes from channel form using careful observations across the whole system (Thorne 

et al., 1996).  The quantitative analysis uses more detailed field reconnaissance 

techniques of specific reaches to determine geomorphic (stable/unstable) and 

management (pristine and vulnerable/ engineered and recovering naturally/engineered 

and terminal) status.  These techniques include evaluation of flow conditions, bed and 

bank materials, type, density and location of riparian vegetation, bankfull channel 

morphology, planform geometry, and flow hydraulics.  Thorne and others (1996) use 

these data to assess channel stability by contrasting current bankfull channel geometry 

and hydraulic conditions with those predicted by regime equations based on dominant or 

effective discharge.  A case study is presented for the River Blackwater in southwest 

England to demonstrate the approach. 

The approach initially developed in Thorne and others (1996) was eventually 

published as a book, Stream Reconnaissance Handbook, by Thorne (1998) (personal 

communication; Thorne, 2003).  The book includes comprehensive evaluation sheets and 

provides detailed guidance on the field methods and equipment to effectively complete 

the reconnaissance sheets for use in characterizing streams, collate and archive data for 

further engineering and geomorphic analyses, supply input for stable channel designs, 

assessments, modeling, training of field staff, and serve as a permanent record of stream 

conditions that transcends tenure of staff and engineering time-spans (Thorne, 1998).  A 

cursory reconnaissance using the channel-stability index sheet by Simon and Downs 

(1995) is recommended when staff is unfamiliar with the study area. If possible a broad 

view of the area from some vantage point or fly-over is also suggested.  The basis for 
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designing a geomorphic study is discussed in the context of integrating geomorphology 

with river engineering project designs.  This approach was developed by the UK 

Environment Agency during the Brahmaputra River (India) Training Study (BRTS) and 

is a blueprint for methodological steps for performing geomorphic studies.  Thorne 

(1998) promotes the importance of a thorough and coherent approach using a multi-step 

progressive reconnaissance study, which begins with a broad watershed baseline study 

and concludes with a detailed investigation of critical reaches.  The data obtained from 

the reconnaissance is used in geomorphic classifications and contributes to the “analysis 

and prediction necessary to support sustainable river engineering, conservation and 

management” (Thorne, 1998, p. 37 ).   

Kuhnle and Simon (2000) performed a pilot study to develop scientifically 

defensible procedures to facilitate the development of clean-sediment Total Maximum 

Daily Loads (TMDLs) for U.S. streams and rivers.  In general, a revised methodology for 

evaluating sediment-impaired streams is being developed using datasets from the Sierra 

Cascade Mountain and Coastal Plain physiographic regions. An existing technique was 

modified to determine representative sediment-transport relationships for reference and 

disturbed channels. The sediment-transport relations of stable (reference) and unstable 

(disturbed) channels are correlated with stages of channel evolution.  This correlation is 

based on the hypothesis that unstable channels (stages III, IV, and V) carry higher 

sediment concentrations for a given flow than stable channels (stages I and VI) and may 

be a means to detect significant departures, thereby possibly establishing reference 

conditions as goals for stream management (Kuhnle and Simon, 2000).  This method still 

needs field verification in other physiographic regions by performing geomorphic 
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assessments on streams with instantaneous sediment concentration data.  Kuhnle and 

Simon (2000) modified the channel-stability index variables and site evaluation form 

used in Simon and Downs (1995) to better evaluate stream channel conditions.   The 

bridge-scour variables used in the original study were removed and variables that reflect 

channel characteristics associated with sediment-transport relationships were added. 

A protocol was developed by Rhoads (2003) to characterize stream channel 

conditions in Illinois at sites where bendway weirs have been installed or being 

considered as a bank stabilization technique.  It is a manual for individuals with little or 

no experience in fluvial geomorphology.  It does introduce basic concepts on stream-

channel form and dynamics and bendway weir theory as an erosion-control technique 

(Rhoads, 2003).  The manual sets out a well-organized approach for conducting 

geomorphological characterizations at a reach-scale.  It presents the technical elements 

and skills needed to conduct a characterization and organizes them into office-, field-, 

and advanced field-based components.  Rhoads (2003) accounts for the realities of 

conducting any field-based study under variable levels of available resources (time, 

personnel, and equipment) by including three grades of progressively increased 

investigation and the associated elements for each grade.  The level of experience in 

fluvial geomorphology required for each grade is also indicated.  There is a qualitative 

discussion of the geomorphological characterization of five field study sites used in the 

development of the manual. 

The main objective of this thesis is to fulfill the need for standardized, systematic 

protocols for geomorphologic evaluation and characterization of past conditions, extant 

character, and potential channel adjustments of fluvial systems in Illinois.  To meet this 
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objective, a geomorphic assessment approach needs to characterize the temporal and 

spatial context of the watershed and channel, identify regionally relevant process-

response mechanisms, provide appropriate information collection and management 

techniques, and repeatability to document channel response over time.  Of the approaches 

discussed above, the techniques of Trimble and Cook (1991), Simon and Downs (1995), 

Thorne (1998), Trimble (1998), Kuhnle and Simon (2000), and Rhoads (2003) contribute 

to this objective.   The classification systems by Whiting and Bradley (1993), 

Montgomery and Buffington (1997), and Rosgen (1994, 1996), while useful in a general 

sense, were all developed for rivers and streams in the mountainous northwest of the 

United States, and therefore have limited utility for understanding channel response in the 

comparatively low-relief environments of Illinois.  

Most of the approaches were not developed in Illinois except for the meander 

bend geomorphic characterization protocols (Rhoads, 2003).  Rhoads (2003) has a tiered 

approach to characterization that addresses temporal and spatial scales, as well as 

presenting detailed field sheets and protocols.  Even though these protocols emphasize 

data collection techniques associated with the characterization of bendway weirs, many 

aspects of the protocols and field sheets also require strong documentation of the channel 

morphology, which lends itself to repeatability for post-project appraisal. Thus, this 

approach provides a sound starting point for the development of a generalized 

geomorphic assessment methodology.  

The importance of establishing the historical context of a channel is the greatest 

strength of the techniques by Trimble and Cooke (1991) and Trimble (1998).  These 
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techniques enhance the ability to estimate potential future channel adjustments. Historical 

analysis should be an essential component of any geomorphic assessment scheme.  

The investigative approaches and data collection techniques in Simon and Downs 

(1995), Thorne (1998), and Kuhnle and Simon (2000) provide a standardized and 

systematic method for organizing geomorphic data that can be adapted to geomorphic 

assessment of rivers in Illinois.  The modular approach in Simon and Downs (1995) 

establishes the spatial distribution of channel character to determine adjustment processes 

by systematically applying site evaluation sheets, GIS-based data management, and 

secondary site evaluations.  The results provide input for qualitatively or quantitatively 

determining the magnitude and type of future channel adjustments.  Thorne (1998) 

created a handbook that describes field reconnaissance techniques with associated field 

data sheets for gathering information throughout a fluvial system.  The level of detail is 

extensive, but in some situations may not be necessary; consequently the datasheets can 

be modified to suit the study area and investigative needs.   
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3. Multi-Scale Geomorphic Assessment Approach in Illinois Streams 
 

There are many tools and analytical techniques for geomorphic-based assessments 

of the character of a stream channel (Kondolf and Piegay, 2003).  Such assessments are 

conducted to address perceived stream channel stability issues, usually at a reach scale 

and usually by non-geomorphologists with limited understanding of geomorphic 

processes and geologic controls. This lack of understanding can lead to poorly conceived 

investigative questions and employment of a limited range of geomorphic tools (Kondolf 

and Piegay, 2003).  Moreover, the integration and whole-sale application of specific tools 

across a wide range of environmental settings has resulted in considerable debate (Miller 

and Ritter, 1996; Kondolf, 1998; Skidmore et al., 2001).   To understand how fluvial 

processes and channel form interact over multiple temporal and spatial scales, 

assessments that range from individual reaches to entire watersheds are essential 

(Kondolf, 1995; Downs and Thorne, 1996; Kondolf and Downs, 1996; Fitzpatrick, 2001; 

Frothingham et al., 2002).     

 The approach to geomorphic assessment for streams in Illinois and similar 

environments in the Midwest incorporates components from assessment methods 

developed for a variety of physiographic regions.  The assessment framework is aimed at 

guiding management activities by providing a systematic, geomorphic evaluation of the 

processes responsible for current channel characteristics. Components of the assessment 

are organized into a framework that endeavors to determine past and current geomorphic 

processes through a comparative analysis of temporal and spatial data (Kondolf and 

Piegay, 2003).   This convergence of multiple lines of evidence to assess channel 

responses to the historical disturbances responsible for the current channel character is 
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instrumental for inferring future channel responses to management activities 

(Montgomery and MacDonald, 2002).  The assessment methodology sets the stage for the 

development of long-term datasets to monitor and study future channel adjustments as 

well as to conduct post-project evaluations for adaptive management opportunities 

(Downs and Kondolf, 2002). 

The multi-scale geomorphic assessment involves collection and analysis of data at 

watershed- and reach-scales. It is essential to assess channels at multiple temporal and 

spatial scales to facilitate understanding of the underlying factors and events leading to 

the existing channel appearance (Rhoads, 1990b; Kondolf, 1995; Newson, 1995; Downs 

and Thorne, 1996; Kondolf and Downs, 1996; Thorne et al., 1996; Rhoads and Urban, 

1997; Fitzpatrick, 2001; Frothingham et al., 2002; Montgomery and MacDonald, 2002).  

Whereas several assessment approaches incorporate methods for investigating spatial 

variability of channel instabilities (Brice, 1982; Downs, 1995; Simon and Downs, 1995; 

Brookes and Sear, 1996; Downs and Thorne, 1996; Kondolf and Downs, 1996; Thorne et 

al., 1996; Thorne, 1998; Kuhnle and Simon, 2000; Frothingham et al., 2002), few 

incorporate a historical analysis of qualitative and quantitative observations which 

defines the temporal context for extant channel character (Kondolf, 1995; Trimble, 1998; 

Downs and Kondolf, 2002; Montgomery and MacDonald, 2002; Juracek and Fitzpatrick, 

2003). To address this concern, the assessment methodology draws upon historical 

information on watershed and channel conditions, extant data on geologic, topographic, 

and hydrologic attributes that govern stream dynamics, and field data on current channel 

conditions. By evaluating the disturbance history, watershed-scale controls, and current 

channel conditions, it becomes possible to infer the causal mechanisms producing the 
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channel conditions (Montgomery and MacDonald, 2002) and extrapolate them to infer 

potential future channel adjustments.   

The data required to infer future channel adjustments is dependent on the “degree 

to which independent variables of hydrology and sediment supply can be quantified 

(Skidmore et al., 2001, p. 9)”.  Numerical alluvial-channel models require the most data 

and analyses, as well as modeling experience. Regime equations also depend upon the 

availability of large amounts of data and involve uncertainties in estimating stable 

channel geometries (Simon and Downs, 1995).  Empirical models of channel evolution 

(Simon and Hupp, 1992) are typical used when channel incision and widening has been 

identified as the dominant channel adjustment process.  The convergence of several lines 

of evidence may compose a characterization of expected channel morphologies by 1) 

identifying the type of fluvial environment under study (dominant boundary sediments 

and general physiographic setting), 2) determining threshold values of stream power to 

assess the likelihood of channel instabilities (Bull, 1979; Barnard and Melhorn, 1982; 

Graf, 1983; Baker and Costa, 1987; Brookes, 1987; Simon, 1992; Rhoads, 1995; 

Knighton, 1999; Rhoads, 2003), or 3) estimating the style of channel adjustment by using 

channel gradient as a surrogate for type of fluvial environment, whereby the future forms 

and processes can be inferred (Simon and Downs, 1995). 

This assessment methodology has three levels of investigation: watershed-scale 

characterizations, reach-scale characterizations, and evaluation/assessment.  The two 

scales are analogous to the network and planform scalar structure of river systems 

presented by Frothingham and others (2002).  The remainder of this chapter describes the 

assessment components using the Big Creek-Cache River watershed in the southern 
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Illinois region as a case study.  For each level of investigation there will be a discussion 

of the method objectives, data sources, implementation of the method in Big Creek, 

results of the method in Big Creek, and a discussion of the method performance. 

3.1 Watershed-Scale Characterization Method 

The objective of a watershed-scale characterization is to determine the temporal 

and spatial context for the current physical condition of the stream channel by 

determining the spatial extent or position of channel adjustments that are responding to 

direct or indirect influences (Rhoads, 1990b; Trimble and Cooke, 1991; Thorne, 1998; 

Trimble, 1998; Downs and Kondolf, 2002; Rhoads, 2003).  This objective is met by 

performing a comparative analysis of the historical and recent watershed and stream 

channel data over time to determine the existence of direct and indirect influences to 

which the channel may be responding.  Trimble and Cooke (1991) and Trimble (1998) 

discuss the use of historical resources in geomorphologic research.  Many of the 

resources (Table 3.1) are valuable in establishing sediment degradation/aggradation rates 

when contrasted with current data and provide insight into the human impacts on channel 

adjustment processes over longer periods of time.  They also aid in understanding the 

dynamics of geomorphic processes, thereby enhancing the ability to predict channel 

response with and without engineering (Downs and Thorne, 1996; Trimble, 1998).  

Historical resources are fraught with inconsistencies and often provide little or no 

documentation of quality controls.  Therefore, appropriate rigor needs to be applied when 

compiling such data.  The data interpretation should be performed using 

geomorphological experience and insights that realize their value as well as limitations 

(Kondolf and Downs, 1996; Thorne, 1998; Rhoads, 2003).   
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Table 3.1.  Data types in historical analysis of watershed-scale characterization 
(modified from Trimble and Cook, 1991) 

Watershed Boundary Topographic Maps Bathymetric Surveys 
Geology Aerial Photography Ground-based Photography 
Surficial Materials Drainage Projects Interviews/News Media 
Physiography Channel Gradient Narrative Accounts 
Climate Streamflow Travel Accounts 
Land Use Sediment Past Scientific Studies 
Soil Surveys Bridge Surveys  
 

The watershed-scale characterization has two techniques of investigation:  

historical analysis and initial field survey.  The historical analysis is the synthesis of all 

available information on the watershed and stream channel features.  The initial field 

survey includes current field data describing the general physical character and geometry 

of the channel.   

The objectives of the historical analysis are to synthesize and contrast historical 

and recent information (Table 3.1) to 1) establish the physical character of the watershed, 

2) identify possible direct and indirect influences in the fluvial system that effect 

sediment supply and sediment transport capacity, and 3) correlate available data with 

associated observed channel form so it can be interpreted in the context of channel-

influencing events (Kondolf and Downs, 1996).  These three objectives contribute to 

understanding the process-response mechanisms that are active within the channel 

(Trimble and Cooke, 1991).  The results of the historical analysis may reveal compelling 

evidence of possible local or system-wide channel responses (Simon and Downs, 1995).  

Such evidence would include abrupt changes in channel planform, significant river 

engineering projects, major shifts in land use, trends in climate, and changes in flow 

duration and flood frequency.     
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The objective of the initial field survey is to establish the extant character of the 

stream channel throughout the network.  The initial field survey is essentially a field-data 

collection component where relative channel stability is determined based on the physical 

features of the channel and basic channel geometry throughout the network.  The benefits 

of determining the watershed context of channel features and response mechanisms has 

been reported by many investigators (Rhoads, 1990b; Trimble and Cooke, 1991; Kondolf 

and Downs, 1996; Rhoads and Urban, 1997; Thorne, 1998; Trimble, 1998; Downs and 

Kondolf, 2002; Frothingham et al., 2002; Rhoads, 2003).  Also, this information 

supplements the objectives in the historical analysis, as well as providing the relative 

spatial extent of current channel characteristics.   

There are two components to the initial field survey:  1) site selection and 2) 

collection of basic field data.  The site selection process involves evaluation of aerial 

photographs and physical maps to achieve an adequate spatial density of sites which 

contains the widest range of channel conditions (Simon and Downs, 1995).  The 

information gleaned from geologic/surface material maps, soil surveys, and topographic 

maps can identify areas with distinct physical differences, in which more sites may be 

positioned.   Suspected unstable sites are included in this survey.  Accessibility and 

landowner permission will also be factors in selecting the final site locations.  

The basic field data collection component is a modification of the channel-

stability ranking scheme (Figure 3.1) from Kuhnle and Simon (2000).  The channel-

stability ranking scheme has two elements:  1) rapid measurement of reach-averaged 

channel geometry and bank angles, bed and bank material descriptions, and reach 

gradient and 2) ranking of channel characteristics into a channel-stability index.  These
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Station # Station Description:

Date: Crew:_______________ Site Coordinates:____________________

Pictures: � U/S  � D/S  � X-section � LB  � RB Samples:___________________________

Field Measurements: Reach length:__________________ Est. Reach Slope:______________

Avg channel widths: (top)______(bottom)______ Avg/Max channel depth:_______/_______

LB angle (avg):_______________ RB angle (avg):_____________

Primary bank material:_______________ Primary bed material:  (See #1)
(GP=gravel; SP=sand; ML=silt; CL=clay; BR=bedrock)

1.  Primary bed material
Bedrock Boulder/Cobble Gravel Sand Silt/Clay

0 1 2 3 4
2.  Bed Protection

a) Yes
OR 0

b) No (with) One (L or R) Both
1 2 3

3.  Degree of floodplain separation**/incision (Relative elevation of "normal" low water; floodplain/terrace @100%)
0-10% 11-25% 26-50% 51-75% 76-100%

4 3 2 1 0
4.  Degree of constriction (Relative decrease in top-bank width from up to downstream)

0-10% 11-25% 26-50% 51-75% 76-100%
0 1 2 3 4

5.  Streambank erosion (Each bank over reach length)
None Fluvial Mass wasting (failures)

Left 0 1 2
Right 0 1 2

6.  Stream bank instability (Percent of each bank failing over reach length)
0-10% 11-25% 26-50% 51-75% 76-100%

Left 0 0.5 1 1.5 2
Right 0 0.5 1 1.5 2

7.  Established woody vegetative cover (Percent of each bank face over reach length)
0-10% 11-25% 26-50% 51-75% 76-100%

Left 2 1.5 1 0.5 0
Right 2 1.5 1 0.5 0

8.  Occurrence of bank/bar accretion (Percent of each bank with fluvial deposition over reach length)
0-10% 11-25% 26-50% 51-75% 76-100%

Left 2 1.5 1 0.5 0
Right 2 1.5 1 0.5 0

9.  Stage of Channel Evolution (If applicable)
I II III IV V VI
0 1 2 4 3 1.5

OTHER OBSERVATIONS:
Total Score:

* Adapted from Kuhnle and Simon (2000) 

Pattern:  � Meandering  � Straight  � Braided  � Drainage Ditch**

CHANNEL-STABILITY RANKING SCHEME*

#Banks 
Protection

 

Figure 3.1.  Channel-stability index sheet used in watershed-scale characterization, 
initial field survey component. 
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two elements characterize the relative degree of channel stability between reaches 

throughout the watershed.  The rapid field measurements are estimated using a laser 

rangefinder, hand level, hand-held particle size analyzer, and a Unified Soil Classification 

System card.  The channel-stability index is the sum of nine evenly weighted physical 

channel characteristics (Simon and Downs, 1995).  In general, sites with a channel-

stability index greater than 20 have substantial potential for critical instability and an 

index of 10 and lower are considered relatively stable (Simon and Downs, 1995).  Sites 

with an index between 10 and 20 have potential to become unstable (personal 

communication; Simon, June 2003).  The principal use of the channel-stability index is to 

determine the relative distribution of the stability rankings between sites to detect 

possible system-wide channel responses.  It is not intended to be used to infer channel 

stability/instability for isolated reaches.  All sites are ranked and mapped using GIS by 

the channel-stability index and each variable to present their spatial distribution.  The 

mapped indices and variables are used to identify possible system-wide trends in channel 

character.  If trends are not present, identified instabilities may be assumed to be 

localized (Simon and Downs, 1995). 

3.1.1 Watershed-Scale Characterization Data Sources 

This approach is developed specifically for use in Illinois landscapes to take 

advantage of datasets available in, or even unique to, Illinois.  Also, the usefulness of this 

approach is further enhanced by the identification of the source and location of datasets.  

As discussed, there are several objectives in the watershed-scale characterization 

therefore the associated data sources are grouped by objective.  This organization will 
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provide a systematic method to analyze the data to meet the associated objective.  For 

details on the data sources used in this characterization, refer to Appendix A. 

3.1.2 Case Study Watershed:  Big Creek 

This geomorphic assessment methodology was developed within the Big Creek 

watershed in the Cache River Basin.  This watershed was chosen on the basis of federal, 

state, and local stakeholder interest, a need for a comprehensive geomorphic analysis, 

likelihood of diverse and long-term datasets, history of landowner/stakeholder 

cooperation, and active studies and programs aimed at understanding the erosion 

processes in the watershed with the intention of implementing erosion control projects.   

 The Cache River Basin is located in extreme southern Illinois just upstream of the 

confluence of the Ohio and Mississippi Rivers and consists of two distinct drainage 

basins (Figure 3.2).  The Upper Cache River watershed area is 953 km2 and drains 

directly into the Ohio River.  The Lower Cache River has a drainage area of 927 km2 and 

drains into the Mississippi River through a diversion channel.  The Cache River-Cypress 

Creek Wetland is located in the Lower Cache River valley and has two tributaries: Big 

Creek (135 km2) and Cypress Creek (120 km2).  Each of these tributaries drains a high-

relief headwater area and flows into the nearly flat valley bottom of the Lower Cache 

River and the Cache River-Cypress Creek Wetland (Demissie, Soong et al., 1990b).  The 

wetlands are known for being the northern most extent of cypress-tupelo gum tree stands 

in the country, some more than 1,000 years old, and include eight officially designated 

Illinois Nature Preserves.   

The Cache River basin occupies only 1.5% of the land area in the State of Illinois, 

but contains 91% of the high-quality swamps, 42% of the shrub swamp, and 11.5% of the
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Figure 3.2.  Location of the Cache River and its major tributaries (Demissie et al., 
2001). 

BIG CREEK 
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high-quality floodplain forest in the state (Illinois Department of Natural Resources, 

1997).  Nearly 104 Illinois endangered or threatened species are found in this area and 

seven of these species have federal threatened or endangered status.  In 1994 the Cache 

River-Cypress Creek Wetland was designated one of nineteen wetlands on the RAMSAR 

List of “Wetlands of International Importance” in the United States for its role in 

sustaining waterfowl and shorebirds that use the Mississippi flyway.  This designation 

puts the Cache River-Cypress Creek Wetland into the same class as more famous U.S. 

wetland systems such as the Florida Everglades and the Okefenokee Swamp (Illinois 

Department of Natural Resources, 1997).  The National Parks Service has designated 

three National Natural Landmarks in the basin.  

Over the last century, substantial changes have occurred in the Cache River 

watershed, which directly affected the fluvial dynamics of Big Creek.  The confluence of 

the Cache River was originally at the Ohio River south of Mounds, Illinois (Figure 3.2).  

However, the Cache River has been subject to intensive drainage, flood, and water-level 

control since 1915 (Table 3.2).  The most significant engineering project was the 

modification of Post Creek, a small, north-south tributary to the Cache River (Figure 3.2).  

Post Creek originally flowed north from the hills between the Cache and Ohio River 

valleys to its confluence with the Cache River near the town of Karnak.  In an effort to 

facilitate reclamation (drainage) of the land for agricultural use, Post Creek was ditched 

through the hills in its headwaters to the Ohio River (Hutchison, 1984).  This action 

connected the Cache River with the Ohio River.  Since then, Post Creek has been referred 

to as the Post Creek Cutoff because this modification literally cut the Cache River 

watershed in half (now known as the Upper and Lower Cache River watersheds).  The 
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Upper Cache River, draining high sloping uplands, now drains into the Ohio River over a 

much shorter path and no longer provides flow through the Cache River-Cypress Creek 

Wetlands.  Backwater from floods on the Ohio and Mississippi Rivers precipitated the 

building of a major levee system to alleviate backwater flooding in the Cache River 

watershed.  The Cache River Levee is several miles long and runs in a northeast-

southwest direction, just east of Karnak, Illinois and west of the Upper Cache River/Post 

Creek cutoff confluence.  

Table 3.2.  Drainage, flood, and water-level-control projects in the Cache River 
Basin (Demissie, Soong et al., 1990b) 

Period Project 

1905 Major channelization, including the Post Creek Cutoff, proposed by the Cache 
River Drainage Commission 

1915 Post Creek Cutoff and Forman Floodway constructed 

1930s Channelization of the lower Cache River 

1950 Lower Cache River outlet diverted from the Ohio to Mississippi River 

1952 Reevesville and Cache River levees constructed by the USCOE 

1960s Dredging and clearing of the Lower Cache River in the Buttonland Swamp area

1982 Low-head channel dam built in Buttonland Swamp (Cache River-Cypress 
Creek Wetlands) by Save the Cache, Inc. 

1986 Cache River levee breached by Big Creek Drainage District #2; levee repaired 
by drainage district as ordered by the COE 

 

Logging, conversion of forest to agriculture, and many drainage alteration 

projects (e.g., flood and water-level control) that were implemented in the Lower Cache 

River watershed over the last century have led to substantial changes in runoff and 

sediment supply (Demissie, Soong et al., 1990b).  These changes have set into motion 

channel adjustment responses that caused erosion of the uplands and channel perimeter. 

Consequently, Big and Cypress Creeks deliver high suspended-sediment loads to the low-
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energy Lower Cache River-Cypress Creek Wetland (Demissie, Soong et al., 1990b).  The 

result is high rates of sediment deposition and high levels of turbidity in the wetlands, 

which in turn has endangered ancient cypress and tupelo tree stands and other sensitive 

components of the ecosystem. Demissie and others (1990b) have identified Big Creek as 

the tributary that contributes a significant portion (nearly 70%) of the suspended sediment 

load to the wetland.   

Interest and resources from local and state organizations to reduce sediment 

loading from Big Creek also makes it suitable for developing the geomorphic assessment 

approach.  Engineering and land management projects to reduce the upstream erosion and 

downstream sedimentation from the Big Creek watershed into the Lower Cache River 

wetlands are in progress.  A study by the Illinois State Water Survey (ISWS) modeled the 

hydrology of the Big Creek watershed and investigated runoff management alternatives, 

such as detention storage in the watershed to reduce peak discharges, thereby reducing 

the sediment transport capacity, and redirect high suspended sediment laden high-

discharge waters away from the wetlands (Demissie et al., 2001).  That study is being 

used as a major criterion for detention basin construction in the watershed. 

Another effort in Big Creek is the installation of instream restoration projects to 

stabilize the channel, which has been identified as a primary source of  downstream 

sediment.  Channel instabilities were initially determined by federal, state, landowner 

concerns and followed up by limited field-inspection.  The results of a comprehensive 

geomorphic assessment will be an important contribution to verifying the need for 

restoration projects by determining the extent of channel adjustments, mechanisms 

responsible for these adjustments, and whether the adjustments will continue.  
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Information on the type and rate of the adjustments would be particularly helpful in 

identifying appropriate mediating projects, locations, and design, as well as post-project 

appraisals.   

3.1.3 Big Creek Case Study:  Watershed-Scale Characterization 

A watershed-scale characterization was performed for the Big Creek watershed 

and stream channel.  The following are the results of the two techniques of investigation 

and presented by the objectives of those techniques.   

3.1.3.1    Historical Analysis – (1) Establish current physical character of watershed 

Physiography (geomorphology, surficial materials, geology).  Big Creek-Cache River 

Basin is located in one of two glacial driftless areas in Illinois.  The elevation in the Big 

Creek watershed ranges from 195 to 100 meters msl.  The watershed crosses two major 

physiographic provinces:  Interior Low Plateaus Physiographic Province-Shawnee Hills 

Section (also referred to as the “Illinois Ozarks”) to the north and the Coastal Plains 

Province-Bottomland Section (Leighton et al., 1948) to the south.  The Shawnee Hills 

Section is a dissected upland, underlain by Mississippian and Pennsylvanian bedrock and 

its boundary is marked by the Illinoisan glacial drift boundary to the north and the 

overlapping Coastal Plain sediments to the south (Leighton et al., 1948, p. 31).  The 

Pennsylvanian ridge defines the upland boundary of the watershed and is dissected by 

mature valleys and the majority of the watershed is a maturely dissected plateau on 

Mississippian bedrock (Leighton et al., 1948).  A deep weathered zone of gravel overlain 

by loess indicates that a long period of stable conditions followed their deposition and 

that the major period of valley-cutting occurred late in the Tertiary (Leighton et al., 

1948).   
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The southern portion of the Big Creek watershed, which merges with the Cache 

River Valley, is in the Coastal Plain Province also known as the Mississippi Embayment.  

The Cache River Valley forms the northern edge of this province and “is an abandoned 

segment of the trunk portion of a major drainage system (Ohio River)” (Frankie et al., 

1997, p. 55).  The geomorphic history of this area is complex.  The valley has been 

scoured and filled with each glacial cycle in the area and played a role in the drainage 

pattern and current positions of the Ohio, Cumberland, and Tennessee Rivers.   

The surficial material is Wisconsin and Holocene age alluvium and is covered by 

3-5 meters of Peoria Loess (Leighton et al., 1948).  The lithology exposed in the Big 

Creek valley is mainly slackwater lake sediments dominated by stratified silt and clay 

and commonly covered by less than 2 m of Peoria loess (Berg and Greenpool, 1994).  It 

is underlain by Mississippian interbedded limestone, shale, and sandstone between 0 and 

6 m from the surface (Berg and Greenpool, 1994).  Karst features in central Union 

County were noted by Leighton and others (1948) and observed during field visits in 

which streamflow was interrupted by a 4500 m section of dry limestone, chert-gravel 

channel bed. 

Soils.  Soil associations within the watershed can be divided into two groups; those found 

along the stream corridor and those found on the ridges and hillsides in the uplands (U. S. 

Department of Agriculture, 1968, 1979).  Wakeland-Hammond (Union County) and 

Bonnie-Belknap (Pulaski County) associations occur in the stream corridors.  The 

Wakeland-Hammond soils are formed on nearly level slopes and along streams in the 

dissected uplands.  The Wakeland forms in silty alluvial deposits, is poorly drained, and 

lies on broad floodplains of large streams.  The Hammond is a well-drained silt loam 
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found on high-gradient narrow floodplains.  The Bonnie-Belknap soil association is a 

poorly drained silt loam found mostly in the bottomlands around the confluence of Big 

Creek and the Cache River.  Soil associations found on the ridges and hillsides in the 

uplands are Alford and Hosmer (Union County) and Alford-Hosmer (Pulaski County).  In 

Union County the Alford is found on gently sloping to moderately steep hillsides and 

develops in loess.  This 1.5 m thick soil has a surface layer of silt loam and a silty clay 

loam subsoil that overlies a cherty limestone.  The main management concern for this soil 

is erosion.  The Hosmer is similar to the Alford but also has a compact and brittle 

fragipan below the subsoil and moderate permeability.  Erosion is the main management 

concern.  The Alford-Hosmer soil association in Pulaski County is found on rounded, 

rolling to steep hills to the north and south of the Cache River.  The Alford is well 

drained and moderately permeable. The Hosmer soil occupies the areas around the upper 

part of some drainage ways and on the lower part of slopes (U. S. Department of 

Agriculture, 1968).  Again, erosion is listed as a management hazard on these soils. 

Climate.  Precipitation and temperature data were retrieved from the Midwest Climate 

Center.  The 30-year (1971-2000) annual mean precipitation for the area is 122.48 cm 

with a range of 168.99 cm (1982) to 77.27 cm (1980).  The 30-year (1971-2000) annual 

mean temperature is 13.8EC with a range of 14.9EC (1991) to 12.4EC (1979). 

Land Use.  Land cover information for the Big Creek watershed was obtained from Land 

Cover of Illinois: 1999-2000 (Luman and Weicherding, 1999) and U.S. General Land 

Office Survey  1804 and 1843 records (Illinois Natural History Survey, 2002).  These 

sources were in GIS format; therefore the datasets could be directly analyzed at the 

watershed scale.  Agricultural land use acreage was obtained from the Illinois 
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Agricultural Statistics records for Pulaski and Union County for 1925-2002, Pulaski and 

Union County soil survey reports for 1968 and 1979 (U. S. Department of Agriculture, 

1968, 1979), and crop residue management data for 1989-2002 (Conservation 

Technology Information Center, 1989, 2002).  These datasets are available at a county-

level scale only. 

The 1999 watershed land cover data by Luman and Weicherding (1999) reports 

approximately 42.6% in rural grassland, 29.3% in crop production, 17.9% in forest, 5.2% 

in wetland, 3.7% in urban or built-up land, and 1.2% in surface water or barren and 

exposed lands.  In 1999, cropland area calculated from the Illinois Agricultural Statistics 

(IAS) data was 31.6% of Union and Pulaski counties, which is comparable to the 29.3% 

of cropland within the Big Creek watershed calculated from the Luman and Weicherding 

(1999) land cover data.  Because of the similarity in these estimates it is assumed that the 

Union and Pulaski County crop statistics are representative of crops within in the Big 

Creek watershed. 

3.1.3.2    Historical analysis– (2) Identify potential direct and indirect influences 

Topographic maps, aerial photography, ground-based photography.  Adjustments in 

channel planform over time were determined by using GIS techniques on georectified 

historical and recent aerial photography.  The 1998 USGS Digital Ortho-Quadrangles 

(DOQs) were readily available for Big Creek (Illinois Geospatial Clearinghouse).  Aerial 

photographs from 1938 were previously scanned and geo-rectified by the Illinois State 

Geological Survey (ISGS).  To determine if undocumented channelization projects 

occurred prior to the 1938 photography, a 1920 15-minute (1:62,500) series quadrangle 

map was digitally scanned.  Fresh channel cutoffs were quite apparent on the 1938 
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photography and coincided with the channel planform shown on the 1920 topographic 

map.  The 1920 map was transparently overlaid on the 1938 photography and used as a 

guide to construct a “pre-1938” channel planform.   

Figure 3.3 shows the channel planform for pre-1938, 1938, and 1998.  The lower 

half of the Big Creek channel experienced major cutoffs between 1938 and 1998.  From 

pre-1938 to 1938, Big Creek lost 9.4 km (21%) of its length and another 6.4 km between 

1938 and 1998.  The total loss of channel length in Big Creek was 15.8 km (35%).  The 

lower half of Big Creek experienced a significant portion of this loss (58%).  The 

abruptness of the channel planform shifts in the lower half of Big Creek is indicative of 

channelization projects for improved drainage.  Reduction of channel length increases the 

slope and thereby the fluvial energy.  This increase in energy can initiate significant 

channel adjustments, such as upstream migration of headcuts and excessive downstream 

sediment deposition.  

Drainage projects, road and causeway construction plans, and bathymetric surveys.  Big 

Creek had at least 4 major channel modification projects. These projects were performed 

by the Department of Public Works and Buildings, Division of Waterways in the late 

1930s and early 1940s. These projects involved channel straightening with construction 

of levees and large grade-control structures on the lower half of Big Creek.  The channel 

length in this section was reduced by 58%, doubling the channel gradient.  The 

confluence of Big Creek with the Cache River was moved 1.6 km downstream.  Almost 

all the loss in channel length between 1938 and 1998 is accounted for by the 

channelization projects documented from 1939 to 1945.  There have been no significant 

channelization projects in Big Creek since 1945. 
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Figure 3.3 Channel planforms for pre-1938, 1938, and 1998. 
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Pre- and post-channelization cross-sections and channel elevations show that the 

channel was not substantially deepened, averaging 4.25 m in channel depth.  However, 

the top of bank widths were usually increased or narrowed to an average of 15 m in 

width.  During this period, six control structures (dams) were constructed throughout the 

channelized reaches (Figure 3.4).  It is assumed that the purpose of the dams was to 

dissipate the increase in energy from the increase in gradient caused by the straightening.  

Some dams reduced the cross-sectional area of the constructed trapezoidal channels by 

approximately 18% and others equaled the new cross-sectional area but the crest 

elevations were higher than the new downstream bed elevation.  The 1999 aerial 

photography shows major blowouts below at least three of the six dams.  These three are 

assumed to be the dams constructed with narrow openings relative to the upstream 

channel cross-section.  Project plans from 1954 show an attempt to repair a blowout 

below the sixth structure.  The repair project plans call for widening of  the 1944 channel 

design below Dam #6 and reinforcement of the banks with stone and rip-rap.  However, 

the 1999 aerial photography shows a major blowout at this structure, therefore, it is 

unclear as to whether the repair failed or was never performed. 

Climate and Land Use.    

Climate.  Fluctuations in precipitation and temperature influence runoff and vegetation 

patterns, which can effect transport capacity and sediment supply of rivers (Knighton, 

1998).   The long-term (1896-2003) annual mean precipitation at the Anna, Illinois 

station is 120.60 cm.  Demissie and others (2001) performed a 10-year moving average 

on the 100-year record, which showed the wettest 10-year period was from 1942-1951 

(137.16 cm) and the driest 10-year period was 1959-1968 (109.22 cm) (Figure 3.5).  They
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Figure 3.4  Dam #3 - typical control structure installed in Big Creek during the 
1930-40s:  a) low flow [depth from top of wing-wall to crest is 3.66 m], 

b) high flow [note stream gage], and c) 5-yr flow overtopping structure. 

b) 

c) 

a) 
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Figure 3.5.  Annual precipitation and 10-year moving average of precipitation at 

Anna, Illinois (Demissie et al., 2001). 

found no long-term trends in annual precipitation. Their analysis also showed that the 

occurrence of the 24-hour, 2-year rainfall event, rainfall in excess of 8.89 cm, was fairly 

uniform over the period of record.  The long-term (1896-2003) annual mean temperature 

at the Anna, Illinois station is 14.1° Celsius (C).  A comparison of the annual mean 

temperature for 3 periods in the long-term record (1896-1949; 1950-1970; 1971-2000) 

was 14.3, 13.8 and 13.8°C, respectively.  A 10-year moving average was performed on 

the period of record, which showed a 1οC decline in temperature from the early part of 

the 20th century to the 1970s and an increase by 0.5 οC to the 1990s (Figure 3.6). 

Land Use/Land Cover.  Land use practices and various land covers affect runoff rates in 

a watershed, which influences transport capacity in streams.  In an urban setting, 

impermeable surfaces can significantly increase runoff rates.  Forest, grasslands, pastures
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Figure 3.6.  Annual temperature and 10-year moving average of temperature at  
Anna, Illinois. 

and wetlands increase infiltration and reduce runoff.  Rowcrop agriculture tends to have 

higher runoff rates than small grain production, however, conservation tillage and 

increases in crop residue promote increased infiltration.  Documenting trends in land uses 

and land cover can reveal indirect disturbances in a fluvial system. 

Analysis of annual agricultural crop production was performed using data from 

the Illinois Agricultural Statistics Service (IAS) summed for Union and Pulaski Counties 

from 1925-2002.  The annual area of crops harvested is for corn, soybeans, sorghum, and 

small grains: wheat, oats, and hay.   

Land cover has experienced a major shift within the watershed over the last 150 

years (Figure 3.7).  Information from the 1804 to 1843 General Land Office plat maps 

(Illinois Natural History Survey, 2002) indicate 98% of the land cover in the Big Creek 

watershed was in forest and the remainder as wetland/water.  In contrast, 17.9% of the
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Figure 3.7.  Area of selected crops harvested in Union and Pulaski Counties. 

1999 land cover was in forest (Luman and Weicherding, 1999).  Illinois Agricultural 

Statistics show agricultural crop acreage has changed very little from 1925 (26%) to 2002 

(34%) with row crops shifting from 50% to 75% of the total crop area.  There is 

anecdotal information from the Union County Soil Survey that apple and peach orchards 

and vegetables were significant in 1979 but were declining in favor of row crops.  

Orchards were located in the uplands and vegetables were grown in the narrow 

bottomlands. Erosion was reported as a minor problem in the sod-covered orchards but 

was higher in the areas that produced vegetables (U. S. Department of Agriculture, 1979).  

In 1999, orchards and vegetables accounted for only 0.3% of the land cover in the 

watershed.  A visual inspection of the 1938 aerial photography reveals that orchards 

covered a significant area of the upper Big Creek watershed, whereas the 1999 

photography shows only a handful of orchards.  This cursory inspection also confirmed 
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that several areas occupied by orchards in 1938 were replaced with row crops and open 

fields in 1999.  However, since total cultivated land cover seems to not have shifted 

significantly over the last 77 years it is assumed that between 1979 and 1999 orchards 

were also converted to land covers other than row crops.  The 1968 Pulaski County soil 

survey reports the 1959 census for areas in agriculture, woodland, and pasture, as well as 

significant numbers of livestock and chickens (20,000 to 36,000), but no mention of 

orchards.   

Crop residue management data were retrieved from the CTIC for 1989 and 2002 

(entire dataset covers 1989-2002) (Conservation Technology Information Center, 1989, 

2002) to assess current surface runoff impacts.  The dataset presents the area of selected 

crops in conservation tillage (no-till, ridge-till, and mulch-till), reduced-tillage (15-30% 

residue), and conventional-tillage (0-15% residue).  Between 1989 and 2002, 

conservation tillage significantly increased by 46 % at the expense of the other tillage 

practices.  

Past scientific studies, travel accounts, and news media.  The accounting of direct and 

indirect disturbances in a fluvial system from information garnered from past scientific 

investigations, travel accounts or news media gives a temporal context to current channel 

character and may provide unique insights into channel adjustment rates.   An extensive 

search for previously collected data was made for the Big Creek-Cache River basin 

watershed.  The ISWS has been studying the Cache River area since 1985 (Demissie et 

al., 1987; Demissie, 1989; Demissie, Soong et al., 1990a, 1990b; Demissie, Soong and 

Camacho, 1990; Allgire, 1991; Demissie and Xia, 1991; Demissie et al., 1992; Allgire 

and Cahill, 2001; Demissie et al., 2001; Keefer et al., 2006).   Also, a library search 
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uncovered several more studies in the general area (Brigham, 1978; Fitzgerald, 1987; 

Middleton, 1995; Sengupta, 1995; Holmes, 1996; Shasteen et al., 2002).  The studies by 

Fitzgerald (1987), Holmes (1996) and Sengupta (1995) were in the Upper Cache River or 

Cypress Creek watersheds, whereas the Brigham (1978), Middleton (1995), Shasteen and 

others (2002), and Dodd et al., 2005) studies had ecological data directly in the Big Creek 

watershed.   

In 1976 and 1977 the water quality of the Cache River Basin was determined by 

field sampling of benthic macro-invertebrate communities at 151 sites (Brigham, 1978).    

Brigham (1978) had five stations on Big Creek, which overlapped with initial field 

survey stations selected for this study.  Shasteen and others (2002) reported 1999 data on 

land use, water chemistry, fish population and flesh, aquatic macroinvertebrates, stream 

habitat, and sediment chemistry.  This study had two sites on Big Creek, which 

overlapped with sites from Brigham (1978) and this study.  The site in upper Big Creek 

was listed as fully supporting for overall use and aquatic life and the lower Big Creek site 

was listed as partial supporting for overall use and aquatic life.  Stream habitat data 

provided substrate percent, some channel geometry, and percent pool-run-riffle.  

Middleton (1995) studied cypress-tree seed dispersal during floods as a potential natural 

hydrologic restoration method for former agricultural fields next to the wetlands.  The 

hydrologic data used in the study was obtained from Demissie and others (1990b).  A 

1975 interview of a long-time resident of Ullin, Illinois reveals that local landowners may 

have been responsible for a channelized section of Big Creek at the confluence with 

Cache River (Shawnee Community College, 1975), which may account for engineering 

plans not being discovered for this section.  
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3.1.3.3    Historical analysis– (3) Hydraulic and channel geometry (flow and 

sediment) 

Streamflow records and sediment data.  In lower Big Creek a long-term continuous 

recording stream gaging station has been in operation for Water Years (WY) 1940-1971 

by the U.S. Geological Survey (USGS #05600000) and WY1985-present by the Illinois 

State Water Survey (ISWS #502).  A peak crest gage has been operating at this site since 

WY71 by the USGS.  A second stream gage (ISWS #500) has been in operation in upper 

Big Creek for WY2000-present.  Runoff, flow duration, and peak flows at the ISWS 

#502 station were analyzed through 1998 by Demissie and others (2001).  Comparison of 

annual runoff with coincident annual precipitation shows a good relationship, which 

implies trends in runoff is closely associated with precipitation (Demissie et al., 2001).  

Their flow duration analysis shows that daily flows on Big Creek range from more than 

14 cms to less than 0.03 cms and had a greater magnitude of sustained low flows during 

dry periods (Demissie et al., 2001).  When the flow record was separated between the two 

streamgaging periods (WY1940-1971 and WY1985-1998), the flow duration curve for 

the WY1985-1998 again showed greater sustained low flows as opposed to zero flows 

being more common during WY1940-1971.  Given that runoff is shown to be generally 

correlated with precipitation and no trends in precipitation are observed, the discrepancy 

in the flow durations during low flows between the two streamgaging periods is most 

likely due to changes in land use (personal communication; Knapp, October 2003).   

Sediment discharge records are available for the downstream Big Creek 

streamgage (ISWS #502) for WY1985-1988 (Demissie, Soong et al., 1990b) and 

WY1999-present and the upstream streamgage (ISWS #500) during WY2000-present.  
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However, both of these records are not long enough to determine trends in sediment 

yield.  A preliminary comparison of the sediment yields during WY 2000-2002 show that 

ISWS #502 has higher yields than ISWS #500.  Suspended-sediment particle-size 

distribution data was available at both stations for WY2000-2003.  A sub-set of this data 

was analyzed for the highest discharges recorded during the period of record.  It was 

assumed that the highest discharges would be well-mixed and more representative of 

particles being transported by the channel.  The median particle size of suspended 

sediment at ISWS #500 had a range of 0.008-0.011 mm (fine silt) and ISWS #502 had a 

range of 0.0019-0.018 (fine-medium silt). 

Sedimentation rates in a waterbody, such as a reservoir or lake, are a reflection of 

erosion rates in a fluvial system.  Estimation of sedimentation rates can reveal the extent 

of the erosion and, when sufficient data are available, a tool for inferring future rates for 

management consideration.  There are several studies that have estimated sedimentation 

rates in the Cache River-Cypress Creek wetlands (Demissie et al., 1992; Allgire and 

Cahill, 2001; Keefer et al., 2006).  Demissie and others (1992) estimated sedimentation 

rates by combining two methods:  sediment budget and radiometric analyses.  The 

sediment budget analysis was based on three years of sediment yield records (WY1986-

WY1988) and the radiometric dating technique used Cesium-137 (137Cs) to determine 

sedimentation rates from 1963 to 1988.  In 2000, Allgire and Cahill (2001) collected 

twice as many cores as the 1992 study for radiometric dating (137Cs).  Annual 

sedimentation rates varied from 0.2 cm to >2.0 cm depending on the depositional 

environment (Allgire and Cahill, 2001) which were similar to the rates determined by 

137Cs in 1988 (Demissie et al., 1992).  Keefer and others (2006) included sediment yield 
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data between WY1986-2002 to recalculate rates using the sediment budget method 

reported by Demissie and others (1992).  These rates were then compared to the longer 

term Allgire and Cahill (2001) 137Cs rates for 1963-2000.  The rates determined by these 

two methods are very similar.  Annual sedimentation rates by the sediment budget 

method for the 17-year period (1986-2002) averaged 0.79 cm (0.3 – 2.3 cm) and the 

radiometric method for the 38-year period (1963-2000) averaged 0.86 cm (0.2 - >2.0 cm).  

Demissie and other (1990b) report that Big Creek delivers 70% of the sediment yield to 

the wetland, which makes the wetland sedimentation rates a reflection of erosion process 

in Big Creek.  Based on the negligible difference between the short- and long-term 

sedimentation rates, it is assumed that erosion rates in Big Creek have not appreciably 

shifted for nearly 40 years.  Keefer and others (2006) also reported that the Cache River-

Cypress Creek Wetland rates were lower than rates for nearby lakes (1.3 cm/yr) (Bogner 

et al., 1985; Bogner et al., 1997) but significantly higher than deposition rates for Coastal 

Plain wetlands, which ranged from 0.15-0.54 cm/yr (Hupp, 2000).  

Channel geometry.  Documented changes in channel gradient and cross-section were 

sporadic due to the lack of data to compare historical undisturbed channels or 

channelized geometries with recent measurements (Figure 3.8).  However, in 1999 and 

2002 the ISWS surveyed the channel profile with cross-sections as an initial investigation 

of suspected channel instabilities.  The profile generally covers the middle reaches of Big 

Creek.  Cross-sections located in the downstream section of the profile have distinct v-

shapes with average bank angles ranging from 16 to 33 degrees, whereas the upstream 

cross-sections are very trapezoidal in shape with nearly flat or mounded channel beds and 

30 to 50 degree bank angles.  The profile gradients in the upstream and downstream
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Figure 3.8.  Big Creek channel profiles from pre-1938 to 2003: a) entire channel 
length and b) channelized reach containing control structures. 
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reaches are 0.00309 and 0.00131, respectively.  Photographs of the channel throughout 

the downstream reach reveal recent rotational slip failures, fallen and tilted trees, 

negligible woody shrub-type vegetation on the banks, and excessive large wood debris 

(Figure 3.9).  The instrumented survey of the middle reaches of Big Creek shows two 

different channel cross-section shapes which could be a crude indicator of geological 

controls on channel processes.  The V-shaped channel is indicative of an incising 

channel, whereas the wide and flat channel with mounded beds may indicate an area of 

aggradation.  

3.1.3.4   Initial field survey – Document extant physical character of the stream 
channel 
 

Field sites were selected based on watershed physical characteristics, land cover, 

channelization history, and hydrologic data.  Big Creek crosses two major physiographic 

regions, which have a strong influence on many physical characteristics when choosing 

field sites.  The valley profile, watershed relief, proximity of bedrock to the surface, and 

surficial material guided the site locations to be spread between the upper and lower 

stream reaches.  The two active streamgaging stations made it advantageous to select 

several sites up- and downstream of these locations for possible future modeling efforts.  

The type of surficial material and land cover were fairly uniform across the watershed, 

which essentially supported an even distribution of sites.  A total of 23 sites were initially 

selected, but three were dropped due to lack of accessibility from landowners, and two 

subsequently were added for a total of 22 sites (Figure 3.10).  This was a ratio of 1 site 

for every 6.6 km2 of Big Creek.   

The basic channel morphology data and scores for each variable from the 

channel-stability ranking scheme (Figure 3.1 and Appendix B) were entered into 
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Figure 3.9  Examples of mass bank failures and large woody debris in middle reaches of Big Creek. 
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Figure 3.10.  Location of field sites. 
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spreadsheet, plotted against stream distance, and illustrated in a GIS system to view the 

spatial distribution of selected variables (Figure 3.11 and Appendix C). Basic channel 

morphology data consisted of reach length and slope, average channel width and depth, 

angle of both banks, and descriptions of bed and bank material.  The data was estimated 

using a laser rangefinder, hand level, hand-held particle size analyzer, and a Unified Soil 

Classification System card.   

Channel-stability indexes ranged from 8.0 to 29.0 (Table 3.3).  Seven of the 22 

sites had indexes greater than 20 indicating unstable channels and 4 sites were at or 

below 10 indicating stabile channels.  All four of the stable sites were located in upper 

Big Creek and 6 of the 7 unstable sites were in the mid-reaches between the two ISWS 

streamgages.  The other unstable site was in upper Little Creek, a tributary to Big Creek.  

Many variables showed a significant change where Interstate-57 (I-57) crosses Big 

Creek.  Width/depth ratios upstream of I-57 had a wide range of ratios (3-10.0), whereas 

downstream of I-57 the ratios were narrower (3.66-5.45).  Primary bed material upstream 

of I-57 ranged from gravel to bedrock and downstream ranged from sand to silt-clay.  

The mechanism of erosion in upper reaches was predominantly fluvial, whereas mass 

wasting was found more often in the lower reaches.   Below I-57 average bank angles 

were 39° and 34°, left and right banks, respectively.  Bank angles above had one bank 

with a low angle (average of 38°) accompanied with a high angle bank (average of 70°).  

Bank heights ranged from 1-4.5 m and 4.5-6.5 m in the upper and lower Big Creek 

regions, respectively.  

Stages of channel evolution (Simon, 1989) was also divided at I-57.  The 

downstream reaches of Big Creek had Stages III-V, whereas the upstream area had
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Table 3.3.  Results of initial field survey 
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mostly Stage I (1 of the 13 sites were listed as Stage V).  This would generally 

characterize Big Creek as proceeding through the stages of channel evolution starting 

upstream of its confluence to downstream of I-57 and pre-modified conditions upstream 

of I-57.  The ‘degree of floodplain separation’ (incision) values had a range of 3-4 

downstream of I-57, where stage of channel evolution values were predominantly Stage 

IV (threshold). Upstream of I-57, where Stage I (pre-modified) dominated the area, the 

degree of floodplain separation values ranged from 2 to 4.  However, high degrees of 

floodplain separation are not compatible with Stage I channels.  Field notes (April – 

October 2003) indicated dry gravel beds at many of these Stage I sites.  The degree of 

floodplain separation is based on the percent of the relative elevation of normal low flow 

with respect to the floodplain or terrace being 100% of the elevation.  Since “normal” low 

flow in this karst area is technically “no” flow, a dry bed would be 0% of the elevation 

and result in a very high degree of floodplain separation.   

Basic channel morphology data on bank material showed that, except for a few 

sites noting bedrock on one bank, silt and clay are the dominant bank material throughout 

the channel length.   The percent of bank erosion was unevenly distributed throughout the 

watershed. Most of the sites had greater than 50% of the banks covered in woody 

vegetation.  The occurrence of bank/bar accretion was also unevenly distributed.   

3. 1.4    Results of Watershed-Scale Characterization 

The watershed-scale characterization was able to reveal that indirect and direct 

influences have occurred in the Big Creek watershed.  Row crop land cover, which tends 

to increase runoff, was shown to have increased in the 1970s and is now the dominant 

agricultural land cover.  Anecdotal information indicated that sod-covered, low-erosion 
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fruit orchards were prevalent in the mid-20th century and by 1999 accounted for only 

0.3% of agricultural land cover.  Flow duration analysis shows a noticeable increase in 

low flows between WY1940-1971 and WY1985-1998, which was shown to not be 

associated with any trends in climate.  The shift in high-runoff land cover (row crop 

production) seems to be supported by this increase in low flows.  Severe channelization 

occurred between 1920 and 1945 in the lower reaches of Big Creek where 58% of the 

channel length was removed.  Between 1945 and 1998 there were minor changes in 

planform, most likely due to variation in scale and quality of the topographic maps and 

aerial photographs used for the analyses.  There seems to be no other channelization 

efforts since 1945. 

 Analysis of the basic channel morphology data and channel-stability indices 

indicates there are two types of channel adjustments occurring in Big Creek (Table 3.3).  

Most channel features group into two distinct regions of the Big Creek watershed, lower 

and upper, generally divided where I-57 crosses Big Creek.  The channel in the lower 

reaches have adjusted through incision and widening following the model of channel 

evolution, while the upper reaches seem to have been widening with minor meander 

extensions.  The lower reaches are ranked as having high potential for critical instability, 

passing through stage IV channel evolution and have high degrees of incision.  These 

reaches have a narrow range of width/depth ratios, deep average channel depths, bed 

material ranging from sand to silt-clay, bank material is predominantly silt-clay, mass-

wasting is the mechanism of bank erosion, and bank angles average 34 degrees.  In 

contrast, the upper reaches are ranked as having stable channels under natural fluvial 

processes (stage I), high degrees of floodplain separation, wide ranges of width/depth 
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ratios, shallow average channel depths, gravel to bedrock channel beds, predominantly 

silt-clay bank material, fluvial processes are the bank erosion mechanism, and wide 

ranges of bank angles. 

 The channel features in the lower reaches of Big Creek seem to complement and 

support each other.  The narrow range of width/depth ratios is a reflection of the 

channelization history in the area.  The symmetrical 34-39 degree bank angles in silt-clay 

banks may be indicative of channel widening to accommodate excess stream powers.   

Even though the degree of floodplain separation is high and the banks are experiencing 

geotechnical failures, field notes indicate fairly flat channel beds, which may be 

indicative of late-stage IV (threshold) channels.   

 The several basic channel morphology and channel indices results for the upper 

reaches of Big Creek show distinctly different channel response mechanisms.  The 

resistant channel beds (bedrock), shallow average channel depths, wide range of 

width/depth ratios, as well as higher ratio values, low and high angle banks paired within 

reaches, silt-clay bank material, and fluvial erosion processes, may be indicators of a 

stream channel tending toward lateral migration or widening. Also, the degree of 

floodplain separation was not a relevant morphologic feature to consider in areas with 

karst or resistant/armored channel beds.  However, the juxtaposition of this variable 

against other index variables shows it to be a strong indicator of channel adjustment 

processes other than incision. 

The estimated sedimentation rates in the Cache River-Cypress Creek Wetlands 

(Keefer et al., 2006) have not appreciably shifted between 1963 and 2002.  Because Big 

Creek is the major contributor of sediment to the wetland (Demissie, Soong et al., 



 64

1990b), the wetland sediment rates are assumed to be representative of sediment delivery 

from Big Creek. This implies that Big Creek has been slowly adjusting from at least 20 

years after channelization to present; nearly 40 years.  However, channel adjustment rates 

immediately following channelization are still unknown, although the influence of the six 

dams (control structures) installed during channelization should be considered and may 

support an assumption that adjustments for the first 20 years after channelization were 

also slow.  This could imply that the evolution to relatively stable channels in lower Big 

Creek could take several more decades. 

The overall evaluation of the watershed-scale characterization results gives 

reasonable evidence that long-term, system-wide adjustments are active in the lower 

watershed due to severe channelization of the lower watershed channel and the 

conversion of upper watershed landscapes to high runoff land use practices.  These 

adjustments are progressing through stages of channel evolution (Simon, 1989).  Stage IV 

produces the highest erosion in the channel evolution process, although stage V channels 

will continue to erode the channel through mass bank failures during the widening 

process.  Flattening of bank angles and bed-level recovery are indicators of restabilization 

stage VI.  Based on the geologic controls in the upper watershed (bedrock beds), it is 

unlikely that channel incision will migrate upstream of I-57.  A more detailed and 

focused field investigation needs to be performed in the lower and middle reaches of Big 

Creek to provide quantitative and defensible information for resources managers to base 

future best management practices. 
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3.1.5 Discussion of Method 

This watershed-scale characterization method used several techniques of 

investigation as reported by Trimble and Cooke (1991), Simon and Downs (1995), 

Trimble (1998), and Rhoads (2003).  These techniques were compiled to provide a 

watershed-scale context of past and current channel conditions thus discovering the 

process-response mechanisms responsible for the current channel character.    

The historical analysis technique was significant in identifying several physical 

controls and anthropogenic influences which have had a profound effect on Big Creek 

over the last 100 years.  The comparison, contrasting, and supplementation of the 

elements in this technique (Table 3.1) were instrumental in reconstructing the channel 

character over time.  Investigation of the physiography, geology, and surficial materials 

in the watershed revealed major physical influences on the type of channel adjustments 

encountered.  The most significant of which is the difference between two major 

physiographic provinces. The lack of any trends in climate in combination with the flow 

duration analyses provided evidence that the changes in low-flow duration were 

controlled by changes in land use.  Linking agricultural crop acreage with current land 

cover information allowed for extrapolation of land uses to the early part of the 1900s to 

document indirect influences.  Even though information from early and current county 

soil survey books was anecdotal, it supplemented and supported the trend in land use 

conversion that appears to have been responsible for the increase in low-flows over the 

last 30 years.  The removal of major channel lengths in the lower reaches of Big Creek 

was documented by four elements:  1) historical and recent aerial photography, 2) 

historical 15-minute topographic map, 3) engineering plans accounting for most of the 
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channelization projects, and 4) narrative accounts.  The aerial photography and 

topographic maps clearly documented the channel shortening over time; however the 

engineering plans and narrative account confirmed the cause as channelization.  

Inspection of aerial photography between 1938 and 1999 concluded no significant 

changes in planform.  The channelization engineering plans contained pre- and post-

project channel geometry and gradient, albeit for the lower channel reaches only, which 

determined some sites selected for the initial field survey.  Studies by Demissie and 

others (1992), Allgire and Cahill (2001), and Keefer and others (2006) provided a unique 

opportunity to approximate a rate of channel adjustment responding to direct and indirect 

influences documented in the historical analysis. 

The initial field survey confirmed a channel character that was expected from the 

historical analysis. The physiographic control was apparent in the rapid measurement of 

reach channel geometry and the channel-stability ranking scheme.  Most channel 

measurements and characteristics showed an appreciable relative difference in the 

vicinity of where I-57 crosses Big Creek.  The channel-stability ranking scheme was 

originally developed for use in bridge scour investigations where channel incision and 

widening was the prevailing style of channel response to disturbances.  This is obviously 

the style of channel response in the lower reaches of Big Creek and, except for the abrupt 

change in geology resulting in resistant beds, most likely would have been the response 

in the upper reaches due to increased gradient and erodible bank material.  The field 

survey measurements were rough and not meant to determine channel stability in 

isolation.  Therefore, the utilization of the basic channel data and channel-stability 

ranking scheme was confined to evaluating the relative differences between the 22 
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stations to determine the spatial distribution of channel features.  The scheme can be 

repeated at a later time to evaluate the status of system-wide adjustments.  Channel 

adjustment rates were roughly determined as slow for Big Creek, on the order of decades, 

consequently the field survey would be most informative when performed in 

approximately 10 years. 

As discussed above, the historical analyses and initial field survey provided a 

respectable evaluation of the current physical character of the Big Creek watershed, 

identification of direct and indirect influences, and detected changes in the channel 

character corroborating the identified influences.  Big Creek is a well-studied watershed 

with a wealth of historical engineering and hydrologic data and recent sediment studies, 

which proved to be an advantage for this characterization.  However, even these 

advantages were sporadically located throughout the watershed, showing that even a 

watershed with this much information suffers the same drawbacks as other watersheds: 

temporally and spatially inconsistent datasets (Kondolf and Downs, 1996).  The 

application of this watershed-scale characterization in watersheds with little or, more 

likely, no hydrologic, sediment, and channelization data will have limitations when 

determining results.  Because the channel-stability ranking scheme was developed for 

channels that adjust through stages of channel evolution, it is unclear how applicable it 

will be in channels that respond differently to disturbances.  However, this scheme may 

still prove useful when a spatial distribution of channel features is not apparent.  

Performing the initial field survey still serves as a systematic way to inspect the channel 

being investigated, provides for rough channel measurements, and, when contrasted with 
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the historical analyses, could focus efforts on localized instabilities for more intensive 

reconnaissance. 

3.2 Reach-Scale Characterization 

There are two objectives of a reach-scale characterization.  The first is to 

document the extant character of stream channels in the watershed by collecting field 

data on channel morphology.  The second is to collect data that spatially coincides with 

historical site data compiled in the watershed-scale characterization and that allows for 

temporal evaluation of the study area.  The objectives are accomplished by collecting and 

recording detailed, quantitative data at a subset of sites drawn from the initial field 

survey.  These sites are hereafter referred to as “reconnaissance sites”.  Several factors 

are used to select the reconnaissance sites:  representativeness of channel adjustment 

trends revealed in the watershed-scale characterization, such as spatial variations in bed 

and bank material or physiography; comparable historical data to document temporal 

changes in channel morphology; accessibility; and resources.  

Field visits to reconnaissance sites will determine the segment of stream reach to 

collect and record information identified in the Geomorphic Assessment Stream-

Evaluation (GASE) data sheets (Figure 3.12).  The definition of a ‘reach’ used in this 

study follows Thorne (1998, p. 50): that it represent a single geomorphic unit (i.e. pool-

riffle sequence) and ideally covers a length of 5-10 times the channel width. The GASE 

data sheets are an integration of methods from Kuhnle and Simon (2000), Rhoads (2003), 

and Thorne (1998).  The main purpose of a formal field data sheet is to serve as a 

permanent, standardized record of a site for a specific  period in time, as well as provide 

supporting information for a final evaluation of the stream dynamics (Thorne, 1998;
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Geomorphic Assessment Stream-Evaluation Data Sheet
Adapted from Rhoads (2003), Kuhnle and Simon (2000) and Thorne (1998) � Metric � English
SITE INFORMATION
DATE: TIME IN/OUT: CREW: EVALUATION 

SHEET #:
SITE NUMBER: STREAM NAME: MAJOR WATERSHED:

NEAREST GAGING STATION: DRAINAGE AREA: COUNTY:

QUAD SHEET: COORDINATES (Lat/Long or TRS):

WEATHER (current): WEATHER (past 24 hours):

GENERAL STREAMFLOW CONDITIONS
FLOW TYPE: FLOW WIDTH: FLOW DEPTH:

(none, smooth, pool/riffle, run, rapid-tumbling) (@ center)

APPEARANCE OF WATER: AVG VELOCITY: FLOW (cfs):

(if available or [high, medium, low])

HIGH FLOW PLANFORM: SINUOSITY:

(straight, mildly sinuous, meandering, tortuous, braided) (channel length/valley length)

LOW FLOW PLANFORM: SINUOSITY:

(straight, mildly sinuous, meandering, tortuous, braided) (channel length/valley length)

GENERAL CHANNEL DESCRIPTION
REACH LENGTH: TOP-BANK WIDTH: U/S end:

Mid Reach: D/S end:
MAXIMUM CHANNEL WIDTH (for entire reach): and CORRESPONDING CHANNEL DEPTH:

MAXIMUM CHANNEL DEPTH (for entire reach): and CORRESPONDING CHANNEL WIDTH:

GRADIENT: STRUCTURES: %DETRITUS: % LWD:

(none, bridge, grade control, culverts, bank)

% POOL: % RIFFLE: % RUN: CROSS SECTION TAKEN (yes / no)?

[If applicable] (Pool + Riffle + Run = 100%) Location of Record:
BED WIDTH: Method: BERM WIDTH: Method: CEM:

(I, II, III, IV, V, VI)

BANKFULL INDICATORS (circle any):  none-incised / active floodplain / berm / woody veg / bar tops
RELATIVE ELEVATION AT BANKFULL: RELATIVE ELEVATION AT LOW WATER:

(Assume top height = 100%, N/A if appropriate)

FLOODPLAIN LANDUSE (urban, forest, pasture, row crop/riparian buffer-width):  
Left:___________/___________/____________ Right: ___________/____________/____________

(Method:  T=tape; R=rangefinder (type); A=acoustic device; P=pace)

 

 
Figure 3.12.  Geomorphic assessment stream-evaluation (GASE) data sheet used in  

reach-scale characterization. 
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CHANNEL BED DESCRIPTION
BED MORPHOLOGY: BED CONTROLS:

(flat, uniform; scour holes; pool-riffle sequence) (none; bedrock; cohesive materials; armoured; structure; rip-rap)

PRIMARY BED-MATERIAL TYPE: SECONDARY BED-MATERIAL TYPE:

(GP=gravel; SP=sand; ML=silt; CL=clay; BR=bedrock)

POOL SUBSTRATE: ACTIVE BED DEPOSITION:

(GP-SP, SP, ML, CL)

BED EXPOSED: EXPOSED BED FORMS:

(% Area out of water) (attached point bar, mid channel, alternate)

KNICKPOINT PRESENT? HEIGHT: MATERIAL:

(Yes / No) (GP, SP, ML, CL, BR)

Planform Sketch:

SEDIMENT SAMPLES: CH________ CH________ CH________ CH________

(GP with firm SP; Soft SP with ML-CL; All ML-CL; All SP; Hard Pan 
CL; Rock)

 

 

Figure 3.12.  Continued. 
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LEFT BANK DESCRIPTION
REACH TYPE: BANK HEIGHT: BANK ANGLE:

(average or range) (average)

WIDTH OF RIPARIAN ZONE: % WOODY COVER: % HERBACEOUS COVER:

BANK SURFACES (yes, no): 
VF__________ UB__________ SL__________ DS__________ CB__________ CS/Bar_______
 (VF=vertical face; UB=upper bank; SL=slough line; DS=depositional surface; CB=cutbank; CS/Bar=channel shelf)

HEIGHT OF VF: HEIGHT OF CB:

SURFICIAL MATERIAL:
VF_____/_____ UB_____/_____ SL_____/_____ DS_____/_____ CB_____/_____ CS/Bar___/____
(Origin / Type) (I=insitu, D=deposited, F=failed  /  CL=clay, ML=silt, SP=sand, GP=gravel)

TYPE OF ACCRETED SEDIMENT (N=none, SP=sand, ML=silt, CL=clay):

DOMINANT TYPE OF EROSION PROCESS ON:
VF__________ UB__________ SL__________ DS__________ CB__________ CS/Bar_______
 (N=none-stable, MW=mass wasting, F=fluvial erosion, S=sapping, D=deposition)

Bank Sketch:

SEDIMENT SAMPLES: LB_________ LB_________ LB_________ LB_________

(I=inside; O=outside; S=straight

DIST. OF TENSION                     
CRACK FROM VF:

 

 

Figure 3.12.  Continued. 
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RIGHT BANK DESCRIPTION
REACH TYPE: BANK HEIGHT: BANK ANGLE:

(average or range) (average)

WIDTH OF RIPARIAN ZONE: % WOODY COVER: % HERBACEOUS COVER:

BANK SURFACES (yes, no): 
VF__________ UB__________ SL__________ DS__________ CB__________ CS/Bar_______
 (VF=vertical face; UB=upper bank; SL=slough line; DS=depositional surface; CB=cutbank; CS/Bar=channel shelf)

HEIGHT OF VF: HEIGHT OF CB:

SURFICIAL MATERIAL:
VF_____/_____ UB_____/_____ SL_____/_____ DS_____/_____ CB_____/_____ CS/Bar___/____
(Origin / Type) (I=insitu, D=deposited, F=failed / CL=clay, ML=silt, SP=sand, GP=gravel)

TYPE OF ACCRETED SEDIMENT (N=none, SP=sand, ML=silt, CL=clay):

DOMINANT TYPE OF EROSION PROCESS ON:
VF__________ UB__________ SL__________ DS__________ CB__________ CS/Bar_______
 (N=none-stable, MW=mass wasting, F=fluvial erosion, S=sapping, D=deposition)

Bank Sketch:

SEDIMENT SAMPLES: RB________ RB________ RB________ RB________

(I=inside; O=outside; S=straight

DIST. OF TENSION                     
CRACK FROM VF:

 

 

Figure 3.12.  Continued. 
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PHOTOGRAPHIC RECORD
DATE: CAMERA TYPE: PHOTOGRAPHER:

PHOTO CHECKLIST:
� U/S � Mid-reach � D/S
� Channel Bed � Left Bank � Right Bank
� Structures � LB Riparian � RB Riparian

PHOTO # DESCRIPTION

MISCELLANEOUS OBSERVATIONS

Remember: add a recognizable scale in 
all pictures; record photo number; and 
time of day (shadows)

 

 

Figure 3.12.  Continued. 
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FIELD CHECKLIST

� Binoculars � 
� Bottled water � 
� Calculator � 
� Camera (preferrably digital) � 
� Cell phone � 
� Clipboard (field sheets) � 
� Compass (Silva/Brunton) � 
� Field backpack � 
� Field book � 
� Field Sheets � 
� First-aid kit (small) � 
� Geologic hammer � 
� Grain size chart � 
� Gravelometer
� Handheld GPS
� Increment borer
� Insect repellent
� Laser rangefinder
� Level (Abney level/clinometer)
� Map:  Air Photos
� Map:  Bedrock
� Map:  Plat (landowner info)
� Map:  Road atlas
� Map:  Surficial materials
� Map:  Topographic
� Measuring tape/stakes/pins
� Pocket Rod/Surveying Rod/Range Pole/Staff
� Probe rod (tile probe, etc.)
� Raingear
� Soil Probe (bank sampling)
� Trenching tool/plastic bags/permanent marker
� Wading boots

 

 

Figure 3.12.  Concluded. 
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Rhoads, 2003).  Most of the information on the data sheets is qualitative in nature, such 

as sketches of bed and bank forms and photographs of channel features for 

documentation, but is more focused and detailed than data collected in the initial field 

survey.  The purpose of photographs in this characterization is to capture features missed 

during the initial field survey, replicate views from historical photographs, and provide a 

more complete visual document for future assessments (Rhoads, 2003).  The quantitative 

information includes several surveyed channel cross-sections, collection of bed and bank 

material for particle size distribution analysis, and estimates on the extent and type of 

riparian vegetation.   

The GASE data sheets have 5 main components:  1) general reach information, 2) 

channel bed description, 3) left and right bank descriptions, 4) photographic record, and 

5) field equipment/supply checklist.  Most of the site information can be retrieved in the 

office but the exact extent of the selected reach needs to be determined in the field.  The 

first component covers site information, general streamflow conditions, and general 

channel description.  The general streamflow conditions are made by observation and 

streamflow measurements.  Most of the information in the general channel description 

section can be determined from surveyed cross-section measurements.  The number and 

placement of surveyed cross-sections within a reach is dependent on the uniformity of 

bank and bed features and available historical data locations.  Floodplain landuse for both 

sides of the channel are also noted.   

The second component covers channel bed information that describes bed 

morphology and controls, primary and secondary bed-material types, pool and exposed-

bed material and forms, planform sketch, and record of bed material samples.  The left 
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and right bank components include information on bank geometry, distinct bank shapes 

and associated material, geotechnical indicators, riparian zone vegetation, 

dendrogeomorphic indicators, erosional and depositional processes, bank sketch, and 

record of bank material samples.  The use of dendrogeomorphic techniques to date 

geomorphic events, such as flooding, mass wasting of banks or significant accreted 

sediment, has been useful in evaluating degrading and aggrading stream environments 

(Hupp and Simon, 1991; Simon and Hupp, 1992; Hupp and Osterkamp, 1996; Hupp, 

1999; Hupp and Bornette, 2003).  The photographic record includes a checklist of 

minimally required channel features with a recognizable scale.  Finally, expanding on the 

Stream Reconnaissance Handbook by Thorne (1998), a checklist is included for field 

equipment and supplies required to complete the data sheets. 

3.2.1 Reach-Scale Characterization Data Sources  
 

The reach-scale characterization is dependent on the data sources and results of 

the watershed-scale characterization (Appendix A).   Spatial distribution of channel 

adjustments, as indicated by the watershed-scale characterization, is the initial step in the 

reconnaissance site selection process. Multiple physically-based data sources from the 

historical analysis and initial field survey are then used to focus on areas of geomorphic 

significance in the adjustment processes.  Data sources from the historical analysis are 

physiographic boundaries, surface and bedrock geology, land cover, and channel 

disturbance history.  Many of these data sources reveal underlying physical controls 

which can strongly influence style and rate of channel adjustments.  From the initial field 

survey, pronounced changes in channel character are used to establish zones of 

geomorphic uniformity.  The data sources include the relative changes in bed and bank 
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material character, channel geometry, and vegetation throughout the stream network.  

Once the sites are selected based on the integration of these multiple data sources, the 

GASE data sheets (Figure 3.12) are the only other data source used in the reach-scale 

characterization. 

3.2.2 Big Creek Case Study:  Reach-Scale Characterization  
 
 A reach-scale characterization was performed for the Big Creek stream channel.  

The following is a presentation of the data collected at the reconnaissance sites using the 

GASE data sheets (Figure 3.12 and Appendix D), results of the characterization for Big 

Creek, and discussion of the performance of the reach-scale characterization method. 

 The eight sites selected for field reconnaissance for the Big Creek watershed were 

distributed between the two general regions identified in the watershed-scale 

characterization (Figure 3.9).  Two sites are in the upper Big Creek region (BC-1a and 5) 

and six in the lower region (BC-7, 8, 10, 12, 16, and 17).  Three of the six (BC-12, 16, 

and 17) are near the confluence with the Cache River.  Site BC-10 is within the reaches 

containing the 6 dam structures (located between dams 3 and 4) and sites BC-7 and BC-8 

are upstream of dam 6.  Three of the lower region sites (BC-8, 10, and 17) had historical 

cross-section and elevation data. Three sites (BC-7, 12, and 16) were included mainly to 

extend bed elevation data for a stream profile that was taken in 1999 and 2003 by the 

ISWS.   

Upper Region.  The upper Big Creek region sites bound the karst reach known to 

influence low flow discharges.  Site BC-1a is the reach with the highest width/depth ratio 

(10.0) and lowest bank angles (20 and 29, left and right).  The channel planform is mildly 

sinuous with typical bar unit sequences (pool, riffle and pointbar channel forms).  The 
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channel bed forms are predominantly gravel and nearly 75% of the bed is exposed in the 

downstream portion of the reach.  The base of the meander cutbanks in the reach exposes 

a 0.25-0.5m layer of gravel.  The gravel is similar in bed material size and near the same 

elevation as the channel bed (field estimated d50 range of 32-45 mm).  A thin rod was 

used to probe the channel bed to indicate possibility of armoring.   The rod could not 

penetrate the gravel to any notable depth.  In the bank the gravel is overlain by 1.5-2.0 m 

of a silty-clay loess (d50 = 0.022 mm).  The riparian corridor is approximately 15 m wide 

with 15% woody cover (mostly shrubs) on the left bank and nearly 100% herbaceous 

cover on the right.   

Site BC-5 is 6247 m downstream of BC-1a and 50 m upstream of the ISWS #500 

streamgage.  Unlike BC-1a, the reach is straight with pool/riffle/run sequences in the 

low-flow channel and few detached bars.  Approximately 25-30% of the gravel bed (d50 = 

45 mm) is exposed and a rod penetrated the gravel to a depth of 20 cm indicated a loose 

and mobile bed.  Inspection of ISWS #500 photographs from 1999 and 2003 (Figure 

3.13) show some shifts in the channel form features mostly indicated by displacement of 

gravel.  The left bank is mostly bedrock and the right is steep (2.5 m high) with the same 

median bank material as BC-1a (0.022 mm).  There is no evidence of the gravel layer that 

was present in the banks at BC-1a. The left bank riparian zone is >10 m with 40% woody 

cover (mostly trees).  The right bank has a narrow riparian zone (3 m) composed of 30% 

woody cover, and beyond that a rowcrop field.  The pools within the site reach are 

shallow (< 0.3 m).  However, a brief inspection downstream of ISWS #500 (past ISWS 

#500), revealed much deeper pools (0.5-1.0 m).  The bed in these deeper pools is mostly 

a silt/sand mix with some pebbles and the probe penetrated the bottom by 15 cm.  
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Figure 3.13.  Upstream and downstream views from ISWS #500 for 1999 and 2003. 

a) 1999 upstream view from ISWS #500 

c) 1999 downstream view from ISWS #500 d) 2003 downstream view from ISWS #500 

b) 2003 upstream view from ISWS #500 



 80

Lower Region.  The median particle size for bank material throughout the lower Big 

Creek region ranges from 0.012 to 0.022 mm (fine- to medium-silt).  Bank angles are 

somewhat varied and average 30 to 35 degrees.  The channel width, depth, and bank 

angles at BC-7 and BC-8 are very similar.  Probing of the channel bed at BC-7 revealed 

approximately 0.5 m of loose sand (d50 = 0.35 mm) overlying a firm clay, which was 

penetrated by 5 cm. The channel bed at BC-8 is a firm, mottled clay overlain by a thin 

layer of loose silt.  The BC-10 channel bed is flat and composed of firm clay.  Probe 

penetration of the bed at BC- 8 and 10 was limited to ~5 cm.  The median bed particle 

size at BC-10 is approximately 0.0029 mm.  Site BC-17, 12, and 16 median bed material 

size is 0.5 mm.  The water depth at these sites averaged 2.5 m and required a boat to 

survey cross-sections and collect bed material samples using a Ponar grab sampler. 

Woody vegetative cover (trees) on the channel banks ranged from 10% to 40%.  

The BC-8 reach was fairly straight and most of the trees on the left bank are rotationally 

slipping down the bank.  Several tilt sprouts were cut from two trees and rings indicated 1 

and 5 years since the bank failures.  Two gullies were noted as migrating 0.5-1m into the 

agricultural field from the top of the left bank.  Both banks have 15% woody (tree) cover.  

The BC-10 right bank was 40% covered with trees down to the edge of water, whereas 

the left alternated between patches similar to the right bank or fully exposed failing 

banks.  Most of the trees in this reach were estimated to be about 20 years old with the 

oldest ones having diameters of 0.6 m.  Woody cover in the reach at BC-17 ranged 25-

30% with only trees and no shrubs. 

 Two of the lower region sites (BC-12 and BC-16) are located between BC-17 and 

the mouth of Big Creek.  The water depth in this segment of Big Creek was greater than 
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2.5 m and could only be accessed by boat.  The median bed material at these sites was 

0.36-0.38 mm.  These sites also have similar width and depths as BC-17.  Site BC-16 had 

much higher bank angles (53 degrees) than BC-17 and BC-12.  This site has active bank 

failures by mass wasting and observable accretion and fluvial reworking on the failed 

material at the bank toe.  Sites BC-16 and 12 are known to be heavily influenced by flood 

backwater from the Cache River.  A subsequent geotechnical bank study performed by 

the ISWS and NRCS at BC-16 revealed that the failures are due to a highly plastic clay 

layer at the base of the bank and is exacerbated by positive pore-water pressure due to 

flood backwater from the Cache River.  

The first of the three historical sites is BC-8, near Shake Rag Road.  Site BC-10, 

the second site, is 5803 m downstream of BC-8 and the third (Site BC-17) is 2269 m 

downstream of BC-10 (Figure 3.14).  Sites BC-8 and BC-17 are upstream and 

downstream, respectively, of the 6434-m reach that contains the six dams.  Site BC-10 is 

between dam 3 and 4.  Currently, BC-10 has a smaller channel width and depth, lower 

width/depth ratio, and larger channel-bed width than the other two sites.  For these same 

channel geometries, BC-17 is slightly larger than BC-8.  It should be noted that the 

confluence of lower Little Creek (watershed area of 41 km2) with Big Creek occurs 

approximately 500 m upstream of BC-17.  Undisturbed, channelized, and current cross-

section data exist at BC-8 and BC-10, except BC-17 which does not have undisturbed 

data (Figure 3.14).  The channelization projects at BC-8 and BC-10 resulted in a 1 m 

lowering of the channel bed and a 15% to 32% increase in channel width.  Since 

channelization, the channel bed lowered 1 m at BC-8 and BC-10 and 2 m at BC-17.  

Channel width increased by 27% at BC-8 and doubled at BC-10 and BC-17.     



 82

Site #8

106
107

108
109
110

111
112

113
114

0 5 10 15 20 25
Distance (m)

El
ev

at
io

n 
(m

)

2003

Water Level

Modif ied Channel

Pre-Mod

 

Site #10

101

102

103

104

105

106

107

108

109

0 5 10 15 20 25 30 35
Distance (m)

El
ev

at
io

n 
(m

)

Pre-Modif ied

Modif ied Channel

2003

Water Surface

Top of Weir

Crest of Weir

 

Site #17

95
96
97
98
99

100
101
102
103
104
105
106
107

0 5 10 15 20 25 30 35 40 45 50
Distance (m)

El
ev

at
io

n 
(m

)

2003
Modified (1939)
Water Surface

 
Figure 3.14. Pre-channelization, channelization, and 2003 cross-sections and 

elevations for Sites BC-8, 10, and17. 
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3.2.3 Results of Reach-scale Characterization 

The information collected at the reconnaissance sites for the reach-scale 

characterization expands upon results of the watershed-scale characterization.  New 

information acquired from the reach-scale characterization includes patterns in channel 

bed composition, dendrogeomorphic indicators of geomorphic events, and correlations in 

particle size distributions. 

Analysis of the bed material results indicates a downstream change in particle 

size.  The BC-1a channel bed consists of gravel and exhibits armoring.  It is reasonable to 

assume that the gravel layer in the lower banks, which is very similar in character to the 

gravel bed, is the source of this bed material.  The channel bed at BC-5 has this same size 

gravel but is loose and actively shifting.  The initial field survey site photographs and 

index sheets at BC-2, 3, and 4, between BC-1a and 5, indicate gravel and/or exposed 

bedrock channel beds with a gravel layer in the base of the banks at BC-2 and 3.  The 

channel width doubles after the confluence of Upper Little Creek and Big Creek where 

the gravel channel bed becomes braided.  A large cutbank farther downstream does not 

expose a gravel layer as seen upstream of BC-5.  However, the channel bed composition 

changes to almost equal parts of sand and gravel which is penetrated by a probe to 

approximately 0.5 m.  The lower region of Big Creek has firm clay beds at BC-7, 8, and 

10 with 0.5 m of loose sand overlying the bed at BC-7 and thin layers of silt at all 

downstream sites.   

This information provides evidence of an expected downstream fining of bed 

material but does not address the source of the fine material which is being deposited in 

the sensitive Cache River wetlands.  Analysis of the bed, bank, suspended sediment, and 
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wetland particle size distributions indicates the median size of the suspended sediment at 

the ISWS stations is nearly the same as the bank material collected throughout Big Creek 

(Figure 3.15).  The d50 at ISWS #500 and #502 ranges from 0.008-0.011mm (fine silt) 

and 0.019-0.018 mm (fine-medium silt), respectively.  These particle sizes fall within 

0.012-0.022 mm (medium silt) range of d50 for the bank material encountered at all sites.  

The size of the particles in the Cache River wetlands is fine silt that is being deposited at 

a rate of 0.79-0.86 cm/yr (Keefer et al., 2006).   

Dendrogeomorphic techniques were applied at two sites with significant tree 

disturbance on the channel bank.    Many of the fallen trees were still living and vertical 

tilt sprouts were dated at 1 and 5 years old.  The tilt sprouts were sampled in late-summer 

2003 which correlates with the 2002 and 1999 growing seasons.  Streamflow records at 

the ISWS #502 streamgaging station show the last two highest annual peak discharge 

events occurred in WY2002 (74.5 cms) and WY1999 (69.1 cms) with return intervals of 

5- and 4-year, respectively.  The next previous annual peak discharge of this magnitude 

occurred in WY1986 (75.9 cms).  It is assumed that the failing banks are the result of 

these extreme hydrologic events and are either not indicative of a system-wide 

disturbance or are events that have compounded existing systemic instabilities. 

Overall, the reach-scale characterization results have determined that the source 

of the fines being deposited in the Cache River wetlands is the channel banks throughout 

the fluvial system.  Based on the three studies by the ISWS (Demissie et al., 1992; 

Allgire and Cahill, 2001; Keefer et al., 2006), it is reasonable to assume that the source of 

the fines have mostly likely been the Big Creek channel banks since the 1960s.  

Dendrogeomorphic techniques, in combination with historical streamflow records and
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Figure 3.15.  Particle size distributions for bed, bank, and suspended 
sediment material. 
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sediment-duration curves, have shown that the extreme streamflow events are linked to 

the massive bank failures in the channel and responsible for the most of the sediment 

loading to the wetlands.  This information will be useful when computing stream power 

in the channel to determine potential future adjustments.   

3.2.4 Discussion of Method 

The reach-scale characterization enhanced the watershed-scale characterization by 

increasing the level of detail of information on channel conditions.  The positioning of 

some reconnaissance sites at the limited historical data locations was critical in 

demonstrating that the reaches in the lower Big Creek region have deepened and widened 

since the channelization and control structure projects sixty years ago (Figure 3.14).  

Even though the particle composition of the banks and bed throughout Big Creek were 

fairly obvious during the watershed-scale characterization, it was the inclusion of 

laboratory particle size distribution analyses, coupled with suspended sediment and 

wetland distributions that determined the banks as the major source of the sediment 

aggradation in the Cache River wetlands.  Adding dendrogeomorphic techniques to areas 

of known bank failures and being able to link those to streamflow events of a particular 

frequency and magnitude gave insight to the dominant sediment transport mechanism in 

the watershed.  The sediment-duration curve from Demissie and others (1990b) 

contributed to this conclusion.   

In general, the reach-scale characterization method was an asset for determining 

the sediment source and transport mechanisms in Big Creek.  However, as in the 

watershed-scale characterization, this study area had the advantage of a historical 

streamflow and sediment record.  In the absence of the particle size data for the 
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suspended sediment and wetland deposits, sampling the wetland bottoms for particle size 

distribution may lead an investigator to a similar, albeit weaker, conclusion.  Regional 

streamflow equations can be substituted for streamflow records to determine the 

magnitude of discharges which induce major bank failures.  Streamflow records from 

long-term streamgaging stations are more accurate, therefore the results from regional 

equations must be used cautiously. 

A major advantage to the reach-scale characterization method is the systematic, 

detailed recording and documentation of key stream channel geometry and morphologic 

features at important locations throughout the fluvial system.  This allows future 

investigations to repeat the data collection using consistent data collection techniques 

thereby formulating more conclusive estimates of future channel adjustment processes 

and rates.  This also has application for post-project appraisals of any installed upland 

best management practices and in-stream restoration efforts.   

3.3 Evaluation and Assessment Method 

The objective of the evaluation and assessment phase is to analyze the changes in 

channel character over time to determine potential future adjustments of the stream 

channel throughout the fluvial system.  The watershed- and reach-scale characterizations 

concentrate on documenting past conditions and extant character of a channel.  The 

temporal and spatial elements compiled in both of these characterizations are used to 

evaluate the channel responses to direct and indirect influences to date and then 

extrapolate trends in adjustments to infer the type and magnitude of potential future 

channel adjustments.   
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The process for evaluating channel responses is not straightforward due to 

variations and availability of historical and recent data from one fluvial system to the 

next.  Regardless, this method focuses on a process of documenting and evaluating 

changes in channel characteristics to infer the causal mechanisms producing the current 

channel morphology, thereby identifying future potential channel adjustments.  The 

evaluation process is a convergence of several lines of evidence that composes a 

characterization of expected channel adjustment morphologies by either identifying the 

type of fluvial and physical environment, determining threshold values of stream power 

to assess the likelihood of further channel instabilities, or estimating the style of channel 

adjustment by using channel gradient as a surrogate for type of fluvial environment, 

whereby the future forms and processes can be inferred (Simon and Downs, 1995).  The 

multiple lines of evidence increase the likelihood of overcoming the absence or 

limitations of data to make reasonable inferences of future channel morphologies. 

The identification of the type of fluvial and physical environment is determined 

by the watershed- and reach-scale characterizations.  These characterizations establish the 

physical setting of the watershed, disturbance history, channel adjustment process 

responses, and changes in sediment supply and transport capacity.  The evaluation of 

these characterizations determines the active channel adjustment processes, magnitude, 

and rate which provide insight into expected channel morphologies.   

The likelihood of further channel instabilities can be investigated by determining 

whether there is available energy to adjust the channel.  The information collected at the 

reach-scale reconnaissance sites is used to estimate stream power at those sites.  When 

independent variables of hydrology and sediment supply are available, hydraulic 
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modeling may be used as an additional tool to further analyze specific reaches for 

potential channel instabilities.  Hydraulic modeling may be performed at critical reaches 

for streamflows as indicated by the watershed- and reach-scale characterizations.  

Dendrogeomorphic indicators can be used to roughly determine channel adjustment rates.  

Identifying the probability of occurrence of channel forms as described by Bledsoe and 

Watson, 2001) can be used to determine the likelihood of other channel forms. 

The last line of evidence is the use of channel gradient as a surrogate for the type 

of fluvial environment to estimate the style and magnitude of future channel adjustments.  

This approach by Simon and Downs (1995) assumes that channel adjustment processes 

are associated with various fluvial environments (Simon and Downs, 1995; p. 227). They 

describe an empirical relationship between the ratio of the change in channel width to 

change in channel depth (index of channel change, Ic) and disturbed channel gradient for 

diverse fluvial systems (low-gradient, coastal plain, and upland-alpine regions).  The 

relationships vary along a bell curve according to the fluvial environment (Figure 3.16; 

from Simon and Downs, 1995; p.230,).  Briefly, proceeding from left to right of the 

curve, low gradient channels such as those found in lowland, coastal plain streams adjust 

vertically due to finer, cohesive channel material; higher energy, steeper streams with 

gravel beds tend to adjust laterally and produce wide and shallow channels; and finally 

very steep, mountainous upland streams adjusts vertically due to very coarse beds and 

shallow high-velocity streamflows (Simon and Downs, 1995; p. 229).  By combining the 

disturbed channel gradient from this relationship with the observed channel character, the 

expected channel adjustments can be more narrowly determined when used with the two 

other lines of evidence discussed above. 
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Fig. 3.16.  Change in channel morphology as a function of disturbed channel 
gradient and fluvial environment (Simon and Downs, 1995). 

 
The type of data needed for any of these evaluation methods is similar to Table 

3.1: channel cross-section surveys, bed/bank material, channel gradient/profiles, flow 

duration and flood frequency, channel planform.   

3.3.1 Big Creek Case Study:  Evaluation and Assessment 

The type of fluvial and physical environment in the Big Creek watershed was 

established by the watershed- and reach-sale characterizations.   The watershed-scale 

characterization showed that the watershed occupies two distinct physical environments 

strongly defined by two major physiographic provinces (Interior Lowlands and Coastal 

Plains).  The upper Big Creek region is high sloping (.0061) with narrow valleys 

controlled by bedrock outcrops and gravel beds, whereas the lower region is in a relic, 

oversized river valley with very low slopes (0.0011) in fine cohesive material.  The more 

catastrophic channel adjustment response, incision and widening, occurred in the mid-

reaches straddling the two physical environments. The character of these reaches is 
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typically cohesive silt-clay banks and bed with intermittent bedrock outcrops.  The 

characterization also determined that profound changes in land cover and severe 

channelization were responsible for initiating the observed channel responses. The 

channelization projects shifted the sinuosity of Big Creek in the lower region from 2.2 to 

nearly 1.  The current width/depth ratios in this region are the same as the pre-

channelization ratios; however, cross-sectional areas have increased nearly two- and 

three-fold since channelization.  The upper region channels appear to be fairly stable with 

mostly fluvial erosion of the banks, pool/riffle bed morphology, no change in sinuosity 

(1.2), and low bank heights that accommodate flood flows. 

 The watershed-scale characterization identified the middle reaches of Big Creek 

as proceeding through stages of channel evolution and was estimated to be in a late-stage 

IV (incision and widening) of adjustment.  Stage IV ‘threshold’ channels experience the 

greatest channel instabilities by undergoing bed degradation, basal bank erosion, and 

slab, rotational, and pop-out failures of the banks (Simon, 1989).   Stage V ‘aggradation’ 

channels are the beginning of the recovery process toward stability and are characterized 

by bed aggradation, development of a meandering thalweg, and deposition of material 

forming alternating bars.  Continuing bank failures and reworking of the failed material 

leads to flattening of the bank angles (Simon, 1989).  Analysis of stream power 

thresholds could reveal whether these reaches will continue to be an unstable stage IV 

channel or starting the process toward stability (stage V).  One method to determine this 

is the computation of stream power in these critical reaches and compare it to the 35 

watts per meter2 (Wm-2) threshold as defined by Brookes (1987) to discriminate between 

stable and unstable channels following channel disturbance.   
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The stream power was computed for 15,051 meters of channel using a HEC-RAS 

(Brunner, 2002) model developed by the ISWS (Figure 3.17).  The modeled reach is 

located between the two ISWS streamgages (#500 and #502) and was calibrated with the 

observed data from those stations as well as channel geometry and profile data.  For the 

purpose of this study the model was run for the 1.5- and 5-year annual peak discharge 

(Q1.5 and Q5).  The Q1.5 was selected to represent the most frequent streamflows.  The Q5 

was selected based on the dendrogeomorphic indicators (tilt sprout dating) of recent mass 

wasting bank failures identified by the reach-scale characterization.  The bank failures 

observed during those field visits were linked to the 4- and 5-year return flows in the 

1999 and 2002 streamgage record at ISWS #502.   Hence, the Q5 was selected as an 

important channel forming flow and would be a good candidate for discriminating 

between stable and unstable channels. 

The model results showed variable values of stream power throughout the reach 

due to discrete changes in channel geometry and forms, such as pool/riffles and exposed 

bedrock.  Therefore, a 300 meter moving average was computed to smooth the results 

and detect broader reach values (Figure 3.18).  The Q1.5 and Q5 stream power values 

downstream of the I-57 bridge were well below 35 Wm-2, whereas upstream the Q1.5 and 

Q5 approached or exceeded the 35 Wm-2 threshold.  Stream power at the bridge was the 

highest computed for both flows in the entire modeled reach.  Further investigation into 

the water profiles for the Q1.5, Q5, and even a Q10 reveals that the I-57 bridge is a 

constriction and pools all three return flows (Figure 3.19).  Furthermore, when water 

profiles are plotted with bank elevations, even the Q10 within the modeled reach cannot 

achieve an elevation to connect with the floodplain, which ranges from 3 to 4 meters
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Figure 3.17.  Longitudinal profile of a) Big Creek and b) modeled reach. 
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Figure 3.18  Stream power for modeled reach (300 m moving average). 

 

 

 

 

 

 

 

 

 

 

Figure 3.19   Water surface profile for Q1.5, Q5, and Q10. 

4000 6000 8000 10000 12000 14000 16000 18000 20000

Distance (m)

0

10

20

30

40

50

60

70

80

90

100

St
re

am
 P

ow
er

 (W
 m

-2
)

Power 1.5yr 300 m
Power 5yr 300 m

I-57 Bridge

Stream Power 

4000 6000 8000 10000 12000 14000 16000 18000 20000
100

105

110

115

120

125

Channel Distance (m)

El
ev

at
io

n 
(m

)

Legend

WS  PF 3000 (10-yr)

WS  PF 2640 (5-yr)

WS  PF 1880 (1.5-yr)

Ground

LOB

ROB

Middle Big Creek 3

4000 6000 8000 10000 12000 14000 16000 18000 20000
100

105

110

115

120

125

Channel Distance (m)

El
ev

at
io

n 
(m

)

4000 6000 8000 10000 12000 14000 16000 18000 20000
100

105

110

115

120

125

Channel Distance (m)

El
ev

at
io

n 
(m

)

Legend

WS  PF 3000 (10-yr)

WS  PF 2640 (5-yr)

WS  PF 1880 (1.5-yr)

Ground

LOB

ROB

Middle Big Creek 3



 95

above the Q10 water profile elevation.  This is also an indication of the extent of the 

channel incision.  The low stream power for both the Q1.5 and Q5 below I-57 is interpreted 

as having insufficient energy to further degrade the channel in the reach.  Consequently, 

these channels are more likely in early-stage V rather than late-stage IV and, by 

definition, have started the process toward stability.   

Channel gradient can be used as a surrogate for the type of fluvial environment to 

estimate the overall style and magnitude of future channel adjustments (Simon and 

Downs, 1995). When sufficient channel profile data is available, zones of channel bed 

degradation, aggradation, or no net change can be detected to establish the magnitude and 

type of channel adjustments which have already occurred and possibly infer future 

adjustments.   

Limited channel elevation data were available for Big Creek (Figure 3.8).  The 

only historical channel profiles recovered were those from the channelization design 

plans in the lower Big Creek region.  The plans document the pre-channelization 

elevations where the natural channel crossed the design center-line planform and the 

profile of the designed channel along with the crests of the six dams.  Recent profile data 

consisted of a 7200 m surveyed channel profile (1999 and 2003) between BC-5 and BC-

7, a separate 2000 m survey from dam #1 to the mouth of Big Creek (2003), and discrete 

bed elevation data at watershed- and reach-scale sites (2003).  Due to the intermittent 

location and frequency of this data, it was only possible to determine a ratio of change in 

channel width to change in channel depth (index of channel change, Ic) for 3 locations in 

the lower region (Figure 3.14).  However, in combination with topographic profile 
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information, some general observations can be made of the current gradients that may 

lend some insight for determining future style of channel adjustments. 

The channel gradient above and below I-57 is 0.0061 and 0.0011, respectively.  

This demarcation in the physical environment was established by the characterizations, 

but is too broad to infer style and magnitude of future channel adjustments. The highest 

channel gradient (0.0077) is from the headwaters to the upstream end of the modeled 

reach (BC-5).  Bedrock controls the channel gradient and the beds are transporting 

gravel.  The banks are not high but are nearly vertical with evidence of fluvial erosion 

due to the lack of stable vegetation.  In this type of environment, any increase in runoff 

will result in channel widening only.  Visual inspection of 1938 and 1999 aerial 

photography of these reaches indicates minor channel planform changes, a reduction in 

riparian vegetative cover over the channel, and exposed gravel beds in both time periods.   

From BC-5 to I-57 the gradient declines to 0.0022, but is still controlled by 

intermittent bedrock outcrops and additional influx of gravel delivered from the Upper 

Little Creek tributary.  The channel is wider than upstream of this confluence, 

meandering is slightly more pronounced, abundant gravel forms mid-channel bars which 

lead to braiding, mass bank failures are more evident, and there is deposition of large 

woody debris (LWD).  The drainage area of Upper Little Creek (20 km2) is similar to Big 

Creek (22 km2) at this junction and doubles the flow, which accounts for the change in 

the channel geometry in the vicinity of the confluence.  Downstream of the confluence 

zone of influence there is evidence of actively retreating cutbanks and a meandering, low-

flow thalweg in the gravel bed within the main channel.  The fluvial environment of this 

reach is heavily influenced by the energy gradient and the combined bedload from the 
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two streams and is likely to continue adjusting to accommodate this aggrading 

environment. 

The channel gradient decreases to 0.0011 between I-57 and BC-7.  This reach 

exhibits the most severe channel degradation due to incision and widening.  Outcropping 

bedrock was observed, but is not as evident as in the upstream reach. Bed and banks 

consist mostly of cohesive silt and clays.  Channels are v-shaped and between 5 and 6 

meters deep.  Major rotational slips are the mechanism of bank failures. Excessive LWD 

occurs throughout the reach, and almost no gravel was found in the bed.  This lower 

gradient cohesive channel is vulnerable to vertical degradation mechanisms (Simon, 

1992).  Severe incision and widening are apparent but determining whether this fluvial 

environment will continue to adjust in this manner is inconclusive based on channel 

gradient alone. 

The channel gradient of the reach dominated by the six control structures is 

0.0019, slightly higher than the previous reach, and from dam #1 to the confluence with 

the Cache River the bed of the creek is nearly level.  The three sites for which historical-

channel geometry data are available are located in this reach (BC-8, 10, and 17).  The 

BC-8 site is the farthest upstream in the reach and least likely to be effected by the 

control structures.  Plotting the index of channel change (Ic) versus disturbed channel 

gradient for these locations on the Simon and Downs (1995) bell curve, positions these 

sites with Cane Creek, a tributary of the Hatchie River in west-Tennessee.  This creek is 

350 km2, somewhat larger than Big Creek, drains the bluffs next to the Mississippi River, 

has an average slope of 0.002, was channelized in the 1970s, and has had grade control 

structures installed (Simon and Hupp, 1992).  There are no bedrock controls and the 
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landscape is covered by thick loess.  Even though the Ic relationship of these sites seems 

to correlate with Cane Creek, it is unlikely that this would be a sole predictor of future 

channel changes due to the profound influence of the six control structures and bedrock 

controls.  Therefore, channel gradient cannot be used in the reach as a reliable surrogate 

to estimate style and magnitude of future channel adjustments. 

3.3.2 Results of Evaluation and Assessment Method 

The purpose of this evaluation was to develop a characterization of channel 

morphologies based on the convergence of several lines of evidence drawn from the 

previous characterizations and subsequent analysis of that data.  Based on all the analysis 

of available data, the current channel morphologies divide the Big Creek channel into 

four distinct reaches identified as:  1) upper reach – headwaters to the confluence of Big 

and Upper Little Creeks, 2) confluence reach - confluence of Big and Upper Little Creeks 

to I-57, 3) middle reach – I-57 to BC-7, and 4) channelized reach – BC-8 to the 

confluence of Big Creek with the Cache River.  Potential future channel adjustments of 

these four reaches are complicated by watershed management activities that have recently 

been initiated and will continue for the next 1-2 years. The watershed management 

activities include projects to 1) reduce peak discharge by installing many small detention 

ponds in the watershed uplands and 2) lower stream gradient in middle reach to promote 

bank stability.  Between 2002 and 2004, 24 detention ponds have been installed 

throughout the watershed and 52 more are planned for 2005 and 2006.  The placement 

and projected decrease in peak discharge was estimated by the ISWS HEC-1 model 

(Demissie et al., 2001).  It should be noted that the purpose of this model was to reduce 

the peak discharge of Big Creek at its confluence with the Cache River.  The reduction in 
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peak discharge was part of a larger hydraulic modeling effort for the Lower Cache River.  

Seven rock weirs have been installed in middle reach starting at I-57 and continue for 800 

meters downstream with the possibility of 3-4 more in the near future.  Stream barbs were 

installed in the confluence reach at a major cutbank 500 m downstream of the Big and 

Little Creeks confluence to keep the stream from migrating farther into an agricultural 

field. 

Big Creek upper reach currently exhibits only minor bank erosion and no vertical 

degradation due to major bedrock controls.  Observations since 1999 at ISWS #500 (BC-

5) indicate that the gravel bed moderately shifts after significant flow events, but 

essentially maintains pool and riffle positions.  Historical data on channel profiles or 

channel geometry were not available; however, the analysis of aerial photography reveals 

no substantial changes in planform.  Therefore it is assumed that upper reach will 

continue to exhibit its current channel form with minor fluvial erosion.  The reduction of 

peak discharge as a result of the installation of upland detention ponds may slow the 

fluvial bank erosion. 

The channel morphology in confluence reach is largely influenced by the increase 

in flow from Little Creek and the complex channel morphologies caused by the 

confluence of Big and Little Creeks.  Although the drainage areas are similar, the 

gradient of Little Creek is lower than that of Big Creek (0.0045 compared to 0.0077).  

The channel width of Big Creek nearly doubles in this reach and there are obvious bank 

failures downstream.  In the upper section of this reach, the stream is forced to impinge 

and undercut the left bank (right bank is bedrock) due to flow deflection and subsequent 

deposition of gravel downstream of the confluence.  Downstream of the confluence zone 
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of influence is a large cutbank and from this point to the end of confluence reach the 

gravel reduces in size and percent sand increases.  Gravel and sand is deposited and 

forms unstable point and mid-channel bars with abundant LWD lodged in irregularly 

spaced pools.  The banks are also being impinged by the stream due to deposition of 

bedload.  The ISWS HEC-RAS model computed stream power over 35 Wm-2 for the Q1.5 

and Q5 in this reach.  The observed deposition and reworking of the material in this reach 

is also evident in changes in planform and morphology between 1938 and 1998 aerial 

photography and 2004 infrared images (Figure 3.20).  In the absence of watershed 

management practices to reduce the energy of these flows, the confluence reach is likely 

to continue this pattern of adjustment.   The installation of the upland detention ponds 

should somewhat reduce the stream power in this reach.  The ISWS HEC-1 model 

predicted reduction of peak discharge at the confluence with the Cache River and it is 

reasonable to assume some peak discharge reduction farther upstream, but the magnitude 

of the peak discharge reduction is unknown at this time.  Furthermore, channel 

morphologies downstream of confluences are complex and highly dynamic (Best, 1988; 

Rhoads and Kenworthy, 1995). 

Field visits to middle reach revealed the deepest channels along Big Creek, a v-

shaped morphology, extreme bank mass wasting, and abundant LWD (Figure 3.9).  

Erosion of the silt-clay bed has intermittently exposed bedrock.  Except for a short 

distance immediately downstream of I-57, the bed is virtually devoid of gravel save for 

sand and small pebbles deposited on some of the failed bank material near the toe.  The 

stream power analysis showed that this reach has insufficient energy to degrade the 

channel; therefore, middle reach is upgraded to a stage V channel.  The HEC-RAS model
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Figure 3.20  Comparison of planform between 1938, 1998, and 2004 imagery. 
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shows that middle reach has higher velocities than the other reaches (Figure 3.21).  This 

high velocity can still remove failed material at the bank toe and allow for continued 

bank failures through the stage V of channel evolution until the banks are laid back to 

below critical bank height.  Even though less material is eroded and transported 

downstream at this stage as compared to stage IV, it is not insignificant over a long 

period of time.  Based on the sedimentation rate discussion in the reach-scale 

characterization section, it is expected that, without intervention, it may yet take 10-20 

years for middle reach to pass through this process.   

The combination of reducing peak discharge through the application of upland 

detention basins and direct treatment of extremely incised channels with stone structures 

to reduce velocities should shorten this stage of channel evolution (Shields et al., 1999).  

It seems opportune that both of these applications are being actively installed in the 

watershed.  The rock weirs installed below I-57 are intended to contribute toward 

stabilizing bank toes and reduce erosion.  However, the location and design of the rock 

weirs was determined outside of the context of this study, consequently their actual 

effectiveness is not quantifiable.  A potential post-project appraisal could be made by 

incorporating the weir geometries into the ISWS HEC-RAS model to make this 

determination. 

The fluvial environment of channelized reach is one of artificial control, an 

artifact of the six flow control dams and levee system built during the 1930s-40s.  The 

straightened channel between the dams has deepened and widened since dam 

construction (Figure 3.14).  Several locations in this reach exhibit rotational bank failures 

in the vicinity of the dam backwater influence.  The failures are assumed to be slipping at
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Figure 3.21  Hydraulic depth, width, and velocities for modeled reach. 
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a slow rate as evidenced by the eccentric growth of the trunks of mature tilting trees. 

Bank saturation from dam backwater and positive pore-water pressure seems to be the 

bank failure mechanism.  Otherwise, the structures play a vital role in controlling the 

slope through most of the reach, which without, could set into motion profound and 

catastrophic channel adjustments upstream and massive deposition of sediment in the 

wetlands.  The age of these structures is of concern and leaves the possibility that a 

failure of any one of them would initiate an upstream headcut leading to subsequent 

failure of upstream dams.  This scenario gives insight into a distinct future channel 

adjustment.   

Marked shifts in fluvial environment, bed material size, channel gradient, and 

hydraulics appear to converge at I-57, which was constructed in the 1950s.  Previously, 

these shifts were attributed to a fundamental change in physiographic environment.  The 

abrupt change in bed material size, stream power, and channel morphology at this 

location cannot be completely explained by physiography.  The ISWS HEC-RAS model 

computed very low stream power immediately upstream of I-57, which was due to water 

being backed up from the bridge for over 800m upstream (Figure 3.19).  The channel 

character in this backwater area is one of significant deposition of sand and gravel on 

pointbars and development of mid-channel bars, as well as active erosion of the banks on 

the outside of meander bends.  Big Creek currently approaches the bridge on a 45 degree 

angle coming out of a meander bend and the bridge piers and abutments are oriented to 

that angle.  The bridge design plans and aerial photography show that the channel was 

moved to this position by eliminating a gentle meander (Figure 3.20).  The deposition of 

sand and gravel, the backwater modeled upstream of I-57, and the lack of gravel 
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downstream of I-57 all support the conclusion that the I-57 bridge is interrupting bedload 

and may be responsible for local bed degradation downstream of the bridge.  It is likely 

that the installation of the rock weirs will reduce the effect of the degradation and 

stabilize the banks in this immediate area.  

The disturbances responsible for the adjustment processes in middle and 

channelized reach are determined to be a combination of land use conversion (forest to 

agriculture) and channelization.  Both altered the transport capacity and sediment supply 

in these two reaches that resulted in the various degrees of channel degradation and 

deposition of sediment in the wetlands.  The entire length of the channelized reach 

experienced straightening and increased flow area; however, flow control structures were 

not installed throughout the reach.  At the time of channelization and dam construction 

(1930-40s) there was not the benefit of streamflow data.  Assuming the design flows 

were adequately estimated, the effect of future increases in runoff may not have been 

anticipated, thereby not requiring more structures upstream and leaving these reaches 

relatively unprotected.   

A likely response scenario is that increases in runoff from land use conversion 

may have aggravated the lack of gradient control in the upper section of channelized 

reach, setting into motion a series of headcuts through the unprotected channelized 

section. The result would have been moderate increases in channel depth and width as 

compared to the design channel geometries (see Figure 3.14, Site #8).  When the 

headcuts migrated upstream into the undisturbed channel of middle reach, increases in 

channel depth and width would have occurred due to the large difference in channel 

geometries between the channelized and middle reaches.  Channel bed degradation and 
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bank failures would produce increased sediment yield.  An increase in runoff may also be 

partly responsible for the incision and widening between the control structures.  As 

discussed earlier, the construction of the I-57 bridge in the 1950s has had an effect on 

local conveyance.  However, this also is an area of bedrock control and it is reasonable to 

assume that this part of the creek may have been responsible for halting the headward 

migration of incision and widening. 

The geomorphic assessment is comprised of the current channel and watershed 

character and the potential future channel adjustments with and without intervention 

(Table 3.4).  The assessment also lists recommendations for future investigation to fill 

data gaps and improve inference of future channel adjustments.      
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Table 3.4  Assessment of evaluation results 

Reach 
Name Current Conditions Potential Future Response 
Upper • Minor fluvial bank erosion but 

not quantified 
• Bedrock controls  

• Without intervention:  
Continued minor bank erosion 

• Intervention:  Assume some 
reduction in bank erosion due 
to detention basin installation 

• Recommendation:  Set erosion 
pins in some banks to quantify 
rate of bank erosion 

Confluence • Channel morphology largely 
controlled by confluence 
dynamics 

• Depositional environment due 
to gravel bed load from Big 
and Little Creeks 

• Stream power sufficient to 
adjust channel – unstable reach 

• I-57 bridge constricts flow, 
creating backwater during all 
flows 

• Without intervention:  
Continue channel adjustment 
through lateral adjustments 

• Intervention:  Reduction in 
peak discharges from detention 
pond installations assumed to 
bring some improvement but 
not quantifiable at this time 

• Recommendations:   
o Obtain results current 

ISWS modeling to estimate 
peak discharge reduction in 
reach 

o Monitor future cutbank 
migration 

Middle • Severely incised channel with 
active bank mass wasting and 
abundant LWD 

• Stream power insufficient to 
further degrade channel bed 

• CEM early - stage V 
(Threshold) 

• Bedrock control near I-57 
bridge has halted migrating 
headcut 

• Without intervention:  Channel 
will continue to widen and 
produce suspended sediment to 
wetland until below critical 
bank height:  ~10-20 years  

• Intervention:  Peak discharge 
reduction and in-channel stone 
structures may shorten stage V 
channel evolution 

• Recommendation:  Re-run 
HEC-RAS model to quantify 
effectiveness of stone 
structures and incorporate 
ISWS modeling results for 
predicted reduction of peak 
discharges  
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Channelized • 1930s-40s:  58% reduction in 
channel length due to drainage 
projects; installation of 6 
dams; channel levees on both 
sides 

• Some rotational slip failures 
upstream of dams 

• Dams provide critical stability 
for reach but are aging 

• Without intervention:   
o Continued minor bank 

failures upstream of dams 
o Possible dam failure will 

result in catastrophic 
channel adjustment and 
increased deposition of 
sediment into wetland 

• Intervention:  Reduction in 
peak discharges from detention 
pond installations assumed to 
bring some improvement but 
not quantifiable at this time 

• Recommendations:   
o Engineering inspection of 

dams for structural 
soundness  

o Extend HEC-RAS model 
through entire channelized 
reach; acquire more profile 
and channel geometry.  
Determine character of 
flow conveyance around 
dams.  Use ISWS modeling 
results to estimate peak 
discharge reduction in 
reach 
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3.3.3 Discussion of Method 

 The evaluation and assessment method analyzed the cumulative data drawn from 

the temporal and spatial characterizations of the watershed and channel to infer potential 

future channel adjustments in Big Creek.  The method utilized three approaches for 

evaluating the data to increase the likelihood of reasonable inferences of expected 

channel morphologies, which are:  1) identify type of fluvial and physical environment, 

2) determine thresholds of stream power, and 3) use channel gradient as a surrogate for 

type of fluvial environment.  These approaches are not mutually exclusive when 

estimating potential adjustment processes.  It was expected that data could be so limited 

that any of the three approaches may not be feasible.  Thus the inclusion of other 

approaches increased the likelihood of overcoming that limitation and still make 

reasonable inferences.  This occurred many times when evaluating Big Creek.  The 

disparity of data forced the evaluation of different reaches with various combinations of 

the three approaches.  In this respect, the approaches used in the evaluation and 

assessment method as reported by Simon and Downs (1995) were effective. 

    The identification of the type of fluvial and physical environments was already 

apparent from the watershed- and reach-scale characterizations.  The evaluation and 

assessment method synthesized the characterizations within the context of estimating 

potential future channel adjustments.  Establishing the prevailing channel adjustment 

responses to past disturbances based on changes in sediment supply and transport 

capacity allows for extrapolation of those trends of adjustments.  This also facilitated the 

characterization of Big Creek into four distinct channel reach morphologies by 

establishing their watershed context, relationship of each reach to geologic controls, 
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computation of stream power, and the ability to perform hydraulic modeling for a large 

segment of the creek profile.   

The evaluation and assessment method capitalizes on the systematic data 

compilation in the watershed- and reach-scale characterizations.  The flexibility in 

drawing on several sources of information and performing three types of integrated 

analysis is the chief strength of this method.  This approach is also more suited to an 

investigator that is trained in and/or has an informed appreciation for hydraulics, 

hydrology, geology, stream channel adjustment processes, and dynamics of sediment 

transport.  This knowledge allows for the development of a team of experts in these areas 

from which to draw and coordinate information and insights (Fitzpatrick, 2001; Rhoads, 

2003; Simon et al., 2005). 

As stated in the watershed- and reach-scale characterizations, Big Creek has a 

large amount of data but suffers from inconsistency in the spatial and temporal coverage 

of this information.  This limitation makes it difficult to infer future channel adjustment 

processes and channel morphologies.  The Big Creek case study demonstrated that the 

evaluation and assessment method has the ability to overcome these shortcomings.  For 

example, using channel gradient as a surrogate for fluvial environment will be a weak 

component if historical stream profiles or bed elevations are lacking.  However, the 

combination of hydraulic modeling, establishment of the fluvial and physical 

environment, and the disturbance history proved more powerful in this case study.  The 

modeling had the advantage of an extensive streamgaging record; however, regional flow 

equations could have been substituted using data gathered in the watershed- and reach-

scale characterizations.  Furthermore, the channelization and dam construction plans were 
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helpful in establishing that some channel deepening and widening had occurred since 

construction and provided the dam structure dimensions for the modeling.  If these plans 

had not been available, the structures and channel could have been surveyed for the HEC-

RAS model input, albeit this would have amounted to more work for the assessment.  

Also, the reduction in channel length would have to be determined using channel 

planform analysis of aerial photography and not from the channelization plans.  Even 

with the plans, the modeling could have benefited from channel surveying between the 

structures to compute the stream powers in the channelized reach to determine whether 

the channel is adjusting currently regardless of past adjustments.  Understanding the 

inadequacies of information gathered during the watershed- and reach-scale 

characterizations provides guidance for more extensive data collection to accommodate 

analyses in the evaluation and assessment method phase.  

   



 112

4. Conclusions 

 This study has contributed to the understanding of channel adjustment response 

processes to disturbances by developing a geomorphic assessment approach that takes 

into account the varied and subtle disturbance response characteristic of Illinois streams.  

The geomorphic assessment approach adapted tools and components from other 

approaches developed for regions of the U.S. that were physiographically different from 

Illinois and have more dramatic channel adjustment responses.  Due to the varied and 

subtle responses in Illinois streams, the approach combined temporal and spatial 

components to detect channel adjustment processes.  A historical analysis component was 

incorporated to comprehend the process-response mechanisms responsible for the current 

channel character.  The approach included a spatial component to understand the 

influence that an entire fluvial system has on local channel adjustment processes, thereby 

providing a watershed context for the observed channel morphology. A framework for 

systematic data collection and compilation in the watershed- and reach-scale 

characterizations was developed.  The evaluation and assessment method has the 

flexibility to draw on the characterization data and perform an integrated analysis using 

multiple lines of evidence to infer potential future channel adjustments (Simon and 

Downs, 1995).  The integrated analysis method utilizes three approaches for evaluating 

the data to overcome data limitations and establish reasonable inferences about channel 

adjustment.    

 The geomorphic assessment approach is an improvement over other approaches 

for application in southern Illinois streams.  Improvements include collection of historical 

and physical information on the entire fluvial system; standardized, systematic data 
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collection and record keeping; and three methods of evaluation to provide multiple lines 

of evidence.  As demonstrated in the Big Creek case study, an investigation limited to a 

reach-scale would have overlooked the multiple channel adjustment responses and 

erroneously assumed only one response mechanism.  In several instances the watershed-

scale initial field survey confirmed the channel character that was expected from the 

influences and physical setting identified in the historical analysis.  As expected, this 

convergence of several lines of evidence provided better understanding of the prevailing 

process-response mechanisms and influence of physical controls.  Finally, the evaluation 

and assessment method integrated three approaches to evaluate potential future channel 

adjustments.  Multiple approaches overcome expected data limitations and increase the 

likelihood of making reasonable inferences.   

Big Creek is somewhat atypical of other watersheds in the region because of the 

availability of extensive hydrologic, hydraulic, physical, and historical data.  However, it 

is typical in the sense that data availability is inconsistent over time and space.  Although 

the approach was developed to accommodate inconsistent datasets, it is unclear how 

sensitive the method is to fluvial systems with much less available data.  The channel-

stability ranking scheme was initially developed for channels that respond to disturbance 

by incising and widening (channel evolution model).  The restriction to incising channels 

could be considered a weakness; however, the index did correctly indicate the stable 

reaches of the upper reach.  The addition of basic channel geometry to the index in the 

initial field survey and contrasting it with the historical analysis appears to have 

supported the index results.  The channel-stability index should be conservatively applied 

in other Illinois watersheds until its reliability is ascertained.  The addition of detailed 
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mapping of channel morphology, along with bank erosion monitoring at the 

reconnaissance sites, would have proved useful for better understanding the spatial 

pattern of shear stresses and establishing adjustment rates.     

Field data collection concentrated only on the main stem of Big Creek.  There are 

two main tributaries to Big Creek and 3 minor tributaries.  Only the Upper Little Creek 

tributary was visited during the watershed-scale characterization phase.  When evaluating 

the extent of the incision and widening of the middle reach, it was apparent that even an 

initial field visit, with some attention on gully development and dendrogeomorphic 

indicators, would have assisted in estimating the extent and rates of adjustment.  When 

time is not a factor,  incorporating tributaries into the initial site visit phase or into 

follow-up site visits may be prudent. 

Overall, this geomorphic assessment approach is an improvement on approaches 

available from other regions in the United States.  The inclusion of temporal and spatial 

data, comparison and contrasting of multiple lines of data, and several evaluation 

approaches increased the likelihood of overcoming data limitations.  However, the 

biggest obstacle to effective assessment of river geomorphology is inconsistent or lack of 

hydrologic, hydraulic, and channel planform/geometry data over extended time scales.  

Many of the classification- and empirically-based approaches discussed were developed 

because of the paucity of long-term data. Consequently, there is a need to establish 

benchmark sites in river channels to monitor the extent and rate of channel changes to 

better understand process-response mechanisms.   
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        Application of the geomorphic assessment methodology to the Big Creek-Cache 

River Basin has contributed to the understanding of channel adjustment response 

processes to direct disturbances in this watershed.  A major finding is that the complex 

geology and disturbance history of Big Creek produces spatial variations in channel 

response.  

       In conclusion, the two main objectives of this study were achieved: 1) develop and 

evaluate a standardized, systematic geomorphic assessment methodology for evaluating 

past conditions, extant character and potential future adjustments of stream channels in 

southern Illinois region and 2) test this methodology using a case study in Big Creek, as 

well as document and characterize the channel adjustment processes in this severely 

disturbed fluvial system.  This geomorphic assessment approach is a first step toward the 

evaluation of channels in other regions of Illinois. 

4.1 Suggestions for Future Research 

 This study benefited from a 20-year research program carried out by the Illinois 

State Water Survey (ISWS) to study the complex hydrology, hydraulics, and sediment 

transport in the Cache River Basin  (Demissie et al., 1987; Demissie, 1989; Demissie, 

Soong et al., 1990a, 1990b; Demissie, Soong and Camacho, 1990; Allgire, 1991; 

Demissie and Xia, 1991; Demissie et al., 1992; Allgire and Cahill, 2001; Demissie et al., 

2001; Keefer et al., 2006).  The results of these studies have been instrumental in 

applying scientifically defensible data to watershed management programs for the benefit 

of the Cache River Basin ecosystem.  Future research is suggested to build and improve 

the geomorphic assessment approach developed in this study as follows: 
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• Apply this approach to another watershed in the southern Illinois region.  The Big 

Creek watershed is physically similar to other watersheds in this driftless region 

of Illinois.  Although Big Creek has the advantage of being a heavily studied 

watershed, the testing in another watershed is prudent. 

• Perform a sensitivity analysis to determine important datasets in the geomorphic 

assessment process.  Big Creek had more datasets available as compared to others 

but did suffer from inconsistency.  Nevertheless, modifications to the Big Creek 

data, such as using regional streamflow equations rather than measured data, 

would provide insight into possible differences in the stream power analysis.  

Other datasets, engineering plans for the channelization projects, could be entirely 

disregarded, which would impact the evaluation of the channelized reach. 

• Apply this approach in another region of Illinois.  The geomorphic assessment 

approach developed from this study has already been applied to current ISWS 

assessment efforts in the Illinois River Basin Assessment Framework (Illinois 

Department of Natural Resources, 2004).  The performance of this approach for 

this region is planned. 

The evaluation and assessment method made recommendations to further study 

Big Creek to supply more quantitative data and benefit the recovery of Big Creek and the 

Cache River-Cypress Creek wetlands: 

• Establish measured rates of channel erosion for 1-2 years would generate a 

benchmark to compare rates measured in a future assessment or post-project 

appraisals. 
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• Incorporate the as-built measurements of the stone weir structures located 

downstream of I-57 into the ISWS HEC-RAS model to assess their effect on 

the stream power in middle reach.  Add other structures to the model to 

determine an effective number and spacing to reduce velocities and stabilize 

the banks in middle reach. 

• Coordinate with the ISWS HEC-HMS modeling efforts to incorporate 

predicted reduced peak discharges into the HEC-RAS model to assess the 

hydraulic impacts. 

• Repeat the geomorphic assessment in 5-8 years to determine any changes in 

the Big Creek channel that might evaluate the effectiveness of the watershed 

management projects and the applicability to other regions of Illinois.  
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 Appendix A   Watershed-Scale Characterization Data Source Description   

The historical analysis has three objectives:  1) establish current physical 

character of the watershed, 2) identify possible direct and indirect disturbances to the 

sediment supply and transport capacity of the streams, and 3) document changes in the 

hydrology, channel geometry, and sediment character over time.  The main objective of 

the initial field survey is to establish the extant physical character of the stream channel 

throughout the watershed and is primarily accomplished through field data collection.  It 

should be noted that the field data collection will supplement the third objective in the 

historical analysis.  Also, several data sources will be used in 2 or more of these 

objectives, which makes their retrieval particularly important. 

 
Historical Analysis Technique – (1) Establish current physical character of 
watershed 
 
• Watershed boundary and streams/waterbodies – The watershed boundary is used to 

determine the spatial extent of the knowledge base needed for the assessment, such as 

the drainage area of watershed and sub-watersheds, and an important GIS layer to 

retrieve other spatial datasets.  One of those datasets would be streams/waterbodies, 

which establishes current drainage patterns.  

o Illinois Natural Resources Geospatial Data Clearinghouse – Water Resources and 

Hydrology Data page: http://www.isgs.uiuc.edu/nsdihome/webdocs/st-hydro.html 

o USDA, NRCS Geospatial Data Gateway: http://datagateway.nrcs.usda.gov/ 

o USGS – The National Map: http://nationalmap.usgs.gov/ or 

http://geography.usgs.gov/products.html  
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• Physiographic regions, surficial materials, and geology – The land surface and sub-

surface exerts a significant physical control on the flow of water.  This data 

establishes the physical context of the watershed and will be used to infer potential 

future adjustment processes. 

o Physiographic classification of Illinois  

� http://www.isgs.uiuc.edu/nsdihome/outmeta/physio.html 

o Surficial materials and loess thicknesses 

� http://www.isgs.uiuc.edu/nsdihome/outmeta/quat96.html 

� http://www.isgs.uiuc.edu/quaternary/loess_thickness_map.htm 

o Geology  

� http://www.isgs.uiuc.edu/nsdihome/outmeta/stslope.html 

� http://www.isgs.uiuc.edu/nsdihome/outmeta/stack-st.html 

• Soils, climate, and land use – The 

o Soils maps  

� Soil Survey Geographical Database (SSURGO) 

http://soildatamart.nrcs.usda.gov/ or 

http://datagateway.nrcs.usda.gov/GatewayHome.html  

o Climate data 

� Midwest Regional Climate Center (MRCC) – recent and historical 

http://sisyphus.sws.uiuc.edu/index.html  

o Land use  

� National Land Cover Data Set (NLCD) – recent data only 

http://datagateway.nrcs.usda.gov/GatewayHome.html  
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Historical Analysis Technique – (2) Identify potential direct and indirect influences:  

The identification of direct and indirect influences on the landscape involves recent and 

historical changes in climate, landscape, and hydrography.  These included not only 

abrupt (direct) changes but more subtle changes where trends may be detected.  Changes 

in channel planform can be documented and, when quality of data is sufficient and time 

permits, rates of channel migration can be computed. 

• Topographic maps, aerial photography, ground-based photography – Visual 

inspection of current and historical topographic maps, aerial photography, and 

ground-based photography can qualitative locate possible changes in landform over 

time and narrow the search for abrupt (direct) changes due to engineering projects.   

o Topographic maps and aerial photography are available from the Illinois 

Geospatial Clearinghouse http://www.isgs.uiuc.edu/nsdihome/ISGSindex.html : 

� Recent topography:  http://www.isgs.uiuc.edu/nsdihome/webdocs/drgs/ 

� Historical plat maps:  http://landplats.ilsos.net/Flash/Welcome.html 

� Illinois Digital Orthophoto Quarter Quadrangle (DOQ) Data: 

http://www.isgs.uiuc.edu/nsdihome/webdocs/doqs/ 

� Historical aerial photography (limited): 

http://www.isgs.uiuc.edu/nsdihome/webdocs/ilhap/ or the University of 

Illinois at Urbana-Champaign, Map & Geography Library 

• Drainage projects, road and causeway construction plans, and bathymetric surveys – 

Typically engineering projects required instrumented surveying and can supply some 

of the best measured stream channel geometry and, conversely, are quite random.  

Definitive sources are not routine and require locating the data through many phone 
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calls with several local and state agencies.  The inspection of recent and historical 

topographic maps and aerial photography can locate abrupt changes in planform, 

therefore narrowing the search to only a few geographic areas and possible fewer 

agencies to contact.  Below is a list of federal, state, and local data sources to start the 

search: 

o U.S. Army Corps of Engineers:   

� Chicago District; St. Louis District; Rock Island District; Louisville District; 

Memphis District; 

o Illinois Department of Natural Resources – Office of Water Resources:   

� http://dnr.state.il.us/owr/OWR_index.htm  

� Annual Report of the Division of Waterways – These reports cover drainage 

projects undertaken by the State of Illinois in the early-1900s and are available 

at the University of Illinois at Urbana-Champaign library. 

o Illinois Department of Transportation: http://www.dot.state.il.us/default.asp  

o County-level Road Commissions:  These agencies are usually small and 

understaffed.  It is recommended that they not be contacted until all other data 

sources are retrieved and the initial field survey is conducted.  This reduces the 

likelihood of putting undue burden on these organizations for data of questionable 

value and focusing efforts on areas that show more promise.   

• Climate and land use – The style and magnitude of indirect influences in a watershed 

can be identified through changes in land use and climate.  Documenting changes in 

land use is problematic due to the lack of pre-settlement data but some information is 

available 
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o Climate 

� Midwest Regional Climate Center (MRCC) – recent and historical 

http://sisyphus.sws.uiuc.edu/index.html  

o Land use 

� National Agricultural Statistics Service: http://www.nass.usda.gov:81/ipedb/  

� Illinois Natural History Survey - 1800s Government Land Office Survey 

maps: ftp://kestrel.inhs.uiuc.edu/pub/ 

� Illinois Department of Agriculture: 

http://www.agr.state.il.us/gis/landcover.html  

� County Soil Surveys:  The older volumes of the Soil Survey reports provide 

anecdotal information on dominant land uses in the county. 

• Past scientific studies, travel accounts, and news media – Literature searches for 

reports and publications on scientific and non-scientific sources of information are 

necessary but slow. Many studies can be located through websites of several federal 

and state agencies.  Travel accounts and news media publications are best searched 

through university, college, and local libraries. 

o Illinois Department of Natural Resources – Office of Scientific Research: 

� Illinois State Water Survey:  http://www.sws.uiuc.edu/ 

� Illinois State Geological Survey:  http://www.isgs.uiuc.edu/    

� Illinois Natural History Survey:  http://www.inhs.uiuc.edu/  

� Illinois State Museum:  http://www.museum.state.il.us/  

o Illinois Environmental Protection Agency: 
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� Intensive Basin Surveys: http://www.epa.state.il.us/water/surface-water/river-

stream-mon.html  

o U.S. Geological Survey-Illinois District:  http://il.water.usgs.gov/  

Historical Analysis Technique – (3) Hydraulic and Channel Geometry (flow and 

sediment): Many datasets retrieved in the two prior objectives will be used to document 

changes in streamflow frequency, sediment character, and channel geometry.  This 

information will be used to determine if adjustments have occurred and, if so, what is the 

style and magnitude of those adjustments.  This third objective will supplement the initial 

field survey of this characterization. 

• Streamflow records and sediment data – This data is readily available but can be 

limited in duration and number of locations.  Study-specific data may be found in 

scientific reports (see above). 

o U.S. Geological Survey:  http://waterdata.usgs.gov/IL/nwis/  

o Illinois State Water Survey:  http://www.sws.uiuc.edu/data.asp  

• Channel geometry (cross-sections and gradient) – Channel geometry is generally not 

readily available.  If available, they may be found in scientific publications or any of 

the sources listed above (Drainage projects, road and causeway construction plans, 

and bathymetric surveys).  Changes in channel geometry may also be implied from 

ground-based oblique photography.   

Initial Field Survey Technique – Document the extant physical character of the 

stream channel:  The data sources gathered and summarized from the historical analysis 

are used to determine the density and spatial distribution of the field sites.  However, the 
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main source of data for the initial field survey comes from the basic field data collection 

and channel-stability ranking scheme (Figure 3.1).   
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Appendix B   Completed Channel-stability Index Sheet   
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Appendix C Spatial Distribution of Channel Stability Index Variables  
in Watershed 
C-1 Percent bank stability (right bank/left bank)  
C-2 Percent woody vegetative cover (right bank/left bank)  
C-3 Primary bed material  
C-4 Degree of floodplain separation (incision) 
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 Appendix C-1 Percent bank stability (right bank/left bank) 
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Appendix C-2 Percent woody vegetative cover (right bank/left bank) 
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Appendix C-3  Primary bed material 
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Appendix C-4  Degree of floodplain separation (incision) 
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Appendix D   Example of Completed Geomorphic Assessment Stream-Evaluation  
Data Sheet – Site BC-8 
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