
Causal Reasoning about Attacks in SCADA

Networks

Wenyu Ren∗, Timothy Yardley∗ and Klara Nahrstedt∗

∗ University of Illinois Urbana-Champaign, Urbana, Illinois, USA

Email: {wren3, yardley, klara}@illinois.edu

Abstract—The Supervisory Control and Data Acquisition
(SCADA) system is the most commonly used industrial control
system but is subject to a wide range of serious threats. Intrusion
detection systems are deployed to promote the security of SCADA
systems, but they continuously generate tremendous number of
alerts without further comprehending them. There is a need
for an efficient system to correlate alerts and discover attack
strategies to provide explainable situational awareness to SCADA
operators. In this paper, we present a causal-polytree-based
anomaly reasoning framework for SCADA networks, named
CAPTAR. CAPTAR takes the meta-alerts from our previous
anomaly detection framework EDMAND, correlates the them
using a naive Bayes classifier, and matches them to predefined
causal polytrees. Utilizing Bayesian inference on the causal
polytrees, CAPTAR can produces a high-level view of the security
state of the protected SCADA network. Experiments on a
prototype of CAPTAR proves its anomaly reasoning ability and
its capabilities of satisfying the real-time reasoning requirement.

I. INTRODUCTION

Nowadays, large-scale distributed critical infrastructure sys-

tems such as power grids and refineries increasingly rely on

digital industrial control systems (ICSs) for real-time moni-

toring, data collection, and control. The Supervisory Control

and Data Acquisition (SCADA) system is the most commonly

used ICS. Critical as they are, SCADA systems are subject to a

wide range of serious threats [1]. Therefore, securing SCADA

systems against various threats and vulnerabilities has become

a major challenge.

To promote the security of SCADA systems, intrusion de-

tection systems (IDSs) are increasingly deployed by SCADA

operators. As the name suggests, the main objective of IDSs

is to monitor the system, detect suspicious activities caused by

intrusion attempts, and report alerts to the system operators.

Although IDSs play an undeniable role in the protection of

SCADA systems, they still suffer from some defects. The

biggest issue with traditional IDSs is that they continuously

generate tremendous number of alerts without further com-

prehending them. Drowned in an ocean of unstructured alerts

mixed with false positives, SCADA operators are almost blind

to see any useful information. Due to the high volume and low

quality of the alerts, it becomes a nearly impossible task for

the operators to figure out the complete pictures of the attacks

and take appropriate actions in a timely manner.

To address the aforementioned problem of traditional IDSs

and provide the SCADA operators with explainable situational

awareness, there is a need for an efficient system to aggregate

redundant alerts from IDSs, correlate them in an intelligent

manner, and discover attack strategies based on domain knowl-

edge as well as causal reasoning. In a previous work [1],

we described our edge-based multi-level anomaly detection

framework for SCADA, named EDMAND. EDMAND resides

at the edges of the SCADA network and detects anomalies

in multiple levels of the network. The triggered alerts are

aggregated, prioritized, and sent to the control center. In this

report, we present a causal-polytree-based anomaly reasoning

framework for SCADA networks, named CAPTAR. CAPTAR

resides in the control center of the SCADA network and takes

the meta-alerts from EDMAND as input (shown in Figure 1).

CAPTAR correlates the alerts using a naive Bayes classifier

and matches them to predefined causal polytrees. Utilizing

Bayesian inference on the causal polytrees, CAPTAR is able

to reveal the attack scenarios from the alerts and produces a

high-level view of the security state of the protected SCADA

network.

Fig. 1: Locations of EDMAND and CAPTAR

The remainder of this report is organized as follows: Section

II reviews the related work. Section III introduces the basic

concept of Bayesian network, Bayesian inference, and belief

propagation. These concepts are utilized in the anomaly rea-

soning in this report. Two canonical models which are used

to build our causal polytrees are also introduced in Section

III. Section IV gives an overview of the design of CAPTAR.

Section V shows the performance evaluation of CAPTAR and

Section VI concludes the report. Since this report uses many

difference notations, some of the most important notations are

listed in Table I for quick reference.

II. RELATED WORK

Various techniques have been used to measure the similarity

of common features of alerts to correlate them [2]–[5]. How-

ever, alert correlation alone can only measure the correlation

strength between alerts and are not sufficient to recognize the

whole picture of the attack.

To fill the gap of alert correlation, many works have been

proposed in the area of attack plan recognition. Some works

[6], [7] keep the state of the system and assume that the state

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/196229766?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Notation Description

X A node in the Bayesian network representing a random variable.

U A parent of X in the Bayesian network.

Y A child of X in the Bayesian network.

e
+
X Evidence contained in the sub-tree rooted at X .

e
−
X Evidence contained in the rest of the Bayesian network other than e

+
X .

πX(u) Causal support provided by parent U to X .

λY (x) Diagnostic support provided by child Y to X .

BEL(x) Belief at node X .

X̃ Auxiliary child node of X to simulate evidence of matched meta-alerts.

λ
X̃
(x) Diagnostic support provided by X̃ to X .
I Inhibitory mechanism in “noisy-OR” model.

E Enabling mechanism in “noisy-AND” model.

q Probability that the inhibitory or enabling mechanism is active.

CS(a) Confidence score of meta-alert a.
AT Attack template.

ATS Attack template set.

SAT Set of consequence nodes of attack template AT .

AU Alert unit.
w Weight in the alert unit.

A Alert type in the alert unit.

CStotal Total confidence score of all matched meta-alerts of a node.
BELmax(AT) Maximum probability of existence of all consequence nodes in AT .

Cormax Maximum correlation score of a meta-alert in an attack template.

ATSmatch Attack template set containing alert matching results.

Xcor Exact match node with the highest correlation score for a meta-alert.

Xpot Set of potential nodes a meta-alert could match to.

K Maximum number of attack templates to keep for each kind of attack.

M Number of meta-alerts in the meta-alert database.
N Maximum number of nodes in any attack template.

L Number of attack templates in the attack template database.

TABLE I: Table of notation

evolves towards a “worse” direction during attacks. There are

also works [8], [9] that define prerequisites and consequences

of each attack step and construct chains or graphs based

on the matching of prerequisites and consequences. Bayesian

networks are also utilized by many papers [8], [10]–[13] to

correlate alerts or to represent and infer the causal relationship

between attack steps.

The closest previous work [14] to ours is the integration

of alert aggregation, prioritization, correlation, and attack

plan recognition. Three alert correlation methods are pro-

posed: probabilistic-based, causal discovery-based, and tem-

poral based methods. The attack plan recognition step also

uses causal polytrees to represent attack plans.

CAPTAR mainly differentiates from all previous works in

two aspects. First, the alerts received by CAPTAR are meta-

alerts generated by EDMAND, which is our edge-based multi-

level anomaly detection framework for SCADA. EDMAND

applies network-based rather than host-based detection and

it mainly takes the anomaly-based approach instead of the

signature-based approach. The alerts from EDMAND do not

directly relate to each attack step in the attack plan but instead

relate to various network behaviors triggered by each attack

step. Therefore, mapping between alerts from EDMAND and

underlying attack steps is necessary for our anomaly reasoning.

Second, we define the concept of confidence score for each

alert in EDMAND. In CAPTAR, the confidence scores of

meta-alerts are utilized to calculate the diagnostic support for

each node in the causal polytrees during the belief propagation.

This allows each alert to carry more belief information instead

of only a binary state (exist/not exist).

III. PRELIMINARIES

An example workflow of EDMAND and CAPTAR is shown

in Figure 2. After an attacker launches an attack, each step of

the attack could result in one or more anomalies in the network

traffic. These anomalies trigger meta-alerts in EDMAND.

CAPTAR receives the meta-alerts from EDMAND and tries

to infer the attack steps that triggered them by mapping meta-

alerts to attack steps. Potential attack steps are structured as

nodes in causal polytrees whose nature are Bayesian networks.

Bayesian inference is performed on those causal polytrees to

reason about the existence of attacks. In this section, we first

Fig. 2: An example workflow of EDMAND and CAPTAR

introduce the basic concept of Bayesian network. Then we

describe inference in Bayesian network followed by the belief

propagation algorithm to conduct Bayesian inference. Finally,

we present two canonical models we use to build our causal

trees: “noisy-OR” and“noisy-AND” models.

A. Bayesian Network

Before going into exactly what a Bayesian network is, it is

first useful to review two concepts in probability theory. The

first concept is the chain rule of probability. It says that if

we have a set of n random variables, X1, X2, . . . , Xn, then

the joint probability distribution P (X1, X2, . . . , Xn) can be

written as a product of n conditional probabilities:

P (X1, X2, . . . , Xn) =

P (Xn|Xn−1, . . . , X2, X1) · · ·P (X2|X1)P (X1).
(1)

The second concept is the conditional independence. We

say that two random variables, A and B, are conditionally

independent given another random variable C if P (A|B,C) =
P (A|C). In other words, once we know C, learning B would

not change our belief in A.

After recalling the chain rule of probability and the condi-

tional independence, we can introduce the basics of Bayesian

network. A Bayesian network is a directed acyclic graph

(DAG) in which the nodes represent variables, the edges

signify the existence of direct causal influences between the

linked variables, and the strengths of these influences are

expressed by conditional probabilities. Figure 3 illustrates a

simple yet typical Bayesian network. It describes relationships

among the seasons of the year (X1), whether rain falls (X2),

whether the sprinkler is on (X3), whether the pavement would

get wet (X4), and whether the pavement would be slippery

(X5). All variables in this figure are binary (taking a value of

either true or false) except for the root variable X1, which can

take one of four values: spring, summer, fall, or winter.

Each edge in the figure represents a direct causal influence

from the head of the edge to the tail. In Figure 3, X4 has a

directed edge pointing to X5. This is because the fact that the

pavement is wet has a direct causal influence on whether the

pavement is slippery. On the contrary, the absence of a direct

edge between two nodes implies conditional independence.

For example, the absence of a direct edge between X1 and

X5 captures the understanding that the influence of seasonal

Fig. 3: Bayesian network example

variations on the slipperiness of the pavement is mediated by

other conditions (e.g., the wetness of the pavement).

Each node in the Bayesian network is associated with a

probability function that takes (as input) a particular set of

values for the node’s parent variables, and gives (as output)

the probability of the variable represented by the node. The

most common form of this probability function is a conditional

probability table (CPT). CPT is a table defined for a set of

discrete and mutually dependent random variables to display

conditional probabilities of a single variable with respect to the

others. An example CPT of X4 in Figure 3 is shown in Table

II. It gives the conditional probabilities of P (X4|X2, X3).

X2 X3 X4 = T X4 = F

F F 0.0 1.0

F T 0.8 0.2

T F 0.9 0.1

T T 0.99 0.01

TABLE II: Conditional probability table of X4

An important property of Bayesian networks is the local

(parental) Markov condition, which states that every node

in a Bayesian network is conditionally independent of all

its non-descendants given its parent. In the above example,

we have P (X5|X1, X2, X3, X4) = P (X5|X4) since Slippery

is conditionally independent of its non-descendants, Season,

Sprinkler, and Rain, given its parent Wet. This property allows

us to simplify the joint distribution, obtained using the chain

rule, to a simpler form. Assume a Bayesian network has

n nodes X1, . . . , Xn in total. The joint distribution can be

simplified as

P (X1, . . . , Xn) =
n∏

i=1

P (Xi|X1, . . . , Xi−1) =

n∏

i=1

P (Xi|Parents(Xi)),
(2)

where Parents(Xi) is the set of direct parents of Xi. In the

above example, we are able to rewrite the joint distribution as

P (X1, X2, X3, X4, X5) =

P (X1)P (X2|X1)P (X3|X1)P (X4|X2, X3)P (X5|X4).
(3)

This property significantly reduces the amount of required

computation in large Bayesian networks since each node

usually has fewer parents compared with the overall size of

the network.

B. Bayesian Inference

There are two kinds of inference over a Bayesian network.

The first is to evaluate the joint probability of a specific

assignment of values for all or a subset of variables in the

network. For all variables, we simply factorize the joint prob-

ability using Equation 2 and calculate the product using pro-

vided conditional probabilities. For a subset of variables, we

marginalize over the variables not in the subset by summing

up probabilities over them and get the marginal probability of

the subset of variables we are interested in.

The second and more interesting inference is to evaluate

P (x|e), that is, the probability of some particular assignment

of a subset of variables (x) given assignments of other vari-

ables (evidence e). In the scenario we mentioned in Section

III-A, one example of this kind of inference could be to

evaluate P (X2 = T,X4 = T,X5 = T |X1 = spring).
In this case, {X2 = T,X4 = T,X5 = T } is our x and

{X1 = spring} is our e. According to the definition of

conditional probability, we have P (x|e) = P (x, e)/P (e) =
αP (x, e), where α = 1/P (e) is a normalizing constant

rendering
∑

x
P (x|e) = 1. Let Z represent the set of variables

in the network that is not in x and e, and z represents any

particular value assignment of Z. To get P (x, e), the marginal

probability of {x, e} over Z needs to be calculated. Therefore,

we have

P (x|e) = α
∑

∀z∈Z

P (x, e, z). (4)

In the example, we can calculate P (X2 = T,X4 = T,X5 =

T |X1 = spring) as

P (X2 = T,X4 = T,X5 = T |X1 = spring)

= α
∑

X3

P (X1 = spring)P (X2 = T |X1 = spring)

P (X3|X1 = spring)P (X4 = T |X2 = T,X3)

P (X5 = T |X4 = T)

= αP (X1 = spring)P (X2 = T |X1 = spring)

P (X3 = T |X1 = spring)P (X4 = T |X2 = T,X3 = T)

P (X5 = T |X4 = T) + αP (X1 = spring)

P (X2 = T |X1 = spring)P (X3 = F |X1 = spring)

P (X4 = T |X2 = T,X3 = F)P (X5 = T |X4 = T) (5)

C. Belief Propagation

Belief propagation via message passing [15] is an algorithm

to conduct inference on Bayesian networks. To make it clearer,

we first illustrate the belief propagation rules in a general

tree-structured Bayesian network where a node might have

several children and one parent. In the next subsection, we

will introduce the two canonical models which generalize our

causal trees to polytrees.

Fig. 4: Fragment of a causal tree, showing different kinds of

evidence and support of a node X

We illustrate the belief propagation by specifying the ac-

tivities of a typical node X having m children, Y1, Y2, . . . ,
Ym, and a parent U as shown in Figure 4. The belief in the

various values of X depends on two distinct sets of evidence:

evidence from the sub-tree rooted at X , and the evidence

from the rest of the tree. In general, let us define e
−
X as the

evidence contained in the tree rooted at X and define e
+
X as

the evidence contained in the rest of the network. e−Yj
therefore

represents the evidence from the sub-tree rooted at Yj where

j ∈ {1, . . . ,m}. x ∈ {0, 1} is a particular value of X and

u ∈ {0, 1} is a particular value of U . The belief distribution

of variable X can be calculated based on the following three

kinds of parameters:

1) Causal Support: πX(u) = P (u|e+X), contributed by

parent of X .

2) Diagnostic Support: λYj
(x) = P (e−Yj

|x), contributed by

the Yj which is the j-th child of X where j ∈ {1, . . . ,m}.
3) Conditional Probability Table (CPT): P (x|u) that relates

the variable X to its direct parent U . Each entry P (x|u)
in the table defines the probability of value x of node X
given certain value u of node U .

We utilize the tree-structured Bayesian network for our

anomaly reasoning. Each node represents an attack step in

the entire attack plan and it has two states of exist (1) and not

exist (0). A direct edge from node U to node X means that

attack step U is a direct prior step of attack step X and needs

to be launched before X . In this way, we are able to reason

about the probability of existence of the attack by calculating

the belief of each attack step.

The belief propagation algorithm runs whenever new evi-

dence is found in the tree. The propagation starts from the node

which receives the new evidence and the new belief propagates

along the edges of the tree until all nodes get updated. The

local belief updating at each node X can be executed by three

steps in any order.

Belief Propagation Algorithm

Step 1 — Belief updating: Node X updates its belief mea-

sure based on the πX(u) message from its parent and the

messages λY1
(x), λY2

(x), . . . , λYm
(x) from each of its

children as shown in Figure 4.

BEL(x) = αλ(x)π(x), (6)

where

λ(x) =
∏

j

λYj
(x), (7)

π(x) =
∑

u

P (x|u)πX(u), (8)

and α is a normalizing constant rendering
∑

xBEL(x) = 1.

Step 2 — Bottom-up propagation: As shown in Figure 6,

node X computes a new message λX(u) based on its CPT and

λ messages received from its children. Then X sends λX(u)
to its parent U .

λX(u) =
∑

x

λ(x)P (x|u), (9)

Fig. 5: Bottom-up propagation

Step 3 — Top-down propagation: As shown in Figure 5,

node X computes new π messages and sends them to its

children. The new πYj
(x) message for its j-th child Yj is

calculated as

πYj
(x) = απ(x)

∏

k 6=j

λYk
(x). (10)

Fig. 6: Top-down propagation

Boundary conditions are established as follows:

1) Root nodes: If X is a node with no parents, we set π(x)
equal to the prior probability P (x).

2) Anticipatory nodes: If X is a childless node that has not

been instantiated, we set λ(x) = 1 for x ∈ {0, 1}
3) Evidence nodes: In our anomaly reasoning, evidence for

a node X is obtained when meta-alerts are matched to the

node. We will discuss the matching mechanism in Section

IV-D. When evidence is obtained for X , we add a dummy

auxiliary child node X̃ to X as shown in Figure 7 and

simulate the evidence by letting X̃ provide a diagnostic

support message λ
X̃
(x) to X . We will describe our way

to calculate λ
X̃
(x) in Section IV-B. This auxiliary node

X̃ is not updated during the belief propagation using the

3 steps mentioned. It only changes the way X calculates

its own λ(x). Therefore, if evidence of X is obtained,

Equation 7 needs to be rewritten as

λ(x) = λ
X̃
(x)

∏

j

λYj
(x). (11)

Fig. 7: Auxiliary child X̃ of X representing evidence received

by X

D. The “noisy-OR” and“noisy-AND” Models

In Section III-C, we illustrate the belief propagation algo-

rithm in a general tree-structured Bayesian network where a

node has at most one parent. However, this structure lacks

the ability to represent nodes that might have multiple causes

(i.e., node may have multiple parents). In this subsection, we

introduce two canonical models which allow us to generalize

our causal trees to causal polytrees. A polytree is a directed

acyclic graph whose underlying undirected graph is a tree.

An example polytree is shown in Figure 8. The difference

between a polytree and a normal tree is that a node could

have multiple parents in a polytree. The two canonical models

contain structures similar to logical OR-gate and AND-gate

with noises and are thus called “noisy-OR” and “noisy-AND”

models. The characteristics of these two typical structures

enable us to conduct the belief updating more efficiently in

polytrees.

Fig. 8: Polytree example

Fig. 9: The noisy OR-gate

1) The “noisy-OR” Model: The “noisy-OR” model [15]

is based on the noisy OR-gate structure shown in Figure 9.

Each node represents an event (attack step in our anomaly

reasoning) with binary state 0 or 1. For a node X with n
parents U = {U1, U2, . . . , Un}, its value can be seen as the

output of a logical OR-gate. Each input to the OR-gate is

the output of an AND-gate representing the conjunction of Ui

and the negation of its specific inhibitory mechanism Ii. The

inhibitors I1, . . . , In represent exceptions or abnormalities that

interfere with the normal relationship between U and X . We

use qi to represent the probability that the i-th inhibitor is

active. Assume all inputs are 0 except Ui = 1. X will only

be 1 if and only if the inhibitor Ii associated with Ui remains

inactive. That is,

P (X = 1|Ui = 1, Uk = 0 k 6= i) = 1− qi. (12)

Therefore, ci = 1−qi represents the degree to which the single

cause Ui = 1 can endorse the consequent event X = 1. Let

u = (u1, u2, . . . , un) ui ∈ {0, 1} (13)

represent any assignment of values to parent set U . Note that

both u and U are vectors since X could have multiple parents.

Let Tu = {i : Ui = 1} represent the subset of parents that are

1. In the “noisy-OR” model, a link matrix P (x|u) is used to

relate X to its parent set U and can be written as

P (x|u) =

{∏
i∈Tu

qi if x = 0

1−
∏

i∈Tu
qi if x = 1.

(14)

Having the link matrix P (x|u), we can follow similar belief

propagation algorithm described in Section III-C. Assume X
has m children, Y1, Y2, . . . , Ym. As it is shown in Figure 10,

the local belief updating at X can be also executed by three

steps in any order.

Fig. 10: Belief propagation in causal polytree

Belief Propagation Algorithm in “Noisy-OR” Model

Step 1 — Belief updating: Node X updates its belief mea-

sure based on the π1X , . . . , πnX from its parents and the

λY1
(x), . . . , λYm

(x) from its children:

BEL(x) =

{
αλ0

∏
i(1 − ciπiX) if x = 0

αλ1

[
1−

∏
i(1− ciπiX)

]
if x = 1,

(15)

where

λ(x) =
∏

j

λYj
(x) =

{
λ0 if x = 0

λ1 if x = 1
, (16)

πiX = P (ui = 1), (17)

and α is a normalizing constant rendering
∑

x BEL(x) = 1.

Step 2 — Bottom-up propagation: Node X computes new

λX(ui) messages and sends them to its parents U . The new

λX(ui) message for its i-th parent Ui is calculates as

λX(ui) =

{
β
[
λ0qiΠ

′
i + λ1(1− qiΠ

′
i)
]

if ui = 1

β
[
λ0Π

′
i + λ1(1−Π′

i)
]

if ui = 0,
(18)

where

Π′
i =

∏

k 6=i

(1− ckπkX), (19)

and β is a normalizing constant.

Step 3 — Top-down propagation: Node X computes new

πYj
(x) messages and sends them to its children. The new

πYj
(x) message for its j-th child Yj is calculated as

πYj
(x) = α

BEL(x)

λYj
(x)

. (20)

Fig. 11: The noisy AND-gate

2) The “noisy-AND” Model: The “noisy-AND” model [15]

is based on the noisy AND-gate structure shown in Figure 11.

The value of a node X with n parents U = {U1, U2, . . . , Un}
can be seen as the output of a logical AND-gate. Each input

to the AND-gate is the output of an OR-gate representing the

conjunction of Ui and the its specific enabling mechanism Ei.

We use qi to represent the probability that the i-th enabler is

active. Assume all inputs are 1 except Ui = 0. X will be 0 if

and only if the enabler Ei associated with Ui remains inactive.

That is,

P (X = 1|Ui = 0, Uk = 1 k 6= i) = qi. (21)

Let ci = 1 − qi and use Fu = {i : Ui = 0} to represent the

subset of parents that are 0. The link matrix P (x|u) can be

written as

P (x|u) =

{
1−

∏
i∈Fu

qi if x = 0∏
i∈Fu

qi if x = 1.
(22)

Assume X has m children, Y1, Y2, . . . , Ym. The three steps

of local belief updating at X are listed as follows.

Belief Propagation Algorithm in “Noisy-AND” Model

Step 1 — Belief updating: Node X updates its belief mea-

sure based on the π1X , . . . , πnX from its parents and the

λY1
(x), . . . , λYm

(x) from its children:

BEL(x) =

{
αλ0

{
1−

∏
i

[
1− ci(1− πiX)

]}
if x = 0

αλ1

∏
i

[
1− ci(1− πiX)

]
if x = 1,

(23)

where

λ(x) =
∏

j

λYj
(x) =

{
λ0 if x = 0

λ1 if x = 1
, (24)

πiX = P (ui = 1), (25)

and α is a normalizing constant rendering
∑

xBEL(x) = 1.

Step 2 — Bottom-up propagation: Node X computes new

λX(ui) messages and sends them to its parents U . The new

λX(ui) message for its i-th parent Ui is calculates as

λX(ui) =

{
β
[
λ0(1−Π′

i) + λ1Π
′
i

]
if ui = 1

β
[
λ0(1− qiΠ

′
i) + λ1qiΠ

′
i

]
if ui = 0,

(26)

where

Π′
i =

∏

k 6=i

[
1− ck(1− πkX)

]
, (27)

and β is a normalizing constant.

Step 3 — Top-down propagation: Node X computes new

π messages and send them to its children. The new πYj
(x)

message for its j-th child Yj is calculates as

πYj
(x) = α

BEL(x)

λYj
(x)

. (28)

IV. DESIGN OVERVIEW

As we mentioned in Section I, CAPTAR resides in the

control center of the SCADA network and its inputs are meta-

alerts sent by EDMAND at the edge of the network. In this

section, we present a design overview of CAPTAR. The main

architecture of CAPTAR is shown in Figure 12. CAPTAR

consists of 4 components: (1)Meta-alert Database, (2)Attack

Template Database, (3)Alert Correlator, (4)Causal Reasoning

Engine.

Fig. 12: CAPTAR architecture

The meta-alert database is used to store the meta-alerts

from EDMAND. These meta-alerts serve as evidence to our

causal reasoning of anomalies. The attack template database

stores the potential attack templates which are causal poly-

trees created by domain experts. These attack templates are

Bayesian networks mentioned in Section III-A and contain the

“noisy-OR” and “noisy-AND” models mentioned in Section

III-D. They represent the prior domain knowledge we have on

potential attack plans and are used as the underlying Bayesian

networks for the belief propagation mentioned in Section III-C.

One important step to reason about the anomalies is to match

meta-alerts to nodes (attack steps) in our attack templates.

And to do that, we need to evaluate whether one meta-

alert is correlated with other meta-alerts. The alert correlator

takes two meta-alerts as inputs and outputs a correlation score

which is used to decide whether the two input meta-alerts

are correlated or not. The core component of CAPTAR is the

causal reasoning engine which interacts with all other three

components. When the causal reasoning engine is started, it

fetches copies of the attack templates in the database and

conducts alert matching as well as belief propagation on them.

The meta-alerts are retrieved from the meta-alert database

and the alert matching is done using the alert correlator.

Whenever the belief of an attack is high enough, the engine

outputs the causal polytree corresponding to that attack with

matched alerts. The operator can further analyze the believes

and matched alerts in the causal polytree to understand each

step of the attack.

In the following subsections, we will introduce the meta-

alert, the attack template, the alert correlator, and the causal

reasoning engine in more detail.

A. Meta-alert

Meta-alerts are generated by EDMAND [1] and sent to the

control center where CAPTAR resides. Each meta-alert is the

aggregation of similar alerts. Each meta-alert has several fields

which are listed in Table III. The fields that will be used

in CAPTAR are alert id, alert type, index field, timestamp,

confidence score. Alert id is a string that is unique for each

meta-alert. The received meta-alerts from EDMAND will

be first stored in the meta-alert database (implemented by

MongoDB). The alert id serves as the key to locate and

retrieve the meta-alert from the database. Alert type is a name

that briefly describes the meta-alert. The current prototype of

EDMAND generates 24 types of alerts from the transport,

operation, and content levels. A complete list of the alert types

is shown in Table IV. For simplicity reason, we assign an alert

type index to each alert type and we will use the index to

represent the corresponding alert type. Index field of the meta-

alert contains additional information that helps to describe the

meta-alert, such as IP addresses, protocol, service, etc. This

field is later used by the alert correlator to correlate meta-

alerts. Timestamp field simply contains a pair of timestamps

(start time, end time). They are the timestamps of the earliest

and the latest alerts that have been aggregated to the meta-

alert. Confidence score field in the meta-alert represents the

confidence that the meta-alert is an anomaly indeed. It is the

maximum of the confidence scores of all the aggregated alerts

for this meta-alert. As we mentioned in [1], the confidence

score (CS) for alert is calculated by CS = MA×AS, where

MA is the model accuracy and AS is the anomaly score. As

stated in Section III-C, if meta-alerts are matched to a node

X in our causal polytree, an auxiliary child node X̃ is added

to X . The confidence scores of the matched meta-alerts are

used to calculate the diagnostic support message λ
X̃
(x) that X̃

provides to X . The way to calculate λ
X̃
(x) will be introduced

in Section IV-B.

B. Attack Template

As we mentioned in Section III, we utilize causal polytrees

to reason about anomalies in SCADA networks. We call

these special causal polytrees attack templates and use AT s

to represent them. Attack templates represent and store the

prior domain knowledge we have for attacks. When an attack

Alert Field Description

alert id
a unique id for retrieving a meta-alert

from the database

alert type
a name that describes the meta-alert

(see Table IV)

index field
a set of auxiliary information that

helps to describe the meta-alert

timestamp
a start time and an end time

for the meta-alert

confidence score
the confidence that the meta-alert

represents an anomaly

statistical fields more detailed information about

the last alert aggregatedanomaly data

count
number of alerts aggregated

by the meta-alert

TABLE III: Meta-alert fields and description

Index Alert Type

0 PACKET_IAT

1 PACKET_BYTES

2 NEW_ORIG

3 NEW_RESP

4 NEW_PROTOCOL

5 NEW_SERVICE

6 PACKET_AB_TOO_MANY

7 PACKET_AB_TOO_FEW

8 PACKET_BA_TOO_MANY

9 PACKET_BA_TOO_FEW

10 MEAN_BYTES_AB_TOO_LARGE

11 MEAN_BYTES_AB_TOO_SMALL

12 MEAN_BYTES_BA_TOO_LARGE

13 MEAN_BYTES_BA_TOO_SMALL

14 OPERATION_TOO_LATE

15 OPERATION_TOO_EARLY

16 OPERATION_MISSING

17 INVALID_FUNCTION_CODE

18 RESPONSE_FROM_ORIG

19 REQUEST_FROM_RESP

20 NEW_OPERATION

21 BINARY_FAULT

22 ANALOG_TOO_LARGE

23 ANALOG_TOO_SMALL

TABLE IV: Alert type

is launched, the triggered meta-alerts from EDMAND are

matched to the corresponding attack template and the belief

propagation mentioned in Section III-C is conducted on it.

An example attack template for the data integrity attack is

shown in Figure 13. Each node X in an attack template

AT is an attack step with zero, one, or multiple parents

and children. Each parent represents a prior cause attack step

that can lead to the current one and each child represents a

posterior consequence attack step that the current one can

lead to. If there are multiple parents, they follow either the

“noisy-OR” or the “noisy-AND” model in Section III-D. The

prior probability at each node, the probabilities qis of the

inhibitory or enabling mechanisms in “noisy-OR” and “noisy-

AND” models are all specified by domain experts (e.g. power

grid/SCADA security administrator) when the attack template

is created. Also, each attack template AT contains one or more

sink nodes (shaded node in Figure 13). Denote the set of sink

nodes as SAT . Nodes in SAT represent the final targets of

the entire attack and we call them consequence nodes. Each

consequence node has domain knowledge associated with such

as attack consequence, severity, and potential countermeasure.

Fig. 13: An example of an attack template (causal polytree)

using the “noisy-OR” model

Each attack step (each node) has two binary states: not

exist (0) and exist (1). However, the attack steps cannot be

observed directly. We can only infer the existence of each

attack step by the alerts it triggers in EDMAND. Each attack

step could trigger meta-alerts that belong to multiple1 alert

types mentioned in Section IV-A. Multiple meta-alerts can

match to one alert type of an attack step. As we mentioned in

Section III-C, these alerts are treated as evidence to each attack

step node. We create a structure, called alert unit table, to

store the matched meta-alerts at each attack step. An example

of the alert unit table is shown in Table V. Each row in the

table is an alert unit (AU), which represents one proportion

of evidence. Let us assume there are k alert units in the table.

Each alert unit AU i consists of a weight wi and a list of

alert types Ai1, Ai2, . . . , Aini
, where ni is the number of alert

types in AU i. Therefore, AU i = {wi, Ai1, Ai2, . . . , Aini
}.

As we mentioned in Section IV-A, our current prototype of

EDMAND can generate 24 types of alerts. Ai1, Ai2, . . . , Aini

are represented by the alert type indexes in Table IV for

simplicity reason. wi represents how much the observation

of one or more of the following alert types Ai1, Ai2, . . . , Aini

can prove the existence of the attack step and
∑

i wi = 1.

Alert types in the same alert unit express the same aspect

of the attack step. Each alert type Aij in the alert unit table

can contain multiple meta-alerts from EDMAND of the same

corresponding alert type. For example, in the “data integrity

attack” attack step in Figure 13, the alert unit table contains

one alert unit {1, 21, 22, 23}. Since there is just one alert unit,

its weight is 1. The three alert types are 21, 22, and 23,

1It is also possible that one attack step triggers no alerts in EDMAND. In
this case, we can only infer the existence of this attack step by the existence
of its parents and children.

which represent BINARY_FAULT, ANALOG_TOO_LARGE,

and ANALOG_TOO_SMALL. These three types of content-

level meta-alerts all represent the actual tampering of the

measurement data and are therefore included in the same alert

unit.

Alert Unit Weight Alert Types

AU 1 w1 A11, A12, . . . , A1n1

AU 2 w2 A21, A22, . . . , A2n2

...
...

...

AU k wk Ak1, Ak2, . . . , Aknk

TABLE V: Alert unit table for each attack step

As we mentioned in Section III-C, if meta-alerts are

matched to a node X and stored in its alert unit table,

an auxiliary child node X̃ is added to X . The confidence

scores of the matched meta-alerts are used to calculate the

diagnostic support message λ
X̃
(x) that X̃ provides to X .

To calculate λ
X̃
(x), we utilize the confidence score of each

meta-alert mentioned in Section IV-A. For each alert type Aij

in the alert unit table, we assume there are mij meta-alerts

aij1, aij2, . . . , aijmij
matched to it (the matching mechanism

will be described in Section IV-D). The confidence scores of

them are CS (aij1),CS (aij2), . . . ,CS(aijmij
). Let CS (Aij)

be the confidence score of the alert type Aij and it is calculated

as

CS (Aij) =

∏mij

l=1 CS (aijl)∏mij

l=1 CS (aijl) +
∏mij

l=1 (1− CS (aijl))
mij > 0

Pmiss mij = 0,

(29)

where Pmiss is a probability of missing meta-alerts and can

be predefined by experience or calculated if training data is

available. After we have confidence score calculated for every

alert type in one alert unit AU i, we can write the confidence

score of the alert unit CS (AU i) as

CS (AU i) =
ni

max
j=1

CS (Aij). (30)

The final total confidence score of the attack step CS total is

calculated by

CS total =
k∑

i=1

wiCS (AU i). (31)

The diagnostic support λ
X̃
(x) provided by all the matched

alerts to the attack step X is written as

λ
X̃
(x) =

{
1− CS total if x = 0

CS total if x = 1
. (32)

Attack templates are created by domain experts and stored

in the attack template database before we start the anomaly

reasoning. At the beginning of the reasoning, the causal rea-

soning engine will fetch copies of the original attack templates

and create an attack template set ATS. Then the engine

conducts alert matching as well as the belief propagation

mentioned in Section III-C on them. Each attack template AT

in ATS originates from one attack template in the database.

And multiple attack templates in ATS could correspond to

the same attack (same attack template in the database). For

each attack step X in an attack template AT , BELX(1)
represents the probability of existence of this attack step.

The way to calculate BELX(1) is introduced in Section III.

Since consequence nodes in SAT stand for final targets of the

entire attack represented by AT , the maximum probability

of existence of all consequence nodes in AT , denoted by

BELmax(AT), can represent the inferred success possibility

of the attack and is calculated as

BELmax(AT) = max
X∈SAT

BELX(1). (33)

C. Alert Correlator

Fig. 14: Alert correlation model

CAPTAR’s anomaly reasoning consists of meta-alert match-

ing and belief propagation. Meta-alert matching is the process

of matching meta-alerts to attack steps (in attack templates)

that trigger them. And the most important step of alert match-

ing is to decide whether two meta-alerts are correlated or not.

Therefore, the alert correlator is designed for this purpose. The

alert correlator is a naive Bayes classifier whose graphical

representation is a Bayesian network in Figure 14 with one

root node X and three leaf nodes Y1, Y2, and Y3. The root

node X represents the hypothesis that “the two input meta-

alerts are correlated” and has two states: “yes” (1) and “no”

(0). Each leaf node Yj (j ∈ {1, 2, 3}) stands for one type

of observable evidence that helps to evaluate the hypothesis

and has several discrete states. Depending on whether two

meta-alerts are correlated or not, the distribution of states

at the evidence nodes will be different. Therefore, based on

the observed states at the evidence nodes, one can infer the

probability that two meta-alerts are correlated. We consider

three kinds of observable evidence while correlating two meta-

alerts: time difference (Y1), IP similarity (Y2), and whether

they share the same service (Y3).

• Time difference: The state of Y1 depends on the closeness

in the time axis of the two meta-alerts and we use Tdiff

to represent that. As we described in Section IV-A, each

meta-alert from EDMAND has a start time and an end

time. If the two meta-alerts overlap, we assign 0 to Tdiff .

Otherwise, we calculate Tdiff as the difference between

the end time of the earlier meta-alert and the start time of

the latter one. Y1 has four corresponding states according

to Tdiff :

Y1 =

0 if Tdiff ≤ 60seconds

1 if 60seconds < Tdiff ≤ 1hour

2 if 1hour < Tdiff ≤ 1day

3 if Tdiff > 1day

. (34)

• IP similarity: The state of Y2 depends on the similarity

of IP addresses related to the two meta-alerts. Each

meta-alert could have one or two related IP addresses.

Content-level alerts have one measure source IP while

transport and operation level alerts have two IPs for

originator and responder. For every pair of IP addresses

(IPa, IPb), where IPa relates to one input meta-alert

and IPb relates to the other, we calculate the similarity

of them as follows:

SIM (IPa, IPb) =

3 IPa and IPb are exactly the same

2
IPa and IPb are not the same but

within the same 8-bit block

1
IPa and IPb are not within the same

8-bit block but within the same 16-bit block

0
IPa and IPb are not within the same

16-bit block

.
(35)

The maximum similarity of all such IP pairs is selected as

the state of Y2. Therefore, Y2 has four states of {0, 1, 2, 3}
and Y2 = max(IPa,IPb) SIM (IPa, IPb).

• Same service: Y3 evaluates whether the two meta-alerts

share the same service (i.e., the same industrial control

protocol). There are two states of Y3: “yes” (1) and “no”

(0). A “no” is also specified if any of the input meta-alerts

does not have a related service.

Let x (x ∈ {0, 1}) represent the state of the root node in

Figure 14. Let yj (j ∈ {1, 2, 3}) represent the state at each leaf

node Yj and ŷj represent the already observed state. There is a

conditional probability table (CPT) at each leaf node Yj which

relates Yj to X . As we stated in Section III-C, each entry

P (yj |x) in the table defines the probability of state yj of node

Yj given certain state x of node X . Since X is a root node

with no parent, we set pi(x) to be the prior probability P (x)
according to the boundary condition mentioned in Section

III-C. P (x) varies depending on the alert types of the two

input meta-alerts. There is a predefined prior probability for

each pair of alert types based on domain knowledge. And since

the state of Yj is already observed as ŷj , we have

λ(yj) =

{
1 if yj = ŷj

0 otherwise.
(36)

According to the bottom-up propagation step in the belief

propagation, the diagnostic support provided by Yk to X is

λYj
(x) =

∑
yj
λ(yj)P (yj |x) = P (ŷj |x). Therefore, the belief

at root X can be calculated as

BEL(x) = απ(x)
3∏

j=1

λYj
(x) = αP (x)

3∏

j=1

P (ŷj|x), (37)

where α is a normalizing factor rendering
∑

x BEL(x) = 1.

We say two meta-alerts are correlated if BEL(1) > 0.5 for X .

Let a and b be the two input meta-alerts for the alert correlator.

We define the CORRELATE procedure of the alert correlator

as follows:

CORRELATE(a, b) =

{
BEL(1) if BEL(1) > 0.5

−1 otherwise,
(38)

D. Causal Reasoning Engine

The causal reasoning engine is the core component of

CAPTAR and it interacts with all other three components.

When the causal reasoning engine starts, it fetches copies of

attack templates AT s from the attack template database and

creates an attack template set ATS. Then it runs an anomaly

reasoning algorithm to perform alert matching and belief

propagation on the attack templates in the attack template set.

The meta-alerts used in the alert matching are retrieved from

the meta-alert database and the alert correlator is also used to

correlate meta-alerts during the matching process. The belief

propagation is introduced in Section III.

The anomaly reasoning algorithm is shown in Algorithm

1. The ANALYZEALERT procedure in this algorithm is called

whenever CAPTAR receives a new meta-alert or an update

to an existing alert. The procedure takes the meta-alert a and

the current attack template set ATS in the causal reasoning

engine as inputs. The output is a new attack template set

ATSnew with the meta-alert a matched to some of the

attack templates inside and belief propagation performed. The

procedure has two cases. If a is an update to an existing

meta-alert, then some attack templates in ATS might already

have a matched. For each AT of those attack templates, the

algorithm gets the node X in AT that a is matched to. Since

the meta-alert is updated, the procedure recalculates the total

confidence score CStotal (presented in Section IV-B) of X .

The diagnostic support λx̃(x) from all the matched alerts is

also recalculated. Since the evidence contained at X changes,

a belief propagation in AT from node X is initiated. In this

case, the ATS with the updated attack templates are directly

assigned to ATSnew for output. If a is a newly detected

meta-alert, the algorithm iterates over the entire set ATS.

For each attack template AT in ATS, it matches the meta-

alert a to nodes in AT and performs a belief propagation if

there is a successful match. This process is included in the

procedure called MATCHALERT. This procedure takes a and

AT as inputs and outputs a set of attack templates ATSmatch.

The attack templates in ATSmatch are copies of AT with a
matched and belief propagation performed. Since it is possible

that a can match to multiple nodes in AT , ATSmatch could

contain multiple copies. If a cannot be matched to AT ,

ATSmatch will just contain the original AT . After we get

ATSmatch from MATCHALERT(a,AT), the attack templates

in ATSmatch are all added to ATSnew. After each run of

the algorithm, namely each call of procedureANALYZEALERT,

the attack template set ATS in the causal reasoning engine is

replaced by ATSnew. The engine then checks BELmax(AT)
(defined in Section IV-B) of every attack template AT in the

new attack template set. If it finds BELmax(AT) > θBEL for

any AT , it will output that attack template AT for operator’s

further analysis. Here θBEL is a predefined threshold and we

use θBEL = 0.8 for our CAPTAR prototype.

Algorithm 1 Anomaly Reasoning Algorithm

Input:

a - meta-alert to be analyzed

ATS - attack template set

Output:

ATSnew - new attack template set

procedure ANALYZEALERT(a,ATS)

ATSnew ← ∅
if a is an update of an existing meta-alert then

for each AT in ATS that has a as a matched alert

do

recalculate CStotal and λx̃(x) of the matched

node X
start a new belief propagation in AT from node

X
end for

ATSnew ← ATS

else

for each AT in ATS do

ATSmatch ← MATCHALERT(a,AT)
add ATSmatch to ATSnew

end for

end if

return ATSnew

end procedure

Before we introduce more details of the MATCHALERT

procedure, there are one concept and another procedure we

need to describe first. The concept is called happens before

and the procedure’s name is FINDCORRELATION. Happens

before is a relationship between two meta-alerts. We say meta-

alert a happens before meta-alert b if the start time of a is at

least Thb earlier than the start time of b, where Thb = 10s is

a predefined threshold. The procedure FINDCORRELATION is

shown in Algorithm 2. It takes a meta-alert a and a node X in

the attack template as inputs and outputs a correlation score

Cormax. The objective of this procedure is to find whether the

given node, its parents and children have any matched alert

that correlates with the given alert. The procedure does so by

iterating through every matched alert b of X , parents of X and

children of X . For each b, it calls the alert correlator and uses

the CORRELATE procedure to correlate a and b. The maximum

result from CORRELATE(a, b) is stored in Cormax. If any

correlation is found, Cormax contains the highest correlation

score. Otherwise, Cormax = 0. There are two exceptions

while correlating alerts from parents and children. For any

matched alert b of X’s parents, there is a conflict if a happens

before b. a is to be matched to X and X’s parents are attack

steps that should lead to X . If there is an attack, the attack

steps represented by X’s parents should be launched before X .

That means a could not happens before b. Therefore, a should

not be matched to X and the procedure outputs−1 in this case.

For any matched alert b of X’s children, the procedure outputs

−1 if b happens before a for similar reasons.

Algorithm 2 Find Correlation Procedure

Input:

a - meta-alert to find correlation with

X - a node in the attack template whose alert unit table

contains the alert type of a
Output:

Cormax - maximum correlation

procedure FINDCORRELATION(a,X)

Cormax ← 0
for each matched alert b of X do

Cormax ← max(Cormax, CORRELATE(a, b))
end for

for each parent U of X do

for each matched alert b of U do

if a happens before b then

return −1
end if

Cormax ← max(Cormax, CORRELATE(a, b))
end for

end for

for each child Y of X do

for each matched alert b of Y do

if b happens before a then

return −1
end if

Cormax ← max(Cormax, CORRELATE(a, b))
end for

end for

return Cormax

end procedure

After describing the happens before concept and the

FINDCORRELATION procedure, we can start looking at the

MATCHALERT procedure which is shown in Algorithm 3. It

takes a meta-alert a and an attack template AT as inputs and

outputs a set ATSmatch containing attack templates generated

after matching. The objective of this procedure is to try to

match meta-alert a to the attack template AT . It iterates over

every node X in AT whose alert unit table contains alert type

of a. It calls the procedure FINDCORRELATION to correlate

a with X . If the result is greater than 0, it means a finds

correlation in X . If the result is 0, it means a finds no

correlation in X but it can be matched to X . We add X
to a potential node set Xpot. If the result is less than 0, it

means a could not be matched to X due to conflicts. If a
finds correlation in any node in AT , this means we have good

reason to believe a is triggered by the attack represented by

the current attack template AT . Therefore, we match a to the

node Xcor with the highest correlation score and start a belief

propagation from Xcor. In this case, the output will be a set

containing only the updated AT with a matched. If a finds

no correlation in AT but Xpot is not empty, this means there

is no proof that a is triggered by AT but there are attack

steps in AT that could potentially trigger a and the attack

steps are included in Xpot. Therefore, the procedure iterates

over Xpot explores every possibility. For every node X in

Xpot, it creates a new copy ATmatch of AT . Note that this

copy contains not only the nodes of AT but also all already

matched alerts of AT . It then matches a to X’s counterpart

in ATmatch and starts a belief propagation in ATmatch from

that node. By doing this, the procedure takes every potential

match of a in AT into consideration and the final output will

contain the original AT as well as all updated copies of it.

Finally, if there is no node in AT that a could match to, the

output will just contain the original AT .

Algorithm 3 Match Alert Procedure

Input:

a - meta-alert to be matched

AT - attack template

Output:

ATSmatch - attack template set after matching

procedure MATCHALERT(a,AT)

ATSmatch ← {AT }, Xcor ← None, Xpot ← ∅,
Cormax ← 0

for each node X in AT whose alert unit table contains

alert type of a do

Cor ← FINDCORRELATION(a,X)
if Cor > 0 then

if Cor > Cormax then

Cormax ← Cor , Xcor ← X
end if

else if Cor = 0 then

add X to Xpot

end if

end for

if Xcor is not None then

match a to Xcor and start the belief propagation of

AT from Xcor

else

for each node X in Xpot do

ATmatch ← copy of AT
match a to X in ATmatch and start a belief

propagation of ATmatch from X
add ATmatch to ATSmatch

end for

end if

return ATSmatch

end procedure

In the description of the MATCHALERT procedure, we

mentioned that the procedure will explore every potential

match of a and create multiple copies of the original attack

template AT if no exact match can be found. This will

increase the number of attack templates in the attack template

set ATS. To prevent the number of attack templates from

exploding, we set a maximum limit K for the number of attack

templates to keep for each kind of attack. Attack templates

with lower BELmax(AT) will be dropped when the number

exceeds the limit. Also, attack templates will also be dropped

from the set if they have not been updated for a long time.

The attack templates, output by the causal reasoning en-

gine, represent attacks of high probability of existence in

the SCADA network. The operators can not only understand

the origin of the attacks by examining the belief of each

attack step and the corresponding alerts, but also evaluate the

attack consequences and take countermeasures by utilizing the

domain knowledge contained in the consequence nodes.

1) Example Run for the Anomaly Reasoning Algorithm:

We use an example to better illustrate the anomaly reasoning

algorithm. Consider the attack template AT in Figure 15. Let

us assume this is the only attack template in the database.

At the beginning of the anomaly reasoning, the causal rea-

soning engine fetches AT from the database and creates the

attack template set ATS = {AT } as shown in Figure 16.

Now the attacker first launched a man-in-the-middle attack.

CAPTAR receives an OPERATION_TOO_LATE meta-alert a1
from EDMAND. This meta-alert a1 is first stored in the meta-

alert database and then fed into the causal reasoning engine.

Upon receiving this meta-alert a1, the engine calls the anomaly

reasoning algorithm. It finds that a1 is a new meta-alert, so

the procedure MATCHALERT is called to match a1 to the only

attack template AT in ATS. The MATCHALERT procedure

finds that node X1 is the only node whose alert unit tables

contains alert type OPERATION_TOO_LATE. Therefore, it

calls the procedure FINDCORRELATION with a1 and X1 as

inputs. The procedure FINDCORRELATION tries to find any

meta-alert in X1 and X3 that correlates with meta-alert a1.

However, since X1 and X3 have no matched alert yet, the

procedure finds no correlation and returns 0 in this case. Since

no correlation of a1 in the attack template AT is found and X1

is the only node that a1 can match to, a copy ÂT of the attack

template AT is created, and the meta-alert a1 is matched to

X̂1 in the copy ÂT . A belief propagation is performed on

ÂT . The MATCHALERT procedure returns both AT and ÂT .

Finally, both AT and ÂT are added to ATSnew to replace

ATS.

Fig. 15: Example attack template AT

Now the attacker intercepts and tampers with some binary

data. CAPTAR receives a meta-alert a2 with alert type of

BINARY_FAULT from EDMAND as shown in Figure 17. a2
is first stored in the meta-alert database and then forwarded to

the causal reasoning engine. The anomaly reasoning algorithm

again finds that a2 is a new meta-alert, so the procedure

MATCHALERT is called to match a2 to both AT and ÂT .

Matching a2 to AT is similar to matching a1 to AT and there

is no correlation of a2 in the attack template AT . Matching

a2 to ÂT is a bit different. The procedure finds that node X̂3

is the only node whose alert unit tables contains alert type

BINARY_FAULT. Therefore, the procedure FINDCORRELA-

TION is called with a2 and X̂3 as inputs. Since X̂1 is the

parent of X̂3 and a1 is a matched alert to X̂1. The procedure

sends both a2 and a1 to the alert correlator and finds that they

are correlated. Therefore, it returns the correlation score of a1
and a2. Since the FINDCORRELATION procedure finds one

correlation of a2 in the attack template ÂT , a2 is matched to

X̂3 and a belief propagation is performed on ÂT . After this

run, the attack template set ATS contains the original AT
and updated ÂT .

Later, EDMAND sends another updated BINARY_FAULT

meta-alert â2 to CAPTAR as shown in Figure 18. The anomaly

reasoning algorithm finds that â2 is an update to an existing

meta-alert a2. Also, it finds that ÂT in ATS contains a2.

Therefore, it replaces a2 with â2 in ÂT and starts new belief

propagations in ÂT . After this run, the causal reasoning engine

finds that BELmax(ÂT) exceeds the predefined threshold.

Therefore, the engine outputs ÂT to the operator. The operator

can see from ÂT that there is a data integrity attack going on

and the attacker first launched a man in the middle attack

(MITM) to achieve that. The two matched alerts a1 and â2
can also be used for more detailed analysis by the operator.

V. PERFORMANCE EVALUATION

In this section, we evaluate the anomaly reasoning ability of

CAPTAR via three simulated attack scenarios. We implement

a prototype of CAPTAR and reuse our prototype of EDMAND

described in [1]. The baseline traffic is 14 days of simulated

DNP3 traffic of one control center communicating with 10

remote terminal units (RTUs). More details of the baseline

traffic can be found in [1]. We create three attack templates

representing three common attacks in SCADA networks: TCP

SYN flood, data integrity attack, and command injection.

• TCP SYN flood: The attack template for TCP SYN flood

is shown in Figure 19. The attacker starts by an IP address

scan to find out the active IP addresses in the subnet.

Then the TCP SYN flood is conducted by sending a

succession of SYN requests to the target with spoofed

source addresses.

• Data integrity attack: The attack template for data in-

tegrity attack is shown in Figure 20. The attacker first ei-

ther launches a man-in-the-middle attack or compromises

some field devices. The measurement data sent back to

the control center are then tampered to mislead the control

system.

Fig. 16: Algorithm run upon receiving meta-alert a1

Fig. 17: Algorithm run upon receiving meta-alert a2

Fig. 18: Algorithm run upon receiving meta-alert â2

Fig. 19: TCP SYN flood

• Command injection: The attack template for command

injection is shown in Figure 21. The attacker first either

launches a man-in-the-middle attack or conducts an IP

address scan followed by a service scan. Malicious con-

trol commands are then injected into the packets to attack

the substations.

Fig. 20: Data integrity attack

In our evaluation, we launch the above three attacks in

our simulated SCADA network. CAPTAR together with ED-

MAND are able to identify and differentiate all three attacks.

Moreover, the output of CAPTAR gives the operator a better

Fig. 21: Command injection

idea of the likelihood of each attack step even if there is no

direct alert representation of the step. For example, the attack

step of “compromised node” in the data integrity attack has no

detectable alert by EDMAND (for now). However, CAPTAR

can still infer the high chance of existence of a compromised

node if it sees the existence of the “data integrity attack”

consequence node and the absence of the “man in the middle”

node. Notice that the expressiveness of attack templates can be

improved by increasing the number of meta-alert types that can

be triggered by EDMAND. CAPTAR can also reason about

alerts not from EDMAND as long as they are preprocessed to

follow the same format.

We now briefly calculate the time complexity of the

anomaly reasoning algorithm. We start by estimating the

time complexity of the FINDCORRELATION procedure. Let

us assume M to be the number of meta-alerts in the database.

In the worst case, the FINDCORRELATION needs to correlate

the input meta-alert with all other meta-alerts. Since the time

complexity of correlating a pair of meta-alerts is constant, the

FINDCORRELATION procedure has a O(M) time complexity.

Let us assume the maximum number of nodes in any attack

template is N and L is the number of attack templates in

the database. In the MATCHALERT procedure, the first ‘for’

loop needs to go over every node in the template in the worst

case, which has a time complexity of O(MN). The belief

propagation is O(N), and Npot has N nodes in the worst

case. So the rest of the procedure has a time complexity

of O(N2). The total time complexity of MATCHALERT is

therefore O(MN +N2). In the anomaly reasoning algorithm,

the maximum attack template number is KL. It can be

easily derived that the time complexity of the algorithm is

O(KLN(M+N)). Usually, we have M ≫ N , so the anomaly

reasoning algorithm has an estimated time complexity of

O(KLMN) in the worst case. K and N are usually less

than 10. L should be several dozens. M is also limited to

dozens or hundreds due to the alert aggregation and removing

of stale meta-alerts from the database. Therefore, the total time

complexity of the algorithm is reasonable. And notice that the

frequency CAPTAR runs the anomaly reasoning algorithm is

decided by the frequency that EDMAND sends meta-alerts. As

mentioned in [1], EDMAND sends meta-alerts in a periodic

manner only if there are updates to those meta-alerts in the

latest period. So the sending rate of meta-alerts by EDMAND

is also limited. Therefore, CAPTAR is able to satisfy the real-

time anomaly reasoning need for those meta-alerts.

To give a better understanding of the time overhead of

CAPTAR, we measure the time to run the FINDCORRELATION

procedure, the belief propagation, and the anomaly reasoning

algorithm for the three attack scenarios on a Ubuntu 16.04

desktop with 12 Intel Xeon 3.60GHz CPUs and 16GB mem-

ory. For each attack scenario, we run CAPTAR on the entire

traffic set including the corresponding attack and calculate

the average and standard deviation in millisecond of the time

overheads for FINDCORRELATION, belief propagation, and

the anomaly reasoning algorithm. We also record the sample

number, which is the number of time FINDCORRELATION,

belief propagation, and the anomaly reasoning algorithm have

been performed. The results are shown in Table VI. We can see

that the time overheads are definitely small enough to satisfy

the real-time reasoning requirement of the meta-alerts. Note

that the average time to run the FINDCORRELATION procedure

and the anomaly reasoning algorithm varies a lot across

different attack scenarios. This is because the time overheads

of FINDCORRELATION and the anomaly reasoning algorithm

depend on the number of meta-alert M as we described

previously. And those three attack scenarios generate 104(TCP

SYN flood), 7(data integrity attack), and 26(command injec-

tion) meta-alerts respectively. This results in the different time

overheads of FINDCORRELATION and the anomaly reasoning

algorithm for them. Another fact is that all the time overheads

have relatively high standard deviation. This is mainly due

to the change to meta-alert number in the meta-alert database

during the attack. As the attack continues, the number of meta-

alerts in the database increases, and so do the time overheads

for FINDCORRELATION, belief propagation, and the anomaly

reasoning algorithm.

VI. CONCLUSION

In this report, we propose a causal-polytree-based anomaly

reasoning framework for SCADA networks, named CAPTAR.

CAPTAR takes the meta-alerts from EDMAND and performs

alert correlation and attack plan recognition. Experiments

using a prototype of CAPTAR and simulated traffic show that

CAPTAR is able to detect and differentiate various attack

scenarios in a real-time manner. The generated reasoning

results can provide the operators with a high-level view of

the security state of the protected SCADA network.

ACKNOWLEDGMENT

This material is based upon work supported by the Depart-

ment of Energy under Award Number DE-OE0000780.

DISCLAIMER

This report was prepared as an account of work sponsored

by an agency of the United States Government. Neither the

United States Government nor any agency thereof, nor any of

their employees, makes any warranty, express or implied, or

assumes any legal liability or responsibility for the accuracy,

completeness, or usefulness of any information, apparatus,

product, or process disclosed, or represents that its use would

not infringe privately owned rights. Reference herein to any

Attack
FINDCORRELATION Belief Propagation Anomaly Reasoning

avg std num avg std num avg std num

TCP SYN flood 7.60 4.58 64 0.21 0.12 64 41.39 28.90 122

Data integrity attack 0.48 0.37 4 0.10 0.04 4 19.76 48.72 12

Command injection 2.65 1.61 25 0.14 0.02 25 13.95 34.52 40

TABLE VI: Average(avg in ms), standard deviation(std in ms), and sample number(num) of time overhead for FINDCORRE-

LATION, belief propagation, and the anomaly reasoning algorithm

specific commercial product, process, or service by trade

name, trademark, manufacturer, or otherwise does not nec-

essarily constitute or imply its endorsement, recommendation,

or favoring by the United States Government or any agency

thereof. The views and opinions of authors expressed herein

do not necessarily state or reflect those of the United States

Government or any agency thereof.

REFERENCES

[1] W. Ren, T. Yardley, and K. Nahrstedt, “EDMAND: Edge-Based Multi-
Level Anomaly Detection for SCADA Networks,” in 2018 IEEE In-

ternational Conference on Communications, Control, and Computing

Technologies for Smart Grids (SmartGridComm). IEEE, 2018, pp. 1–
7.

[2] A. Valdes and K. Skinner, “Probabilistic alert correlation,” in Interna-

tional Workshop on Recent Advances in Intrusion Detection. Springer,
2001, pp. 54–68.

[3] F. Cuppens, “Managing alerts in a multi-intrusion detection environ-
ment,” in acsac. IEEE, 2001, p. 0022.

[4] S. Staniford, J. A. Hoagland, and J. M. McAlerney, “Practical automated
detection of stealthy portscans,” Journal of Computer Security, vol. 10,
no. 1-2, pp. 105–136, 2002.

[5] A. Siraj and R. B. Vaughn, “Multi-level alert clustering for intrusion
detection sensor data,” in NAFIPS 2005-2005 Annual Meeting of the

North American Fuzzy Information Processing Society. IEEE, 2005,
pp. 748–753.

[6] S. Zhang, J. Li, X. Chen, and L. Fan, “Building network attack graph
for alert causal correlation,” Computers & security, vol. 27, no. 5-6, pp.
188–196, 2008.

[7] L. Briesemeister, S. Cheung, U. Lindqvist, and A. Valdes, “Detection,
correlation, and visualization of attacks against critical infrastructure
systems,” in 2010 Eighth International Conference on Privacy, Security

and Trust. IEEE, 2010, pp. 15–22.
[8] Y. Zhai, P. Ning, P. Iyer, and D. S. Reeves, “Reasoning about com-

plementary intrusion evidence,” in 20th Annual Computer Security

Applications Conference. IEEE, 2004, pp. 39–48.
[9] Z. Zali, M. R. Hashemi, and H. Saidi, “Real-time attack scenario detec-

tion via intrusion detection alert correlation,” in 2012 9th International

ISC Conference on Information Security and Cryptology. IEEE, 2012,
pp. 95–102.

[10] A. Valdes and K. Skinner, “Adaptive, model-based monitoring for cyber
attack detection,” in International Workshop on Recent Advances in

Intrusion Detection. Springer, 2000, pp. 80–93.
[11] F. Xuewei, W. Dongxia, H. Minhuan, and S. Xiaoxia, “An approach

of discovering causal knowledge for alert correlating based on data
mining,” in 2014 IEEE 12th International Conference on Dependable,

Autonomic and Secure Computing. IEEE, 2014, pp. 57–62.
[12] F. Kavousi and B. Akbari, “A Bayesian network-based approach for

learning attack strategies from intrusion alerts,” Security and Communi-

cation Networks, vol. 7, no. 5, pp. 833–853, 2014.
[13] A. A. Ramaki, M. Amini, and R. E. Atani, “RTECA: Real time

episode correlation algorithm for multi-step attack scenarios detection,”
computers & security, vol. 49, pp. 206–219, 2015.

[14] X. Qin, “A probabilistic-based framework for infosec alert correlation,”
Ph.D. dissertation, Georgia Institute of Technology, 2005.

[15] J. Pearl, Probabilistic reasoning in intelligent systems: networks of

plausible inference. Elsevier, 2014.

