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Abstract. In paper analytical equations for calculate the electromotive 
force in the measuring coil of the fluxgate magnetometer independent of 
the drive signal frequency content are presented. Also, the equations for es-
timation of the fluxgate sensitivity at any harmonic and for study fluxgates 
operation with a glance to the waveform and the polynomial approximation 
of the mean magnetization curve of the core are provided. 

1 Introduction 
The principle of a fluxgate operation is based on the change in the ferromagnet state due 

to the impact of two magnetic fields with different frequencies [1-3]. A simplest fluxgate 
configuration represents a ferromagnetic rod which allocates an AC driving coil and a 
measuring coil [4]. Due to the variable magnetic field created by the driving coil current, a 
magnetic core goes through the magnetic reversal along a symmetrical curve. 

A change in the magnetic flux caused by the magnetic core reversal along a symmetrical 
curve, induces the electromotive force in a measuring coil which varies in accordance with 
the simple harmonic motion. Under the effect of the constant or slightly varying magnetic 
field affecting the magnetic core, the magnetic reversal curve changes its size and shape 
and becomes asymmetrical. This, in turn, modifies the value and harmonic composition of 
the electromotive force in the measuring coil. In particular, there appear even electromotive 
force harmonics the amount of which is proportional to the magnetic intensity. These even 
harmonics are not observed on a symmetrical curve of the magnetic reversal. 

The magnetic intensity is a vector variable, and core magnetization depends not only on 
its orientation but also a correlation between its longitudinal and transverse sizes. There-
fore, the proposed fluxgate is characterized by a direction diagram and thus can be used for 
measurement of the vector angles and components of the flux density.  

In order to create a high-sensitive fluxgate magnetometer [5], it is advisable to analyti-
cally describe its operation and create a mathematical model. 

2 Operating principle of a single-rod fluxgate 
A simplest single-rod fluxgate, the schematic representation of which is given in figure 1, 
measures a constant magnetic field.  
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Fig. 1. Schematic of single-rod fluxgate.  

Under the alternating exciting field Hexc(t) which envelopes the magnetic core and the 
constant field Hdc directed along the magnetic core, the magnetic intensity superposition of 
these fields occurs in the core bulk: 

dc exc( ) ( ).H t H H t            (1) 

The flux density in the core can be then obtained from  

   dc exc( ) ( ) ( ) .B t f H t f H H t      (2) 

The equation for the electromotive force in the measuring coil is as follows: 

mes 2( ) ( ),dE t sw B t
dt

           (3) 

where s is the area of the core transverse section, mm2; w2 is the number of turns in the 
measuring coil.  

The flux density B(H) of the uniformly magnetized magnetic core in the first approxi-
mation (without regard for anisotropic and hysteresis phenomena) is usually calculated us-
ing the core magnetization function. 

When the core undergoes a periodic magnetic reversal, a good agreement between theo-
retical calculations and experimental data is achieved for the fluxgate operation. In this case 
we use the mean magnetization curve which is computed by the following equation: 

 ( ) ( ) ( ) / 2B H B H B H   .   (4) 

Arrows in this equation denote the flux density at ascending and descending branches of 
hysteresis loops. The use of the mean magnetization curve rather than the normal, is ex-
plained by the fact that the optimum operating mode for the fluxgate is the core magnetic 
reversal along the hysteresis loop whose ascending and descending branches slightly differ 
from that of the mean magnetization curve. The analysis of the fluxgate operation utilizes 
the polynomial approximation of the mean magnetization curve. 

As the mean magnetization curve is an uneven function, it can be approximated by the 
uneven degree polynomial: 
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where ai is the i-th approximation coefficient. 
For the analysis of the fluxgate operation, the dependence between the magnetic flux 

density B and intensity H is commonly approximated by a third-order polynomial: 

3
1 3 .B a H a H             (6) 

Using (2) and (6), we can determine the magnetic induction in the core: 

3 2 2 3
1 dc 1 exc 3 dc 3 dc exc 3 dc exc 3 exc( ) ( ) 3 ( ) 3 ( ) ( ).B t a H a H t a H a H H t a H H t a H t       (7) 

When the sinusoidal alternating current excites the fluxgate, i.e. Iexc(t) = Iexc.m sin(ωt), 
the equation for the magnetic intensity can be written as 

1
exc exc.m exc.m( ) sin( ) sin( ),

wH t H t I t
l

       (8)  

where Iexc.m is the amplitude of excitation current, А; w1 is the number of turns in a driving 
coil, m; ω is the frequency of excitation current, rad/s. 

Substituting (7) into (3) in view of (8), we obtain the electromotive force in the measur-
ing coil of the single-rod fluxgate: 

2
2 3 exc.m

mes 1 3 dc exc.m

3
2 3 exc.m

3 dc exc.m 2

3
( ) 3 cos( )

4

3 cos(3 )
3 sin(2 )

4

a HE t a a H H t

a H ta H H t sw

 
      
 

 
    



.  (9) 

It follows from (9), that the useful component proportional to the measured flux density 
in a constant magnetic field, is on the excitation frequency ω and doubled excitation fre-
quency 2ω. At the same time, the output signal is noisy on 3ω frequency. Therefore, a 
complex devise based on band-pass filters or synchronous detectors is required to detect the 
useful component in the output signal of the single-rod fluxgate. For example, methods of 
synchronous detection of the fluxgate maximum sensitivity imply the use of device with 
four synchronous detectors. The first two detectors sense in-phase and quadrature compo-
nents of the output signal on the excitation frequency ω, while the second two sense them 
on the doubled excitation frequency 2ω. 

For the reasons outlined earlier, single-rod fluxgates are not applied in practice. A dif-
ferential fluxgate both with open (two-rod) and closed (toroid) cores has become wide-
spread [6-7]. 

3 Differential fluxgate 
Schematic view of the differential fluxgate with open core are given in figure 2. 
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Fig.2.  Differential fluxgate. 

Let us consider the operation of the differential fluxgate with open core during meas-
urement of the constant magnetic field. This fluxgate incorporates two driving coils with 
anti-parallel connection. The excitation current Iexc(t) in them creates the magnetic intensity 
or excitation fields Hexc(t) in each core. These excitation fields are characterized by the 
identical amplitude and phase opposition. In presence of the constant field Hdc directed 
along the core as shown in figure 2, superpositions of the excitation fields in the core bulk 
are calculated as: 

1 dc exc

2 dc exc

( ) ( );
( ) ( ),

H t H H t
H t H H t





 

 
    (10) 

Let us assume that the cores are identical. Their flux density is then obtained through 
the following equation, anisotropy and hysteresis being neglected: 

   
   

1 1 dc exc

2 2 dc exc

( ) ( ) ( ) ;

( ) ( ) ( ) .

B t f H t f H H t

B t f H t f H H t




  

  
          (11) 

The electromotive force induced in the measuring coil which, according to figure 2, en-
velopes both cores, is defined as 

mes 2 1 2( ) ( ( ) ( )) ,dE t sw B t B t
dt

    
 

      (12) 

Using (10) and (6), we obtain the equation, which describes the flux density:  

3 2 2 3
1 1 dc 1 exc 3 dc 3 dc exc 3 dc exc 3 exc

3 2 2 3
2 1 dc 1 exc 3 dc 3 dc exc 3 dc exc 3 exc

( ) ( ) 3 ( ) 3 ( ) ( );

( ) ( ) 3 ( ) 3 ( ) ( ).

B t a H a H t a H a H H t a H H t a H t
B t a H a H t a H a H H t a H H t a H t

     

     
  (13) 

In the case of the fluxgate excitation by the sinusoidal alternating current, the substitu-
tion of (13) in (12) in view of (8) allows us to derive the electromotive force in the measur-
ing coil: 

2
mes 2 3 dc exc.m( ) 6 sin(2 ).E t sw a H H t       (14) 
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( ) ( ) 3 ( ) 3 ( ) ( );
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  (13) 

In the case of the fluxgate excitation by the sinusoidal alternating current, the substitu-
tion of (13) in (12) in view of (8) allows us to derive the electromotive force in the measur-
ing coil: 

2
mes 2 3 dc exc.m( ) 6 sin(2 ).E t sw a H H t       (14) 

So, unlike the single-rod fluxgate, the output signal of the differential fluxgate contains 
a useful component proportional to the measured flux density in a constant magnetic field 
just on the doubled excitation frequency 2ω. 

The traditional analysis of the fluxgate operation which uses a third-order polynomial as 
in (6), is rather simplified and qualitative similar to a grapho-analytical method. The quanti-
tative analysis is provided by the approximation of B/H dependence by higher order poly-
nomials. 

Let us analyze the differential fluxgate operation using the following approximation of 
B/H dependence: 

3 5
1 3 5 .B a H a H a H       (15) 

In the case of the fluxgate excitation by the sinusoidal alternating current, we insert (15) 
in (12). And in view of (11) and (8), the electromotive force in the measuring coil is found 
from 

 2 2 2 4
mes 2 dc exc.m 3 5 dc 5 exc.m 5 dc exc.m( ) 2 3 10 5 sin(2 ) 5 sin(4 )E t sw H H a a H a H t a H H t          (16) 

We can now proceed analogously to (16) when using the approximating dependence of 
the seventh order: 

3 5 7
1 3 5 7 ,B a H a H a H a H       (17) 

and thus obtain the electromotive force in the measuring coil: 





2 2
meas 2 dc exc.m 3 5 dc

2 4 4 2 2
5 exc.m 7 dc 7 exc.m 7 dc exc.m

4 2 2 6
dc exc.m 5 7 dc 7 exc.m 7 dc exc.m

1( ) 48 160
8

80 336 105 560 sin(2 )

1 21(10 70 21 )sin(4 ) sin(6 ) .
2 8

E t sw H H a a H

a H a H a H a H H t

H H a a H a H t a H H t

    

     

       

(18) 

As can be seen from (16) and (18), the useful component proportional to the constant 
magnetic field measured, is observed in the output signal not only at the doubled excitation 
frequency 2ω, but also at 4ω and 6ω frequencies. 

The analysis of (16) and (18) allows us to propose the procedure for processing signals 
from the fluxgate sensor in order to enhance the fluxgate sensitivity due to measuring sig-
nals not only at the doubled excitation frequency but also at other even frequencies with the 
subsequent summing the results. 

In practice, not only sinusoidal but also rectangular and triangular waveforms are used 
in the capacity of a drive signal of fluxgate magnetometers. So, it is advisable to derive a 
general equation for computing the electromotive force in the measuring coil independent 
of the waveform. Let us write the equation for the magnetic intensity of exciting field as a 
Fourier series without the constant component: 

 exc exc.m
1

( ) cos( ) sin( ) ,
m

g g
g

H t H b g t c g t


                   (19)  

where g is the number of harmonics in the drive signal; bg , cg are Fourier serial expansion 
coefficients. 
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Substituting (5) into (12) in view of (11) and 19), we obtain the resulting statement for 
the electromotive force: 

     

 

2 2 2 2

mes 2 q 2 1 dc exc dc exc
1

exc
q exc.m

1

( ) ( ) 2 1 ( ) ( ) ;

( )
( ) cos( / 2) sin( / 2) .

j i i

i
i

m

g g
g

E t sw H t a i H H t H H t

dH t
H t H b g t c g t g

dt

 






        

         




 (20) 

Now we can derive the differential fluxgate sensitivity at any harmonics according to 
(20): 

    

 

mes

dc
0

2 3

2 q 2 1 dc exc
1

0

2 3

dc exc

( )1lim sin( )

1lim ( ) 2 1 2 2 ( )

( ) sin( ) .

T

g T

T
j i

iT i

i

dE tS g t dt
ET dH

sw H t a i i H H t
ET

H H t g t dt










  

     

  









  (21) 

This equation facilitates the analytical computation of the differential fluxgate sensitivi-
ty independent of the frequency content of the drive signal at a given approximation degree 
for B = f(H) function. 

4 Conclusions 
The obtained analytical equations allowed us to calculate the electromotive force in the 
measuring coil of the fluxgate magnetometer independent of the drive signal frequency 
content. Also, the obtained equations provided the estimation of the fluxgate sensitivity at 
any harmonic and were used to study its operation with a glance to the waveform and the 
polynomial approximation of the mean magnetization curve of the core. 

 
This research was conducted in Tomsk Polytechnic University and the research of operating principle 
of a single-rod fluxgate financially supported by the Ministry of Education and Science of the Russian 
Federation (agreement No.14.578.21.0232, unique identifier RFMEFI57817X232). The research of 
differential fluxgate model is funded from Russian Science Foundation (RSF), Grant Number 17-79-
10083. 

References 
1. P. Ripka, IEEE Sensors journal 10, 1108 (2010) 
2. S. V. Uchaikin, LT21, 2809 (1996) 
3. J. E. Lenz, IEEE Sensors journal 78, 631 (1990) 
4. P. Ripka, Magnetic Sensors and Magnetometers (Artech house, 2000) 
5. V. E. Baranova, et al. XXI IMEKO World Congress, (2015) 
6. Baschirotto, Measurement 43, 46 (2010) 
7. Hava Can, Uğur Topal, J Supercond Nov Magn 28, 1093 (2015) 

6

MATEC Web of Conferences 158, 01006 (2018) https://doi.org/10.1051/matecconf/201815801006
VI International Forum for Young Scientists “Space Engineering 2018”


