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Introduction 

 The prevalence of obesity and type 2 diabetes are increasing dramatically in the United 

States and worldwide, with recent projections indicating that the prevalence of type 2 diabetes is 

likely to increase to over 25% of the US population by 2050 (14).  Type 2 diabetes is a complex 

disease that arises from a combination of environmental factors and genetic susceptibility.  

Increasing evidence has indicated that the in utero environment plays an important role in the 

development of diseases during adulthood, and numerous epidemiological and experimental 

studies have indicated a relationship between the maternal nutritional environment and obesity, 

type 2 diabetes, and cardiovascular disease in offspring (5-7, 31, 41, 52, 53, 58, 72, 73, 78, 84, 

92, 102). The classic Dutch Famine studies demonstrated that maternal under-nutrition resulted 

in offspring with increased obesity later in life (78), while children with low birth weight had 

increased risk for cardiovascular disease (7), impaired glucose tolerance, and type 2 diabetes (31, 

41, 73). Other studies have indicated that maternal over-nutrition is an important risk factor for 

childhood obesity (36, 54).  In fact, the detrimental effects of maternal over- or under-nutrition 

on adiposity and metabolism in offspring have been well established in both human (7, 36, 41, 

54, 78) and animal studies (44, 57, 65, 92, 101). 

Regular physical exercise is an important preventive therapeutic for several diseases, 
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including type 2 diabetes.  Physical exercise improves glucose homeostasis in people with type 2 

diabetes due to enhanced glucose uptake and insulin sensitivity in the working skeletal muscles 

(24).  In response to physical training, there are also molecular adaptations that enhance glucose 

homeostasis.  The effects of exercise to improve glucose homeostasis are likely an important 

mechanism to explain the strong epidemiological evidence that regular exercise prevents or 

delays the onset of type 2 diabetes (49, 95).   

Exercise during pregnancy has beneficial effects for the mother, including reduced rates 

of preeclampsia, gestational diabetes, heartburn, and the likelihood for cesarean section (51). The 

effects of exercise during pregnancy on fetal outcomes have been extensively investigated for 

many years.  The majority of this work focused on fetal growth, as there is a strong association 

between offspring birth weight and postnatal health outcomes (5). However, until recently, much 

less was known about the effects of maternal exercise on the metabolic phenotype of offspring.  

This is an important issue, since insults to the intrauterine environment during pregnancy are a 

critical factor in the development of obesity and type 2 diabetes in offspring (38) . Here, we will 

discuss recent findings related to the effects of maternal exercise on offspring metabolic health, 

how maternal exercise effects an impaired maternal diet, and if maternal exercise influences 

male or female offspring differently. 

 

Maternal Exercise Improves Offspring Health 

In humans, maternal physical activity has been shown to influence perinatal outcomes.  Studies 

investigating diet and physical exercise in humans during pregnancy have shown that exercise 

reduces gestational weight, decreases the risk for caesarean section, and regarding offspring, 

results in small but significant reductions in birth weight (1, 21, 66, 99). In one study, vigorous 
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weight bearing exercise throughout pregnancy in humans resulted in lower body weight of 

offspring at age 5, with no adverse postnatal health outcomes (21).  Maternal exercise has also 

been associated with lower BMI in offspring at 8 years of age (66). Human studies, both 

retrospective to examine the effects of diet and exercise during pregnancy, or intervention studies 

introducing an exercise intervention, are incredibly important to determine the role of maternal 

exercise on offspring health. While these studies provide important data with regard to the health 

of the mother and the metabolic phenotype of the infant, it is difficult to follow the child 

throughout their lifespan and determine the effect of maternal exercise on offspring health.  The 

majority of studies determining how the in utero environment affects offspring metabolic health 

in humans are the result of large epidemiological studies because the changes in health are not 

seen until adulthood (7, 31, 41, 73, 78). As a result, rodent models have been used to investigate 

the effects of maternal exercise on the metabolic health of adult offspring (17, 18, 50, 77, 83, 87, 

88, 100).  While there are discrepancies amongst these studies - different strains of mice and rats 

were used, different durations and modalities of maternal exercise were studied – the majority of 

studies resulted in the overall phenotype that maternal exercise before and during pregnancy 

improves glucose tolerance and insulin sensitivity in adult offspring (Table 1). 

 
Optimal Timing of Maternal Exercise Intervention - Pre- or During Gestation? 
 
An important question when investigating the beneficial effects of maternal exercise on offspring 

metabolic health is determining the optimal timing of the exercise intervention to confer 

maximal benefits to the offspring. The majority of studies investigating the effects of maternal 

exercise on offspring metabolic health subjected the dams to voluntary wheel cage running or 

swimming 7-21 days before gestation and during gestation (17, 18, 50, 100). While these studies 

established that exercise before and during pregnancy was important to observe improved 
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glucose tolerance and insulin sensitivity in adult offspring, it was not clear whether a specific 

time point of maternal exercise (pre-gestation, during gestation, during lactation, or all of the 

above) was required to determine the effects on the metabolic health of offspring. 

Multiple studies have sought to address this question (17, 18, 83, 88). Recent work in our 

laboratory determined if the timing of maternal exercise pre-gestation, during gestation, or both, 

was important to confer the beneficial effects to the metabolic health of adult offspring (88). 

Female mice were divided into four subgroups: trained (mice housed with running wheels 

preconception and during gestation), pre-pregnancy trained (housed with wheels preconception), 

gestation trained (housed with wheels during gestation), or sedentary (housed in static cages).  

Maternal exercise was not performed during the lactation period. Male offspring of sedentary 

dams had a worsening of glucose tolerance as they aged, and this effect was negated in the 

offspring if maternal exercise was performed before and during gestation. Maternal exercise both 

before and during gestation improved glucose tolerance, lowered fasting insulin, and decreased 

% body fat in male offspring compared to all other groups. Maternal exercise only during 

gestation improved glucose tolerance at a young age (8 and 12 weeks), but not during adulthood. 

Maternal exercise only during pre-pregnancy did not alter glucose tolerance of offspring at any 

age (88). These data indicate that maternal exercise both before and during gestation is crucial to 

an improved glucose tolerance in the offspring. 

Similar to these results, another study examined the effects of gestation-only exercise in 

rats on the metabolic health of adult male offspring (83).  Female rats were given open access to 

a wheel cage only during the gestation period. They observed no effect on glucose tolerance in 

the adult male offspring, but determined decreased % body fat.  The male offspring from 
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gestation-trained dams were also protected from high-fat diet induced hepatic steatosis and had 

increased expression of liver mitochondrial genes.  

Another set of studies examined the effects of maternal exercise (voluntary wheel 

running) that was performed both pre- and during-gestation and throughout the lactation period 

(17, 18) using both a rat and mouse model.  Adult male offspring (mouse) (17) and adult female 

offspring (rat) (18) had improved glucose tolerance and increased skeletal muscle insulin 

sensitivity. In these studies, each time point of maternal exercise (pre-gestation, during-gestation, 

and during lactation) was not independently investigated, but exercise continued throughout the 

pre-gestation, gestation, and lactation period.  

Together these studies indicate that there are some beneficial effects in offspring if 

maternal exercise was performed only during gestation, but the maximal effects on offspring 

glucose tolerance and health are evident if maternal exercise is performed either before and 

during gestation, or before and during gestation and throughout lactation (17, 18, 83, 88). There 

was not an added improvement in glucose tolerance if maternal exercise was performed both 

before and during gestation and continued through lactation, however this has not been closely 

examined.  Further investigation of maternal exercise only during the lactation period would 

allow insight into this, as well as a potential role for maternal exercise to alter the components of 

maternal milk that may improve glucose tolerance and metabolic health of offspring. Studies 

have shown that exercise does not affect the quality of breastmilk composition (25) but can alter 

the different components, including increasing insulin in the milk (79). From a therapeutic 

standpoint, the fact that exercise only during gestation can confer some beneficial effects to the 

offspring is exciting and important; if these results translate to humans it would indicate that a 
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previously sedentary woman could begin to exercise once she is pregnant and still provide some 

benefits to her offspring.   

 
Influences of Maternal Exercise on Male vs. Female Offspring 
 
There is an increasing amount of data indicating that metabolic insults and disease states 

differentially affect males and females. In fact, there are now strong efforts to understand the 

effects of interventions and treatments in both genders (22).  With respect to maternal influences 

during pregnancy, studies investigating the effects of maternal over-nutrition on both male and 

female offspring have repeatedly shown that the male offspring have a more pronounced 

detrimental phenotype than the female offspring (9, 32, 48, 71, 73, 81). Here, we will discuss the 

effects of maternal exercise in chow-fed dams on the metabolic health of both male and female 

offspring; effects of maternal exercise in the presence of a maternal high-fat diet will be 

discussed at a later point. 

 The majority of studies investigating the effects of maternal exercise on offspring have 

primarily studied the male offspring (75-77, 83, 88, 100).  Studies by our lab and others have 

shown that maternal exercise in chow-fed dams results in increased % lean mass (17) and 

decreased % fat mass (17, 88), and decreased body weight (83, 88) in adult male offspring 

compared to offspring from sedentary dams.  Male offspring from exercise-trained dams also had 

significantly improved glucose tolerance (17, 50, 88), reduce fasting insulin (88), improved 

insulin tolerance (17), and increased energy expenditure (100).  

 Studies that have measured the effects of maternal exercise in chow-fed dams on 

metabolic health of female offspring have seen a somewhat tempered phenotype compared to 

male offspring.  Carter et al. determined that glucose tolerance was improved in female offspring 

from exercise-trained dams (17, 18) and that female offspring had improved insulin tolerance 
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(17), and were more insulin sensitive when subjected to euglycemic-hyperinsulinemic clamps 

(18).  Interestingly, work in our laboratory determined no difference in insulin sensitivity 

measured by euglycemic-hyperinsulinemic clamps in female offspring from chow-fed sedentary 

or exercise-trained dams (87).  We also determined that female offspring from chow-fed, 

exercise-trained dams had reduced fasting insulin and % body fat compared to offspring from 

chow-fed sedentary dams (87).  

 

Maternal Exercise Affects Function of Multiple Tissues in Offspring 

Interestingly, while the improved glucose tolerance phenotype is more pronounced in male 

offspring than female offspring (17, 87, 88), the tissue responsible for the improved glucose 

tolerance has been more thoroughly investigated in female offspring. Work in our laboratory 

measured glucose clearance in vivo in skeletal muscle (tibialis anterior, soleus, gastrocnemius, 

and extensor digitorum longus).  There was no difference in rates of basal or insulin-stimulated 

glucose clearance in skeletal muscles from offspring of sedentary or exercise-trained dams (88).  

Another study in male offspring revealed increased expression of hepatic Pgc1a and a reduction 

in the presence of hepatic steatosis, indicating that maternal exercise may exert beneficial effect 

on offspring through adaptations to the liver.  It is important to note, however, that in this study 

the dams only exercised during gestation and there was no improvement in glucose tolerance 

observed in male offspring (83).  

 In female offspring, studies have indicated that maternal exercise causes adaptations to 

the skeletal muscle (17, 18), adipose tissue (17), and liver (18, 87).  In vitro glucose uptake was 

measured in isolated soleus muscle and parametrial adipose tissue from female offspring. There 

was no difference in basal glucose uptake among groups, but insulin-stimulated glucose uptake 
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was significantly increased in both the soleus and parametrial adipose tissue in offspring from 

chow-fed exercise-trained dams compared to offspring from chow-fed sedentary dams (17). This 

indicates an important role for skeletal muscle and adipose tissue to mediate the improved 

glucose tolerance in female offspring from exercise-trained dams.  Another study, this time in 

rats, determined an increase in skeletal muscle glucose uptake after euglycemic-

hyperinsulinemic clamps in female offspring from chow-fed exercise-trained dams (18).  

 Other studies have examined the role of the liver in female offspring in response to 

maternal exercise.  While both studies demonstrate an increase in hepatic insulin sensitivity and 

reduced hepatic glucose production, the data are slightly conflicting.  In rats, the offspring from 

chow-fed sedentary and exercise-trained dams underwent euglycemic-hyperinsulinemic clamps.  

Female offspring from exercise-trained dams had increased glucose infusion rates, improved 

whole-body glucose turnover, and decreased hepatic glucose production (18).  We performed a 

similar euglycemic-hyperinsulinemic clamps experiment in mice, and determined that there was 

no effect of maternal exercise on glucose infusion rates or whole-body glucose turnover in 

offspring from exercise-trained dams (87). While these data were perplexing in light of previous 

experiments, it is possible that the different species used (rats vs. mice) were partly responsible 

for the conflicting results.  Further investigation on the effects of maternal exercise on the liver 

of female offspring revealed increased insulin sensitivity in isolated hepatocytes and expression 

of genes involved in hepatic metabolism. We measured glucose production in isolated 

hepatocytes and expression of hepatic genes involved in mitochondrial biogenesis, fatty acid 

metabolism, and Krebs cycle activity. Basal, insulin-suppressed, and glucagon-stimulated 

glucose production in isolated hepatocytes was significantly lower in female offspring from 

chow-fed, exercise-trained dams compared to offspring from chow-fed, sedentary dams. Several 
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hepatic genes involved in mitochondrial biogenesis, fatty acid metabolism, and Krebs cycle 

activity were also significantly higher in offspring from chow-fed exercise-trained dams 

compared to chow-fed sedentary dams (87).  Together these data indicate that maternal exercise 

affects the skeletal muscle, adipose tissue, and liver in female offspring, and adaptations to one 

or all of these tissues likely contribute to an improved metabolic response. 

The age of the offspring investigated and the intensity of the maternal exercise may also 

play an important role in which tissue is affected by maternal exercise.  The studies described 

above measured skeletal muscle glucose uptake and methylation in adult offspring in response to 

voluntary maternal exercise (83, 88). Other studies have examined the effects of maternal 

treadmill exercise at various intensities before and during gestation in rats.  When female rats 

were subjected to 4 wks of submaximal exercise (55% maximal aerobic speed), their male 

offspring had lower fasting glucose and pancreas weight, and a smaller islet cell size compared 

to offspring from sedentary dams at the time of weaning (3-4 wks of age) (76).  However, at 7 

months of age, male offspring from submaximally exercise-trained dams had a worsened glucose 

tolerance and impaired muscle insulin sensitivity compared to offspring from sedentary dams.  

This is in contrast to previous studies (83, 88) that determined improved glucose tolerance in 

adult male offspring after voluntary maternal exercise.  

Controlled, low-intensity treadmill exercise for 4 wks prior to and during gestation 

improved skeletal muscle insulin sensitivity at 12 wks of age in the male offspring.  At this time 

point there was no change in glucose tolerance or fasting glucose or insulin (75).  It is not clear if 

this increased skeletal muscle insulin sensitivity would persist as the offspring age, but it is 

important to note that in this case, the skeletal muscle phenotype preceded the improvement in 

whole-body glucose tolerance.  This study also used a controlled maternal exercise (treadmill) 
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(75) as opposed to voluntary wheel running (83, 88), which could potentially contribute to the 

different phenotypes observed in offspring. It is clear that the modality and intensity of the 

exercise are important factors in determining the offspring phenotype, but it has not been 

established why a more intense maternal exercise could have potentially detrimental effects in 

adult offspring.  The effect of a more intense exercise training regiment on female offspring has 

also not yet been examined. More studies are needed to identify the optimal training paradigm to 

confer the beneficial effects of maternal exercise to offspring and to fully elucidate the 

mechanisms responsible for the improvement in metabolic health in response to maternal 

exercise, as well as to delineate the different responses in male and female offspring. 

 

Maternal Exercise Increases Physical Activity of Offspring 

An interesting question is whether maternal physical activity increases either activity or physical 

performance in offspring.  This is a difficult question to address in humans because of the 

environmental factor; if the parents are physically active, it is likely that the offspring are in an 

active environment and continually exposed to activity. In the rodent studies discussed above, 

examining the effects of maternal exercise to alter offspring metabolic health, all offspring 

studied were maintained sedentary throughout their lifespan.   

 A recent study (27) used a rodent model to determine if maternal exercise increased 

voluntary physical activity in offspring.  Female mice were given open access to a wheel cage 

one wk prior to gestation and throughout their gestation period. In contrast to previous studies, 

there were no effects determined on offspring body weight or composition during adulthood (17, 

18, 87, 88). At 3, 10, and 23 wks of age, offspring from sedentary and trained dams were placed 

in metabolic cages and activity and energy expenditure.  At 10 wks of age, female offspring from 
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exercise-trained dams had increased activity and energy expenditure compared to offspring from 

sedentary dams.  At 43 wks of age, female offspring were given open access to a wheel cage to 

determine voluntary exercise over a 3 wk period of time; offspring from exercise-trained dams 

had a greater % body fat loss, likely due to an increased amount of exercise. This study raises 

several important points, particularly that minimal maternal exercise (1 wk prior to gestation and 

during gestation) can increase the volition of exercise on offspring.  It is somewhat surprising 

that this effect was only observed in female offspring instead of male offspring, particularly 

because the metabolic phenotypes are more pronounced in the male offspring during adulthood.  

Determining if the amount or intensity of maternal exercise directly impacted the amount of 

voluntary exercise completed by the offspring will be of interest, and future studies will focus on 

investigating the mechanism for maternal exercise to increase voluntary exercise in adult 

offspring.  Regardless, these data demonstrate the importance of the early environment to effect 

activity in offspring.  If these data are translatable to humans, it will provide further support for 

maternal exercise to confer benefits to adult offspring and another potential mechanism for 

maternal exercise to protect against offspring obesity.  

 

 

 

Maternal Exercise and Dietary Interventions 

It is well established that maternal obesity and a maternal high-fat diet are major factors in the 

development of obesity and diabetes in offspring as they age, initiating a vicious cycle that likely 

contributes to the current rise in rates of obesity and diabetes (5, 9, 39, 41, 44, 45, 47, 57, 60, 73, 

78, 101).  Similarly, models of maternal under-nutrition result in offspring with increased obesity 
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during adulthood (78) and an increased risk for development of cardiovascular disease (7) and 

type 2 diabetes (31, 41, 73).  Thus an essential question with regards to maternal exercise 

intervention is if maternal exercise can negate the detrimental effects of a maternal high-fat diet 

(Table 2). 

 
Maternal Exercise Negates the Detrimental Effects of a High-Fat Diet 
 
To determine the effects of maternal exercise on offspring metabolic health in the presence of a 

maternal high-fat diet, multiple studies investigated the effects of placing dams on a high-fat diet 

while simultaneously giving them open access to voluntary wheel running for 2-3 weeks prior to 

and during gestation (50, 87, 88).  All offspring were sedentary and chow-fed and studied into 

adulthood.   

 Male offspring from high-fat fed sedentary dams had marked glucose intolerance as they 

aged and this was completely negated in offspring from high-fat fed exercise-trained dams (88).  

In fact, offspring from high-fat fed exercise trained dams had improved glucose tolerance 

compared to offspring from chow-fed sedentary dams at 52 weeks of age. Male offspring from 

high-fat fed exercise-trained dams also had lower fasting insulin, reduced body weight and % 

body fat, and improved insulin tolerance compared to offspring from high-fat fed sedentary 

dams.  These data demonstrate that a maternal high-fat diet, even for a short period of time, has a 

detrimental effect on offspring metabolic health.  Importantly, maternal exercise can prevent 

these deleterious effects in adult male offspring.  

 Studies investigating the effects of a maternal high-fat diet and exercise in female 

offspring also showed a striking effect for maternal exercise to counteract the effects of a 

maternal high-fat diet (50, 87).  Similar to male offspring, a maternal high-fat diet impaired 

glucose metabolism in adult female offspring and maternal exercise reversed that effect (50, 87). 
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Female offspring from high-fat fed exercise-trained dams had lower fasting insulin, body weight, 

and % body fat compared to offspring of high-fat fed sedentary dams.  Insulin tolerance was also 

improved in offspring from high-fat fed exercise-trained dams compared to offspring from high-

fat fed sedentary dams (87). 

 The tissue likely contributing to the improved glucose tolerance in response to maternal 

exercise in the presence of a maternal high-fat diet was investigated in female offspring.  Laker 

et al. (50) examined the role of Pgc1a-promoter methylation and saw that it was 

hypermethylated in skeletal muscle of female offspring from sedentary high-fat fed dams, but 

maternal exercise reduced the hypermethylation to that of offspring from chow-fed dams.  

Expression of genes involved in glucose metabolism were also significantly increased in skeletal 

muscle of offspring from high-fat fed exercise-trained dams. There was no effect of maternal 

exercise or high-fat diet to alter Pgc1a methylation in the liver or skeletal muscle of male 

offspring (50).   

 Our laboratory investigated the effects of maternal exercise in the presence of a maternal 

high-fat diet on liver function in female offspring. We measured glucose production in isolated 

hepatocytes and found that offspring from high-fat fed sedentary dams had impaired basal, 

insulin-suppressed and glucagon-stimulated glucose production, but offspring from high-fat fed 

exercise-trained dams had glucose production similar to that of offspring from chow-fed dams.  

Expression of hepatic genes involved in mitochondrial biogenesis, fatty acid metabolism, and 

Krebs cycle activity were significantly reduced in offspring from high-fat fed sedentary dams, 

but offspring from high-fat fed exercise-trained dams had gene expression similar to that of 

offspring from chow-fed sedentary dams (87).  Together these data indicate that maternal 

exercise negates the detrimental effects of a maternal high-fat diet in both male and female 
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offspring. It is important to note that in the studies discussed, the maternal high-fat diet was over 

a relatively short time course (2-3 weeks prior to gestation).  Even with this mild intervention, 

offspring from high-fat fed dams had significantly worsened glucose tolerance, and this effect 

was reversed in the presence of maternal exercise.  

As stated above, these studies all examined the effects of maternal exercise that began 

simultaneously with the presence of a maternal high-fat diet on offspring health (50, 87, 88).  

While important, a more translational approach would be to examine the effects of maternal 

exercise in an already obese model and determine if this could negate or reverse the detrimental 

effects of maternal obesity on offspring metabolic health.  A recent study investigated this using 

a rat model; female rats were placed on a high-fat diet for 6 wks and then given open access to a 

running wheel where they could complete voluntary exercise and maintained a high-fat diet for 4 

wks prior to conception (97). Male offspring from high-fat fed dams who were exercise-trained 

had lower circulating leptin and triglycerides and decreased fat mass at 5 wks of age compared to 

male offspring from high-fat fed sedentary dams.  Female offspring were not investigated, and 

offspring were not followed later than the 5 wk time point.  These data are intriguing, indicating 

that maternal exercise could at least partially negate the detrimental effects of maternal obesity 

and could have a tremendous impact on the human population if translatable.  More investigation 

is needed to determine if maternal exercise in an already obese mother can affect offspring 

metabolic health into adulthood.  

 
 
 
 
Maternal Exercise Abolishes the Impaired Metabolic Response to Maternal Protein-Restriction 
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A maternal low-protein diet is one of the most well-studied models of early growth restriction.  It 

is associated with elevated systolic blood pressure, increased fasting insulin and impaired 

glucose tolerance in offspring compared to offspring from dams fed a normal diet (70).  Recent 

studies investigated the effects of maternal protein-restriction in the presence of exercise both 

before and during gestation (3, 30, 33) in rats on male offspring. Adult female Wistar rats were 

subjected to a controlled, moderate- to low-intensity exercise training regiment on a treadmill for 

4 wks prior to gestation and maintained on the same program throughout the gestation period.  

After conception the dams were further subdivided into a group that received a normal protein 

(17% casein) diet or a low protein (8% casein) diet and remained on that diet through gestation 

and lactation.   

Offspring from low protein fed, sedentary dams had decreased growth rates (3, 30), 

decreased reflex maturation (30), increased abdominal circumference, elevated fasting glucose 

and cholesterol, impaired glucose tolerance, and decreased plasma leptin (33) compared to 

offspring from normal protein fed, sedentary dams.  Maternal exercise, however, attenuated the 

effects of a low protein diet.  Offspring from low protein fed, exercise trained dams have 

increased growth rates (3, 30), improved reflex maturation (30), lower abdominal circumference, 

decreased fasting glucose and cholesterol, improved glucose tolerance (33) compared to 

offspring from low protein fed, sedentary dams.  Maternal exercise did not completely normalize 

the effects of a maternal low-protein diet, but it did improve growth rates and most metabolic 

markers.  These data indicate that maternal exercise could be a therapeutic option for disorders 

associated with perinatal under-nutrition (33)   
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Maternal Exercise vs. Maternal Under-Nutrition 
 
To this point, there have been no studies investigating the effects of maternal exercise in an 

under-nutrition model or any type of dietary energy restriction.  It is important to note, however, 

that exercise is a model of voluntary energy expenditure and results in an opposite phenotype to 

that of a dietary energy restriction, with improvements in glucose tolerance and adiposity.  There 

has not been a mechanistic link established between these phenotypes, but future investigations 

focused on why energy restriction vs. energy expenditure result in contradicting metabolic 

phenotypes could be an important approach.  

 
Maternal Exercise Prevents Obesity in Offspring Fed a High-Fat Diet 

While numerous studies have examined the effects of maternal exercise to negate the detrimental 

effects of an impaired maternal diet on offspring metabolic health, a few recent studies have 

examined the effects of maternal exercise to protect or preserve the metabolic health of the 

offspring when the offspring are fed a high fat or high sucrose diet.  

In one study, female rats were divided into a sedentary or exercise group 4 wks prior to 

gestation. The exercise group underwent 4 wks of low-intensity treadmill exercise and the 

exercise regimen continued during the gestation period (75).  After weaning, offspring were 

either placed on a standard chow (5.1% fat, 4.4% other sugars) diet or fed a high-fat/high-sucrose 

(36% fat, 16.6% sucrose) diet for 10 weeks. There was no effect of maternal exercise to effect 

glucose tolerance, or fasting glucose or insulin in chow fed male offspring at 12 wks of age.  

Maternal exercise did improve muscle insulin sensitivity in chow fed male offspring.  

 Offspring fed a high-fat/high-sucrose diet had increased body weight, impaired glucose 

tolerance, increased fasting glucose and insulin, and reduced liver glycogen compared to 

offspring fed a standard chow diet.  Maternal exercise, however, was protective against these 
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deleterious effects of a high-fat/high-sucrose diet.  Offspring from exercise-trained dams fed a 

high-fat/high-sucrose diet had lower body weight, fasting glucose, and insulin, and increased 

liver glycogen compared to offspring from sedentary dams fed a high-fat/high-sucrose diet.  

Muscle insulin sensitivity was also increased in male offspring from exercise-trained dams fed a 

high-fat/high-sucrose diet compared to offspring from sedentary dams fed a high-fat/high-

sucrose diet (75). It is important to note that the chow diet used in this study contained only 5% 

fat, while most chow diets contain ~20% fat.  This does not take away from the effects of 

maternal exercise to protect against a high-fat diet, but should be considered a low-fat diet 

instead of a standard chow comparison. 

 Other studies have examined the effects of maternal exercise during gestation (83) or 

during gestation and lactation (79) to protect against the offspring being overfed or fed a high-fat 

diet.  In both cases, offspring from exercise-trained dams had an improved metabolic phenotype 

compared to offspring from sedentary dams when overfed (79) or fed a high-fat diet (83).  

Maternal exercise improved glucose tolerance, insulin tolerance, and reduced the presence of 

hepatic steatosis in male offspring during adulthood when compared to offspring from sedentary 

dams (79, 83). 

Together these data suggest that maternal exercise exerts a protective effect on offspring, 

even when the offspring are overfed or fed a high-fat or high-fat/high-sucrose diet. While the 

mechanism for this protective effect has not been established, increased muscle insulin 

sensitivity is likely important (75). The length of time the offspring were overfed or fed the high-

fat or high-fat/high-sucrose diet also varied in each of these studies, and only male offspring 

were investigated (75, 79, 83). Future investigation will be imperative to determine how maternal 

exercise preserves metabolic parameters in offspring who are fed a high-fat diet, as well as to 
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establish when during gestation maternal exercise is required, and the intensity of the maternal 

exercise required to maximize these benefits.  In terms of human physiology, if an ideal maximal 

time point and intensity of maternal exercise could be identified to confer beneficial effects to 

offspring to protect them from the detrimental effects of a high-fat diet, the implications on 

public health cannot be overstated.   

 

Maternal Exercise and Gestational Diabetes 

Gestational diabetes mellitus (GDM) is associated with both short- and long-term complications 

for the mother and her baby. It has been associated with disorders including hypertension, pre-

eclampsia and early births, as well as an increased risk for perinatal morbidity, impaired glucose 

tolerance and type 2 diabetes following pregnancy (82). Recent studies have shown that exercise 

interventions may provide a protective effect on maternal glycemic control, thus improving 

maternal and infant outcomes (1, 15, 99).   

 The effect of maternal exercise in women with gestational diabetes on offspring 

metabolic health has not been extensively investigated, likely because epidemiological studies 

are difficult and there is not a clear animal model to use to study gestational diabetes. One study 

examined the effects of maternal exercise in diabetic rats and determined a beneficial effect on 

metabolic health of the offspring. Rats were given streptozotocin (STZ) to induce diabetes and 

14 days later subjected to 14 days of pre-gestation exercise on a treadmill or kept sedentary.  

Offspring from exercise-trained diabetic dams had improved glucose tolerance at 4 weeks of age 

compared to offspring from sedentary diabetic dams (96). It is important to note that in this 

study, all offspring nursed with euglycemic foster moms and the offspring were only studied at 4 

weeks of age.  Regardless, maternal exercise in a diabetic dam improved glucose tolerance in 
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offspring. More studies are needed to fully understand the effects of maternal exercise in a 

diabetic mother on the metabolic health of the offspring. 

 
 
Concluding Remarks and Future Perspectives 
 
The intrauterine environment during pregnancy is a critical factor in the development of type 2 

diabetes and obesity in offspring.  Studies in both humans and rodents have shown that maternal 

over-nutrition and under-nutrition result in metabolic impairments during adulthood including 

increased rates of obesity and type 2 diabetes (5-7, 31, 36, 41, 44, 52-54, 57, 58, 65, 72, 73, 78, 

84, 92, 101, 102).  Regular exercise is an important therapeutic tool to combat obesity and 

improve metabolic health in the general population, but the role of maternal exercise during 

pregnancy on the metabolic health of the offspring has been poorly understood and human 

studies have been limited. Rodent models of exercise during pregnancy have been put forth to 

investigate these questions and have compellingly shown that maternal exercise improves the 

metabolic health of adult male and female offspring (3, 17, 18, 33, 50, 75, 83, 87, 88).  

Importantly, and with particular translatable ramifications, maternal exercise negates the 

detrimental effects of an impaired maternal diet on offspring metabolic health (3, 30, 33, 50, 87, 

88). 

These exciting studies stress the important of maternal exercise but leave us with several 

important questions. One such question to address is to determine the optimal timing of maternal 

exercise to confer metabolic benefits to the offspring.  The studies discussed above examined 

offspring from maternal exercise that occurred: 1) pre-gestation; 2) during gestation; 3) both pre-

gestation and during gestation; 4) pre-gestation, during gestation, and during lactation; and 5) 

during gestation and during lactation.  Exercise only pre-gestation did not result in any beneficial 
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effects to the metabolic health of adult offspring.  Investigating the timing of maternal exercise 

begins to address the question as to the mechanism of action through which maternal exercise 

improves offspring metabolic health. Because there is no effect of pre-gestation only exercise to 

affect offspring health (87, 88), it is unlikely that epigenetic changes to the oocyte are the 

mechanism responsible.  Epigenetic changes to the placenta, however, have not been 

investigated.  Changes in Pgc1a methylation in the liver (83) and skeletal muscle (50) of 

offspring were observed in previous studies, but other epigenetic changes in tissues have not 

been investigated.  How these mechanistic changes occur to the offspring, and how they persist 

into adulthood is not clear and is an important topic of future investigation to maximize the 

potential therapeutic benefits of maternal exercise to improve the metabolic health of adult 

offspring. 

In addition, another important question is to determine the intensity of maternal exercise 

required to confer metabolic benefits to offspring.  The majority of the studies discussed above 

utilized either voluntary wheel cage running (17, 18, 50, 83, 87, 88) or low intensity treadmill 

exercise (3, 30, 33, 75, 79) and observed metabolic benefits in the adult offspring.  However, a 

study that subjected the dams to a more intense exercise protocol (55% maximal aerobic speed) 

prior to and during gestation resulted in impaired glucose tolerance in adult offspring even 

though skeletal muscle insulin sensitivity was increased in offspring at 12 wks of age (76). The 

reasons for the discrepancies in these data are unclear. In all of these studies, the intensity of the 

exercise remained constant throughout the entire training period, regardless of whether it 

occurred pre-gestation, during gestation, or during lactation.  In rodent studies using models of 

voluntary maternal exercise, the amount of exercise decreases throughout the gestation period.  

When using a submaximal treadmill exercise protocol, the pregnant mice were exercised at a 
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high intensity regardless of their point during gestation; it is possible that this caused a stress to 

the dam that resulted in a negative phenotype during adulthood in the offspring. The submaximal 

exercise regiment was chosen to correspond to the intensity guidelines for exercise in pregnant 

women around the world, and similar to the frequency recommended in the United States and 

Denmark (28).  It is possible that the different exercise intensities affect placental blood flow 

differently thus resulting in varying offspring phenotypes.  It is also possible that epigenetic 

changes induced by exercise differ with varying intensities of maternal exercise (8) thus 

affecting the phenotype of the offspring.  More studies are needed to fully determine the optimal 

intensity of exercise, particularly in humans, to determine how maternal exercise can improve 

metabolic health of adult offspring. 

Future studies investigating exercise interventions in pregnant women will provide 

insight into both the mechanism through which maternal exercise improves metabolic health in 

offspring, as well as to how translatable the rodent model is to humans.  At least two such trials 

are underway, one investigating an exercise intervention in overweight and obese women prior to 

gestation (https://clinicaltrials.gov/ct2/show/NCT03146156) and one that will provide an 

exercise intervention in women who are ~12 wks pregnant 

(https://clinicaltrails.gov/ct2/NCT02125149). Both of these studies will investigate maternal 

health, body weight, and insulin sensitivity as a primary outcome, but will also include measures 

of the placenta (mitochondrial enzyme activity and lipid metabolism) 

(https://clinicaltrials.gov/ct2/show/NCT03146156) or will track the offspring for at least the first 

two years of life (https://clinicaltrails.gov/ct2/NCT02125149). These investigations, as well as 

others, will provide greater insight into the effects of maternal exercise on offspring metabolic 

health in humans. 
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In summary, maternal exercise before and during pregnancy significantly improves the 

metabolic health of adult male and female offspring in rodents and offsets the detrimental effects 

of an impaired maternal diet (high-fat or low protein). These findings, if translatable to humans, 

will have critical implications for the prevention of obesity and type 2 diabetes in future 

generations. 

 
Gender Species    

(strain) 
Time of maternal 

exercise 
Age of 

Offspring 
Offspring 

Body 
Weight 

Offspring 
Glucose 

Tolerance 

Tissue 
Affected 

Type and Intensity of 
exercise 

Ref 

Female  Mouse 
(C57BL/6) 

Pre-Gestation  Adult No change Improves _ VWR 22 

Female Mouse 
(C57BL/6) 

During Gestation Adult No change Improves _ VWR 22 

Female Mouse 
(C57BL/6) 

Pre & During 
Gestation 

Adult No change Improves Liver VWR 22 

Female Mouse (ICR) Pre & During 
Gestation & 

Lactation 

Adult No change Improves _ VWR 24 

Female Rat (Sprague 
Dawley) 

Pre & During 
Gestation &Lactation 

Adult No change Improves Muscle VWR 25 

Male  Mouse 
(C57BL/6) 

Pre-Gestation Adult No change No effect _ VWR 23 

Male Mouse 
(C57BL/6) 

During Gestation Adult Reduced No effect Liver 
(27)  

VWR 23,27 

Male Mouse 
(C57BL/6) 

Pre & During 
Gestation 

Adult Reduced Improved Muscle 
(26) 

VWR 23, 26 

Male Mouse (ICR) Pre & During 
Gestation &Lactation 

Adult No change Improved Muscle VWR 24 

Male Rat (Wistar) Pre & During 
Gestation 

Youth No change No effect Muscle, 
Pancreas 

Treadmill/Submaximal 39 

Male Rat (Wistar) Pre & During 
Gestation 

Adult No change Worsened Muscle, 
Pancreas 

Treadmill/Submaximal 39 

Male Rat (Wistar) Pre & During 
Gestation 

Adult Reduced No effect Muscle Treadmill/Moderate 38 

Male  Rat (Wistar) Pre & During 
Gestation 

Adult No change No effect _ Treadmill/Moderate 48 

Male Mouse 
(C57BL/6) 

Pre & During 
Gestation 

Adult No change No effect Increased 
Activity 

VWR 40 

Female Mouse 
(C57BL/6) 

Pre & During 
Gestation 

Adult No change No effect Increased 
Activity 

VWR 40 

Table 1.  Characteristics of male and female offspring in response to maternal exercise.  
Directionality (i.e. reduced, improved) is compared to offspring from sedentary dams.  Age of 
offspring is defined as adult (>6 months of age), youth (<12 weeks of age), or young (<3 weeks 
of age). Voluntary wheel running (VWR).  
 
 
 
 
 
 

Gender Species    
(strain) 

Time of 
maternal 
exercise 

Maternal 
diet 

Age of 
Offsprin

g 

Body 
Weight 

Glucose 
Toleranc

e 

Tissue 
Affecte

d 

Offspri
ng diet 

Type and Intensity 
of exercise 

Ref 
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Female Mouse 
(C57BL/6) 

Pre-Gestation High-Fat Adult No 
change 

No 
change 

_ Chow VWR 22 

Female Mouse 
(C57BL/6) 

During Gestation High-Fat Adult No 
change 

No 
change 

_ Chow VWR 22 

Female Mouse 
(C57BL/6) 

Pre & During 
Gestation 

High-Fat Adult Reduced Improves Muscle 
(26);Li

ver 
(22) 

Chow VWR 22,26 

Male Mouse 
(C57BL/6) 

Pre-Gestation High-Fat Adult No 
change 

No 
change 

_ Chow VWR 23 

Male Mouse 
(C57BL/6) 

During Gestation High-Fat Adult No 
change 

Improves _ Chow VWR 23 

Male Mouse 
(C57BL/6) 

Pre & During 
Gestation 

High-Fat Adult Reduced Improves Liver Chow VWR 23, 26 

Male Mouse 
(C57BL/6) 

During Gestation Chow Adult No 
change 

Improves Liver High-
Fat 

VWR 27 

Male Rat (Wistar) Pre & During 
Gestation 

Chow Adult Reduced No effect Muscle High-
Fat/Hig

h-
Sucrose 

Treadmill/Moderate 38 

Male Rat (Wistar) Pre & During 
Gestation 

Low 
Protein 

Adult Reduced Improves _ Chow Treadmill/Moderate 48 

Male Rats (Wistar) Pre & During 
Gestation 

High-Fat Youth No 
change 

Improves _ Chow VWR 45 

Female Rats (Wistar) Pre & During 
Gestation 

High-Fat Youth No 
change 

Improves Muscle Chow VWR 45 

Male Rats (Wistar) Gestation and 
Lactation 

Chow Young Reduced Improves _ Over-
fed 

Treadmill/Moderate 38 

Male Rats (Wistar) Gestation and 
Lactation 

Chow Youth Reduced Improves _ Over-
fed 

Treadmill/Moderate 31 

Table 2.  Characteristics of male and female offspring in response to maternal exercise with 
a dietary intervention.  Directionality (i.e. reduced, improved) is compared to offspring from 
sedentary dams.  Age of offspring is defined as adult (>6 months of age), youth (<12 weeks of 
age), or young (<3 weeks of age). VWR=Voluntary wheel running.  
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Maternal Exercise Improves Metabolic Health of Adult Offspring through Adaptations to 

Breastmilk 

 

Introduction 

 A child’s adult phenotype is influenced by many of the early life factors they encounter, 

including genetics, maternal factors, the intrauterine environment, and the early life environment.  

Exercise has been shown to be beneficial for many health conditions, including type 2 diabetes 

(49, 95), and maternal exercise has been shown to improve metabolic phenotypes of adult 

offspring (17, 18, 50, 77, 83, 87, 88, 100).  In contrast, poor maternal diet (either overnutrition or 

undernutrition) and environment are linked to cardiac dysfunction (86), impaired leptin 

signaling, epigenetic markers, and endocrine function (26), as well as other metabolic health 

effects in adult offspring in humans and rodents (9, 30, 48, 60, 84).   Exercise can be used as a 

treatment to affect these impacts on the offspring’s adult outcomes.  Poor outcomes for rodents 

when the mother consumes a high fat diet has been shown to be reversed when the mother 

exercises both before and during pregnancy (89).  Other poor dietary conditions such as protein 

restriction have also been shown to be alleviated by maternal exercise (33).  In a rodent model, 

exercise is a proven method for combatting potential negative effects on an offspring’s health, 

and metabolic health specifically.   

Studies so far have described the apparent physiological and phenotypical effects of 

maternal exercise on metabolic health, seen in the introductory chapter, but the mechanism 

through which maternal exercise exacts its effect on the offspring remains an unclear picture.  

There have been studies that show that exercise does not affect the oocyte (13), indicating that 

there is some other early-life factor that is being influenced by exercise.  A potential factor that 
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could be influenced by maternal environment is the breastmilk.  The importance of breastmilk 

has been shown in various studies that highlight its effect on reducing infection rates and 

supporting cognitive development (74, 98).   

 Some components of breastmilk are known to be susceptible to exercise and diet (23, 

103), including human milk oligosaccharides (4).  Human milk oligosaccharides (HMOs) have 

also been studied in humans to have an impact on early body composition (2).  HMOs have been 

documented to have many roles in infant health (11, 12, 62).  Thus, there is a need to evaluate 

how breastmilk, and milk oligosaccharides specifically, as a contributor to early life 

environment, is affected by exercise and how it could be affecting offspring metabolic health.  

Various experimental methods are used in order to determine the role breastmilk might play in 

the conference of exercise-induced metabolic health benefits to offspring.  Here, we investigated 

the effects of maternal exercise and a maternal high-fat diet on the composition of breastmilk and 

determined if that could alter the metabolic health of adult offspring. 

 

Methods 

Mice and training paradigm.  All studies were conducted in C57/BL6 mice from Charles River 

Laboratories.  For cross-fostering experiments breeding mothers were split into two groups: 

Sedentary (housed in cages without additional exercise) and Trained (housed in cages with a 

running wheel from two weeks before conception).  Both groups were fed a high fat diet (60% 

kcal from fat; Research Diets, Inc.) from two weeks before conception.  After the initial two 

weeks of training, breeding was done with all sedentary (standard cage with no running wheel), 

chow fed (20% kcal from fat; PharmaServ 9F5020) males.  Breeding was done in harems to 

control for differences in the fathers.  Females were kept on high fat diet and in appropriate cages 
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through gestation until birth.  Twenty-four hours after birth, litters were “cross-fostered” from 

their birth mother to a foster mother (59).  Litters born to sedentary mothers were fostered with 

trained mothers, and vice versa; litters born to trained mothers were fostered with sedentary 

mothers.  These litters were left nursing with their foster mother from the second day after birth 

until weaning, and after weaning were kept sedentary and on a chow diet.  In addition to these 

two experimental groups were control groups, where litters born to sedentary mothers were 

fostered with a different sedentary mother, and the same for litters born to trained mothers.  We 

grouped the arrangements under four headers: Sedentary raised by Trained, Trained raised by 

Sedentary, Sedentary raised by Sedentary, and Trained raised by Trained (“Birth mother 

condition” raised by "Foster mother condition”).  Litters were culled in the cross-fostering 

process to ensure that the number of mice per mother was even across all four groups.   

 

Milk Isolation 

For isolation of milk, female mice were trained starting two weeks before pregnancy in 

running wheel cages, with four groups of sedentary chow fed, sedentary high fat fed, trained 

chow fed, and trained high fat fed. Pups were removed from the dams 24-h prior to milk 

isolation, and the milk was isolated 7 days after birth (56).    

 

3’sialyllactose (3’SL) Feeding 

Female mice were kept sedentary and placed on high fat diet starting two weeks prior to 

conception, then bred with chow fed sedentary male mice.  The dams were split into two groups, 

PBS (phosphate-buffered saline) fed or 3’SL fed, and litters culled to the same size for each dam 

(64).  Feeding was done by oral gavage.  PBS fed received a phosphate-buffered saline (PBS) 
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vehicle and the other and fed an equal volume to the 3’SL fed pups each day. 3’SL fed pups were 

given 3’SL in PBS solution.  Concentrations of 3’SL were increased as the mice grew, starting 

with 150 nmol of 3’SL on days one through three, then 300 nmol on days four through six, and 

600 nmol on days seven to twenty-one.  The PBS fed controls were fed the same volume solution 

as the 3’SL supplemented mice.  These levels were determined based on the data from the 3’SL 

levels seen after milk analysis.   

 

3’SL KO mice  

3’SL knockout (KO) mothers were kept on chow diets (20% kcal from fat) as were wild-type 

(WT) females for control purposes.  Both 3’SL KO and WT females were split into sedentary 

and trained groups, with training beginning two weeks before conception and lasting through 

pregnancy.  The 3’SL KO mice were treadmill trained.  The KO and WT mice for this 

experiment were run on the treadmill for 60 min/day, 5 days a week, at 21.0 meters/min and 10% 

incline for the duration of the training regimen (19).   

 

High Performance Liquid Chromatography (HPLC) 

High Performance Liquid Chromatography (HPLC) was performed on the milk samples (94) to 

determine the oligosaccharide composition in the milk in collaboration with Dr. Lars Bode at the 

University of California, San Diego.  3’-siallylactose (3’SL) and 6’-siallylactose (6’SL) were 

chosen for study because these two milk oligosaccharides are conserved between mice and 

humans.   
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Body Composition and Metabolic Testing.  

Body weight was measured weekly through 52 weeks using an OHAUS NV212 scale.  Body fat 

mass was measured using an EchoMRI instrument with canola oil calibration (55).  Glucose 

Tolerance testing (GTT) was performed on a 12 hour fast (20:00h – 8:00h) with drinking water 

freely available.  Blood glucose was assessed at baseline by a tail vein prick (87, 89, 90).  

Glucose was injected subcutaneously (2g glucose/kg body weight) at 0 min, and the tail vein 

prick was used to measure blood glucose levels at 0, 15, 30, 60, and 120 minutes post injection.  

Insulin Tolerance testing (ITT) was performed on a 4 hour fast (8:00h – 12:00h) with drinking 

water freely available.  Baseline blood glucose levels were measured using a tail vein prick.  

Insulin was administered by subcutaneous injection (1 unit per kg body weight) at 0 minutes.  

Blood glucose levels were measured at 0, 10, 15, 30, 45, and 60 minutes post injection.  If mice 

dropped below 40 mg/mL glucose they were given an injection of 200 µL of 10% glucose 

(0.1g/mL) to prevent seizures.   

 

Biochemical Methods.  Quantitative Polymerase Chain Reaction (qPCR) was performed on 

tissue after mice were sacrificed at 52 weeks.  Tissue was frozen at -80°C between sacrifice and 

testing.  mRNA levels in the tissue were measured by qRT-PCR using SYBR Green detection.  

The primers used are included in the following table (91).  

Gene   Mouse (5’ to 3’)  
G6pc  

 

Forward  AGGTCGTGGCTGGAGTCTTGTC  

Reverse  GTAGCAGGTAGAATCCAAGCGC  

Fbp1  Forward  TGCTGAAGTCGTCCTACGCTAC  
Reverse  TTCCGATGGACACAAGGCAGTC  

Pgc130  Forward  GAATCAAGCCACTACAGACACCG  
Reverse  CATCCCTCTTGAGCCTTTCGTG  
Forward  GGCGATGACATTGCCTGGATGA  
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Pck1  

 
Reverse  TGTCTTCACTGAGGTGCCAGGA  

Pklr  

 

Forward  TTCTGTCTCGCTACCGACCT  

Reverse  CCTGTCACCACAATCACCAG  

Pcx  

 

Forward  ATGTTGTGGACGTGGCAGTA  

Reverse  AATCGAAGGCTGCGTACAGT  

Pfkl  

 

Forward  CCATCAGCAACAATGTGCCTGG  

Reverse  TGAGGCTGACTGCTTGATGCGA  

Pdha1  

 

Forward  CTGTCAGAGTTTGTAGACACG  

Reverse  GACTACTGCTACCACATCACA  

Pdk4  

 

Forward  GTCGAGCATCAAGAAAACCGTCC  

Reverse  GCGGTCAGTAATCCTCAGAGGA  

CS  

 

Forward  ATAGTGAGGAGGTGGATTGG  

Reverse  GGGTGGTGTGAGCAGAAA  

Idh3a  

 

Forward  CGCGTGGGTGTCCAAGGTCTC  

Reverse  TGTGACATTGCGCTCCTCCAA  

Mdh2  

 

Forward  CAGAGCGTCCACTTTTCTAC  

Reverse  CTTGACCACTTCATCACCAC  

Ogdh  

 

Forward  GGTGTCGTCAATCAGCCTGAGT  

Reverse  ATCCAGCCAGTGCTTGATGTGC  

Cd36  

 

Forward  GGCACCACTGTGTACAGACAG  

Reverse  GGAAAGGAGGCTGCGTCTGTGC  

Fatp4  

 

Forward  GACTTCTCCAGCCGTTTCCACA  

Reverse  CAAAGGACAGGATGCGGCTATTG  

Acox  

 

Forward  GGGAGTGCTACGGGTTACATG  

Reverse  CCGATATCCCCAACAGTGATG  

Cpt1  

 

Forward  AAAGATCAATCGGACCCTAGACA  

Reverse  CAGCGAGTAGCGCATAGTCA  

Forward  TTTCCGGGAGAGTGTAAGGA  
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Lcad  

 
Reverse  ACTTCTCCAGCTTTCTCCCA  

Mcad  

 

Forward  GATGCATCACCCTCGTGTAAC  

Reverse  AAGCCCTTTTCCCCTGAA  

 

 

 

 

Results 

Cross-fostering Isolates Breastmilk as Factor in Exercise-Induced Changes. 

Metabolic testing was performed at 8, 12, 24, 36, and 52 weeks of age in female and male 

offspring from cross-fostering dams, and for all following experiments.  For cross-fostered 

offspring, body weight in male offspring was seen to differ significantly in adulthood between 

the groups raised by sedentary mothers, and the groups raised by trained mothers (Figure 1A).  In 

fact, the group with the highest weight were male offspring from a trained mother raised by a 

sedentary mother.  In female offspring, body weight was also found to be significantly lower in 

those offspring raised by trained mothers compared to those raised by sedentary mothers, when 

the offspring were born from a sedentary mother (Figure 1B).  In both male and female groups, 

there was a significant improvement in the body fat mass (%) from the train raised by sedentary 

to the sedentary raised by trained groups.  In the males, this difference held true for all groups 

raised by trained mothers, while in females, the sedentary raised by trained group was the only 

group with significant reduction in body fat mass compared to all groups (Figures 1C, D).  

Offspring that nursed with trained mothers (drank exercise-trained milk) had improved glucose 

tolerance.  There is a significant difference between the male offspring groups raised by 
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sedentary mothers and the groups raised by trained mothers (Figure 2A).  In male offspring the 

same trend was found in insulin tolerance testing; the mice raised by trained mothers had 

significantly improved insulin tolerance compared to those raised by sedentary mothers (Figure 

2C).  Female offspring also showed that they had significantly improved glucose tolerance when 

they were raised by trained mothers, regardless of being born from a trained or sedentary mother 

(Figure 2B).  Insulin tolerance tests showed no difference between the groups of female 

offspring (Figure 2D).  In previous studies conducted in the Stanford lab, we have shown that 

maternal exercise increases expression of hepatic genes involved in glucose metabolism and 

mitochondrial activity.  To see if the exercise-trained milk would have impacts on liver function, 

we measured liver gene expression in male and female mice at 52 weeks of age.  In cross-

fostered mice, there were some trends indicating that liver function could be impacted by the 

difference in trained or sedentary breastmilk.  There were no significant differences, and only 

individual genes showed possible effects from trained milk (Figure 3A, B).  The qPCR data is 

overall too variable to draw broader conclusions.  The overall metabolic health improvements 

seen by cross-fostered offspring indicate that the milk from a trained mother is the variable that 

leads to metabolic health improvement in adulthood.   
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Exercise Increases Levels of Milk Oligosaccharide 3’SL.   

To investigate what component of breastmilk was affected by the maternal exercise, we isolated 

breastmilk and measured levels of human milk oligosaccharides present.  Human milk 

oligosaccharides make up 5-15% of breastmilk and play important roles in infant development 

and other health benefits (2, 11, 12, 74).  3’SL and 6’siallylactose (6’SL) are human milk 
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oligosaccharides that are conserved between mice and humans.  The milk oligosaccharide 6’SL 

was not changed in any of the four groups of mice (Figure 4B).  However, 3’SL was 

significantly increased in the two trained groups and reduced in the sedentary high fat diet group.  

The trained chow fed group had higher levels of 3’SL compared to the sedentary chow fed 

group.  The sedentary high fat diet group had significantly reduced concentrations of 3’SL than 

the sedentary chow fed group, and the trained high fat diet group had significantly increased 

levels of 3’SL compared to the sedentary high fat diet group (Figure 4A).  These increases in 

3’SL suggest the connection between maternal exercise and metabolic health could be mediated 

by 3’SL levels in the breastmilk.   

 

Postnatal Supplementation of 3’SL Leads to Metabolic Health Improvements. 

To determine if 3’SL was the component in breastmilk inducing these metabolic changes in the 

offspring, we supplemented 3’SL to offspring postnatally for the duration of the nursing period, 

ceasing after the offspring were weaned.  After 3’SL supplementation there was a significant 

reduction in body weight in 3’SL fed groups compared to PBS fed groups, in both the male and 

female offspring (Figure 5A).  There was also a significant reduction in % fat mass in male 
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offspring who were supplemented with 3’SL (Figure 5B).  Male 3’SL fed pups had significantly 

improved glucose tolerance in adulthood when compared to the PBS fed control (Figure 5C).  

This glucose tolerance improvement was not seen in the female offspring.  For insulin tolerance, 

there was no difference in the tolerance between 3’SL fed, and PBS fed groups of either sex 

(Figure 5D).  The improvements seen from 3’SL supplementation indicates that 3’SL itself has 

metabolic health benefits even out of breastmilk. 

 

Knocking Out 3’SL Eliminates Exercise-Induced Metabolic Health Improvements. 

The effects of 3’SL supplementation showed a clear benefit of 3’SL on the metabolic heatlh in 

the adult offspring.  We then asked if removing the 3’SL would still result in exercise induced 

metabolic health benefits.  The animals used for the knockout experiment were trained on a 

treadmill training regimen instead of a voluntary wheel cage.  There was no difference in the 
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pups per litter, and animals completed this regimen successfully for all 5 weeks of training.  In 

the knockout experiment, body weight was observed to be unchanged between KO groups 

(Figures 6A, B), both male and female.  The KO male and female mice did not receive an 

exercise induced metabolic improvement (Figure 6C, D), however, in the WT mice improvement 

in glucose tolerance was observed in male offspring (6C).  The female WT offspring did not 

have an improvement in glucose tolerance (6D).  This indicates that 3’SL is key to the breastmilk 

related improvement of metabolic health in offspring from trained mothers. 
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Conclusions 

 Demonstrated metabolic benefits to offspring from maternal exercise show the necessity 

in appropriate care and advice for mothers planning on having children.  Importantly, with rates 

of diabetes and obesity increasing across the country (10), the prescribed exercise regimen of 

starting before pregnancy and maintaining it through gestation had a positive effect on mouse 

offspring of mothers who were on a high fat diet.  How these benefits are conferred onto the 

offspring is the topic of this thesis, specifically how maternal exercise could be changing the 

composition of breastmilk.  The experiments of this thesis give a clearer insight into how the 

maternal exercise might be working to improve the metabolic health of the offspring.   

The results of cross-fostering indicate that there is a clear role being played by breastmilk 

in the metabolic improvements observed in adult offspring as a result of maternal exercise.  The 

significant differences between the groups show that the difference made by breastmilk is more 

important than the difference made by the intrauterine environment.  Regardless of whether the 

offspring were born to a sedentary or trained mother, they were more metabolically healthy when 

they received the milk from a trained mother opposed to the milk of a sedentary mother.  The 

impact of the milk was the most holistic of all the experiments, showing improvements in all 

categories from body weight, fat mass (%), glucose tolerance, and insulin tolerance.   

 The increase in the 3’SL concentrations in the trained mouse breastmilk indicate that the 

3’SL is an important component in the breastmilk that could confer the beneficial effects of 

exercise from the mother to the offspring.  The lack of change in the 6’SL concentrations 

suggests that it is not involved.  Additionally, the reduction in 3’SL levels in the sedentary high 

fat diet group and the subsequent increase in the trained high fat diet group shows promise for 

explaining the demonstrated effects of exercise on the metabolic health of offspring born from 
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mothers on a high fat diet (89).  These data thus suggest that the effect seen from the cross-

fostering could be explained through a 3’SL mechanism, prompting the need to conduct the 3’SL 

supplementation and knockout verification of the role of 3’SL.  

 Supplementation of 3’SL confirmed that 3’SL has an effect on the whole-body 

metabolism of the mouse offspring.  While the metabolic improvements did not carry for the 

female offspring so much, there were still whole-body metabolic improvements in offspring as a 

result of 3’SL supplementation.  This again indicates that the 3’SL can improve the metabolic 

health of offspring when given to them postnatally.  The difference in the data between the 

supplementation experiments and the cross-fostering experiments suggests there could be some 

differences between the methods of delivery.  It appears superficially that there could be a 

difference in whether the 3’SL is administered in something like a PBS solution, or if it is 

received through breastmilk.   

 The knockout results confirm that the breastmilk only confers the benefits of exercise 

with the presence of 3’SL.  Breastmilk from an exercise-trained mother was demonstrated to not 

have the same effect without it, as offspring were no healthier than when they drank milk from a 

sedentary mother.  Importantly, the WT mice in the knockout study did experience the metabolic 

improvements from the exercise even with the adjusted training regimen.  This change was 

necessary as the 3’SL KO mice would not run on the running wheels in their cages even after 

prolonged exposure.   

There were differences in the improvements of metabolic health between male and 

female offspring seen throughout the data.  This difference between male and female offspring is 

consistent with past studies that show maternal exercise tends to affect male offspring more 

profoundly than female offspring (9, 32, 48, 71, 73, 81).  It has been shown before that part of 
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this reason could be that female offspring do not see the same worsening in some metabolic 

characteristics with age that male offspring do (87), which is also seen in this study after cross-

fostering.  However, the improvements seen in the female offspring as a result of cross fostering 

with a trained mother are still remarkable.  The differences between male and female offspring 

differed according to the experimental conditions, but this could be due to different delivery 

methods.  As mentioned, there appears to be a possibility of 3’SL being more effective when 

delivered through breastmilk.  The 3’SL supplementation studies found female offspring were 

not improving in % fat mass whereas they did after cross-fostering, as well as females improving 

in glucose tolerance after cross-fostering but not after supplementation.   

The parameters used throughout the study of glucose and insulin tolerance, body weight 

and % fat mass are indicators of type 2 diabetes and obesity (55).  There was no difference in 

weight between mothers fed a high fat diet and a chow diet, so the differences observed in 

offspring are likely not down to gestational obesity or diabetes.  Seeing such effect as is shown at 

52 weeks in mice corresponds to full adulthood in humans, crucially indicating that the benefit 

from this early life intervention manifests in later stages of life.  While the benefit may not be 

present immediately in the offspring’s life, the adult phenotype is greatly impacted which is of 

great importance to adult risk of type 2 diabetes and obesity.    

 

Acknowledgements 

This work was completed in the Stanford Lab of The Ohio State University Wexner Medical 

Center and College of Medicine, Davis Heart and Lung Research Institute, and Department of 

Physiology and Cell Biology at The Ohio State University, Columbus, Ohio.  The thesis 

candidate would like to thank Dr. Kristin Stanford, Lisa Baer, and the many others in the lab who 



 43 

assisted in the completion of these studies.  Without them this work would have been impossible 

to complete.  The work in full is under way for submission to publication with coauthors Dr. 

Kristin Stanford, Lisa Baer, Adam Lehnig, Peter Arts, Francis May, Katherine Wright, Kendra 

Madaris, Tyler Canova and from the University of California, San Diego, Drs. Lars Bode and 

Chloe Autran.  It is used with permission from the aforementioned authors, although the writing 

of this thesis document is entirely the work of Johan Harris, with editing and review help from 

Dr. Kristin Stanford and Lisa Baer.  The work accomplished was a team effort, with exercise 

training and metabolic testing split between the team members listed to accommodate everyone’s 

schedules with school and other experiments.  This work is in preparation for peer-reviewed 

journal submission this summer. 



 44 

Future Directions of Research 

 These results could have enormous impact on maternal, prenatal, and postnatal care if the 

knowledge is able to be translated to clinical methods.  With rising diabetes and obesity rates 

becoming an epidemic (10), the potential benefits of 3’SL and exercise should be a top priority 

for further research to make a difference in millions of future children’s lives.  The effects that 

exercise is shown to have in the offspring of mothers who exercise before and during pregnancy 

show great promise in being explained through the 3’SL mechanism.  However, in order for that 

mechanism to be of use to actual people in the practice of obstetrics or nutritional and health 

guidance, more knowledge is needed of the 3’SL mechanism that will make it better understood 

and also, better utilized.  

 The observed physiological changes and positive health benefits in the mouse model are 

clear, so identifying the mechanisms through which this occurs will be imperative.  There are 

some suspected pathways to follow for further study on this topic that are already of interest.   

Several options present themselves for how the 3’SL is affecting the human physiological state, 

that all carry different implications.  Mainly, the questions that remain are, 1) How does 3’SL 

affect metabolic health; 2) How is 3’SL used by the animal; 3) How could we use 3’SL for 

therapeutic use? 

 

How Does 3’SL Affect Metabolic Health? 

Human milk oligosaccharides are most often associated with the colonization and 

development of the microbiome in the gut of the infant (11, 12, 46).  There is a clear need to 

continue looking into what exact role 3’SL is playing in the gut of the organism.  The knockout 

model offers the opposite side of a germ-free model, not removing the germs artificially, but 
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instead not allowing them to develop in the gut naturally.  Additionally, each oligosaccharide has 

unique function of which many have not been studied to the full extent (11, 12).  This suggests 

that 3’SL could have an effect specific to metabolically active microbiota or other function.  

Other milk oligosaccharides have been shown to cause changes in the composition of the gut 

microbiome when supplemented postnatally (11, 12, 20, 46, 64).   

The data in this thesis indicate along with some previous research indicates that there is 

some effect specific to the liver as a result of maternal exercise (91).  The role that microbiome 

plays in specific organ function has not been explored, so there is a need to explore that route.  

There could be other factors in liver or other tissue function that 3’SL or the microbiome affects 

that could be separate therapeutic targets for utilization.  Hepatocyte study under exposure to 

3’SL could be one appropriate experiment.  The level of interaction that 3’SL could be having 

with organs is dependent upon the next question discussed as to how 3’SL is actually taken up by 

the microbiome or the host animal itself.  After that question is answered, there will be a clearer 

path forward in elucidating the exact effect of 3’SL.  

The KO mice had the unique problem that they would not run in the running wheels, 

which forced the switch to the treadmill training for that study.  This unique behavioral trait also 

leads to some speculation about how the 3’SL could be performing other functions.  There has 

been an increasing amount of research emerging looking into the gut brain axis, showing it could 

impact development of the central and enteric nervous systems, as well as a wide variety of other 

effects relating to behavior and physiological abnormalities (16, 35, 40).  There is also increasing 

awareness around the relation between diabetes, obesity, and neural dysfunction, meaning there 

could be even more widespread therapeutic benefit to preventing the metabolic diseases (29).  

This secondary observation to the study leaves open the possibility that there are behavioral 
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aspects to the microbiome effect as well, and perhaps also that the nervous system could be 

involved in metabolic outcomes.  3’SL could be a larger player in offspring health in adulthood 

than previously imagined. 

How is 3’SL Used by the Animal? 

 3’SL could be affecting metabolic health in several ways, and how it is taken up plays a 

large role in this.  3’SL contains a sialic acid group and so in this discussion is assumed it could 

be utilized by a sialic acid related protein.  One possibility is that the 3’SL is exclusively used by 

the microbiome for its development and sustained vitality.  Bacteria can use sialic acids, of 

which 3’SL is one, in a couple different ways, either for food or for help in immune evasion 

strategies (61, 93).  This idea brings a couple of implications to the fore, mainly that the 3’SL is 

not acting directly on the human body.  This would mean that in order to fully understand how 

the mechanism works, the bacteria of the microbiome would need to be isolated and examined 

for which use 3’SL the most, how they use 3’SL, and what effects it has on them.  Additional 

studies would also need to be completed to examine how the presence of the specific 3’SL 

utilizing bacteria affects the metabolism of the organism in which it lives.   

 There are some suspected pathways through which 3’SL could be taken up by the 

bacteria in the microbiome.  Sialic acids are taken up by a variety of proteins, such as the ATP-

binding cassette, ATP-independent periplasmic (TRAP), major facilitator superfamily (MFS), 

and the sodium solute symporter (SSS) families of proteins.  The first documented uptake of 

sialic acid in E.Coli was with the NanC porin (37), which is inducible by the NanCMS operon in 

E. coli.  A more complex system was also found in T. forsythia and B. fragilis (80).  This system 

featured the outer membrane protein complex NanO and NanU.  NanU is a high affinity sialic 
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acid binding protein that sits on the surface of the outer membrane, and NanO completes the 

transport across the membrane (93). 

 The other possibility of uptake involves direct human uptake of the 3’SL, or at least some 

shared uptake between the microbiome and the human tissues themselves.  There is evidence that 

the majority of the oligosaccharides taken in through breastmilk survive the gastrointestinal tract 

and make it into the feces and urine intact (20).  The implications of this study suggest there is a 

protective effect of the oligosaccharides for the microbes in the microbiome.  With the majority 

of the oligosaccharide surviving in the feces or urine intact, it also suggests that there may not be 

any significant absorption and metabolism.  There have been more than a hundred human milk 

oligosaccharides discovered with potential for unique functionality for each (11), and more in-

depth study is required of what happens in the gut with the oligosaccharides and the interactions 

they have with bacteria.  

If there is no actual uptake of the 3’SL by the host, there could be some interaction with it 

on an extracellular level.  Humans do have a gene called SLC35A1 that transports nucleotide 

sugars into the Golgi apparatus, including the nucleotide sugar CMP-sialic acid.  Upon entry into 

the Golgi apparatus, the sugar is glycosylated (68, 85), which is another indication of the 

possible cellular fate of the 3’SL once it is taken up.  Glycosylation of the 3’SL would indicate 

that the 3’SL is being exported for use in a specific area of the body, perhaps the liver as 

discussed already. If they are secreted intact in the feces and urine, then they could serve some 

endocrine-like function in the body.   

 Humans also have another group of proteins called sialoadhesins (42, 43).  These are a 

group of immunoglobulins found on the surface of macrophages and other cell types.  The 

tissues with the highest levels of sialoadhesins are the spleen, liver, lymph nodes, bone marrow, 
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colon, and lungs.  This is not thought to be a phagocytic receptor, but its expression is thought to 

facilitate the activity of other phagocytic receptors.  It is highly conserved between rodents and 

humans, which bodes well for the use of animal studies that could be directly translatable to 

humans.  The gene for the protein is called Siglec1, which could be used to analyze levels of 

expression of the protein in the presence of the oligosaccharide.   

How Could We Use 3’SL For Therapeutics? 

 A therapeutic area of interest that could be directly addressed by this study and by many 

others on human milk oligosaccharides is the lack of structurally complex milk oligosaccharides 

in infant formula milk.  Formula milk is produced from bovine milk which has significantly 

lower levels of complex oligosaccharides (34).  Human milk contains milk oligosaccharides at 

levels of 5 to 15 g/L (11), while sialic acid containing oligosaccharides comprise <20% of those 

(69).  3’SL specifically is found in human milk samples from a worldwide survey in 

concentrations of 0.26 to 0.39 g/L (62).  In striking contrast to human milk where sialic acid 

containing milk oligosaccharides are found in 69-76 percent as oligosaccharides and 3% in their 

free form, in bovine milk they are mostly bound to proteins with only 27.8% present as 

oligosaccharides and <1% in their free form (98).   

 There is a clear difference between the two, and yet there has never been formula milk 

that has been supplemented with these sialic acid oligosaccharides.  However, in studies where 

oligosaccharides were added to formula milk in pigs and in human infants, they led to microbiota 

changes (46, 63).  There has already been demonstrated differences between breastfed and 

formula fed babies in gastrointestinal and respiratory tract infections in addition to demonstrated 

cognitive developmental differences (74, 98).  The formula milk supplementation has also been 

shown to lead to changes in brain development in pigs with increased levels of sialic acids bound 
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to the hippocampus, prefrontal cortex, and corpus callosum (67).  This adds another layer of 

possible future investigational routes to the results seen with the 3’SL KO mice.   

  It would seem adding a possibility of metabolic differences to the growing list of benefits 

seen from milk oligosaccharides could give even better reason for a push to be made by the FDA 

or formula milk producers to have these human milk oligosaccharides included in formula 

products.  Most importantly, the formula supplementation strategy has been well tolerated in pig 

studies (64) indicating it could be a safe move to make, even though it would still require clinical 

trials in order to be approved for human use.  Studies conducted in pigs are a great indicator as 

pigs have a very similar developmental trajectory to that of humans.  Additionally, if these 

results can be taken one step further to determine exactly how the benefits seen are carried out in 

the body, it could lead to whole new ways of treating or preventing metabolic conditions such as 

diabetes or obesity.   
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