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Abstract. Amino acids may be effectively used for preventing aggregation of engineered 

nanoparticles (NPs) in aqueous suspensions. This paper is primarily focused on the influence 

of exposure duration and particles content on adsorption coefficient (Ads) for ZnO and TiO2 

nanoparticles with an average size of 40-60 nm exposed to 2M aqueous solutions of glycine 

and L-glutamic acid. The value of Ads was estimated from surfactant concentration related to 

the intensity of infrared peak spectroscopy at 1300-1400 cm-1. It has been shown that in more 

concentrated suspensions (0.08-0.12 g/mL) Ads has ±5% fluctuation in measurement error’ 

interval, whereas in less concentrated systems (0.02-0.04 g/mL) 3…20 h exposure of NPs may 

result in slight desorption of surfactant as shown for ZnO NPs or total desorption of surfactant 

as shown for TiO2 NPs in glycine solutions. Six times decrease of 0.02 g/mL NPs 
concentration leads to Ads augmentation by 3-4 and 1.5-6 times, respectively, on ZnO and 

TiO2 nanoparticles. From a methodological view point, it has been concluded that in order to 

provide effective comparative study of NPs adsorption properties it is not reasonable to 

concentrate the NPs suspension more than 0.04 g/mL and it is better to expose them during 3 h 

in order to avoid surfactant desorption. 

1. Introduction 
Global market of metal oxides nanoparticles (NPs), presently valued at 1.8 billion US dollars, will soar 

till 10.4% of the compound annual growth rate to surpass 5 billion US dollars mark by the end of 2026 

[1]. Titanium dioxide (TiO2) and zinc oxide (ZnO) NPs are maximally produced due to a wide range 
of applications. TiO2 NPs are widely used as a pigment, thickener and absorber of ultraviolet radiation 

in sunscreens, in paints and varnishes, in pharmaceutical and cosmetic industries, in medicine [2-3] 

and as a photocatalytic component in environmental technologies and energetics [4]. Zinc oxide (ZnO) 

NPs are used as components for varnishes, whitewashes and paints, cosmetics and medicaments [5], 
gas- and bio-sensors [6], optical and electrical devices, solar batteries [7], antibacterial agents and drug 

delivery systems [8]. Although NPs are applied in the form of aqueous dispersion in many applications 
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[4, 7-9], preparation of dispersions from engineered NPs is still quite difficult, since NPs tend to 

inconvertible aggregation due to their high surface energy and small size [10].  

In practice, only the addition of surfactants makes it possible to maintain NPs stability for a long 

time [11]. Although, there are numerous papers on the use of surfactants for NPs synthesis [12], the 
selection of surfactants for industrial particles is still embarrassing. The literature is overflowed by 

research methods of physical and chemical nature of adsorption. The bonding and the structure of 

amino acid monolayers deposited onto metal or metal oxide surfaces can be experimentally 
investigated with modern surface science tools including electron and optical spectroscopic methods in 

ultrahigh vacuum environments [13], 
1
H NMR spectroscopy [14], sum frequency generation 

vibrational spectroscopy [15], attenuated total reflection IR [16] or theoretically predicted by 

molecular-dynamics simulations [17] in the presence of water. These authors found that weak 
adsorbate-substrate interactions involving both carboxylate and ammonium moieties were possible. 

Langel and Koppen used a similar approach to study the adsorption of amino acids adsorbed on the 

anatase-TiO2 (101) and (001) surfaces, and the rutile-TiO2 (110) surface [17-18]. There are data 
showing that amino acids, as lysine [19], glycine [20], cysteine [21], glutamic acids [22], aspartic 

acids [19], tryptophan [23], tyrosine [24] may be potentially absorbed by engineered NPs. For 

instance, glutamic and aspartic acids adsorbed to TiO2 particles (0.810
-3
 g/mL) from aqueous 

solutions [25]. Glycine adsorbed to the amorphous spherical TiO2 NPs [16] compared to [26] where 

glycine was not adsorbed onto the rutile-TiO2 NPs (0.410
-3

 g/mL) in H2O solvents.  
In spite of deep understanding of adsorption process, resulted data have been obtained under 

different experimental conditions and cannot be compared. Moreover, applied research methods can 

be hardly introduced into industry-scale practice for express estimation of adsorption effectiveness on 

NPs.  

In this paper, we offer a simple express method for determining the adsorption coefficient of 
engineered NPs in aqueous solutions of amino acids; that would allow quickly assessing the 

effectiveness of adsorption as the function of particles concentration and exposure time. 

2. Experimental part 

2.1. Nanoparticles and surfactants 

In the present study, we used two types of engineered plasmachemical nanoparticles: ZnO and TiO2, 

purchased from Nanostructured & Amorphous Materials Inc. (USA). The powders were white in 

colour. 
Two aliphatic amino acids were examined as stabilizers of particles: aminoacetic acid (Gly, 

glycine, NH2-CH2-COOH, CAS 56-40-6) and glutamic acid (Glut, L-glutamic, C5H9NO4, CAS 56-85-

9) produced by Sigma Aldrich.  

2.2. Determination of dry particles morphology  

Transmission electron microscopy (TEM) was performed using JEM 2100F microscope (Jeol, Japan, 

point resolution 2.3 Ǻ, lines 1.4 Ǻ) to determine the morphology of particles and their aggregates. The 
particles were transferred onto a copper grids coated with carbon prior to be irradiated in vacuum with 

electrons from a LaB6 emitter at the voltage of 50...200 keV. 

Specific surface area (SSA) of powders was determined by low-temperature nitrogen adsorption 

(Brunauer-Emmett-Teller, BET) method using SorbiPrep (META, Russia). The assay was repeated at 
least three times, and the measurement error was 0.2 m

2
/g. The resulting SSA was used to calculate the 

average surface diameter, assuming that nanoparticles were spherical and had equal diameter, 

according to the experimental formula:  

    (1) 
удS

d
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2.3. Preparation of surfactant solutions 

Surfactant solutions with the concentration of 2M were prepared using distilled water (pH=6.11±0.2, 

conductivity 0.2 μC, distiller D-30938, Gesellschaft Labortechnik mbH) at the temperature of 22±2°C. 

All samples were taken using analytical weights AGN-200 (Axis, Poland, measurement error 
±0.0001 g). Glutamic acid solution was basified using NaOH in a ratio of 1:1 mole until complete 

dissolution. The pH value was monitored by a pH meter Expert-001 (LLC "Electronics-Expert", 

Russia). All solutions were stored no more than three days. 

2.4. Preparation of nanoparticle suspensions 

Suspensions with particle concentration of 0.02…0.12 g/mL were prepared by direct adding of dry 

nanopowder to prepared surfactant solution (5 mL) followed by stirring in a magnetic stirrer (Heidolph 

MR Hei-Tec, 700 rpm, 5×10 mm magnet) for 20 h in closed plastic container at 22±2°C. After 
different aging time 2.5 mL of suspension was centrifuged during 60 minutes at a speed of 5500 rpm 

using centrifuge HETTICH EBA 20 (Germany). Supernatant was used to determine the adsorption 

coefficient.  

2.5. Determination of the adsorption coefficient (Ads) 

IR spectra of supernatant (layer of 0.005…0.1 mm thickness) was measured using Thermo Nicolet 380 

IR Fourier spectrometer in the wavenumber range of 4000 to 400 cm
-1

.  
It is known that in a certain range of surfactant concentrations, the height of the peaks on the IR 

spectrum can be correlated with the acid concentration [27]. However, in water-based solution, the 

most visible peaks corresponding to the carboxyl groups (1600 cm
-1

) [28] coincide with peaks 

demonstrating the vibrations of OH-groups in water (1580-1750 cm
-1

) [28]. Therefore, Hidberg et al. 
[29] have used another water structure when studying the adsorption of citric acid on alumina 

particles. The intense adsorption spectrums of amino acids are based at 1328, 1409 and 1506 cm
-1

 (for 

glycine) and 1344, 1400 and 1550 cm
-1

 (for glutamine) which correlate, respectively, with ρ(NH3) 
(rocking), τ(NH2) (twisting), and to ρ(NH3) and δ(NH2) (scissoring) vibrations of amino groups that do 

not coincide with the absorption bands of water. 

To estimate the efficiency of amino acid adsorption on the particle surface, we compared the 

surfactant concentration in exposed solution with initial acid content by determining the height of IR 
spectrum peak depending on the amino acid concentration in solution. In the work we analyzed peaks 

at 1330.71 cm
-1

 and 1400.11 cm
-1

 for glycine and glutamic, respectively. The adsorption coefficient 

(Ads, M/m
2
, AdsGly and AdsGlut – Ads value of glycine and glutamic, respectively) was calculated using 

the formula (2): 

    
       

           
 ,    (2) 

where Ci was surfactant concentration in the initial solution, mol/L; Cf – surfactant concentration in 
supernatant, mol/L; mN – concentration of nanoparticles, g/mL; S – specific surface area of particles, 

m
2
/g. 

3. Results and discussion 

3.1. Dispersion of the dry particles 

The results of BET and TEM analysis well correlate: the discrepancy in average particle size is no 

more than 15 nm (table 1). 
Although particles are agglomerated (figure 1), they are connected with not phase, but interparticle 

interaction (coagulation). Therefore, we presume the possibility to disperse particles in aqueous 

suspensions, and, consequently, to adsorb surfactants on the enlarged particles surface area. 
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Table 1. Dispersion of dry particles. 

Sample 
designation 

BET data TEM data 

Specific surface 

area, m
2
/g 

Average  diameter of 

particles, nm 

Average size of 

particles, nm 

Average size of 

aggregates, µm 

TiO2 22.4 ± 0.06 66 44 ± 5 2.5 ± 0.3 

ZnO 26.8 ± 0.15 40 51 ± 5 4.8 ± 5.9 

 

 
 

а) b) 

Figure 1. TEM images of TiO2 (a) and ZnO (b) nanoparticles. 

3.2. Effect of exposure duration on adsorption  

As we have shown, in Gly-suspension with particle concentration of 0.02 g/mL, surfactant at most is 
adsorbed during 3 h on ZnO (figure 2a, 1.68 mM/m

2
) and during 20 h on TiO2 (figure 2b, 

0.22 mM/m
2
) surface. Further exposure results in Ads decrease by 22 and 5% on ZnO and TiO2, 

respectively. The similar trend describes Glut-containing solutions: Ads value goes down by 7 and 

40%, respectively, on ZnO (figure 3b) and TiO2 (figure 4b) during 20 h exposure. Despite 
measurement error of 15%, the decrease of Ads may be explained by the surfactant desorption or 

aggregation of particles. However, longer exposure does not affect Ads value, and the systems tend to 

an equilibrium state since the surfactant concentration does not change in solution. 

  
а) b) 

Figure 2. Time-related change of adsorption coefficient (Ads) of glycine in ZnO (a) and TiO2 (b) 
suspension (particle concentration 0.02 g/mL, measurement deviation from triplicate results). 
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It has been demonstrated that in more concentrated suspensions (0.08...0.12 g/mL) the adsorption 

coefficient varies differently during a day-exposure: the change depends on surfactant and NPs 

compositions. For instance, in 0.08 g/mL suspensions of ZnO NPs Ads decreases by 4% in Gly 

(figure 3a) compared to 20% in Glut (figure 3b). In TiO2 suspensions there is no adsorption of Gly 
after 20 h exposure (total desorption, figure 4a), although in Glut solution Ads rises by 44% 

(figure 4b). Since we have different time-related influence on Ads, the effect of particles concentration 

on nanoparticles properties has been determined both at 3 and 20 h exposure. We see that exposure of 
TiO2 with particle concentration of 0.02 g/mL during 20 h leads to four times gain of AdsGly. 

Nevertheless, growth of NPs content up to 0.08 g/mL results in desorption of Gly molecules from 

TiO2 particles after 20 h aging (figure 4a). 

  
а) b) 

Figure 3. Concentration-related change of adsorption coefficient (Ads) of glycine (a) and L-

glutamic (b) for ZnO NPs (measurement deviation from triplicate results). 

   
а) b) 

Figure 4. Concentration-related change of adsorption coefficient (Ads) of glycine (a) and L-glutamic 
(b) for TiO2 NPs (measurement deviation from triplicate results). 
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3.3. Effect of nanoparticles concentration on adsorption  

According to experimental data, suspensions dilution promotes amino acids adsorption on NPs, 

although the concentration effect decays in suspension with higher particles content. For example, 

after the dilution of 3 h aged suspension from 0.04 till 0.02 g/mL there is a two-time drop of Ads value 
on the average (by 2.3 and 1.6 times on ZnO NPs in Gly and Glut, respectively, figures 3a and 3b, and 

by 2.4 times on TiO2 NPs in Glut, figures 4a and 4b).  

In higher concentrated suspensions (0.08...0.12 g/mL) the Ads shift is insignificant and the value 
changes within the measurement error. Generally, six-fold decrease of concentration (from 0.12 to 

0.02 g/mL) leads to the growth of the Ads by 3.1...4.1 times (figure 3a and 3b) on ZnO and by 6 times 

(figure 4b) on TiO2 NPs. Thus, to obtained results, regardless surfactant nature and exposure time, 

higher content of particles brings to lower adsorption coefficient calculated per specific surface of 
particles. Actually, if to measure the amount of surfactant adsorbed on NPs and relate it to maximum 

amount of surfactant which may adsorb onto NPs, we see that this value considerably increases with 

growth of NPs content. For example, in TiO2 suspensions with ratio ‘NPs:Glut’ 1:15..1:8..1:4..1:2.5 
adsorption portion is  0.30..0.36..0.27..0.44. However, while in concentrated suspensions the surface 

of particles is larger (0.52 m
2
 in 1 mL of 0.02 g/mL compared to 3.12 m

2
 for 0.02 g/mL), the activity 

of surface tend to decrease. It was also demonstrated by comparing IR spectra obtained on TiO2 NPs 
(10

-4
 M) exposed to differently concentrated Glut-solutions (10

-6
…10

-3
 M at pH=3 during 40 min) 

[25]. The authors revealed double growth of adsorption peak height at 1408 cm
-1 

at 10-fold increase of 

weight ratio ‘NPs:Glu’ (from  50:1 to 5:1), while we obtained 4-times decrease of IR peak height of 

the solution separated from NPs for the ratio ‘NPs:Glu’=1:2.5compared 1:15 to. 

3.4. Effect of surfactant ionogenicity on adsorption 

We have compared nonionic surfactant (Gly) and an ionic one (Glut) giving negatively charged 

particles in solution. In the experiments, we remained the pH of solutions obtained after surfactant 
dissolution, namely, 6.5 for Gly and 9.5 for Glut, since the adsorption is higher for Gly in acidified 

medium and Glut in alkali medium [25]. It has been shown that in all ZnO suspensions regardless 

exposure time there is 1.5 times difference in Ads in favor of nonionic surfactant (0.02..0.04 mg/L), 

and this effect becomes stronger in 0.08..0.12 mg/L suspensions, where Gly adsorption is 3 times more 
effective compared to Glut (figure 3). Thus, under certain conditions both glycine and L-glutamic are 

better adsorbed on ZnO NPs, while the adsorption of glycine on the surface more efficient that was 

theoretically confirmed by simulation studies [30-31].  
However, in diluted TiO2-based suspensions there is reverse tendency: adsorption of ionic 

surfactant is much higher than nonionic one and this effect goes down at NPs content growth. Thus, 

for 3 h aged suspension with concentration of 0.02…0.04…0.08 g/mL the value of AdsGlut / AdsGly is 
22…4…2, respectively. Higher adsorption of Glut is in agreement with theoretical simulations of 

amino acids adsorption at the rutile surface in aqueous solution, where the authors have found that the 

probability of interaction between the adsorbate and the surface is 3.7 times higher for Glut compared 

to Gly [16, 18], and confirmed by experimental amino acid adsorption results [17, 25].  

4. Conclusion 

We have shown the influence of the exposure duration on adsorption properties of industrial ZnO and 

TiO2 nanoparticles with an average size of 40-60 nm in a particle concentration range of 
0.02…0.12 g/mL exposed to 2M aqueous solutions of aminoacetic and glutamic acids. It has been 

revealed that in concentrated suspensions (0.08...0.12 g/mL) Ads value does not change significantly 

in time, whereas in diluted NPs suspensions (0.02…0.04 g/mL), exposure time and surfactant nature is 
highly critical for adsorption coefficient. Day exposure of NPs may result in slight desorption as 

shown on ZnO NPs or total desorption of surfactant as shown on TiO2 NPs in Gly solutions. 

Generally, six times dilution (from 0.12 to 0.02 g/mL) of NPs suspensions may lead to Ads 

augmentation by 3…6 times. When comparing surfactants it has been demonstrated that regardless 
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exposure time and particle concentration nonionic surfactant (glycine) is adsorbed in 1.5…3 times 

better on ZnO, although  in diluted TiO2 suspensions there is reverse tendency. 

From a methodological view point, a comparative study of NPs adsorption properties in amino acid 

solutions is substantiated by infrared spectroscopy at 1300...1400 cm
-1

. Based on the obtained results it 
has been concluded that in order to provide effective comparative study of NPs adsorption properties it 

is not reasonable to concentrate the NPs suspension more than 0.04 mg/L and it is better to expose 

them during 3 h in order to avoid surfactant desorption. 
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