
University of Greenwich

Faculty of Architecture, Computing and Humanity

Department of Computing & Information Systems

Cyber-physical intrusion detection for
robotic vehicles

Tuan Phan Vuong

A thesis submitted in partial fulfilment for
the degree of Doctor of Philosophy

March 2017

DECLARATION

I certify that this work has not been accepted in substance for any degree, and is not

concurrently being submitted for any degree other than that of Doctor of Philosophy

being studied at the University of Greenwich. I also declare that this work is the result

of my own investigations except where otherwise identified by references and that I have

not plagiarised the work of others.

Student: Tuan Phan Vuong

Date:

Signature:

Supervisor: Dr George Loukas

Date:

Signature:

i

Dedication

To my wife Tue-Anh, my daughter Truc-Anh and her grandparents.

You mean the world to me.

ii

Acknowledgements

My greatest gratitude is dedicated towards my supervisors Dr George Loukas and Dr

Diane Gan. Without their dedication, passion and support through this tough process, I

would not have been able to complete this research. I am in great debt to their guidance

and teaching.

I would like to thank my other collaborators (in alphabetical order) Anatolij Bezemskij,

Avgoustinos Filippoupolitis, Ryan Heartfield, Georgia Sakellari and Yongpil Yoon who

have inspired me to explore diverse fields of machine learning and cloud computing. Their

expertise and inputs made our publications possible and significant. I would like to thank

the members of CSAFE research centre, especially Dr Dave Chadwick who provided

important guidance on different aspects of my struggle.

It has been a challenging time and a great deal of work throughout the years. Without

my family and friends’ support, I would not have had strengths to pursue this professional

aspiration. I want to say thank-you to Carl, Kabir, Cain, Thaddeus, Joseph, Bill, Carmen,

Thaya, Babak, Anatolij, Ali, Tausifali, and William who have been very supportive and

encouraging for all the good and not-so-good days. I appreciate all constructive feedback

and advice from my long-time friends Minh-Tri and Quoc-Long on my research journey.

I would like to thank to Dave and Helen for their continued support over the years.

I am eternally indebted to my family including both parents and my parents-in-law for

putting my welfare before theirs. My deepest thanks to Tue-Anh and Truc-Anh for making

life so much more loving and meaningful. Without you, I would not even have enough

courage to take the initial steps on this blessing journey.

This work was thankfully supported by a University of Greenwich (UoG) Vice chancellor’s

PhD grant and a student bursary from Dr George Loukas’s REF funding.

iii

Abstract

Intrusion detection systems (IDS) designed for conventional computer systems and net-

works are not necessarily suitable for mobile cyber-physical systems (CPS), such as robots,

drones and automobiles. They tend to be geared towards attacks of different nature and

do not take into account mobility, energy consumption and other physical aspects that are

vital to a mobile cyber-physical system. This work provides two different approaches for

addressing the problem of detecting attacks against vehicles, using a small-scale robotic

vehicle as a testbed. The first approach is based on decision trees and the second on deep

learning. Both use a combination of cyber and physical features that can be measured by

its onboard systems and processes. Experimental evaluation on a variety of scenarios in-

volving denial of service, command injection and two different types of malware infections

demonstrated the feasibility of the approaches.

Decision tree algorithm is one of the most lightweight machine learning techniques, yet

sufficiently powerful in many areas of applications, because it can naturally account for

non-linearities in the data. Decision trees produce sets of simple rules, which can be easily

checked onboard even the most resource-constrained of robotic vehicles. In the case of our

vehicle, this approach was able to achieve high accuracy rate for denial of service attacks,

but less so for the other attacks tested.

Due to their processing resource constraints, cyber-physical systems, such as robotic ve-

hicles, tend to be limited to lightweight mechanisms, such as decision trees and other

statistical machine learning techniques. We show that considerably higher accuracy rates

can be achieved if one utilises techniques from the field of deep learning. In particular, we

use a recurrent neural network architecture, benefiting from a long short-term memory

layer, which is highly appropriate for real-time data. To address the processing limita-

tions, we turn to computational offloading, which is a technique particularly common for

mobile devices, for largely the same reasons: to save energy and to have access to greater

processing resources. We show both experimentally and mathematically in which cases

offloading the periodic task of deep learning based intrusion detection to a remote server

can be practical, especially in relation to the time the whole process takes.

iv

Contents

Declaration i

Dedication ii

Acknowledgements iii

Abstract iv

1 Introduction 1

1.1 Motivation . 2

1.2 Research questions and objectives . 6

1.3 Key contributions . 6

1.4 Publications . 7

1.5 Thesis Summary . 9

2 Literature review 11

2.1 CPS and mobile CPS security . 12

2.1.1 Security challenges . 14

v

CONTENTS vi

2.1.2 CPS testbeds . 16

2.2 Attack Mechanisms . 18

2.2.1 Cyber security triad . 18

2.2.2 Security threats in vehicular technologies 20

2.3 Defence Mechanisms . 24

2.3.1 Preventative methods . 24

2.3.2 Reactive methods . 25

2.4 Intrusion detection for robots and vehicles 28

2.4.1 Machine learning & deep learning based detection 31

2.5 Conclusion . 34

3 Experimental process 35

3.1 Introduction . 35

3.2 Testbed design . 35

3.2.1 Testbed components . 36

3.2.2 Remote operation . 39

3.2.3 Robotic vehicle setup . 42

3.3 Data collection . 44

3.3.1 Cyber data: network, CPU and disk usage 44

3.3.2 Physical data: wheel speed . 45

3.3.3 Physical data: robotic vehicle vibration 46

3.3.4 Physical data: energy consumption 48

CONTENTS vii

3.3.5 Ground truth . 48

3.3.6 Data pre-processing . 49

3.4 Attack scenarios . 50

3.4.1 Denial of Service attack (DoS) . 51

3.4.2 Command injection attack . 57

3.4.3 Malware attack . 59

3.5 Features . 60

3.6 Contrasting attack impacts on the features 62

4 Detection with Decision Trees 67

4.1 Introduction . 67

4.1.1 Data preparation . 68

4.1.2 Training, testing and validation data for each attack 70

4.1.3 Detection method . 72

4.2 Evaluation . 75

4.2.1 Confusion matrix . 76

4.2.2 Receiver operating characteristic (ROC) curves 78

4.2.3 Detection latency . 78

4.2.4 The significance of physical features 81

4.3 Conclusion . 84

CONTENTS viii

5 Offloaded deep learning based intrusion detection 86

5.1 Introduction . 86

5.2 Cyber-physical intrusion detection using a recurrent neural network archi-

tecture . 88

5.3 Experimental evaluation of deep learning based detection accuracy 93

5.3.1 Deep learning vs. popular machine learning techniques 95

5.4 The networking configuration of offloading 97

5.5 Evaluating the practicality of offloading detection 99

5.5.1 Network model validation against experiments 104

5.5.2 Network model results . 107

5.6 Conclusion . 117

6 Conclusion 118

6.1 Summary of thesis achievements . 118

6.2 Critical discussion . 119

6.3 Applications . 120

6.4 Future work . 121

6.4.1 Extending the scope of this work through more attack scenarios,

features and a behaviour-based detection approach 122

6.4.2 Response mechanism to accompany intrusion detection 122

6.4.3 A cloud-based “security guard” for robotic vehicles 123

6.4.4 Distributed cyber-physical intrusion detection 123

6.4.5 Evaluating the security and energy cost of offloaded intrusion de-

tection . 124

6.5 Final remarks . 125

References 126

ix

List of Tables

2.1 Vehicular security threats and proposed countermeasures. 23

2.2 Intrusion detection for robotic and mobile cyber-physical systems 30

3.1 Cyber (C) and physical (P) data sources 44

3.2 The structure of transmit packet from the micro-controller, which includes

the speed in the form of encoder values . 46

3.3 Data sources and configured collection rate 50

3.4 Attack intention . 51

3.5 Average network traffic measured at robotic vehicle interface (Mbps) . . . 52

3.6 Variable speed timing . 55

3.7 Cyber (C) and physical (P) features and their source function 62

4.1 Experimental scenarios . 69

4.2 Combined scenario (S6) with different attack types and time periods 69

4.3 Cyber (C) and physical (P) features and their collection period 70

4.4 Detection results using only cyber input features 77

4.5 Detection results using both cyber and physical input features 77

x

4.6 Area under the curve (AUC) comparison using cyber only and both cyber

and physical input features . 78

4.7 Detection latency (ms) for different attack types (cyber only vs. cyber +

physical) . 81

4.8 Combined scenario (S6) result . 83

5.1 Deep learning parameters . 94

5.2 Comparing the performance of the deep learning and other popular machine

learning algorithms for cyber-physical IDS classification 97

5.3 Network scenarios used in experiments and by mathematical model 104

xi

List of Figures

2.1 Taxonomy in cyber-physical systems (CPS) security 12

2.2 Brief summary of the security-related challenges encountered in cyber-

physical systems . 16

3.1 The vehicle used in the experiments . 36

3.2 Detailed diagram of the testbed. The input features used for the detection

are shown in black background . 37

3.3 Top side view of the robotic vehicle . 40

3.4 Top view of the robotic vehicle . 40

3.5 Remote control of the robotic vehicle. 41

3.6 The GUI of the control interface on the operator’s computer 42

3.7 The GUI of the Jitbit automation tool . 43

3.8 collectl sample data . 45

3.9 The GUI of Accelerometer Monitor tool used for collecting vehicle vibration 46

3.10 Acceleration values (x, y, z) and its collection interval 47

3.11 Energy data captured through wattsup including source, time, watts, volt-

age, amps . 48

xii

LIST OF FIGURES xiii

3.12 LOIC tool used for DoS attacks . 52

3.13 Robotic vehicle network interface traffic under normal operation 53

3.14 Robotic vehicle network interface traffic under DoS attack 53

3.15 Scenario 1: Angular speed vs. time under normal operation 54

3.16 Scenario 1: Angular speed vs. time under DoS attack 55

3.17 Scenario 2: Speed change response under normal operation 56

3.18 Scenario 2: Speed change response under DoS attack 56

3.19 Command injection attack: cyber attacker sends rogue commands to the

robotic vehicle during operation . 57

3.20 Angular speed change with and without command injection attack over

time (s) . 58

3.21 Denial of Service attack scenario. 63

3.22 Command injection attack scenario. 63

3.23 Malware attack scenario. 64

3.24 Wireshark packet analysis of DoS attack 65

3.25 Physical and cyber flag combination . 66

4.1 Intrusion detection framework . 68

4.2 The data for cyber and physical features collected during the denial of

service attack (S1). The overlaid frames denote the periods of time that

the denial of service attack is on. 71

4.3 The data for cyber and physical features collected during the command

injection attack (S2). The overlaid frames denote the periods of time that

the command injection attack is on. 72

LIST OF FIGURES xiv

4.4 The data for cyber and physical features collected during the malware at-

tack against network scenario (S3). The overlaid frames denote the periods

of time that the network malware is active. 73

4.5 The data for cyber and physical features collected during the malware

attack against CPU scenario (S4). The overlaid frames denote the periods

of time that the CPU malware is active. 74

4.6 The data for physical and cyber features collected during S6 scenario with

5 periods (denoted as p1 - p5, and presented one after the other). The

overlaid frames denote the periods of time that a cyber attack (denial of

service or command injection) is on. Note that there is no attack in p5. . . 75

4.7 An example of the decision tree rules generated 76

4.8 Accuracy chart for the four models on test and validation data using cyber

only and cyber+physical features. 77

4.9 The ROC curves of the detection rules for the cyber attacks in the case

where all eight cyber and physical input features are utilised. 79

4.10 The ROC curves of the detection rules for the cyber attacks in the case

where only the four cyber input features are utilised. 80

4.11 Detection result for representative attack scenarios 82

4.12 The ROC curves of the detection rules for the three sets of features: Both

cyber and physical; cyber only; and physical only. The (0.0) to (1.1) line

is the random guess line. 84

5.1 Detection approach . 89

5.2 Learning process using recurrent neural network 91

5.3 Deep learning architecture . 92

LIST OF FIGURES xv

5.4 Detection accuracy with deep learning models for different cyber attacks . 95

5.5 Experimental testbed including vehicle and offloading infrastructure 99

5.6 Example of variable offloading detection latency within the constraints of

detection period Td. The top and middle figure correspond to the prac-

tical cases, where ti > 0 or ti = 0 respectively, while the bottom figure

corredsponds to the impractical case, where ti < 0. 100

5.7 Network offloading time sequence for offloaded IDS detection with sample

collection period Tc and detection period Td. The practicality of offload-

ing depends largely on the time ts needed to complete detection on the

server, which in turn depends on the server’s processing resources and the

algorithm’s complexity. 101

5.8 Detection latency as measured experimentally and estimated mathemati-

cally for the case of network configuration 1. The black curve corresponds

to the detection latency when the processing occurs on the vehicle itself

without offloading via a network. 105

5.9 Detection latency as measured experimentally and estimated mathemati-

cally for the case of network configuration 2. The black curve corresponds

to the detection latency when the processing occurs on the vehicle itself

without offloading via a network. 105

5.10 Detection latency as measured experimentally and estimated mathemati-

cally for the case of network configuration 3. The black curve corresponds

to the detection latency when the processing occurs on the vehicle itself

without offloading via a network. 106

5.11 Detection latency as measured experimentally and estimated mathemati-

cally for the case of network configuration 4. The black curve corresponds

to the detection latency when the processing occurs on the vehicle itself

without offloading via a network. 106

5.12 Max ts against different values of a for the four network configurations . . 107

5.13 Max ts against different values of MTBF (θ) and a for MTTR ξ = 2s . . . 108

5.14 Max ts against different values of MTBF (θ) and a for MTTR ξ = 4s . . . 109

5.15 Max ts against different values of MTBF (θ) and a for MTTR ξ = 6s . . . 109

5.16 t̄l against different values of ts and a. 110

5.17 Max ts against different values of MTBF (θ) and a for MTTR ξ = 2s . . . 111

5.18 Max ts against different values of MTBF (θ) and a for MTTR ξ = 4s . . . 111

5.19 Max ts against different values of MTBF (θ) and a for MTTR ξ = 6s . . . 112

5.20 t̄l against different values of ts and a. 112

5.21 Max ts against different values of MTBF (θ) and a for MTTR ξ = 2s . . . 113

5.22 Max ts against different values of MTBF (θ) and a for MTTR ξ = 4s . . . 113

5.23 Max ts against different values of MTBF (θ) and a for MTTR ξ = 6s . . . 114

5.24 t̄l against different values of ts and a. 114

5.25 Max ts against different values of MTBF (θ) and a for MTTR ξ = 2s . . . 115

5.26 Max ts against different values of MTBF (θ) and a for MTTR ξ = 4s . . . 116

5.27 Max ts against different values of MTBF (θ) and a for MTTR ξ = 6s . . . 116

5.28 t̄l against different values of ts and a. 117

xvi

Chapter 1

Introduction

Robotic vehicles, unmanned aerial vehicles (UAVs) and automobiles feature a tight cou-

pling between their cyber and physical properties. The term cyber is used to refer to their

computation and communication processes, and physical to refer to their mobility, power

consumption and any other physical manifestation of their operation. Focus here is on

examples of cyber-physical attacks, where a security breach in cyberspace has an adverse

effect in physical space [Loukas, 2015], specifically on the vehicle’s physical functions and

potentially in the environment where it operates. Examples may include causing a vehicle

to stop, a UAV to land prematurely [Jennings, 2014], or its controls to be hijacked, as in

the case of Maldrone [Sasi, 2015], an experimental backdoor server for quad-copter drones,

which kills the autopilot, takes control and can spread to other drones. Earlier examples

include the work of Checkoway et al. [Checkoway et al., 2011] on a malware-infected audio

file that was able to provide the researchers with remote control of an automobile’s engine

control and braking system, and the work of Kerns et al. [Kerns et al., 2014] in altering a

vehicle’s trajectory via global positioning system (GPS) spoofing. Beyond these organised

research efforts, there are also hacking competitions with time-restricted challenges for

hijacking vehicles, such as the Tesla S sports car hijacking contest reported in [Griffiths,

2014].

While vehicles may differ enormously in terms of their type, size, operation and how

1

1.1. Motivation 2

safety-critical they are, most tend to share the following characteristics which make them

challenging to secure: (a) Any cyber security functions on them are resource-constrained,

either because of lack of processing power or because minimising energy consumption

has priority; (b) most cyber-physical operations that an attacker would target are time-

critical, especially if they affect mobility; and (c) unlike cyber threats to conventional

computer systems, which have been meticulously observed and statistically analysed for

decades, threats here are largely unknown, and consequently there are no meaningful

datasets to be used for benchmarks.

1.1 Motivation

According to the Institute of Electrical and Electronics Engineers (IEEE) Computer So-

ciety, Cyber-Physical Systems (CPS) is amongst the Top 9 technology trends in 2016 [So-

ciety, 2016]. CPS are smart systems that have three main components: computation,

communication, and control [Lee, 2008]. Within CPS, the cyber technologies in both

hardware and software integrating with physical components in sensing and actuation

lead to actual impact in physical space. CPSs range from smart vehicles, smart robots to

smart grids and air traffic control. In all of these examples, the operation requires a high

level of reliability, safety, and availability. As these systems are more and more applicable

in daily life, their security aspects are becoming increasingly important.

Security is defined as a degree of resistance to, or protection, from harm [Gasser, 1988].

Cyber security attacks are often grouped into three categories which represent the CIA

triad of Confidentiality, Integrity, and Availability.

Traditionally, confidentiality has involved protecting customer and corporate information

from disclosure. Within CPS systems it is about safeguarding the communications chan-

nels from eavesdropping. These communication channels are found between actuators,

sensors and controllers and are the links between the physical and cyber components of

these systems [Lu et al., 2015,Wang et al., 2010,Gamage et al., 2011].

1.1. Motivation 3

Integrity within cyber-physical systems concerns protecting these systems from cyber

attacks that would cause a physical impact that may prevent the system from achieving

its intended goals. This could be accomplished for example by preventing the injection

of commands or by blocking DoS attacks [Lu et al., 2015]. Wang et al. defined integrity

for CPS as preventing data or resources from being modified by malicious actors [Wang

et al., 2010].

Cyber-physical systems also require a high level of availability in order to perform their

designated function. Availability also can be affected by hardware failures and power

outages, as well as malicious attacks such as DoS attacks [Lu et al., 2015].

As well as the CIA triad, Wang et al. (2010) also proposed authenticity as being essential

for CPS security. Any process or communication within CPS should include the authen-

tication of the communicating parties so that they can be validated. As well as this,

reliability, robustness and trustworthiness were also included for the case of CPSs [Lu

et al., 2015]. Robustness is important as this enables the CPS to withstand unforeseen

disruptions which may or may not be malicious in nature [Wang et al., 2010].

Because CPS systems have specific characteristics identified by mobility, sensors, actuators

and control, this brings challenges as well as opportunities for attack defence mechanisms.

As both cyber and physical harm can be caused by cyber attacks to the system, it is

beneficial to study the changing behaviour of both cyber and physical indicators that can

be measured on the system. Understanding the pattern of change may potentially help

to detect these malicious activities.

As they are CPSs, robotic vehicles, combine the capabilities of manual control as well

as different automation based on input from the surrounding environment. The most

common forms of automation application in vehicles include self-driving cars using GPS

for navigation, unmanned ground and aerial vehicles used in exploration and military.

With the advance of technology, robotic vehicles have been developed to aid humans

ranging from daily activities to emergencies, from personal appliances to military mis-

sions, from underwater, ground to air-space. As these vehicles are mobile units with

1.1. Motivation 4

capabilities of computation, communication and interaction with the physical world and

humans, they share similar components, including hardware, software, network connectiv-

ity, power sources and sensors. These components are vulnerable to cyber attacks because

they involve or rely on the transmission of data over some form of network. Therefore,

developing protection systems to safeguard them from cyber attacks is important for their

safe operation.

Attacks can cause damage by unauthorised access, injecting false data, making the vehicles

malfunction or stop working. These attacks do not only fail the assigned tasks and harm

the state of the mobile vehicles but also the users and the surrounding environment.

Cyber security will provide technologies, processes and practises to protect vehicles from

computing, network and data from cyber attacks.

The severity of cyber attacks is increasing and this means that this a prime topic in terms

of research. The trend now is the increasing standardised network connectivity embedded

in all appliances from households to national infrastructure and the increasing usage of au-

tomated vehicles in carrying out human tasks from the simplest to the most dangerous. In

previous years, cyber crimes were often linked with breaches in banking systems, websites

to deny services or steal sensitive information for financial gain. Nowadays, there occurs a

shift to new physical targets for terrorism or political reasons, which is sometimes referred

to as cyber warfare. An outstanding example is the Stuxnet worm, which was developed

by a still unconfirmed team or group of teams of highly capable developers. Stuxnet

selected targets, was able to mutate through different networks worldwide and exploited

four zero-day vulnerabilities in Microsoft Windows and industrial control networks. This

worm has been used to control physical machinery in various industries, which may have

infected up to 100,000 computers in Iran, India, Indonesia and Pakistan [Chen, 2010].

One of them was the Natanz nuclear facility in Iran and its centrifuges. It is believed

that this was indeed the main or only target of the attack [Langner, 2013]. This resulted

in over 1000 centrifuges having to be replaced because of physical damage caused by the

malware continuously changing their rotating speed. Another example which revealed

holes in cyber security within the military is the incident of a virus found in a ground

1.1. Motivation 5

control station of the US drone fleet, which was being used to fly missions in Afghanistan.

It is not known how it got there or whether classified information was leaked but the

virus could not be removed with common Kaspersky security guidance and kept coming

back [Shachtman, 2011].

The nature of robotic vehicles comes in many different forms of usage with specific tasks

and depends on the environment. With many variables that can affect the functioning of

the vehicles, it is difficult to prevent from all possibilities and once there is an attack, it

is difficult to detect which one is the cause.

These types of vehicles come with limited computing resources. The solution hence must

be compact and efficient. Moreover, these vehicles have a direct impact on the physical

world. Their defence system has to respond time-critically to any malfunction to min-

imise damage. What time-critical means depends on the type of vehicle and its physical

functions. In this work, the focus is generally on minimising the overall detection latency,

which is the time when a cyber security incident occurs to the time that it is detected.

In this sense, detection accuracy may also influence detection latency, as false negatives

(missing an attack) by definition increase the time it takes to detect the attack.

In carrying cyber physical security research, there are generally three potential approaches

for evaluation of proposed solutions: Analytical (Mathematical modelling and analysis),

Simulation (using dedicated software) and Experimental (using actual testbed implemen-

tations) [Loukas et al., 2013b]. To maximise the realism of evaluation and the applicability

of the proposed solution in real environment, we have opted for the experimental testbed

approach, using genuine cyber and physical components on a real robotic vehicle. We

also used simulation scripts of malware attacks against the testbed and mathematical

modelling for predicting the effect of different network configurations on the process of

on-board and offloaded detection.

1.2. Research questions and objectives 6

1.2 Research questions and objectives

We have identified the following research questions:

• Can monitoring physical characteristics improve detection of cyber attacks?

• Can light-weight machine learning be used for detection of cyber threats in robotic

vehicles?

• Can deep learning be used for detection of cyber attacks in cyber-physical systems?

The objectives of this thesis are to:

• Conduct a literature review of existing security issues and challenges related to

cyber-physical systems with an emphasis on vehicles.

• Develop software tools for capturing security-related data from a vehicle’s sensing,

actuation and control.

• Investigate the feasibility of different types of cyber attacks affecting the operation

of a vehicle.

• Develop an intrusion detection system that is able to provide real-time detection

against different cyber attacks using Machine Learning/Deep Learning techniques,

using both local and offloading techniques.

• Design a mathematical model to evaluate the practicality of offloading detection.

The scope of this work focuses on a cyber-physical security detection system for a robotic

vehicle.

1.3 Key contributions

The key contributions of this thesis are:

1.4. Publications 7

• A lightweight attack detection mechanism for robotic vehicles, which is based on

decision trees. This includes the methodology for producing decision trees for four

different types of attacks, and utilising the rules produced to detect these attacks

based on both cyber and physical features.

• A highly accurate attack detection mechanism for robotic vehicles, which is based on

a deep learning model taking detection decisions based on both cyber and physical

features.

• A methodology for offloading a continuous intrusion detection process that requires

heavy processing to a remote server in near real-time. This includes the security

provisioning of the approach to ensure that an attacker will not easily disrupt the

detection process’ confidentiality or integrity, and a mathematical model that evalu-

ates the practicality of offloading in terms of detection latency incurred for different

network configurations.

1.4 Publications

These contributions have led to a number of peer-reviewed publications. The mapping of

each publication to each chapter in this thesis is included.

• G. Loukas, D. Gan and T. Vuong. Taxonomy of cyber-attack and defence mecha-

nisms for emergency management networks. Proceedings of International Confer-

ence on Pervasive Computing and Communications (IEEE PERCOM), IEEE, San

Diego, CA, USA, 18-22 March 2013

(Utilised in Chapter 2 in relation to the review of the related literature on securing

vehicles)

• G. Loukas, D. Gan and T. Vuong. A Review of Cyber Threats and Defence Ap-

proaches in Emergency Management. Future Internet, MDPI, 5(2), pp. 205-236,

2013.

1.4. Publications 8

(Utilised in Chapters 1 and 2 in relation to the literature review and challenges in

securing manned and unmanned vehicles)

• T. Vuong, A. Filippoupolitis, G. Loukas, D. Gan. Physical Indicators of Cyber At-

tacks against a Rescue Robot. Proceedings of International Conference on Pervasive

Computing and Communications (IEEE PERCOM), IEEE, Budapest, Hungary, 24-

28 March 2014.

(Utilised in Chapter 3 in relation to the design of the testbed, experimental method-

ology and observations of physical impact caused by cyber attacks on the testbed)

• Tuan Vuong, George Loukas and Diane Gan. Performance evaluation of cyber-

physical intrusion detection on a robotic vehicle. 13th International Conference on

Pervasive Intelligence and Computing (IEEE PICOM 2015), IEEE, Liverpool, UK,

October 26-28, 2015.

(Utilised in Chapters 3 and 4 in relation to the experimental methodology and the

design, setup and experimental performance evaluation of the decision tree based

algorithm for cyber-physical intrusion detection against different attack types)

• Tuan Vuong, George Loukas, Diane Gan, and Anatolij Bezemskij. Decision Tree-

based Detection of Denial of Service and Command Injection attacks on Robotic

Vehicles. 7th International Workshop on Information Forensics and Security (IEEE

WIFS 2015), IEEE, Rome, Italy, November 16-19, 2015.

(Utilised in 4 in relation to the experimental evaluation of the decision tree based

algorithm for cyber-physical intrusion detection against different attack types)

• George Loukas, Yongpil Yoon, Georgia Sakellari, Tuan Vuong, Ryan Heartfield.

Computation offloading of a vehicle’s continuous intrusion detection workload for

energy efficiency and performance. Simulation Modelling Practice and Theory, El-

sevier, 2016.

(Utilised in Chapter 5 in relation to the motivation for offloading the continuous

task of deep learning based intrusion detection to a remote server)

1.5. Thesis Summary 9

1.5 Thesis Summary

The thesis is structured as follows. Following the current introduction (Chapter 1), Chap-

ter 2 contains the literature review related to this thesis, including the general challenges

in security cyber-physical systems, as well as more specifically the different types of cy-

ber attacks on vehicles and corresponding defence mechanisms that have already been

proposed. The focus is on intrusion detection, and especially machine learning-based

approaches.

The technical development of the project began with the preparation of a testbed and a

standard set of scenarios for the first set of experiments. This involves a small tracked

robotic vehicle with embedded software modules that is remotely connected to a controller

PC.

Chapter 3 introduces the design of the testbed, experimental methodology, setup and

observations of the physical impact caused by cyber attacks. This includes a description

of the decision tree algorithm for cyber-physical intrusion detection for different attack

types. A set of monitoring modules has been added to the vehicles code, in C++, R,

Python and shell scripting, to output different status values for its power usage, network

traffic, disk and CPU usage and sensed movement characteristics. An automation of

scenario experiments was coded using automated operator’s keyboard and mouse action

based on Jitbit automation tool. A series of attacks have been carried out on the testbed,

with an emphasis on denial of service attacks, command injection and simulated malware

against the network and the CPU which affected the physical behaviour of the robotic

vehicle. These used both publicly available denial of service tools and ones that have been

developed during this work. We use the monitoring tools that have been developed (above)

to gather the cyber-physical impact data for the range of attack scenarios described and

analyse the usefulness of physical features in detecting cyber attacks.

In Chapter 4, we present the design and development of an intrusion detection method

appropriate for the characteristics of a robotic vehicle that has resource constrains in

1.5. Thesis Summary 10

terms of power consumption and processing capacity. A Machine learning Decision tree-

based approach for generating simple detection rules. The program for this framework

was written in R utilising C50 library. The experimental results of the experiments show

the feasibility of using a light-weight detection system onboard the vehicle.

Chapter 5 presents a more accurate detection solution that can utilise the temporal char-

acteristic of cyber-physical data collected during the attack scenarios by employing a deep

learning based approach. The Deep Learning training and detection programs were im-

plemented with Python neural network library Keras to run on top of the Theano Deep

learning library. This solution has a better detection accuracy but is more processor de-

manding. To minimise the detection latency occurred due to the heavier processing, we

employ computational offloading, where the vehicle offloads its intrusion detection task

to an external cloud infrastructure. This chapter also provides a mathematical model for

evaluating in which cases offloading is beneficial in terms of detection latency.

Chapter 6 provides the conclusion of the thesis, including a summary of this project’s

achievements and its wider applications, as well as a list of possible future research direc-

tions extending it, and some final remarks.

Chapter 2

Literature review

While physical damage has been traditionally caused by physical means and cyber damage

by cyber means, our increasing dependence on highly automated and networked systems,

from industrial control to robotic vehicles, has generated formidable cyber-physical vul-

nerabilities. These systems differ from traditional cyber targets because the CPS attack

surface impacts on the physical components, the communications and/or the computing

elements of the device and will have a physical effect. The operation of cyber-physical

systems such as robotic vehicles often depends heavily on computer networks. A cyber

attack against or through an associated network affects the movement of a vehicle in a

manner that currently cannot be predicted or prevented. We start by articulating the

cyber security of CPS and provide a taxonomy of ongoing research in term of testbeds,

attacks and defence mechanisms (Figure 2.1). This chapter will also highlight the security

challenges and threats in vehicular technologies, discuss the intrusion detection techniques

for the robots and vehicles, especially with machine learning and deep learning algorithms.

11

2.1. CPS and mobile CPS security 12

Figure 2.1: Taxonomy in cyber-physical systems (CPS) security

2.1 CPS and mobile CPS security

CPS systems are becoming highly integrated in the modern world. Its application ranges

from first responder situational awareness systems, pervasive health-care systems, smart

grids and unmanned aircraft systems, as well as small robotic vehicles for use in emergency

systems [Loukas et al., 2013a, Mitchell and Chen, 2014]. Having specific characteristics

of size, sensor, actuators, control and network ability, these robots are able to benefit an

emergency response procedure by searching for survivors, providing access to inaccessible

areas and establishing an on-site communication network. This is different from the

traditional CPS in which nodes are usually stationary. Mobile CPS indicates a CPS

with a mobile capability integrated with a mobile device or hardware. Here, we consider

networked (either manned or unmanned) ground, air or underwater vehicles with an

interconnection of sensors, actuators and controllers to constitute Mobile CPS. A cyber

attack against or through an associated network gives rise to a range of new security

challenges. Such incidents have already been reported to have occurred both in the wild

[Loukas, 2015], [Templeton, 2011], and in controlled experimental environments [Koscher

et al., 2010], [Kerns et al., 2014], and competitions [Griffiths, 2014].

This paper [Vuong et al., 2014] investigates how a cyber attack on a robotic vehicle

can adversely affect its operation and impair an emergency response operation. The

focus is on identifying physical indicators of an ongoing cyber attack, which can help to

design effective detection and defence mechanisms. A number of experiments have been

2.1. CPS and mobile CPS security 13

conducted on an Arduino based robot, under different cyber attack scenarios. The results

show that the cyber attack effects have physical features that can be used in order to

improve the robot’s robustness against this type of threat.

A comprehensive review of cyber threats related to vehicular technologies, with an em-

phasis in emergency management, is given in [Loukas et al., 2013a], while a taxonomy

providing a global view of the respective attack types and defence mechanisms is presented

in [Loukas et al., 2013b]. In addition, the use of robotic robots for the establishment of

a communication network between trapped civilians and an operation centre is presented

in [Wasicek et al., 2014], [Timotheou and Loukas, 2009] and [Xue et al., 2014].

Research by [Koscher et al., 2010] has demonstrated that cyber-physical attacks can target

production automobiles, since these vehicles incorporate various sensing and computing

modules that can interact with each other in multiple ways. Initial attacks infected the

vehicles electronic systems through the use of an audio file in the MP3 player device

or through a smart-phone connected via Blue-tooth. One of the possible results of this

attack is a change in the driving direction while the vehicle is in motion.

Apart from automobiles, another popular type of attack is related to unmanned aerial

vehicles such as military UAVs. Iraqi militants used off-the-shelf software in order to

intercept UAV video feeds. The original use of the software was satellite TV interception,

however it could successfully apply to unencrypted military feeds as well [Gorman et al.,

2009]. This incident resulted in military air-craft being retrofitted with video encryption

modules. US military UAVs have also been the target of cyber-physical attacks. In 2011

numerous UAVs were infected by viruses, which resulted in the installation of key-logging

software. The most probable motive for this attack was the creation of a mapping be-

tween the signals emitted by the pilots keystrokes and the corresponding vehicle parts

that were operated. Moreover, Iranian television broadcasted images of a US UAV and

claimed that it was hijacked and landed intact using electronic warfare. Since military

vehicles have been targeted and compromised by cyber attacks, it is evident that civilian

UAVs used by the police or by emergency services can also be hijacked and potentially

2.1. CPS and mobile CPS security 14

flown into a crowd with catastrophic results. Researchers from the University of Texas

have also demonstrated this using a helicopter drone [Sabaliauskaite and Mathur, 2014].

Furthermore, researchers at Purdue University have investigated the autopilot mechanism

of UAVs and have modelled numerous cyber-attacks that could exploit it [Skormin et al.,

2014]. The authors of [Felix et al., 2014] have conducted a security assessment by per-

forming cyber-attacks on a robot running the Robot Operating System and found that

it is vulnerable to insider threats and to being physically compromised. Finally, an en-

hanced telesurgery protocol is presented in [Roesch et al., 1999] which aims at addressing

the stringent requirements related to telesurgical robotics.

The aforementioned approaches focus on cyber attacks against pedestrian and aerial vehi-

cles, including potential detection and defence mechanisms. They do not address directly,

robotic vehicles. The aim of this work is to investigate cyber attacks targeted at robotic

vehicles, in order to provide an effective detection mechanism based on physical and cyber

indicators.

2.1.1 Security challenges

Cardenas et al. [Cárdenas et al., 2008] have discussed the fundamental challenges for

control systems security. In their view, problems in control systems can be defined as

computer-based systems that monitor and control the physical processes. The authors

have listed multiple vulnerabilities and threats due to the problem of implementation

flaws (”bugs”) as in computing systems, networked issues in an ever-growing Internet and

devices, complex system inherits of other exposed software and hardware components,

open design where details are accessible to everyone, ever increasing scope and function-

ality of sensors and actuators, and organised cyber-crime from highly skilled groups. The

challenge arises when the new security problem relates to an estimation and control al-

gorithm, which affects the physical world. The authors also suggested understanding the

consequence of an attack, designing a new detection algorithm and better attack-response

algorithms and architectures.

2.1. CPS and mobile CPS security 15

In [Wells et al., 2014], other aspects of cyber-physical security challenges in manufactur-

ing systems have been discussed, sharing similar security issues with the manufacturing

industry where there are more and more networked devices. The attack vectors increase

with the Internet of Things (IoT) that depends on Software as a Service and Cloud Com-

puting. With a weak point in the chain of the system, the attacks can overcome the

cryptography and perform intellectual property theft. There are distinctly different re-

quirements for manufacturing where security research has not been developed. Quality

Control in manufacturing ensures the process stability but has not yet considered cyber

attacks as the root cause and manufacturing workforce need to be aware of cyber attack

threats to their tools and systems.

Knightscope, a Silicon Valley start-up, developed a robot that was ready to take over a

human security guard’s job by patrolling an area and reporting to a remote security centre

any suspicious trespassing and anomalous activities. The robot is a moving computer

of nearly human-height (150 cm) and a weight of 135 kg of equipment and batteries.

Its intelligence lies in the corporation of a map with multiple sensors and navigation

tools. It takes in the surrounding variables such as high-definition images and weather,

GPS location, laser ranging to understand different contexts and respond by sending

information out or raising alarms for attention [Metz, 2014]. This event first demonstrates

the use of robots in public service is getting closer to reality, which then denotes an urgency

and challenge to find advanced protection against cyber and physical attacks in order to

ensure the safety of the robots themselves, the humans in interaction and the assets

involved. For this reason, in this thesis, a robotic vehicle is used as an example of an

array of different CPS applications integrated in the physical world. The sensors in CPS

systems provide availability of a case of big monitoring data along with fruitful challenges

and opportunities differently from traditional IT systems [Sharma et al., 2014].

In [Pasqualetti et al., 2013], CPS is tackled from survivability matters using model-based

analysis. The model of CPS as linear time-invariant descriptor systems helps to capture

various real-worlds CPS (municipal water supply network and electrical power grid) and

generate prototypical attacks.

2.1. CPS and mobile CPS security 16

An extended discussion of energy efficiency was studied for BAN (Body Area Network).

[Venkatasubramanian et al., 2009] provides a solution on the energy footprint of a cyber-

physical security solution that uses a physiological signal based Key Agreement (PKA).

The energy requirement for PKA is computed for energy scavenging techniques such as

body heat and ambulation.

When studying automotive embedded systems, [Anthony et al., 2008] and [Anthony

et al., 2009] provide analysis on advanced dynamically middle-ware, self management for

context-ware. A dynamic self-managing implementation of middle-ware and component

architecture is provided to facilitate a flexible run-time configuration via the embedding

of dynamically replaceable decision logic into software component. The application is

illustrated in adjusting the heating-cooling in-car temperature to prove the credibility of

this concept.

Figure 2.2: Brief summary of the security-related challenges encountered in cyber-physical
systems

Figure 2.2 summarises the general challenges encountered in cyber-physical systems, as

described above. In Section 2.2.2, we focus further on vehicular technologies and their

more specific challenges within the CPS landscape.

2.1.2 CPS testbeds

CPS involves a large number of interdependent processes and technologies, which is diffi-

cult to replicate in a research environment. For this reason, researchers tend to use only

small experimental implementations, often complemented by mathematical models and

2.1. CPS and mobile CPS security 17

software simulations. In the following, we discuss the three different testbed categories:

Mathematical, Simulation and Experimental briefly, and identify the methods that this

research employed.

Mathematical modelling

Mathematical modelling has traditionally been used in CPS for optimisation, decision

support and risk analysis. The introduction of cyber threats has added additional com-

plexities that need to be captured mathematically. Such an example is the impact depen-

dency graph model presented in [Jakobson, 2011]. This paper [Mitchell and Chen, 2011b]

also addresses the survivability matters of mobile CPS. Based on a mathematical model,

mobile CPS energy exhaustion and security failure is assessed to propose a solution to

balance energy conservation Vs. intrusion tolerance. Testing with dynamic voting-based

intrusion is executed for identifying the optimal design setting.

Simulation Existing software simulators for CPS are often for UAV [Birnbaum et al.,

2014]. The author designed a monitoring system for detecting security issues using flight

data and real-time airframe and controller parameters from UAV simulating system.

There is also RTAW-Sim, which has been designed specifically for simulating the traf-

fic on controller area network (CAN) bus for an automobile [Navet, 2011]. Also, authors

in [Kang, 2016] have proposed a real-time IDS based on the input features from simulated

CAN bus data.

Experimental While mathematical modelling and simulation can often represent CPS

sufficiently, an actual scaled testbed with real components naturally offers more realism.

One such system is the U.S. Department of Homeland Security (DHS) Glanser, which is

a collection of human-portable sensors and vehicle-mounted base stations. Mitchell and

Chen have used the DHS Glanser system to experiment on detection mechanisms that

would be applicable to cyber-physical systems [Mitchell and Chen, 2011a]. [Schumann

et al., 2015] discussed on monitoring and diagnosis of security threats for UAV. Real-

time, responsive, unobtrusive unit (R2U2) is a framework for run-time monitoring security

threat properties. The monitored inputs are from GPS, ground control station, sensor

2.2. Attack Mechanisms 18

readings, actuator outputs, and flight software status. The design and implementation of

R2U2 with statistical reasoning enables security threats on the NASA DragonEye UAS.

In general, in this thesis, the focus is on experimental evaluation based on a real testbed.

We also use mathematical modelling for predicting the effect of different network config-

urations on the process of detection, which has been validated experimentally.

2.2 Attack Mechanisms

Cardenas et al. [Cardenas et al., 2008] provides an excellent investigation of security

of Cyber-Physical Systems (CPS), which consists of computing and communication ca-

pabilities with monitoring and control with network agents including sensors, actuators,

control processing units and communication devices. This fits in with the domain of semi-

autonomous vehicles. Then, the authors use the approach of traditional security goals

CIA (Confidentiality, Integrity and Availability) in information security to represent two

threats, including deception attacks and Denial of Service (DoS) attacks. It also discusses

related work in automatic control such as robust networked control systems, fault toler-

ant control, distributed estimation. After analysis of information security and automatic

control, two definitions are pointed out regarding survivability and secure control with

different claims regarding CPS. Finally, the authors suggest a set of challenges that can

enhance the survivability of cyber-physical systems.

2.2.1 Cyber security triad

Cyber security attacks are often categorised as a triad of three principles: Confidentiality,

Integrity, and Availability.

Confidentiality Confidentiality within CPS systems is about protecting the communi-

cations channels from eavesdropping. These communication channels are found between

actuators, sensors and controllers and are the links between the physical and cyber com-

2.2. Attack Mechanisms 19

ponents of these systems [Lu et al., 2015, Wang et al., 2010, Gamage et al., 2011]. Con-

fidentiality attacks against vehicles have gained notoriety since 2009, when militants in

Iraq used cheap off-the-shelf software to intercept live video feeds from unmanned aerial

vehicles (UAV) [Gorman et al., 2009].

Integrity Researchers have also shown that integrity attacks on a vehicle can have se-

vere repercussions on its movement control, especially at speed. As a case study, they

infected a common production automobile using an infected MP3 play-list and Blue-tooth

connection with a smart-phone [Koscher et al., 2010].

Research dealing with cyber-physical attack detection has mainly focused on integrity at-

tacks against industrial control systems. Attackers modify the payload of a network packet

and manipulate a cyber-physical system into performing the wrong physical action [Amin

et al., 2009]. Replay attacks are another type of cyber attack which is difficult to detect

using generalist approaches. They target systems which are expected to be in steady time

for a long period of time. The authors in [Mo et al., 2014] present a detection method for

replay attacks on the sensors of supervisory control and data acquisition (SCADA) sys-

tems. Another approach for cyber attack detection involves measuring anomalies between

physical and cyber properties of a cyber-physical system. These methods are inherent to

the nature of a cyber-physical system but must overcome numerous challenges, such as

timing. The work presented in [Gao et al., 2010, Reaves and Morris, 2009] detects in-

tegrity and availability attacks against a storage tank control system by using the water

level measurements reported by the SCADA module. The approach is based on the fact

that water levels can only change at rates related to pipe diameters and tank capacity.

A similar approach based on semantic errors is presented in [Naess et al., 2005] and uses

temperature readings outside a specific range to detect an intrusion. The authors state

that by integrating the intrusion detection module in the middle-ware layer of an em-

bedded system, they can achieve better results due to simultaneous access to application

logic and communication streams among distributed components.

Availability Availability attacks, such as common Denial of Service attacks, affect ve-

2.2. Attack Mechanisms 20

hicles by delaying or preventing commands from reaching the movement control system.

Researchers have addressed availability of cyber-physical attacks only in industrial control

systems [Amin et al., 2009]. In [Loukas and Öke, 2009], a survey on protection against

DoS attack is described. The authors provide a timeline of incidents, types and motives

of DoS from the early 1980s to 2009. After identifying a defence mechanism, detection

and response of a DoS attack and identifying the true source of an attack, based on a

mathematical model, the paper identified the trends in DoS attack, weakness of protec-

tion approaches and also suggests several directions for future research on this topic to

pursue. [Timotheou and Loukas, 2009] emphasises on the timely response for autonomous

networked robots to operate in an emergency situation. In [Gelenbe et al., 2005], both

analytical and simulation modelling and experiments on an autonomic routing protocol

are carried for evaluating advantages and disadvantages in the imperfect detection of

DDoS (Distributed Denial of Service) attack. [Gelenbe and Loukas, 2007] surveys classi-

fication and defence mechanisms, passive methods, mathematical models of evaluation of

the benefits of DDoS defence, correct detection.

Such systems are inherently predictable as they perform routine operations and any de-

viation of the network traffic from an expected behaviour can be flagged as suspicious.

Vehicles, on the other hand, are affected in a less predictable manner. Depending on the

implementation approach and attack type, they might be forced to reset, continue moving

blindly, jitter, delay changing direction etc.

This PhD analyses experimentally the impacts of availability and integrity attacks such as

DoS, command injection, and malware attacks on the movement of a robotic vehicle, and

utilises them to detect attacks based on cyber and physical features that can be collected

in real-time.

2.2.2 Security threats in vehicular technologies

Most modern vehicles include sophisticated computational and sensing technologies for

their controls, and may soon include ad hoc vehicular networks supporting their commu-

2.2. Attack Mechanisms 21

nications. At the same time, there is increased interest in unmanned vehicles, for example

in emergency managements (EM) situations for reaching locations that are inaccessible

to humans. We have summarised related cyber threats in Table 2.1.

2.2.2.1 Manned Vehicles

In the public transport sector, cyber attacks usually cause disruption in dispatching and

signalling. In the 1990s they were related primarily to the lack of user authentication

mechanisms, with hackers connecting via a dial-up modem to an airport network pretend-

ing to be the legitimate system administrator and altering critical information. Today,

computer viruses and targeted cyber attacks affecting mass transportation are relatively

common, especially in railways and airports [Turk et al., 2005]. Due to the increasing

use of off-the-shelf computers running Microsoft Windows, a number of incidents in the

transport sector were caused by common viruses and worms that spread via the Internet

and infected computers indiscriminately, with one such virus disabling air traffic control

systems in Alaska in 2006 [De Cerchio and Riley, 2012]. Yet, in most cases, there was

no malicious intent and, more significantly, there was no damage beyond frustration and

financial costs due to downtime. In 2008 though, a teenager managed to take control of

the tram system in Lodz, Poland, and operated its track switches, eventually causing four

trains to derail and 14 people to be injured [Storey, 2009].

The automotive industry is also increasingly showing interest in cyber threats, partly

because of isolated incidents of cyber intrusions against specific car types and partly

thanks to the pioneering work [Koscher et al., 2010]. In 2010, the latter demonstrated

that it is possible to infect a car’s networks via Bluetooth and other mechanisms and

gain control of its locks, brakes and engine. A car interfered with in such a manner may

be forced to veer towards one direction while driving at speed. An incident in Austin,

Texas, the same year showed that large numbers of private cars can be simultaneously

affected in an unexpected manner through a web-based vehicle immobilisation system.

The specific system had been set up by car dealers to disable a car’s ignition system

2.2. Attack Mechanisms 22

as a response to delinquent car payments, but it was exploited by a hacker who gained

unauthorised access and issued rogue commands. Thus, it is particularly interesting that

a website’s security flaws had an indirect physical impact, causing 100 private cars to be

simultaneously immobilised [Schoitsch, 2012].

2.2.2.2 Unmanned Vehicles

Unmanned Aerial Systems (UAS) have already started being used for civilian purposes,

including law enforcement and emergency response, as they can provide aerial imagery

of high resolution that enhances situational awareness and coordination. However, the

security of unmanned aerial vehicles (UAVs) has been repeatedly breached in high-profile

incidents in the past. In 2009, militants in Iraq used cheap off-the-shelf software to

intercept live video feeds from US Predator drones and in 2011 a virus infected a number

of US Predator and Reaper UAV drones, logging the keystrokes of the pilots who remotely

controlled them [Shachtman, 2011]. The same year, Iranian TV showed a US RQ-170

Sentinel drone claiming that it had been electronically hijacked and landed by the Iranian

army’s electronic warfare unit [Cole, 2012]. According to [Ráček et al., 2012], this was

achieved by spoofing the GPS signals to the drone and then tricking it into landing in Iran

rather than Afghanistan. The drone reported that it was landing at its home base. It is

important to note that as UAVs are sizeable objects, if hijacked and deliberately crashed

into a crowd or other target, they could cause considerable physical damage themselves.

The elevated significance of UAV hijacking in the defence sector has sparked research in

UAV cyber security. Most notably, a research team at Purdue University has created a

simulation testbed that models UAV control systems and flight operations. Their cur-

rent primary focus is on vulnerabilities of the autopilot systems. Up to now, they have

confirmed that GPS spoofing can lead a UAV astray and in a manner that may not be

detected by the legitimate operator. In addition, they have analysed a gain-scheduling

attack affecting the vehicle’s controls and stability through sensor spoofing, and a fuzzing

attack where the attacker injects random inputs to the vehicle’s actuators [Kim et al.,

2.2. Attack Mechanisms 23

2012]. In parallel, a less technical high-level analysis of the potential impact of cyber

attacks on UAVs has been presented in [Javaid et al., 2012]. It is important to note that

a recent congressional report on unmanned aircraft systems has stated that vulnerabilities

in the command and control of UAS operations are a primary obstacle to their integration

into the national airspace system [Dillingham, 2012].

Land vehicles that operate in an autonomous or semi-autonomous remotely-controlled

manner are also increasingly proposed and trialled for industrial maintenance, military

and emergency management applications. Such vehicles can reach areas often inaccessi-

ble to human beings and even set up an ad hoc communication infrastructure [Loukas

et al., 2008]. However, unmanned vehicles are typically not designed with information

security in mind and are vulnerable to multiple types of attacks affecting the collection

or communication of critical information. An excellent survey of these cyber threats has

been presented in [Kohno, 2012].

Technology Security threat Impact Countermeasures

Manned
Vehicles

Malware infection of traffic
control systems [De Cerchio
and Riley, 2012]

Disabled air traffic
control, signalling etc.

Web security
literature [Jensen et al.,
2009]

Unmanned
Vehicles

Malware infection of onboard
computers [Koscher et al.,
2010]

Hijacked control of locks,
brakes and engine

Malware detection [Koscher
et al., 2010]

GPS Spoofing [Tippenhauer
et al., 2011,Kim et al., 2012]

Artificial traffic jam
caused

Signal analysis [Warner and
Johnston,
2003,Jafarnia-Jahromi et al.,
2012,Zeng et al.,
2012,Carson et al., 2016]

Web-based immobilisation
hijacked [Schoitsch, 2012]

Cars immobilised
remotely and
simultaneously

Web security
literature [Jensen et al.,
2009]

GPS Spoofing [Tippenhauer
et al., 2011,Kim et al., 2012]

Unmanned vehicle
redirected [Kim et al.,
2012,Javaid et al., 2012]

Signal analysis [Warner and
Johnston,
2003,Jafarnia-Jahromi et al.,
2012,Zeng et al.,
2012,Carson et al., 2016]

Gain-scheduling attack [Kim
et al., 2012]

Control stability
affected [Kim et al., 2012]

No known solutions

Fuzzing attack [Kim et al.,
2012]

Random inputs to
vehicle’s actuators [Kim
et al., 2012]

No known solutions

Table 2.1: Vehicular security threats and proposed countermeasures.

2.3. Defence Mechanisms 24

2.3 Defence Mechanisms

2.3.1 Preventative methods

Due to standardisation and connectivity to the Internet, many systems are sharing the

similar threats caused by cyber attacks. [Zhu and Sastry, 2010] and [Zhu et al., 2011]

provide a comprehensive survey and taxonomy of intrusion detection and prevention sys-

tems for Supervisory Control and Data Acquisition(SCADA)-specific systems. SCADA

systems are generally deployed in large critical infrastructure systems such as electrical

power grids, petroleum and gas pipelines, water and waste-water systems. SCADA is a

hard real-time system with deadline deterministically, limited computing capabilities and

memory resource, with a direct impact in the physical world which might cause safety is-

sues. In [Zhu et al., 2011], cyber attacks on SCADA start off from an Internet connection,

to layers of control networks, which can be grouped into: hoax input to the controller

transferred from compromised sensors and/or exploited network link between controller

and sensors. These cyber attacks can happen in the hardware, software or communication

stack.

Authentication Authentication of users and network traffic can prevent cyber attacks

against a CPS. An example is the access control scheme presented in [Wu et al., 2011] that

proactively and dynamically modifies permissions during an emergency without explicit

access requests.

Encryption Another common approach is to strengthen the encryption of the messages

sent. This is typically used in relation to authentication, such as to lock/unlock an

automobile [Latka, 1994] or when exchanging messages in a vehicle-to-infrastructure (V2I)

scheme [Chuang and Lee, 2011].

Resilience A resilient CPS is one that ensures an acceptable level of operation in the

presence of cyber threats. Resilience can be improved by ensuring that the first line

of defence, such as firewalls and other security components, are patched and updated

2.3. Defence Mechanisms 25

properly [Walker, 2011], but can also be engineered into the systems design. Another

common approach for achieving resilience is redundancy, as in a CPS context where com-

munications may be affected by physical damage too, one needs to ensure that redundant

network links or nodes are not in the same physical location and cannot all be taken out

by a single physical event [Sterbenz et al., 2013].

Trustworthiness Another approach is to integrate both validation and trustworthiness

in CPS. Validation in different components might all be correct but the system overall

may not be dependable [Eze et al., 2012]. Adding trustworthiness at the architectural

level would increase the overall security of the autonomic system.

2.3.2 Reactive methods

In contrast to preventative methods, reactive methods operate while an attack is occurring

or afterwards.

2.3.2.1 Detection

Detection mechanisms aim to limit an attack’s impact by identifying its existence and

often its type. Their success depends largely on the input features that they use. In

cyber-physical systems, for access control, early warning, sensing, and physical control,

where computational, communication and physical processes have a direct impact on each

other, we classify detection mechanisms based on the cyber or physical nature of their

input features:

• Cyber input. Naturally, most detection mechanisms proposed to defend against

network attacks use computational and communication data, such as packet source,

data rate and protocol-specific characteristics, as their input features.

• Physical input. An example of physical input would be the monitoring of the GPS

signal strength. Warner et al. have observed that GPS spoofing systems use signals

2.3. Defence Mechanisms 26

of much greater strength than legitimate GPS signals [Warner and Johnston, 2003].

• Combined cyber and physical input. In principle, this approach makes the best

use of the dual nature of cyber-physical systems. For example, by linking cyber

detection with physical monitoring, such as video surveillance and a central security

room to monitor and report incidents, one may facilitate detection of suspicious

cyber-physical behaviour [Rajamäki et al., 2012]. Chen et al. have proposed to use

fuzzy logic to combine real-time network data and physical input features, including

the differences between the values reported by neighbouring sensors [Chen et al.,

2011]

Mitchell and Chen provided a discussion of intrusion detection techniques for CPS (includ-

ing vehicles) which comprises two classification groups: detection techniques and audit

materials. Detection techniques looked for the misbehaviour of the CPS while audit ma-

terial identified whether the collected data was host-based or network-based [Mitchell and

Chen, 2014].

In general, detection techniques can be categorised as behaviour-based, typically indepen-

dent of the type of attack, e.g. based on Petri Nets [Skormin et al., 2014], or based on

the knowledge of what impact a particular attack has on a particular robot.

Knowledge-based

Aspect-oriented modelling (AOM) for accessing security of Cyber-Physical Systems is

introduced in [Wasicek et al., 2014]. AOM was inspired by Aspect-Oriented Programming

(AOP). Incorporating AOM in the process design was claimed to retain the development

method for CPS. The authors selected an adaptive cruise control system as an automotive

case study, and applied the AOM to analyse four different cyber-attacks such as man-in-

the-middle attack, fuzz attack, interruption attack and a replay attack. Then the control

behaviour was analysed and evaluated for detection of different attacks.

Another security model is proposed in [Xue et al., 2014] for the dynamics of robotic vehicle

networks. The authors applied a canonical double-integrator-network model to provide

2.3. Defence Mechanisms 27

security level analysis in both the noise-free case and the noise case. In both cases, security

levels varied in terms of a graph matrix, graph topology and its spectrum. This proved the

importance of the inter-vehicle communication topology and control design in pursuing

security.

The authors in [Sabaliauskaite and Mathur, 2014] declared the usage of an Intelligent

Checker (IC) and Cross-correlator (CC) for improving the security and safety of the

cyber-physical system. ICs were smart sensors that were independent from the CPS

both behaviourally and structurally. The ICs consisted of IC sensors which collected

parameters from controlled processes and decision logic to verify the condition restriction.

The ICs were successful in detecting cyber and physical attacks and sending an alarm

to the operators. The CC approach was to detect False Data Injection Attacks that

changed sensor reading values in Linear Time Invariant. The method depended on the

analysis window size of control loops sensors and trusted sensor measurement and outputs.

Dynamically the window size could enhance the efficiency of this method. Using these

two security countermeasures, the detection probability reached 90% with a window size

of 50 readings. Even with a critical failure of sensors, when no measurements were given

to the CC, the IC could help to lead the vehicle to safety.

Behaviour-based

A behaviour-based approach was proposed in [Skormin et al., 2014] for the diagnostics

of CPS for timely detection, identification and prediction of impact on computer control

systems. The impact could have been caused by cyber attacks or a misused procedure.

The behavioural model approach used connecting systems calls in an object access mega

graph which consists of functions mapping for system calls and data links. Hence, the

graph can be represented by Colored Petri nets to provide the basis for anomaly detection.

In the case of diagnosis of failure caused by a cyber attack, a visual graph of component

calls which differed from the normal profile could assist the expert analysis of detection and

identification of cyber attacks. Hardware failures, which might be related to cyber attacks,

could rely on the Recursive Least Squares algorithm for anomaly detection according to

2.4. Intrusion detection for robots and vehicles 28

the design specification.

2.3.2.2 Response

After a cyber attack against CPS is detected, a number of actions may be taken as a

response, triggered automatically by the detection mechanism or manually by a human

administrator that has been alerted. We have identified the following families of applicable

response mechanisms:

• Network traffic control. Network traffic that fails authorisation or appears suspicious

may be rate-limited, filtered, relegated to lower priority or simply dropped altogether

[Gelenbe et al., 2012].

• Network reconfiguration. Recovery can also be achieved by changing the configu-

ration of the network, such as its logical or physical topology, the routing criteria,

policies etc. A generic approach for an agent-based infrastructure that achieves self-

healing through reconfiguration of an overlay network has been proposed in [Sheldon

et al., 2005].

• Shut-down. On some occasions, it may be preferable to shut down specific services

or parts of the network, or the whole system, especially if a detected cyber attack is

affecting the confidentiality or integrity of ongoing communication channel in CPS.

2.4 Intrusion detection for robots and vehicles

Intrusion detection in cyber-physical systems is a relatively new area of research [Mitchell

and Chen, 2014], which tends to focus on industrial control systems, such as programmable

logic controllers and supervisory control and data acquisition (SCADA) systems. The

range of related research that is applicable to robotic vehicles is still rather limited. One

approach that has been proposed is to base the detection on whether sensor values col-

lected and utilised by a robot are realistic. For instance, the intrusion detection system

2.4. Intrusion detection for robots and vehicles 29

of the iRobot Create robotic platform needs to first determine what sensor values are

“normal” and from these try to determine whether network traffic is suspicious [Uluagac

et al., 2014]. One approach for this is to include an onboard intrusion detection module,

which would be trained offline to learn simple rules in relation to its own normal be-

haviour [Bezemskij et al., 2016b,Bezemskij et al., 2016a] or to the signatures of different

types of known attacks based on different monitored features. When in actual operation,

the vehicle would then monitor these features and apply the simple rules, which would

have a relatively low processing load. This approach can work well for simple and previ-

ously seen attacks. The authors in [Birnbaum et al., 2014] present a detection approach

using flight data and real-time airframe and controller parameters with statistical method

Recursive Least Squares technique. In [Birnbaum, 2015], the author extended this work

with a behavioural profiling technique for anomaly detection. Behaviour monitoring for

unmanned autonomous systems (UAS) has been suggested to require a systematic method

to monitor at both lower level operation and high level mission execution [Felix et al.,

2014]. By having the mission profile implementation checked from both levels, differ-

ent cyber attacks could be detected by intelligent and machine-learning algorithms. The

lower level algorithm read mission domain data to compare with function I/O data for

rule evaluation. Mission Monitor ensured the validity of the energy consumption from

subsystems, navigation and control analyser and behaviour coherence, otherwise raising

alarm flags and taking the vehicle to a safety.

In most cases, some form of network monitoring for detecting attempts for control hijack

or modification is necessary, whether host-based as in the robotic surgery arm discussed

in [Bonaci et al., 2015a], or a hybrid host-based and network-based, as in [Shetty et al.,

2014]. In [Fagiolini et al., 2014], detection is conducted both locally and collaboratively

within a group of autonomous robots, by taking into account reputation, behaviour scores

and distance. For distributed systems, which include multiple mobile elements, as in

emergency response or battlefield situations, one can use a voting-based system, such as

the one proposed in [Mitchell and Chen, 2013b].

Depending on its architecture and application, a robotic vehicle may be able to benefit

2.4. Intrusion detection for robots and vehicles 30

Table 2.2: Intrusion detection for robotic and mobile cyber-physical systems

Ref. Type Comms Location Attack Types Input Features Detection approach

Mitchell, Chen
[Mitchell III, 2013]

Mobile CPS Wireless
Host Based,

Network Based
Command Injection,

Node Hijack

Position,
Battery Exhaustion
Nodes Compromised

Dynamic IDS Voting,
Positional change,
Enviroconsistency

Fagiolini et al.
[Fagiolini et al., 2008]
[Fagiolini et al., 2009]

Multi-Robot
System

Wireless
Host Based,
Decentralized

Misbehaviour
Node Reputation,
Behaviour score,

Distance Estimation

Clustered Monitoring,
Voting

Bezemskij et al.
[Bezemskij et al., 2016b]
[Bezemskij et al., 2016a]

Robotic-
Vehicle

Wireless Host Based
Replay packet,
Rogue node,

Compass exploit

Sensors,
Networks,

Processing data

Behaviour-based
anomaly detection

Birnbaum et al.
[Birnbaum et al., 2014]

[Birnbaum, 2015]

Virtual
UAV

Platform
Wireless Host Based

Cyber attack,
Sensor spoofing,
Structural failure

Flight data,
State data,

Servo response

Behaviour-based
detection

Felix et al.
[Felix et al., 2014]

Conceptual
UAS

Wireless Host Based Cyber attacks
Mission domain,

I/O data
Behaviour coherence

Bonaci et al.
[Bonaci et al., 2015b]

Robotic
Surgery
System

Wired
Host Based,

Network Based
Intent Modification,

Control Hijack
Motor Performance,

Network Performance

Recommendations
for Network
Monitoring

Shetty et al.
[Shetty et al., 2014]

Multi-Robot
System

Wireless
Host Based,

Network Based
Decentralized

Denial Of
Service

Lack of
Connectivity

Network Monitoring

Vuong et al.
[Vuong et al., 2014]
[Vuong et al., 2015a]
[Vuong et al., 2015b]

Remote-
controlled

Robot

Wired,
Wireless

Host Based
Denial Of Service,

Command injection,
Malwares

Motor, Vibration,
Power, Network,

CPU, and Disk data

Rule-based,
Machine learning

Zeng et al.
[Zeng and Chow, 2014]

Fagiolini et al.
[Fagiolini et al., 2014]

Bicchi et al.
[Bicchi et al., 2008]

Multi-Robot
System

Wireless

Host Based,
Role Based

Network Based
Decentralized

Node Failure,
Node Misbehaviour

Network Performance,
Behaviour Score,
Node Reputation,
Neighbour State,

Neighbour Actions,
System Configuration,

Agent Position

Reputation Based,
Consensus Based,

Set-Valued Consensus

from communication with other agents (multi-agent) or may need to rely solely on its own

sensing capabilities and monitoring processes (single-agent). Multi-agent approaches fo-

cus on the coordination between different agents (e.g, between different driverless vehicles

or robots [Shetty et al., 2014]) in an effort to detect one agent’s suspicious actions, reports,

configuration or location. The detection criteria may include consistency with the laws

of physics (e.g. velocity measurements that are physically possible, or a location that is

consistent with the velocity measured [Loukas, 2015]), consistency with the sensor mea-

surements reported by neighbouring agents [Mitchell and Chen, 2011a], voting [Mitchell

and Chen, 2013a], reputation scores etc.

Most of these approaches and detection criteria become impractical in single-agent sys-

tems, such as the single remote-controlled robotic system used here. Without the oppor-

tunity to coordinate with multiple other robots, the focus has to shift to the identification

of relevant characteristics that can be measured by its own onboard systems.

2.4. Intrusion detection for robots and vehicles 31

In addition, most discussed approaches do not take advantage of the temporal elements

of the data features in a cyber attack against a robotic vehicle. For example, a cyber

attack such as command injection attack may make the vehicle to make a sudden turn.

Then, the impact of this attack causes a change in the vehicle wheel speed, which expands

the power utilisation over a short period of time. This alteration happens one after the

other in a specific sequence. Such sequentially-related behaviours represent a time series

dataset which can be desirable for detection algorithm that can recognise these patterns.

2.4.1 Machine learning & deep learning based detection

Machine learning techniques have matured over the last couple of decades [Dietterich,

2002]. A comprehensive study by Delgado et al. [Fernndez-Delgado et al., 2014], which

put to the test 179 different machine learning classifiers from 17 families (discriminant

analysis, Bayesian, neural networks, support vector machines, decision trees, rule-based

classifiers, boosting, bagging, stacking, random forests and other ensembles, generalised

linear models, nearest neighbours, partial least squares and principal component regres-

sion, logistic and multinomial regression, multiple adaptive regression splines and other

methods) across 121 different datasets to compare different classifiers. The evaluation

shows that tree-based algorithms such as random forest and decision tree C5.0 are among

the best overall performing techniques. However, that study by Delgado et al. does

not cover the evaluation of deep learning and its recent architecture techniques. Ma-

chine learning is common in intrusion detection systems for conventional computer sys-

tems [Sravani and Srinivasu, 2014] (but still not for vehicles or other mobile cyber-physical

systems).

The application of machine learning, and in particular deep learning, in CPS security is

a fairly new area of research. Machine learning is a branch of artificial intelligence where

algorithms use datasets to identify patterns. Different from statistical learning, tradi-

tionally, machine learning is focusing on concrete algorithmic and mathematical problems

rather than probability or statistics. The algorithm will then be able to identify patterns

2.4. Intrusion detection for robots and vehicles 32

in data that deviate from the norm. Machine learning performance relies on data-intensive

areas such as search, social network analysis, recommendation algorithm, computer vision

and voice recognition for both classification and regression problems. A machine learn-

ing algorithm can provide high accuracy when used in an intrusion detection system for

traditional networked systems [Lane and Brodley, 1997,Hui and Cao, 2010,Hasan et al.,

2014,Sravani and Srinivasu, 2014,Kotsiantis et al., 2007]. The objective is to reduce the

number of false positives while increasing the number of true positives to identify cyber

attacks when applied to robotic vehicles.

Junejo and Goh [Junejo and Goh, 2016] used behaviour-based machine learning which

built on the NSL-KDD99 dataset. They used supervised machine learning for their IDS.

The system learns the normal behaviour of the system using historical data. Their ex-

periments were conducted on a CPS testbed and were based on the behaviour of the

system to determine cyber attacks. They used nine machine learning classifiers for their

experiments using data from ten different types of attacks. The results showed low FPs

with high detection rates.

Machine learning algorithms, especially supervised technique ones, can fit well for intru-

sion detection in CPS systems because of their characteristics in high general accuracy

and speed, and also high performance for correlated, unstructured and noise data from

CPS systems and robotic vehicles particularly [Kotsiantis et al., 2007].

Over the past couple of years, the growing maturity in deep learning algorithms has led to

wider use outside of its traditional applications in image and natural language processing.

The deep learning technique refers to a branch of machine learning using artificial neural

networks that compose many layers. In 2012, when [Hinton et al., 2012] beat the well-

known datasets: ImageNet, MNIST, TIMIT, CIFAR and Reuters on speech, text and

image classification, deep learning became ever more popular and influenced the research

community. As the deep learning architecture allows a variety of architectures of neural

networks, it provides general applicability in most areas, including cyber security.

In [Hardy et al., 2016], the authors applied a specific deep learning architecture called

2.4. Intrusion detection for robots and vehicles 33

stacked AutoEncoders for detecting malware. The input data were captured from Win-

dows Application Programming Interface (API) from portable executable files. The au-

thor claimed this is the first work using the stacked AutoEncoders model with Windows

API calls in malware detection which had promising experimental results. In [Dong et al.,

2016], deep neural networks were utilised for detecting rogue certificates from trusted cer-

tificate authorities. The produced classification proved to work both in simulation and

even with a limited number of collected rogue certificates in the case India Controller of

Certifying Authorities (CCA) compromise incident.

Up to now, most deep learning based IDS proposals have addressed attacks against tra-

ditional computer networks, showing the superiority of the approach on the old Data

Mining and Knowledge Discovery (KDD) Cup 99 [Kim et al., 2016] and the refined NSL-

KDD [Javaid et al., 2016] datasets. Kim et al. constructed an IDS model with deep

learning approach KDD Cup 99. The authors tested out the hyper-parameters including

the learning rate (0.1, 0.01, 0.001 and 0.0001) and hidden layer size (between 10 and 90)

and achieved better detection rates and accuracy rates than other classifier algorithms.

Javaid et al applied a two-stage process of self-taught learning including unsupervised

feature learning on unlabelled data and classification on labelled data. The deep learning

approach was based on a sparse auto-encoder and a soft-max regression. The result of

this technique is on a par with the best results in various other work on this NSL-KDD

dataset.

An exception is a recent work by Kang et al. [Kang, 2016], which is geared towards the

automotive industry and specifically vehicles that rely on the controller area network

(CAN) bus. While a promising start, the particular work is limited to a generic command

injection attack, which is detected by monitoring a single data source (the network packets

on the CAN bus) and using a generic deep neural network architecture, which does not

account for the temporal aspects or the overall state of the vehicle. Also, it has been

evaluated only in simulation.

Here, it is important to note that technology used for detecting intrusion in resource-

2.5. Conclusion 34

constrained systems such as Internet of Things (IoT) devices may be partially applicable

for CPSs. However, IoT systems such as smart home devices have very limited actuation

capacities as the focus is on sensing much more than interactions with the physical en-

vironment [Blasch et al., 2017]. As the result, the impact of cyber attack against them

typically have both limited severity and offer limited opportunity to detect based on it .

2.5 Conclusion

This literature review chapter has included the general challenges in the security of cyber-

physical systems. It focused on the different types of cyber attacks on vehicles and the

corresponding defence mechanisms that have already been proposed. It discussed the

intrusion detection techniques for robots and vehicles, especially ones based on machine

learning and deep learning algorithms. While conducting the literature review, it became

clear that the range of related research that is applicable to robotic vehicles is still rather

limited. This research carries out experimental evaluations based on a real testbed and

mathematical modelling for predicting the effect of different network configurations. The

thesis aims to provide efficient and accurate detection mechanisms based on physical and

cyber indicators.

The next chapter discusses the experimental methodology, including the design of the

testbed, the data that was collected to identify the ground truth as a starting point for

the experiments, a discussion of the attack scenarios and the results.

Chapter 3

Experimental process

3.1 Introduction

This chapter presents the experimental methodology utilised for the development of de-

tection mechanisms for vehicles. It includes a description of the robotic vehicle, which

serves as the centrepiece of the testbed used, the attacks performed against the specific

vehicle, as well as the data collected in relation to them. It also includes empirical results

showing the impact of these attacks in physical space.

3.2 Testbed design

The testbed for the development and experimentation is a four-wheel-drive robotic vehicle

(Figure 3.1) controlled via an onboard Intel Atom computer running the Linux operating

system and an Arduino micro-controller for driving the motors. The vehicle also carries

a camera with pan and tilt functionality for situational awareness and remote navigation.

The vehicle and its camera can be controlled remotely via an Ethernet cable or Wi-Fi, by

relaying commands over a Transmission Control Protocol (TCP) socket on the vehicles

control board. Standard magnetic encoders fitted to the two rear wheel motors provide

35

3.2. Testbed design 36

information on the angular position of each wheel. The difference between two consecutive

measurements is representative of its speed.

The detailed content of the testbed are presented in the following subsection, starting

from the individual component (Section 3.2.1), and moving on to the remote operation

(Section 3.2.2) and the vehicle setup (Section 3.2.3).

Figure 3.1: The vehicle used in the experiments

3.2.1 Testbed components

The robotic vehicle has three main component units including control, sensing and navi-

gation, and actuation, as shown in Figure 3.2.

• Control. The vehicle uses a standard Intel Atom 1.8 GHz, which is representative of

a large number of cyber-physical systems using commodity processing units rather

than bespoke embedded systems. The control computer is connected to a simple

micro-controller (ARC32) to relay commands to the vehicle’s motor controller and

3.2. Testbed design 37

Figure 3.2: Detailed diagram of the testbed. The input features used for the detection
are shown in black background

to collect data from sensors. In detail, the control unit consists of the following

components:

– Intel BOXD525MW Intel Atom D525 1.8GHz (Dual Core)

– Solid State Drive (SSD) OCZ Onyx OCZSSD2-1ON32G 2.5” 32GB SATA II

MLC. A standard hard-drive for storing the operating system, the detection

code developed, as well as collected data

– Kingston ValueRAM 2GB 204-Pin DDR3 SO-DIMM DDR3 1066 (PC3 8500).

A standard memory chipset.

– Wireless B/G/N USB Adapter. This allows remote connection via a standard

3.2. Testbed design 38

WiFi router.

– Micro Controller - ARC32 - MCU-046-032. A micro-controller interfacing be-

tween the control computer and the sensing and actuation components.

– RoboClaw 2x15A - TE-152-215. A motor controller dedicated for the motor

control, as well as to collect the data from the motor encoders. It is connected

to the ARC32 micro-controller via a Transistor-Transistor Logic (TTL) system.

• Sensing and navigation support. The vehicle includes a small set of sensing tech-

nologies, which is representative of what is typically used in the industry.

– Logitech C525 USB Webcam. A USB Logitech webcam was attached to the

vehicle for the common robotic task of real-time transmission of video, image

and audio to its operators.

– Electronic Compass Kit. It is connected to the ARC32 micro-controller via an

inter-integrated circuit (I2C) for navigation based on a bearing.

– LV-MaxSonar-EZ1 Ultrasonic Range Finder. Allows for collision avoidance

and indoor path finding applications.

– WattsUP energy meter. This is an externally connected device, which is used

to monitor energy consumption during the experiments.

– External accelerometer. This is an externally attached device, which was added

to monitor levels of vibration on the chassis. This was deemed necessary only

after the initial experiments which indicated this type of physical effect of some

of the cyber attacks.

• Actuation. Naturally, the primary physical function of the vehicle is its mobility.

– Camera pan and tilt system - standard - WC-003-200. The particular system

was utilised only for facilitating navigation.

– IG32P 24VDC 190 RPM Gear Motor with Encoder - TD-055-190 (one for front

left and one for front right wheels). The two encoders measure angular speed

through quadrature counting.

3.2. Testbed design 39

– IG32P 24VDC 190 RPM Gear Motor - TD-015-190 (one for the rear left and

one for rear right). The rear motors do not feature encoders.

• Power supply & Physical parts. The battery set to provide power for all components

of the robot. Two 12V 4500 mAHr NiMH battery packs are wired in parallel to

create a 24V power bus.

– 80 Watt PicoPSU-80-WI-32V power supply unit

– 12V 4500 mAHr NiMH battery pack - TE-099-210 (Qty 2)

– Smart Charger for 9.6V - 18V NiMH and NiCad (Qty 2)

– Electric power hookup kit

– Aluminum base for 32mm motors

– Custom 5” wheels and shafts

Figure 3.2 summarises the components of the robotic vehicle in terms of their architectural

layout. It also shows the input features collected for the purpose of intrusion detection

(Chapter 4), identifying also the components from where they are collected. Figure 3.4

shows a top side view of the vehicle. As shown, the vehicle is small enough for indoor

experiments with limited space. The dimensions are 39.4 cm long, 35.6 cm wide and 30.5

cm inches high (with the compass mast). All together its weight is nearly 6.8 kg. The

vehicle moves using four wheels, which gives 3.8 cm of ground clearance.

3.2.2 Remote operation

The testbed is a four-wheel-drive vehicle controlled via an onboard Intel Atom computer

running the Linux operating system. The remote control of the vehicle can be via Ethernet

cable or Wi-Fi, by relaying commands received over a TCP socket to the robotic vehicle

control boards. In our experiments, the operator’s machine and the vehicle have been

on the same local area network. With the right ports opening on the vehicle to receive

3.2. Testbed design 40

Figure 3.3: Top side view of the robotic vehicle

Figure 3.4: Top view of the robotic vehicle

incoming commands, the vehicle can be also controlled through the Internet as in Figure

3.5.

This operation is done through a C# Interface program. The graphical user interface

(GUI) is depicted in Figure 3.6. This program allows the operator to set adjustments

in the two actuation systems: the vehicle wheel and camera pan tilt. For changing the

speed and direction of the vehicle movement, an operator can click on the control pad

which would convert automatically to Right Motor and Left Motor value as in Figure 3.6.

These values range between 0 and 127. At the value of 64, there is no wheel rotation,

3.2. Testbed design 41

Figure 3.5: Remote control of the robotic vehicle.

while 127 and 0 are the fastest forward and backwards rotation. The different speed of

left and right wheels will determine the direction of the vehicle movement (just like in

a tank movement). In Figure 3.6, the left motor angular speed is set at 82, while the

right one is set at 72. Values 82 and 72 are arbitrarily chosen and they are fixed for

repeatability. Angular speeds 82 and 72 are both greater than 64, and 82 is greater than

72 so the robotic vehicle would go forward to the right slightly. For changing the direction

of the webcam, an operator of the robotic vehicle can control the pan tilt system to face

up, down or left and right around on an x and y-axis. The video stream from the webcam

can provide the real-time view point from the robot.

The server program is written in C++ running on Linux Fedora OS. The program runs the

Fedora demon to interact with the Interface Program on the operator’s computer as well

as the micro-controller ARC32, which controls the movement of pan tilt, the compass and

the motor controller RoboClaw. The motor controller drives the vehicle motors with their

encoders through electrical speed control. The encoders are also responsible for detecting

the revolution/angular speed of left and right motors, which allows the movement direction

and speed to be detected. A C++ method was written and embedded in this server

program to provide real-time angular speed for the robotic vehicle left and right motors.

3.2. Testbed design 42

Figure 3.6: The GUI of the control interface on the operator’s computer

For repeatability and reproducibility purposes, the human element was eliminated by au-

tomating the process of controlling the vehicle with a set of predefined scenarios. Each

scenario includes a series of operation commands triggered at specific times. These auto-

mated actions are programmed using the JitBit macro software [Jitbit, 2016] to stimulate

operators’ keyboard and mouse instructions. The automation is especially useful when

there is a need to have the cyber attack event in the training scenario, because the training

needs to be repeated several times. The ground truth (labels used in the learning phase)

is defined when the cyber attack starts and ends from the settings. The automation can

define the precise time-stamp for the attack start and end points. Different commands in

Jitbit such as SWITCH TO WINDOW, DELAY, and MOUSE Click, as depicted in 3.7,

enable repeatability and reproducibility of the experimental scenarios.

3.2.3 Robotic vehicle setup

In order to better observe the physical effects caused by different cyber attacks and to

eliminate any side factors which could potentially interfere with this goal, we have made

some modifications to our testbed, as follows:

3.2. Testbed design 43

Figure 3.7: The GUI of the Jitbit automation tool

Friction: While the vehicle moves on the floor, the variable friction between the floor

surface and the wheels can interfere with speed and steering control. To avoid this, the

vehicle was positioned on a stand, effectively lifting the vehicle from the floor and providing

consistent friction to all four wheels. This setup also overcame the space limitations of

the research lab and of conducting experiments involving long movement paths, as seen

in NASA Mars Rovers’ set-up [NASA, 2010].

Network Interface: While launching a cyber attack against the robotic vehicle, it is

possible that parameters affecting the wireless communication between the controller and

the vehicle (such as signal strength) interfere with the functionality of the robot. Since it

was important to focus on the physical effects of the attack, a wired Ethernet connection

for communication was also used for reliable signal strength.

Power Supply: Under normal operation conditions, the vehicle is powered by a 24V

battery pack. After running lengthy experiments, it was observed that the battery de-

pletion rate was significantly affecting the motor’s power, which had a direct impact on

the measurements regarding the vehicle’s speed. To remove this factor from affecting the

results, the battery pack was replaced by a desktop DC power supply. This also removed

the battery life limitation when conducting lengthy experiments. For example, some of

the machine learning training sessions reported in Chapter 5, have taken over 50 hours,

which is considerably longer than the vehicle’s battery life would allow.

3.3. Data collection 44

3.3 Data collection

When running experiments, the aim is to capture accurate and relevant data regarding

the robotic vehicle’s behaviour during normal operation and under cyber attacks. The

data variables should reflect the characteristics of the cyber and physical performance of

the vehicle which includes its physical mobility, energy consumption and other central

processing unit (CPU), network and disk usage related to operating system activities.

The data variables were collected from three different devices including the Robot Linux

operating system, the Robot micro-controller and a Samsung Android phone and a

Wattsup device. Each source of data can have different timing and may require different

techniques for monitoring and capturing measurement. Table 3.1 shows that traditional

cyber data can be captured from the robot’s operating system performance stats, while

physical data such as wheel speed, vibration and energy consumption are drawn from

devices such as the onboard micro-controller, and an external smart-phone accelerometer,

as well as an external power measurement device.

Table 3.1: Cyber (C) and physical (P) data sources

Source Description Type (C/P)
Operating System Network usage C

CPU usage C
Disk usage C

Micro-controller Wheel speed P
Smart Phone Vehicle vibration P
Watts-up device Energy consumption P

3.3.1 Cyber data: network, CPU and disk usage

The values of the cyber features were written to text files using Collectl [Collectl, 2015],

which is an open source tool for CPU, network and disk data collection. Collectl is an

appropriate solution because it runs on all major Linux distributions and depends on Perl,

which is typically installed by default in Linux. This tool was chosen due to the ability to

capture a wide variety of system performance stats at once compared to other tools [Linux

3.3. Data collection 45

performance tools, 2014]. At the same time, its light-weight characteristics fit well in a

resource-limited device. Figure 3.8 is a snapshot of a default sample output which shows

network, CPU and disk measurements in real-time. Each line in the figure represents

one second of sampling data. In this option, the utility shows four measurements for

each category: CPU, disks and network. For CPU usage, it shows the percentage of time

that the CPU was busy, (CPU utilisation), percentage of time the CPU was executing

in system mode, the number of interrupts/sec, the number of context switches/sec. The

disk utilisation shows KB read/sec, number of reads/sec, KB written/sec, and number

of writes/sec. Network traffic shows KB received/sec, packets received/sec, KB sent/sec,

packets sent/sec.

Figure 3.8: collectl sample data

3.3.2 Physical data: wheel speed

Encoder values were collected from monitoring programme embedded with the robotic

vehicle control unit. The programme was written in C++ to receive analogue values from

micro-controller ARC32 responding the position of the wheel during operation. The C++

code can be found in the appendix of this thesis.

The data received from the micro controller is a stream of values in bytes (0..255). Each

3.3. Data collection 46

packet contains 21 values as listed in Table 3.2. In this array of values, there are two

important numbers from the encoders. Bytes 4-7 and 8-11 contain values of right and

left encoder rotation numbers accordingly. These values represent the current number of

wheel rotations that the encoders have counted. Together with the time-stamp in the

monitoring script, the angular speed could be calculated by dividing the change in the

number of rotations per executed time period. The default interval is 30ms, or about 33

times in 1 second.

Table 3.2: The structure of transmit packet from the micro-controller, which includes the
speed in the form of encoder values

Bytes Description
0-3 Reserved values
4-7 Analog values
8-9 Compass value
10 Digital value
11-14 Right Encoder value
15-18 Left Encoder value
19-20 Check sum value

3.3.3 Physical data: robotic vehicle vibration

Figure 3.9: The GUI of Accelerometer Monitor tool used for collecting vehicle vibration

3.3. Data collection 47

Through empirical observation, it has become apparent that vibration of the vehicle

chassis is possible during a cyber attack. For this reason, external accelerometers have

been added to measure this vibration.

Acceleration is measured on three axes (x, y, z) for representing the vector of different

directions. For example, a positive value in x might mean left acceleration while a negative

is for right. Similarly, y and z values can be for forward or backward, and up or down

direction. Here, by measuring acceleration shows the vibration of the vehicle chassis

real-time responding to a cyber attack or not.

A smart-phone equipped with an accelerometer was used in the experiment. The phone,

a Samsung Galaxy S3, was securely attached to the body of the robot. To capture the

acceleration values (x, y, z), an open source software Accelerometer Monitor, as depicted

in 3.9 was installed on the phone. The phone accelerometer now can save the recorded x,

y, z into a text file in real-time. The data values are captured as in Figure 3.10.

Figure 3.10: Acceleration values (x, y, z) and its collection interval

3.3. Data collection 48

3.3.4 Physical data: energy consumption

Watts and amps were collected externally using the WattsUp energy meter device, which

can measure the energy consumption of the robotic vehicle. In order to capture the data,

the device was also connected to a Linux computer through a USB cable to record live

stream values of watts and amps. A Python program was written to read values from

the meter, which were saved in /dev/tty.usbserial. The output data were then extracted

and written to a comma separated values (CSV) file for later processing. The interval for

meter reading is set at 1 second. Figure 3.11 shows an example from the CSV file that

includes a variety of values regarding the energy meter from the robotic vehicle during

the experiments.

Figure 3.11: Energy data captured through wattsup including source, time, watts, voltage,
amps

3.3.5 Ground truth

Here, the term ground truth is used to refer to the information regarding the experiments

that are there by design, such as the time an attack actually starts and actually finishes,

as opposed to the inference made by IDS design. Specifically, the ground truth refers

to the flag of attack-on and attack-off that is designed for each cyber attack scenario.

This is saved along with other cyber and physical data, which are later used for not only

3.3. Data collection 49

training phase in machine learning and deep learning algorithm, but also for testing and

validation of each algorithm. Here, the ground truth is considered to be 1 for the period

that the robotic vehicle in under attack and 0 for the period with normal operation (no

cyber attack).

3.3.6 Data pre-processing

The data for the cyber and physical input features are captured from different locations

within the architecture (Figure 3.2) and at different points in time due to the lack of

perfect synchronisation and because of different collection periods (intervals).

The encoder value is collected by monitoring scripts embedded within the robotic vehicle

control unit, while Watts and Amps are measured with the WattsUp device [Watts up?,

2016]. Plus with a ground truth (attack flag) value coming from attacking machine, it is

important to have the time-stamps set consistently to the same source. From observation

during the experiment, the time setting of each system can be different. As a result,

the clocks amongst the different devices are to be synchronised to a standard time server

[Rinaldi et al., 2016], and the data needs to be processed with the awareness of the issue.

Also, linear interpolation is used to address the fact that different devices would collect

data at different time intervals, as shown in Table 3.3. Each sensor/device collected

data values at a different frequency. Within each sensor/device, the frequencies of data

collection were not always precise for the same configuration setting. For example, if the

frequency was set at 20ms/event, the data could have been collected after 19ms or 21ms of

the previous event. Hence, we had to apply a linear interpolation technique to establish a

consistent sampling rate of the data values from physical and cyber data [Gurulian et al.,

2016].

3.4. Attack scenarios 50

Table 3.3: Data sources and configured collection rate

Source Collected data Configured collection rate
Operating system Network, CPU, Disk usage 1.0 s
Micro-controller Wheel speed 30 ms
Smart phone Robotic vehicle vibration 20 ms
WattsUp device Energy consumption 1.0s
Attacker’s machine Ground truth (attack flag) Per event

3.4 Attack scenarios

A comprehensive review of cyber threats related to communication, sensing, informa-

tion management and vehicular technologies used in emergency management is given

in [Loukas et al., 2013a], while a taxonomy providing a global view of the respective

attack types and defense mechanisms is presented in [Loukas et al., 2013b].

Recent research [Koscher et al., 2010] has demonstrated that cyber-physical attacks can

target production automobiles, since these vehicles incorporate various sensing and com-

puting modules that can interact with each other in multiple ways. Initial attacks infected

the vehicle’s electronic systems through the use of an audio file in the MP3 player device

or through a smart-phone connected via Bluetooth. One of the possible results of this

attack is a change in the driving direction while the vehicle is in motion.

As representative of a wide-range of possible attacks against a robotic vehicle, experiments

have been conducted where the vehicle was under a denial of service (DoS) attack, a

command injection attack and two kinds of malware attack, one targeting the CPU and

the other targeting the network (NET), as shown in Table 3.4, which also summarises

the primary physical impact observed during each attack. The attacks are intermittent.

They appear in-between sections of normal operation. Under normal operations, without

a cyber attack, the network communication and applications were running legitimately.

They correspond to the camera feed transmitted to the operator, as well as the operator’s

legitimate commands to the robot.

3.4. Attack scenarios 51

Table 3.4: Attack intention

ID# Type Intent
1 DoS Resource unavailable

2 Command Injection Disrupting control

3 Malware (NET) Disrupting communication

4 Malware (CPU) Disrupting computation

3.4.1 Denial of Service attack (DoS)

According to Loukas and Oke, a Denial of Service (DoS) attack is “any intended attempt

to prevent legitimate users from reaching a specific network resource” [Loukas and Öke,

2009]. In the context of our robotic vehicle, a denial of service attack is an attack that

aims to prevent the operators from reaching the robotic vehicle and vice versa, so that it

cannot be controlled remotely and it cannot transmit sensor or other data to its operators.

In the experiments, the attack is carried out by sending large volumes of TCP traffic to the

robot’s network interface. For this, the Low Orbit Ion Cannon (LOIC) was used, which is

an open-source and multi-threaded denial of service attack tool, able to flood the robot’s

network interface with different types of traffic. This particular tool has become well-

known since it was used by the hacktivist group “Anonymous” in “Operation Payback”,

in retaliation to the opponents of Internet piracy in 2010 [Sauter, 2013]. Figure 3.12 shows

different parameters set for launching an attack from LOIC against the robotic vehicle

such as:

• IP Address: 192.168.10.82

• Port: 7000

• Method: TCP

• Threads: 100

Once the flooding attack rate is set, the tool produces illegitimate TCP segments, which

increase the bitrate received by the vehicle to values above 60 Mbps (See Table 3.5 for the

3.4. Attack scenarios 52

Figure 3.12: LOIC tool used for DoS attacks

average incoming and outgoing network traffic). As the capacity of the Ethernet interface

used on the robotic vehicle is 100 Mbps, when the average link utilisation exceeds 60%

(incoming rate 60 Mbps) and moves towards 70%, it starts causing connectivity problems.

This is in line with the usual rule of thumb in the networking industry, which is that when

the average utilisation gets close to 70%, the instantaneous utilisation reaches often 100%

and produces high packet loss and delays. In these experiments, the average utilisation

during a LOIC attack reached 62.86 Mbps for the incoming traffic. This was sufficient to

cause intermittent connectivity issues.

Table 3.5: Average network traffic measured at robotic vehicle interface (Mbps)

Attack-off Attack-on
Outgoing 0.007 4.77
Incoming 0.005 62.86

Figures 3.13 and 3.14 illustrate the incoming and outgoing traffic rate at the robot’s

network interface under normal operation and under an ongoing DoS attack.

As denial of service attacks rely on high bit-rates of attack traffic, they involve a noticeable

period of time where they are rapidly ramping up the attack rate. This effect is obviously

noticeable on the incoming network traffic and processor use, as in conventional cyber

attacks, but on cyber-physical targets such as this robotic vehicle, it also has an effect

on the speed, jitter and response delay of the physical movement. Here, it was observed

that the intermittent connectivity that is caused by the denial of service attack, leads

to a situation where the vehicle is forced to trigger temporarily and very frequently its

3.4. Attack scenarios 53

Figure 3.13: Robotic vehicle network interface traffic under normal operation

Figure 3.14: Robotic vehicle network interface traffic under DoS attack

fail-safe mechanism, which is simply to stop and it then resumes its movement. So, using

physical indicators of the movement of a vehicle can potentially help recognise the impact

of a DoS attack.

Below, two simple scenarios are discussed where the physical impact of a DoS attack was

observed when the vehicle’s speed is constant and when it is variable (e.g. when the

vehicle accelerates/decelerates or turns).

3.4. Attack scenarios 54

3.4.1.1 Scenario 1: Constant Vehicle Speed

The first scenario involves the vehicle moving at a constant speed. The robot’s speed is set

by a remote software application and its value can range from 0 to 127. For this scenario

a speed value of 94 is chosen arbitrarily, which results in an angular speed depicted in

Figure 3.15 where the vehicle operates without the presence of a DoS attack. This graph is

the result of sampling the wheel encoders with a period of 30ms, as mentioned in Section

3.2.

Figure 3.15: Scenario 1: Angular speed vs. time under normal operation

The next stage of this scenario involves the vehicle moving with the same selected speed

while sustaining a DoS attack. The vehicle jitters during the DoS attack due to it coming

to a full stop for a short period caused by the attack and then moving again. The result

of this setting is depicted in Figure 3.16. The effect of the DoS attack impacts the vehicle

at times 21.7s, 24.8s and 27.4s. The short period of 0 values for the encoder Figure 3.16

represent the halting of the vehicle. As the attack progresses the period that the robotic

vehicle is affected increased and this is discussed further in section 3.4.1.3 Physical Impact.

Note that the values reported by the magnetic encoders, as depicted in Figure 3.16, suffer

from spikes in the angular speed figures. These are related to the data collection rate

being too high rather than actual physical changes in speed.

3.4. Attack scenarios 55

Figure 3.16: Scenario 1: Angular speed vs. time under DoS attack

Table 3.6: Variable speed timing

Speed Speed Value Duration(ms) Start End
Low 81 6000 0 6000
High 94 6000 6000 12000
Low 81 6000 12000 18000

3.4.1.2 Scenario 2: Variable Vehicle Speed

The second scenario involves the vehicle changing between two speeds (slow - high). The

aim is to evaluate the effect of the DoS attack on the responsiveness of the vehicle with

respect to navigation commands. For this, we arbitrarily chose a slow value (here, 81)

and a high value (here, 94) that makes a noticeable difference in the vehicle’s speed. The

timing of the speed changes, illustrated in Table 3.6, is achieved by an automated script

running on the remote controller computer and communicated to the robotic vehicle over

a wired network.

There is a small delay of 0.4s for the vehicle in executing this scenario under normal

operation, as shown in Figure 3.17. With the attack ongoing, the vehicle receives strong

impacts at six different times 3s, 16s, 18.2s, 20.9s, 22.8s and 24.7s. The angular speed

reaches 0 or near 0 values. Figure 3.18 represent the halting of the vehicle, as well as a

significantly greater time in execution. This is the result of operation commands being

queued due to interruption of the attack. The DoS caused the robot to delay operation

from time to time, hence the total time is much larger during the on-going attack. Due

3.4. Attack scenarios 56

to the jitter and the delayed commands, the robot also moved a longer angular distance

than under normal operation, which also costs more in terms of energy.

Figure 3.17: Scenario 2: Speed change response under normal operation

Figure 3.18: Scenario 2: Speed change response under DoS attack

3.4.1.3 Physical Impact

Figures 3.17 and 3.18 depict the angular speed of the vehicle’s wheels versus time, with-

out and with DoS attack respectively. The results clearly indicate that launching a cyber

attack against a robotic vehicle is accompanied by physical effects which impair the ve-

hicle’s movement. More specifically, two significant physical indicators related to a cyber

attack have been identified.

3.4. Attack scenarios 57

Vehicle Halting: The first physical indicator was identified by inspecting the experi-

mental results and this is the robot’s movement pattern. Figures 3.16 and 3.18 clearly

show that when the vehicle is under a DoS attack, its movement becomes erratic. More

specifically, in Figure 3.16 it was observed that the vehicle halted four times. Moreover,

each of the halts has a different duration. A similar behaviour is shown in Figure 3.18,

where the robot’s speed varies throughout the course of the experiment. It was observed

that the vehicle halted six times in this case.

Delay in Responding to Navigation Commands: A second significant physical

feature that emerges from the vehicle’s behaviour when it is under a DoS attack, is

depicted in Figure 3.18. It can be clearly seen that there is a delay of 2.5s in transitioning

from the low to the high speed setting. Moreover, the overall duration of the robot’s

movement is prolonged by 7s.

3.4.2 Command injection attack

The command injection attack aims to execute a command with malicious intent [Loukas,

2015]. The primary target of this attack is to interfere with the device that controls an

actuator directly or indirectly. Command injection attacks can occur after an adversary

gains access to the control system either by hacking or through the lack of authentication

capability. The adversary must also understand the valid syntax to inject false commands.

Figure 3.19: Command injection attack: cyber attacker sends rogue commands to the
robotic vehicle during operation

With the testbed, the vehicle receives commands from its remote operator to move or

3.4. Attack scenarios 58

to turn. While receiving the continuous legitimate commands, another machine was set

up to send rogue commands. The vehicle is then receiving contradicting commands from

two different sources and trying to execute both of these incoming commands. While the

remote controller might want the vehicle to move forward, the rogue command could be

’stop’. While the vehicle is meant to turn right in its mission, the false command could be

’turn left’, sent by an attacker. The false command can also over-write legitimate ones.

The testing scenario was in two parts. During the first part, the vehicle was operating

under normal conditions and then in the second part while under attack from a malicious

machine. The robot’s position can be decided either by its speed value, which ranges

from the configured values 0 to 41, or the change in the position in one interval depicted

in Figure 3.20. This graph is the result of the left wheel encoder value with an interval

period of 30ms. The first half from 0s to 10.96s presents the normal operation while the

second half presents the effect of command injection attack. The attack was achieved by

injecting ’turn left’ and ’stop’ commands to the robotic vehicle control system.

Figure 3.20: Angular speed change with and without command injection attack over time
(s)

During the cyber attack, a physical impact was observed on the robot. The wheels show

frequent consistent jitter in movement due to the conflicting operating commands. This

physical indicator would help with detection of this type of cyber attack.

3.4. Attack scenarios 59

3.4.3 Malware attack

As the nature of malware has many types and forms, this work focuses on the following

two types of general malware scripts. One is disruptive to the network communication

by causing delays on the network and the other is destructive to the CPU which was

performing heavy calculating tasks.

Malware can affect physical components such as Stuxnet on Programmable Logic Con-

trollers. Stuxnet changes the value very slightly as there is no obvious physical impact.

This is similar to this malware attack against the CPU as there was no change in the

observable behaviour of the robotic vehicle. Whereas the other malware attack against

the network, caused a clear physical impact, manifested by frequent and consistent stops.

3.4.3.1 Malware attack against network (Malware NET)

The malware is simulated by a Linux Shell script, including a number of commands to

interfere with the network scheduler. The malware disrupts the network communication

and causes a delay in the network. It utilises the Linux kernel’s network scheduler to

modify the network traffic control setting. As a result, the robot’s movement becomes

erratic with frequent stops during the attacks.

3.4.3.2 Malware attack against CPU (Malware CPU)

Similarly, another Linux Shell script was designed to disrupt the processing power of

the vehicle. This piece of malware consumes processing through a resource-demanding

calculation with the use of a continuous loop. Unlike with other attacks, there is no

obvious change in the robot’s physical behaviour observed.

3.5. Features 60

3.5 Features

The focus here is on the types of data that can be extracted by a mobile cyber-physical

system without a considerable overhead. Also, it is necessary to choose a small set of

features that can represent the behaviours of both cyber and physical components of

the robotic vehicles for quicker data processing. To make the selection of the features,

the criterion was the relative important and the choice was made empirically through

experiments, as well as through the literature review. Eight input features have been

identified; four related to communication and processing, which are referred to as the

cyber input features, and four related to the physical properties of the robot, which are

referred to as the physical input features. The attack label is the ground truth for the

scenario, which corresponds to whether an attack really is present or not at a specific

point in time.

• Network Incoming: Received network traffic rates. This is one of the most com-

mon features used in network intrusion detection and especially for Denial of Service

attacks [Loukas and Oke, 2007]. In the vast majority of such attacks (excluding the

obscure category of low-rate ones [Kuzmanovic and Knightly, 2003]), the incoming

traffic rate is expected to increase rapidly. In distributed attacks, there is also a

ramp-up behaviour of this rate, as more and more sources start sending traffic to

their target.

• Network Outgoing: Transmitted network traffic rates, which is also a key indica-

tor to represent network performance during normal operation and cyber attacks.

Together with Network Incoming rate, this feature is a good indicator of network

bandwidth consumption which is helpful for indicating cyber attacks, especially for

detection at the edge node of a network [Siaterlis and Maglaris, 2005].

• CPU: The total CPU utilisation. [Yampolskiy et al., 2012] assessed the applicabil-

ity of Data Flow Diagram (DFD) techniques for CPS cyber attacks, which effects

bandwidth utilisation and CPU consumption.

3.5. Features 61

• Disk Data: The rate of data being written to the disk. [Paul, 2008] presented a

malware detection method that monitors disk-level behaviours. The study claimed

that this detection approach is resilient to many traditional obfuscation techniques,

because it is based on the behaviour of the disk activities.

• Encoder: Represents the wheel speed. [Yampolskiy et al., 2013] provided a taxon-

omy of different cyber attacks, targets and effect on CPS. For attacks on UAV, it

has been shown that the movement of the system will be altered. This effect is a

key indicator for describing and categorising different attack types.

• Accelerometer: Represents the vibration of the chassis (using accelerometer mea-

surements). Similar to wheel speed change, [Yampolskiy et al., 2013] identifies

abnormal physical vibration as a malicious impact on the CPS victim. Classifica-

tion of these insubstantial changes would link to known attacks on the CPS, which

helps with detection.

• Power: Corresponds to power consumption. These measurements are more critical

with Mobile CPS with limited power supply. With CPS smart grid system, [Marner-

ides et al., 2015] has created profiling power consumption measurements as part of

an enhanced anomaly detection system for the CPS.

• Current: Corresponds to current. Similar to power consumption, these important

values also reflect different physical impact of the CPS. With Mobile CPS, the

movement of the system has a strong effect on the energy consumption, hence the

current. These measurements can be helpful for indicating cyber attacks on the

system.

• Attack label: This is the ground truth label, which states whether there is an

attack or not at a particular point in time. This is used to train the intrusion

detection system and also to evaluate its performance.

3.6. Contrasting attack impacts on the features 62

Table 3.7: Cyber (C) and physical (P) features and their source function

Feature name Description and Type (C/P) Source Function
Network Incoming Network receive (KB) C Control
Network Outgoing Network transmit (KB) C Control
CPU Total CPU usage (%) C Control
Disk Data Disk Write Data (KB) C Control
Encoder Change in Left Encoder P Sensing
Accelerometer Vibration of chassis P Sensing
Power Power consumption (W) P Sensing
Current Electric Current (A) P Sensing
Label Attack Flag (1,0) Ground truth

3.6 Contrasting attack impacts on the features

Figure 3.21 shows the effect of the denial of service attack on some of the features moni-

tored on the vehicle. Naturally, for a denial of service attack based on volumes of network

traffic, it is Network Incoming (in the figure, referred to as RxKBTot) that is the feature

that is most obviously affected during an attack, but even physical features (e.g., RMS

value) seem to be affected by the accompanied vibration.

In terms of the command injection attack, the conflicting commands cause consistent and

frequent physical jittering, as the vehicle attempts to process and act on both commands

within very small periods of time and continuously. This effect can be observed in Figure

3.22, especially in relation to the instantaneous speed value for each wheel, as represented

by the encoder value (in the figure, referred to as diff encoder l), as well as by the very

high RMS values, which are the result of the consistent physical jittering.

A piece of malware disrupts the network communication by causing a delay in the network.

It utilises the Linux kernels network scheduler to modify the network traffic control setting.

Figure 3.23 illustrates the effect of the attack on some of the features monitored on the

vehicle, as captured experimentally.

The fact that cyber attacks on a cyber-physical system, such as a vehicle, can have

physical manifestation is both a hazard and an opportunity. It is a hazard because they

can cause physical damage, but it is also an opportunity because it can potentially enable

3.6. Contrasting attack impacts on the features 63

Figure 3.21: Denial of Service attack scenario.

Figure 3.22: Command injection attack scenario.

3.6. Contrasting attack impacts on the features 64

Figure 3.23: Malware attack scenario.

or contribute to detection.

After successfully capturing encoder values from a subroutine between the micro-controller

and control server computer, the data file was analysed for a pattern to detect the physical

impact of the attack. A monitoring process was developed on the robotic vehicle that

measured the encode value difference. The monitor process output these values to a

physical log file. The process raised a ”Robot stopped” flag in the log file when the

difference reaches 0 which means the robotic vehicle comes to a complete stop. Another

flag ”Robot is starting” was to alert when the vehicle changed from stopping state back

to moving. These flags indicate the abnormal time length during each stops, hence they

serve as Robot Halting physical indicators as discussed in the section 3.4.1.3 Physical

Impact.

For an initial investigation of the hypothesis that physical features can be valuable in

the context of detection, Snort [Roesch et al., 1999], which is a very widely adopted IDS

technology, has been employed. Snort can collect packets from the network to search for

3.6. Contrasting attack impacts on the features 65

those that match a pre-specified pattern based on pre-defined rulesets.

Figure 3.24: Wireshark packet analysis of DoS attack

Snort was set up to capture all network packets in these attack scenarios. Wireshark

[Combs, 2007] was then used as a tool to analyse the similarity in the packet characteristics

that belongs to certain attacks as in Figure 3.24.

For the particular simple attack, it was found that these packets shared the same values

for source and destination IP address and ports, TCP flags PSH and ACK, as well as some

common data in the content. Then, a simple set of Snort rules was developed to look

for those similarities with a threshold that specified the maximum number of packets/s

before Snort started to create a new alert. As this was a simple attack, it was easily

detected and alerts were generated.

Then, we combined these results based on Snort and the sole use of traditional cyber

(network) features with a flag showing when and whether the vehicle had experienced an

unplanned stop, as shown in Figure 3.25.

Interestingly, for the first very short bursts of the attack (within the 4-9 s period), Snort

did not pick up the attack because it had not yet matched its rules. Also, in the next

attack sessions (from 13 s and on), the attack is indeed detected by Snort but with a

delay in comparison to when the first physical stop was observed by the vehicle. This was

a simple scenario and a simple attack, but it did demonstrate the possibility that taking

3.6. Contrasting attack impacts on the features 66

Figure 3.25: Physical and cyber flag combination

into account physical features can help in a process that traditionally has relied solely on

cyber features. A more detailed investigation of this concept is presented in chapters 4

and 5.

Chapter 4

Detection with Decision Trees

4.1 Introduction

The goal here is (i) to provide a light-weight intrusion detection mechanism that can detect

a cyber attack against a robotic vehicle using both cyber and physical input features

and (ii) to compare the effectiveness of the intrusion detection against four different

cyber attack types: DoS, Command injection, Malware against Network and Malware

against CPU based on a performance metric including detection latency. As a lightweight

approach, a decision tree learning algorithm has been used for automatically producing

detection rules that will be used by the robotic vehicle.

A high-level overview of the system is illustrated in Figure 4.1. The framework design

of the intrusion detection mechanism aims to run on the actual robotic vehicle based on

its own monitoring processes and components without relying on any external system.

We have opted for a rule-based approach, because it is light-weight at run-time. For

the generation of the rules, a decision tree machine learning algorithm has been used for

its speed and simple construction. Machine learning is common in intrusion detection

systems for conventional computer systems [Sravani and Srinivasu, 2014] (but still not

for vehicles or other mobile cyber-physical systems). Especially the C4.5 decision tree

67

4.1. Introduction 68

Figure 4.1: Intrusion detection framework

algorithm has been used extensively to detect denial of service and other attacks [Kim

et al., 2014]. Here, the improved C5.0 algorithm [Patel and Rana, 2014, Noh et al.,

2003,Filippoupolitis et al., 2014] is used, with live data collected from the robotic vehicle.

Before applying the C5.0 detection mechanism, the data collection and preparation phase

is discussed (Section 4.1.1).

4.1.1 Data preparation

As representative of a wide range of possible attacks against a robotic vehicle, experiments

have been conducted where the vehicle is under a denial of service (DoS) attack, command

injection (C.I.) attack, and two kinds of malware attack, one targeting the CPU and

the other targeting the network (NET), as shown in Table 4.1, which also summarises

the primary physical impact observed during each one. These attacks are intermittent

between periods of normal operation.

4.1. Introduction 69

Table 4.1: Experimental scenarios

S# Type Impact observed
S1 DoS Inconsistent stops

S2 Command Injection Frequent consistent jittering

S3 Malware (NET) Frequent consistent stops

S4 Malware (CPU) No clear physical effect

S5 Normal operation No impact

S6 Combined DoS+C.I. Mixed impact

In normal operation (S5), all network traffic and applications running are legitimate.

They correspond to the camera feed transmitted to the operator, as well as the operator’s

legitimate commands to the robot.

S6 is a more complex scenario, where both denials of service and command injection are

combined into the same timeline, sequentially, with normal operation and under different

attack types and rates, while it is periodically moving and stopping, as shown in periods

p1 and p4 (Table 4.2). For this part, we limit the experimentation to setting the vehicle

to move in a straight line and at a constant speed and to halt repeatedly. The attack is a

simple denial of service attack at a bit rate of approximately 8.7 MBit/s originating from

an attacking machine. For a stronger DoS attack, a second PC was used to direct further

illegitimate network traffic to the robot. The aim of the attack is to flood the robot’s

network interface with TCP traffic. Under this attack the vehicle receives commands to

move forward from its legitimate operator, as well as stop commands from an attacker,

as in period p2, or turn left commands from an attacker, as in period p3. This scenario

is introduced to show a number of different realistic conditions that the vehicle might

endure. It also helps to explore further whether the addition of physical input features

can improve its effectiveness.

Table 4.2: Combined scenario (S6) with different attack types and time periods

Period p1 p2 p3 p4 p5

Description DoS
Data

Injection
”STOP”

Data
Injection
”LEFT”

Stronger
DoS from
two PCs

No attack.
Normal
traffic

Duration 307 s 173 s 79 s 29 s 221 s

4.1. Introduction 70

The data for the cyber and physical input features are captured from different locations

within the architecture (Figure 3.2) and at different points in time due to the lack of perfect

synchronisation and different sample collection periods (T) (see Table 4.3). For example,

the encoder value is collected by monitoring scripts embedded within the robotic vehicle

control unit, while Watts and Amps are measured with the WattsUp device [Watts up?,

2016]. As a result, the data needs to be processed to address the synchronisation difference

between the clocks of these different data collection devices, as previously discussed. Also,

linear interpolation is used to address the fact that different devices would collect data

at different time intervals. Figures 4.2, 4.3, 4.4, 4.5 and 4.6 show representative runs for

each of the scenarios S1, S2, S3, S4 and S6 using the data after clock synchronisation and

interpolation in R. We set the “ground truth” label to true when there is an attack and

false when there is no attack. In total, the six scenarios present 92,669 data points for

each feature.

Table 4.3: Cyber (C) and physical (P) features and their collection period

Feature name Description and Type (C/P) Period (T)
RxKBTot Network receive (KB) C 1.0 s
TxKBTot Network transmit (KB) C 1.0 s
CPU Total CPU usage (%) C 1.0 s
WriteKBTot Disk Write Data (KB) C 1.0 s
DiffEncoderL Change in Left Encoder P 30 ms
RMS Vibration of chassis P 20 ms
Watts Power consumption (W) P 1.0 s
Amps Electric Current (A) P 1.0 s
Label Attack Flag (1,0) 1.0 s

4.1.2 Training, testing and validation data for each attack

As mentioned already, S5 corresponds to the normal operation of the robot. Each attack

(S1-S4, S6) includes both the legitimate activities in the normal operation of S5 and the

illegitimate activity introduced by the particular attack. For the purpose of training,

testing and validation, we split the data (Figure 4.1) into two sets with sample size of:

• 80% for training and testing, of which the training data is chosen randomly from

4.1. Introduction 71

Figure 4.2: The data for cyber and physical features collected during the denial of service
attack (S1). The overlaid frames denote the periods of time that the denial of service
attack is on.

the 70% of this division, and testing is chosen from the remaining 30%.

• 20% for validation. This is holdout data that is not seen by the training models.

In line with the first goal, we allow our learning algorithm to use all or subsets of

the available input features to emphasise on the important of physical features:

– Set 1: All eight cyber and physical features

– Set 2: The four cyber features only

– Set 3: The four physical features only

4.1. Introduction 72

Figure 4.3: The data for cyber and physical features collected during the command in-
jection attack (S2). The overlaid frames denote the periods of time that the command
injection attack is on.

4.1.3 Detection method

As mentioned, we have identified the need for a robust classification method for be-

havioural characteristics of a robotic vehicle under attack using both physical and cy-

ber input features. Towards this goal, the investigation was started using a lightweight

knowledge-based approach. As an example of such an approach, a decision tree-based

algorithm was used, as in [Filippoupolitis et al., 2014]. Decision tree machine learning is

a common method for classifying data with high speed, strong learning ability and simple

4.1. Introduction 73

Figure 4.4: The data for cyber and physical features collected during the malware attack
against network scenario (S3). The overlaid frames denote the periods of time that the
network malware is active.

construction [Patel and Rana, 2014]. The decision tree C5.0 has been selected to define

the rule set for detecting the physical impact as well as the cyber attack on the robotic

vehicle testbed.

The decision tree C5.0 package [Kuhn et al., 2014] in R was used to generate the rule-

based classifier. Each decision tree model is fit by Quinlan’s C5.0 algorithm for each of

the different training data as mentioned in Section 4.1.2. So, it creates one model (i.e. one

ruleset) for each attack type. The decision tree C5.0 was chosen as the updated version

of C4.5, which has been improved in terms of speed, memory and efficiency.

4.1. Introduction 74

Figure 4.5: The data for cyber and physical features collected during the malware attack
against CPU scenario (S4). The overlaid frames denote the periods of time that the CPU
malware is active.

Then the intrusion detection classifier of each attack is evaluated against the testing data

and the validation data separately. This evaluation is in terms of its ability to correctly

recognise the existence or absence of an attack at each point in time. A sample section

of the decision tree rules generated is shown in Figure 4.7.

4.2. Evaluation 75

Figure 4.6: The data for physical and cyber features collected during S6 scenario with
5 periods (denoted as p1 - p5, and presented one after the other). The overlaid frames
denote the periods of time that a cyber attack (denial of service or command injection)
is on. Note that there is no attack in p5.

4.2 Evaluation

Choosing performance metrics for intrusion detection in cyber-physical systems is not

trivial, because their priorities are different to those of conventional computer systems.

Here, the confusion matrix, receiver operating characteristic (ROC) curves with its area

under the curve (AUC) and detection latency are used.

4.2. Evaluation 76

Figure 4.7: An example of the decision tree rules generated

4.2.1 Confusion matrix

The confusion matrix relates to the number of errors in the outcome of the intrusion

detection. The rate of false positives (FPR = FP/(FP + TN)) and false negatives

(FNR = FN/(FN + TP)) with regards to the “ground truth” and the overall accuracy

rate (ACC = (TP + TN)/(TP + FP + TN + FN)) are appropriate for the evaluation

of the performance of the system, where TP, TN, FP and FN stands for true positive,

true negative, false positive and false negative respectively. As cyber-physical systems are

still not common targets of attacks, they are likely to be the target of non-standard and

possibly zero-day attacks. This makes FNR important. In fact, FNR may also affect the

detection latency.

As mentioned in Section 4.1.2, the experiment consisted of building four different detection

models for the different attack types.

Tables 4.4 and 4.5 show high accuracy rates above 94% for testing data, which reflects the

“local-optimal” feature of the decision tree C5.0 algorithm. This is because the training

and testing data are sharing very similar characteristics as they are from the same set (but

4.2. Evaluation 77

Table 4.4: Detection results using only cyber input features

Test Validation
Attack ACC% FPR% FNR% ACC%
DoS 99.45 15.77 7.26 90.47
Command inj. 97.58 31.79 22.34 72.80
Malware (NET) 94.99 21.42 18.99 79.70
Malware (CPU) 97.03 21.16 6.76 85.31

Table 4.5: Detection results using both cyber and physical input features

Test Validation
Attack ACC% FPR% FNR% ACC%
DoS 99.84 10.76 41.44 66.70
Command inj. 99.53 29.60 5.74 81.99
Malware (NET) 99.20 25.70 11.31 80.92
Malware (CPU) 99.72 5.43 26.18 85.24

different samples). So, the testing data is the ideal condition where the attack observed

is very similar to the attack the system has been trained on. The results using validation

data correspond to a more realistic case, where the attack is of the same type but not

identical. Detection results for the DoS attack are relatively poor (albeit better than

the random guess). The other three attack detection models provide considerably better

results with regards to ACC.

Figure 4.8: Accuracy chart for the four models on test and validation data using cyber
only and cyber+physical features.

4.2. Evaluation 78

4.2.2 Receiver operating characteristic (ROC) curves

Table 4.6: Area under the curve (AUC) comparison using cyber only and both cyber and
physical input features

AUC
Attack Cyber only Cyber + Physical
DoS 0.89 0.73
Command inj. 0.75 0.87
Malware (NET) 0.82 0.86
Malware (CPU) 0.91 0.97

As the system is effectively a binary classifier (“Yes, there is an attack” vs. “No, there is

no attack”), the ROC curves are used to measure its performance. The ROC curve plots

the true positive rate (TPR) against the FPR for different thresholds as shown in Figure

4.9. In an ideal detection result, the curve should go through the point (0,1) where the

FPR is 0% and TPR is 100%. The area under the curve (AUC) of the ROC curves is a

metric to compare the quality of different binary classifier models.

The performance of all four detection models is demonstrated in Figure 4.9. Using the

ROCR package in R [Sing et al., 2005], it is possible to visualise how TPR and FNR change

for each detection model with different probability thresholds. As can be observed, the

AUC for the malware attack against the CPU (0.97) is considerably higher than other

attack scenarios. The models for command injection and malware (NET) attack have

similar AUC at 0.87 and 0.86 respectively. The DoS scenario has the lowest AUC model

at 0.73.

Repeating the same experiments without taking into account the physical input features,

the performance of the intrusion detection system drops noticeably for command injection

and the malware attacks, but not for DoS (see table 4.6 for the detailed comparison).

4.2.3 Detection latency

A primary concern for cyber-physical systems is their real-time nature, which means that

timeliness, and hence detection latency (DL) is particularly important. In fact, detection

4.2. Evaluation 79

Figure 4.9: The ROC curves of the detection rules for the cyber attacks in the case where
all eight cyber and physical input features are utilised.

latency may be potentially more important than the accuracy of the detection, as there is

no point in detecting an event after it has caused permanent physical damage to a vehicle

(e.g. by causing it to veer off the road and crash). A few researchers have included

detection latency as a metric, but mostly in relation to mobile ad hoc networks and

wireless sensor networks [Striki et al., 2009,Chin and Chuang, 2015]. It is proposed here

that this is a significant metric for assessing the performance of our system. This has also

been recognised in Mitchell and Chen’s excellent survey in [Mitchell and Chen, 2014].

Based on the design of the intrusion detection framework (Figure 4.1), there are various

factors that affect detection latency including the data collection time, the processing

time and the actual detection accuracy of the mechanism.

4.2. Evaluation 80

Figure 4.10: The ROC curves of the detection rules for the cyber attacks in the case
where only the four cyber input features are utilised.

The data collection time is the time it takes for all data to reach the detection system.

It depends on the collection period (T) of each feature, as in Table 4.3, the time taken

for data preparation, including the interpolation period, and the time it takes the data

to be sent for processing. Then, there is the processing time, which is the time it takes

the algorithm to process the data and reach a detection decision.

The data collection and processing times remain largely the same across different detection

scenarios (around 1 s). What does differ significantly is the delay in relation to the

accuracy of the algorithm. A false negative outcome would delay the detection of an

attack until the first true positive result is achieved for a given attack. So, a visual

presentation of detection latency is depicted in Figure 4.11. Note that the YES Vs. NO

4.2. Evaluation 81

Table 4.7: Detection latency (ms) for different attack types (cyber only vs. cyber +
physical)

Attack block (s) Detection latency
Attack Block Start End C (ms) C+P (ms)
DoS B1 374.04 423.04 520 500
Command inj. B2 312.32 331.32 1520 960

B3 342.32 361.32 1840 540
Malware (NET) B4 362.02 376.02 1520 1440

B5 393.02 407.02 1020 500
B6 422.02 436.02 1520 1520

Malware (CPU) B7 360.06 374.04 1520 700
B8 390.06 404.04 500 500
B9 420.7 435.04 500 520

points correspond to the ground truth. So, an incorrect detection on a YES line is a false

negative (FN), and on a NO line is a false positive. Detection latency is added by the

time of the first FN block (detection latency block) occurring at the beginning of each

YES (attack time) block (see Table 4.7).

4.2.4 The significance of physical features

To understand the role of physical features in detection, as mentioned in Section 4.1.2,

there should be different detection models with different sets of features for scenario S6.

As shown in Table 4.8, detection based on physical features only is rather poor (albeit

better than a random guess). Nevertheless, including physical features together with cyber

features provides considerably better results than using only cyber features with regards to

ACC and FPR, but is worse in terms of FNR. In terms of the features utilised the most by

the decision tree approach, these are the network incoming traffic rate ([NET]RxKBTot)

and the energy-related ones (Amps and Watts). While increased vibration of the chassis is

visually observed during some of these attacks, this feature is utilised less by the decision

tree algorithm. If we remove the physical features, then the algorithm relies almost

exclusively on [NET]RxKBTot and the CPU utilisation.

The benefits of adding the physical input features are more clearly seen in Figure 4.12.

4.2. Evaluation 82

Figure 4.11: Detection result for representative attack scenarios

Using the ROCR package in R [Sing et al., 2005], the performance for the three sets of

features are compared: cyber and physical; cyber only; and physical only. The three ROC

4.2. Evaluation 83

Table 4.8: Combined scenario (S6) result

Features Attribute usage FP% FN% ACC%

All Cyber &
Physical (8)

100.00% RxKBTot
99.63% Amps
61.93% Watts
17.53% TxKBTot
5.15% CPU
3.03% WriteKBTot
0.88% DiffEncoderL

4.56 8.76 93.81

Cyber
features
only (4)

100.00% RxKBTot
60.93% CPU
5.31% WriteKBTot
0.50% TxKBTot

25.91 3.45 82.81

Physical
features
only (4)

100.00% Watts
85.57% Amps
85.26% DiffEncoderL
71.50% RMS

50.21 12.59 64.40

curves in Figure 4.12 show different TPR, and FNR for different probability thresholds.

As can be observed, the area under the curve (AUC) is considerably higher when all eight

features are utilised (96.79%) than when only the cyber features (82.38%) or only the

physical features are utilised (69.31%). Figure 4.8 summarises the results for FPR, FNR,

ACC and AUC in a single bar chart.

We consider these results to be promising. As expected, cyber features play the most

dominant role in the detection rules identified by the decision tree algorithm. With

different training data sets, the decision tree algorithm may provide different rulesets, but

it is important to note that the inclusion of physical features has proven beneficial in all

experiments conducted regardless of the particular choice of a ruleset. Importantly, using

a simple ruleset-based approach allows for a very lightweight solution to the problem

of intrusion detection. For illustration, the overhead in terms of processing time for

the purpose of checking the rulesets continuously on the vehicle (e.g. every 1000 ms)

is the number of sample points times the processing time per sample, which in these

experiments was 50 ∗ 0.014ms = 0.71ms of processing overhead (for every 1000 ms),

which is insignificant for this robotic vehicle as well as the vast majority of vehicles.

4.3. Conclusion 84

Figure 4.12: The ROC curves of the detection rules for the three sets of features: Both
cyber and physical; cyber only; and physical only. The (0.0) to (1.1) line is the random
guess line.

4.3 Conclusion

As real-world and experimental cyber-physical attacks are becoming more prevalent, on-

board intrusion detection systems are expected to become particularly important, espe-

cially for standalone robotic vehicles, whether manned or unmanned [Loukas et al., 2013a].

It was hypothesised here that the existence of physical manifestations of cyber attacks on

vehicles and other cyber-physical systems constitutes an opportunity for intrusion detec-

tion purposes. A series of experiments have been conducted with four different types of

attack and different performance for each one has been observed. For example, it can be

seen that utilising physical features in addition to cyber features can increase the false

negatives dramatically, but this is not the case for command injection attacks. For these,

the addition of physical features improves all detection performance metrics. Similarly,

an improved performance is observed for the two types of malware attacks.

Looking beyond traditional performance metrics, what does appear to be a consistent

4.3. Conclusion 85

benefit is the noticeably lower detection latency. It is proposed here that for robotic

vehicles this is important. Poor accuracy, such as high false positives, is expected in

some cases, especially for highly dynamic systems that are influenced by their physical

environment. Here, the detection latency can be more important, for example, if an

unacceptably high delay means that a cyber-physical attack can cause the vehicle to

crash and injure human beings before it is detected.

In the next chapter, the possibility of utilising the physical features to enhance detection

accuracy are explored further, but using a more processing-heavy detection algorithm.

Chapter 5

Offloaded deep learning based

intrusion detection

5.1 Introduction

The technique presented in the previous chapter is relatively lightweight because the vast

majority of vehicles can afford only limited processing resources. The focus is on min-

imising the processing load, either by applying lightweight techniques from statistics or

by predefining simple behavioural rules that are easy to monitor. This is because they are

all limited by the onboard capabilities of the vehicle at hand. As a result, they usually

cannot leverage modern classification techniques, such as those currently developed in the

field of deep learning and also have a noticeable impact on the energy efficiency of the

vehicle. In effect, the stronger the detection algorithm, the less attractive a solution is for

a resource-constrained vehicle. To address this trade-off, we turn to the emerging field

of cloud robotics [Hu et al., 2012]. The proposal is to offload the bulk of the processing

required to run a deep learning algorithm for intrusion detection to a more powerful in-

frastructure (whether a single server, cloudlet or cloud). Computation offloading, refers

to the process of executing certain computational tasks on more resourceful computers

86

5.1. Introduction 87

which are not in the user’s immediate computing environment. The concept has similar-

ities with the online forensics techniques used for cloud-based detection of malware and

tainted data on Android smartphones [Houmansadr et al., 2011,Portokalidis et al., 2010].

However, instead of crowd-sourcing detection, the focus here is on utilising computational

offloading to enable deep learning without the processing and energy cost which would

otherwise be prohibitive for a vehicle.

Computational offloading is a common approach for the similarly resource-constrained

mobile devices. As the number of vehicles that require protection against cyber attacks

is increasing, offloading the task of intrusion detection to remote servers, cloudlets or

general purpose cloud infrastructures becomes a realistic option. The increased process-

ing resources that are available in this manner can allow much more advanced detection

approaches, e.g. based on deep learning. In this chapter, a proof of concept has been pro-

vided by the implementation of intrusion detection offloading for a small robotic vehicle,

which uses a deep learning architecture to achieve noticeably better detection accuracy

than standard statistical machine learning techniques. Data related to the cyber and

physical processes of the vehicle are collected periodically and fed as time series data to a

recurrent neural network architecture, benefiting from a long short-term memory hidden

layer, which helps learn the time context of the impact of the cyber attacks on the robotic

vehicle. The attacks include denial of service, command injection and malware exfiltrat-

ing large amounts of data. The practicality of offloading deep learning based intrusion

detection periodically depends on the resources afforded onboard and on the remote in-

frastructure, as well as the reliability and performance of the means of communication

between them. The relationship with a mathematical model is evaluated, which takes into

account network failures and packet losses and validates it experimentally. Naturally, the

more demanding the computation, e.g. when increasing the number of hidden neurons,

and the more reliable the network connection, the more attractive the offloading option

becomes.

At the same time, over the past couple of years, the growing maturity in deep learning

algorithms has led to wider use outside of its traditional applications in image and natural

5.2. Cyber-physical intrusion detection using a recurrent neural network architecture 88

language processing. Up to now, most deep learning based IDS proposals have addressed

attacks against traditional computer networks, showing the superiority of the approach

on the old KDD Cup 99 [Kim et al., 2016] and the refined NSL-KDD [Javaid et al., 2016]

datasets. An exception is a recent work by Kang et al. [Kang, 2016], which is geared

towards the automotive industry and specifically vehicles that rely on the controller area

network (CAN) bus. While a promising start, the particular work is limited to a generic

command injection attack, which is detected by monitoring a single data source (the

network packets on the CAN bus) and using a generic deep neural network architecture,

which does not account for the temporal aspects or the overall state of the vehicle. Also,

it has been evaluated only in simulation. Here, we progress further with the following key

contributions:

• Design a recurrent neural network architecture that is appropriate for the real-time

analysis of multiple sources of data collected periodically onboard the vehicle and

representing both its cyber and physical processes

• Produce a prototype implementation of deep learning based intrusion detection for

cyber-physical attacks on a real robotic vehicle, tested for three different types of

attacks and compared against some of the most popular statistical machine learning

techniques

• Evaluate both experimentally and using a mathematical model the practicality of

a computational offloading configuration for providing resource-constrained cyber-

physical systems with access to high-end intrusion detection

5.2 Cyber-physical intrusion detection using a recur-

rent neural network architecture

Figure 5.1 summarises the overall experimental approach taken for construction of the

deep learning IDS. Three different types of cyber attack were launched against the robotic

5.2. Cyber-physical intrusion detection using a recurrent neural network architecture 89

Figure 5.1: Detection approach

vehicle and data was collected with regards to eight features, appending the ground truth

labels based on the timings of the attacks (whether an attack was really in action at each

point in time or not).

As the data from different features come at different times and at different sample rates,

they were synchronised in a pre-processing phase. The output of pre-processing is a data

stream with a data point sample interval of τ = 20ms. In the learning phase, the data is

split into a training set and a validation set (ratio 0.7:0.3). The recurrent neural network

algorithm is applied on the training data to produce a detection model, as defined by

the weights of the connections between neurons. The model is then validated using the

validation set before producing the final classifier, which is evaluated experimentally using

real-time testing data.

Cyber-physical attacks interacting between sensors, actuators and computational compo-

nents often exhibit temporal correlations based on complex time dependencies of arbitrary

length. For example, in a cyber-physical system such as a robotic vehicle, a rogue opera-

tor executing remote command injection may command the vehicle to accelerate forward.

As a result, this may cause a spike in network traffic leading to a change in vehicle wheel

speed, which increases power consumption and current. Here these feature interactions

occur one after the other in a specific sequence. The result of such sequential temporally-

related behaviours leads to the generation of time series datasets with the potential for

5.2. Cyber-physical intrusion detection using a recurrent neural network architecture 90

high-dimensional inputs that change over time. For feed-forward neural networks, this

type of key temporal information can be lost due to the fact that classification is based on

recognising patterns in unidirectional feature-space, where the output of an input layer

does not affect the same layer. That is, a feed-forward neural network looks for occur-

rences of the same patterns in the feature-space based on current state, irrespective of the

prior inputs patterns that came before. By comparison, recurrent neural networks exhibit

dynamic temporal behaviour by using internal memory to process arbitrary sequences

of inputs based on interconnected hidden layers from previous input states; feeding the

hidden layers from the previous states as an additional input into the next state. In

this manner, recurrent neural networks are trained based on historic and current inputs,

where the likelihood of an attack occurring depends both on prior states of the features

and the current states of the features at that point in time. In other words, a recurrent

neural network can be seen as a feed-back neural network where input is bidirectional by

introducing loops that feed prior input back into the network.

As cyber-physical attacks occur as a series of both cyber and physical events over time,

a recurrent neural network approach has been chosen for the development of the cyber-

physical IDS, which is proven to be highly appropriate for handling multivariate sequential

time series data [Barbounis et al., 2006, Du et al., 2015]. Figure 5.2 shows the recurrent

nature of the learning process, where X(t) is the vector of input features and Y (t) is

the binary detection decision (0 if no attack, and 1 if attack) at time t, and Y (t) =

WX(t) + RX(t−1), with W and R being the weight matrices in relation to X and the

incorporation of the output of the previous step respectively.

In terms of the deep learning architecture designed for our intrusion detection methodol-

ogy, in the input layer, U (1), U (2), ..., U (n) is the time series dataset in a period T , which

corresponds to n = T
τ

data points. We group k consecutive data points together into

X(k), X(k+1), ..., X(n), as shown in Figure 5.3. The purpose of grouping is to help the

algorithm have a picture of more than a single point in taking a detection decision, but

without using the whole dataset (of n data points in one period T) either, which would

increase considerably the detection latency. So, 1 ≤ k ≤ n. The hidden layer includes

5.2. Cyber-physical intrusion detection using a recurrent neural network architecture 91

Figure 5.2: Learning process using recurrent neural network

a Long-Short Term Memory (LSTM) layer, a dense layer and Sigmoid activation. Con-

ventional recurrent neural networks find it difficult to train with long step sizes due to

the“vanishing gradient” problem in gradient-based activation functions (such as sigmoid

or tanh). The vanishing gradient relates to the exponential decrease in the size of the

gradient (from which the network learns changes in the input parameters which affect the

expected output) by iteratively mapping large input regions into smaller output regions

through sequential layers or long inputs sequences in the neural network [Bengio et al.,

1994]. As a result, when the gradient reaches a value near zero, the recurrent nature of

the neural network produces small outputs even for large changes in input.

LSTM helps solve this problem by employing a “gating” function (1 to remember the

input and pass it to the next hidden node/layer or 0 to forget the input) that replaces

the activation function. The network is trained on the combination of the gates in the

network and as long as the gates are 1 along the input sequence or across all hidden layers

in the network, the network can remember the values of early input to identify how it

affects the expected output. Using this approach the neural network takes into account

the time context of the impact of the cyber attacks on the robotic vehicle, by learning

long-term dependencies on the input. We use a standard LSTM architecture, with each

block containing gates that determine the significance of the input and whether it should

5.2. Cyber-physical intrusion detection using a recurrent neural network architecture 92

Figure 5.3: Deep learning architecture

5.3. Experimental evaluation of deep learning based detection accuracy 93

continue to remember its value or forget it, and when it should output it. The LSTM

layer is followed by a dense layer, where the number of hidden nodes serves as our main

tuning parameter. Then, a sigmoid activation function converts the values produced by

the dense layer into real values between 0 and 1. Finally, a binary detection decision (0

or 1) is taken based on a predefined threshold, which is our second tuning parameter.

For the deep learning implementation, we used Keras [Chollet, 2015] to run on top of

TensorFlow/Theano library. Keras is a Python neural network library that supports easy

and fast prototyping through modularity, minimalism and extensibility.

5.3 Experimental evaluation of deep learning based

detection accuracy

For the deep learning intrusion detection model, the RNN architecture has been designed

as shown in Figure 5.3, where Table 5.1 lists the configuration variables of the RNN which

behave as a set of tuning parameters for the detection model. The cyber and physical

input features are captured from different locations within the architecture (Figure 3.2)

and with different sample collection periods/interval (see Table 4.3). Interval T is the

shortest time to have all the features collected and single point sample interval τ is the

fastest rate that the features were captured. The sample size n (= T/τ) per interval then

is equal to 50 (= 1s/0.02s).

The k grouping for combining a set of consecutive features into one is a type of recurrent

sliding window technique in machine learning to improve the accuracy [Dietterich, 2002].

In the paper, applying the recurrent sliding window technique could help to increase the

percentage of correct word-level pronunciation by 12%. [Trutschel et al., 2014] claimed

that the classification errors are reduced by 8% on average using the application of fea-

ture combination. [Plahl et al., 2013] also found 5% relative better work error rate with

fewer parameters using feature combination and stacking for both recurrent and non-

5.3. Experimental evaluation of deep learning based detection accuracy 94

Table 5.1: Deep learning parameters

Parameter Value

Interval T 1 s
Single point sample interval τ 0.02 s
Sample size n per interval 50
Grouping k 10
Number of hidden nodes 20, 200, 600, 800, 1000
Number of epochs 300
Dropout ratio 0.3
Batch size 16
Validation ratio 0.3
Loss function Binary cross entropy
Optimiser adam
Activation function Sigmoid
Metric Accuracy (ACC)

recurrent neural network. [Li et al., 2016] acknowledged the strength of sliding window

design technique and proposed a multi-task end-to-end joint classification and regression

recurrent neural network to capture the long-range temporal dynamics in a time series

features. Here, we experimented with using groups of k = 10 and compared this case

to not grouping at all (k = 1, no-grouping) and to using a single group for all the fea-

tures in one interval (k = 50, max-grouping). It was found that grouping (i.e. k = 10)

exhibited higher accuracy 87.54% compared to 86.81% and 86.03% for no-grouping and

max-grouping cases in the experiments.

To evaluate the performance of the intrusion detection model, we have used a standard

confusion matrix to determine the number of correct and incorrect detection results. This

included TP (true positive - correct detection of attack), FP (false positive - incorrect

detection of attack), TN (true negative - correct detection of non-attack), FN (false neg-

ative - incorrect detection of non-attack)) and calculated the overall accuracy rate ACC

(ACC = (TP + TN)/(TP + FP + TN + FN)). ACC is selected as a consistent metric

for comparing different RNN detection models performance on unseen test data. ACC

was also used as the key performance criterion for comparing our deep learning model

with other machine learning (ML) techniques. Figure 5.4 shows the overall accuracy of

each RNN model, differentiated by a number of hidden nodes (neurons) in the model

5.3. Experimental evaluation of deep learning based detection accuracy 95

Figure 5.4: Detection accuracy with deep learning models for different cyber attacks

configuration for different cyber attacks.

5.3.1 Deep learning vs. popular machine learning techniques

For deep learning to be practically useful in the long term, it is important that it performs

better across a range of attacks against standard statistical machine learning algorithms.

For comparison, algorithms have been chosen which are considered safe choices for classi-

fication across a range of domains. A comprehensive study by Delgado et al. [Fernndez-

Delgado et al., 2014], which put to the test 179 different machine learning classifiers across

121 different datasets, showed that random forest was the best-performing technique, with

an average accuracy of 94% and reporting over 90% accuracy across 84% of the datasets,

followed closely by Support Vector Machines (SVM) with an average of 92% accuracy. For

these reasons, random forest and SVM are commonly used in intrusion detection [Hasan

et al., 2014]. In table 5.2, we compare our deep learning based approach with random

5.3. Experimental evaluation of deep learning based detection accuracy 96

forest, SVM with a radial kernel, SVM with linear kernel, logistic regression and decision

trees. Deep learning achieves the highest accuracy rate in two of the three attacks, as

well as the highest overall average (89.03%).

Logistic Regression functions are a special case generalised linear model, employing Bernoulli

distribution to estimate the probability of a binary response based on one or more indepen-

dent features (e.g., robotic vehicles cyber-physical attributes) and their relationship with

a categorical dependent variable (e.g. the attack label); the probability output is applied

to a threshold (typically 0.5) as to whether the classification is 1 or 0. Support Vector

Machines (SVM) employ the concept of a hyperplane in n-1 dimensional space that best

separates two classes of datapoints with the maximum margin. In SVM, datapoints that

support either side of the hyperplane are the ”support vectors” and in cases where these

data points are not linearly separable, are projected to a higher dimensional space where

linear separation is possible. In the case where multiple classes are present (e.g. multi-

ple feature variables and a dependent variable), a one versus many binary classification

approach is taken. C5.0 and Random Forest are naturally non-linear machine learning

algorithms, whereby C5.0 functions as a decision tree classifier employing Boolean logic

in series of decision rules, inferred by the feature data, to determine which class the data

belongs to. Random Forest is an ensemble tree classifier that trains n decision trees with

different re-sampled versions of an original dataset, reducing the high variance inherent in

a decision single tree and improving the generalisation of model performance by averaging

the standard error of n trees across the ensemble in order to produce a final model with

minimal variance.

In the experiments, the linear classifiers logistic regression and SVM comfortably outper-

formed their non-linear counterparts, with the exception of the deep learning classifier.

In fact, compared to the popular machine learning techniques tested in the experiment

our RNN-LSTM deep learning model achieves the highest detection accuracy rate in two

of the three attacks, as well as the highest overall average (89.03%); practically match-

ing the logistic regression classifier’s performance for denial of service detection (95.36%

compared to 95.92%, respectively). The experimental results give a good indication of

5.4. The networking configuration of offloading 97

Table 5.2: Comparing the performance of the deep learning and other popular machine
learning algorithms for cyber-physical IDS classification

Machine learning technique Attack ACC (%) Average ACC(%)

Logistic Regression
Denial of Service 95.92*

84.40Command Injection 82.51
Malware 74.77

Decision Tree (C5.0)
Denial of Service 68.34

72.10Command Injection 63.56
Malware 81.91

Random Forest
Denial of Service 75.43

77.51Command Injection 75.06
Malware 82.05

SVM (Radial Kernel)
Denial of Service 79.45

78.61Command Injection 72.59
Malware 83.80

SVM (Linear Kernel)
Denial of Service 95.18

86.69Command Injection 85.15
Malware 79.75

Deep Learning (RNN)
Denial of Service 95.36

89.03*Command Injection 87.54*
Malware 84.20*

*Best performing technique

the deep learning models general ability to perform accurate detection across a range of

different attacks; supporting its applicability as a robust IDS classifier when compared to

other standard machine learning techniques which were not as consistent across the three

attacks tested.

5.4 The networking configuration of offloading

The network testbed consists of three discrete modules, an 802.11n wireless local area

network (WLAN), a point to point wide area network (WAN) via the WANem wide area

network emulator and a remote OpenStack cloud platform. The WLAN provides the

vehicle with mobile connectivity to a local network gateway conducting port forwarding

between the vehicle and the deep learning server for offloading, through an SSH tunnel

over the WAN. Using the client-side URL transfer library libcurl [Stenberg, 2016] and

PyCURL (Python Interface to libcurl), the vehicle offloads detection tasks by uploading

5.4. The networking configuration of offloading 98

sensor data samples, at interval period T .

The offloading process has been designed to employ a lightweight mechanism that is both

robust to different network conditions and suitably secure, enforcing data confidentiality,

integrity and authenticity. For this the HTTPS (HTTP over Transport Layer Security

1.2 (TLS)) protocol was selected to perform network offloading to a web server (via

PyCURL), using the traditional client-server model to transfer over a authenticated and

encrypted communication channel. Certificate-based public key server authentication

was employed to guarantee the identity of the cloud test-bed (and the trustworthiness

of the detection results source). Aside from data confidentiality and integrity protection

supplied by Transport Layer Security (TLS) 1.2, HTTP was selected as a robust network

transport protocol due to its native reuse of existing persistent connections via keep-alive

functionality; ensuring the TLS handshake is performed only during the initial connection.

As a result, an HTTP request to offload data to the web server will reuse an existing HTTP

connection as long as the detection offload period and transport latency is smaller than

the HTTP keep-alive timeout configured. In this configuration, latency incurred by the

TLS handshake is effectively avoided after the vehicle’s initial offload (e.g. when the

vehicle turns on or connects to a network), with subsequent encryption and decryption

introducing negligible microsecond latency [Dierks, 2008], confirmed with the sample of

data load in the empirical experiments. Moreover, HTTP provides a lightweight choice

for data transport as it employs data transfer pipelining and automatic data compression

which helps optimise TCP performance and packet transfer speed, reducing network load

and symptomatically decreasing detection latency.

All data communication between the vehicle and remote web server is vehicle initiated,

through the use of python scripts making calls to the libcurl library. The scripts operate as

a set of continual loops. On initiation, a sensor sample generated at interval T is retrieved

and transferred via an HTTP POST to the deep learning cloud for every detection period

Td. If the POST is successful, another loop is then spawned, continually polling the server

with HTTP GET requests until a detection result is successfully retrieved. On receipt

of the detection result, the next sensor sample is then collected when the next detection

5.5. Evaluating the practicality of offloading detection 99

Figure 5.5: Experimental testbed including vehicle and offloading infrastructure

period is reached and the HTTP data transfer process is repeated. Figure 5.5 shows a

high level overview of the network topology used to remotely access the cloud.

5.5 Evaluating the practicality of offloading detec-

tion

Recently, Canziani et al. conducted a study that compared the computational perfor-

mance between multiple state-of-the-art neural network architectures in terms of classi-

fication accuracy, memory footprint, parameters, operations count, inference time and

power consumption [Canziani et al., 2016]. The study showed that for a minor increase

in classification accuracy, the computational cost (e.g., processing time) was also signif-

icantly increased. Therefore, given the resource constraints inherent in a power-limited

vehicle, it would be more efficient to off-load this task to an external and likely more pow-

erful system in order to reduce computational processing time and minimise detection

latency as a result.

In this manner, realising the benefits of offloading detection across a distributed service to

a server, cloud or cloudlet, the transportation of detection data requires network connec-

tivity that is resilient to and practically useful over variable conditions; especially over the

public Internet where no reliability or quality of service is guaranteed. For cyber-physical

systems relying on fast and reliable attack detection, the problem is exacerbated by the

5.5. Evaluating the practicality of offloading detection 100

risk of dropping crucial data due to unreliable network connectivity. Therefore, a trade-off

between onboard detection and remote offloading is largely determined by the available

local resources and the quality of network conditions to the remote detection system.

We consider the task of offloaded periodic cyber-physical intrusion detection, which in-

volves uploading the latest sample of data collected from the vehicle to a remote server in

time tx, processing the data on the remote server to produce a detection result in time ts,

and transmitting the result back to the vehicle in time tr, followed by possible idle time

ti until the next iteration. So, the detection period Td is Td = tx + ts + tr + ti. Detection

can be practical (and not cause an infinitely increasing queue of delayed results) only if

ti ≥ 0, as presented visually in Figure 5.6.

Figure 5.6: Example of variable offloading detection latency within the constraints of
detection period Td. The top and middle figure correspond to the practical cases, where
ti > 0 or ti = 0 respectively, while the bottom figure corredsponds to the impractical case,
where ti < 0.

Assuming that detection is accurate and an attack has occurred at a random point in

time within the previous interval Td, then the detection latency tl is the time between oc-

currence of attack and beginning of next detection cycle plus the time to upload the data,

process them, and return the result. Assuming uniform distribution of the probability

of the attack having occurred at a random time within Td, then the mean corresponding

delay is Td
2

, and overall the mean detection latency is:

t̄l =
Td
2

+ t̄x + t̄s + t̄r (5.1)

5.5. Evaluating the practicality of offloading detection 101

Figure 5.7: Network offloading time sequence for offloaded IDS detection with sample
collection period Tc and detection period Td. The practicality of offloading depends largely
on the time ts needed to complete detection on the server, which in turn depends on the
server’s processing resources and the algorithm’s complexity.

The time to complete the processing to produce the detection result depends on the algo-

rithm chosen, implementation approach and the processing resources that are available,

as illustrated in Figure 5.7. The aim is to evaluate the upper limits for ts with CPU

resources available in a typical public remote processing platform (remote server, cloudlet

or cloud) that allows periodic offloaded detection to be practical, which translates into ti

not dropping below 0.

In ideal communication conditions, where there are no packet losses or network failures

and in accordance with the standard practice in computation offloading modelling [Kumar

and Lu, 2010,Loukas et al., 2016], the time to upload or receive data over a communication

channel can be modelled in relation to the data size uploaded Dx and received Dr by the

vehicle and the corresponding transmitting rate Rx and receiving rate Rr as:

t̄x
(ideal) =

Dx

Rx

(5.2)

t̄r
(ideal) =

Dr

Rr

(5.3)

Thus, the mean detection latency in ideal communication conditions can be represented

as:

t̄l
(ideal) =

Td
2

+
Dx

Rx

+ t̄s +
Dr

Rr

(5.4)

In non-ideal communication conditions, where we consider packet loss with a probability

5.5. Evaluating the practicality of offloading detection 102

p, we assume that, the delay in establishing that a packet is lost and retransmitting

means that each bit lost incurs an increase in communication delay equivalent to the time

it would take to transmit l bits, where l ∈ R+. Mean detection latency in the presence of

packet loss becomes:

t̄l
′
=
Td
2

+ ts + (1 + lp)(t̄x
(ideal) + t̄r

(ideal)) (5.5)

=
Td
2

+ ts + (1 + lp)(
Dx

Rx

+
Dr

Rr

) (5.6)

Mean detection latency increases further if we also take into account the likelihood of a

network failure occurring after random time tθ since last failure and being repaired after

random time tξ. We assume that failures occur independently and the number of failures

occurring in a period Td follow a Poisson distribution with constant mean 1
θ
, where θ ∈ R+

is the mean time between failures (MTBF). We assume that the time to repair after a

failure follows a normal distribution with a mean time to repair (MTTR) ξ, and standard

deviation σξ for the latter.

Communication mechanisms used to transmit the data sample or receive the detection

result may implement a form of “keep alive” functionality, which keeps a network session

alive for up to TK time after a failure has occurred. If this time elapses, the session needs

to be re-established with handshakes, e.g., for SSL. We denote the delay incurred by the

handshakes as th.

So, the extra delay incurred by one failure can be represented as:

1[tξ < TK]tξ + 1[tξ ≥ TK](tξ + th)

= tξ + 1[tξ ≥ TK]th

The mean extra delay due to one failure becomes:

ξ + (1− P (tξ < TK))t̄h

5.5. Evaluating the practicality of offloading detection 103

In a detection period Td, due to the Poisson property, the expected number of failures is

1
θ
Td. So, the mean detection latency in the presence of both packet losses and network

failures is:

t̄l = t̄l
′
+
Td
θ

(ξ + (1− P (tξ < TK))t̄h) (5.7)

t̄l =
Td
2

+ t̄s + (1 + lp)(
Dx

Rx

+
Dr

Rr

)

+
Td
θ

(ξ + (1− P (tξ < TK))t̄h)

(5.8)

To evaluate the maximum mean time that processing should take to produce the detection

result, we take the extreme case of no idle time between detection intervals, hence ti = 0

and consequently Td = t̄s,max + t̄x + t̄r. Equivalently:

t̄s,max = Td − (t̄x + t̄r) (5.9)

The mean latency introduced after the data sample has been collected on the vehicle is

(based on (5.1)):

t̄x + t̄s + t̄r = t̄l −
Td
2

(5.10)

t̄x + t̄r = (1 + lp)(
Dx

Rx

+
Dr

Rr

)

+
Td
θ

(ξ + (1− P (tξ < TK))t̄h)

(5.11)

So, (5.9) becomes:

t̄s,max = Td − (1 + lp)(
Dx

Rx

+
Dr

Rr

)

−Td
θ

(ξ + (1− P (tξ < TK))t̄h)

(5.12)

Now, consider the general case where the detection period may be different to the data

sample collection period Tc. So, Tc = aTd, a ∈ [0, 1]. If a = 1, the detection mechanism

runs often enough to ensure complete coverage of time, while a < 1 means that the

mechanism covers a fraction of the time and an attack may be missed if it occurs outside

5.5. Evaluating the practicality of offloading detection 104

this fraction. Substituting Td by Tc
a

, (5.12) yields:

t̄s,max =
Tc
a
− (1 + lp)(

Dx

Rx

+
Dr

Rr

)

−Tc
aθ

(ξ + (1− P (tξ < TK))t̄h)

(5.13)

Four network scenarios have been chosen to utilise and validate the model: For network 1,

we consider the ideal conditions experienced in a laboratory testbed (ours, in this case).

Network 2 represents an ideal cloud service, profiled by measuring real cloud services via

the cloudharmony1 web service. The network latency results were used to determine a

baseline average transmission delay from London (the experiment test-bed location) to

Google Compute Engine cloud platform for the round-trip time (RTT) of an HTTPS GET

request. For network 3, we have utilised the performance statistics from the 2014 Ofcom

mobile broadband study in the UK [OFcom, 2014]; providing an accurate measurement

of latency for a typical 4g/3g network service. Network 4 represents an unstable network

with a high probability of packet loss, connectivity failures and latency. Table 5.3 provides

a summary of the configuration parameters utilised in our evaluations.

Table 5.3: Network scenarios used in experiments and by mathematical model

Profile Network 1 Network 2 Network 3 Network 4
Round-trip time 4 ms 12 ms 54 ms 200 ms
Packet Loss (p) 0 0.001 0.01 0.03
MTBF (θ) 160 s 60 s 20 s 10 s
MTTR (ξ) 4 s 4 s 5 s 5 s
Rx bitrate 174 Kbps 158 Kbps 116 Kbps 29 Kbps
Rr bitrate 82 Kbps 21 Kbps 5.62 Kbps 0.392 Kbps
Keep alive time (TK) 5 s 5 s 5 s 5 s
Handshake time (th) 37 ms 52 ms 102 ms 416 ms

5.5.1 Network model validation against experiments

Figures 5.8-5.11 show the comparison between model and experiment for the four network

configurations specified in terms of the detection latency (average of five runs). For

1https://cloudharmony.com/speedtest

5.5. Evaluating the practicality of offloading detection 105

Figure 5.8: Detection latency as measured experimentally and estimated mathematically
for the case of network configuration 1. The black curve corresponds to the detection
latency when the processing occurs on the vehicle itself without offloading via a network.

Figure 5.9: Detection latency as measured experimentally and estimated mathematically
for the case of network configuration 2. The black curve corresponds to the detection
latency when the processing occurs on the vehicle itself without offloading via a network.

network configurations 1-3, the model’s estimation is very close to the actual detection

latency values obtained via the experiments. In the case of the very unreliable network

(network configuration 4), the model is less accurate (off by 15-33%), mainly because

it assumes that a network returns to its healthy state immediately after recovery and

handshakes. In practice, some residual delays may occur in highly congested networks.

Nevertheless, we have found that the model’s accuracy in reasonably reliable networks

is excellent and can be used to take offloading decisions (whether detection should run

onboard or offloaded).

Both model and experimental evaluation agree that, from the perspective of mean detec-

5.5. Evaluating the practicality of offloading detection 106

Figure 5.10: Detection latency as measured experimentally and estimated mathematically
for the case of network configuration 3. The black curve corresponds to the detection
latency when the processing occurs on the vehicle itself without offloading via a network.

Figure 5.11: Detection latency as measured experimentally and estimated mathematically
for the case of network configuration 4. The black curve corresponds to the detection
latency when the processing occurs on the vehicle itself without offloading via a network.

5.5. Evaluating the practicality of offloading detection 107

Figure 5.12: Max ts against different values of a for the four network configurations

tion latency, offloading detection via networks 1 and 2 is preferable to running it onboard,

if the deep learning architecture includes 200 neurons and above. This number increases

to approximately 600 neurons for network 3. With the same criterion of reducing detec-

tion latency, it is never practical to offload detection via network 4 in any of the cases

evaluated (between 20 and 1000 neurons).

5.5.2 Network model results

Having confirmed the relative accuracy of the model in Section 5.5.1, here, it is utilised

to identify the maximum practical value for ts in different conditions, as well as the

estimated t̄l in each network configuration specified in Table 5.3. Figure 5.12 summarises

the effect on the maximum practical value for ts of different values for a in the four

network configurations.

We observe that out of the four network configurations utilised, only the fourth, which

corresponds to the least reliable network, would be impractical for offloading the task of

continuous deep learning based intrusion detection. This is because the maximum value

for ts would be negative, but ts obviously needs to be a positive value, as it represents

time. We also observe that, as expected, the lower the coverage ratio a, the greater

the ts,max. Of course, reducing the coverage ratio means that particularly short-duration

attacks with no lasting cyber or physical impact may be missed by the detection process

5.5. Evaluating the practicality of offloading detection 108

Figure 5.13: Max ts against different values of MTBF (θ) and a for MTTR ξ = 2s

altogether. Sections 5.5.2.1-5.5.2.4 provide the detailed results for each network.

5.5.2.1 Network 1 model results

Network 1 model represents the LAN-based server using the measurement from existing

lab testbed. The detail configuration parameters are defined in Table 5.3. For each value

of MTTR ξ = (2 s, 4 s, 6 s), we tested four different detection coverage ratios a = (0.1,

0.25, 0.5, 1). These results are depicted in Figures 5.13, 5.14, and 5.15. These line graphs

compares the ts,max or Max ts, measured in second, which are considered the tolerance

level of processing time for detection system. Noticeably, the ts,max values are higher for

a smaller value of coverage ratio (a) in all the cases.

In Figure 5.13, ts,max or Max ts represents the maximum processing time that can be

practical for the offloaded detection, it is effectively a measure of the minimum processing

power that the setup can tolerate. Starting from Figure 5.13, it shows, as expected, that

the lower the coverage ratio a the lower the processing power that is needed (as the higher

the ts that can be tolerated). Specifically, in the case of MTTR ξ = 2 s, ts,max starts

at 0.63 s for a = 1 and reaches 7.8 s for a = 0.1, in the case of low MTBF. At MTBF

θ = 100, ts,max increases modestly to 0.81 s and 9.63 s for a = 1 and a = 0.1 respectively.

Figure 5.14 (MTTR ξ = 4s) shows a similar case to the previous Figure 5.13. As expected,

with a low MTBF θ = 10, the starting values of ts,max or the level of tolerance for

5.5. Evaluating the practicality of offloading detection 109

Figure 5.14: Max ts against different values of MTBF (θ) and a for MTTR ξ = 4s

Figure 5.15: Max ts against different values of MTBF (θ) and a for MTTR ξ = 6s

processing time is lower than previous case. ts,max starts at 0.42 s for a = 1 and 5.8 s

for a = 0.1. ts,max in all four cases increase slightly quicker than the previous case. At

MTBF (θ = 100), ts,max are at 0.79 s and 9.42 s for a = 1 and a = 0.1 respectively.

Comparing Figure 5.15 to the two previous Figure 5.13 and 5.14, the ts,max lines are rising

at a sharper rate. With MTTR ξ = 6s, ts,max starts out at at 0.22 s and 3.80 s for a = 1

and a = 0.1 accordingly. When MTBF θ is set 100, ts,max reaches 0.77 s and 9.22 s for

the most and least coverage.

Figure 5.16 compares the mean detection latency t̄l, in second, against different values

of detection processing time ts in four detection coverage ratios a. The four lines shows

a fairly similar trend of slightly steady linear increase. To begin, at ts = 0.0185 which

corresponds to the 20 hidden neuron setting, t̄l is equal to 0.71 s for a = 1 and equal for

5.43 s for a = 0.1. With ts reaches 0.2791 when the architecture has 1000 hidden neurons,

5.5. Evaluating the practicality of offloading detection 110

Figure 5.16: t̄l against different values of ts and a.

tl becomes 0.97 s and 5.67 s for a = 1 and a = 0.1 accordingly.

5.5.2.2 Network 2 model results

Network 2 model represents an ideal cloud service where the parameters which are defined

in Table 5.3. For each value of MTTR ξ = (2 s, 4 s, 6 s), we also modelled four different

detection coverage ratios a = (0.1, 0.25, 0.5, 1). These results are depicted in Figures 5.17,

5.18, and 5.19.

Since this is an ideal setting, the result patterns are similar to what we had for Network 1

in Section 5.5.2.1. These graphs estimate the ts,max against MTBF θ. Noticeably, the level

tolerance ts,max are higher for a smaller value of coverage ratio (a) in the three MTTR

cases.

In Figure 5.17, for the lowest MTBF value (θ = 10), in the case of MTTR ξ = 2 s, ts,max

is equal to at 0.59 s for a = 1 and reaches 8.0 s for a = 0.1. At the highest MTBF

θ = 100, ts,max rises modestly to 0.77 s and 9.59 s for a = 1 and a = 0.1 accordingly. So

these ts,max values are slightly lower than our testbed’s result in Section 5.5.2.1 Network

1 model results.

Figure 5.18 changes MTTR ξ to 4, it shows a similar case to the previous Figure 5.17.

With a low MTBF θ = 10, ts,max starts lower than MTTR ξ = 2 s case. ts,max starts at

0.39 s for a = 1 and 5.79 s for a = 0.1. At MTBF (θ = 100), ts,max are at 0.76 s and 9.40

5.5. Evaluating the practicality of offloading detection 111

Figure 5.17: Max ts against different values of MTBF (θ) and a for MTTR ξ = 2s

Figure 5.18: Max ts against different values of MTBF (θ) and a for MTTR ξ = 4s

s for a = 1 and a = 0.1 accordingly. These values, again, are lower than our testbed’s

results.

Comparing Figure 5.19 to the two previous Figure 5.17 and 5.18, the ts,max values are

increasing at a quicker rate. This case is configured with MTTR ξ = 6s, ts,max starts out

at at 0.19 s and 3.75 s for a = 1 and a = 0.1 accordingly. When MTBF θ reaches 100,

ts,max is then equal to 0.77 s and 9.22 s for the most and least coverage.

Figure 5.20 again compares the mean detection latency t̄l, in second, against different

values of detection processing time ts in four detection coverage ratios a. The other

parameters MTTR and MTBF are set at 4 s and 60 s. The four lines show a similar

increase of a linear line. To begin, at ts = 0.0185 s which corresponds to 20 hidden

neuron setting, t̄l is equal to 0.78 s for a = 1 and equal for 5.88 s for a = 0.1. With ts

reaches 0.2791 s corresponding to 1000 hidden neurons, tl becomes 1.04 s and 6.14 s for

5.5. Evaluating the practicality of offloading detection 112

Figure 5.19: Max ts against different values of MTBF (θ) and a for MTTR ξ = 6s

Figure 5.20: t̄l against different values of ts and a.

a = 1 and a = 0.1 respectively.

5.5.2.3 Network 3 model results

Network 3 model’s parameters were configured to represents a typical 4g/3g network

service, as in Table 5.3. We again run the model for each value of MTTR ξ = (2 s, 4 s, 6 s).

With each MTTR, we modelled four different detection coverage scenarios with coverage

ratio a = (0.1, 0.25, 0.5, 1).

The tolerance level for processing time is a slightly worse (smaller) to what we had for

Network 1 and 2 in Section 5.5.2.1 and 5.5.2.2. Here, the ts,max, measured in second, is

compared against MTBF θ in four coverage cases. The level tolerance ts,max are clearly

showed higher for a smaller value of coverage ratio (a).

5.5. Evaluating the practicality of offloading detection 113

Figure 5.21: Max ts against different values of MTBF (θ) and a for MTTR ξ = 2s

Figure 5.22: Max ts against different values of MTBF (θ) and a for MTTR ξ = 4s

In Figure 5.21, the max practical mean detection processing time ts,max starts at 0.47 s,

1.27 s, 2.87 s and 7.67 s for a = (1, 0.5, 0.25, 0.1) respectively, for the lowest MTBF value

(θ = 10), in the case of MTTR ξ = 2 s. Then, the max practical value rises modestly to

0.65 s, 1.63s, 3.59 s and 9.47 s when MTBF θ reaches 100. These ts,max values are lower

than the processing time when testing the algorithm in our testbed.

Figure 5.22 shows how ts,max changes with MTTR ξ = 4 s. The graph looks similar to

the previous Figure 5.21. When MTBF θ = 10, ts,max starts with 0.27 s, 0.87 s, 2.07s

and 5.65s, which are lower than MTTR ξ = 2 case. Then, ts,max rise more sharply to

0.63 s, 1.59 s, 3.51 s and 9.27 s for the according coverage ratios a = (1, 0.5, 0.25, 0.1).

Unsurprisingly, these ts,max values are smaller than Network 1 and 2 results.

When contrasting Figure 5.23 to the two previous Figure 5.21 and 5.22, the ts,max values

are increasing at a quicker rate, when MTTR ξ is configured to be 6 s. The max practical

5.5. Evaluating the practicality of offloading detection 114

Figure 5.23: Max ts against different values of MTBF (θ) and a for MTTR ξ = 6s

Figure 5.24: t̄l against different values of ts and a.

mean detection processing time ts,max starts out at at 0.06 s, 0.46 s, 1.24 s and 3.58 s,

which mean the power processing is required to be stronger here. As MTBF θ = 100,

ts,max indicates a better tolerance at 0.63 s, 1.59 s, 3.51 s and 9.27 s for the four coverage

cases.

Figure 5.24 illustrates the mean detection latency t̄l, in second, against values of detection

processing time ts according to number of hidden neurons in the detection architecture.

t̄s is calculated for four detection coverage ratios a, and when MTTR ξ = 5 s and MTBF

θ = 20 s. The graph shows four linear-looking lines. With ts starts 0.0185, t̄l is equal to

1.10 s, 1.85 s, 3.36 s, and 7.87 s for a = (1, 0.5, 0.25, 0.1) accordingly. When ts reaches

0.2791 as for a 1000 hidden neuron architecture, tl becomes 1.35s, 2.11 s, 3.61s, and 8.13s

for the four coverage cases. These values are significantly higher than in Network 1 and

2.

5.5. Evaluating the practicality of offloading detection 115

Figure 5.25: Max ts against different values of MTBF (θ) and a for MTTR ξ = 2s

5.5.2.4 Network 4 model results

Network 4 model’s parameters represents a highly unstable network with high packet loss,

frequent connectivity failures and latency, as configured in Table 5.3. Network 4 model

was evaluated for MTTR ξ = (2 s, 4 s, 6 s). With each MTTR, we again calculated

the max practical mean detection processing time in four different detection coverage

scenarios a = (0.1, 0.25, 0.5, 1).

Here, we see the tolerance of processing time dipping below 0 seconds which shows the

impracticalities for such situations. In general, ts,max here is a much worse (smaller) to

what we had the three previous network models, Section 5.5.2.1, 5.5.2.2 and 5.5.2.3. One

last time, The ts,max, measured in second, is compared against MTBF θ in four coverage

cases.

In the case of MTTR ξ = 2 s, Figure 5.25 shows that the max practical mean detection

processing time ts,max line is below 0 entirely for a full detection coverage a = 1. A very

strong processing power is required for half detection coverage a = 0.5 with t(s,max) =

0.27 s. ts,max are at 1.88 s and 6.68 s for a = 0.25and0.1 accordingly. With a higher

MTBF value (θ = 100), then, ts,max allows better tolerance at 0.63 s, 2.59 s, and 8.47 s

for a = (0.5, 0.25and0.1). It is noted that 100% detection coverage is impossible for this

network model.

When MTTR ξ = 4 s, Figure 5.26 shows an even worst result than Figure 5.25. The

5.5. Evaluating the practicality of offloading detection 116

Figure 5.26: Max ts against different values of MTBF (θ) and a for MTTR ξ = 4s

Figure 5.27: Max ts against different values of MTBF (θ) and a for MTTR ξ = 6s

max practical mean detection processing time ts,max are nearly or below 0 for two out of

four coverage cases at MTBF θ = 10. A very strong processing power is required for half

detection coverage a = 0.5 with t(s,max) = 0.59 s at the best MTBF θ = 100. Also with

MTBF value θ = 100, ts,max permits tolerance at 2.51 s, and 8.27 s for a = 0.25, 0.1.

100% detection coverage is impossible for this network model, and so is a part of 50%

coverage.

When MTTR ξ reaches 6 s, Figure 5.27 shows the ts,max is nearly or below 0 for three out

of four coverage cases at the first MTBF setting θ = 10. A very strong processing power

is required for half detection coverage a = 0.5 with t(s,max) = 0.55 s at the last MTBF

θ = 100. When MTBF θ = 100, the tolerance value ts,max is at 2.42 s, and 8.04 s for

a = 0.25, 0.1 accordingly. Again, 100% detection coverage is impossible for this network

model, and 50% detection coverage is also a challenge.

5.6. Conclusion 117

Figure 5.28: t̄l against different values of ts and a.

Figure 5.28 compares the mean detection latency t̄l, in second, against values of detection

processing time ts when MTTR ξ = 5 s and MTBF θ = 10 s. In general, these values are

fairly high compared to the collection interval T . The graph show four linear lines. When

ts starts at 0.0185 s, t̄l is equal to 2.36 s, 3.38 s, 5.42 s, and 11.55 s for a = (1, 0.5, 0.25, 0.1)

accordingly. When ts is at 0.2791 s, tl becomes 2.62 s, 3.64 s, 5.68 s, and 11.81 s for the four

coverage cases. These values are significantly highers than what were shown in Network

1 and 2 models.

5.6 Conclusion

Deep learning training and detection phases with more intense multiple linear and non-

linear computations might create a detection latency for limited resource systems. How-

ever, with the technological advances of deep learning research and enhanced capacity

in processing systems, it becomes more and more practical to apply this technique for

mobile cyber-physical systems. Offloading this computation task further strengthens the

intrusion detection system. We have shown that our approach is already practical for

different cyber attacks and different network configurations.

Chapter 6

Conclusion

6.1 Summary of thesis achievements

Mobile cyber-physical systems, such as automobiles, drones and robotic vehicles, are grad-

ually becoming attractive targets for cyber attacks. Instead of assuming that a preventive

measure, such as cryptography, would be sufficient for all attacks, we have considered the

case that some will go through. However, intrusion detection systems built for conven-

tional computer systems tend to be unsuitable. They can be too demanding for resource-

restricted cyber-physical systems or too inaccurate due to the lack of real-world data on

actual attack behaviours. The following is a brief summary of the key achievements to-

wards addressing the problem of cyber security for mobile cyber-physical systems. These

also answer the research questions raised in Chapter 1 on the importance of physical fea-

tures and roles of machine learning and the solution for improving accuracy and latency

in detecting cyber attacks against robotic vehicles.

• A testbed has been developed, including a small robotic vehicle, a laptop control-

ling it remotely and accompanying software for the collection of the relevant data

onboard the vehicle. As the key characteristic that differentiates cyber-physical sys-

tems from conventional computer systems is their behaviour in physical space, a

118

6.2. Critical discussion 119

series of cyber attacks have been conducted on the testbed and different types

of physical impact documented, from change in speed and intermittent stops,

to physical jittering and increased power consumption.

• A simple machine learning based system has been developed which was able to

run on board the vehicle and which uses decision trees to detect denial of service,

command injection and malware attacks. We used this approach to demonstrate

that taking into account physical input features in conjunction with tra-

ditional cyber input features can markedly reduce the false positive rate

and increase the overall accuracy of the detection.

• A deep learning architecture has been developed based on recurrent neural net-

works and long short-term memory to produce more powerful intrusion detection

than is currently possible with traditional statistical machine learning techniques.

The deep learning based prototype was able to achieve higher detection

accuracy than the earlier decision trees approach, as well as five other

popular machine learning techniques that it was compared against.

• As the timeliness of detection of cyber-physical attacks is particularly important

for vehicles and deep learning can be very resource-demanding, we have evaluated

the practicality of offloading it to a remote infrastructure in terms of the

overall detection latency incurred. For this, a mathematical model has been

developed, which was validated experimentally. This has shown that offloaded deep

learning becomes impractical only when the network that supports it is particularly

unreliable, with high packet losses and extremely frequent failures.

6.2 Critical discussion

In relation to the research approach followed, the choice of having a real testbed was

very successful because it enabled us to practically evaluate techniques within real world

scenarios. However, it brought a considerable challenge in effort and time in collecting

6.3. Applications 120

real-time data in a synchronised manner. In many cases, it was not always clear if an

error occurred because of hardware challenge or an algorithmic mistake or environmental

conditions. This added time delays but helped me reach a better understanding of each

component’s characteristics.

It is also important to note that deep learning required up-front time to learn because it

was a new paradigm where there was a lack of instruction and standard libraries available.

It also required much greater processing power than standard machine learning techniques,

which was appropriate with the robotic vehicle. It was not uncommon to need over 3 days

to complete training for a model. On the upside, it brought huge benefits by increasing

the accuracy of cyber attack detection significantly.

The final phase of the research was to resolve the issue of restricted resources on the

testbed itself. This was achieved by offloading the heavy computation load to a cloud

environment. This reduced the computing time but it strongly depended on the quality

of the network connection between the testbed and the cloud. With an ideal network

connection, offloading techniques could offer us both higher accuracy and a reasonable

detection latency.

6.3 Applications

The aim of this work has always been to provide insights and tools that will be useful

beyond the narrow scope of the particular robotic vehicle used as the testbed and perhaps

beyond robotic and vehicular systems, to more generally in cyber-physical systems. For

this reason, all the components chosen were commodity electronics and personal comput-

ing components that are easily accessible and utilised in a large-number of robotic and

other cyber-physical and Internet of Things (IoT) systems. In addition, the scenarios ex-

perimented with were related to general families of cyber attacks typically encountered in

cyber space (i.e., denial of service, command injection and malware attacks) rather than

very specific attacks exploiting device-specific vulnerabilities. The intrusion detection

6.4. Future work 121

methods, both the lightweight and the resource-demanding ones, are feature-agnostic, in

the sense that they can be used to incorporate any cyber or physical feature that is ap-

propriate for a given device. In fact, the offloading mechanism presented in this thesis in

detail can allow access to resource-demanding intrusion detection techniques, for instance

using complex deep learning architectures, as long as there is access to a commodity re-

mote server, private cloud or even public cloud, such as Amazon’s. The mathematical

model provided estimates whether and when this offloading would be practical.

With this emphasis on applicability beyond the systems experimented with in this thesis,

it is reasonable to expect that the techniques developed and presented here can also be

used to:

• The security of the resource-constrained Internet of Things devices, e.g., in the

context of home automation or body area networks.

• Other security tasks that would benefit from offloading, such as network, application

or user filtering.

• Other types of cyber-physical systems, where a physical impact is of high criticality,

such as the smart grid and industrial control systems in general.

• Areas of application that make use of robotic vehicles, such as physical security

surveillance and civilian and military emergency response situations, where the safe

and secure operation of a remotely controlled or autonomous vehicle can be highly

useful.

6.4 Future work

The work conducted towards achieving cyber-physical intrusion detection for vehicles has

opened up several possibilities for future research. A brief summary of each identified

possibility is described in the following subsections.

6.4. Future work 122

6.4.1 Extending the scope of this work through more attack sce-

narios, features and a behaviour-based detection approach

Intrusion detection for cyber-physical systems is a relatively new area of research. It has

been explored to some extent for industrial control systems, but remains at an early stage

for mobile cyber-physical systems such as robotic vehicles. Through experimentation, it

has been observed that different attacks have different impacts on the operation of the

robotic vehicle and this includes both its cyber (network, CPU, disk data) and physical

behaviour (speed, vibration, power consumption). This presents an opportunity, as by

leveraging both types of features, one can improve the accuracy of the detection of an

attack. This has been validated for an intrusion detection approach based on machine

learning and deep learning techniques.

The next step is to extend the scope of the experiments on different attack types [Lang

et al., 2007], such as communication jamming, relay attacks, and sensor attack. We are

also working towards testing the hypothesis that the addition of physical input features

can improve the accuracy and detection latency of behaviour-based detection approaches,

which are more suitable than knowledge-based approaches for zero-day cyber-physical

attacks.

6.4.2 Response mechanism to accompany intrusion detection

Different detection mechanisms offer different types of output, which can trigger different

types of automated responses. Response mechanism was not within the scope of this

research project, but can easily be a natural extension. Depending on the confidence of

the detection mechanism in the result or depending on a specific measure of likelihood

of an ongoing attack, there could be different pre-defined responses triggered, such as

stopping completely for likelihood of a serious attack having been detected or slowing

down if an attack is detected but with low confidence, or even triggering no physical

response at all but only reporting to a user if the attack suspected can have no physical

6.4. Future work 123

impact. So, determining a response mechanism is one more area where differentiating

between cyber and physical feature monitoring can be very useful.

6.4.3 A cloud-based “security guard” for robotic vehicles

Deep learning introduces a detection latency that may make it less practical for protecting

against some types of attack. However, deep learning is the most rapidly advancing area of

machine learning, demonstrating impressive performance improvement every year. At the

same time, introducing a remote computation element, such as a remote server or cloud,

to the security of a vehicle means that the latter may inherit some of the vulnerabilities

of the former. Again, cloud security is rapidly improving, both thanks to technological

advances and to the business necessity of the matter. It has been shown that this approach

is already practical for attacks of differing nature. By positioning it where distributed and

cloud computing meets deep learning, it is expected that this will further benefit from the

parallel ongoing research in these two fields. Furthermore, using a remote infrastructure

acting as the “security guard” of multiple vehicles means that information about an attack

collected on one vehicle can be re-used to protect other vehicles against the same attack

in the future. This “security guard” may be located at a public cloud service, such as

Amazon, and accessed via the Internet or may be local, located on one of the robots in a

robotic swarm. Such a scenario would be particularly practical for robotic setups where

a group of lightweight robots may belong to a single, more powerful mothership.

6.4.4 Distributed cyber-physical intrusion detection

In other types of cyber-physical systems, such as in geographically dispersed industrial

control systems, it is common to use distributed intrusion detection, where both data

collection and reasoning may be performed in a manner that is distributed. As discussed

in [Loukas, 2015], some simple attacks may be relatively easy to detect using an intrusion

detection system located on an individual node. An example may be a single smart meter

6.4. Future work 124

in the context of the smart grid. Attacks that are more complex may be more difficult to

detect. They may need information that is aggregated from multiple smart meters [Zhang

et al., 2011]. In this work, the focus has been on protecting a single vehicle. So, data

collection for intrusion detection is run only on that one vehicle. However, vehicles often

operate in groups and in environments that can be collaborative. The first example of

collaborative intrusion detection for autonomous vehicles has been studied theoretically

in [Fagiolini et al., 2008], where, if a vehicle misbehaves, it is other vehicles on the same

road or in the same group that notice it and collectively reach a consensus on whether it is

dangerous to them. This consensus-based approach has not been tested in actual vehicles

or for a combination of cyber and physical features. This is an interesting problem to

pursue, especially as autonomous vehicles are becoming a reality.

6.4.5 Evaluating the security and energy cost of offloaded intru-

sion detection

In addition, it is worth noting that as the overall purpose of this approach is to improve

the security of the vehicle, one also needs to consider any additional security threats intro-

duced by the cloud-vehicle interaction. The approach adopted in this thesis is to utilise

HTTPS, which provides basic security of data sharing between the vehicle and the cloud,

assuming that the latter is trusted. In the future, the scope can be extended to so-called

“unfaithful” clouds. For these, one can implement one of the several excellent approaches

for secure computation offloading that have been proposed in the literature [Gennaro

et al., 2010,Chen et al., 2015], but it would also be important to evaluate their overhead

in terms of detection latency and energy cost. A first investigation towards this direc-

tion [Loukas et al., 2016] has shown that the robotic vehicle saves energy in all practical

configurations of offloading deep learning based processing. Future research may expand

on these findings and may lead to more energy-aware intrusion detection. For example,

the complexity of the deep learning architecture (e.g., the number of hidden neurons used)

and the period of data collection on the vehicle may be reconfigured dynamically based

6.5. Final remarks 125

on the energy state of the vehicle at any point in time.

6.5 Final remarks

Mobile cyber-physical systems are expected to become increasingly important as the rising

number of automobiles, drones and robotic vehicles, and their ubiquitous application

from personal appliances to military missions, from underwater, on-ground, and in the

airspace. Unfortunately, these systems and applications are generating new vulnerabilities

in physical space, which allows cyber attacks against them. The purpose of the work

presented in this thesis was to analyse, design and model methods and network setting

to detect cyber attacks with a high accuracy and with an acceptable latency for these

time-critical systems. Continuous advancements in terms of hardware and software for

vehicles create opportunities for more advanced methods for protecting them against

cyber attacks. With the lightweight statistical learning technique and the heavier deep

learning based technique, this project has provided proof of concept solutions for both

resource-restricted and more processing-powerful vehicles.

References

[Amin et al., 2009] Amin, S., Cárdenas, A. A., and Sastry, S. S. (2009). Safe and secure

networked control systems under denial-of-service attacks. In Proceedings of the 12th

International Conference on Hybrid Systems: Computation and Control, HSCC ’09,

pages 31–45, Berlin, Heidelberg. Springer-Verlag.

[Anthony et al., 2009] Anthony, R., Chen, D., Törngren, M., Scholle, D., Sanfridson,

M., Rettberg, A., Naseer, T., Persson, M., and Feng, L. (2009). Autonomic middle-

ware for automotive embedded systems. In Autonomic Communication, pages 169–210.

Springer.

[Anthony et al., 2008] Anthony, R., Ward, P., Chen, D., Hawthorne, J., Mariusz, P.,

Rettberg, A., and Törngren, M. (2008). A middleware approach to dynamically config-

urable automotive embedded systems. In ISVCS 2008: The First Annual International

ICST Symposium on Vehicular Computing Systems. EUDL-European Union Digital

Library.

[Barbounis et al., 2006] Barbounis, T. G., Theocharis, J. B., Alexiadis, M. C., and

Dokopoulos, P. S. (2006). Long-term wind speed and power forecasting using local

recurrent neural network models. IEEE Transactions on Energy Conversion, 21(1):273–

284.

[Bengio et al., 1994] Bengio, Y., Simard, P., and Frasconi, P. (1994). Learning long-term

dependencies with gradient descent is difficult. IEEE transactions on neural networks,

5(2):157–166.

126

REFERENCES 127

[Bezemskij et al., 2016a] Bezemskij, A., Anthony, R. J., Loukas, G., and Gan, D. (2016a).

Behaviour-based anomaly detection of cyber-physical attacks on a robotic vehicle. In

Eighth International Symposium on Cyberspace Safety and Security.

[Bezemskij et al., 2016b] Bezemskij, A., Anthony, R. J., Loukas, G., and Gan, D. (2016b).

Threat evaluation based on automatic sensor signal characterisation and anomaly detec-

tion. In The Twelfth International Conference on Autonomic and Autonomous Systems

(ICAS 2016). IARIA.

[Bicchi et al., 2008] Bicchi, A., Fagiolini, A., Dini, G., and Savino, I. M. (2008). Tol-

erating, malicious monitors in detecting misbehaving robots. In Safety, Security and

Rescue Robotics, 2008. SSRR 2008. IEEE International Workshop on, pages 109–114.

IEEE.

[Birnbaum, 2015] Birnbaum, Z. (2015). Behavior based analytics for securing cyber-

physical systems. State University of New York at Binghamton.

[Birnbaum et al., 2014] Birnbaum, Z., Dolgikh, A., Skormin, V., O’Brien, E., and Muller,

D. (2014). Unmanned aerial vehicle security using recursive parameter estimation. In

Unmanned Aircraft Systems (ICUAS), 2014 International Conference on, pages 692–

702. IEEE.

[Blasch et al., 2017] Blasch, E., Kadar, I., Grewe, L. L., Brooks, R., Yu, W., Kwasinski,

A., Thomopoulos, S., Salerno, J., and Qi, H. (2017). Panel summary of cyber-physical

systems (cps) and internet of things (iot) opportunities with information fusion. In

SPIE Defense+ Security, pages 102000O–102000O. International Society for Optics

and Photonics.

[Bonaci et al., 2015a] Bonaci, T., Herron, J., Yusuf, T., Yan, J., Kohno, T., and Chizeck,

H. J. (2015a). To make a robot secure: an experimental analysis of cyber security

threats against teleoperated surgical robots. arXiv preprint arXiv:1504.04339, pages

1–11.

REFERENCES 128

[Bonaci et al., 2015b] Bonaci, T., Herron, J., Yusuf, T., Yan, J., Kohno, T., and Chizeck,

H. J. (2015b). To make a robot secure: An experimental analysis of cyber security

threats against teleoperated surgical robots. arXiv preprint arXiv:1504.04339.

[Canziani et al., 2016] Canziani, A., Paszke, A., and Culurciello, E. (2016). An analysis of

deep neural network models for practical applications. arXiv preprint arXiv:1605.07678.

[Cárdenas et al., 2008] Cárdenas, A. A., Amin, S., and Sastry, S. (2008). Research chal-

lenges for the security of control systems. In HotSec.

[Cardenas et al., 2008] Cardenas, A. A., Amin, S., and Sastry, S. (2008). Secure control:

Towards survivable cyber-physical systems. System, 1(a2):a3.

[Carson et al., 2016] Carson, N., Martin, S. M., Starling, J., and Bevly, D. M. (2016). Gps

spoofing detection and mitigation using cooperative adaptive cruise control system. In

Intelligent Vehicles Symposium (IV), 2016 IEEE, pages 1091–1096. IEEE.

[Checkoway et al., 2011] Checkoway, S., McCoy, D., Kantor, B., Anderson, D., Shacham,

H., Savage, S., Koscher, K., Czeskis, A., Roesner, F., and Kohno, T. (2011). Com-

prehensive experimental analyses of automotive attack surfaces. In Usenix Security

Symposium.

[Chen, 2010] Chen, T. M. (2010). Stuxnet, the real start of cyber warfare?[editor’s note].

IEEE Network, 24(6):2–3.

[Chen et al., 2015] Chen, X., Huang, X., Li, J., Ma, J., Lou, W., and Wong, D. (2015).

Rocking drones with intentional sound noise on gyroscopic sensors. Transactions on

Information Forensics and Security, 10(1):69–78.

[Chen et al., 2011] Chen, Y.-J., Shih, J.-S., and Cheng, S.-T. (2011). A cyber-physical

integrated security framework with fuzzy logic assessment for cultural heritages. In

Systems, Man, and Cybernetics (SMC), 2011 IEEE International Conference on, pages

1843–1847. IEEE.

REFERENCES 129

[Chin and Chuang, 2015] Chin, T.-L. and Chuang, W.-C. (2015). Latency of collaborative

target detection for surveillance sensor networks. Parallel and Distributed Systems,

IEEE Transactions on, 26(2):467–477.

[Chollet, 2015] Chollet, F. (2015). Keras. https://github.com/fchollet/keras.

[Chuang and Lee, 2011] Chuang, M.-C. and Lee, J.-F. (2011). Ppas: A privacy preserva-

tion authentication scheme for vehicle-to-infrastructure communication networks. In

International Conference on Consumer Electronics, Communications and Networks

(CECNet), pages 1509–1512. IEEE.

[Cole, 2012] Cole, C. (1 January 2012). The drone war briefing. [Online; accessed 18-

Oct-2016].

[Collectl, 2015] Collectl (2015). Collectl. [Online; accessed 16-May-2015].

[Combs, 2007] Combs, G. e. a. (2007). Wireshark.

[De Cerchio and Riley, 2012] De Cerchio, R. and Riley, C. (2012). Aircraft systems cyber

security. In 2012 Integrated Communications, Navigation and Surveillance Conference.

[Dierks, 2008] Dierks, T. (2008). The transport layer security (tls) protocol version 1.2.

[Dietterich, 2002] Dietterich, T. G. (2002). Machine learning for sequential data: A re-

view. In Joint IAPR International Workshops on Statistical Techniques in Pattern

Recognition (SPR) and Structural and Syntactic Pattern Recognition (SSPR), pages

15–30. Springer.

[Dillingham, 2012] Dillingham, G. L. (2012). Unmanned aircraft systems: Measuring

progress and addressing potential privacy concerns would facilitate integration into the

national airspace system. US Government Accountability Office, Washington, DC, Rep.

GAO-12-981.

[Dong et al., 2016] Dong, Z., Kane, K., and Camp, L. (2016). Detection of rogue certifi-

cates from trusted certificate authorities using deep neural networks. Transactions on

Privacy and Security (TOPS), 19(2):5.

https://github.com/fchollet/keras

REFERENCES 130

[Du et al., 2015] Du, Y., Wang, W., and Wang, L. (2015). Hierarchical recurrent neural

network for skeleton based action recognition. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 1110–1118.

[Eze et al., 2012] Eze, T. O., Anthony, R. J., Walshaw, C., Soper, A., et al. (2012). A

new architecture for trustworthy autonomic systems. Curran Associates, Inc.

[Fagiolini et al., 2009] Fagiolini, A., Babboni, F., and Bicchi, A. (2009). Dynamic dis-

tributed intrusion detection for secure multi-robot systems. In Robotics and Automa-

tion, 2009. ICRA’09. IEEE International Conference on, pages 2723–2728. IEEE.

[Fagiolini et al., 2014] Fagiolini, A., Dini, G., and Bicchi, A. (2014). Distributed intrusion

detection for the security of industrial cooperative robotic systems. In World Congress,

volume 19(1), pages 7610–7615.

[Fagiolini et al., 2008] Fagiolini, A., Pellinacci, M., Valenti, G., Dini, G., and Bicchi, A.

(2008). Consensus-based distributed intrusion detection for multi-robot systems. In

Robotics and Automation, 2008. ICRA 2008. IEEE International Conference on, pages

120–127. IEEE.

[Felix et al., 2014] Felix, R., Economou, J., and Knowles, K. (2014). Uas behaviour and

consistency monitoring system for countering cyber security threats. Technical report,

SAE Technical Paper.

[Fernndez-Delgado et al., 2014] Fernndez-Delgado, M., Cernadas, E., Barro, S., and

Amorim, D. (2014). Do we need hundreds of classifiers to solve real world classifi-

cation problems. J. Mach. Learn. Res, 15(1):3133–3181.

[Filippoupolitis et al., 2014] Filippoupolitis, A., Loukas, G., and Kapetanakis, S. (2014).

Towards real-time profiling of human attackers and bot detection. In Proceedings of 7th

International Conference on Cybercrime Forensics Education and Training (CFET).

[Gamage et al., 2011] Gamage, T. T., Roth, T. P., and McMillin, B. M. (2011). Confi-

dentiality preserving security properties for cyber-physical systems. In 2011 IEEE 35th

Annual Computer Software and Applications Conference, pages 28–37. IEEE.

REFERENCES 131

[Gao et al., 2010] Gao, W., Morris, T., Reaves, B., and Richey, D. (2010). On SCADA

control system command and response injection and intrusion detection. In eCrime

Researchers Summit (eCrime), 2010, pages 1–9.

[Gasser, 1988] Gasser, M. (1988). Building a secure computer system. Van Nostrand

Reinhold Company New York.

[Gelenbe et al., 2005] Gelenbe, E., Gellman, M., and Loukas, G. (2005). An autonomic

approach to denial of service defence. In Sixth IEEE International Symposium on a

World of Wireless Mobile and Multimedia Networks, pages 537–541. IEEE.

[Gelenbe et al., 2012] Gelenbe, E., Gorbil, G., and Wu, F.-J. (2012). Emergency cyber-

physical-human systems. In Computer Communications and Networks (ICCCN), 2012

21st International Conference on, pages 1–7. IEEE.

[Gelenbe and Loukas, 2007] Gelenbe, E. and Loukas, G. (2007). A self-aware approach

to denial of service defence. Comput. Netw., 51(5):1299–1314.

[Gennaro et al., 2010] Gennaro, R., Gentry, C., and Parno, B. (2010). Non-interactive

verifiable computing: Outsourcing computation to untrusted workers. In Advances in

CryptologyCRYPTO 2010, pages 465–482.

[Gorman et al., 2009] Gorman, S., Dreazen, Y. J., and Cole, A. (2009). Insurgents hack

u.s. drones.

[Griffiths, 2014] Griffiths, J. (July 17, 2014). Zhejiang University team scoops 10,600

Yuan for hacking into Tesla Model S. South China Morning Post.

[Gurulian et al., 2016] Gurulian, I., Shepherd, C., Markantonakis, K., Akram, R. N., and

Mayes, K. (2016). When theory and reality collide: Demystifying the effectiveness of

ambient sensing for nfc-based proximity detection by applying relay attack data. arXiv

preprint arXiv:1605.00425.

[Hardy et al., 2016] Hardy, W., Chen, L., Hou, S., Ye, Y., and Li, X. (2016). Dl4md: A

deep learning framework for intelligent malware detection. In Proceedings of the Inter-

REFERENCES 132

national Conference on Data Mining (DMIN), page 61. The Steering Committee of The

World Congress in Computer Science, Computer Engineering and Applied Computing

(WorldComp).

[Hasan et al., 2014] Hasan, M. A. M., Nasser, M., Pal, B., and Ahmad, S. (2014). Sup-

port vector machine and random forest modeling for intrusion detection system (IDS).

Journal of Intelligent Learning Systems and Applications, 6(1):45.

[Hinton et al., 2012] Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., and

Salakhutdinov, R. R. (2012). Improving neural networks by preventing co-adaptation

of feature detectors. arXiv preprint arXiv:1207.0580.

[Houmansadr et al., 2011] Houmansadr, A., Zonouz, S., and Berthier, R. (2011). A cloud-

based intrusion detection and response system for mobile phones. In IEEE/IFIP 41st

International Conference on Dependable Systems and Networks Workshops, pages 31–

32. IEEE.

[Hu et al., 2012] Hu, G., Tay, W., and Wen, Y. (2012). Cloud robotics: architecture,

challenges and applications. Network, 26(3):21–28.

[Hui and Cao, 2010] Hui, L. and Cao, Y. (2010). Research intrusion detection techniques

from the perspective of machine learning. 2010 International Conference on MultiMedia

and Information Technology, MMIT 2010, 1:166–168.

[Jafarnia-Jahromi et al., 2012] Jafarnia-Jahromi, A., Lin, T., Broumandan, A., Nielsen,

J., and Lachapelle, G. (2012). Detection and mitigation of spoofing attacks on a vector-

based tracking gps receiver. ION ITM.

[Jakobson, 2011] Jakobson, G. (2011). Mission cyber security situation assessment using

impact dependency graphs. In Information Fusion (FUSION), 2011 Proceedings of the

14th International Conference on, pages 1–8. IEEE.

[Javaid et al., 2016] Javaid, A. Y., Niyaz, Q., Sun, W., and Alam, M. (2016). A deep

learning approach for network intrusion detection system. In Proceedings of the 9th

REFERENCES 133

EAI International Conference on Bio-inspired Information and Communications Tech-

nologies (formerly BIONETICS) on 9th, pages 21–26. ICST(Institute for Computer

Sciences, Social-Informatics and Telecommunications Engineering).

[Javaid et al., 2012] Javaid, A. Y., Sun, W., Devabhaktuni, V. K., and Alam, M. (2012).

Cyber security threat analysis and modeling of an unmanned aerial vehicle system. In

Homeland Security (HST), 2012 IEEE Conference on Technologies for, pages 585–590.

IEEE.

[Jennings, 2014] Jennings, G. (2014). Iran claims to have flown reverse-engineered us

stealth uav. [Online; accessed 11-July-2015] London - IHS Jane’s Defence Weekly.

[Jensen et al., 2009] Jensen, M., Gruschka, N., and Herkenhöner, R. (2009). A survey of

attacks on web services. Computer Science-Research and Development, 24(4):185–197.

[Jitbit, 2016] Jitbit (2016). Jitbit macro recorder.

[Junejo and Goh, 2016] Junejo, K. N. and Goh, J. (2016). Behaviour-based attack detec-

tion and classification in cyber physical systems using machine learning. In Proceedings

of the 2nd ACM International Workshop on Cyber-Physical System Security, pages

34–43. ACM.

[Kang, 2016] Kang, M. J.and Kang, J. W. (2016). Intrusion detection system using deep

neural network for in-vehicle network security. PloS One, 11(6).

[Kerns et al., 2014] Kerns, A. J., Shepard, D. P., Bhatti, J. A., and Humphreys, T. E.

(2014). Unmanned aircraft capture and control via gps spoofing. Journal of Field

Robotics, 31:617–636.

[Kim et al., 2012] Kim, A., Wampler, B., Goppert, J., Hwang, I., and Aldridge, H. (2012).

Cyber attack vulnerabilities analysis for unmanned aerial vehicles. Infotech@ Aerospace.

[Kim et al., 2014] Kim, G., Lee, S., and Kim, S. (2014). A novel hybrid intrusion detection

method integrating anomaly detection with misuse detection. Expert Systems with

Applications, 41(4):1690–1700.

REFERENCES 134

[Kim et al., 2016] Kim, J., Kim, J., Thu, H. L. T., and Kim, H. (2016). Long short term

memory recurrent neural network classifier for intrusion detection. In 2016 International

Conference on Platform Technology and Service (PlatCon), pages 1–5. IEEE.

[Kohno, 2012] Kohno, T. (2012). Security for cyber-physical systems: case studies with

medical devices, robots, and automobiles. In Proceedings of the fifth ACM conference

on Security and Privacy in Wireless and Mobile Networks, pages 99–100. ACM.

[Koscher et al., 2010] Koscher, K., Czeskis, A., Roesner, F., Patel, S., Kohno, T., Check-

oway, S., McCoy, D., Kantor, B., Anderson, D., Shacham, H., et al. (2010). Experi-

mental security analysis of a modern automobile. In Security and Privacy (SP), 2010

IEEE Symposium on, pages 447–462. IEEE.

[Kotsiantis et al., 2007] Kotsiantis, S. B., Zaharakis, I., and Pintelas, P. (2007). Super-

vised machine learning: A review of classification techniques.

[Kuhn et al., 2014] Kuhn, M., Steve, W., and Coulter, N. (2014). Package C50. [Online;

accessed 16-May-2015].

[Kumar and Lu, 2010] Kumar, K. and Lu, Y. (2010). Cloud computing for mobile users:

Can offloading computation save energy? Computer, 43(4):51–56.

[Kuzmanovic and Knightly, 2003] Kuzmanovic, A. and Knightly, E. W. (2003). Low-

rate tcp-targeted denial of service attacks: the shrew vs. the mice and elephants. In

Proceedings of the 2003 conference on Applications, technologies, architectures, and

protocols for computer communications, pages 75–86. ACM.

[Lane and Brodley, 1997] Lane, T. and Brodley, C. (1997). An application of machine

learning to anomaly detection. Proceedings of the 20th National Information Systems

Security Conf erence, pages 366–377.

[Lang et al., 2007] Lang, A., Dittmann, J., Kiltz, S., and Hoppe, T. (2007). Future

perspectives: The car and its ip-address–a potential safety and security risk assessment.

In Computer Safety, Reliability, and Security, pages 40–53. Springer.

REFERENCES 135

[Langner, 2013] Langner, R. (2013). To kill a centrifuge: A technical analysis of

what stuxnets creators tried to achieve. Online: http://www. langner. com/en/wp-

content/uploads/2013/11/To-kill-a-centrifuge. pdf.

[Latka, 1994] Latka, D. S. (1994). Resynchronizing transmitters to receivers for secure

vehicle entry using cryptography or rolling code. US Patent 5,369,706.

[Lee, 2008] Lee, E. (2008). Cyber physical systems: Design challenges. In 11th IEEE

International Symposium on Object and Component-Oriented Real-Time Distributed

Computing (ISORC), pages 363–369.

[Li et al., 2016] Li, Y., Lan, C., Xing, J., Zeng, W., Yuan, C., and Liu, J. (2016). Online

human action detection using joint classification-regression recurrent neural networks.

arXiv preprint arXiv:1604.05633.

[Linux performance tools, 2014] Linux performance tools (2014). Best command line

tools for linux performance monitoring. [Online; accessed 01-Sep-2016].

[Loukas, 2015] Loukas, G. (2015). Cyber-Physical Attacks: A Growing Invisible Threat.

Butterworth-Heinemann (Elsevier).

[Loukas et al., 2013a] Loukas, G., Gan, D., and Vuong, T. (2013a). A review of cyber

threats and defence approaches in emergency management. Future Internet, 5(2):205–

236.

[Loukas et al., 2013b] Loukas, G., Gan, D., and Vuong, T. (2013b). A taxonomy of cyber

attack and defence mechanisms for emergency management networks. In Proceedings of

the Third International Workshop on Pervasive Networks for Emergency Management

(IEEE PerNem 2013), San Diego, CA, USA, pages 18–22.

[Loukas and Oke, 2007] Loukas, G. and Oke, G. (2007). Likelihood ratios and recur-

rent random neural networks in detection of denial of service attacks. In Proceedings

of International Symposium of Computer and Telecommunication Systems, SPECTS,

volume 7. Citeseer.

REFERENCES 136

[Loukas and Öke, 2009] Loukas, G. and Öke, G. (2009). Protection against denial of

service attacks: A survey. The Computer Journal, page bxp078.

[Loukas et al., 2008] Loukas, G., Timotheou, S., and Gelenbe, E. (2008). Robotic wireless

network connection of civilians for emergency response operations. In Computer and

Information Sciences, 2008. ISCIS’08. 23rd International Symposium on, pages 1–6.

IEEE.

[Loukas et al., 2016] Loukas, G., Yoon, Y., Sakellari, G., Vuong, T., and Heartfield, R.

(2016). Computation offloading of a vehicles continuous intrusion detection workload

for energy efficiency and performance. Simulation Modelling Practice and Theory.

[Lu et al., 2015] Lu, T., Zhao, J., Zhao, L., Li, Y., and Zhang, X. (2015). Towards a

framework for assuring cyber physical system security. Int. J. Security Appl., 9(3):25–

40.

[Marnerides et al., 2015] Marnerides, A. K., Smith, P., Schaeffer-Filho, A., and Mauthe,

A. (2015). Power consumption profiling using energy time-frequency distributions in

smart grids. IEEE Communications Letters, 19(1):46–49.

[Metz, 2014] Metz, R. (2014). Rise of the robot security guards.

[Mitchell and Chen, 2011a] Mitchell, R. and Chen, I.-R. (2011a). A hierarchical perfor-

mance model for intrusion detection in cyber-physical systems. In Wireless Communi-

cations and Networking Conference, pages 2095–2100. IEEE.

[Mitchell and Chen, 2013a] Mitchell, R. and Chen, I.-R. (2013a). Adaptive Intrusion

Detection of Malicious Unmanned Air Vehicles Using Behavior Rule Specifications.

IEEE Transactions on Systems, Man, and Cybernetics: Systems, PP(99):1.

[Mitchell and Chen, 2013b] Mitchell, R. and Chen, I.-R. (2013b). On survivability of

mobile cyber physical systems with intrusion detection. Wireless Personal Communi-

cations, 68:1377–1391.

REFERENCES 137

[Mitchell and Chen, 2014] Mitchell, R. and Chen, I.-R. (2014). A survey of intrusion

detection techniques for cyber-physical systems. ACM Computing Surveys (CSUR),

46(4):55.

[Mitchell and Chen, 2011b] Mitchell, R. and Chen, R. (2011b). Survivability analysis of

mobile cyber physical systems with voting-based intrusion detection. In 2011 7th In-

ternational Wireless Communications and Mobile Computing Conference, pages 2256–

2261. IEEE.

[Mitchell III, 2013] Mitchell III, R. R. (2013). Design and Analysis of Intrusion Detection

Protocols in Cyber Physical Systems. PhD thesis, Virginia Tech.

[Mo et al., 2014] Mo, Y., Chabukswar, R., and Sinopoli, B. (2014). Detecting integrity at-

tacks on scada systems. IEEE Transactions on Control Systems Technology, 22(4):1396–

1407.

[Naess et al., 2005] Naess, E., Frincke, D., McKinnon, A., and Bakken, D. (2005). Con-

figurable middleware-level intrusion detection for embedded systems. In Distributed

Computing Systems Workshops, 2005. 25th IEEE International Conference on, pages

144–151.

[NASA, 2010] NASA (16 Sep 2010). Nasa - five things about nasa’s mars curiosity rover.

[Online; accessed 18-Oct-2016].

[Navet, 2011] Navet, N. (2011). Automotive communication systems: from dependability

to security. In talk at the 1st Seminar on Vehicular Communications and Applications

(VCA 2011), Luxembourg.

[Noh et al., 2003] Noh, S., Lee, C., Choi, K., and Jung, G. (2003). Detecting distributed

denial of service (ddos) attacks through inductive learning. Intelligent Data Engineering

and Automated Learning, pages 286–295.

[OFcom, 2014] OFcom (2014). Measuring mobile broadband performance in the uk: 4g

and 3g network performance.

REFERENCES 138

[Pasqualetti et al., 2013] Pasqualetti, F., Dörfler, F., and Bullo, F. (2013). Attack de-

tection and identification in cyber-physical systems. IEEE Transactions on Automatic

Control, 58(11):2715–2729.

[Patel and Rana, 2014] Patel, B. R. and Rana, K. K. (2014). A survey on decision tree

algorithm for classification. International Journal of Engineering Development and

Research, 2.

[Paul, 2008] Paul, N. R. (2008). Disk-level behavioral malware detection. PhD thesis,

University of Virginia.

[Plahl et al., 2013] Plahl, C., Kozielski, M., Schlüter, R., and Ney, H. (2013). Feature

combination and stacking of recurrent and non-recurrent neural networks for lvcsr. In

2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pages

6714–6718. IEEE.

[Portokalidis et al., 2010] Portokalidis, G., Homburg, P., Anagnostakis, K., and Bos, H.,

. (2010). Paranoid android: versatile protection for smartphones. In 26th Annual

Computer Security Applications Conference, pages 347–356. ACM.

[Ráček et al., 2012] Ráček, J., Ministr, J., et al. (2012). ICT Support for Emergency

Management. Trauner Verlag.

[Rajamäki et al., 2012] Rajamäki, J., Rathod, P., Ahlgren, A., Aho, J., Takari, M., and

Ahlgren, S. (2012). Resilience of cyber-physical system: a case study of safe school envi-

ronment. In Intelligence and Security Informatics Conference (EISIC), 2012 European,

pages 285–285. IEEE.

[Reaves and Morris, 2009] Reaves, B. and Morris, T. (2009). Discovery, infiltration, and

denial of service in a process control system wireless network. In eCrime Researchers

Summit, 2009. eCRIME ’09., pages 1–9.

[Rinaldi et al., 2016] Rinaldi, S., Della Giustina, D., Ferrari, P., Flammini, A., and

Sisinni, E. (2016). Time synchronization over heterogeneous network for smart grid

application: Design and characterization of a real case. Ad Hoc Networks.

REFERENCES 139

[Roesch et al., 1999] Roesch, M. et al. (1999). Snort: Lightweight intrusion detection for

networks. In LISA, volume 99(1), pages 229–238.

[Sabaliauskaite and Mathur, 2014] Sabaliauskaite, G. and Mathur, A. P. (2014). Coun-

termeasures to enhance cyber-physical system security and safety. In Computer Soft-

ware and Applications Conference Workshops (COMPSACW), 2014 IEEE 38th Inter-

national, pages 13–18. IEEE.

[Sasi, 2015] Sasi, R. (2015). Maldrone the first backdoor for drones. [Online; accessed

11-July-2015] Fb1h2s aka Rahul Sasi’s Blog.

[Sauter, 2013] Sauter, M. (2013). loic will tear us apart the impact of tool design and

media portrayals in the success of activist ddos attacks. American Behavioral Scientist,

57(7):983–1007.

[Schoitsch, 2012] Schoitsch, E. (2012). Cyber-physical systems - what can we learn

from disasters with respect to assessment, evaluation and certification/qualification

of systems-of-systems? In Proceedings of 20th IDIMT Conference, Jindrichuv Hradec,

Czech Republic, pages 69–81.

[Schumann et al., 2015] Schumann, J., Moosbrugger, P., and Rozier, K. Y. (2015). R2u2:

Monitoring and diagnosis of security threats for unmanned aerial systems. In Runtime

Verification, pages 233–249. Springer.

[Shachtman, 2011] Shachtman, N. (7 October 2011). Computer virus hits u.s. drone fleet.

[Online; accessed 18-Oct-2016].

[Sharma et al., 2014] Sharma, A. B., Ivančić, F., Niculescu-Mizil, A., Chen, H., and

Jiang, G. (2014). Modeling and analytics for cyber-physical systems in the age of

big data. ACM SIGMETRICS Performance Evaluation Review, 41(4):74–77.

[Sheldon et al., 2005] Sheldon, F. T., Batsell, S. G., Prowell, S. J., and Langston, M. A.

(2005). Position statement: Methodology to support dependable survivable cyber-

secure infrastructures. In Proceedings of the 38th Annual Hawaii International Confer-

ence on System Sciences, pages 310a–310a. IEEE.

REFERENCES 140

[Shetty et al., 2014] Shetty, S., Adedokun, T., and Keel, L.-H. (2014). Cyberphyseclab:

A testbed for modeling, detecting and responding to security attacks on cyber physical

systems. Academy of Science and Engineering (ASE), USA, c© ASE 2014.

[Siaterlis and Maglaris, 2005] Siaterlis, C. and Maglaris, V. (2005). Detecting incoming

and outgoing ddos attacks at the edge using a single set of network characteristics. In

Computers and Communications, 2005. ISCC 2005. Proceedings. 10th IEEE Sympo-

sium on, pages 469–475. IEEE.

[Sing et al., 2005] Sing, T., Sander, O., Beerenwinkel, N., and Lengauer, T. (2005). Rocr:

visualizing classifier performance in r. Bioinformatics, 21(20):3940–3941.

[Skormin et al., 2014] Skormin, V., Dolgikh, A., and Birnbaum, Z. (2014). The behavioral

approach to diagnostics of cyber-physical systems. In AUTOTESTCON, 2014 IEEE,

pages 26–30. IEEE.

[Society, 2016] Society, I. C. (2016). Ieee computer society predicts top 9 technology

trends for 2016.

[Sravani and Srinivasu, 2014] Sravani, K. and Srinivasu, P. (2014). Comparative study of

machine learning algorithm for intrusion detection system. In Proceedings of the Inter-

national Conference on Frontiers of Intelligent Computing: Theory and Applications

(FICTA) 2013, pages 189–196. Springer.

[Stenberg, 2016] Stenberg, D. (2016). curl.

[Sterbenz et al., 2013] Sterbenz, J. P., Çetinkaya, E. K., Hameed, M. A., Jabbar, A.,

Qian, S., and Rohrer, J. P. (2013). Evaluation of network resilience, survivability, and

disruption tolerance: analysis, topology generation, simulation, and experimentation.

Telecommunication systems, 52(2):705–736.

[Storey, 2009] Storey, D. (2009). Securing process control networks. Network Security,

2009(10):10–13.

REFERENCES 141

[Striki et al., 2009] Striki, M., Manousakis, K., Kindred, D., Sterne, D., Lawler, G.,

Ivanic, N., and Tran, G. (2009). Quantifying resiliency and detection latency of in-

trusion detection structures. In Military Communications Conference, 2009. MILCOM

2009. IEEE, pages 1–8. IEEE.

[Templeton, 2011] Templeton, S. J. (May 25-27, 2011). Security aspects of cyber-physical

device safety in assistive environments. In 4th International Conference on Pervasive

Technologies Related to Assistive Environments (PETRA), pages 53:1–53:8. ACM.

[Timotheou and Loukas, 2009] Timotheou, S. and Loukas, G. (2009). Autonomous net-

worked robots for the establishment of wireless communication in uncertain emergency

response scenarios. In Proceedings of the 2009 ACM symposium on Applied Computing,

pages 1171–1175. ACM.

[Tippenhauer et al., 2011] Tippenhauer, N. O., Pöpper, C., Rasmussen, K. B., and Cap-

kun, S. (2011). On the requirements for successful gps spoofing attacks. In Proceedings

of the 18th ACM conference on Computer and communications security, pages 75–86.

ACM.

[Trutschel et al., 2014] Trutschel, U., Heinze, C., Sommer, D., and Golz, M. (2014). The

influence of feature combination for the discrimination results between two heart condi-

tions. In 8th Conference of the European Study Group on Cardiovascular Oscillations,

ESGCO 2014.

[Turk et al., 2005] Turk, R. J. et al. (2005). Cyber incidents involving control systems.

Idaho National Engineering and Environmental Laboratory.

[Uluagac et al., 2014] Uluagac, A. S., Subramanian, V., and Beyah, R. (2014). Sensory

channel threats to cyber physical systems: A wake-up call. In 2014 IEEE Conference

on Communications and Network Security (CNS), pages 301–309. IEEE.

[Venkatasubramanian et al., 2009] Venkatasubramanian, K. K., Banerjee, A., and Gupta,

S. K. (2009). Green and sustainable cyber-physical security solutions for body area

REFERENCES 142

networks. In 2009 Sixth International Workshop on Wearable and Implantable Body

Sensor Networks, pages 240–245. IEEE.

[Vuong et al., 2014] Vuong, T., Filippoupolitis, A., Loukas, G., and Gan, D. (2014). Phys-

ical indicators of cyber attacks against a rescue robot. In IEEE International Conference

on Pervasive Computing and Communications, pages 338–343. IEEE.

[Vuong et al., 2015a] Vuong, T., Loukas, G., and Gan, D. (2015a). Performance evalua-

tion of cyber-physical intrusion detection on a robotic vehicle. In Proceedings of 13th

International Conference on Pervasive Intelligence and Computing (PICOM). IEEE.

[Vuong et al., 2015b] Vuong, T., Loukas, G., Gan, D., and Bezemskij, A. (2015b). Deci-

sion tree-based detection of denial of service and command injection attacks on robotic

vehicles. In Proceedings of 7th International Workshop on Information Forensics and

Security (WIFS). IEEE.

[Walker, 2011] Walker, J. J. (2011). Cyber security concerns for emergency management.

Edited by Burak Eksioglu, page 39.

[Wang et al., 2010] Wang, E. K., Ye, Y., Xu, X., Yiu, S.-M., Hui, L. C. K., and Chow,

K.-P. (2010). Security issues and challenges for cyber physical system. In Proceedings

of the 2010 IEEE/ACM Int’l Conference on Green Computing and Communications

& Int’l Conference on Cyber, Physical and Social Computing, pages 733–738. IEEE

Computer Society.

[Warner and Johnston, 2003] Warner, J. S. and Johnston, R. G. (2003). Gps spoofing

countermeasures. Homeland Security Journal, 25(2):19–27.

[Wasicek et al., 2014] Wasicek, A., Derler, P., and Lee, E. A. (2014). Aspect-oriented

modeling of attacks in automotive cyber-physical systems. In Design Automation Con-

ference (DAC), 2014 51st ACM/EDAC/IEEE, pages 1–6. IEEE.

[Watts up?, 2016] Watts up? (2016). Watts up? PRO meters. [Online; accessed 22-May-

2016].

REFERENCES 143

[Wells et al., 2014] Wells, L. J., Camelio, J. A., Williams, C. B., and White, J. (2014).

Cyber-physical security challenges in manufacturing systems. Manufacturing Letters,

2(2):74–77.

[Wu et al., 2011] Wu, G., Lu, D., Xia, F., and Yao, L. (2011). A fault-tolerant

emergency-aware access control scheme for cyber-physical systems. arXiv preprint

arXiv:1201.0205.

[Xue et al., 2014] Xue, M., Wang, W., and Roy, S. (2014). Security concepts for the

dynamics of autonomous vehicle networks. Automatica, 50(3):852–857.

[Yampolskiy et al., 2012] Yampolskiy, M., Horvath, P., Koutsoukos, X. D., Xue, Y., and

Sztipanovits, J. (2012). Systematic analysis of cyber-attacks on cps-evaluating applica-

bility of dfd-based approach. In 2012 5th International Symposium on Resilient Control

Systems (ISRCS), pages 55–62. IEEE.

[Yampolskiy et al., 2013] Yampolskiy, M., Horvath, P., Koutsoukos, X. D., Xue, Y., and

Sztipanovits, J. (2013). Taxonomy for description of cross-domain attacks on cps. In

Proceedings of the 2nd ACM international conference on High confidence networked

systems, pages 135–142. ACM.

[Zeng et al., 2012] Zeng, Q., Li, H., and Qian, L. (2012). Gps spoofing attack on time

synchronization in wireless networks and detection scheme design. In MILCOM 2012-

2012 IEEE Military Communications Conference, pages 1–5. IEEE.

[Zeng and Chow, 2014] Zeng, W. and Chow, M. (2014). A reputation-based secure dis-

tributed control methodology in d-ncs. IEEE Transactions on Industrial Electronics,

61(11).

[Zhang et al., 2011] Zhang, Y., Wang, L., Sun, W., Green, R. C., , and Alam, M. (2011).

Distributed intrusion detection system in a multi-layer network architecture of smart

grids. IEEE ransactions on Smart Grid, 2:796–808.

[Zhu et al., 2011] Zhu, B., Joseph, A., and Sastry, S. (2011). A taxonomy of cyber at-

tacks on scada systems. In Internet of things (iThings/CPSCom), 2011 international

REFERENCES 144

conference on and 4th international conference on cyber, physical and social computing,

pages 380–388. IEEE.

[Zhu and Sastry, 2010] Zhu, B. and Sastry, S. (2010). Scada-specific intrusion detec-

tion/prevention systems: a survey and taxonomy. In Proceedings of the 1st Workshop

on Secure Control Systems (SCS).

	Declaration
	Dedication
	Acknowledgements
	Abstract
	Introduction
	Motivation
	Research questions and objectives
	Key contributions
	Publications
	Thesis Summary

	Literature review
	CPS and mobile CPS security
	Security challenges
	CPS testbeds

	Attack Mechanisms
	Cyber security triad
	Security threats in vehicular technologies

	Defence Mechanisms
	Preventative methods
	Reactive methods

	Intrusion detection for robots and vehicles
	Machine learning & deep learning based detection

	Conclusion

	Experimental process
	Introduction
	Testbed design
	Testbed components
	Remote operation
	Robotic vehicle setup

	Data collection
	Cyber data: network, CPU and disk usage
	Physical data: wheel speed
	Physical data: robotic vehicle vibration
	Physical data: energy consumption
	Ground truth
	Data pre-processing

	Attack scenarios
	Denial of Service attack (DoS)
	Command injection attack
	Malware attack

	Features
	Contrasting attack impacts on the features

	Detection with Decision Trees
	Introduction
	Data preparation
	Training, testing and validation data for each attack
	Detection method

	Evaluation
	Confusion matrix
	Receiver operating characteristic (ROC) curves
	Detection latency
	The significance of physical features

	Conclusion

	Offloaded deep learning based intrusion detection
	Introduction
	Cyber-physical intrusion detection using a recurrent neural network architecture
	Experimental evaluation of deep learning based detection accuracy
	Deep learning vs. popular machine learning techniques

	The networking configuration of offloading
	Evaluating the practicality of offloading detection
	Network model validation against experiments
	Network model results

	Conclusion

	Conclusion
	Summary of thesis achievements
	Critical discussion
	Applications
	Future work
	Extending the scope of this work through more attack scenarios, features and a behaviour-based detection approach
	Response mechanism to accompany intrusion detection
	A cloud-based ``security guard'' for robotic vehicles
	Distributed cyber-physical intrusion detection
	Evaluating the security and energy cost of offloaded intrusion detection

	Final remarks

	References

